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Abstract
We study Lq-spectra of planar self-affine measures generated by diagonal matri-
ces. We introduce a new technique for constructing and understanding examples
based on combinatorial estimates for the exponential growth of certain split
binomial sums. Using this approach we disprove a theorem of Falconer and
Miao from 2007 and a conjecture of Miao from 2008 concerning a closed form
expression for the generalised dimensions of generic self-affine measures. We
also answer a question of Fraser from 2016 in the negative by proving that a
certain natural closed form expression does not generally give the Lq-spectrum.
As a further application we provide examples of self-affine measures whose
Lq-spectra exhibit new types of phase transitions. Finally, we provide new non-
trivial closed form bounds for the Lq-spectra, which in certain cases yield sharp
results.
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1. Introduction and summary of results

The Lq-spectrum is an important concept in multifractal analysis and quantifies global fluctua-
tions in a given measure. In the setting of self-affine measures, the Lq-spectrum is notoriously
difficult to compute, and is only known in some specific cases, see for example [4, 5] and in
some settings a generic formula is known [1, 2, 6]. Even in some cases where a formula is
known, it is not given by a closed form expression which makes explicit calculations (and the-
oretical manipulation) difficult. Some attention has been paid to the provision of closed form
expressions in [3, 5, 8] and these works provide the main motivation for this one.

First we consider the setting of Fraser [5] and Feng–Wang [4], where the self-affine mea-
sures are generated by diagonal systems. Fraser [5, theorem 2.10] provided closed form expres-
sions for the Lq-spectra in many cases, but often required some extra assumptions on the
defining system. He asked if these technical assumptions could be removed and if his for-
mula held in general [5, question 2.14]. We answer this question in the negative by providing
an explicit family of counterexamples, see theorem 3.8. Despite the fact that the predicted
closed form expression does not hold, we are able to provide new, non-trivial, closed form
bounds for the Lq-spectra, see theorem 3.11. We also provide examples of self-affine mea-
sures whose Lq-spectra exhibit new types of phase transitions, see theorem 3.9. Specifically,
we construct examples where the Lq-spectrum is differentiable at q = 1 but not analytic in any
neighbourhood of q = 1.

Secondly, we consider the setting of Falconer–Miao [3] and Miao [8] where the self-affine
measures are generated by upper triangular matrices. The paper [3] was mainly concerned
with dimensions of self-affine sets, but towards the end it states a closed form expression for
the generalised q-dimensions (these are a normalised version of the Lq-spectra) in a natural
generic setting [3, theorem 4.1]. The proof of this result was just sketched and when the result
appeared later in Miao’s thesis [8, theorem 3.11] the full proof was only given for 0 < q < 1
and the formula only conjectured to hold for q > 1. We show that this formula and conjecture
of Miao are false for q > 1 in general by providing an explicit family of counterexamples, see
theorem 4.4. We are able to provide new, non-trivial, closed form bounds for the generalised
q-dimensions, see theorem 4.5 and also give new conditions which guarantee that the conjec-
tured formula does hold, see corollary 4.6.

A key technical tool is the following growth result for split binomial sums: if one considers
the binomial expansion of (1 + x)k, where x > 1 is fixed, and splits the sum in half, then the
ratio of the two halves grows exponentially in k, see theorem 2.1.

2. Preliminaries and split binomial sums

For background on iterated function systems (IFS) see [9]. We recall some basic concepts.
Suppose we have an IFS {Si}i∈I consisting of contracting affine transformations of Rn where
I is some finite index set. Then it follows from Hutchinson’s theorem (see for instance
[9, theorem 9.1]) that there exists a unique non-empty, compact set F satisfying

F =
⋃
i∈I

Si(F),
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which we call the self-affine set associated to {Si}i∈I . We shall be interested in measures sup-
ported on such sets, and a natural class can be constructed as follows. Suppose we have a
self-affine set F given by the IFS {Si}i∈I acting on R

n, and a probability vector {pi}i∈I with
each pi ∈ (0, 1). Then there exists a unique Borel probability measure μ on R

n satisfying

μ =
∑
i∈I

piμ ◦ S−1
i ,

which we call the self-affine measure associated to {Si}i∈I and {pi}i∈I .
We close this section with a technical result which states that a certain split binomial sum

ratio grows exponentially. This result will be used to provide counterexamples later in the
paper.

Theorem 2.1. Let x > 1, then

lim
k→∞

(∑k
i=�k/2�

( k
i

)
xi∑	k/2


i=0

( k
i

)
xi

) 1
k

=
1 + x
2
√

x
> 1,

where the limit is taken along odd integers k.

Proof. Fix x > 1 and let k � 1 be odd. Since
( k

i

)
�
(

k
	k/2


)
for all i = 0, . . . , k we have(

k
	k/2


)
� 1

k+1

∑k
i=0

( k
i

)
= 2k

k+1 . Hence

2kx	k/2


k + 1
�
(

k
	k/2


)
x	k/2
 �

	k/2
∑
i=0

(
k
i

)
xi �

k∑
i=0

(
k
i

)
x	k/2
 = 2kx	k/2
.

It follows that on the one hand∑k
i=�k/2�

( k
i

)
xi∑	k/2


i=0

( k
i

)
xi

=

∑k
i=0

( k
i

)
xi −

∑	k/2

i=0

( k
i

)
xi∑	k/2


i=0

( k
i

)
xi

=
(1 + x)k∑	k/2

i=0

( k
i

)
xi

− 1 � (1 + x)k

2kx	k/2
 − 1

and on the other hand∑k
i=�k/2�

( k
i

)
xi∑	k/2


i=0

( k
i

)
xi

�
∑k

i=0

( k
i

)
xi∑	k/2


i=0

( k
i

)
xi

=
(1 + x)k∑	k/2

i=0

( k
i

)
xi

� (k + 1)(1 + x)k

2kx	k/2
 .

Since 1+x
2
√

x > 1 by the arithmetic-geometric mean inequality the result follows easily. �

3. Diagonal systems and the Lq-spectrum

We now turn to the first class of IFS we shall study and introduce the Lq-spectrum of the
associated self-affine measure. We begin by introducing the necessary background from [5, 7].

Definition 3.1 (Lq-spectrum). If μ is a Borel probability measure on R
n with support

denoted by supp(μ) then for q � 0 the upper and lower Lq-spectrum of μ are defined to be

τμ(q) = limδ→0

log
∫

supp(μ) μ(B(x, δ))q−1 dμ(x)

− log δ
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and

τ μ(q) = limδ→0

log
∫

supp(μ) μ(B(x, δ))q−1 dμ(x)

− log δ

respectively (where τμ(1) and τ μ(1) are interpreted as being 0). If these two values coincide
we define the Lq-spectrum of μ, denoted τμ(q), to be the common value.

This quantity is of special interest in multifractal analysis due to its relationship with the fine
multifractal spectrum. In particular if the multifractal formalism holds then the fine multifractal
spectrum of μ is given by the Legendre transform of τμ (for details see [11]).

Definition 3.2 (diagonal system). We say a self-affine IFS is a diagonal system if it is
an IFS consisting of affine transformations of R2 whose linear part is a contracting diagonal
matrix.

Note that necessarily the maps that make up diagonal systems are of the form Si(x, y) =
Ti(x, y) + ti, where Ti is a contracting linear map which can be written in matrix form as

Ti(x, y) =

(
±ci 0
0 ±di

)(
x
y

)

with ci, di ∈ (0, 1) and ti ∈ R
2 is a translation vector.

We shall also assume that our IFS satisfies the following separation condition.

Definition 3.3 (rectangular open set condition). We say an IFS acting on R
2 satis-

fies the rectangular open set condition (ROSC) if there exists a non-empty open rectangle
R = (a, b) × (c, d) ⊂ R

2 such that {Si(R)}i∈I are pairwise disjoint subsets of R.

In order to calculate the Lq-spectrum τμ(q) of such measures, Fraser introduced what he
termed a q-modified singular value function. To introduce this we begin by defining the pro-
jection mapsπ1, π2 : R2 → R by π1(x, y) = x andπ2(x, y) = y. It may be shown that the projec-
tions of the measure μ, namely π1(μ) = μ ◦ π−1

1 and π2(μ) = μ ◦ π−1
2 , are a pair of self-similar

measures. It follows from a result of Peres and Solomyak [12] that the Lq-spectra of both of
these projected measures, which we denote by τ1(q) := τπ1(μ)(q) and τ2(q) := τπ2(μ)(q), exist for
q � 0.

Let I∗ =
⋃

k�1Ik denote the set of all finite sequences with entries in I. For
i = (i1, . . . , ik) ∈ I∗ let Si = Si1 ◦ Si2 ◦ · · · ◦ Sik and let p(i) = pi1 pi2 . . . pik . Also write α1(i) �
α2(i) for the singular values of the linear part of Si and write c(i) = ci1ci2 . . . cik and
d(i) = di1di2 . . . dik . In particular, for all i = (i1, . . . , ik) ∈ I∗, α1(i) = max{c(i), d(i)} and
α2(i) = min{c(i), d(i)}.

Now define πi : R2 → R by

πi =

{
π1 if c(i) � d(i)

π2 if c(i) < d(i)

and subsequently define τ i(q) by τi(q) := τπi(μ)(q). Note that by definition τ i(q) is simply the
Lq-spectrum of the projection of μ|Si(F) onto the longest side of the rectangle Si([0, 1]2). Fur-
thermore as πi is always equal to π1 or π2, it follows that τ i(q) is always equal to either τ 1(q)
or τ 2(q).

For s ∈ R and q � 0, define the q-modified singular value function, ψs,q : I∗ → (0,∞) by

ψs,q(i) = p(i)qα1(i)τi(q)α2(i)s−τi(q)
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and for each k ∈ N define the value Ψs,q
k by

Ψs,q
k =

∑
i∈Ik

ψs,q(i). (3.1)

It now follows from lemma 2.2 in [5] and standard properties of sub-multiplicative sequences
that we may define a function P : R× [0,∞) → [0,∞) by

P(s, q) = lim
k→∞

(Ψs,q
k )1/k.

It follows from lemma 2.3 in [5] that we may define another function, γ : [0,∞) → R, by
P(γ(q), q) = 1. We shall refer to this function as a moment scaling function. The importance
of this function is the following theorem from [5].

Theorem 3.4 [5, theorem 2.6] . Suppose that μ is generated by a diagonal system and
satisfies the ROSC. Then

τμ(q) = γ(q).

This tells us that finding a closed form expression for τμ(q) is equivalent to finding a closed
form expression for γ(q).

Note that we may approximate γ(q) numerically by functions γk(q), where for each k ∈ N

we define γk(q) : [0,∞) → R by

Ψ
γk(q),q
k = 1.

In order to find a closed form expression Fraser defined functions γA, γB : [0,∞) → R by∑
i∈I

pq
i cτ1(q)

i dγA(q)−τ1(q)
i = 1

and ∑
i∈I

pq
i dτ2(q)

i cγB(q)−τ2(q)
i = 1.

The following lemma tells us some useful information about the relationship between γA, γB

and τ 1, τ 2.

Lemma 3.5 [5, lemma 2.9] . Let μ be generated by a diagonal system and q � 0. Then
either

max{γA(q), γB(q)} � τ1(q) + τ2(q)

or

min{γA(q), γB(q)} � τ1(q) + τ2(q).

This lemma is particularly helpful as it allows us to state Fraser’s main result on closed form
expressions from [5].

Theorem 3.6 [5, theorem 2.10] . Let μ be generated by a diagonal system and q � 0.
If max{γA(q), γB(q)} � τ 1(q) + τ 2(q) then

γ(q) = max{γA(q), γB(q)}.
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If min{γA(q), γB(q)} � τ 1(q) + τ 2(q), then

τ1(q) + τ2(q) � γ(q) � min{γA(q), γB(q)}

and if either ∑
i∈I

pq
i cτ1(q)

i dγA(q)−τ1(q)
i log(ci/di) � 0

or ∑
i∈I

pq
i dτ2(q)

i cγB(q)−τ2(q)
i log(di/ci) � 0

then γ(q) = min{γA(q), γB(q)}.

The fact that we only have an inequality involving γ(q) when min{γA(q), γB(q)} � τ 1(q) +
τ 2(q), combined with the observation that the above conditions (the sums involving logarithms)
do not look especially natural, led Fraser to ask the following question.

Question 3.7 [5, question 2.14].
If min{γA(q), γB(q)} � τ 1(q) + τ 2(q) and neither∑

i∈I
pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci/di) � 0

nor ∑
i∈I

pq
i dτ2(q)

i cγB(q)−τ2(q)
i log(di/ci) � 0

are satisfied, is it still true that

γ(q) = min{γA(q), γB(q)}?

By presenting a family of counterexamples we shall answer this question in the negative. In
particular we provide a family of diagonal systems consisting of two maps equipped with the
Bernoulli-(1/2, 1/2) measure such that

γ(q) < min{γA(q), γB(q)}

for all q > 1.

3.1. A family of counterexamples

We now give examples answering question 3.7 in the negative. We require a family of measures
such that the two conditions in theorem 3.6 fail. At the same time we also need to ensure
that they are simple enough to allow us to estimate Ψs,q

k in (3.1) effectively. We prove the
following result, which states that, for a certain explicit family of self-affine measures generated
by diagonal systems, τμ(q) is not equal to either γA(q) or γB(q) for all q > 1. Theorem 2.1 will
be of key importance in establishing this result.

Theorem 3.8. Let c, d be such that c > d > 0 and c + d � 1. Let μ be the self-affine mea-
sure defined by the probability vector (1/2, 1/2) and the diagonal system consisting of the two
maps, S1 and S2, where

S1(x, y) =

(
c 0
0 d

)(
x
y

)
and S2(x, y) =

(
d 0
0 c

)(
x
y

)
+

(
1 − d
1 − c

)
.
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Then, for q > 1,

γ(q) < min{γA(q), γB(q)}.

More precisely, for q > 1, γA(q) = γB(q) < 0 and, writing s to denote this common value,

γ(q) � s −
2 log

(
2(d/c)s/2

(d/c)s+1

)
log(cd)

. (3.2)

Proof. Let q > 1. We begin by noting that due to the relative simplicity of the maps we
are working with it is straightforward to show that τ 1(q) = τ 2(q) = γA(q) = γB(q). We shall
denote this common value by s, and also note that s < 0.

Let k be odd. We may write Ψs,q
k as

Ψs,q
k =

∑
i∈Ik

pq
i α1(i)τi(q)α2(i)s−τi(q)

=
∑
i∈Ik

2−kqα1(i)s,
(3.3)

using the fact that p = 1/2 and s = τ 1(q) = τ 2(q). Since the maps S1 and S2 commute, we can
write each Si (i ∈ Ik) as Si = Si

1 ◦ Sk−i
2 where i ∈ [0, k] is the number of times S1 was used in

the composition of Si. For such maps, since c > d,

α1(i) = cmax{i,k−i} × dmin{i,k−i}

and we can re-express (3.3) as

Ψs,q
k = Xq

k + Yq
k ,

where

Xq
k =

	k/2
∑
i=0

(
k
i

)
2−kq
(
ck−idi

)s

and

Yq
k =

k∑
i=�k/2�

(
k
i

)
2−kq
(
dk−ici

)s
.

We now consider the ratio Xq
k/(1 − Xq

k ). By our binomial result (theorem 2.1) and the definition
of s = γA(q),

k∑
i=0

(
k
i

)
2−kq
(
ck−idi

)s
=
(
2−qcγA(q) + 2−qdγA(q)

)k
= 1k = 1

and therefore

Xq
k

1 − Xq
k

=

∑	k/2

i=0

( k
i

)
2−kq
(
ck−idi

)s∑k
i=�k/2�

( k
i

)
2−kq
(
ck−idi

)s .
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We may rearrange (and cancel a factor 2−kqcks) to give

Xq
k

1 − Xq
k

=

∑	k/2

i=0

( k
i

) ((
d/c
)s)i∑k

i=�k/2�
( k

i

) ((
d/c
)s)i .

We note that as c > d and as s < 0 we have (d/c)s > 1. Thus by theorem 2.1,

(
Xq

k

1 − Xq
k

)1/k

→ 2(d/c)s/2

(d/c)s + 1
=: δ ∈ (0, 1)

as k →∞. Thus we also have
(
Xq

k

)1/k → δ as k →∞. By following similar reasoning we can
deduce the same result for Yq

k . In particular,

Yq
k

1 − Yq
k

=

∑k
i=�k/2�

( k
i

)
2−kq
(
dk−ici

)s

∑	k/2

i=0

( k
i

)
2−kq
(
dk−ici

)s =

∑k
i=�k/2�

( k
i

) (
dk−ici

)s

∑	k/2

i=0

( k
i

) (
dk−ici

)s (3.4)

which equals

∑	k/2

j=0

(
k
j

) (
(d/c)s

) j

∑k
j=�k/2�

(
k
j

) (
(d/c)s

) j
(3.5)

(this follows from relabelling the summation by j = k − i and using the fact that
(

k
k− j

)
=(

k
j

))
. Note that (3.5) gives exactly the same as the expression we found for Xq

k/(1 − Xq
k )

earlier, and so we must also have
(
Yq

k

)1/k → δ as k →∞. Therefore

P(s, q) = lim
k→∞

(
Ψs,q

k

)1/k
= lim

k→∞

(
Xq

k + Yq
k

)1/k
= δ < 1

and by definition of P(t, q) and γ(q)

P(γ(q), q) = 1 > δ = P(s, q).

Since P(t, q) is decreasing in t γ(q) < s = γA(q) = γB(q), which is enough to show that
γ(q) < min{γA(q), γB(q)}. We can upgrade this result to get the stated quantitative upper
bound (3.2) by considering the function P(t, q) more closely. For k � 1 and i ∈ Ik, α1(i) �
(cd)k/2 and therefore, for ε = s − γ(q) > 0,

δ = P(s, q) = lim
k→∞

⎛
⎝∑

i∈Ik

2−kqα1(i)γ(q)+ε

⎞
⎠

1/k

� lim
k→∞

⎛
⎝(cd)εk/2

∑
i∈Ik

2−kqα1(i)γ(q)

⎞
⎠

1/k

= (cd)ε/2P(γ(q), q) = (cd)ε/2

and therefore

s − γ(q) = ε � 2 log δ

log(cd)

which proves the theorem. �
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3.2. New examples of phase transitions

Here we record a simple consequence of theorem 3.8 relating to phase transitions. We say that
the Lq-spectrum τμ(q) exhibits a first order phase transition at a point t ∈ R if the derivative of
τμ is discontinuous at t. Likewise we say τμ(q) exhibits an nth order phase transition at t ∈ R

if its derivatives up to the (n − 1)th order are continuous at t but the nth order derivative is
discontinuous at this point.

The differentiability of the Lq-spectrum is important and has many interesting conse-
quences. Key among these is the fact that if τμ

′(1) exists then its absolute value gives the
Hausdorff dimension of the measure in question, see [10]. We can use theorem 3.8 to provide
examples of behaviour relating to higher order phase transitions at q = 1. We are unaware of
any other method for constructing such examples.

Theorem 3.9. There exists a planar self-affine measure μ defined by an IFS satisfying the
ROSC such that τμ, the Lq-spectrum of μ, is differentiable at q = 1 but not analytic in any
neighbourhood of q = 1.

Proof. Consider the planar self-affine measures considered in theorem 3.8. As the functions
τ 1, τ 2 are the Lq-spectra of the measures π1μ, π2μ and these measures are self-similar and
satisfy the open set condition, it follows that they are real analytic on (0,∞), see [9, chapter
17], (in particular, they are differentiable at q = 1). We can therefore apply theorem 2.12 in [5]
and conclude that the function γ(q) is differentiable at q = 1, so that τμ = γ is differentiable
at q = 1.

Observe that the function γA = γB is also real analytic on (0,∞), since it inherits analyticity
from τ 1, τ 2 via the analytic implicit function theorem. We know that γ(q) = γA(q) = γB(q) for
q ∈ [0, 1] but γ(q) < γA(q) = γB(q) for q > 1, see theorem 3.8. It follows that τμ = γ cannot
be analytic on any neighbourhood of q = 1. �

Question 3.10. How many derivatives does τμ = γ have at q = 1 for the measures μ
considered in theorem 3.8?

3.3. New closed form lower bounds

We now know that γ(q) is not in general given by either the maximum or minimum of γA(q)
and γB(q). However, by developing a quantitative version of the argument in [5] used to prove
theorem 3.6 we are able to provide new closed form lower bounds for γ(q) for all planar
diagonal systems. Given x ∈ R we write x+ to denote the maximum of x and 0.

Theorem 3.11. Let μ be a self-affine measure generated by a diagonal system and let q � 0.
Then

γ(q) � max{LA(q), LB(q)},

where

LA(q) = γA(q) −
(

(γA(q) − τ1(q) − τ2(q))

∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci/di)∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci)

)+

and

LB(q) = γB(q) −
(

(γB(q) − τ1(q) − τ2(q))

∑
i∈I pq

i dτ2(q)
i cγB(q)−τ2(q)

i log(di/ci)∑
i∈I pq

i dτ2(q)
i cγB(q)−τ2(q)

i log(di)

)+

.
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In particular, ∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci/di)∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci)

and ∑
i∈I pq

i dτ2(q)
i cγB(q)−τ2(q)

i log(di/ci)∑
i∈I pq

i dτ2(q)
i cγB(q)−τ2(q)

i log(di)

are both strictly less than 1, which ensures that this result provides a strictly better bound than
γ(q) � τ 1(q) + τ 2(q) in the case when γ(q) � min{γA(q), γB(q)}.

Proof. We prove that γ(q) � LA(q). The inequality γ(q) � LB(q) follows by an analogous
argument which we omit. Let {θi}i∈I denote an arbitrary probability vector, and for each k ∈ N,
define a number n(k) ∈ N by

n(k) =
∑
i∈I

	θik
.

Note that k − |I| � n(k) � k. We consider the n(k)th iteration of I and define

Jk =
{

j = ( j1, . . . , jn(k)) ∈ In(k) : #{m : jm = i} = 	θik
 for each i ∈ I
}

,

noting that

|Jk| =
n(k)!∏

i∈I	θik
!
.

We also define numbers c, d and p (for which we suppress the dependence on k) by

c =
∏
i∈I

c	θik

i , d =

∏
i∈I

d	θik

i , p =

∏
i∈I

p	θik

i .

First assume that
∏

i∈Icθi
i >

∏
i∈Idθi

i . In particular this assumption implies that c > d for k
sufficiently large. Indeed

c =
∏
i∈I

c	θik

i �

(∏
i∈I

cθi
i

)k

and

d =
∏
i∈I

d	θik

i �

(∏
i∈I

dθi
i

)k(∏
i∈I

di

)−1

and therefore c > d for all

k >
− log

(∏
i∈Idi

)
log
((∏

i∈Icθi
i

)
/
(∏

i∈Idθi
i

)) .
Therefore, for all sufficiently large k, i ∈ Jk and s ∈ R,

ψs,q(i) = pqcτ1(q)ds−τ1(q). (3.6)
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By definition of c, d and p we may write this as

ψs,q(i) =
∏
i∈I

(
pq

i cτ1(q)
i ds−τ1(q)

i

)	θik

.

We now introduce a form of Stirling’s approximation which states that for n ∈ N sufficiently
large

n log n − n � log n! � n log n − n + log n.

Using this as well as (3.6) we find that for k sufficiently large

log
(
Ψs,q

n(k)

)
� log

⎛
⎝∑

i∈Jk

ψs,q(i)

⎞
⎠

= log

(
|Jk|
∏
i∈I

(
pq

i cτ1(q)
i ds−τ1(q)

i

)	θik

)

=

(
log n(k)!−

∑
i∈I

log	θik
! +
∑
i∈I

	θik
 log
(

pq
i cτ1(q)

i ds−τ1(q)
i

))

�
(

n(k) log n(k) − n(k) −
∑
i∈I

	θik
 log	θik
+
∑
i∈I

	θik


−
∑
i∈I

log	θik
+
∑
i∈I

	θik
 log
(

pq
i cτ1(q)

i ds−τ1(q)
i

))
,

where the last line follows from the above version of Stirling’s formula. Continuing to bound
and introducing an exponent of 1/n(k) we get

log
(
Ψs,q

n(k)

)1/n(k) � 1
n(k)

(
n(k) log n(k) −

∑
i∈I

	θik
 log k −
∑
i∈I

	θik
 log θi

−
∑
i∈I

log	θik
+
∑
i∈I

	θik
 log
(

pq
i cτ1(q)

i ds−τ1(q)
i

))

� 1
n(k)

(
n(k) log n(k) − n(k) log k −

∑
i∈I

log	θik


+
∑
i∈I

	θik
 log

(
pq

i cτ1(q)
i ds−τ1(q)

i

θi

))

� log

(
k − |I|

k

)
− 1

k − |I|
∑
i∈I

log θik

+
∑
i∈I

θi log

(
pq

i cτ1(q)
i ds−τ1(q)

i

θi

)
,
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where the last line uses the fact that k − |I| � n(k). Taking the limit as k →∞ the right-hand
side tends to

∑
i∈I

θi log

(
pq

i cτ1(q)
i ds−τ1(q)

i

θi

)
.

If this is non-negative then

P(s, q) = lim
k→∞

(
Ψs,q

n(k)

)1/n(k) � 1

and therefore γ(q) � s.
Second, assume that

∏
i∈I cθi

i <
∏

i∈I dθi
i . In this case, a completely analogous argument

proves that if

∑
i∈I

θi log

(
pq

i dτ2(q)
i cs−τ2(q)

i

θi

)
� 0

then P(s, q) � 1 and so γ(q) � s.
Finally, if

∏
i∈I cθi

i =
∏

i∈I dθi
i then we cannot guarantee that c > d or d > c for all k suf-

ficiently large. We can however conclude that we must have either c � d or d � c (or both)
for infinitely many k, so by choosing an appropriate subsequence we can reduce to one of the
above two cases. Since we do not know which case we are in (c � d or d � c) we must require
that both of the above summation conditions hold. Putting the above three cases together we
have therefore shown that

γ(q) � sup

{
s : there exists a probability vector {θi}i∈I such that either

(1)
∏
i∈I

cθi
i >

∏
i∈I

dθi
i and

∑
i∈I

θi log

(
pq

i cτ1(q)
i ds−τ1(q)

i

θi

)
� 0

or (2)
∏
i∈I

cθi
i <

∏
i∈I

dθi
i and

∑
i∈I

θi log

(
pq

i dτ2(q)
i cs−τ2(q)

i

θi

)
� 0

or (3)
∏
i∈I

cθi
i =

∏
i∈I

dθi
i and both

∑
i∈I

θi log

(
pq

i cτ1(q)
i ds−τ1(q)

i

θi

)
� 0

and
∑
i∈I

θi log

(
pq

i dτ2(q)
i cs−τ2(q)

i

θi

)
� 0

}
.

In the above we have the freedom to choose a probability vector {θi}i∈I . A natural choice here,
suggested by considering Lagrange multipliers, is to take

{θi}i∈I =
{

pq
i cτ1(q)

i dγA(q)−τ1(q)
i

}
i∈I

(note that this is indeed a probability vector by definition of γA). We now let s = γA(q) − ε for
ε � 0. We want to see how small we can make ε (ideally we want ε = 0) such that the two
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conditions hold simultaneously. The first holds trivially, since

∑
i∈I

pq
i cτ1(q)

i dγA(q)−τ1(q)
i log

(
pq

i cτ1(q)
i dγA(q)−ε−τ1(q)

i

pq
i cτ1(q)

i dγA(q)−τ1(q)
i

)

=
∑
i∈I

pq
i cτ1(q)

i dγA(q)−τ1(q)
i log(d−ε

i ) � 0.

For the second to hold, we require

∑
i∈I

pq
i cτ1(q)

i dγA(q)−τ1(q)
i log

(
pq

i dτ2(q)
i cγA(q)−ε−τ2(q)

i

pq
i cτ1(q)

i dγA(q)−τ1(q)
i

)
� 0.

Rearranging this, we see that this is equivalent to requiring

ε � (γA(q) − τ1(q) − τ2(q))

∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci/di)∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci)
. (3.7)

We note that when Fraser’s original condition from theorem 2.10 in [5] holds, namely if∑
i∈I

pq
i cτ1(q)

i dγA(q)−τ1(q)
i log(ci/di) � 0,

then right-hand side of (3.7) is negative so we may take ε = 0. Otherwise we use the bound
for ε given in (3.7). Putting these two cases together therefore gives us that

γ(q) � γA(q) −
(

(γA(q) − τ1(q) − τ2(q))

∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci/di)∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci)

)+

.

Finally we note that

∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci/di)∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci)
= 1 −

∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(di)∑
i∈I pq

i cτ1(q)
i dγA(q)−τ1(q)

i log(ci)
< 1

so our lower bound is indeed an improvement on

γ(q) � τ1(q) + τ2(q)

in the case when γ(q) � min{γA(q), γB(q)}. �

3.4. An example

Here we present an example of a diagonal system satisfying the assumptions of theorem 3.8
where we take c = 3/4 and d = 1/4, which is displayed in figure 2. We know from theorem
3.8 that τμ(q) = γ(q) is not given by the maximum or minimum of γA(q) and γB(q) for q > 1.
It is therefore natural to seek bounds for the Lq-spectrum.

Let q > 1. Focussing on upper bounds, theorem 3.6 implies that, for q > 1, γA(q) =
γB(q) = τ 1(q) = τ 2(q) = s < 0, where s is the solution of

2−qcs + 2−qds = 1,
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Figure 1. Graph of our new upper and lower bounds for the Lq-spectrum (solid lines),
labelled by the theorem they come from. For reference we also show graphs of the pre-
viously known upper bound min{γA(q), γB(q)} (long dash) and the previously known
lower bound τ 1(q) + τ 2(q) (short dash), as well as the lower bound 1 − q, which is
specific to this setting (dots).

Figure 2. Left: images of the unit square under the two maps used above. Right: the
associated self-affine set.
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and

γ(q) � s −
2 log

(
2(d/c)s/2

(d/c)s+1

)
log(cd)

.

Concerning lower bounds, theorem 3.11 implies that

γ(q) � max{LA(q), LB(q)} = s

(
2 − cs log(d) + ds log(c)

cs log(c) + ds log(d)

)
.

We also note a couple of trivial lower bounds. Since γ(0) = 1 (the box dimension of the support
of μ), γ(1) = 0, and γ is necessarily convex, it follows that 1 − q is a lower bound for τμ(q).
We also know that τ 1(q) + τ 2(q) is a lower bound for τμ(q), see a remark following [5, question
2.14]. Figure 1 shows a plot of these bounds for q ∈ [1, 20]. We see that our new lower bound,
max{LA(q), LB(q)} is a strict improvement on the lower bound of 1 − q outside of the range
(1.7, 9.3).

4. Generalised q-dimensions in the generic setting

In [3] Falconer and Miao considered self-affine sets and measures generated by IFSs consisting
of upper-triangular matrices. This paper was mainly concerned with dimensions of self-affine
sets, but towards the end of the paper they stated a closed form expression for the generalised
q-dimensions in the measure setting (here, generalised q-dimensions simply refer to the Lq-
spectrum normalised by 1 − q). We show that in fact their formula does not always hold when
q > 1. We begin by recalling some definitions and notation from [3].

Definition 4.1. Suppose T is an n × n contracting matrix. Then for 0 � s � n the singular
value function φs(T ) is defined to be

φs(T) = α1α2 . . . αm−1α
s−m+1
m ,

where α1 � α2 � · · · � αn are the singular values of T and where m is the unique integer such
that m − 1 < s � m. For s � n we define φs(T ) to be

φs(T) = (α1α2 . . . αn)s/n.

For a finite Borel measure μ on R
n and q ∈ R, q �= 1, Falconer and Miao discuss the gen-

eralised q-dimensions of μ, denoted Dq(μ). This is simply defined to be the Lq-spectra of μ
normalised by 1 − q, that is

Dq(μ) =
τμ(q)
1 − q

provided the appropriate limits exist. In order to calculate the generalised q-dimensions of
self-affine measures μ associated with contracting upper triangular matrices T1, . . . , TN and
probabilities p1, . . . , pN Falconer and Miao studied the quantity dq(T1, . . . , TN , μ) defined, for
each q � 0 (q �= 1) to be the unique t satisfying

lim
k→∞

⎛
⎝∑

i∈Ik

φt(Ti)
1−q pq

i

⎞
⎠

1/k

= 1.
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This approach was introduced in [1] where it was shown that for q ∈ (1, 2) the generalised q-
dimensions of a self-affine measure is generically given by dq(T1, . . . , TN , μ) in an appropriate
sense. See [2] where further results along these lines were obtained for almost self-affine mea-
sures. It is therefore of great interest to provide closed form expressions for dq(T1, . . . , TN , μ)
or at least to be able to estimate it effectively. We state the result using our notation and only in
the planar case, although it is possible to apply our methods to the higher dimensional setting.

Let T1, . . . , TN denote a collection of contracting non-singular 2 × 2 upper triangular matri-
ces and let ci, di denote the diagonal entries of the ith matrix. Define a function P0 : [0, 2] ×
[0, 1) ∪ (1,∞) → [0,∞) by

P0(t, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

{
N∑

i=1

pq
i ct(1−q)

i ,
N∑

i=1

pq
i dt(1−q)

i

}
, 0 � t < 1

max

{
N∑

i=1

pq
i

(
c2−t

i (cidi)
t−1
)1−q

,
N∑

i=1

pq
i

(
d2−t

i (cidi)
t−1
)1−q

}
, 1 � t � 2

and, for each q ∈ [0, 1) ∪ (1,∞), let u0(q) be defined by P0(u0(q), q) = 1, provided a solution
exists and otherwise simply let u0(q) = 2.

Theorem 4.2 [3, theorem 4.1] . Let μ be a planar self-affine measure generated by an IFS
of upper triangular matrices as above. Then for q ∈ [0, 1)

dq(T1, . . . , TN ,μ) = u0(q).

In the paper [3], this result was suggested to hold for all q � 0 (q �= 1). The result appeared
again in Miao’s PhD thesis [8, theorem 3.11] in which he noted that, in fact, he could only
establish the result for q ∈ [0, 1). Miao conjectured that the result should still hold for q > 1,
see discussion leading up to [8, theorem 3.11]. Our main result in this section, which is essen-
tially an analogue of theorem 3.8 adapted to this situation, proves that theorem 4.2, does not
hold for q > 1 in general.

We note that the approach in [3, 8] does provide a lower bound for dq(T1, . . . , TN, μ) for
q > 1, that is, for all q > 1,

dq(T1, . . . , TN ,μ) � u0(q).

4.1. A family of counterexamples relating to generalised q-dimensions

Before considering the range q > 1 we note that a better lower bound than u0(q) is available
simply by changing the maximum to a minimum in the definition of P0, which is natural for
q > 1. We define P∗

0 : [0, 2] × [0, 1) ∪ (1,∞) → [0,∞) by P∗
0(t, q) = P0(t, q) for q ∈ [0, 1) and

for q > 1 by

P∗
0(t, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

{
N∑

i=1

pq
i ct(1−q)

i ,
N∑

i=1

pq
i dt(1−q)

i

}
, 0 � t < 1

min

{
N∑

i=1

pq
i

(
c2−t

i (cidi)
t−1
)1−q

,
N∑

i=1

pq
i

(
d2−t

i (cidi)
t−1
)1−q

}
, 1 � t � 2.

Let u(q) be defined by P∗
0(u(q), q) = 1, provided a solution exists and otherwise simply let

u(q) = 2. Note that u(q) = u0(q) for q ∈ [0, 1) and u(q) � u0(q) for q > 1 with strict inequality
a possibility. This inequality comes from the fact that the functions that we are taking the
maximum or minimum of are increasing in t for q > 1. We expect that when conjecturing a
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closed form expression for dq(T1, . . . , TN, μ) for q > 1, Miao [8] was thinking of u(q) rather
than u0(q).

Lemma 4.3. For all q � 0 (q �= 1) we have

dq(T1, . . . , TN ,μ) � u(q).

Proof. It suffices to only consider the range q > 1 since for q < 1 this result is covered
by [3, 8]. Write α1(i) � α2(i) for the singular values of the matrix T i. Firstly suppose that
0 � u(q) < 1 and therefore∑

i∈Ik

φu(q)(Ti)
1−q pq

i =
∑
i∈Ik

α1(i)u(q)(1−q)pq
i .

By definition of α1(i) we have α1(i) = max{ci, di} and since u(q)(1 − q) < 0 it follows that
α1(i)u(q)(1−q) � min{cu(q)(1−q)

i , du(q)(1−q)
i }. Therefore∑

i∈Ik

φu(q)(Ti)1−q pq
i

� min

⎧⎨
⎩
∑
i∈Ik

cu(q)(1−q)
i pq

i ,
∑
i∈Ik

du(q)(1−q)
i pq

i

⎫⎬
⎭ = P∗

0(u(q), q) = 1,

where we have used the fact that ci and di are multiplicative in i. Therefore, for t = u(q),

lim
k→∞

⎛
⎝∑

i∈Ik

φt(Ti)
1−q pq

i

⎞
⎠

1/k

� 1

and since the expression on the left is increasing in t (since q > 1)

dq(T1, . . . , TN ,μ) � u(q).

If 1 � u(q) < 2, then the proof follows similarly noting

φu(q)(Ti)
1−q =

(
α1(i)α2(i)u(q)−1

)1−q

� min
{(

c2−t
i (cidi)t−1

)1−q
,
(
d2−t

i (cidi)t−1
)1−q
}
.

We leave the details to the reader. �
Despite this simple improvement on the lower bound, we prove that dq(T1, . . . , TN , μ) is

still not generally equal to u(q) for q > 1.

Theorem 4.4. Let c, d be such that c > d > 0 and c + d � 1. Let μ be the self-affine mea-
sure defined by the probability vector (1/2, 1/2) and the diagonal system consisting of the two
maps, T1 and T2, defined by

T1(x, y) =

(
c 0
0 d

)(
x
y

)
and T2(x, y) =

(
d 0
0 c

)(
x
y

)
+

(
1 − d
1 − c

)
.

For q > 1 let u(q) be defined by P∗
0(u(q), q) = 1, that is, u(q) is the unique solution of

cu(q)(1−q)2−q + du(q)(1−q)2−q = 1.
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Then, for all q > 1,

dq(T1, T2,μ) > u(q).

More precisely, for all q > 1,

dq(T1, T2,μ) � u(q) +
2 log

(
2(c/d)u(q)(q−1)/2

(c/d)u(q)(q−1)+1

)
(q − 1) log(cd)

.

Proof. We adapt the proof of theorem 3.8. Let q > 1, k be odd, and consider the following
sum ∑

i∈Ik

φu(q)(Ti)1−q pq
i =
∑
i∈Ik

α1(i)u(q)(1−q)2−kq,

noting that u(q) � u(0) � 1. As before we see that for i ∈ Ik if T1 appears i times in the
composition of T i and T2 appears k − i times, then, since c > d,

α1(i) = cmax{i,k−i} × dmin{i,k−i}

and so the above is equal to

	k/2
∑
i=0

(
k
i

)(
ck−idi

)u(q)(1−q)
2−kq +

k∑
i=�k/2�

(
k
i

)(
dk−ici

)u(q)(1−q)
2−kq.

We again define Xq
k and Yq

k to be the left and right terms of this expression. Continuing with
exactly the same approach as in the proof of theorem 3.8 and applying theorem 2.1, where in
this case x = (c/d)u(q)(q−1) > 1, we find that

lim
k→∞

⎛
⎝∑

i∈Ik

φu(q)(Ti)1−qpq
i

⎞
⎠

1/k

= lim
k→∞

(
Xq

k + Yq
k

)1/k

=
2(c/d)u(q)(q−1)/2

(c/d)u(q)(q−1) + 1
=: δ < 1.

Recall that since 1 − q < 0, it follows in this setting that

lim
k→∞

⎛
⎝∑

i∈Ik

φt(Ti)1−q pq
i

⎞
⎠

1/k

is a strictly increasing function of t and therefore

dq(T1, T2,μ) > u(q)

as required. We can upgrade this result to get the stated quantitative lower bound by considering
the definition of dq(T1, T2, μ) more closely. For k � 1 and i ∈ Ik, we have α1(i) � (cd)k/2 and
therefore, for ε = dq(T1, T2, μ) − u(q) > 0,
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δ = lim
k→∞

⎛
⎝∑

i∈Ik

φu(q)(Ti)1−q pq
i

⎞
⎠

1/k

= lim
k→∞

⎛
⎝∑

i∈Ik

α1(i)u(q)(1−q)2−kq

⎞
⎠

1/k

� (cd)ε(q−1)/2 lim
k→∞

⎛
⎝∑

i∈Ik

α1(i)dq(T1,T2,μ)(1−q)2−kq

⎞
⎠

1/k

= (cd)ε(q−1)/2

and therefore

dq(T1, T2,μ) − u(q) = ε � 2 log δ

(q − 1) log(cd)

which proves the theorem. �

4.2. New closed form bounds for generalised dimensions

Despite the fact that dq(T1, . . . , TN , μ) is not given by the value predicted by Falconer–Miao
[3, 8] q > 1, we can still find upper bounds in the case when our matrices are diagonal by
following the approach of section 3.3. To simplify notation and aid readability, we only pursue
such bounds in the planar case but higher dimensional analogues could be proved similarly.
For convenience here we let I denote the set {1, . . . , N}. We also let t1, t2, s1, s2 be defined by
the following equations:

N∑
i=1

pq
i ct1(1−q)

i = 1,
N∑

i=1

pq
i dt2(1−q)

i = 1,

N∑
i=1

pq
i

(
c2−s1

i (cidi)s1−1
)1−q

= 1,
N∑

i=1

pq
i

(
d2−s2

i (cidi)s2−1
)1−q

= 1,

and, as in the previous section, define u(q) by P∗
0(u(q), q) = 1. We may assume that u(q) < 2, as

otherwise there is nothing to prove, and we note that u(q) is always equal to one of t1, t2, s1, s2.
Once again we write x+ for the maximum of x ∈ R and 0.

Theorem 4.5. Let μ be a self-affine measure generated by a diagonal system in R
2 and

assume that q > 1.

(a) If 1 � u(q) < 2 then

dq(T1, . . . , TN ,μ) � min{U1(q), U2(q)},

where

U1(q) = s1 +

(
(2 − s1)

∑
i∈I pq

i c1−q
i d(s1−1)(1−q)

i log(ci/di)∑
i∈I pq

i c1−q
i d(s1−1)(1−q)

i log(ci)

)+

and

U2(q) = s2 +

(
(2 − s2)

∑
i∈I pq

i d1−q
i c(s2−1)(1−q)

i log(di/ci)∑
i∈I pq

i d1−q
i c(s2−1)(1−q)

i log(di)

)+

.
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Here ∑
i∈I pq

i c1−q
i d(s1−1)(1−q)

i log(ci/di)∑
i∈I pq

i c1−q
i d(s1−1)(1−q)

i log(ci)

and ∑
i∈I pq

i d1−q
i c(s2−1)(1−q)

i log(di/ci)∑
i∈I pq

i d1−q
i c(s2−1)(1−q)

i log(di)

are strictly less than 1, which we emphasise as it ensures that this is a strictly better bound
than dq(T1, . . . , TN , μ) � 2.

(b) 1. If 0 � u(q) < 1 then

dq(T1, . . . , TN ,μ) � min{V1(q), V2(q)},

where

V1(q) = t1 +

(
t1

∑
i∈I pq

i ct1(1−q)
i log(ci/di)∑

i∈I pq
i ct1(1−q)

i log(di)

)+

and

V2(q) = t2 +

(
t2

∑
i∈I pq

i dt2(1−q)
i log(di/ci)∑

i∈I pq
i dt2(1−q)

i log(ci)

)+

provided min{V1(q), V2(q)} � 1.
2. If 0 � u(q) � 1 and min{V1(q), V2(q)} > 1, then

dq(T1, . . . , TN ,μ) � min{W1(q), W2(q)},

where

W1(q) = t1 + max {A(q), C(q)}+

and

W2(q) = t2 + max {B(q), D(q)}+

and where

A(q) = (1 − t1)

∑
i∈I pq

i ct1(1−q)
i log(di/ci)∑

i∈I pq
i ct1(1−q)

i log(di)

B(q) = (1 − t2)

∑
i∈I pq

i dt2(1−q)
i log(ci/di)∑

i∈I pq
i dt2(1−q)

i log(ci)

C(q) =

∑
i∈I pq

i ct1(1−q)
i log(ci/di)∑

i∈I pq
i ct1(1−q)

i log(ci)

D(q) =

∑
i∈I pq

i dt2(1−q)
i log(di/ci)∑

i∈I pq
i dt2(1−q)

i log(di)
.
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Proof. The proof follows the strategy of the proof of theorem 3.11 and so we suppress some
common details. Let {θi}i∈I denote an arbitrary probability vector and, for each k ∈ N, define
n(k) ∈ N by

n(k) =
∑
i∈I

	θik
.

Recall that k − |I| � n(k) � k. We again consider the n(k)th iteration of I and define

Jk =
{

j = ( j1, . . . , jn(k)) ∈ In(k) : #{m : jm = i} = 	θik
 for each i ∈ I
}

noting, again, that

|Jk| =
n(k)!∏

i∈I	θik
!
.

We also define numbers c, d and p by

c =
∏
i∈I

c	θik

i , d =

∏
i∈I

d	θik

i , p =

∏
i∈I

p	θik

i .

(a) Firstly we shall consider the case when 1 � u(q) < 2, so in this case u(q) is given by either
s1 and s2, which are defined above. Also assume that

∏
i∈Icθi

i >
∏

i∈Idθi
i . We know from

the proof of theorem 3.11 that this condition implies that c > d for k sufficiently large. We
then have that for all i ∈ Jk and s > 0 that

φs(Ti)1−q pq
i = (cds−1)1−qpq = pqc1−qd(s−1)(1−q)

which by definition of p, c and d we may write as

φs(Ti)1−q pq
i =
∏
i∈I

(
pq

i c1−q
i d(s−1)(1−q)

i

)	θik

.

Using exactly the same reasoning as in the proof of theorem 3.11 (simply replacing
pq

i cτ1(q)
i ds−τ1(q)

i by pq
i c1−q

i d(s−1)(1−q)
i ) we may show that

log

⎛
⎜⎝
⎛
⎝∑

i∈In(k)

φs(Ti)1−q pq
i

⎞
⎠

1/n(k)
⎞
⎟⎠ � log

(
k − |I|

k

)
− 1

k − |I|
∑
i∈I

log θik

+
∑
i∈I

θi log

(
pq

i c1−q
i d(s−1)(1−q)

i

θi

)

which converges to

∑
i∈I

θi log

(
pq

i c1−q
i d(s−1)(1−q)

i

θi

)

as k →∞. If this is greater than or equal to 0 then we get that

lim
k→∞

⎛
⎝∑

i∈Ik

φs(Ti)
1−q pq

i

⎞
⎠

1/k

� 1
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and therefore

dq(T1, . . . , TN ,μ) � s.

This follows because when q > 1 the above limit is a strictly increasing function of s (as
opposed to when 0 < q < 1, when it is a strictly decreasing function of s). As before we
can use a very similar argument when

∏
i∈Icθi

i �
∏

i∈Idθi
i . Combining these cases we find

that

dq(T1, . . . , TN ,μ) � inf

{
s : there exists a probability vector {θi}i∈I such that either

(1)
∏
i∈I

cθi
i >

∏
i∈I

dθi
i and

∑
i∈I

θi log

(
pq

i c1−q
i d(s−1)(1−q)

i

θi

)
� 0

or (2)
∏
i∈I

cθi
i <

∏
i∈I

dθi
i and

∑
i∈I

θi log

(
pq

i d1−q
i c(s−1)(1−q)

i

θi

)
� 0

or (3)
∏
i∈I

cθi
i =

∏
i∈I

dθi
i and both

∑
i∈I

θi log

(
pq

i c1−q
i d(s−1)(1−q)

i

θi

)
� 0

and
∑
i∈I

θi log

(
pq

i d1−q
i c(s−1)(1−q)

i

θi

)
� 0

}
.

Once again, we have the freedom to choose a probability vector. Natural choices here

would be to take either

{
pq

i

(
c2−s1

i (cidi)s1−1
)1−q

}
i∈I

or

{
pq

i

(
d2−s2

i (cidi)s2−1
)1−q

}
i∈I

,

which by definition of s1 and s2 are indeed probability vectors. Recall that u(q) is given
by either s1 or s2. Choose

{θi}i∈I =

{
pq

i

(
c2−s1

i (cidi)s1−1
)1−q

}
i∈I

=
{

pq
i c1−q

i d(s1−1)(1−q)
i

}
i∈I

.

We also replace s in the above by s1 + ε, where ε � 0 is small enough so that 1 < s1 + ε <
2 (note this clearly does not affect any of the above calculations). We want to investigate
how small we can choose ε. We again require two conditions to hold, the first of which
holds trivially since

∑
i∈I

pq
i c1−q

i d(s1−1)(1−q)
i log

(
pq

i c1−q
i d(s1+ε−1)(1−q)

i

pq
i c1−q

i d(s1−1)(1−q)
i

)

=
∑
i∈I

pq
i c1−q

i d(s1−1)(1−q)
i log

(
dε(1−q)

i

)
� 0.

For the second condition to hold, we require

∑
i∈I

pq
i c1−q

i d(s1−1)(1−q)
i log

(
pq

i d1−q
i c(s1+ε−1)(1−q)

i

pq
i c1−q

i d(s1−1)(1−q)
i

)
� 0
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which, rearranging, is equivalent to

ε � (2 − s1)

∑
i∈I pq

i c1−q
i d(s1−1)(1−q)

i log(ci/di)∑
i∈I pq

i c1−q
i d(s1−1)(1−q)

i log(ci)
.

This implies that

dq(T1, . . . , TN ,μ)

� s1 +

(
(2 − s1)

∑
i∈I pq

i c1−q
i d(s1−1)(1−q)

i log(ci/di)∑
i∈I pq

i c1−q
i d(s1−1)(1−q)

i log(ci)

)+

= U1(q).

Note if the right-hand side of the above lower bound for ε is negative then we take ε = 0,
which is why the + appears. Finally note that∑

i∈I pq
i c1−q

i d(s1−1)(1−q)
i log(ci/di)∑

i∈I pq
i c1−q

i d(s1−1)(1−q)
i log(ci)

= 1 −
∑

i∈I pq
i c1−q

i d(s1−1)(1−q)
i log(di)∑

i∈I pq
i c1−q

i d(s1−1)(1−q)
i log(ci)

< 1

so our upper bound is an improvement on

dq(T1, . . . , TN ,μ) � 2.

The other upper bound dq(T1, . . . , TN , μ) � U2(q) is proved similarly and relies on the
other natural choice of {θi}.

(b) We shall now assume that 0 � u(q) < 1, so here u(q) is given by either t1 or t2, defined
above. Considering again the n(k)th iteration of I and first supposing that

∏
i∈Icθi

i >∏
i∈Idθi

i , then for all i ∈ Jk and s ∈ [0, 1]

φs(Ti)1−q pq
i = pqcs(1−q).

We use exactly the same reasoning as above and find that in this case

dq(T1, . . . , TN ,μ) � inf{
s ∈ [0, 1] : there exists a probability vector {θi}i∈I such that either

(1)
∏
i∈I

cθi
i >

∏
i∈I

dθi
i and

∑
i∈I

θi log

(
pq

i cs(1−q)
i

θi

)
� 0

or (2)
∏
i∈I

cθi
i <

∏
i∈I

dθi
i and

∑
i∈I

θi log

(
pq

i ds(1−q)
i

θi

)
� 0

or (3)
∏
i∈I

cθi
i =

∏
i∈I

dθi
i and both

∑
i∈I

θi log

(
pq

i cs(1−q)
i

θi

)
� 0

and
∑
i∈I

θi log

(
pq

i ds(1−q)
i

θi

)
� 0

}
.

Note the complication here that we require s � 1 because we assume the singular value
function takes the form αs

1. This is what leads to the awkward extra case in the u(q) < 1
setting.
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Again, there are two natural choices for probability vector {θi}, the first of which is

{θi}i∈I =
{

pq
i ct1(1−q)

i

}
i∈I

.

We replace s by t1 + ε in the above, where ε � 0. Once again we would like to see how
small it is possible to take ε. We must consider two cases: when ε can be taken suffi-
ciently small so that t1 + ε < 1 and when 1 � t1 + ε < 2 (this will affect which form of
the singular value function we can use).

1. Firstly suppose we can take ε sufficiently small so that t1 + ε < 1. We require two
conditions to hold, the first of which is trivial since

∑
i∈I

pq
i ct1(1−q)

i log

(
pq

i c(t1+ε)(1−q)
i

pq
i ct1(1−q)

i

)
=
∑
i∈I

pq
i ct1(1−q)

i log(cε(1−q)
i ) � 0.

For the second condition to hold, we require

∑
i∈I

pq
i ct1(1−q)

i log

(
pq

i d(t1+ε)(1−q)
i

pq
i ct1(1−q)

i

)
� 0

which is equivalent to

ε � t1

∑
i∈I pq

i ct1(1−q)
i log(ci/di)∑

i∈I pq
i ct1(1−q)

i log(di)
.

This implies that

dq(T1, . . . , TN ,μ ) � t1 +

(
t1

∑
i∈I pq

i ct1(1−q)
i log(ci/di)∑

i∈I pq
i ct1(1−q)

i log(di)

)+

.

2. Now suppose that we cannot take ε sufficiently small so that t1 + ε < 1, so that we
instead have to consider what happens when 1 � t1 + ε < 2. In this case we will still
be using the same choice of probability vector but we will be using the form of the
singular value function in the range [1, 2], that is α1α

s−1
2 , and we refer to the general

upper bound in the case 1 � u(q) < 2 given above.

As usual we require two conditions to hold simultaneously, but this time neither condition
is trivial. We require

∑
i∈I

pq
i ct1(1−q)

i log

(
pq

i c1−q
i d(t1+ε−1)(1−q)

i

pq
i ct1(1−q)

i

)
� 0

which is equivalent to ε � A(q), where

A(q) = (1 − t1)

∑
i∈I pq

i ct1(1−q)
i log(di/ci)∑

i∈I pq
i ct1(1−q)

i log(di)
.

We also require

∑
i∈I

pq
i ct1(1−q)

i log

(
pq

i d1−q
i c(t1+ε−1)(1−q)

i

pq
i ct1(1−q)

i

)
� 0
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which is equivalent to ε � C(q), where

C(q) =

∑
i∈I pq

i ct1(1−q)
i log(ci/di)∑

i∈I pq
i ct1(1−q)

i log(ci)
.

Thus we may conclude in this instance that

dq(T1, . . . , TN ,μ) � t1 + max {A(q), C(q)}+ = W1(q).

The other upper bound, W2(q), can be derived similarly. �

As a corollary to the above, we present simple conditions that ensure dq(T1, . . . , TN , μ) =
u(q), that is, for the theorem of Falconer–Miao to hold when q > 1.

Corollary 4.6. Consider the diagonal system of theorem 4.5 and q > 1. First suppose that
1 < u(q) � 2. If u(q) = s1 and∑

i∈I
pq

i c1−q
i d(s1−1)(1−q)

i log(ci/di) � 0,

then dq(T1, . . . , TN, μ) = u(q) = s1. If u(q) = s2 and∑
i∈I

pq
i d1−q

i c(s2−1)(1−q)
i log(di/ci) � 0,

then dq(T1, . . . , TN, μ) = u(q) = s2. Secondly, suppose that 0 < u(q) � 1. If u(q) = t1 and∑
i∈I

pq
i ct1(1−q)

i log(ci/di) � 0,

then dq(T1, . . . , TN, μ) = u(q) = t1. If u(q) = t2 and∑
i∈I

pq
i dt2(1−q)

i log(di/ci) � 0,

then dq(T1, . . . , TN, μ) = u(q) = t2.
In particular, if ci � di for all i ∈ I or ci � di for all i ∈ I, then dq(T1, . . . , TN, μ) = u(q).

Proof. This follows from theorem 4.5, noting in each instance that if one of these conditions
holds then we may choose ε = 0. �

4.3. An example

Here we present an example of a diagonal system with three maps to which corollary 4.6 can
be applied. We take p1 = 4/5, p2 = 1/10, p3 = 1/10 as our probability vector and define three
maps by choosing c1 = 2/5, c2 = 3/10, c3 = 3/10 and d1 = 3/10, d2 = 2/5, d3 = 3/10. For
q ∈ [0, 5], we have 0 < u(q) � 1 and∑

i∈I
pq

i ct1(1−q)
i log(ci/di) � 0

which means the first condition from corollary 4.6 is satisfied. Therefore dq(T1, T2, T3, μ) =
u(q) = t1 for q ∈ [0, 5] by corollary 4.6, see figure 3.
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Figure 3. Left: plot of dq(T1, T2, T3, μ) = u(q). Previously this formula was only known
for 0 < q < 1, see [3, 8]. Middle: plot of the first condition from corollary 4.6, which
is satisfied for the whole range of q. Right: plot of the second condition from corollary
4.6, which is not satisfied.

Figure 4. Three self-affine measures generated by the set of matrices and probabilities
given above. The translations have been chosen randomly in each case and almost surely
the generalised q-dimensions in each case are given by u(q) = dq(T1, T2, T3, μ) above
for 1 < q � 2.

Observe that the value at q = 0 gives the affinity dimension of the support of our measure,
which in this case is 1. Also recall that, by Falconer’s result [1, theorem 6.2], the generalised q-
dimensions ofμ are given by dq(T1, T2, T3, μ) for 1 < q � 2 almost surely upon if randomising
the translation vectors, provided the norms of the matrices are strictly less than 1/2. This is
displayed in figure 4.
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