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Gene expression dynamics, such as stochastic oscillations and aperiodic fluc-
tuations, have been associated with cell fate changes in multiple contexts,
including development and cancer. Single cell live imaging of protein
expression with endogenous reporters is widely used to observe such gene
expression dynamics. However, the experimental investigation of regulatory
mechanisms underlying the observed dynamics is challenging, since these
mechanisms include complex interactions of multiple processes, including
transcription, translation and protein degradation. Here, we present a Baye-
sian method to infer kinetic parameters of oscillatory gene expression
regulation using an auto-negative feedback motif with delay. Specifically,
we use a delay-adapted nonlinear Kalman filter within a Metropolis-adjusted
Langevin algorithm to identify posterior probability distributions. Our
method can be applied to time-series data on gene expression from single
cells and is able to infer multiple parameters simultaneously. We apply it to
published data on murine neural progenitor cells and show that it outper-
forms alternative methods. We further analyse how parameter uncertainty
depends on the duration and time resolution of an imaging experiment, to
make experimental design recommendations. This work demonstrates the
utility of parameter inference on time course data from single cells and enables
new studies on cell fate changes and population heterogeneity.
1. Introduction
The identification of regulatory mechanisms that control gene expression may
have important implications in biological systems. Cell state transitions are a key
contributor to many processes in healthy and diseased tissue, and as such they
play a major role in development, regeneration and cancer. There is an increasing
amount of literature uncovering the relationship between gene expression
dynamics, i.e. dynamic changes in protein copy numbers from a single gene,
and cell state transitions [1–7]. For example, Imayoshi et al. [1] used optogenetics
to show that oscillatory expression of the transcription factor ASCL1 promotes
cell proliferation of mouse neural progenitor cells, whereas sustained expression
promotes differentiation. Manning et al. [2] linked aperiodic HES5 protein
expression dynamics to murine neural progenitors, and declining oscillatory
dynamics to differentiating neurons. Further evidence by Soto et al. and Phillips
et al. [3,8] demonstrates the contribution of gene expression noise to tuning
oscillatory dynamics and influencing dynamically driven cell state transitions.

Experimentally, the dynamics of gene expression can be studied using a var-
iety of approaches. Accurate measurements of protein dynamics are made
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Figure 1. Time-series data of protein expression can be modelled with an auto-negative feedback motif. (a) Stills from a movie of a single cortical neural progenitor
in vitro with Venus::HES5 knock-in reporter. Colour bar shows Venus::HES5 intensity. Stills taken at time points 1.75 h (1), 4.5 h (2), 6 h (3), 7 h (4), 9.5 h (5), 10.75
h, (6), 15.5 h (7), 17.25 h (8). Scale bar 5 μm. For details on data collection see electronic supplementary material, S.10.1. (b) Venus::HES5 intensity time series of
cell in a. (c) Graphical representation of the auto-negative feedback motif. (d ) Model parameter values taken from previously published experiments and theoretical
considerations [2,8,10–14].
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through live-imaging of transcription factors in single cells,
which provides real-time information on gene regulation
and identifies cell-to-cell heterogeneity. This can be achieved
through fluorescent fusion reporters [9], where endogenously
expressed proteins are attached to fluorescent reporter mol-
ecules. Fluorescence microscopy can then be used to obtain
time-series data that quantify protein expression levels over
time (figure 1a,b; electronic supplementary material, S.10).
It may further be possible to translate the fluorescence inten-
sity into exact protein copy numbers [2,3]. Fluorescent
protein reporters are widely used to research the role of tran-
scription factor dynamics in cell differentiation events, and
have provided dynamic data on gene expression in various
contexts, such as neural differentiation, circadian regulation
and cell cycle regulation [1,2,15–18].

Mechanistically, dynamic gene expression is controlled by
multiple processes, including transcriptional pulsing (transcrip-
tion occurring in pulses or bursts), stochastic fluctuations (due
to a limited number of molecules), gene regulatory interactions
and translational control. In order to understand how these
processes interact to modulate gene expression dynamics, it is
necessary to use mathematical models.

Within systems biology, mathematical models are often
represented as a collection of gene regulatory motifs [19,20].
One very common motif is the delay-mediated, auto-
repressive negative feedback loop (figure 1c), which gives
rise to oscillations and other dynamic patterns of gene
expression that have been observed in somitogenesis, neuro-
genesis and in cancer cell lines [2,3,7,15,21]. In this motif, a
protein represses the transcription of its own gene. In combi-
nation with delays that are intrinsic to biological systems,
this admits a range of dynamic behaviours, most notably
oscillations at the mRNA and protein level. Regulation of
gene expression through the auto-negative feedback motif con-
tributes to cell state changes in multiple systems, including
neural differentiation [2,22,23].

Despite great advances in the collection of dynamic data
on gene expression, and the modelling of these data,
challenges remain when calibrating models to data. Even
simple mathematical models, such as the auto-negative feed-
back motif (figure 1c), employ multiple model parameters
that correspond to biophysical quantities. For example, the
auto-negative feedback motif uses rates of transcription,
translation, degradation and other parameters to predict
protein and mRNA expression dynamics. Each of these par-
ameters can take a large range of values (figure 1d ). For
many application areas, parameter inference, i.e. identifying
which parameters correspond to a given experimentally
obtained data set, remains an open problem, since it requires
the ‘inverse’ of the model, which typically cannot be com-
puted directly. However, solving this problem bears great
potential for the research of gene expression dynamics and
its links to cell fate. Identifying which parameter changes
correspond to observed differences in protein expression
dynamics may illuminate the molecular pathways that
contribute to cell fate control, and identify new sources of
heterogeneity within a cell population.

The need for parameter estimation in biological systems
has motivated extensive research in recent years, with a var-
iety of approaches being developed for different types of data
[24–27]. Techniques using Bayesian inference have emerged
as a preferred approach due to their ability to quantify uncer-
tainty in the face of noisy data, which is a common feature of
biological experiments [28], by representing parameters with
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distributions, rather than point estimates [11,29–35]. Placing
probability distributions over our parameters, rather than
treating them as point estimates, allows us not only to deter-
mine the most likely values for each of the parameters, given
some data but also to quantify our uncertainty in them.

To achieve parameter estimation with uncertainty quanti-
fication, Bayesian inference aims to identify the posterior
distribution of the model under consideration, denoted
pðu j yÞ, where u and y are the model parameters and observed
data, respectively. The posterior distribution describes the
probability of the model parameters given observed data, and
can be calculated using Bayes’ rule

pðu j yÞ ¼ pðy j uÞpðuÞ
pðyÞ

/ pðuÞpðy j uÞ: ð1:1Þ

Here,pðy j uÞ is referred to as the likelihood, and is ameasure of
the fit of a statistical model to the observed data, given specific
values of the model parameters. The prior probability, pðuÞ, is
a distribution which outlines one’s beliefs in the parameters u
before any new data are taken into account. These prior distri-
butions can be informed using published data (figure 1d), as
well asphysical constraints (e.g. rate constantsmust bepositive).
To visualize the posterior distribution and use it in further
analysis it is common to work with computationally generated
samples from this distribution. Posterior probabilities may be
difficult to compute directly, hindering the efficient generation
of these samples [36,37].

Specifically, it may not be possible to calculate posterior
probabilities if the likelihood of the model is not available. In
these cases, approximate Bayesian computation (ABC) can be
used.However,ABC reduces the data to a small numberof sum-
mary statistics, which inevitably decreases the accuracy of
inference [38]. If an expression for the likelihood is available
and can be calculated at given parameter points, the calculation
of themarginal likelihood π(y) often poses a further challenge in
Bayesian inference, since it may require the numerical inte-
gration of the likelihood and prior probability. To overcome
this challenge, sampling from the exact posterior distribution
can be achieved using Markov chain Monte Carlo (MCMC)
techniques, such as theMetropolis–Hastings randomwalk [39].

MCMC methods can produce samples from the posterior
distribution pðu j yÞ even if the integration factor π(y) is
unknown. In many scenarios, the reconstruction of a posterior
distribution using MCMC sampling can be slow, in particular
if the parameter space is high-dimensional, if the calculations
of the likelihood are computationallyexpensive, or if parameters
are highly correlated within the posterior distribution [40]. In
these scenarios, more efficient Hamiltonian Monte Carlo
(HMC) or Metropolis-adjusted Langevin algorithm (MALA)
methods are preferable [41–43]. HMC and MALA algorithms
additionally require the gradient of the posterior probability
with respect to the model parameters and can result in orders-
of-magnitude faster convergence of the sampled distribution
to the posterior distribution, especially for high-dimensional
distributions orwhenparameter correlations are present [42,44].

For time-series data specifically, a common approach to cal-
culating the likelihood is the Kalman filter. The Kalman filter is
an algorithmwhich calculates the likelihood of the data at each
time point, given a mathematical model of stochastic
dynamics, and an observation noise model. It can generally
be applied to Markov processes, where dynamic changes
over time only depend on the current state of the system,
and not past states. The Kalman filter is a powerful method
to calculate posterior probabilities if delays are not present in
the model [45], and can be extended to estimate the gradient
of the likelihood function, making gradient-based sampling
of the posterior distribution possible [46].

A number of recent methods focus specifically on time
series of gene expression [2,26,47–51]. For the study of oscil-
latory gene expression, a wide array of studies discuss time-
series data of protein concentrations, such as in figure 1a,b,
as well as the description of these data through the auto-
negative feedback motif (figure 1c). Despite this, a reliable
Bayesian inference method for this popular combination of
data and model is still missing. Since the model includes
delays, the widely used Kalman filter approaches are not
applicable. Recently, Calderazzo et al. [52] have addressed
this problem by identifying a method to introduce delays
into the Kalman filter [52], indicating that accurate Bayesian
inference for the auto-negative feedback motif on time-
series data of gene expression may be possible. However,
this approach lacks the ability to calculate gradients of the
posterior probability distribution, thus preventing the use
of efficient gradient-based sampling methods. Furthermore,
while Calderazzo et al. [52] applied their method to a motif
containing negative feedback, this method has not yet been
applied to the widely used motif in figure 1c, which includes
mRNA in addition to protein.

Here, we present a Bayesian inference pipeline that can be
used as a non-invasive method to measure kinetic parameters
of gene expression emerging from the auto-negative feedback
motif using protein expression time course data. We extend
the Kalman filtering method presented by Calderazzo et al.
[52] by introducing a recursive implementation to calculate
the gradient of the likelihood. This enables us to embed the
nonlinear delay adapted Kalman filter into a state-of-the-art
MALA sampling algorithm. This extension enhances the
robustness of the inference, making it more suitable for use
in typical experimental settings.

Our method is able to capture multiple kinetic parameters
of gene expression simultaneously using time course data
from single cells, and outperforms previous approaches. We
demonstrate the accuracy of our method on in silico data, pro-
vide an example on how the method can be applied to
experimental data, and show how the method can be used
to obtain experimental design recommendations. This work
is paving the way for the use of Bayesian inference methods
for the investigation of gene expression dynamics and their
links to cell fate.
2. Methods
In this section, we give an overview of the key components of our
method. First, we introduce the mathematical model for the auto-
negative feedback motif. Then, we discuss how we use a delay
adapted nonlinear Kalman filter to approximate the likelihood
function. Lastly, we provide details on data processing. Descrip-
tions of our method that require longer derivations, as well as
further details on data collection, are provided in the electronic
supplementary material. This includes our implementation of
two MCMC methods, Metropolis–Hastings random walk (MH)
and MALA, as well as our proposed algorithm to compute the
gradient of the likelihood function, which is a major technical
advancement in this paper. The availability of this gradient
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enables the use of a wider range of MCMC samplers, such as
MALA, which we use throughout the paper.
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2.1. The negative feedback chemical reaction network
Here, we consider a widely used model of gene expression, that
incorporates knowledge of the auto-repressive negative feedback
loop (figure 1c). Our model describes both protein and mRNA
expression dynamics over time at the level of a single cell,
accounting for transcription and translation, as well as degra-
dation. We include a delay in the model, representing the time
taken from the initiation of transcription until the production
of a transcript and its removal from the nucleus. We further
account for the effect of transcriptional auto-repression, where
a high abundance of the target protein inhibits transcription of
the mRNA [13,14,53].

Let p(t) and m(t) define the number of protein and mRNA
molecules, respectively, at time t for a gene of interest. Gene
expression is often subject to stochastic effects due to finite mol-
ecule numbers. To reflect this, we model the system with delayed
chemical Langevin equations [54–56],

dm
dt

¼ amfðpðt� tÞÞ � mmmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amfðpðt� tÞÞ þ mmm

q
jm ð2:1Þ

and

dp
dt

¼ apm� mppþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
apmþ mpp

q
j p, ð2:2Þ

where ξm, ξp denote Gaussian white noise, i.e.

hjmðt1Þjmðt2Þi ¼ dðt1 � t2Þ,
hj pðt1Þj pðt2Þi ¼ dðt1 � t2Þ

and hjmðt1Þj pðt2Þi ¼ 0,

where δ(·) is the Dirac-delta function.
The parameters μm, μp, αm and αp describe the rate of mRNA

degradation, protein degradation, basal transcription rate in the
absence of protein, and translation rate, respectively. The tran-
scriptional delay is given by τ, and auto-repression is taken
into account via the use of a Hill function

f ðpðt� tÞÞ ¼ 1

1þ ½pðt� tÞ=P0�h
, ð2:3Þ

reducing the rate of transcription for increasing amounts of
protein p at time t− τ [57]. Here, τ, the time delay, is the duration
of the transcription process. The Hill function (equation 2.3) is
close to one when the protein at time t− τ is much less than
the repression threshold P0 and close to zero when the protein
at time t− τ is much more than the repression threshold. The
steepness of the transition from one to zero can be regulated
by the Hill coefficient h. The Hill coefficient reflects the extent
of cooperativity between ligand binding sites for the gene of
interest [58].

From equations (2.1) and (2.2), we can see that the instan-
taneous rate of transcription is determined by αmf ( p(t− τ)).
This allows us to define an approximation for the average rate
of transcription as

aT ¼ amfð p̂Þ, ð2:4Þ
where p̂ is the average expression of protein. This average
expression of protein may be obtained from simulated or
experimental data.

We simulate the stochastic differential equations (2.1) and
(2.2) using the Euler–Maruyama method with a time step Δt = 1
min, which is chosen sufficiently small to ensure numerical
accuracy of the scheme.

A deterministic version of the model in equations (2.1) and
(2.2) was first developed by Monk [13] in order to describe
gene expression oscillations of Hes1, p53 and NF-κB, and various
versions of the model have since been widely studied [2,8,12–
14,55,56]. In particular, when molecular copy numbers of
mRNA and protein are low, we expect the rate processes of tran-
scription, translation, and degradation to stochastically vary with
time. This effect is accounted for by the noise terms in the
chemical Langevin equation (2.1) and (2.2) [54–56].
2.2. The likelihood function can be evaluated through
Kalman filtering

The Kalman filter is an algorithm which calculates the likelihood
function for linear stochastic differential equations describing
time-series data [59]. The Kalman filter evaluates the likelihood
of each time-point recording consecutively. The full likelihood
is then the product of these individual likelihoods, exploiting
the Markov property of the underlying stochastic process. The
Kalman filter can be extended to nonlinear dynamical systems
by using piecewise-linear Gaussian approximations [60].

Here, we implement a Kalman filter, extended to account for
non-linearity and delay, in order to evaluate the likelihood that
our observed data results from the model in equations (2.1) and
(2.2) at a given parameter combination. This likelihood can then
be used to infer model parameters for a given experimentally
observed time-series recording of gene expression. The resulting
posterior distribution may then represent testable predictions on
the biophysical characteristics of the gene of interest, such as
transcription, translation and degradation.

Our Kalman filter implementation uses a finer discretization
on the time axis than that given by the observation interval.
Specifically, we introduce z hidden states between consecutive
observations. Introducing such hidden states is common when
applying Kalman filters to nonlinear stochastic differential
equations. It increases the accuracy of a piece-wise linear Gaus-
sian approximation. In the following, the time variable t will
assume integer values numbering all discretization time points,
i.e. t = 0, 1,…, nz, where n is the total number of observations.

It is possible to show that the likelihood of a set of obser-
vations given specific model parameters can be expressed as [52]

pðy j uÞ ¼
Yn�1

i¼0

fðyi�z; Fri�z, FPi�zFT þ SeÞ, ð2:5Þ

where the subscript i · z denotes multiplication of i and z and

fðx; m, SÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2pSÞp exp � 1

2
ðx� mÞTS�1ðx� mÞ

� �
, ð2:6Þ

is the multivariate normal distribution. The true, unobserved
state of the system at time t is given by X(t) = xt = [m(t), p(t)]T,
and the relationship between xt and the observed data yt is
given by yt = Fxt + ϵt, where et � N ð0, SeÞ and F is a 1 × 2
matrix. Thus, F and ϵ represent our measurement model.
Throughout, we use F = [0, 1], since we aim to apply our
method to data on protein expression dynamics, where measure-
ments of mRNA levels are not available. The value Se is called
the measurement variance, and describes the observation noise
introduced through the experimental measurement process.
The variables ρ and P represent the state space mean and state-
space variance, respectively. We define y0:t = [y0, yz, y2z,…, yt]

T,
and write rt ¼ E½XðtÞ j y0:t�1� and Pt = Cov(X(t), X(t)| y0:t−1).

The Kalman filter calculates ρt, and Pt in equation (2.5) using
an iterative process with two main steps. At iteration k, the first k
observations have been used to infer a probability distribution
over the true state of the system X(t) for all discretization time
points up to t = kz. This probability distribution is characterized
by it’s mean r�kz ¼ E½XðtÞ j y0 : kz� and covariance P�

kz ¼ CovðXðtÞ,
XðtÞ j y0 : kzÞ.
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In the Kalman filter prediction step, we then use the model to
calculate the predicted probability distribution for protein and
mRNA copy numbers at the next observation time point,
X((k + 1)z). We use this prediction to evaluate the likelihood of
the observed data at the k + 1 observation time point. Before
the prediction for the next observation is made, the Kalman
filter update step is applied, in which the probability distribution
of the state space up to observation k + 1 is updated to take the
measurement at t = (k + 1)z into account.

For our update step, we derive an expression for the mean
and variance of the state space distribution π(xt−τ:t| y0:t), denoted
r�t�t : t and P�

t�t : t, respectively. That is, the likelihood of our state
space estimates from the past time t− τ to the current time, t,
given all of our current observations. This is necessary in order
to accurately predict the state space distribution at the next obser-
vation time point, π(xt+Δt| y0:t), as past states can affect future
states due to the presence of delays. We provide detailed deri-
vations of our Kalman filter prediction and update steps in
electronic supplementary material, S.1.
face
18:20210393
2.3. Implementation of MCMC sampling algorithms
The aim of our inference algorithm is to generate independent
samples from the posterior distribution, pðu j yÞ. In this paper,
we compare results from two different sampling methods, MH
and MALA. The MH algorithm and MALA are two of the
most widely used MCMC methods for drawing random samples
from a probability distribution. For completeness, we
provide their algorithms in electronic supplementary material,
S.2 and S.3.

Drawing proposals using MALA requires the calculation of
the gradient of the log-posterior UðuÞ, which we outline in elec-
tronic supplementary material, S.4. This is achieved by
iteratively computing the derivatives of state space mean, ρt,
and state-space variance, Pt, with respect to each parameter, as
detailed in electronic supplementary material, S.5.
2.4. Trends in the data are identified by Gaussian
processes

Before applying our inference method we detrend protein
expression time series using Gaussian process regression, in
order to identify and exclude data that show significant long-
term trends [61,62] (see §3.3 for further motivation). Specifically,
we make use of a scaled squared exponential Gaussian process
combined with white noise, whose kernel is given by

kðt, t0Þ ¼ g exp
�kxðtÞ � xðt0Þk2

2l2

 !
þ hdðt� t0Þ, ð2:7Þ

where ||x(t)− x(t0)|| is the Euclidean distance between x(t) and
x(t0), l is the lengthscale, and γ, η∈ (0,∞). In the Gaussian process
regression, the hyperparameters γ, l and η are found using
constrained optimization.

The initial value of the lengthscale is 1000min, and is
bounded uniformly in the range (1000min, 2000min). The
lower bound of this range, 1000min, was chosen to ensure that
detrending does not perturb ultradian dynamics in the data.
The upper bound, 2000min, was chosen sufficiently large to
ensure that detrending is not affected by it. The initial value of
the parameter γ is the variance of the data, s2

data, and is restricted
by a uniform prior to ð0:1s2

data, 2s
2
dataÞ. The parameter η has

initial value 100, and is restricted by a uniform prior to (10−5,
s2
dataÞ. Here, x(t) and x(t0) represent our protein expression time

course data at time t and t0 respectively. We identified data with-
out a significant long-term trend manually by visual inspection
(see §3.3, figure 4) and removed any residual trend before
applying our inference method.
3. Results
Single cells in a seemingly homogeneous population can
change cell fate based on gene expression dynamics. The con-
trol of gene expression dynamics can be understood with the
help of mathematical models, and by fitting these models to
experimentally measured data. Here, we analyse our new
method for parameter inference on single-cell time-series
data of gene expression using the widely used auto-negative
feedback motif. We first validate our method by showing the
performance of our algorithm on in silico datasets. We then
demonstrate the utility of our method by applying it to exper-
imentally measured data and, finally, use our method to
analyse how parameter uncertainty may depend on properties
of the data, as well as the experimental design.
3.1. Sampled posterior distributions agree with
analytical derivations for one-dimensional
parameter inference

We first test our inference method on in silico data from the
forward model of the auto-negative feedback motif (figure
1c). This is done using chemical Langevin equations, as
detailed in §2.1. Specifically, we emulate an in silico imaging
experiment by selecting simulated data in sparse intervals
of Δtobs mins and mimic measurement noise by adding
random perturbations to each observation time point
(figure 2a). These perturbations are drawn from a Gaussian
distribution with variance Se. Testing the method on
in silico data first is beneficial, since ground truth parameter
values are known a priori for the generated in silico datasets,
and can be compared to the obtained posterior distributions.

We start by applying our inference method to simple test
cases, where the true values of all but one parameter are
known, and only the remaining, unknown, parameter value
is inferred (figure 2). This allows us to compare our sampled
posterior distributions to the exact likelihood, which can be
calculated in these one-dimensional examples using equation
equation (2.5). If our inference method is accurate, the
sampled posterior distribution should closely match the
exact likelihood if the Markov chain has converged (see elec-
tronic supplementary material, S.7). We find that this is
indeed the case for example in silico datasets (Hill coefficient,
transcription rate and transcriptional delay in figure 2b–d,
repression threshold and translation rate in electronic sup-
plementary material, figure S1). Additionally, ground truth
parameter values lie well within the support of the posterior
distribution (figure 2b–d; electronic supplementary material,
figure S1, vertical black lines).

Our proposed inference method uses the MALA sampler,
which relies on calculating likelihood gradients (see electronic
supplementary material, S.4). The comparison with exact
calculations in figure 2b–d and electronic supplementary
material, figure S1 validates our implementation of MALA,
and the associated computations of the likelihood gradient.
In order to further test our implementation of MALA, and
the associated computations of the likelihood gradients, we
compare our results to posterior distributions sampled using
the MH algorithm, which does not require gradient calcu-
lations. Despite an expected slower convergence of the MH
algorithm, this comparison is feasible for one-dimensional pos-
terior distributions, which typically can be well approximated
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Figure 2. Our algorithm accurately samples posterior distributions. (a) Simulated experimental data. Protein copy numbers are simulated using the chemical Lan-
gevin equation (see §2, blue dots). Experimental observations are emulated every 5 min by adding Gaussian noise to the protein copy number ( pink). The
parameter values used were P0 = 3407.99, h = 5.17, μm = log (2)/30, μp = log (2)/90, αm = 15.86, αp = 1.27, τ = 30, Se ¼ 10 000, and the simulated
mRNA copy numbers are also included (green dots). (b–d ) Posterior distributions for one-dimensional inference. For individual model parameters, posterior dis-
tributions were inferred while keeping all other parameters fixed, respectively. Shown above are the inferred marginal posteriors for the Hill coefficient (b),
transcription rate (c) and transcriptional delay (d ) respectively as histograms, using MALA as the underlying sampling algorithm (see electronic supplementary
material, S.2) for 2500 iterations. The blue lines are the exact likelihood calculations. The sampled and exact distributions coincide. (e,f ) Histograms for both
MALA and MH on the one-dimensional problem for the Hill coefficient (e) and repression threshold ( f ).
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with a few thousand samples. The sampled means have a rela-
tive difference below 0.03%, and the standard deviations fall
within 4% of each other (table 1; electronic supplementary
material, table S3). This comparison reveals that posterior dis-
tributions from both samplers agree well with each other
(figure 2e–f; electronic supplementary material, figure S2),
and further validates the implementation of the individual
likelihood gradients.

3.2. Our method allows for simultaneous inference of
multiple model parameters

Having validated the method on one-dimensional posterior
distributions, we further test the performance of the
method by simultaneously inferring multiple model par-
ameters from a single in silico dataset and comparing the
resulting posterior distribution to the ground truth parameter
combination (figure 3a,b). Since we cannot measure conver-
gence of the sampled posterior through comparison to the
true posterior distribution in the multi-dimensional case,
we rely on typical MCMC convergence diagnostics (electronic
supplementary material, S.7).
We choose a dataset that shares characteristics with typi-
cally collected time course data from single cells. Specifically,
our in silico dataset is of similar length and observation inter-
vals as previously analysed by Manning et al. [2]. In this
paper, the degradation rates of protein and mRNA have
been measured, so we assume these measurements as known
values, leaving five unknown parameter values to infer. The
prior distributions were uniform, defined by the range of
values given in electronic supplementary material, table S1,
and log-uniform for αm and αp (see electronic supplementary
material, S.6 for details).

We find that the marginal posterior means, i.e. values of
largest probability, all lie within maximally half a standard
deviation of the ground truth values (table 2). This indicates
that a high degree of accuracy in the inference can be
achieved with the amount of data typically gathered from a
single cell.

Simultaneous inference of multiple parameters further
allows for the investigation of pairwise parameter corre-
lations, using correlation coefficient ν (figure 3c). Pairwise
correlations provide crucial information on how posterior
distributions can be constrained further. Specifically, the
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Figure 3. MCMC sampling enables simultaneous inference of multiple parameters (a) An in silico dataset was generated using parameter values P0 = 47 515, h =
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ν = 0.6 between the repression threshold and the Hill coefficient, h. In other words, for this dataset, a higher Hill coefficient indicates a higher repression threshold
(and vice versa). Finally, f shows the strong negative correlation between P0 and αm.

Table 1. The true values for the parameters which were used to generate the data in figure 2a, alongside the means, μ, and standard deviations, σ of the
corresponding one-dimensional posterior distributions, from both the MALA and MH algorithms (figure 2e,f).

parameter true value μ (MALA) μ (MH) σ (MALA) σ (MH)

repression threshold, P0 3408 3422 3423 37.51 36.65

Hill coefficient, h 5.17 5.113 5.112 0.100 0.104

Table 2. The true values for the parameters which were used to generate
the data in figure 3a, alongside the means, μ, and standard deviations, σ,
using MALA.

parameter
true
value mode s.d.

repression threshold, P0 47515 44915 12434

Hill coefficient, h 4.77 4.41 0.80

log basal transcription rate,

log (αm)

0.975 1.45 1.24

log translation rate, log (αp) 2.869 2.808 0.288

transcriptional delay, τ 38.0 39.87 4.39
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strong correlation between the repression threshold, P0, and
the logarithm of the basal transcription rate, log (αm) (figure
3e), highlights that the data in figure 3a are consistent with
either high repression thresholds and low transcription, or
vice versa. Such strong pairwise correlations (figure 3e,f )
imply that gaining new information on one of the two par-
ameters would constrain the other. This is not the case
when parameters are uncorrelated, such as the transcriptional
delay and the translation rate (figure 3d ), and experimentally
measured values on either of these parameters would not
inform the other.
3.3. Parameter inference on single cell data
outperforms previous approaches and may
reveal underlying mechanisms for population
heterogeneity

Next, we seek to evaluate the performance and utility of our
method by applying it to experimentally measured data.
Specifically, we investigate data on gene expression oscil-
lations in mouse spinal cord neural progenitor cells [2] (see
electronic supplementary material, S.10.2), and compare our
method to results on parameter inference from ABC (figure
4a). In this previous approach, inference was performed
using population-level summary statistics of the collected
time-course data. This resulted in posterior distributions
with high parameter uncertainty. Specifically, the marginal
posterior distributions for the Hill coefficient and the tran-
scriptional delay were close to uniform, illustrating that the
provided summary statistics did not contain sufficient infor-
mation to constrain the uniform prior distribution. The
remaining parameters had distinct modes. Nonetheless, par-
ameter uncertainty was high since the spread of the posterior
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Figure 4. Parameter inference on single cell data outperforms previous approaches. (a) Marginal posterior distributions for each parameter are obtained from the
ABC algorithm using summary statistics in place of likelihood evaluations. (b) Detrending of in vivo single cell protein expression data (black line). The sampling
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distribution was comparable to that of the prior [2]. Impor-
tantly, this previous approach did not allow for comparison
of posterior distributions between single cells.

When applying our method to time-series data from fluor-
escence microscopy experiments, it is necessary to address that
our model of the auto-negative feedback motif cannot describe
long-term trends in data. Specifically, the model of the auto-
negative feedback loop considered here is designed to describe
ultradian oscillations that typically have periods shorter than
10 h [12,13,55], and cannot describe variations in protein
numbers on longer timescales, such as one would expect
from a slow up- or downregulation of the gene in the tissue.
Hence, we only apply our algorithm to protein expression
time series that we expect to be accurately modelled by
equations (2.1) and (2.2) by excluding data that show signifi-
cant long-term trends. In order to identify such time series,
we first remove trends from the time series that vary on
lengthscales longer than 10 h by using Gaussian process
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regression (see §2.4). Then, we manually identify all time series
for which the detrended and raw time series visually agree
(figure 4b) and select these for inference.

In order to identify a suitable value for the measurement
variance Se we rely on previous estimates [2]. Manning et al.
[2] decomposed the measured time series into two contri-
butions, one from a time-varying signal with finite auto-
correlation time, and one from a time-varying signal for
which consecutive observations are uncorrelated [2]. This
second contribution follows an identical distribution as the
measurement error in our model, and was estimated to con-
tribute 10% of the total variance across all detrended time
series. Hence, we set

Se ¼ 0:1
Nc

XNc

i¼1

s2
i , ð3:1Þ

where Nc is the number of considered traces, and s2
i is the

variance for the ith detrended dataset.
We find that our method can identify more accurate pos-

terior distributions than the previous ABC-based approach
by using single cell time series of gene expression only
(figure 4c versus 4a.). For the single-cell gene expression
time course in figure 4b, we find that there is still compara-
tively high uncertainty on the basal transcription rate (αm in
figure 4c), as the support of the marginal posterior distri-
bution reflects that of the uniform prior distribution.
However, for all other model parameters that are inferred
from this time course, the marginal posterior distributions
are narrower than the prior, and than previously identified
marginal posterior distributions from ABC (figure 4c).

Having investigated marginal posterior distributions
from a single cell, we proceed to analyse to what extent
these posterior distributions can vary across multiple cells
in the population. Among the experimental data considered
here, hierarchical clustering has previously identified two
sub-populations (denoted as clusters 1 and 2) which have dis-
tinct gene expression dynamics and which also do not have
strong long-term trends [2], such as downregulation of gene
expression. For clusters 1 and 2, there are 19 and 22 cells,
respectively, which we have selected for negligible trends
(see §2.4).

We find that the posterior distributions inferred from mul-
tiple cells share features that are conserved across all cells and
both populations (figure 4d,e). Specifically, the marginal pos-
terior distributions of the translation rate αp are all larger than
exp (2)/min, and biased to larger values. Similarly, the marginal
posterior distributions for the delay τ cover the entire range of
considered values, and are biased towards smaller values, with
most likely values below 10min. These observations appear to
hold true for both clusters considered here, and they highlight
that parameter inferences obtained from ourmethod are biologi-
cally reproducible, which is a necessary feature to enable the use
of the method in practical applications.

By contrast, for the basal transcription rates αm and the
Hill coefficient h, marginal posterior distributions vary
between individual cells, suggesting that there is an under-
lying heterogeneity of these parameters across the cell
population. However, the remaining parameter uncertainty
is too high to reliably identify differences between cells and
clusters of cells, raising the question of how imaging proto-
cols may need to be changed in order to achieve lower
uncertainty on typical parameter estimates.
3.4. Longer time course data improve accuracy of
inference more effectively than more frequent
sampling

Typically, longer imaging time series can only be collected at
the cost of a lower imaging frequency. When designing
experiments, it may be desirable to choose an imaging proto-
col that optimizes the parameter inference towards high
accuracy and low uncertainty. However, parameter uncer-
tainty may not only be influenced by the imaging protocol,
but also by the bifurcation structure of the underlying dyna-
mical system [63]. Hence, we next analyse how posterior
distributions depend on the frequency of sampling, on the
length of the imaging interval, and on the position in par-
ameter space. To evaluate the performance of our inference,
we investigate the uncertainty using relative uncertainty, RUθ

(electronic supplementary material, S.7, equation (S35)),
which quantifies the spread of the posterior distribution.
We use this metric to quantify the performance of our infer-
ence method on a number of synthetic datasets with different
lengths and sampling frequencies, and for different locations
in parameter space.

We choose two locations in parameter space that corre-
spond to two different values of oscillation coherence, thus
producing qualitatively different expression dynamics
(figure 5a; electronic supplementary material, table S2). The
oscillation coherence is a measure of the quality of observed
oscillations (electronic supplementary material, S.8). Choos-
ing parameter combinations with different coherence thus
ensures that these correspond to different positions within
the bifurcation structure of the auto-negative feedback loop
[55,64,65].

We first analyse to what extent collecting data for a longer
sampling duration may reduce parameter uncertainty
(figure 5b,d). We find that a longer sampling duration can
strongly decrease parameter uncertainty. Doubling the length
of the time-series reduces the uncertainty by 19% on average
for thehigh coherenceparameter combination, and7.1%onaver-
age for the low coherence parameter combination. A tripling of
the available data leads to reductions in uncertainty by 29.8%
and 18.3% and for high and low coherence, respectively.

By contrast, an increase in sampling frequency leads to
a smaller decrease in parameter uncertainty on average
(figure 5c,e). Specifically, doubling the amount of data only
leads to adecrease by 11.3% in the case of the high coherence par-
ameter combination, and 6.7% in the case of low coherence.
A tripling of the available data leads to reductions in uncertainty
of 13.2% and 9.1% for low and high coherence, respectively.

We find that analogous conclusions hold true if inference
accuracy is analysed (MEθ, electronic supplementary material,
S.7, equation (S36)), instead of uncertainty (electronic sup-
plementary material, figure S3). Accuracy increases with
longer sampling durations and shorter imaging intervals,
and longer sampling durations have a stronger effect than
shorter imaging intervals.
3.5. Additional measurements of mRNA copy numbers
improve estimates of the average transcription rate

In the previous section, we have analysed the impact of
changes in the imaging protocol on parameter uncertainty
overall. Alternatively, it may be desirable to identify
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Figure 5. Increasing the length of time course data improve inference more than increased sampling frequency. (a) Two examples of in silico protein observations,
one which has low coherence ( pink) and another with high coherence (purple). Exact parameter combinations can be found in electronic supplementary material,
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Same as b with the high coherence datasets. (e) Same as c with the high coherence datasets.
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interventions that reduce uncertainty for particular parameters
of interest. For example, an important quantity of interest may
be the average rate of transcription of the investigated gene,
introduced as αT in equation (2.4). In many in silico examples
of our parameter inference, this average rate of transcription
αT is poorly inferred, with the mean of the posterior distri-
bution being up to five times larger than the ground truth
value. This is for example the case in figure 6a. In this and
other examples, the ground truth value lies outside the 85%
highest density interval (HDI) of the posterior distribution
(figure 6a–c). Intuitively, one may assume that estimates for
the rate of transcription are improved if measurements of
mRNA copy numbers, in addition to protein expression
dynamics, are considered in the inference.

Hence we next assume that, in addition to data on the
dynamics of protein expression, measurements of mRNA copy
numbers have been conductedon the observed cells. Specifically,
we generate in silico data mimicking a single-molecule in situ
hybridization (smFISH) experiment. Such smFISH experiments
generate distributions of mRNA copy numbers, thus providing
a snapshot of mRNA levels across a population at a fixed time
point [66,67]. To account for these additional data, we incorpor-
ate the observed distribution of mRNA copy numbers into our
likelihood function, such that it effectively penalizes parameters
for which inferred copy numbers of mRNA are outside the
experimentally observed range (see electronic supplementary
material, S.9).

We find that this inclusion of mRNA information col-
lected from a cell population leads to more accurate
inference of the average transcription rate for single cells,
using our algorithm. Observing example datasets from
figure 5, the posterior distributions cover multiple orders of
magnitude if only protein expression data are considered in
figure 6d,e, with the mean of the distribution being 5.4
times larger than the true value in figure 6d, and 2.4 times
larger in figure 6e, respectively. Upon inclusion of mRNA
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Figure 6. Additional measurements of mRNA copy numbers improve estimates of the average transcription rate. (a–c) Posterior distributions of the average rate of
transcription, αT, calculated using the posterior samples of three example datasets from figure 5. The ground truth value (vertical black line) is poorly estimated by
these posteriors. (d–f ) The same three posterior distributions for αT as in a–c, this time comparing posterior samples drawn without mRNA information (blue) and
with mRNA information (orange). Here the ground truth value (vertical black line) is much more closely inferred when mRNA information is included. (g) Uncer-
tainty of αT for the low coherence datasets from figure 5. Uncertainty in αT is reduced by more than 60% when mRNA information is included. Uncertainty on αT is
calculated using the coefficient of variation, defined by the posterior standard deviation over the posterior mean, ŝaT=m̂aT

. (h) Same as in g but for high coherence
datasets. Here mRNA information reduces uncertainty in αT by more than 50%. (i) Values of relative uncertainty RUθ (equation (S35) in electronic supplementary
material, S.7) for low coherence datasets (cf. figure 5) with and without additional data on mRNA copy numbers. ( j ) RUθ for high coherence datasets from figure 5
with and without additional data on mRNA copy numbers. In g–j, the coloured lines and shaded areas represent the mean and standard deviation across observed
values, respectively. Datasets in a–c are all sampled for a duration of 12 h, and with sampling intervals of 8 min, 8 min and 5 min, respectively. All datasets
considered in g–j are sampled every 15 min for a duration of 12 h and the parameters correspond to the low and high coherence parameter sets, respectively
(see electronic supplementary material, table S2).
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information, these posterior distributions are instead concen-
trated around the true value, with a relative error below
15.3%. In both examples, the ground truth is contained
within the 65% HDI. In figure 6f, a posterior distribution
that is already close to the true value gets further constrained
by the additional mRNA data. In these examples, the
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observed reduction in uncertainty on the inferred transcrip-
tion rate is accompanied by a reduction in uncertainty on
estimated mRNA copy numbers for individual cells, as
inferred by the Kalman filter (see e.g. electronic supplemen-
tary material, figure S5A versus S5B). Investigating the
uncertainty on the average inferred transcription rate across
datasets introduced in figure 5, we observe a reduction in
uncertainty of 61.8% for low coherence parameter combi-
nations (figure 6g), and a reduction in uncertainty of 51.2%
for high coherence parameter combinations (figure 6h).

How does this improved estimate of transcription rate
affect overall uncertainty across parameter space, as analysed
in figure 5? Counterintuitively, we find that this inclusion of
mRNA data into our parameter inference does not reduce over-
all parameter uncertainty (figure 6i,j). For datasets from the
low coherence parameter combination, the relative uncertainty
increases by 1.1% on average when mRNA information is
included (figure 6i). For datasets from the high coherence par-
ameter combination, uncertainty decreases slightly (9.1% on
average (figure 6j)). Importantly, this reduction of uncertainty
is considerably smaller than the reduction of uncertainty
observed when longer measurement durations are considered
(cf. figure 5d). We make analogous observations as inference
accuracy is analysed (electronic supplementary material,
figure S4), instead of uncertainty. Inference accuracy is not
reduced for high coherence datasets when data on mRNA
copy numbers are included, and it is only slightly reduced
for some of the low coherence datasets, with the effect being
much smaller than the effect of considering longer time
course data (cf. electronic supplementary material, figure S3).

The effect that overall uncertainty is not decreased as new
data on mRNA copy numbers are included contradicts the
intuition that more accurate inference of the average rate of
transcription αT will also reduce uncertainty on model par-
ameters regulating αT, such as the basal transcription rate,
αm and the repression threshold, P0. This effect may be attrib-
uted to correlations between these parameters, which we
typically observe in our posterior distributions (see
figure 3f ). For the dataset in figure 6a, inference of αT is
improved upon inclusion of the mRNA. This leads to a tigh-
ter coupling between the parameters αm and P0 (electronic
supplementary material, figure S6). However, this constrain-
ing of the posterior distribution is not reflected in either of
the marginal posterior distributions. Thus, although the
inclusion of in silico smFISH data reduces the spread of the
posterior distribution overall, uncertainty within the mar-
ginal posterior distributions is not reduced, and individual
parameter estimates are not improved. An additional factor
is that data from smFISH experiments may be considered to
reflect the time-averaged mRNA copy number distribution
of single cells. Hence, these data might not reduce uncer-
tainty on parameters that are expected to predominantly
alter the dynamics rather than the level of expression, such
as the transcriptional delay τ and Hill coefficient h. Hence,
to better infer these parameters, other strategies, e.g. those
discussed in figure 5, may be required.

We conclude that distributions of mRNA copy numbers
from population-level measurements can be used to infer
average transcription rates for individual cells, using our
inference method, which may facilitate the study of transcrip-
tional dynamics in the context of gene expression oscillations.
Together with results from figure 5, this illustrates how our
method may be used to evaluate the benefit of different
experiments in silico, and highlights that our method can be
naturally extended to use additional data of different types.
4. Discussion
The aim of this work was to develop a statistical tool that can
be used to infer kinetic parameters of the auto-negative feed-
back motif, based on typically collected protein expression
time-series data from single cells. Importantly, the stochastic
nature of the involved processes demanded a method that
enables uncertainty quantification. We have achieved our
aim by embedding a nonlinear delay-adapted Kalman filter
into the MALA sampling algorithm. Our method can gener-
ate accurate posterior distributions for the simultaneous
inference of multiple parameters of the auto-negative feed-
back motif. The produced posterior distributions are more
informative than those from previous approaches. Since our
method can be applied to data from single cells, it enables
the investigation of cell-to-cell heterogeneity within cell
populations. It can further be used to make experimental
design recommendations, which we demonstrated by investi-
gating how parameter uncertainty may depend on the
position in parameter space, the sampling frequency, and
the length of the collected time-series data. Additionally,
our method may be extended to account for the presence of
different types of data, for example to improve estimates of
the transcription rate for individual cells.

Often, new inference algorithms are presented on a single
dataset, and due to necessary tuning requirements of the
involved sampling methods, further datasets are not con-
sidered. However, it is important to understand the behaviour
of a method for a range of datasets if we wish to make exper-
imental design recommendations. It is an achievement of this
paper that we provide a method that demonstratively can
reliably infer parameters, even when the size and structure of
the data are changed significantly.

The mathematical model underlying our method aims to
describe the dynamic expression of a protein which is con-
trolled by auto-negative feedback. The success of our
inference relies upon how well this model approximates rea-
lity. Mathematical models for the oscillatory expression of
transcription factors are informed by experimental research
[57,68] and have been developed over time [3,8,13,14,64]. Exist-
ing model extensions include interactions with other genes or
microRNAs [12] and future models could include effects of
transcriptional bursting [69]. The simple model used here pro-
vides a starting point for developing inference algorithms
for further models including nonlinear, stochastic interactions
as well as delays, and future validation of experimental
predictions can be used to guide data-driven model improve-
ments. To this end, our algorithm may enable model selection
to identify gene regulatory network properties, such as
interactions between multiple transcription factors.

Chemical Langevin equations such as equations (2.1) and
(2.2) approximate the full stochastic dynamics of the system
by assuming Gaussian increments. Furthermore, our
Kalman filter assumes that measurement errors follow a
Gaussian distribution, and are not correlated between con-
secutive time points. The likelihood calculations within the
Kalman filter assume that distributions of protein copy num-
bers, which are predicted by equations (2.1) and (2.2), can be
approximated by Gaussian distributions.
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The Gaussian approximation within the chemical Lange-
vin equation can break down when molecule concentrations
are very low, resulting in an inaccurate simulation of the
dynamics. We do not expect this to be a problem for data ana-
lysed in this paper, since protein copy numbers throughout
our analysis are around 50 000 protein molecules per nucleus.
In other applications, the validity of the chemical Langevin
equation may be explicitly tested on samples from the pos-
terior distribution by directly comparing simulated
expression time series with those obtained from an exact
sampling algorithm, such as the Gillespie algorithm [70]. Simi-
larly, simulations of the chemical Langevin equation can be
used to test assumptions on the Gaussianity of the state
space made within the Kalman filter. In cases where these
assumptions do not hold, alternative inference algorithms,
such as particle filter methods, may need to be developed.

For Bayesian inference problems, it is common to use
MCMC samplers, such as MH or MALA. We have found
that combining a delay-adapted nonlinear Kalman filter and
MALA can allow us to infer parameters of the auto-negative
feedback motif. This builds on previous approaches which
applied a Kalman filter in the context of a different transcrip-
tional feedback motif with delay [52]. MCMC algorithms
typically require tuning which may be data specific. We
have taken steps to reduce additional input from the user by
using MALA, which proposes new samples based on the gra-
dient of the target posterior, hence accounting for geometric
properties of parameter space, which can result in faster,
more robust performance on some distributions [44]. MALA
also has fewer tuning parameters than other algorithms,
such as HMC. This allows us to more easily incorporate adap-
tation into our algorithm [71]. Surprisingly, the MALA
sampler did not result in faster convergence than MH on
example posteriors from our model (see electronic supplemen-
tary material, figure S7). Hence, the added computational cost
of calculating likelihood gradients will not be beneficial in all
applications, especially since, in our model, gradient calcu-
lations increase the computational cost of individual
parameter samples by a factor 12. We expect the availability
of likelihood gradients to achieve a speed-up in high-
dimensional problems, where convergence speeds of MALA
scale with d1/3, rather than d1 for MH [72], for model dimen-
sion d. Note, that more efficient MCMC algorithms can
eliminate the problem of tuning entirely [44]. These methods
rely on the computation of the Hessian, i.e. the second deriva-
tive of the likelihood function. Deriving expressions for the
Hessian and investigating the efficiency of the resulting
algorithm is thus a potential avenue for future work.

In our applications of the algorithm to experimentally
measured data, we detrended the data before applying our
inference (figure 4b). Such detrending is commonly used
when analysing time series of oscillatory signals [2,73,74].
The detrending removes signal fluctuations from the recorded
time series that vary on a much longer timescale than the ultra-
dian oscillations that are being considered. This is necessary,
since our model cannot describe such long-term fluctuations.
Specifically, independently of the model parameter chosen,
simulated traces from the chemical Langevin equation
(equations (2.1) and (2.2)) do not include long-term trends.
Hence, detrending prevents any bias that the presence of a
long-term trend in the data may introduce to the parameter
inference. When the algorithm will be applied to data from
other transcription factors, we recommend excluding data
that contain trends with timescales that are longer than the
fluctuations and oscillations that are expected to emerge
from the auto-negative feedback, in line with previous
detrending recommendations [73,74]. Presumably, variations
in the long-term trend of the data stem from a time-depen-
dence of one or multiple of the model parameters due to
regulatory processes that our model does not account for.
Hence, future improvements to our algorithm may be devel-
oped where the temporal variation of model parameters is
inferred, instead of one static value.

When applying our inference method to experimental
data (figure 4), we relied on previously reported values for
the measurement variance, Se, in the dataset that we con-
sidered [2]. When users seek to apply our algorithm to
other data where previously published values are not avail-
able for Se, this parameter can be inferred following the
same procedure as reported in Manning et al. [2].

Our algorithm opens up the investigation of research pro-
blems, such as cell-to-cell heterogeneity in dynamic gene
expression, which would previously not have been accessible.
In future applications, our algorithm may provide a non-
invasive method to measure the kinetic parameters of the
gene of interest, such as the translation and transcription
rates, or properties of the gene’s promoter, which are
described by the repression threshold and Hill coefficient par-
ameters in our model. On experimental datasets where
multiple, qualitatively different dynamics are observed
[75–77], our algorithm may provide insights into the mechan-
istic origin of these different dynamics, by identifying
differences in inferred parameter values between the
observed cells or cell populations. In order to classify
whether observed differences between posterior distributions
are significant, one can construct the posterior distribution
describing the difference between parameter values from
both cells or populations, and test whether the credible inter-
val of that distribution contains zero [78]. To facilitate such
analysis, our method may for example be combined with
clustering algorithms on the time series data, such as Gaus-
sian mixture modelling. Since different dynamic patterns of
gene expression have been observed in multiple studies of
auto-repressing transcription factors [2,3], we anticipate that
these approaches will spark new scientific investigations.

Throughout, we have assumed that measurements in the
form of protein copy numbers per nucleus are available over
time. To collect such data, it is necessary to combine endogen-
ous fluorescent reporters with FCS in order to translate
reporter intensity values to molecule concentrations. Future
versions of our algorithm may be applicable to data where
FCS is not available, if one extends our measurement model
(F, §2.2) to include an unknown, linear scaling parameter
between protein copy numbers and imaged intensity values.

We highlight that the impact of this work is not limited to
a single gene in a single model system. The conceptual
framework and derivations described here are applicable to
any system which can be described by delayed stochastic
differential equations, although there may be computational
limitations as model sizes increase.
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