
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 J

un
e 

20
21

 

royalsocietypublishing.org/journal/rsos
Research
Cite this article: Xiao Y, Thomas L, Chaplain
MAJ. 2021 Calibrating models of cancer invasion:

parameter estimation using approximate Bayesian

computation and gradient matching. R. Soc. Open

Sci. 8: 202237.
https://doi.org/10.1098/rsos.202237
Received: 9 December 2020

Accepted: 1 June 2021
Subject Category:
Mathematics

Subject Areas:
statistics/differential equations/biomathematics

Keywords:
tumour cells, cancer invasion, approximate

Bayesian computation, Bhattacharyya distance,

gradient matching, generalized additive models
Author for correspondence:
Yunchen Xiao

e-mail: ycx@st-andrews.ac.uk
© 2021 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

5462627.
Calibrating models of cancer
invasion: parameter
estimation using approximate
Bayesian computation and
gradient matching
Yunchen Xiao, Len Thomas and Mark A. J. Chaplain

School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS UK

YX, 0000-0002-1297-7439; LT, 0000-0002-7436-067X;
MAJC, 0000-0001-5727-2160

We present two different methods to estimate parameters within
a partial differential equation model of cancer invasion. The
model describes the spatio-temporal evolution of three
variables—tumour cell density, extracellular matrix density and
matrix degrading enzyme concentration—in a one-dimensional
tissue domain. The first method is a likelihood-free approach
associated with approximate Bayesian computation; the second
is a two-stage gradient matching method based on smoothing
the data with a generalized additive model (GAM) and
matching gradients from the GAM to those from the model.
Both methods performed well on simulated data. To increase
realism, additionally we tested the gradient matching scheme
with simulated measurement error and found that the ability
to estimate some model parameters deteriorated rapidly as
measurement error increased.
1. Introduction
Systems of differential equations are used frequently to model and
predict the behaviour of dynamical systems. Application areas
include physics [1], engineering [2], ecology [3] and medicine
[4]. A common issue is that some or all model parameters are
not known, and one needs to calibrate the model based on
available observed data, i.e. find model parameters that give the
closest fit to a set of observations on the system. This process is
also known as parameter estimation or solving the inverse
problem. Here, we develop two calibration schemes: one
inspired by approximate Bayesian computation (ABC) and the
other built upon the idea of gradient matching. We illustrate
their application to a partial differential equation (PDE) model
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for cancer invasion and metastasis, based on synthetic data. Since they model the evolution in both time
and space of multiple variables, systems of PDEs can be more challenging to analyse than their purely
temporal counterparts—ordinary differential equations, ODEs—and as such have received less
attention to date.

For almost all differential equation models, a closed-form solution to provide the parameter values
that give the best fit to the observed data is not available, and so an iterative scheme is used.
Classically, this involves solving the model system for a candidate set of parameter values and
comparing this solution with the observations; the candidate set is then updated in a way that tends
to produce a better solution and the process is repeated to convergence [5,6]. One standard metric of
fit is the sum of squared differences between model solution and observed values. Under the
assumption that the observations arise independently from a normal distribution then the least-
squares parameter estimates are maximum-likelihood estimates. This allows quantification of
uncertainty in the estimates, for example by normal confidence intervals. Early texts suggesting this
‘nonlinear least squares’ approach include [7–9]. One issue is that the likelihood surface may be
multimodal, making it difficult to ensure the globally best parameter values are found [10] .

Bayesian methods have also been employed to draw inferences about differential equation models—
this allows for a richer characterization of uncertainty and incorporation of prior information about
model parameters. Inference is often via Markov chain Monte Carlo (MCMC) (e.g. [11]), and an R
package, dbInfer, has been developed to make this type of modelling more widely accessible [12,13].
More complex algorithms have been developed to improve estimation performance—for example,
Păun et al. [14] proposed three MCMC-related algorithms and also used constrained optimization to
obtain good starting values for the Markov chains. Alternatively, approximate Bayesian computation
(ABC) has been proposed [15]—this bypasses the need to give an explicit form for the likelihood. We
are aware of only one application of ABC to PDE models [16].

One strong disadvantage of all of the above approaches is that they require solving the differential
equation model at each step of the inference algorithm. This can make them prohibitively slow for
more complex models or large datasets. An alternative approach, first proposed by Varah [17], is
gradient matching. Here, instead of numerically integrating the model and comparing the solution
to the data, a smooth interpolant is fitted to the data, and gradients obtained from this interpolant
are compared with the gradients predicted by the model. The model parameters are adjusted until
the predicted gradients best match those from the interpolant. No numerical integration is required,
and the smooth interpolant fitting only needs to occur once—thereafter, comparing model-
predicted gradients to interpolant gradients is computationally cheap. In general, the gradient
matching methods can be classified into those adopting a traditional ‘two-step approach’ as
explained above, where the interpolants exert a unidirectional influence on the ODEs (e.g. [17,18]),
and those that perform the smoothing and gradient matching at the same time, allowing the ODEs
to exert an influence on the interpolants. Two main examples of the latter are approaches based on
the use of reproducing kernel Hilbert spaces (RKHS) [19–21] and those applying Gaussian
processes [18,22,23].

Here, we develop two calibration schemes, one based on ABC and the other on two-stage gradient
matching, and apply them to a PDE model of cancer invasion and metastasis. Our focus is on
accurate estimation of model parameters when applied to data simulated from the model—a
necessary first step for reliable inference. We leave the two important real-world issues of uncertainty
quantification and model assessment (goodness-of-fit) for future work.

In the following paragraphs, we provide a brief overview of the biological processes underlying the
PDE model.

1.1. Solid tumour growth and spread
The establishment and development of a primary solid tumour usually begins with a single normal cell
being transformed as a result of mutation(s) in certain key genes. The transformed cells can escape from
the body’s homeostatic mechanisms, leading to inappropriate proliferation [24] and the formation of a
cluster (nodule) of tumour cells. The nodule can expand to an avascular tumour consisting of
approximately 106 cells, with a diameter up to approximately 0.1–0.2 cm [24]. Avascular tumours must
initiate angiogenesis—the recruitment of blood vessels for further growth. The tumour cells secrete
tumour angiogenic factors (TAFs) to induce endothelial cells in neighbouring blood vessels to degrade
their basal lamina and migrate towards the avascular tumour [24]. The newly formed vessels
eventually develop a capillary network that connects with the tumour and vascularizes it. With the
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presence of this capillary network, the process of angiogenesis is complete, and necessary nutrients for
further growth will be supplied to the tumour. Tumour cells can also find their way into the circulation
and be deposited in secondary sites in the body, resulting in metastasis [24]. Metastatic spread is
responsible for around 90% of the deaths from cancer [25].

A prominent part of the invasive/metastatic process is the ability of the cancer cells to degrade the
surrounding tissue or extracellular matrix (ECM), mediated by a number of matrix degrading
enzymes (MDEs) [24,26–28]. ECM is a three-dimensional complex network of macromolecules, such as
collagens, laminin, fibronectin, glycoproteins and vitronectin. A number of MDEs such as urokinase
plasminogen activator (uPA) and matrix metalloproteinases (MMPs) have been described [24].
Regulation of matrix-degrading activity is highly complex; no MDE is completely specific for one
element of the ECM, and both uPA and MMPs have played a role in the necessary steps of tumour
metastasis [24,28–38].

Over the past few decades, many mathematical models related to cancer invasion and metastasis
have been proposed by different authors [39]. The computational simulations of these models exhibit
travelling-wave-like behaviour of the cancer cells and other biologically relevant variables. Here, we
focus on a representative model proposed by Anderson et al. [24] as our subject of investigation,
which is a continuum deterministic model based on a system of reaction–diffusion-taxis equations,
describing the (spatio-temporal) evolution of three key variables involved in tumour cell invasion:
tumour cells, ECM and MDEs.
:202237
2. Methods
2.1. PDE system and its non-dimensionalizations
The PDE model we investigate is based on the cancer invasion and metastasis model proposed by
Anderson et al. [24]. It is described by the following set of equations:

@n
@t

¼ Dn
@2n
@x2

� x
@

@x
n
@f
@x

� �
þ Rnn 1� n

n0
� f
f0

� �
,

@f
@t

¼ �dmf ,

@m
@t

¼ Dm
@2m
@x2

þ mn� lm,

9>>>>>>>>=
>>>>>>>>;

(2:1)

where n is the tumour cell density, f is the ECM density, m is the MDE concentration, t is time in seconds
and x is distance from tumour centre in cm. The interpretation of these equations is as follows. The first
equation models the profile of tumour cells density: the first term is Fickian diffusion (random motility),
where Dn is the diffusion coefficient in cm2 s−1, the second models the process of haptotaxis (the directed
migratory response of tumour cells to gradients of ECM), where χ is the haptotactic coefficient in
cm2 s�1 M�1, and the third models logistic growth of tumour cells; n0, f0, m0 are reference densities or
concentrations. This third term did not appear in the model of Anderson et al. but was added here to
represent competition of resources/space between tumour cells and the ECM; Rn represents the
logistic growth rate, measured in s−1. The second equation models the profile of the ECM: the only
biological phenomenon involved is its degradation by MDE; δ represents the degradation rate,
measured in s�1 M�1. The third equation models the profile of the MDE: the first term is random
motility, where Dm has the same unit as Dn, cm

2 s−1, the second is the production of MDE by tumour
cells, where μ represents the growth rate measured in s−1, and the third models chemical (and other)
decay of MDE, where λ is the decay rate measured in s−1.

In order to solve this PDE system numerically, all three equations above were non-dimensionalized.
We did this in the standard manner, as follows. First, we rescaled the distance with an appropriate
length scale L. Given that maximum invasion distance of cancer cells at the early stage of invasion
varies from 0.1 to 1 cm, we took L = 1 cm [40]. Then, we rescaled the time with τ = L2/D, where D is
a reference chemical diffusion coefficient ∼10−6 cm2 s−1 [40]. Last, we rescaled the tumour cell
density with n0, ECM density with f0 and MDE concentration with m0. These rescalings define the
following variables:

~n ¼ n
n0

, ~f ¼ f
f0
, ~m ¼ m

m0
, ~x ¼ x

L
and ~t ¼ t

t
: (2:2)
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Figure 1. Reference invasion pattern at times t ¼ 1, 3, 5, 6, 8 and 10. Tumour cell density is shown as a blue curve, ECM density
as a red curve and MDE concentration as a green curve.
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Dropping all the tildes for notational convenience, the dimensionless system is

@n
@t

¼ dn
@2n
@x2

� g
@

@x
n
@f
@x

� �
þ rnn(1� n� f),

@f
@t

¼ �hmf

and
@m
@t

¼ dm
@2m
@x2

þ an� bm, (2:3)

where dn =Dn/D, γ = χf0/D, rn = Rnτ, η = τm0δ, dm =Dm/D, α = τμn0/m0 and β = τλ.
2.2. Reference datasets
To demonstrate the performance of the calibration schemes, we generated synthetic datasets from the
PDE model under a single set of chosen ‘reference’ parameter values. Considering each of these as the
observed data, we investigated how accurate the parameter values estimated by our schemes are in
relation to the reference values. The following dimensionless parameter values were used: dn = 0.01,
γ = 0.05, η = 10, dm = 0.01, α = 0.1, rn = 5 and β = 0. Setting β to zero means that decay in MDE is
negligible during the time scale of the observations, as was done by Anderson et al. [24]; we make
this an assumption of the model fitting and exclude this parameter from estimation.

The simulations used a finite-difference scheme. In the dimensionless form, we considered the one-
dimensional spatial domain [0,1], which was discretized into 80 points; the step size for space was
thus Δx = 1/(80− 1)≈ 0.0127. The step size for time in the finite difference scheme was set to be 0.001.
For each variable, the evolution of its simulated pattern was recorded at 11 time points, t = 0, 1, 2,…, 10.

The resulting invasion pattern is shown in figure 1. Tumour cells can be seen to invade into the
surrounding ECM, simulating the production of MDE which results in the complete degradation of
ECM in the domain.

The reference dataset therefore consisted of all three variables (tumour cells density n, ECMdensity f and
MDE concentration m) measured over 80 evenly spaced points in the one-dimensional spatial domain
between 0 and 1, and at 11 evenly spaced time points between 0 and 10. For this dataset (referred to in the
Results as the ‘main reference dataset’), measurements were assumed to be recorded without error. This
dataset was used to demonstrate both the ABC-related and the gradient matching schemes.

While this reference dataset is useful for an initial demonstration, it is unrealistic in the quantity of
measurements (80 × 11 = 880) taken on each variable, the fact that all three variables are measured,
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and the lack of measurement error. A proper treatment of all three issues is beyond the scope of this
paper and is something we return to in the Discussion. However, we do go some way to address the
measurement error issue.

To simulate measurement error, we generated 200 reference datasets where each data point was
drawn from a gamma distribution with mean equal to its true value and a specified coefficient of
variation (CV). The reason to generate multiple datasets in this instance is that we do not expect the
exactly correct parameter values to be recovered from each dataset when the data are measured with
error—however, we do expect that if the measurements are unbiased then the correct parameter
values will be recovered on average over multiple replicate datasets. Because of the computational
burden of fitting multiple datasets, we were not able to perform this check for the ABC-related
scheme, and hence only fitted the measurement error datasets using the gradient matching scheme.
The CV values used were 0.01, 0.025, 0.05, 0.075, 0.10.

Lastly, as a check of the generality of our conclusions about the ABC-related scheme, we generated two
additional reference datasets with different, but still realistic, parameter values (and no measurement error).
The values used are shown in electronic supplementary material, appendix B (table S5).

All simulations and associated fitting, using the schemes described below, were performed in the R
statistical software [41].

2.3. ABC-related optimization scheme

2.3.1. ABC to PDE

A general outline of our approach applying ABC to PDE models is as follows.

(i) Assign a uniform initial distribution to each parameter to be estimated. Simulate multiple sets of
parameter values by sampling from their corresponding initial distributions.

(ii) For each set of simulated parameter values, substitute them into the PDE solver to obtain
simulated values for tumour cell density, ECM density and MDE concentration over space
and time.

(iii) Compare each simulation with the reference dataset using a chosen discrepancy measuring
metric, which in turn uses summary statistics calculated from each simulated dataset and the
reference dataset.

(iv) Use the discrepancy values to assign a resampling probability to each set of parameter values
such that the smaller the discrepancy value, the higher the resampling probability. Resample
the parameter sets with replacement, based on the resampling probability.

(v) Add small perturbations to all parameter values.
(vi) Repeat steps (ii) to (v) for a fixed number of iterations or until the average discrepancy is reduced

to a satisfactory level.
(vi) Take the sample mean of the values for each parameter as the final estimate.

In the ABC literature, the initial distribution is viewed as a prior distribution and the sets of parameter
values obtained at step (vi) are considered to be increasingly accurate estimates of the parameters’
posterior distribution. However, in our case, with no stochasticity in the model and no measurement
error in the reference data, the algorithm will eventually converge on the best fitting values with no
variation between parameter sets beyond that added at step (v). Hence, we consider our scheme to be
a stochastic optimization scheme, suitable for estimating parameter values but not for assessing
uncertainty on the estimates.

2.3.2. Discrepancy measure: Bhattacharyya distance

Central to any ABC-related scheme is selection of suitable summary statistics and a corresponding
discrepancy measure. Here, we use summary statistics based on the mean and variance of each
variable (tumour cell density, ECM density and MDE concentration) across time at fixed points in
space, and a discrepancy measure based on a standard measure of distance between two probability
distributions, the Bhattacharyya distance [42].

For univariate samples from a normal distribution, the Bhattacharyya distance is given by

BC1,2 ¼ 1
4
ln

1
4

s2
1

s2
2
þ s2

2

s2
1
þ 2

� �� �
þ 1
4

(m1 � m2)
2

s2
1 þ s2

2

" #
, (2:4)



Table 1. Initial distributions used in the ABC-BCD scheme. Justification for these values is given in electronic supplementary
material, appendix A. U(l, u) denotes a uniform distribution with lower and upper bounds l and u.

parameter initial distribution mean (s.d.)

dn U(6.90 × 10−5, 2.00 × 10−2) 1.00 × 10−2 (5.75 × 10−3)

γ U(5.00 × 10−3, 2.60 × 10−1) 1.33 × 10−1 (7.36 × 10−2)

rn U(3.50, 9.00) 6.25 (1.59)

η U(7.00, 1.80 × 10) 1.25 × 10 (3.18)

dm U(1.00 × 10−4, 3.30 × 10−2) 1.66 × 10−2 (9.50 × 10−3)

α U(7.00 × 10−2, 1.80 × 10−1) 1.25 × 10−1 (3.18 × 10−2)
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where μi and s2
i are the mean and variance of the ith sample. For each variable (n, f and m) we used the

above form of the Bhattacharyya distance between simulated and reference data at each location in space
over the 10 time points (t = 0 not included as this is the initial condition, assumed known). Overall
discrepancy for each variable was calculated by summing over space points

ry ¼
X80
i¼1

BCsim,ref(y, xi), (2:5)

where y is one of the three variables n, f or m and BCsim,ref(y, xi) is the Bhattacharyya distance between
simulated and reference data calculated for variable y at location xi. Total discrepancy, where needed, was
calculated by summing across variables: ρ = ρn + ρf + ρm.

For our scheme to converge to the true parameter values, there is an implicit assumption that a
Bhattacharyya distance of zero means that the data perfectly match model predictions. This
assumption would fail if it were possible for the model to generate a dataset with the same means
and variances as the data, but from a different set of parameter values. This is unlikely in our case
study; in a real-world application, where the model is necessarily an approximation to the real-world
data-generating process and the data also contain measurement errors, it would be required that
smaller values of the discrepancy measure correspond to better values of the model parameters.

2.3.3. ABC-BCD (approximate Bayesian computation–Bhattacharyya distance) optimization scheme

Our ABC-BCD optimization scheme proceeds as follows.

(i) Identify all the unknown parameters within the PDE system, P = {p1, p2,…, pm}. Assign an initial
distribution to each parameter. The initial distributions we chose for the parameters are shown in
table 1, and justification for these distributions are given in electronic supplementary material,
appendix A.

(ii) Identify the equation in the system that contains the lowest number of parameters. (We started
with the ECM density profile, as it has only one parameter to be estimated, then we moved on
to MDE concentration profile (two parameters). Finally, we investigated the tumour cells
density profile (three parameters).)

(iii) Now set the round indicator j to be 1.

(a) Sample K sets of parameter values from the initial distributions. Note that K and round
indicator j are independent in this study.

(b) For each set of simulated parameter values, substitute them back to the PDE solver to obtain
corresponding values for tumour cell density, ECM density and MDE concentration over
space and time.

(c) For each simulation, use the Bhattacharyya distance formula in equation (2.4) to obtain the
discrepancy between the simulated data and the reference data; denote this result as r

j
yi,

i = 1,…,K. Note that we only calculate the discrepancies among the variables in the
current equation and the equations that have been evaluated previously. When
evaluating the ECM density profile, this is just r

j
fi. Then we move on to evaluate the

MDE concentration profile, we calculate r
j
mi + r

j
fi. Lastly, while evaluating the tumour

cells density profile, we calculate the total discrepancy r
j
ni + r

j
fi + r

j
mi.

(d) Calculate the average (mean) discrepancy of the parameters in the current round. Check if the
distance (difference in absolute value) between the average discrepancy of the parameters
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in the current round and that of the parameters in round 1 has reached a threshold value,
i.e. jr j

y � r1yj , e r1y, where ε is a positive number less than 1. If no:

i. Convert the discrepancy values to resampling weights. First calculate w�
i ¼ r�t

yi for i =
1,…K, where t is a positive integer increased by 50% in every subsequent round.
Then rescale the weights in the standard manner

wi ¼ w�
iPK

i w
�
i

:

In some simulations, there are computational singularities resulting in undefined real
values; in these cases, the corresponding weights are set to 0.

ii. Resample another K sets of parameter values with replacement, with probability equal
to the resampling weights obtained in the previous step.

iii. Add a small perturbation to the values for each parameter. The following
procedure retains the mean and variance of each parameter. Let pli be the value of
the l-th parameter in the i-th parameter set and �pl be the sample mean over the K
parameter sets. Calculate the parameter sample variance as S2l ¼ 1

K�1

PK
i¼1 (pli � �pl)

2.
Generate a new value for pli by sampling a random number from
N((

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
)pli þ (1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
))�pl, h

2S2l ), where N(μ, σ2) is a normal distribution with
mean μ and variance σ2, and h is a relatively small number [43].

iv. j = j + 1, record the perturbed parameter values obtained in the previous step, go to
(iii)(b) and proceed.

Else:
i. Terminate evaluations of the current equation. For the parameters in the equation(s) we

just finished evaluating, record their values from the parameter sets in the current round.
ii. Proceed to the next equation, sample another K sets of parameter values:

A. For the parameters in the equations that have not been evaluated yet, sample their
values from the initial distributions.

B. For the parameters in the equations that have been evaluated previously, adopt their
values from (iii)(d)i.

iii. With the newly formed K sets of parameter values, go to (iii) and proceed, until the final
samples for all parameters in the PDE model are obtained.

(iv) After the final samples of all parameters are obtained, we take the means of these samples to be the
estimated parameter values that can give the best fit to the synthetic data. (In the fully Bayesian
setting, this would be the ‘posterior mean’—a Bayes estimator that has a quadratic loss function.)

The optimization scheme is stochastic, with the amount of Monte Carlo error controlled by the
number of samples, K. Here, we used K = 10 000. We checked the Monte Carlo error by undertaking
two additional runs on the same reference dataset and computing the standard error of the parameter
estimates across the three runs. Overall accuracy is governed by the stopping criterion jr j

y � r1yj , e r1y
and the increasing bandwidth t in weight calculations. Different e’s were used in the evaluations of
the three different density profiles, as follows. It was set to be 0.8 when evaluating the ECM density
profile alone, to prevent particle depletion in early rounds when only one parameter was being
estimated. We then raised it to 0.9 in the evaluations of ECM and MDE profiles. Finally, it was set to
be 0.98 when all density profiles are being evaluated. In our opinion, particle depletion is a
concerning issue in early rounds, but should not cause any troubles in the last few rounds since our
goal is to obtain accurate parameter point estimates. The bandwidth of weights t was chosen to start
from 0.5 and increased by 50% in every subsequent round, it was reset to 0.5 when we proceeded to
evaluate the next equation. By setting such stopping criterion and adaptive bandwidths for weights,
the resampling surface became steeper in later rounds, parameter sets had minor Bhattacharyya
distances to the reference values could then be resampled with heavier weights and convergence
to the true values could be guaranteed. For the perturbation value h in (iii)(d)iii, we chose h = 0.05.
Lastly, as a further diagnostic of the scheme, we ran it on the two additional reference datasets
that had been generated using different true parameter values (electronic supplementary material,
table S4).

Our ABC scheme has both similarities with and differences from the approximate Bayesian
computation–sequential Monte Carlo (ABC-SMC) scheme described in Toni et al. [15]. Both schemes
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use the idea of weighted resampling and particle perturbations to derive the parameters to be evaluated
in the next round from the ones being evaluated in the current round. The main differences between our
scheme and the traditional ABC-SMC scheme are:

(i) The discrepancy between the summary statistics and the computation of weights are two separate
processes in the traditional ABC-SMC scheme, while we combined them into one in our scheme. If
t rounds are carried out in total, the traditional ABC-SMC scheme usually sets up a decreasing
sequence of tolerance levels ε1, ε2,…, εt at the beginning. After round 1, the parameters to be
evaluated in the next round are resampled and perturbed from the ones being evaluated in the
current round using weights associated with parameter densities; the weights here act as a first
filter. Then the tolerance levels are introduced as a second filter: the simulated and reference
summary statistics are compared using certain discrepancy measuring metric, and a perturbed
parameter set is accepted only if the discrepancy between its simulated summary statistics and
the reference ones is less than the tolerance level of the current round. By contrast, in our
scheme, we incorporated the discrepancy measurements into the computation of weights, the
weights are then used as the only filter to resample the parameters and ensure convergence.

(ii) Due to the absence of observation errors in our ABC application, a rigorous analysis of parameter
densities was not undertaken in our work. Therefore, the weights of parameter sets in our scheme
solely depend on the discrepancies between summary statistics. In the traditional ABC-SMC
scheme, weights of parameter sets are often related to parameter densities and help to derive
the joint and marginal posterior densities. Thus, for readers who wish to draw posterior
inferences, it is necessary to incorporate observation errors in the step of data simulation and
parameter densities in the step of weight calculations.

2.4. Gradient matching scheme
Fitting was performed using the R statistical software [41]. For each variable in the PDE model (n, f and
m), the measurements were modelled using a separate generalized additive model (GAM) [44], with
space and time as explanatory variables. The explanatory variables were entered as a two-dimensional
adaptive P-spline (via the option bs = ‘ad’ in the gam function of the mgcv package)—this allowed
for the amount of smoothness in the fitted surface to vary across space and time. The response
variables (n, f and m) were assumed to be gamma-distributed and a log link function was used.

Given the fitted GAMs, we then calculated the temporal gradients on the left-hand side (∂n/∂t, ∂f/∂t,
∂m/∂t) and the spatial gradients on the right-hand side of the PDE system (denote them as N(t, x), F(t, x)
and M(t, x)) using the fitted values from the GAMs. The discrepancies between the two sides of the
equations were then calculated as the sum of squared differences between left and right sides of each
equation, evaluated over a grid of space and time points

Gn ¼
X9
i¼1

X78
j¼1

@n
@t

jt¼i,x¼j�h �N(t, x)jt¼i,x¼j�h

� �2

Gf ¼
X9
i¼1

X78
j¼1

@f
@t

jt¼i,x¼j�h � F(t, x)jt¼i,x¼j�h

� �2

and Gm ¼
X9
i¼1

X78
j¼1

@m
@t

jt¼i,x¼j�h �M(t, x)jt¼i,x¼j�h

� �2

: (2:6)

Note that we excluded the boundary points of time (t = 0.0 and t = 10.0) and space (x = 0 and x = 1)
from our comparisons, resulting in a summation of 78 × 9 terms for each variable. Let θ denote the
vector of all the parameters within the PDE system, θ = {dn, γ, rn, η, dm, α}, the estimated parameter
values which gave the best fit to the noisy data were obtained by minimizing (using the optim

function with the default ‘Nelder-Mead’ method in R) the objective function

G(x, t, n, f , m, u) ¼ Gn þ Gf þ Gm: (2:7)

Starting values for the minimization algorithm were the means of the initial distributions derived
previously for the ABC-BCD scheme (table 1).

In addition to using this scheme on the main reference dataset, we also evaluated its performance
when measurement error is introduced to the observations. As stated earlier, 200 datasets were



Table 2. Parameter estimates from the ABC-related and gradient matching (GM) schemes fitted to reference data with no measurement
error. (See electronic supplementary material, appendix B (a) for estimates at the end of each round of the ABC-related scheme.)

parameter reference values

estimates percentage error mean squared error

ABC GM ABC GM ABC GM

dn 1.00 × 10−2 1.02 × 10−2 9.96 × 10−3 2.31 −4.28 × 10−1 1.37 × 10−5 —

γ 5.00 × 10−2 5.18 × 10−2 4.57 × 10−2 3.70 −8.67 1.43 × 10−4 —

rn 5.00 5.23 4.60 4.63 −8.10 8.54 × 10−1 —

η 1.00 × 10−1 9.91 1.03 × 10 −9.21 × 10−1 3.06 4.61 × 10−2 —

dm 1.00 × 10−2 1.04 × 10−2 9.53 × 10−3 3.75 −4.72 4.82 × 10−7 —

α 1.00 × 10−1 9.97 × 10−2 9.93 × 10−2 −2.53 × 10−1 −7.49 × 10−1 8.07 × 10−3 —
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generated at each of five levels of measurement CV, ranging from 0.01 to 0.1. The gradient matching
scheme was used to estimate parameter values for each of these datasets, and the mean estimated
value was calculated for each parameter at each CV level. Comparing the mean estimated value to the
true values enabled us to evaluate bias in parameter estimates.

Our initial runs showed rapidly increasing bias with increasing CV for some parameters, and we
speculated that this may be due to difficulties estimating parameters associated with the more
numerically complex terms in the model—i.e. those associated with second-order derivatives and
haptotaxis. We therefore repeated the above exercise three times: fixing both second-order terms dn and
dm, fixing both complex terms in the tumour cell density equation dn and γ and fixing all the
parameters in the tumour cell density equation at their true values to see if any improvements can be made.
3. Results
3.1. Performance on datasets with no measurement error
Parameter estimates obtained from the two schemes on the main reference dataset are given in table 2. In
general, they were very close to the true values used to generate the data, with absolute percentage error
less than 9% for all parameters. Errors were noticeably higher for the parameters dn, γ and rn, all of which
are part of the first and most complex equation governing the change in tumour cell density. Overall, the
ABC-related scheme performed slightly better, with lower percentage error on almost all parameters.
Plots of initial and final densities for the parameters under this scheme are shown in figure 2, a figure
of pairwise heat maps of these final densities is shown in figure 3. As would be expected given the
better parameter estimates, the ABC-related scheme also produced a slightly closer reconstruction of
the correct solution to the PDEs (see electronic supplementary material, appendix B (d)).

The two additional runs of the ABC-related scheme on the same reference dataset produced very
similar results, and the estimated Monte Carlo error was less than 4.5% for all parameters (electronic
supplementary material, table S4).

The ABC-related scheme was also run on two additional reference datasets with different parameter
values. The percentage error was less than 6:5% for all parameters (electronic supplementary material,
table S5), confirming that this scheme can reliably retrieve model parameters in synthetic data.

3.2. Performance of gradient matching scheme on datasets with measurement error
Parameter estimates obtained from the gradient matching scheme under different levels of measurement
error are given in figure 4. Estimation accuracy for the tumour cell-related parameters fell rapidly with
increasing perturbation level: at CV of 0.1, the mean estimate of dn, γ and rn deviated 60:6%, 45:2%
and 39:7%, respectively, from their true values. The behaviour of the other parameters was better:
mean estimates of η, dm and α were 3:52%, 16:6% and 1:87% from their true value.

Three sensitivity tests were carried out to investigate whether fixing the unstable parameters at their
true values can improve the accuracy of other parameters. Results are shown in figure 4. In the first test,
the two diffusion coefficients dn and dm were fixed; bias increased in rn and η and decreased in γ. In the
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second test, the two parameters dn and γ associated with complex terms in the tumour cells equation
were fixed; bias increased in rn and dm and slightly decreased in α. Note that estimates of rn were
poor despite it being the only parameter remaining to be estimated in the tumour cells equation.
Lastly, all parameters in the tumour cells equation (dn, γ and rn) were fixed; here bias in dm slightly
decreased but α was estimated with poorer accuracy. The results in these attempts confirmed fixing
certain parameters at their true values is not a solution to improve the accuracy of parameter
estimates. After taking a closer look at the gradients at each evenly spaced location in the domain,
averaged over time and the 200 datasets (figure 5), we noted the temporal gradients estimated by
GAM shown some deviations from the true ones at certain parts of the domain, but in general, they
were quite insensitive to the increase in measurement errors, except for ∂m/∂t, where the deviations at
the left tail seem to increase with the CV. The complex spatial gradients (e.g. second-order spatial
derivatives, haptotaxis term) have also shown obvious deviations from the true ones as the CV goes
up, especially at the tails of the domain. The deviated gradients can bring a negative effect to the
parameter estimates, especially the ones that are associated with them. Our whole gradient matching
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scheme relies on the accuracy of the gradients, if the gradients obtained were inaccurate in the first place,
then the parameter estimates will be poor inevitably. Constraining certain parameters when the gradients
are inaccurate will make the estimates even worse since only a subset of the parameters can be altered to
minimize the value of the objective function, this makes the optimization scheme lose its flexibility to a
certain extent, which may affect the parameter estimates in a negative way.
4. Discussion
In this article, we investigated the performance of two calibration schemes for estimating the parameters of
a PDE model of cancer invasion and metastasis: one related to ABC, another related to gradient matching.
Both schemes were quite accurate when no perturbations were added to the reference data (table 2). In the
ABC-related scheme, undermultiple runs, our schemewas capable of producing consistent final results for
the parameters (electronic supplementary material, table S4) showing that Monte Carlo error is low; it also
produced accurate results on two datasets simulated with different parameter values (electronic
supplementary material, table S5). Gradient matching produced slightly less accurate results on the
reference dataset, which may be expected since the data are approximated by the smooths. Overall,
both schemes gave parameter estimates at satisfactory levels; we believe if these schemes worked well
with one-dimensional synthetic data, then it is certainly possible to increase the dimension and extend
our case study to two dimensions, which means we can investigate more realistic invasion data (e.g.
those observed in lab experiments or clinical data of cancer patients).

However, there are still some concerns at this stage. For the ABC-BCD scheme, the parameters in the
tumour cells equation are estimated with the least accuracy. Possible reasons are as follows.

(i) The equation of tumour cells profile has the most complicated structure in the PDE model,
increasing the difficulty of making accurate estimates of parameters within the equation.

(ii) If we look at the PDE model itself, the parameters in the tumour cells equation are all associated
with numerically complex terms, it can be harder to acquire the information hidden behind the
PDE model that can help to improve the accuracy of their estimates.

(iii) In this ABC-related scheme, we chose to draw parameter estimates equation by equation. As the
tumour cells equation is the last one to be investigated, uncertainties produced in the previous two
investigations were propagated to this final one. Therefore, although five rounds were conducted,
the error rates of its parameters could still be quite high compared to others.

Another issue with the ‘equation-by-equation’ approach in the ABC-related scheme is that it may fail in
PDE models where the equations are highly inter-dependent. In the cancer invasion model used here,
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successful retrievals of reference parameter values suggests the equations are quite independent of each
other. In other words, each equation in the PDE model contains the most amount of information about its
own parameters.

Some other issues within our ABC scheme include the following.

(i) The reference parameter values were chosen by us, so it is quite simple to tell if our calibrations
were successful via a direct comparison between the final parameter estimates and the reference
values. In real-world situations, the reference parameter values will be unknown and hence the
‘stopping-criterion’ needs to be established more carefully and the accuracy of the final
parameter estimates should be assessed with caution.

(ii) Consideration may be given to the use of a multivariate version Bhattacharyya distance or
possibly other distance measuring metrics.

(iii) In the fully Bayesian setting, informative priors may be preferable under certain circumstances.
When a differential equation model is involved, it can be more rigorous to propose the prior
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distributions in the dimensional setting and then translate them into non-dimensional ones, since
not all the priors are invariant under the change of coordinate in some cases. Fortunately, this is
not a concerning issue in our work. Our setting is not completely Bayesian, the initial distributions
of the parameters in this study only serve to influence the speed of convergence, they should not
have an impact on the final point estimates, as long as the final point estimates are within the
corresponding initial distributions.

(iv) Lastly, our current ABC scheme was not designed to measure the uncertainties in the estimates—
no analytic methods exist and bootstrapping is computationally infeasible. In future work,
observation errors may be introduced to the reference dataset so uncertainties in parameter
estimates can be assessed using a full posterior inference under the Bayesian framework.
However, we realize the incorporation of observation errors can be a challenging problem.
Alahmadi et al. [45] have argued the posterior distributions derived from those ABC methods
which fail to adequately model the measurement errors may not accurately reflect the epistemic
uncertainties in parameter values. Hence, it is necessary to model and incorporate the errors in
the correct way when using ABC methods.
c.Open
Sci.8:202237
The gradient matching scheme has the same issue as the ABC-related scheme when estimating
numerically complex terms. Our attempts to fix some parameters at their true values and estimate
only a subset largely did not produce a substantial increase in accuracy of the estimated parameters.
The gradients averaged over time and the 200 datasets gave us a hint of what might have gone
wrong, hence we investigated the gradients in a more explicit way (see electronic supplementary
material, figures S10–S18). In the tumour cells-related gradients, the temporal ones estimated from the
fitted GAM (electronic supplementary material, figure S10) are mostly consistent across the domain at
the later time points, but some obvious deviations can be observed at the left tail of the domain at the
early time points. The deviation between the true gradients calculated by the finite difference scheme
and the gradients estimated from the fitted GAM with no measurement error added was quite
obvious. This difference between the GAM-estimated and true gradients is responsible for the errors
in the tumour cell-related estimates when no perturbation was added. The same thing happens for the
spatial gradients of γ (electronic supplementary material, figure S12): the gradients predicted by GAM
under different CVs were quite consistent, but some obvious difference between the GAM gradients
and the true gradients can be observed at early and middle time points. The second-order spatial
gradients related to dn (electronic supplementary material, figure S11) were mostly deviated from the
true gradients as the CV goes up, especially at the early time points. The logistic growth gradients
related to rn (electronic supplementary material, figure S13) are the only robust ones among all the
tumour cells gradients, yet one can still observe some minor deviations at the left tail of the domain
in the early time points. In summary, a considerable proportion of the tumour cells-related gradients
were estimated incorrectly by GAM, especially at the early time points and the tails in the domain.
This bias increased as the level of measurement errors went up, which may explain the rapid fall in
accuracy of the related parameters as the CV goes up. On the other hand, the ECM-related gradients
(electronic supplementary material, figures S14 and S15) were consistently estimated by GAM at all
time points under all different levels of CVs; this coincides with the η estimates which are quite
insensitive to the change in CV. The difference between the temporal gradients estimated by GAM
and the ones calculated by the finite difference scheme at the early time points may explain the errors
occurred in the gradient matching estimates when no perturbation was added. Lastly, in the MDE-
related gradients, the temporal ones (electronic supplementary material, figure S16) estimated by
GAM are mostly consistent at the middle time points, although some deviations in the left tail of the
domain can be observed at t = 1. At t = 9, the gradients deviated from the reference ones but following
the same shape. The spatial gradients of dm are mostly consistent in the middle part of the domain
across all the time points; however, quite obvious deviations can be observed in the tails of the
domain, especially when the CV is high. Examining the difference between the gradients estimated by
GAM and the ones calculated by the finite difference scheme at different time points, we may tell the
gradients at both tails were over-smoothed, this may be the reason of the poor accuracy in the dm
estimate when no perturbations were added. On the other hand, comparing the temporal and second-
order spatial gradients estimated by GAM in the tumour cells equation, the same gradients in the
MDE equation were much better estimated; this can explain the estimates of dm being more accurate
and stable than dn as the CV increases. The spatial gradients of α are mostly consistent, which
explains the consistent estimates of α in response to the increasing level of CV.
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gradients replaced by the reference ones; magenta, all tumour cells-related gradients and dm spatial gradients replaced by the
reference ones.
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Instead of fixing the parameters at their true values, we tried two possible methods to improve the
parameter estimates:

(i) Cut off the parts with obvious deviated gradients (t = 1, 2, 8, 9, the first and last 20 locations in the
domain; the gradient matrix is now truncated from 9 × 78 to 5 × 38).

(ii) Fix certain gradients at their true values. The results we obtained with this approach were much
better than the ones seen in the sensitivity test (figure 6).

In general, replacing the inaccurate gradients by the true gradients calculated by a finite difference
scheme is a much better option than truncating the gradient matrices, as it turned out only the
estimates of η became significantly better with the later option, possibly due to the simple structure
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and the consistent estimates of ECM-related gradients in the middle time points and the middle part of
the domain. In the very last attempt of gradient replacements, where all the tumour cells-related
gradients, the temporal gradients of MDE and the second-order spatial gradients of dm are replaced
by the reference ones, the accuracy of tumour cells-related parameters improved notably and became
much more stable, the other parameters maintained at similar levels of accuracy and are quite
insensitive to the increase of CV. Hence, in order to improve the accuracy of all parameters, we may
need a more sophisticated fitting method which can estimate the tumour cells-related gradients better.

A common concern for the two schemes proposed in the current work is that the synthetic data were
generated from a particular model and then fitted back to the same model. In a real-world case of real
cancer data, our models are simply approximations, and we will want to consider the model selection
problem as well as goodness-of-fit of the model to the data. We also side-stepped the important issue
of uncertainty quantification. A real-world application will at least wish to consider quantifying
uncertainty arising from measurement errors (e.g. [45]) and may also attempt to quantify other
sources of uncertainty such as model mis-specification error.

Overall, we believe the parameter estimates for PDE models using statistical approaches is a strong
alternative to searching high-dimensional parameter space manually, which requires a very powerful
numerical scheme if the differential equations system is complicated. The optimization schemes
presented in this work pave the way for applying similar schemes to real cancer invasion and
metastastic spread data (e.g. from in vitro organotypic assays) [46]. Also, we believe the power of our
optimization schemes is not limited to this specific model of cancer invasion; it can certainly be
applied to other PDE models. Although the ideas behind the methods proposed here work, the
approach may still be considered to be at an early stage, and there are many questions remaining to
be answered.
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