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Abstract

Despite the fact that β-Μη is paramagnetic at all temperatures, recent investigations
have shown that it is a metal on the verge of antiferromagnetic order. Dilute
substitution of various transition metal (Fe and Co) and non-transition metal (Al, Sn and

In) atoms in the β-Μη lattice results in the stabilisation of short-range magnetic order at

low temperatures. However, geometrical frustration inherent in the β-Μη lattice

inhibits long-range magnetic order in β-Μη alloys.

In this thesis, the structural and magnetic properties of pure β-Μη and β-Μηι_χΑ1χ in the
concentration range 0.03 < χ < 0.2 have been investigated in order to gain an

understanding of the nature of the spin dynamics and magnetic ground states of these

systems. To achieve this, various experimental techniques have been employed; in

particular, neutron polarisation analysis , inelastic neutron scattering and muon spin
relaxation. The results of these measurements show that β-Μη is an archetypal nearly

antiferromagnetic metal, while β-Μηι_χΑ1χ displays magnetic properties consistent with
the formation of partially localised moments. Our measurements reveal a dramatic and

abrupt change in the fundamental nature of the spin dynamics in β-Μηι_χΑ1χ at a

concentration of χ = 0.09.

A novel reverse Monte-Carlo modelling procedure has been developed as part of this
thesis in order to analyse the nuclear and magnetic short-range order present in the

crystallographically complex β-Μη structure.

The entire β-Μηι_χΑ1χ series is characterised in terms of the temperature dependent

amplitude of the spin fluctuations in the material according to the self-consistent
renormalisation (SCR) theory.
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1 Physical Properties of β-Μη Alloys

1.1 Introduction

Over the past few decades, considerable attention has been devoted to the investigation
of the physical and magnetic properties of the 3d transition metals. The 3d

ferromagnets Fe, Co and Ni, and the spin-density wave antiferromagnet Cr, have all
been extensively studied. Relatively little attention has however been devoted to the

magnetic and physical properties of elemental Mn.

Mn exists in four allotropic modifications at ambient pressure. The body centred cubic

(bcc) α-Mn phase is stable at ambient pressure to a temperature of 1000K. a-Mn

forms with space group 14 3m with 58 atoms per unit cell and four non-equivalent

crystallographic sites at Wyckoff positions 2a, 8c, and two sets at 24g [1], The a-Mn

structure is depicted in figure 1.1. Between 1000K and 1370K, the simple cubic β-Μη

phase forms with space group P4i32 containing 20 atoms shared between two

inequivalent crystallographic sites at Wyckoff positions 8c and 12d [2] (see figures 1.3,

1,4 and 1.5). For the next 40K between 1370K and 1410K, face centred cubic (fee)

γ-Μη is formed, and from 141OK up to the melting point ofMn at 1517K, we find bcc

δ-Μη. The phase diagram ofMn is shown in figure 1.2 [3], The β-phase of elemental
Mn can be retained at room temperature by rapid quenching from the high temperature

β-phase. γ-Μη undergoes a martensitic transition to a metastable face-centred

tetragonal (fct) structure on quenching to room temperature. Attempts to obtain
metastable δ-Μη by quenching various Mn alloys have all proved unsuccessful [4],

β-Μη does not order magnetically down to the lowest temperatures, unlike both a-Mn

and γ-Μη, which show antiferromagnetic order at Tn = 95K and 51 IK respectively.
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Figure 1.1
The crystal structure ofa-Mn. Site I, II, III andlVMn atoms are shown in green, red light
blue and dark blue respectively.
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Figure 1.2
The phase diagram ofmanganese [3],

Despite the absence of magnetic order in β-Μη, a number of recent studies of pure

β-Μη and β-Μη alloys have revealed some fascinating physical and magnetic

properties, which are detailed in this chapter.
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1.2 The Crystal Structure ofβ-Μη

The P4i32 simple cubic structure of β-Μη is unique in nature. Site I Mn atoms occupy

position 8c with <111> rotational symmetry and site II Mn atoms occupy position 12d
with <110> rotational symmetry. The crystallographic structure of β-Μη, based on the

study ofKripyakevich [2] is summarised in table 1.1 and depicted in figures 1.2, 1.3 and
1.4.

Table 1.1 A summary of the β-Μη structure based on the study of Kripyakevich [2],

Space group Atom Site coordinates

P4i32 8c χ,χ,χ x=0.061
x +X,x,x +X
x,x+y2,x+y2
x+y,x+y,x
x+y,x+y,x+y4
x +%,x +X,x +X
x+X,x+X,x+X
χ+χ,χ+%,χ+χ

12d X,y,y + % y = 0.206
X,y,y+%
X,y+X,y+X
X,y+X,y+%
y+X,X,y
y+X,X,y
y+XXy+X
y+X,X,y+X
y,y+X,X
y,y+X,X
y+X,y+X,X
y+X,y+X,X

As can be seen in figure 1.3, the site II β-Μη atoms form a distorted lattice of corner

sharing triangles. This is known as the "distorted windmill" arrangement, and was first

highlighted by Nakamura and co-workers [5],
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Figure 1.3
rh „M crvstal structure Site 1 Mn atoms are shown in blue, site II Mn atoms m red
The Ά νόίΙΖshown asa network of corner shoring triangles, with the mangle

planes normal to the <1 1 1> direction.
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Figure 1.4
The β-Μη structure with a site I atom at the unit cell corner. The site I and II Mn atoms
are shown forming a distorted lattice ofcorner sharing tetrahedra.

Figure 1.5
The first near-neighbour shell ofa site IMn atom in β-Μη (the central site I atom is not
shown). This shellforms a distorted icosahedron with 3 site I and 9 site IIMn atoms [2,6],
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Figures 1.3, 1.4 and 1.5 depict three possible descriptions of the local coordination of
site I and site II Mn atoms in the β-Μη matrix. The icosahedral coordination of the
site I Mn atoms is most unusual, and is the basis of a centre of pseudo five-fold

symmetry similar to that observed in quasicrystal structures, many of which are Mn

alloys [6],

It has been pointed out by O'Keefe and Andersson [7] that if the site II Mn positions are

given by the coordinates in table 1.1 with,

9-V33
=02Q346

16

then the triangular lattice formed by the site II Mn atoms, becomes a lattice of

equilateral triangles with each triangle the same size. The reported value of y is 0.206

according to Kripyakevich [2] or 0.2022 according to Shoemaker and co-workers [8],
In chapter 5, I shall show that the value of y in β-MnAl alloys is very close to the
critical value given above.

The various local coordinations of β-Μη shown above have been discussed by several
authors in terms of the possible existence of geometrical frustration between Mn

moments in the β-Μη lattice [5,9], The concept of geometrical frustration and its

impact on the magnetic ground state will be fully discussed in section 2.5.

1.3 Previous Studies ofβ-Μη and β-ΜηΛΙ

1.3.1 Introduction

It has long been known that the introduction of dilute quantities of various transition
metal and non-transition metal impurities into pure β-Μη stabilises a static ordered

magnetic ground state in these alloys. One of the first investigations of this

phenomenon was by Kohara and Asayama, who used zero-field NMR to examine the

hyperfine fields in various β-Μη alloys [10], They showed the existence of some form

of static magnetic ground state (which they assumed to be antiferromagnetic) for β-Μη

alloys with impurity concentrations greater than; 3at% Al, 2at% Fe, 0.7at% Co, 0.5at%

Ni, 5at% Zn, 3at% In and lat% Sb. Kohara and Asayama identified two possible

7



mechanisms for the formation of an ordered magnetic ground state. The first
mechanism involved the donation of d-electrons to the conduction band by Fe, Co, Ni

and Zn impurities. It was noticeable in Kohara's study that β-Μη alloys with Ti, V and

Cr, which are situated to the left of Mn in the periodic table, did not exhibit magnetic
order. Substitution of these transition metals into β-Μη causes a depletion in the d-

electron number, whereas substitution of Fe, Co, Ni and Zn into β-Μη increases the d-

electron number. An alternative mechanism for the formation of an ordered magnetic

ground state in β-Μη alloys with Al, Sb and In impurities is an expansion of the β-Μη
lattice due to inverse chemical pressure. This followed the work of Moriya [11] who
showed that the appearance of magnetic order in metals was related to the interatomic

spacing of the material. The concept of moment localisation due to lattice expansion in
metals will be further discussed in section 2.4.3.1.

1.3.2 Mossbauer Spectroscopy Measurements

Several Mossbauer spectroscopy measurements have been performed on β-Μη alloys

[12,13,14,15], The study of Nishihara [15] showed that the hyperfine field at site I in

β-Μη alloys with Fe, Co and Ni is dependent only on the excess of d-electrons donated
to the band, as shown in figure 1.6. This result showed that β-Μη alloys are weak
itinerant electron antiferromagnets in which the value of the Mn moment is dependent
on the details of the conduction band. The contribution to the hyperfine field from the
lattice expansion is depicted in figure 1.7. The value of the hyperfine field increases
with increasing lattice expansion for small d-electron excess Ana-

The Mossbauer measurements of Nishihara broadly confirm the NMR study of Kohara
and Asayama. Since the lattice expansion is small in β-Μη alloys with 3d-transition
metal impurities, the magnetic ground state is determined by the excess of d-electrons
donated to the conduction band. With non-magnetic and 4d transition metals, the
effects of lattice expansion become important.
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Figure 1.6
Variation ofinternalfield with excess d-electron number in β-MnFe, β-MnCo and β-MnNi
measured by FeMossbauer spectroscopy [15].
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Effect of lattice expansion on internalfieldfor 3 values ofAnd measured by Fe Mossbauer
spectroscopy [15].



1.3.3 Specific Heat Measurements

In the 1970s and 1980s, the self-consistent renormalisation (SCR) theory of itinerant
electron magnetism was developed by Moriya [16]. This theory attempts to describe
metallic magnets by considering the effects of longitudinal amplitude spin fluctuations,
and orientational transverse spin fluctuations. Details of SCR theory will be given in
section 2.4. Using SCR theory, Hasegawa predicted that spin fluctuations in metals on

the verge of antiferromagnetic order would cause a strongly enhanced electronic
coefficient of the specific heat γ [17]. In a normal metal the specific heat is given by,

where γ and β are the electronic and lattice coefficients. The specific heat study of

β-Μη and β-Μη alloys by Shinkoda and co-workers [18] found a strongly enhanced
value of γ in pure β-Μη. A plot of γ versus the change in d-electron number And in
various β-Μη alloys is shown in figure 1.8.

c = yi^T3, (1.1)

Ο β-MnV
Ο β-MnCr
ο β-MnFe
π β-MnCo
δ β-MnNi

20

0 L
-0.1 0.0 0.1 0.2 0.3

The dependence of the electronic coefficient of specific heat γ on excess d-electron number
Anj. The solid line shows the functional dependence of the change in γ given by equation
1.2 [18].
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Figure 1.8 shows that the change in γ throughout the series of β-Μη alloys studied is

expressed by one line, irrespective of the impurity species. Starting from And = -0.04
for β-MnV, γ increases rapidly and peaks at And = 0.005. According to the SCR theory
the position of the peak in γ is the critical point for the onset of antiferromagnetism,

corresponding to the value of the Stoner parameter, α = 1 (see section 2.3.2.3). The

position of pure β-Μη slightly to the left of the peak suggests that α is slightly less than

unity in the pure metal. The decrease in γ follows the functional dependence

where And = 0.005 has been taken as the position of the peak in γ corresponding to

α = 1. Hasegawa and Moriya have shown that the Neel temperature of weakly

antiferromagnetic metals is related to γ by the relation,

where A and Β are constants [19]. Figure 1.9 shows that this relation holds for the

β-Μη alloys studied by Shinkoda [18],

(1.2)

γ = a - btn3/4, (1.3)

80

20 ο β-MnFe
d β-MnCo
Δ β-ΜηΝί

0
0 5 10 15

Figure 1.9

γ versus ΤN3/4 for antiferromagnetic β-Μη alloys, β-MnFe, β-MnCo and β-MnNi from the
specific heat study ofShinkoda [18],
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In demonstrating that the functional dependence of the electronic component of specific
heat closely follows the predictions of the SCR theory, this study of β-Μη was the first
to point out the crucial role played by spin fluctuations in β-Μη alloys. Although SCR

theory up to this point had successfully described the physical properties of many
itinerant electron ferromagnets such as MnSi and Sc3ln [20,21], this study was the first
to provide support for the SCR theory of antiferromagnetic metals.

1.3.4 NMR Measurements of Spin Dynamics

There have been several NMR studies of spin dynamics in β-Μη. [22,23,24]. Figure
1.10 shows a plot of the nuclear spin lattice relaxation time 1/T ι for site I and Site II Mn
atoms measured by Kohori and co-workers [24],

I 1—I I III 1 1 1—I I I I II 1 1 1—I I II II 7 1 1 1—I I II I

£
103

··
,«· 1/T, = 800VT

Site II · ·

Λ-Φ"

ίο2 -

Ο
ο

A
,o

Site I A)
P"

Λ
o

,.r
A
>""" 1/T, = 1.7T + 35.3 λ/Τ

_J I I I III I I I I I I I I I I I I I I I I I I I I I I Μ II

1 10 100

Temperature (K)
Figure 1.10
Temperature dependence of the nuclear spin-lattice relaxation rate 1/Tι for sites I and II in
pure β-Μη measured by Kohori and co-workers [24].
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The observed temperature dependence of the 1/Ti is well described by the equation,

— = aT + bVT, (1.4)
T,

where the coefficients a and b describe the interactions between the nuclear spin and the
d-orbital and electron spin respectively [24], The temperature dependence of 1/Tχ

given by eq. (1.4) was predicted by Moriya and Ueda using SCR theory [25] for

systems on the verge of antiferromagnetic order. This measurement provides further
confirmation that the physical properties of β-Μη are well described by the predictions
of SCR theory. The values of the coefficient b = 800 for site II and b = 35.3 for site I
indicate that the magnetic moment of the site II Mn atoms is much larger than that of
the Site I Mn atoms. This result is supported by the band structure calculations of
Sliwko and co-workers [26] which are depicted in figure 1.11.

Energy (eV)

Figure 1.11
The spin dependent density of electron states for site I and Site II Mn atoms in β-Μη
calculated by Sliwko et. al. [26],
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The density of states at the Fermi energy sf (given by Ε = 0 in figure 1.11) is shown to

be a minimum at site I and maximum at site II. The calculations of Sliwko confirm that

the Stoner parameter α is only slightly less than unity for site II showing that the site II
Mn atoms are on the verge of magnetic order [26],

A NMR study of the spin dynamics in β-MnAl has recently been performed by
Nakamura and co-workers [5], Figure 1.12 shows the temperature dependence of 1/Ti
for β-Μηο.97Α10.ο3 and β-Μηο.9Α1ο.ι.

Figure 1.12
The temperature dependence of 1/T, for β-Mn^f with χ = 0.03 and 0.1 measured by
Nakamura et. al. [5]. The broken curve indicates a TI/2 dependence of 1/Ti for
β-Μηο.9τΑϊο.ο3 ■
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While 1/Ti in β-Μηο.97Α10.ο3 is found to obey a T1/2 temperature dependence in
accordance with SCR theory, 1/Ti in β-Μη0.9Α1ο.ι is found to diverge at around 50K.
This behaviour is commonly seen in local moment systems undergoing a magnetic
transition. This result is an indication that there may be a crossover from purely
itinerant moments in pure β-Μη, to partially localised moments in β-ΜηΑ1.

1.3.5 Magnetic Susceptibility Measurements of B-MnAl

Magnetic susceptibility measurements taken by Nakamura and co-workers [5] are

shown in figure 1.13.
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Figure 1.13
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Temperature dependence of the zero field cooled magnetic susceptibilities of the β-ΜηΑΙ
concentrations shown, measured by Nakamura et. al. [5],
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Figure 1.13 shows that the magnetic susceptibility of pure β-Μη is almost constant with

temperature, implying a Pauli paramagnetic susceptibility of the conduction electrons

(see section 2.3.1). With increasing A1 concentration, the susceptibility becomes

progressively larger and more temperature dependent, despite the fact that non-magnetic
A1 atoms are being substituted for magnetic Mn atoms. For β-Μηο.9Α1ο.ι and

β-Μηο.8Α1ο.2 a peak in the susceptibility is observed. This data indicates that β-ΜηΑ1

displays magnetic properties normally associated with a system of local magnetic
moments. The peak in the susceptibility was interpreted by Nakamura as an indication
of spin glass order in concentrated β-MnAl alloys (see section 2.5). In chapter 4, our
own susceptibility measurements, broadly confirming Nakamura's measurements, will
be presented and discussed.

1.3.6 Thermal Expansion Measurements of β-ΜηΑ1

Thermal expansion measurements of the β-MnAl series taken by Nakamura and co¬

workers [5] are shown in figure 1.14.

7
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Figure 1.14
The temperature dependence of linear thermal expansion for f-MnUxAlx alloys with x=0,
0.05, 0.1 and 0.2 measured by Nakamura and co-workers [5].
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In pure β-Μη, the unit cell volume is found to increase steadily with increasing

temperature. For β-Μηι.χΑ1χ alloys with χ > 0.05 there is a temperature independent

region in the thermal expansion curve at low temperatures. The width of this

temperature independent region increases with increasing A1 concentration. The origin
of this temperature independence at low temperatures has been attributed to

spontaneous volume magnetostriction in these alloys, and therefore an increasing

magnetic contribution to the thermal expansion. The influence of spin fluctuations and
moment formation on thermal expansion will be fully discussed in section 2.4.2.1. The
coefficient of linear thermal expansion deduced from these measurements is large for

pure β-Μη, with a value of κ = 30 χ ΙΟ"6 Κ"1, and decreases linearly with increasing A1

concentration, to a value ofκ = 18 xlO"6 Κ'1.

1.3.7 Inelastic Neutron Scattering Measurements of β-ΜηΑ1

An inelastic polarised neutron scattering study of pure β-Μη and β-Μηο.9Α1ο.ι was

recently undertaken by Shiga and co-workers [9], Analysis of the initial and final
neutron spin states enables the separation of the magnetic and nuclear contributions to

the measured neutron cross-section (see section 7.2). Figure 1.15 shows the in¬

dependence of the measured squared magnetisation density M2(Q) multiplied by the

squared Mn magnetic form factor ι (Q) measured at the elastic line (AE = 0).

f2(Q)M2(Q) is directly proportional to the measured magnetic neutron cross-section (see
sections 3 .2.2 and 7.7.1).

The shape of f2(Q)M2(Q) is similar for both β-Μη and β-Μη0.9Α10.ι, with a maximum at

around Q = 1.5A"1, corresponding to approximately twice the Mn-Mn near neighbour
distance. This indicates dominant antiferromagnetic correlations between Mn spins in
both β-Μη and β-Μη0.9Α1ο.ι. The amplitude of the magnetisation density given in

figure 1.15 is likely to be significantly less than the true value since these measurements

were taken at high temperatures where spin fluctuations are likely to spread the

magnetic intensity over a wide energy range, and outside the energy window available
in Shiga's measurement.
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Figure 1.15
The Q-dependence off(Q)M2(Q) of β-Μη (Φ ) and β-Μη0.ςΑΙο.ι (Ο ) measured at the
elastic line, ΔΕ = 0, at a temperature of290K by Shiga and co-workers [9].

The inelastic linewidth Γ, which is proportional to the spectral width of the spin

fluctuations in the material, was measured by Shiga for β-Μη and β-Μηο.9Α1ο.ι. The

measured inelastic neutron linewidths of β-Μηο.9Α1ο.ι are shown as a function of

temperature in figure 1.16. The inelastic linewidth Γ for β-Μη was found to vary only

weakly with temperature with Γ falling from ~30meV at 290K to ~20meV at 7K. This

result shows that strong spin fluctuations persist in β-Μη down to very low

temperatures. The temperature dependence of Γ in β-Μηο.9Α1ο.ι is markedly different

to that of pure β-Μη, with Γ falling steadily from ~10meV at 290K to ~0.7meV at 7K.

This indicates that the spin fluctuations in β-Μη are substantially damped by the
introduction of Al. This has led Shiga to characterise the transition from the dynamic

β-Μη system to the largely static β-Μηυ^ΑΙο.ι as a so-called quantum spin liquid (QSL)
to spin glass transition [9], In this model the replacement of magnetic Mn atoms by

non-magnetic Al impurities, reduces the geometrical magnetic frustration between the
Mn spins, caused by their triangular coordination. In the frustrated β-Μη lattice there
are likely to be several degenerate allowed spin configurations, with zero-point
fluctuations being sufficient to allow the spins to move between these configurations.
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This dynamic magnetic ground state is termed a quantum spin liquid ground state. If
the frustration is relieved by the introduction of the A1 atoms then the degeneracy of the

ground state spin configurations is gradually lifted until zero-point motions are not

sufficient to alter the ground state spin configuration.

1.4 Outline ofthis Thesis

In this thesis, I will investigate the magnetic and structural properties of pure β-Μη and

β-MnAl alloys, addressing three main questions:

i) Why is β-Μη non-magnetic when both a-Mn and γ-Μη are strongly

antiferromagnetic?

ii) By what mechanism does the inclusion of A1 impurities in pure β-Μη stabilise

magnetic order?

iii) What is the nature of the spin dynamics and magnetic ground state observed in

β-MnAl alloys?

• In chapters 2 and 3, the basic theoretical concepts of metallic magnetism and
neutron scattering will be introduced.

• In chapter 4, details of the preparation and initial structural and magnetic
characterisation of β-Μη and β-MnAl will be presented.

• In chapter 5,1 will present an investigation of the structural properties of β-Μη and

β-MnAl. The nature of the transition from a-Mn to β-Μη will be investigated

using high resolution neutron powder diffraction. The site occupancies of β-Μη
with various impurities will also be presented. This study will show that the nature

of the magnetic ground state of β-Μη alloys is crucially dependent on whether the

impurity atoms replace the magnetic site II Mn atoms, or the non-magnetic site I Mn
atoms.

• In chapter 6,1 will present a muon spin relaxation study which will provide the first

magnetic phase diagram of the β-MnAl system, and will highlight an abrupt change
in the nature of the spin dynamics as A1 is added to pure β-Μη.

• In chapter 7, the nuclear short-range order and the quasi-static magnetic correlations
in β-MnAl will be investigated using XYZ neutron polarisation analysis. The
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nature of the nuclear short-range order and the magnetic correlations will be
modelled by a Reverse Monte-Carlo method developed as part of this thesis.

• In chapter 8, I will present an inelastic neutron scattering study of the evolution of
the spin dynamics in β-Μη and β-Μηο.8Α1ο.2· This study will show that the spin
fluctuation width in β-Μη and β-Μηο 8AI0.2 is much greater than the measurements

of Shiga have suggested [9], These measurements will also provide evidence of a
crossover from purely itinerant moments in β-Μη to partially localised moments in

β-ΜΠο.8Α1ο.2·
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2 Metallic Magnetism

2.1 Introduction

Traditionally the theoretical description of metallic magnets is divided into two distinct
models. The Local Moment Model assumes the existence of well localised magnetic
moments in a metal. This model is particularly effective in describing the rare-earth
metals and alloys, but it has proved inadequate in describing metallic 3d transition
elements and alloys. The Itinerant Electron Model attempts to describe magnetic
metals where the unfilled electron orbitals form a conduction band, as is the case for the

3d transition metal elements. This model, however, has had only limited success in

accounting for the observed magnetic properties of the transition metals. Over the last

thirty years, a new theory has been developed which has proved very successful in

accounting for the observed physical properties of itinerant electron metallic magnets.

This is the Self-Consistent Renormalisation (SCR) Theory, originally developed by

Moriya and Kawabata in 1973 [1], In this theory it is postulated that the magnetic

properties of itinerant electron systems are governed by coupled transverse and

longitudinal spin fluctuations which are localised in reciprocal space. This is regarded
as the opposite limit to the local moment model, where the spin fluctuations are

localised in real space. The fact that these two limiting cases exist has led to the

postulation of a unified model of magnetism based on the nature of magnetic spin

fluctuations, which interpolates between the opposite extremes of the local moment and
itinerant electron models.

In this chapter the predictions and shortcomings of the local moment and itinerant
electron models will be highlighted. SCR theory will then be introduced and finally,
the notion of magnetic frustration and spin glass magnetic order will be discussed in
terms of its pertinence to the β-Μηι.χΑ1χ system.
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2.2 The Local Moment Model

In the local moment model, atoms in a magnetic material carry a magnetic moment of
fixed size. According to quantum mechanics, an atom occupies a particular eigenstate

having quantised spin and orbital angular momenta, hS = Yhs and fiL = YM, where s

and 1 are the spin and orbital quantum numbers of each electron in the atom. The

magnetic moment of each atom is also found to be quantised in units of μΒ = e/z/2m,
known as the Bohr Magneton, and is given by

m = pB(L + 2S) = gjpBJ, (2.1)

where the total angular momentum J = L + S, and gj is the Lande g-factor. If the

energy of the (2J+l)-fold degenerate eigenstate given by a particular value of J is well

separated from other states given by different J values, we can regard the atom as

possessing a fixed magnetic moment.

2.2.1 Non-Interacting Local Moments

When a magnetic field, B, is applied to a system of local moments, each atom in that

system will posses a potential energy U = mjgjpBB. Assuming that the probability of
an atom being in a state with energy U is proportional to exp(-U/kBT), and that the
atomic moments in the magnetic material are completely uncoupled, the magnetic

susceptibility, χ, is given by the Curie Law,

^ μ0Μ = μ0Ν§,2μΒ2Ι(Ι +1) ^ C ^ ^
Β 3kBT Τ

where,

^ __ mNgj M-b J(J + 1) (2 3)
3kn

2.2.2 Interacting Local Moments

Atomic magnetic moments may be coupled via direct or indirect exchange interactions,
in addition to the much smaller dipole-dipole and quadrupolar interactions. The energy

of a system of magnetic moments interacting via direct exchange is given by the
familiar Heisenberg Hamiltonian,
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H==-EVSi-SJ> <2·")
i,j*i

where J is the interatomic exchange constant and i, j specify atomic sites over the

crystal. Weiss found that the existence of a spontaneous internal mean magnetic field,
Bint, proportional to the mean magnetisation, may be used to represent the sum of the

exchange forces present in a magnetic material. In this case the magnetic susceptibility
follows the Curie-Weiss Law,

%=Ψ~~· <2·5>I "cw

where Gcw is the so-called Weiss constant,

®cw =—· (2.6)
§j μΒ

2.2.3 Wavevector Dependent Exchange

While Heisenberg initially assumed that the exchange constant J was positive and

explained ferromagnetic materials, we now know that the sign, size and range of the

exchange interaction may be generalised to account for antiferromagnetic, ferrimagnetic
and helimagnetic systems. In these cases the exchange interaction can be expressed as,

J(q) = XViq'(R,"Rj>· (2·7)
q

where J(q) is a wavevector dependent exchange parameter, which reflects the real space
variation of the exchange interactions within the material with a modulation wavevector

of q. Replacing J by J(q) in eq. (2.6), we can write the wavevector dependent

susceptibility as,

™=Z~hc· (Z8)
2„ 2

gj μΒ

where we have implicitly invoked the so-called Random Phase Approximation (RPA) in

assuming that each of the Fourier components in the wavevector dependent exchange
field is independent [2], The ferro- or antiferromagnetic transition temperature Tc/n

will occur at the temperature given by the divergence of %(q), at

j _ J(q)C q,C/N ~ 2 2 ' \Z·")
gj μΒ
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Figure 2.1 shows 1/χ(ς) plotted as a function of temperature for various cases of q-
vector in the case of a simple cubic structure.

From figure 2.1 we can see that substitution of q = (7t/a,0,0) into eq. (2.7) leads to a

negative exchange interaction constant, and hence antiferromagnetic order, with

neighbouring spins lying anti-parallel with one another. The Neel temperature TN, is

given by the intercept on the negative temperature-axis. More complicated magnetic
structures are fully determined by the precise nature of J(q), which may be peaked at q-

vectors incommensurate with the lattice, or may exhibit complex "triple-q" (qx, qy and
qz) dependence, leading to a diverse range of magnetic structures.

i/x(q)

Figure 2.1

Temperature dependence of the inverse wavevector dependent susceptibility 1/χ(q) for
various values ofq, assuming a simple cubic crystal structure.\2]

The Local Moment model has been well justified in magnetic systems where a well
defined and stable magnetic moment can be said to exist, as is the case in magnetic
insulators and rare-earth metals. However, direct Heisenberg exchange is relatively
uncommon in these materials; "superexchange", mediated by a non-magnetic ligand, is
the dominant exchange interaction in the insulators, while the conduction electron
mediated RKKY interaction prevails in the rare-earth metals [2]. However the
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observation in many magnetic metals of magnetic moments having values which are

non-integer multiples of μΒ, is not consistent with the local moment model. In

particular the observation of extremely small magnetisations in the weak ferromagnets
ZrZn2 and Sc3In (0.12μΒ and 0.04μΒ per atom respectively), cannot be explained by the
local moment model, despite the fact that these metals obey the Curie-Weiss Law very

closely for Τ > Tc, albeit with an effective moment far greater than that found in the
ordered state.

2.3 The Itinerant Electron Model

2.3.1 Non-Interacting Itinerant Electrons

According to the nearly-free electron model, the eigenstates occupied by itinerant
conduction electrons in a metal are characterised by their wavevectors, k. These states

are occupied in accordance with the Pauli Exclusion Principle, with the kth state

occupied with a probability given by the Fermi-Dirac function,

fk="
1

k-eF) -1exp
kBT

(2.10)

where 8k is the energy of the kth state and εΒ is the Fermi energy. In the absence of an

applied or spontaneous magnetic field, each eigenstate is 2-fold degenerate with respect

to electron spin. In the presence of a magnetic field, B, this degeneracy is lifted, with
the energy of each spin eigenstate being given by,

(ek - msg^BB, for antiparallel spins
8= (2.11)

Uk + msgspBB, for parallel spins.

We can visualise this situation as in figure 2.2 where the electron density of states is

split into a parallel and an antiparallel spin band.

After the electrons in the parallel band change their spin-state to equalise their potential

energies at the Fermi level, there is a surplus, AN, of antiparallel electrons,

AN =2^^dE
2 , (2.12)

= D(8F)msgspBB
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leading to a magnetisation per unit volume of Μ=ΔΝμβ in the same direction as the

applied field, due to the negative gyromagnetic ratio of the electron. Taking the
electronic Lande g-factor gs = 2 and the magnetic spin quantum number ms = Vz, we
arrive at the expression for the Pauli paramagnetic susceptibility,

which is independent of temperature. This expression successfully describes simple

metals, such as the alkali metals, where the conduction electrons follow the free electron

gas model (see figure 2.3).

Figure 2.2
A schematic representation ofPauli paramagnetism at absolute zero. Electron states in the
shaded regions are initially occupied. On application ofan externalfield B, the band splits
and the "up" and "down" electrons rearrange themselves to make their potential energies
equal at the Fermi level, Sf- This results in an net excess of spin "up" electrons in a
magneticfield.

In the presence of a spatially varying mean molecular field of the form, Hcos(q.r) the q-

dependent paramagnetic susceptibility is given by the Lindhard function [4],

μ0Μ 2τλ/ ,
X = -^- = PoPB D(£F)>

Γ>
(2.13)

Ε

(2.14)
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where kF is the Fermi wavevector given by sF = /t2kF2/2m. In the free electron

approximation the density of electrons states at the Fermi energy is given by D(sF) =

3N/2ef, and we can combine eqs. (2.13) and (2.14) to obtain,

x(q) = x Pauli

ι 4kF -q2,-+—E —In
2 8kFq

2kF+q
2kF-q

(2.15)

where the term in brackets approaches unity as q tends to zero, as required.

2.3.2 Interacting Itinerant Electrons

2.3.2.1 The Hartree-Fock Model

Given a system of Ν electrons, the variational principle asserts that the n-electron

wavefunction,1?, will be a solution to the Schrodinger equation, ΗΨ= ΕΨ, if it
minimises the quantity,

(Ψ,Η,ψ)<H>, (2.16)
(Τ,Ψ)

One trial wavefunction is that given by factorising Ψ into a product ofΝ one-electron
wavefunctions of the form,

Ψ(Γι,8ι, r2,s2, r3,s3, , rN,sN) = ¥i(ri,Si)i|/2(r2,s2)M/3(r3,s3) Ψν(γν,8ν). (2.17)

Flowever, this wavefunction does not obey the Pauli Exclusion Principle, which requires
that the sign ofΨ changes whenever two of its arguments are interchanged. In order to
overcome this problem, we replace Ψ given by eq. (2.17) by a Slater Determinant of
one electron wavefunctions, which is a linear combination of the product of eq. (2.17)
and all other possible permutations.

Ψ^Γ,Λ) Ψ,(Γ2>δ2) · ■ · ΨΙ(γΝ^Ν)
Ψ2(ΓιΑ) Ψ 2 (®*2 ' ^2 ) · · · Ψ 2 (ΓΝ )

T(r!,s„r2,s2, rN,sN) =

ΨΝ(Γ1>δΐ) Ψ Ν (®*2 ' ^2 ) Ψν(γΝ^ν)

(2.18)

Substituting this wavefunction into the Schrodinger equation leads to the Hartree-Fock

equation,
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ftV¥i(r) + U™(r)V,(r) +U^"(r)¥l(r)
2m

(2.19)
Σ fdr Γ~ Τψi*(Γ')ψ.(Γ')ψj(r)5s«Sj = £i¥i(r)J r-r1 J

where Ulon(r) is the potential due to the nuclei and Uelectron(r) is a potential due to the
sum of all other electrons in the material. The last term on the left hand side is known

as the exchange term, which results in a state of lower energy for parallel electron spins
Si and Sj. Thus, consideration of electron-electron exchange interactions leads to a

substantially altered band structure from that predicted by the free-electron model.

However, the Hartree-Fock model only describes electronic states in terms of one-
electron wavefunctions, ψί, which are affected by interactions.

2.3.2.2 The Fermi-Liquid Model

The Fermi-Liquid model takes the proposition laid out in the Hartree-Fock model one

stage further. It asserts that in addition to modified one-electron energies due to

interactions, electron-electron scattering processes will occur. However, the

requirement that an electron can only be scattered into unoccupied states according to

the Pauli exclusion principle means that at a finite temperature, only electrons within

kBT of the Fermi energy, sf, are available to be scattered. This leads to a temperature

dependence of the scattering rate;

— = A + B(kBT)2, (2.20)
τ

where A is the scattering rate at T=0, and the coefficient Β is independent of

temperature. This implies a temperature dependence of the electronic resistivity, p(T) qc

T2 at low temperatures, when phonon contributions to electron scattering are small, (see
section 4.5)

If an electron is excited above the Fermi energy, then Hartree-Fock type electron-
electron interactions increase the amount of energy required to complete this process.

This increase in energy is characterised by the effective mass, m*, of the excited electron
or quasi-electron. The energy of this quasi-electron state will be given by,
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8(k) =8F+^|k-kF|, (2.21)
m

where kF is the Fermi wavevector. The energies associated with quasi-electrons created
above the Fermi surface will affect the number of occupied quasi-electron states created
in the presence of an applied magnetic field, and hence the value of the paramagnetic

susceptibility. The resulting uniform susceptibility of a Fermi liquid is of the form [5]

1 +XAj
X ~ I j, Xpauli ' (2.22)1 + B0

where the parameter Ai depends on the quasi-electron effective mass, and B0 depends
on the nature of the quasi-electron distribution in k-space. Notice that if B0 falls from
0 to -1 as the electron interactions become stronger, the susceptibility becomes large,

displaying so-called exchange enhancement. The susceptibility for various metals is
shown in figure 2.3 [3], The high values for the transition metals and Pd compared with
the alkali metals indicates the presence of exchange enhancement. If Bo = -1, the

susceptibility diverges, implying a transition to a ferromagnetic state.

2.3.2.3 The Stoner/Hubbard Model

The Stoner/Hubbard model [6] assumes an electron-electron exchange interaction of the
Hartree-Fock type, within the tight binding approximation. In this model, the exchange
interaction is significant only for itinerant d-electrons on the same ionic site. Within
the confines of this assumption, Stoner was able to describe the electron exchange
interactions by a mean molecular field, analogous to the Weiss molecular field

description of local moment exchange interactions. This molecular field takes the form,

Hm = γΜ, (2.23)

where γ is the molecular field constant. Referring to figure 2.2, if this field arises

spontaneously the "up" and "down" electron spin bands will split, leading to a transfer
of Δη electrons per unit volume from the "up" to the "down" spin states. The net

magnetisation, M, is then,

Μ = 2ΔημΒ = (n| - ητ)μΒ· (2.24)
The increase in the number of parallel electron spins decreases the total exchange

energy in the material according to the Hartree-Fock equation (2.17), which can be
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Figure 2.3
Temperature dependence of the paramagnetic mass susceptibility of metals. The large
values associated with the transition metals and Pd indicate the presence of exchange
enhancement (from Kittel, [3]).
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equated to a decrease in the effective magnetostatic energy density within the molecular

exchange field, Hm, given by,
μ Μ 1

ΔΕ„ = -jHmdM = -γ|MdM = --γ(ηα - nt JW . (2.25)
0 ο

This value is exactly half the relative displacement of the exchange split bands. If we
restrict our attention to conditions at absolute zero, where the electron states are filled

exactly to the Fermi energy, the kinetic energy of each electron transferred between the

spin-dependent bands must increase, since each flipped electron will be lifted into an

unoccupied state of higher energy. This increase in kinetic energy ΔΕ^ will be given

by,

ΔΝ j(ni-nt)
ΔΕ, = , = -2 — . (2.26)

ΔΝ/ΔΕ, D(8f)/2
If the net change is a decrease in total energy, the electron transfer between the spin

dependent bands will take place spontaneously, resulting in an excess population in the

spin "down" band. The condition for the appearance of spontaneous magnetisation is
therefore,

AE^ex > AEk => —y(n^ — ητ)μΒ D(ef) > 1 ^ 27)
=> ED(eF) > 1

where, I = Vi y(ni - ητ)μβ2, termed the Stoner parameter, is a measure of the mean

exchange energy per electron. Figure 2.4 shows the theoretically calculated values of

D(£f) and I and their product for various metals across the periodic table [7], Eq. (2.27)
is known as the Stoner Criterion. From this equation it can be seen that the occurrence

of ferromagnetism in itinerant electron systems is closely related to the band structure in
the vicinity of the Fermi energy. The Stoner Criterion is likely to be satisfied for a

narrow, peaked electron density of states at the Fermi level, which is a characteristic
feature of the d-electron transition metals.

If the Stoner criterion is not satisfied, the molecular exchange field will nonetheless
affect the relative energy splitting of the spin-dependent bands in the presence of a

magnetic field. dE in eq. (2.12) will become,
dE = msgsFeB + IΔΝ, (2.28)

leading to a paramagnetic susceptibility of the form,
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Figure 2.4
a) The Stoner exchange parameter, I, b) the density ofstates per atom at the Fermi energy,
D(sf), and c) the product of I and D(sp), as a function of atomic number, z, at room
temperature [7]. Fe, Co and Ni satisfy the Stoner Criterion and display ferromagnetism,
while Sc and Pd, display strong exchange enhancement.
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This form of the susceptibility was first predicted by Hubbard, and is of the same form
as the Fermi liquid prediction of the exchange enhanced susceptibility (see figure 2.3).

The exact shape of the Fermi surface in a metal may cause the mean electron exchange
interaction to be q-dependent, leading to a spatially varying mean molecular exchange
field. Assuming that the Fourier components of this exchange field are independent

(RPA) we can write the wavevector dependent susceptibility [8] as,

x(q) = *°(q) = *°(q) , (2.30)
| 2IXo(q) l-aXo(q)' 1 '
Ng.V

where Xo(q) is the non-interacting susceptibility given by eq. (2.15).

Ek

-G -G/2 0 +G/2 +G

Figure 2.5
Electron energy dispersion arising from an antiferromagnetically correlated exchange
field, Hs, The corresponding relation for Hs = 0 (paramagnetism) is also shown.
Characteristic energy gaps are formed at the antiferromagnetic wavevector Q = G/2 where
G is the reciprocal lattice vector. To minimise energy, electrons reside below the energy
gaps, heaped up around the antiferromagnetic zone boundary.

For antiferromagnetic exchange, where the first divergence of X(q) occurs at q = G/2,

we define the so-called staggered magnetisation, Ms = Ma - Mb, where Ma and Mb are

sublattice magnetisations,
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Ma = '/2 Zj (ημ - njt)

Mb = J/2 Σί (nii - nit), (2.31)

where i and j are sublattice points which may or may not be associated with nuclear

positions in the lattice. The staggered exchange field is then defined as, Hs = yMs. It
can be shown [9] that the Hamiltonian constructed according to the Hartree-Fock

approximation for antiferromagnetic exchange, leads to an electron energy dispersion of
the form shown in figure 2.5

Defining the staggered susceptibility, χ8 = χ(ς = G/2), the condition for the appearance

of antiferromagnetism is, axs > 1, with the Neel Temperature Tn given by,

aXs(TN) = 1. (2.32)

2.3.3 The Dynamical Susceptibility

Further development of the Stoner Model was attempted by Izuyama [10], in which the
effects of fluctuations of the spin density in itinerant electron magnets were taken into
account. Making use of the random phase approximation, the frequency dependent

dynamical susceptibility of an interacting electron system under the influence of a

spatially and time varying applied field of the form Hcos(q.r - cot) takes the form,

X(q,«)- ■=, ,, (2-33)2Ιχ0(ς,ω) 1-αχ0(ς,ω)
XT 2 2Ngs μΒ

where χο(ς,ω) is the non-interacting frequency dependent susceptibility, given by a

dynamical generalisation of the Lindhard function (2.14). In the random phase

approximation, the dynamical susceptibility can be expressed in terms of the frequency
distribution of spin fluctuations, T(q), as

X(q,o)= X(q) . (2.34)
1—

T(q)

Taking the imaginary part of the dynamical susceptibility given by eq (2.34), we find,

(2.35)
ω T(q) + ω
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which is a Lorentzian form, of width T(q) and area χ(ς), centred at zero frequency.
This quantity can be directly measured using inelastic neutron scattering (see section

3.2.3).

Stoner calculated the contribution to the dynamical susceptibility from excitations of

quasi-electrons moving across the Fermi surface and changing their spin states. Such
excitations contribute to the dynamical susceptibility as a function of their wavevector

transfers, q and energy transfers, tm. In the absence of exchange interactions these

single particle excitations are termed Stoner excitations. When exchange interactions
between quasi-electron and quasi-hole excitations and are taken into account, the spatial
and temporal fluctuations of the electron spin density may form co-operative normal
modes or spin waves.

This occurs when the second term in the denominator of eq. (2.33), a%o(q,co) = 1,

resulting in a singularity of the dynamical susceptibility. The predicted excitation

spectrum for a ferromagnetically correlated electron gas is shown in figure 2.6. The spin
wave branch calculated using the dynamical Lindhard equation is found to be quadratic

co(q)

Q

Figure 2.6
Theoretical prediction of the magnetic excitation spectrum for an itinerant ferromagnet
[ill

in q.
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2.3.4 The Validity of the Itinerant Electron Model

The itinerant electron model is able to explain the observed ordered moment per atom of
materials such as Fe, Co and Ni which are not integral multiples of the Bohr magneton.

Support for this model is also provided by the observation of narrow d-electron bands in
the 3d ferromagnets which are well described by the tight-binding model, and which are

consistent with the requirements of the Stoner Criterion for the appearance of

ferromagnetism. However, the itinerant electron model fails to explain the observed

susceptibility in the transition metals at finite temperatures, and predicts magnetic
transition temperatures of at least an order of magnitude too high when compared with

experiment. Most strikingly, it cannot account for the observed Curie-Weiss

susceptibility for Τ > Tc in the 3d ferromagnets. The failure of the Stoner Model has
been attributed to the invalidity of the random phase approximation at high

temperatures. According to the RPA spin fluctuations in the electron bands involve
excited quasi-electron states moving independently of each other, with only bound

quasi-electron-hole states undergoing electron exchange interactions. This model,

however, neglects the quasi-electron interaction with the quasi-hole created by the
excitation at high temperatures. When the quasi-electron-hole pair forms a bound state

it corresponds to a spin wave excitation. When a bound state is not formed the
excitation is of a unbound or dissipative nature, but nevertheless is an exchange
enhanced mode of the spin fluctuations. Thus, while the appearance of spin waves at

low temperatures is predicted, the failure of the Stoner model to include exchange
enhancement at high temperatures results in its inability to account for the paramagnetic
behaviour of the 3d ferromagnets, and the dramatic overestimation of the transition

temperatures. To refine the description of itinerant electron magnets then, one must

include the interaction of both collective and dissipative spin fluctuation components at

high temperatures.

2.4 The Self-Consistent Renormalisation Theory

In the Self-Consistent Renormalisation (SCR) theory [9], the free energy of an itinerant
electron system is calculated from the Hartree-Fock Hamiltonian, plus an additional

potential which includes a spin-correlation term included to take account of coupled
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exchange enhanced spin fluctuations. The inclusion of this potential represents the
renormalisation of the equilibrium state. Using the fluctuation dissipation theorem

[12], the spin correlation term, S(q,co), can be expressed in terms of the imaginary part

of the dynamical susceptibility, χ (ς,ω),

S(q,o)= ,Ν\2·- * -X"(q,<o). (2.36)π(8*μΒ) l-exp(-fto/kBT)

The spin correlation term in the Hamiltonian is determined using an assumed form of
the dynamical susceptibility, and correspondingly, the static susceptibility is evaluated
from the form of the renormalised free energy of the system, as determined by this
Hamiltonian. Taking the RPA expression for χ (q,co) given by eq (2.35), the static

susceptibility inferred by this method is found to be inconsistent with the original RPA
form of χ (q,a>) at finite temperatures [9], The task of SCR theory is to find an

appropriate spin-correlation term for the Hamiltonian of the spin fluctuating system

which can then be solved in a self-consistent fashion. Moriya and Kawabata [13]
showed that in order to obtain a self-consistent solution of the renormalised free energy,

the dynamical susceptibility must be of the form,

= ^(,·ω) —(2.37)l-aX0(q>G>) + X(q,o)

where λ^,ω) is the so-called renormalisation term. The detailed form of λ^,ω)

depends on the exact nature of the assumed spin fluctuation correlations.

2.4.1 Curie-Weiss Susceptibility in Itinerant Electron Magnets

Perhaps the most remarkable result of SCR theory is that even the assumption of a non-

interacting electron gas with parabolic bands in the determination of the form of λ^,ω),
leads to an approximate Curie-Weiss temperature dependence of the inverse static

susceptibility. Moriya, has used mode-mode coupling theory [14] to express X(q,G>) in
terms of the thermal averages of the longitudinal spin density amplitude fluctuations
and transverse spin density orientational fluctuations.
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2.4.1.1 Itinerant Electron Ferromagnets

For a system of ferromagnetically correlated spin fluctuations, λ(ς,ω) is given by,

Mq,e>) -^F]SL2(q,co), (2.38)
x0(q»®) 3

where, χο(ς,ω) is the non-interacting susceptibility, Fi is the mode-mode coupling
constant and SiXq,*») is the thermal average of the local longitudinal and transverse spin

density fluctuations. Si2 can be determined by the fluctuation-dissipation theorem, and
is of the form [15],

<sl' >= <239>
gs μΒ ν q

Ifwe define the local susceptibility as the sum over q of x(q),

(2·40)
^

q

then we can rearrange eq. (2.39) to give,

XL(T)=Ng-YS;(T>\ (2-41)
Β

which is the form of the Curie Law. If we now substitute eq. (2.38) into the dynamical

susceptibility given by eq. (2.37), sum over all spin fluctuation energies and take the

inverse, we find that the q = 0 component of the susceptibility, χ(0), can be expressed

by,

- (1 - αχ0 (0)) + -^ F, SL23
, (2.42)

=>—=—1— + -F,Sl2
χ(0) Xhf(0) 3

where χΗρ is the Hartree-Fock susceptibility given by eq. (2.30).

This equation follows a Curie-Weiss form of the susceptibility assuming Si2 rises

linearly with T. It should be emphasised that the magnetic transition temperature, given

by eq (2.42) when 1/χ(0)=0, will be a positive value only if the Stoner criterion, αχο(0)
> 1, is satisfied. Figure 2.7 shows a number of numerical simulations of χο/χ(Τ) given

by eq (2.42) for various values of αχο, compared with the Stoner prediction for a

system with Tc = 0.0IK [16],
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0.05 0.1
T(K)

Figure 2.7
Temperature dependence ofthe inverse magnetic susceptibility from numerical simulations
of a free electron gas, following eq (2.42). The Stoner prediction is also shown for
comparison[16].

Figure 2.8
Temperature dependence of the squared local spin density amplitude SL2 for a weakly
ferromagnetic metal and a local moment system [9],

41



The spin density fluctuation amplitude Sl2 at Tc is given by,

Sl2(Tc) = 3/5 (M(0)/N)2, (2.43)
where M(0) is the magnetisation at T=0K. This implies that Sl2 will initially decrease
with increasing temperature, until it reaches 3/5 of its initial value at Tc, and then rises

linearly above Tc. This temperature dependence of Sl2 is shown in figure 2.8,

compared with the local moment case.

2.4.1.2 Itinerant Electron Antiferromagnets

For antiferromagnetically correlated spin fluctuations, X(Q) is given by,

MQ)
= F,(ist!+M,2(0)), (2.44)

X„(Q) 3

where, Fs is the mode-mode coupling constant for the Fourier components of the spin

density around the antiferromagnetic wavevector Q, and Ms(0) is the staggered

magnetisation per magnetic atom at T=0K. The magnetic susceptibility at q = Q will
then be [17,18],

1 1
+tF.Sl!+F,M,2(0). (2.45)

x(Q) Xhf(Q) 3 ' L
Eq. (2.45) is once again of a Curie-Weiss form with the intercept at l/x(Q) = 0 taking a

negative value when,

—t— + F,M,2(0)>0. (2.46)
Xhf(Q)

Since this condition can be satisfied even when αχο(ζ)) < 1, eq. (2.46) applies to both

antiferromagnetic metals and antiferromagnetically correlated paramagnetic metals

(known as nearly antiferromagnetic metals).

2.4.2 Physical Properties of Itinerant Electron Antiferromagnets

The SCR theory has been applied to discuss various physical properties in addition to

the magnetic susceptibility discussed in the preceding section. Good agreement

between theory and experiment for itinerant electron ferromagnets has been
demonstrated in a number of systems, including MnSi, Sc3ln and ZrZn2 [19,20,21],
There has been much less attention devoted to the itinerant electron antiferromagnets,
with the notable exception of the CI5 cubic Laves phase compound YMn2 and related
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alloys [22,23], The predicted physical properties of itinerant electron antiferromagnetic

systems are summarised below.

2.4.2.1 Thermal Expansion

Since the squared spin density fluctuation amplitude Sl2 increases with increasing

temperature, the magnetovolume of the system should also increase. This is expressed
in terms of SCR theory as,

=Σί|(S,2(T)" Sq2(°)), (2.47)
q VB

where Qm is the magnetic volume strain, Β is the Bulk modulus, and Dq is the q-

dependent magnetovolume coupling constant. For antiferromagnetic metals, it can be
assumed that EqDq ~ Dq where Q is the antiferromagnetic ordering wavevector.

Therefore, summing over the Brillouin zone we have,

n„(T) = NJ-^(sL!(T)-SL2(0)). (248)
D

This suggests that the temperature dependence of Qm is the same as that of Sl2.
However, this effect is extremely difficult to test, unless one can isolate and subtract out

non-magnetic contributions to the thermal expansion. A study of the thermal expansion
of pure Cr and CrV alloys, by Roberts and co- workers, seems to support the SCR

prediction of an increase in Sl2 with increasing temperature, in the paramagnetic regime

[24], The SCR theory also provides a qualitative explanation of the invar phenomenon,
in which ferromagnetic metals such as FejPt and some Fe-Ni alloys display nearly

vanishing thermal expansion coefficients [25], This effect arises due to the

compensation of non magnetic thermal expansion by a negative (constrictive) magnetic
contribution given by eq. (2.48). A negative contribution will occur when Sl2 decreases
with increasing temperature as it approaches Tc from below, causing a reduction in the

magnetostriction.

2.4.2.2 Specific Heat

SCR theory predicts that the electronic coefficient of the specific heat for weakly

antiferromagnetic metals is proportional to |a - 1|12 [26], This leads to a relation of the

form,

;YO-VTn4/3 (2.49)
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where ν is a constant. This relation has been supported by measurements on various

β-Μη alloys by Shinkoda and co-workers [27], (see chapter 1)

2.4.2.3 Nuclear Spin Relaxation

Assuming a dominating Fermi-contact type interaction between nuclear and electronic

spins, and a Curie-Weiss temperature dependence of the staggered susceptibility, SCR

theory predicts a nuclear spin relaxation rate 1/Ti of the form [28],
1 Τ
—

—Ϊ7Γ' (2.50)
T, (T-TN)1/2'

This prediction has been supported by NMR studies of β-Μη and β-ΜηΑ1 [29,30,31],

(see chapter 1)

2.4.2.4 Electrical Resistivity

The SCR theory predicts a contribution to the electrical resistivity from

antiferromagnetically correlated spin fluctuations of the form,

ρ oc T3/2, (2.51)

for metals close to the Stoner critical boundary, axo(Q) ~ 1. In chapter 4 of this study,
it will be shown that the temperature dependence of the electrical resistivity of β-Μη
follows this prediction.

2.4.3 The SCR Unified Theory

Two theories of magnetism have now been introduced which apply to two mutually

opposite limiting cases: the local moment limit and the itinerant moment limit. We now

need to generalise the SCR theory to take account of the possible existence and
formation of local moments in metals.

Figure 2.9 shows the so-called Rhodes-Wohlfarth plot [32], in which pc/ps is plotted

against Tc for various ferromagnets, where pc is the effective magnetic moment per

atom as deduced from the Curie constant [eq. (2.3)] and ps is the saturation moment per

magnetic atom. In the local moment limit the ratio pc/ps = 1, whereas in the itinerant
electron limit pc/ps » 1, since the saturation moment is independent of the Curie
constant.
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Figure 2.9
The Rhodes-Wohlfarth plot [32],

It is instructive to note that the values of pc/ps are distributed very evenly between these
two extremes, suggesting the simultaneous existence of both local and itinerant
moments in many metallic magnets. This observation highlights the need for a unifying

theory which is able to interpolate between the local moment and itinerant electron
limits.

According to SCR theory the physical properties of local moment and itinerant systems
are determined purely by the nature of their spin density fluctuations. In local moment

systems the spin density fluctuation amplitude is fixed, implying magnetic moments

localised in real space. In itinerant electron systems, the spin fluctuation amplitude
varies with temperature, and is generally small compared with local moment systems.
Since these fluctuations are correlated in time as well as space they can only be

regarded as localised in reciprocal space and therefore, infinitely extended in real space.
It follows that all magnetic materials may be classified according to the amplitude, and

spatial extent of their spin fluctuations. Figure 2.10 shows Moriya's classification
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diagram in which various magnetic materials are arranged according to the above
criteria [33],

2.4.3.1 Moment Localisation in Metals

A description of the formation of a local magnetic moment in a metal was given by
Anderson in 1961 [34], to account for the observation of localised magnetic moments

on transition metal impurity atoms in non-magnetic, metallic hosts. The Hamiltonian

describing a 3d impurity in a metallic host will take the form,

We can represent this situation schematically, as shown in figure 2.11 [35],

The hopping term Hhopping = V (also known as the sd mixing term) arises from the

hopping of electrons from the localised d-orbital to the conduction band. This term will

depend on the lattice constant of the host metal, with the hopping energy increasing as

the atoms become progressively more localised. The Hjmpunty term is simply,

where U is the intra-atomic Coulomb repulsion between opposite spins in the localised

orbital, and n<it and ndt are the numbers of spin "up" and spin "down" electrons in the
localised orbital.

(2.52)

HimPurity Undt^dt-, (2.53)

D(s)

d-band

Virtual bound

impurity mode

s-band

►
ε

Figure 2.11
Density ofstates ofa d-bandmaterial, containing an impurity atom [35J.
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Anderson showed that the condition for the appearance of a local atomic moment, with
electrons bound to the impurity d-state energy mode, is

where Pd(eF) is the density of the virtual bound impurity d-states at the Fermi-energy.
For large pd(eF), the hopping term V should be small, since the presence of hopping will
serve to enhance the. conduction band density of states, and deplete the impurity density
of states. If the presence of exchange between two localised bound states is taken into

account, then Moriya has shown [36] that the condition for the appearance of a localised

magnetic moments with antiferromagnetic coupling is,

where Δ is the width of the virtual bound impurity state and J is interatomic exchange

energy.

In summary, favourable conditions for local moment formation in metals are, large

intra-atomic Coulomb and exchange energies, small energy width Δ, and small hopping
term V. The condition of eq. (2.55) is vital to the understanding of the pressure

dependence of the magnetic moment in many metallic antiferromagnets. In particular,

only 3kbar of external pressure are required to completely suppress moment formation
and antiferromagnetic order in YMn2- Assuming that U, Δ and J remain constant with

increasing pressure, one can see that the existence of a magnetic moment is crucially

dependent of the hopping term V, and hence the lattice constant of the metal.

2.4.3.2 Unified Susceptibility and Local Spin Density
In the unified SCR theory, there are two possible mechanisms for the appearance of a
Curie-Weiss susceptibility: the Heisenberg molecular field approximation for local
moments and the SCR form of the susceptibility given by equations (2.42) and (2.45).

Moriya has derived a single equaLion in which the susceptibility is consistent with both
the local moment and itinerant electron models [37]. This equation for ferromagnetic

coupling is,

U pd(eF) > 1, (2.54)

(2.55)
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1
_ 4kBI

X(0) Τ0ΝμΒ q

ΤAc (2.56)
„ 1 /X(0) + 2V(0) - 2V(q) 2V(0)-2V(q),

where, To, is the longitudinal stiffness constant, and,

V(q) = I/SL2(q). (2.57)
The dominant contribution to eq.(2.56) will depend on the longitudinal stiffness

constant, which is a measure of the "stiffness" against a change of the spin fluctuation

amplitude. If To —> 0, giving maximum longitudinal stiffness and representing the local
moment regime, eq. (2.56) reduces to

= ΝμΒ SL (2.58)
3kB(T-Tc)

which is the familiar molecular field approximation for the Heisenberg model. In the
limit of large To and therefore small longitudinal stiffness, eq. (2.56) becomes,

1 _4NlVSL2(T)(T-Tc)
Xo 3kBT0Tc

(2.59)

In eq. (2.59) the Curie-Weiss susceptibility arises solely due to the T-linear increase of

Sl2(T), we can see that this contribution will become progressively smaller as To
becomes small and the longitudinal spin density fluctuations are dampened out.

Figure 2.12 depicts the predicted temperature variation of Sl2 (T) for systems with

varying longitudinal stiffness constants and degrees ofmoment localisation.

When T0 is small, Sl2(T) will rapidly increase with temperature until it reaches a limit
determined by the electron concentration and d-band structure. This is the phenomenon
of temperature induced local moment formation, and is expected in magnetic metals in
the intermediate regime between local and itinerant magnetic order. Favourable
conditions for the formation of temperature induced local moments are: a large p(sf)

satisfying eq.(2.54), a small longitudinal stiffness constant and large exchange
enhancement.
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Figure 2.12
SCR theory predictions ofthe temperature dependence ofSL2 for variousmagnetic metals.
a) Pauli paramagnet (large TO)
b) Nearly antiferromagnetic metal
c) Nearly antiferromagnetic metal with temperature induced local moments
d) Antiferromagnetic metal with temperature induced localmoments (small TO)
e) Local moment system

2.5 Magnetic Frustration andSpin-Glass Order

A magnetic material whose low-temperature state is a static but disordered system of
moments, rather than a long-range periodic spin structure is termed a spin-glass. In
order to achieve a spin-glass magnetic ground state, the magnetic interactions between
the spins must compete with one another, so that no single spin configuration exists
which is uniquely favoured by the interactions. The first systems to be characterised as

spin-glasses consisted of dilute transition metal impurities in noble metal hosts, and

included, AuFe and AgMn. In these systems the magnetic exchange between the

impurity ions is of the RKKY type, where the impurity moment polarises the

surrounding conduction electrons, in such a way that the sign of the electron

polarisation changes with distance from the impurity atom. The coupling between

impurities then depends on their separation, and since they are placed randomly in the
host matrix, the near neighbour interactions compete with one another and a spin-glass
state is formed. There are other types of interaction which can cause spin-glass like
magnetic order, including ferromagnetic coupling in the presence of large single ion

50



anisotropy. However, the mechanism behind spin-glass order which is pertinent to β-
Mn and β-MnAl is that of topological frustration of antiferromagnetically coupled

magnetic moments, and I shall limit my discussion of spin-glasses to this phenomenon.

2.5.1 Topological Frustration

There are several lattice types in which the site symmetry of localised spins in the

matrix, causes them to be frustrated. Two of these are the pyrochlore lattice [38,39] and
the kagome lattice shown in figure 2.13. The pyrochlore lattice consists of a network of
corner sharing regular tetrahedra, while the kagome lattice is a 2-dimensional lattice of
corner sharing triangles. Figure 2.13 b) demonstrates the existence of topological
frustration in the triangular lattice caused by near neighbour antiferromagnetic coupling.

Similarly, it is impossible for antiferromagnetic coupling to exist between a spin and
each of its nearest neighbours in the 3-dimensional pyrochlore lattice.

2.5.2 The Quantum Spin-Liquid to Spin-Glass Phase Transition

Numerical simulations of antiferromagnetically coupled spin configurations on the

perfect pyrochlore-type lattice have shown that spin-glass order should not occur in
these materials down to zero temperature [39], Zero-point amplitude and orientational

spin fluctuations in these systems are sufficient to allow the ground state spin

configurations to vary, and prevent spin-glass freezing. These systems, which display

dynamic, short range, antiferromagnetic spin correlations down to zero temperature

have been termed quantum spin-liquids (QSL), due to the quantum origin of their spin
fluctuations. Experimental studies have shown that pyrochlore-type lattices are

extremely sensitive to chemical disorder, where the substitution of non-magnetic

impurities into the lattice quickly transforms the QSL into a spin-glass at low

temperatures. Intuitively, one can see that the replacement of a magnetic ion by a non¬

magnetic impurity in a frustrated lattice, will lift the spin configurational frustration of
the neighbouring spins. Therefore, the ground state spin configurational degeneracy is
at least partially removed and the spins become frozen at low temperatures. Recent
studies of the CI5 cubic Laves phase compound, Yo.93Sco.3(Mni.xAlx)2 have provided
broad support for the QSL model. In this system , itinerant Mn moments form on a

pyrochlore-like sublattice. With zero A1 substitution, the system behaves like a

quantum spin-liquid, with a broad spectral width of spin fluctuations persisting to the
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Figure2.13 Thea)pyrochloreandb)kagomelattices.Ifneighbouringantiferromagneticcorrelationsareassumed,then spins1and2frustratespin3andsoon,leavingthelatticefrustratedbythecompetinginteractions.



lowest temperatures. The substitution of 5at% A1 (x=0.05) is sufficient to relieve the

topological frustration in the Mn sublattice, the spin fluctuation spectral width narrows

and a spin-glass like magnetic ground state is formed at low temperatures. It is unclear,

however, whether the Mn spins are truly static in this system, as there is evidence of
residual spin fluctuations below the supposed freezing temperature [40],

Recent studies of the pyrochlore antiferromagnet Y2M02O7 have indicated that spin-

glass order can also can occur in pyrochlore lattices without the presence of chemical
disorder [41],

It is an open question whether the observation of spin-glass freezing in topologically
frustrated systems is due to an underlying thermodynamic phase transition characterised

by a truly divergent correlation time, or to the characteristic spin relaxation time of the

system exceeding the time window set by the experimental technique. A suitable order

parameter for the characterisation of spin-glass phase transitions is the Edwards-
Anderson order parameter [42], defined as,

Qea = km lim [(S;(O).Sj(t))]^, (2.60)t—>co N—»oo * '

where Sj(t) is the local spin number at time t, and <Si(0).Si(t)> is the spin-spin
autocorrelation function. The "av" subscript denotes the mean autocorrelation function
over the crystal. qEA will have a finite value when the spin-spin autocorrelation
function is finite as t —» 00, that is, the characteristic spin relaxation time in infinite, and
therefore the spins are static. If the transition to the spin-glass state represents a

thermodynamical phase transition, then we would expect qEA to follow the scaling

relationship,

qEA^(Tf-T)p, (2.61)
where β is the critical exponent for the spin-glass transition. In addition, there are

critical exponents for the magnetic susceptibility and correlation length.

A recent study by Gingras and co-workers [41] has provided evidence of universal
critical exponents for both qEA and magnetic susceptibility, with β in the range 0.6 to

0.9. These values of β are consistent with those found in conventional spin-glasses.
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2.5.3 Spin Dynamics of Spin Glasses

In conventional magnetic systems, magnetic spin relaxation from a non-equilibrium
state to a state of thermal equilibrium is assumed to occur exponentially. Suppose a

sample is placed in an external field, producing a net magnetisation component Μ in the

sample. When the external field is removed, the sample, which is not in thermal

equilibrium, will approach its equilibrium magnetisation Mo at a rate proportional to its

departure from the equilibrium value. We can write this as,

^ = co(M0-M), (2.62)dt

where ω is a constant of proportionality. Integrating eq. (2.62) between 0 and t, we

find that,

M(t) =M0(l-e"w). (2.63)

Eq. (2.63) indicates that the spins relax exponentially to their equilibrium state with a

time constant of ω.

Computer simulations of the decay of the spin-spin autocorrelation function,

q(t) = (Si(0).Si(t)), (2.64)
in +/-J Ising spin glasses [43] showed that the time evolution of the spins was strongly

non-exponential. It was found that in the paramagnetic regime at temperatures close to

Tg, the time evolution of the autocorrelation function was given by,

q(t) = c t"x expCtot'3), (2.65)

where the exponent β was found to increase from β=1/3 at T=Tg to β=1 at temperatures

greater than ~4Tg. At Τ < Tg, q(t) was found to decay algebraically as,

q(t) = c t"x. (2.66)
The appearance of non-exponential or Kohlrausch relaxation in these computer

simulations was accounted for by the presence of a distribution of spin correlation times

Ρ(τ). The non-exponential relaxation then results from summing over individual

exponential contributions to the spin relaxation from uncorrelated localised spin
fluctuations weighted by Ρ(τ).

Recent muon spin relaxation [44] and neutron spin echo [45]studies have directly
observed non-exponential relaxation in spin glasses.
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3 Neutron Scattering

3.1 Introduction

The neutron is an electrically neutral particle, with a magnetic moment of γ = 1.913 pn,

where the nuclear magneton μΝ = eft/2mp = 5.051 χ 10~27 JT"1.

The energy of a neutron is related to its wavevector k by the equation,

xr ^2k2 81.72
· <31)

where Ε is in units of meV and λ in units of A. Thermal neutrons at -300K have a

wavelength, λ -1.7A, which is comparable to the interatomic spacing in solids, thus

allowing diffraction and interference effects to occur. There are two types of interaction
between the neutron and matter in a scattering experiment.

i) Neutrons and nuclei interact at a range of between 10~14m and
10"15m. This interaction range is much smaller than the thermal neutron

wavelength implying that the neutron is scattered isotropically by a

nucleus (S-wave scattering).

ii) The neutron magnetic moment interacts with the magnetic field due to

unpaired electronic spins via a μ.Β interaction. The range of this
interaction is approximately the radius of the unpaired electron orbit, and
thus comparable to the thermal neutron wavelength. Neutrons scattered
from different points of the electron cloud are phase shifted with respect to

one another and therefore interfere, implying that magnetic scattering is

non-isotropic (non-S-wave scattering).

This chapter is a brief introduction to the basic concepts underlying the neutron

scattering studies of β-MnAl presented in chapters 5, 7 and 8.
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3.2 The Neutron Scattering Experiment

dn

Sample
Figure 3.1

Geometry ofa typical neutron scattering experiment.[1]

Figure 3.1 shows a typical scattering experiment in which neutrons of wavevector k and

energy Ε are scattered by a target sample. The scattered neutrons of wavevector k' and

energy E' are counted by a neutron detector subtending a solid-angle element dQ. The
detector is placed along the direction defined by the unit vector Ω = k"/k\ specified by
the polar angles (θ,φ) relative to the incident beam, and can only count neutrons within
an energy element dE of E". The partial differential cross-section, is defined as the
neutron counting rate at the detector per energy interval, normalised by the incident
neutron flux.

where Φ is the incident neutron flux. Integrating over all energy, we obtain the

differential cross-section,

Finally, the total cross-section is obtained by integrating with respect to Ω over 4π

steradians,

neutrons/sec in dΩ between E' and E'+dE"
(3.2)

dΩdE< ΦdΩdE,

(3.3)

σ = Γ[-ίί^-^Ω<ΙΕ·HdQdKΑΩάΕ'
(3.4)
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The total cross section has the dimensions of area and is usually expressed in barns (b),
1 barn = 10"24 m2.

Assuming the Born approximation [2] in which the incident and scattered neutrons are

described by plane waves of the form el(k-r), the partial differential cross-section is given

by,
2 ν 2

=—
. m" „ y,p,pJ(ksA|V|k's λΤοιΈ, - Ε. + Λα» , (3.5)

dQdE" k |V M "

where V is the interaction potential between the neutron and the sample resulting in a

transition of neutron wavevector k to k\ and neutron spin s to s\ The target sample

undergoes a transition from an initial state Λ to final state Λ\ with the delta-function

ensuring conservation of energy. The partial differential cross-section is then obtained

by summing over all possible initial and final neutron spin states s and target sample
states Λ, weighted by their probability of occurrence, ρλ and ps

3.2.1 Elastic Nuclear Scattering

The isotropic nature of the neutron-nucleus interaction implies that the interaction

strength may be characterised by a single parameter; the so-called scattering length b,
which will in general be a complex quantity depending on the particular nuclear isotope
and its spin-state. A suitable potential representing scattering from a rigid array of
nuclei with scattering lengths bi and positions Rj is the Fermi pseudopotential [2],

V(r) =~Ibi5(r-R,)· (3.6)
mη ι

The differential cross-section resulting from the assumption of the Fermi

pseudopotential, and obtained by integrating eq. (3.5) over all energies may be written
as the sum of two contributions,

da

dQ Total

da

dn
+ -

da

dQ.
(3.7)

incoherentcoherent

The coherent differential cross-section which arises due to interference effects between

the scattered neutrons from each nucleus is given by,
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da

άΩ
= b: |Xei(Q-ri) (3.8)

coherent

where Q = kf- ki is the neutron waveveetor transfer and the sum is over all nuclei in the

lattice. The coherent differential cross-section representing the scattering from a single
unit cell of volume V can be obtained by factorising eq. (3.8) to obtain,

da

dQ ^Z8«3-g«>If<gm>I2. (3.9)
' coherent v h,k,l

where Ghki is the reciprocal lattice vector for the (h k 1) family of lattice planes and

F(Ghki) is the nuclear structure factor [3], The delta-function in eq. (3.9) represents the

Bragg peak for the (h k 1) reflection which is located at wavevector transfers given by

Bragg's Law,

Q = Ghki (3.10)
The intensity of the Bragg reflection in eq. (3.9) is proportional to the square of the
nuclear structure factor,

|F(Ghkl)|2=XbRoei(GR»>, (3.11)
Ro

where Ro represents the position of each nucleus of scattering length bRo within the unit
cell.

In a neutron powder diffraction measurement, a collimated neutron beam is incident

upon a finely powered crystalline sample, all crystal planes being presented to the
neutron beam simultaneously. For a given neutron wavelength, neutrons which satisfy
the Bragg condition of eq. (3.10) will be diffracted through an angle 20hki and will be
located on the surface of a Debye-Scherrer cone (see figure 3.2).

Sample

Figure 3.2
A Debye-Scherrer cone in a powder diffraction measurement.
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The integrated cross section for a Bragg reflection of multiplicity j into the Debye-
Scherrer cone is given by [3],

σ»=7^-τ|ρ(°«)Γ· <3I2>4V sin θ

The coherent differential cross-section may also exhibit evidence of short-range order
in systems such as liquids and glasses where there are no coherent Bragg peaks.
Nuclear short-range order can also arise due to short-range correlations between nuclear

species in binary alloys and compounds, and nuclear displacement disorder.

The incoherent contribution to the elastic differential cross-section contains no

interference term between neutrons scattered from different nuclear sites, and is

therefore isotropic, giving a constant background to the elastic scattering. This
contribution is given by,

This term is commonly known as the isotope incoherent differential cross-section.

So far we have considered elastic scattering from a rigid lattice. However, at finite

temperatures thermal vibrations in the lattice induce a phase mismatch between
neutrons scattered from different nuclear sites. To take account of this we must replace
the structure factor in eq. (3.11) by,

where e"2W is the Debye-Waller Factor,

e-2W=e-PQfr (3J5)
The Debye-Waller factor thus reduces the scattering intensity with increasing
wavevector transfer.

Neutron diffraction studies of β-Μη alloys shall be presented in chapter 5. In chapter 7,

nuclear short-range order in β-MnAl alloys will be investigated.

(3.13)

|F(Gm)|'^|F(G„)|
2 ~~2W
e (3.14)
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3.2.2 Elastic Magnetic Scattering

Assuming a magnetic dipole-dipole interaction between the neutron spin and the

magnetic moments in the target sample, we can write the elastic magnetic differential
cross-section as,

Z(8«e-QAte>iQ",'~R,> <s°Xs/ >. <3 !6>
α,β i,j

in which the sum is over all lattice sites i and j and over all Cartesian directions,

α,β = x,y,z. γ is the neutron magnetic moment and ro is the classical electron radius,

e2
r0 = —— (SI units) = 2.818x 10~15m . (3.17)

me

<Sia> and <S/> are the time averaged spin components on sites i and j. f(Q) is the

magnetic form factor and is the Fourier transform of the magnetisation density around
the magnetic ion. The form factor represents the non-isotropic scattering from magnetic
ions caused by the spatial extent of the electron distribution mentioned in section 3.1.
The effect of the magnetic form factor is to reduce the magnetic scattering intensity with

increasing Q. The form factors of many rare-earth and transition metal elements have
been parameterised by Brown [4] as a function of S where,

S = sine/λ = Q/4tu. (3.18)

For Mn ions the magnetic form factor my be written as,

f(S)=A exp(-aS2) + Β exp(-bS2) + C exp(-cS2) + D. (3.19)
The parameters for the Mn2+, Mn3+ and free Mn ions are given in table 3.1, and the form
factors for these ions are plotted in figure 3.3.

Table 3.1 Parameters for the free Mn, Mn2+ and Mn3* form factors [4],

A a Β b C c D

free Mn 0.2438 24.963 0.1472 15.673 0.6189 6.54 -0.0105

Mn2+ 0.4220 17.684 0.5948 6.005 0.0043 -0.609 -0.0219

Mn3+ 0.4198 14.283 0.6054 5.469 0.9241 -0.009 -0.9468

do

άΩ
= (yro)2 i§f(Q>
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Q (A1)

Figure 3.3
The squared form factor of the free Mn, Mn2+ and Mn3+ ions derived from the
parameterisation ofBrown [4]

For a single free atom, the differential scattering cross-section is obtained by integrating
over all energy in eq. (3.16) to obtain,

da

dQ Magnetic

= (F„)!igs!|f(Q)r(S1.Si), (3.20)

where Sx=Qa(SaQ) [7], Using the rule for the triple product:

aA(bAc) = (a.c)b - (a.b)c, we can show that,

<SX .S, > = (s! - (q.s|)! = |s(S +1). (3.21)
We can therefore write eq. (3.20) as,

ο λ 2

gs2|f(Q)| S(S + 1), (3.22)
da Vo]
dQ Magnetic 3i

, 2 J
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where the factor,

V *· /

= 0.073 barns. (3.23)

In chapter 7, the elastic magnetic scattering from β-MnAl alloys will be investigated

using neutron polarisation analysis.

3.2.3 Inelastic Neutron Scattering

In an inelastic neutron scattering experiment, the neutron either gains an energy transfer
ΔΕ from the sample, or it loses ΔΕ to the sample. This can occur through the creation
or annihilation of a coherent excitation such as a phonon or spin wave, with ΔΕ centred
at the characteristic energy of the excitation. Neutrons can also gain or lose energy via
incoherent magnetic spin-fluctuations centred around the elastic line at ΔΕ = 0 (quasi-
elastic scattering). The total inelastic cross section measured in an neutron experiment

given by eq.(3.5) will, in general, include the inelastic magnetic response due to

coherent and incoherent magnetic excitations, and the phonon scattering response from
the coherent vibrational excitations in the crystal. To reveal information about the

magnetic spin-dynamics of the target sample, the phonon scattering has to be subtracted
from the measured partial differential cross-section.

The magnetic partial differential cross-section can be written as,

d2a
dQdEs

_ k' (υΟ2
Magnetic

k ft
S(Q,o): (3.24)

where S(Q,co) is the dynamical structure factor which provides information on the

spatial and temporal magnetic correlations in the sample. Using the fluctuation-

dissipation theorem, S(Q,o) can be related to the imaginary part of the dynamical

susceptibility of the system. The fluctuation-dissipation theorem states that the

frequency dependent correlation function S(Q,co) is proportional to the imaginary part

of the response function of the system, which in this case is the dynamical susceptibility

[5], We can thus write the dynamical structure factor as,
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S(Q,gj) =———77(1 + η(ω)]—x"(Q,©), (3.25)
(gVv) π

where [1+η(ω)] is the so-called detailed balance factor. This factor is introduced to

take account of the fact that the relative thermal population of energy gain and energy

loss processes will depend on the temperature of the system [6], At low temperatures

neutrons will predominantly lose energy to the sample by exciting it from the ground
state to an excited state. The detailed balance factor may be expressed as,

[1 + η(ω)] = y γ. (3.26)
-ηω

1-exp
V j

The imaginary part of the dynamical susceptibility of a magnetic system is thus directly
observable in an inelastic neutron scattering experiment. Using the Kramers-Kronig
Relation [7] we can relate x"(Q,co) to the static wavevector dependent susceptibility

X(Q), as

1 fX"(Q,«).X(Q) =—J do. (3.27)ΤΓ ·» fi%π ω
-00

In chapter 8 I shall present an inelastic neutron scattering study of β-MnAl alloys.
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4 Preparation and Initial Characterisation of β-ΜηΑΙ

4.1 Introduction

All of the samples used in this study were prepared by the argon arc-melting technique,
in which appropriate amounts of the constituent metals are melted together using a high
current electric arc in a low pressure, pure argon atmosphere. β-Μηι_χΑ1χ samples with
A1 concentrations in the range 0 < χ < 0.2 were formed from high purity starting

materials; these being, electrolytically produced pure Mn flake with a purity of 99.98%
and A1 ingot with a purity of 99.99%. After melting, the β-phase was stabilised in
these materials by annealing under a low pressure argon atmosphere in quartz ampoules
at a temperature of between 900C and 950C for at least 24 hours. The exact temperature

chosen was determined by the MnAl phase diagram presented by Hansen [1],
The β- phase was retained at room temperature by quenching the samples in water.

X-ray diffraction spectra of the β-Μηι_χΑ1χ samples were taken on a Philips reflection

geometry X-ray diffractometer. The use of reflection geometry X-ray diffraction was

found to be much more reliable than transmission geometry X-ray diffraction, which

produced a large background and low signal to noise ratio caused by the high degree of

X-ray fluorescence exhibited by Mn atoms. The samples were further characterised
"in-house" by dc susceptibility and electrical resistivity studies. The larger samples

required for neutron and muon measurements were prepared as separate ingots of
around lOg each, and then broken up, mixed and re-melted in order to ensure sample

homogeneity.

4.2 Sample Preparation Procedure

Appropriate quantities of the constituent elements were weighed to within an accuracy

of + 0.1 mg using a Sartorius electronic balance. The surface oxide layer on both the
Mn flakes and A1 ingots was removed by etching in a dilute (—5%) solution of Nitric
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Acid. The argon arc-furnace was flushed prior to melting with pure argon at least three

times, after which any remaining impurities were removed by melting a titanium

"getter" ingot. Great care was taken not to thermally shock the samples during the

melting process. Mn is an extremely brittle metal, and goes through three structural

phase transitions before it reaches the melting point (1470K). Because of this, Mn is

prone to shatter if heated or cooled too rapidly. Accordingly, the samples were heated

using a small current, and cooled as slowly as possible by ensuring that the water

coolant flow through the furnace hearth was reduced to the minimum possible level.
The existence of gaseous impurities in the Mn flakes caused them to shatter on heating.
The Mn flakes were therefore melted repeatedly in order to remove these impurities.

Only after a solid pure Mn ingot was obtained was the A1 added. The MnAl ingots
were turned and melted at least five times to ensure homogeneity. Re-weighing the

ingots after melting revealed high mass losses in the β-MnAl ingots, typically of around
2.5%. This mass loss is mainly due to the low heat of sublimation ofMn, and it was
assumed that Mn mass loss accounted for all of the mass lost in the melting procedure.

Consequently, the constituent elements were weighed in such a way as to allow for this
mass loss.

After annealing and quenching the ingots to produce the β-phase, X-ray, neutron

scattering, pSR and dc susceptibility samples were prepared by finely powdering the

samples. Both X-ray and neutron diffraction measurements demonstrated that minimal
strain is produced by the powdering process in these samples. The dc magnetisation

samples were made by combining a small quantity (typically ~0.5g) of powder with
some Araldite epoxy resin, and fashioning into a sphere. It is highly desirable in
electrical resistivity measurements to have solid samples of uniform cross-sectional
area. This was achieved by cutting cuboid shaped samples of typical dimensions:
1.5mm χ 1.5mm χ 10mm, from the MnAl ingots with a spark eroder. The resistivity

samples were then annealed and quenched as described above.
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4.3 X-Rav Diffraction measurements

of The β-ΜηΑΙ samples studied in this investigation were all initially characterised by

X-ray diffraction, in reflection geometry, on finely powdered samples. Figure 4.1

shows a typical room temperature X-ray diffraction pattern, in this case for β-Μη0.9Α1ο.ι.
All of the samples studied were found to be single phase with the simple cubic

β-Μη structure (see section 1.2). The results of our X-ray diffraction studies are

summarised in table 4.1, which shows the calculated lattice constants, the value of χ2
given by the least-squares fit, and the R-factors for the refinements (see section 5.3).
The high values of both χ2 and the R-factors given in table 4.1 are symptomatic of the

poor quality of the X-ray data, which were affected by the high degree of Mn X-ray
fluorescence and the presence of preferred orientation in the samples studied. The
Reitveld analyses of the measured X-ray diffraction spectra suggested that the A1 atoms

showed a strong occupational preference for site II in the β-Μη structure. However,
since this observation was complicated by the presence of preferred orientation, the site

occupation factors were varied in the analysis, with the A1 atoms constrained to sit on
site II of the β-Μη matrix. I shall present a neutron diffraction study of β-Μη with
various impurity atom substitutions in chapter 5, which confirms that A1 atoms

preferentially occupy site II.

Table 4.1: Lattice parameters, χ2 and R-factors of the β-Μη^ΑΙ* series
deduced from Reitveld analysis of our X-ray diffraction measurements.

X a (A) ^ R-Factor
0 6.316(2) 2.06 0.043

0.03 6.330(1) 1.44 0.015

0.06 6.333(1) 2.54 0.062

0.08 6.342(1) 3.21 0.23

0.09 6.343(1) 1.56 0.025

0.1 6.351(1) 1.96 0.19

0.15 6.376(1) 2.99 0.63

0.2 6.388(1) 4.11 0.19

Figure 4.2 shows the A1 concentration dependence of the lattice constant of our

β-Μηι.ΧΑ1Χ samples, which clearly demonstrates the uniform expansion of the β-Μη
lattice on increasing A1 concentration, rising from a = 6.3 ΙόΑ in pure β-Μη to

a = 6.388A in β-Μηο.8Α1ο.2·

70



2Θ (degrees)

Figure 4.1

Room temperature Cu Ka X-ray powder diffraction pattern of β-Μη0.9Α10.ι with Reitveld
profde refinement and difference pattern. The solid line is the calculated diffraction pattern
from a full Reitveld profile refinement of the data, produced by the FullProf suite of
programs.
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A1 concentration (at%)

Figure 4.2
Concentration dependence of the lattice constant of β-ΜηΑΙ alloys, measured by X-ray
diffraction. The solid line is a guide to the eye.
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4.4 Masnetometry

4.4.1 Introduction

The magnetic volume susceptibility of a material is defined as the ratio of the

magnetisation per unit volume acquired in some steady applied magnetic field to the

applied magnetic field strength.

Xdc=— > (4-1)

where the "dc" subscript implies the use of a dc applied magnetic field. Most methods
of measuring susceptibility (e.g. Vibrating Sample Magnetometry or SQUID

magnetometry) are indirect in that they measure the magnetisation of the sample and
then calculate the susceptibility using the above formula, assuming that Μ is

proportional to H. However, if a small amplitude ac magnetic field is applied, then one

can measure the modulation of the magnetisation of a sample to find the so called ac

susceptibility.

dM
^ ~

xac=^j- (4·2)dHac

This technique assumes linearity between Μ and Η only in the region of dHac, and is

extremely useful for studying dynamical magnetic processes. ac susceptibility
measurements of the β-ΜηΑΙ samples were attempted; however, no signal above

background was observed. Linearity between Μ and Η was found to hold for all

β-MnAl samples up to Η = 12T.

Since conventional magnetometry techniques measure the bulk magnetisation of a

material, they are only sensitive to magnetic materials with a non-zero wavevector

dependent susceptibility x(Q) at Q = 0. Magnetic materials with well localised

moments will in general posses a non-zero x(Q = 0) in the presence of a external

magnetic field. This is not, however, the case for antiferromagnetically correlated
itinerant electron systems.
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4.4.2 The Demagnetisation Factor

When a magnetic material is placed in an applied magnetic field Ha, magnetic poles are

set up on the surface of the material, which arise due to its magnetisation M. These

poles create a demagnetising field Hd, opposed to the applied field, and result in an

internal magnetic field Hi which is in general different to Ha. For elliptically shaped

samples it can be shown that,

Hi = Ha - Hd = Ha - DM (4 3)
where D is the so-called demagnetising factor and is dependent on the shape of the
material. The components ofD for a spherical material are Dx = Dy = Dz = 1/3, while
for a flat plate in the xy-plane, Dx = Dy = 0 and Dz = 1. The components of D always
satisfy the requirement that that Dx + Dy + Dz = 1. The magnetic susceptibility is then
given by,

m m
„λ

X; = · (4.4)
Η( Ha -DM

Therefore, since the measured susceptibility xmis given by
m

/λ

Xm=— > (4·5)

we can combine equations (4.4) and (4.5) to obtain,

Xi = ι XJ" · (4.6)
Xm

4.4.3 Vibrating Sample Magnetometer Apparatus

The dc susceptibility measurements presented in this study were all carried out on a

Oxford Instruments 3001 Vibrating Sample Magnetometer (VSM). The material under

investigation is mounted in a delrin sample holder at the end of a carbon fibre rod and
inserted into an Oxford Instruments CF1200 continuous flow Helium Cryostat, which is
mounted in the bore of a 12 Tesla superconducting magnet. The sample is then vibrated
with an amplitude of ~1.5mm along the vertical axis in a uniform applied field. The
motion of the sample induces an emf in two detector coils, which is proportional to the
rate of change of the magnetic flux through them (Faraday's Law). The vibration

frequency is set at 66Hz, to avoid any interference from 50Hz mains supply noise. The
centre of vibration of the sample can be positioned at the exact centre of the sense coil
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arrangement, to within an accuracy of± ΙΟμιη, in order to achieve the maximum output

signal. The induced emf, which is proportional to the magnetic susceptibility of the

sample, goes through a two-stage amplification process and is monitored by the VSM
electronics and recorded on a computer.

Figure 4.3

Schematic layout ofthe vibrating sample magnetometer (VSM)
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The sample temperature is measured by a AuFe/Chromel thermocouple in direct contact
with a copper heat exchanger situated below the sample. Temperature control is
maintained by an Oxford Instruments ITC4 temperature controller. The VSM system is

fully computer controlled. A diagram of the VSM system is shown in figure 4.3.

4.4.4 Calibration of the VSM

The VSM is calibrated by adjusting the gain of the second amplifier stage while

measuring the saturation magnetisation of a Ni sphere of known mass. When

performing the calibration, it is helpful to use a Ni standard of a similar magnetic dipole
moment to the sample which is to be measured, so that the primary stage amplifier gain
remains the same. In our magnetisation measurements, we have used the value of the
Ni magnetic dipole moment per unit mass given by Aldred [2] of 54.85 emug"1 at 300K.

4.4.5 Magnetisation Measurements of β-ΜηΑ1

Magnetisation measurements were carried out on β-Μηι_χΑ1χ alloys with compositions,

x=0, 0.03, 0.06, 0.1 and 0.2. The measured magnetisation per unit mass in units of
emu g"1 was converted to dc susceptibility in units of emu g"1 Oe"' using eqs. (4.5) and

(4.6). The volume susceptibility in SI units (dimensionless) was obtained using the

following formula,

Xv(Sl) = Xm (CGS) χ 4π χ ρ (CGS), (4.7)

where ρ (CGS) is the sample density in units ofg cm"3.

The temperature dependence of χν (SI) for β-Μη, β-Μηο.96Α1ο.ο6, β-Μηο.9Α1ο.ι and

β-Μηο.8Α1ο.2 is shown in figure 4.4. These results are in broad agreement with those of
Nakamura and co-workers presented in chapter 1 [3],

The temperature dependence of the dc susceptibility for β-Μη and β-Μη0.94Α1ο.ο6 is

relatively weak, with a small rise being observed at around 40K. The feature at 40K

was observed to a greater or lesser extent in all the β-MnAl alloys studied, and was

attributed to the presence ofMn304 or Haussmannite as a surface oxide impurity in the

powdered β-MnAl samples.
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Temperature (Κ)

Figure 4.4
The temperature dependence ofthe dc susceptibility ofβ-ΜηΑΙ alloys cooled in zero field.
A peak in χν is exhibited by the β-Μη0.9Α10.ι and fi-Mn0.sAloa concentrations. The field
cooled branch of the susceptibility is also shown for β-Μη08Α10.2 indicating spin glass
behaviourfor this composition.
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Μη readily oxidises in air to produce mainly MnO and Mn3C>4. MnO is probably the
world's most famous antiferromagnet (Tn = 120K) [4] and Mn3C>4, which is a cubic

spinel material, becomes ferrimagnetic at a temperature of42K [5],

The β-Μη0.9Α10.ι and β-Μη0.8Α10.2 compositions display a much stronger temperature

dependence of χν, with a peak in the susceptibility being observed at low temperatures.

This peak occurs at ~10K in β-Μη0.9Α1ο.ι and ~34K in β-Μηο.8Α10.2· At temperatures

greater than the peak temperature, the susceptibility shows a steady decrease with

increasing temperature.

The temperature dependence of χν for β-Μηο.8Α1ο,2 displays history dependent
behaviour below Τ ~ 34K. This history dependence is an indication of spin glass

freezing at a temperature Tg. Mean-field theories have identified critical lines in H-T

space (de Almeida-Thouless lines) below which history dependent behaviour is

expected in spin glasses [6], In the ZFC branch, when the field is turned on at Τ < Tg
the frozen spins will slowly start to turn towards the direction of the applied field as the

temperature increases, and thermal energy is supplied to the system. The susceptibility
will therefore increase until the thermal fluctuations in the system are sufficient to
ensure that the spins no longer follow the field, and are therefore in the paramagnetic
state. This is the origin of the familiar cusp in the susceptibility of spin-glasses. In the
FC branch, the field is turned on at Τ > Tg, when all of the spins can respond to it, and
are frozen completely at Tg. The susceptibility, therefore, flattens out at low

temperatures. Although this description seems appropriate to the explanation of the

temperature dependence of χν for β-Μηο.8Α10.2, the peak in the ZFC branch is not a

classical spin glass cusp in the susceptibility, but instead, a broad maximum.

In conclusion, these magnetisation measurements provide evidence for spin glass like
behaviour in β-MnAl alloys at A1 concentrations > 10at%. The observation of a

temperature dependent bulk susceptibility in β-Μηο.9Α1ο.ι and β-Μη0.8Α10.2, in contrast

to the weak temperature dependence observed in β-Μη, is indicative of the formation of
at least partially localised moments in these alloys. The neutron scattering studies of

Shiga presented in chapter 1 [7] showed that the Mn moments in both β-Μη and
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β-Μηο.9Α1ο.ι were antiferromagnetically correlated; the wavevector dependent

susceptibility x(Q) displaying a maximum at the antiferromagnetic wavevector,

Q ~1.4A"\ and falling away towards zero at low Q. If β-Μηο.9Α1ο.ι were a purely
itinerant magnet, our magnetisation measurements of the bulk (Q = 0) susceptibility in

β-Μηο.9Α1ο.ι would display only the temperature independent Pauli susceptibility due to
the conduction electrons. The formation of at least partially localised moments

however would explain our results, since the application of an external field to a system

of localised moments partially aligns these moments in the direction of the applied field,
and hence contributes to the bulk magnetisation of the sample, even when these
moments are antiferromagnetically correlated.

4.5 ElectricalResistivity

4.5.1 Introduction

Measurement of the temperature dependence of the electrical resistivity of a magnetic

material, can often provide a valuable insight into its structural and magnetic properties.
The functional form of the temperature dependence of the resistivity often provides
information on dominant electron scattering processes in the material of interest. This

technique is particularly useful in the study of itinerant electron magnets, where the

changes in the distribution of electron spin density at a magnetic phase transition will
affect the measured resistivity.

4.5.2 Contributions to the electrical resistivity

The temperature dependence of the phonon contribution to the electrical resistivity,

p(T) takes the form of the Grueneisen equation,

where 0d is the Debye temperature of the crystal, and is a measure of the phonon
stiffness. For low and high temperature regions eq. (4.8) reduces to,

(4.8)
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Pph(T)
oc Τ5 for Τ«θο

oc Τ for T»0d
(4.9)

In a system of uncorrelated local moments in the absence of any crystal electric field,
there will be a contribution to the resistivity pim caused by the scattering of the
conduction electrons by these disordered localised spins. This contribution is

temperature independent and takes the form,

<410>
2he EF

where m* is the effective mass of the conduction electrons, J is the Heisenberg

exchange constant and (gj-l)2J(J+l) is the de-Gennes factor.

Many metallic systems are well described by the Fermi-Liquid model outlined in
section (2.3.2.3), where quasi-electrons and holes occupying states within keT of the
Fermi energy, may collide with each other, and are subject to changes in their effective
masses as result of electron-electron interactions. The Fermi-Liquid model predicts a

contribution to the resistivity pti(T), at low temperatures, of the form

Pfi(T) = BT2, (4.11)
where Β is a constant, with a value which depends on the Fermi energy and the
electron-electron interaction cross section, σο. The presence of spin fluctuations in a

magnetic material will also contribute to the electrical resistivity since they scatter

conduction electrons via the so-called s-d exchange interaction [8], In this model the d-
electrons (which may be either localised or itinerant) contribute to the spin fluctuations
which then scatter the s-band conduction electrons. Ueda has shown [9] that in weakly

antiferromagnetic metals, p(T) obeys eq. (4.11), and that the coefficient, B, tends to

diverge as it approaches the critical boundary, as

Boc|a-lf1/2, (4.12)
for both weakly and nearly antiferromagnetic metals. At the critical boundary, α = 1,

p(T) no longer follows the Fermi-Liquid model given by eq. (4.11). Instead, the theory

predicts,

Pnfl(T)xT3/2, (4.13)
where the subscript "nfl" signifies this non Fermi-Liquid scaling.
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In general, at the lowest temperatures, where there are no phonons present and the spin
fluctuations have been reduced to zero point motions, the resistivity of a material tends
toward a constant value known as the residual resistivity, po. This will include the local
moment contribution pim, but will also be affected by lattice imperfections, grain
boundaries and chemical impurities.

If the individual electron scattering processes are independent of one another, the total
measured resistivity will obey Matthiessen's Rule, where the total resistivity is given by
the sum of the individual contributions.

4.5.3 Electrical Resistivity Apparatus

The apparatus used to measure the electrical resistivity of β-MnAl samples in this study,
is based on a standard four probe method shown in figure 4.5. A known current density
is driven through the sample between probes 1 and 4 and the voltage dropped between

points 2 and 3 separated by distance, 1, is measured. The resistivity is then calculated
from the equation,

The advantage of this method is that contact resistance and the impedance of the contact

leads can be neglected.

P(T) - po + Pph(T) + Plm(T) + pfl(T) + (4.14)

(4.15)

2 3

Voltage

1 4

Current Density J
>►

Figure 4.5
Standard arrangement for a four probe measurement of the electrical resistivity of a
sample with known cross-sectional area A.
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Figure 4.6
A schematic diagram ofthe electrical resistivity apparatus
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We employ an ac technique in which a low frequency (80Hz) square-wave constant ac

current is used, in conjunction with phase sensitive detection of the measured voltage.
This ac technique allows the elimination of thermal and contact emfs, since they do not

depend on the current direction and are averaged out to zero over a measuring cycle.

A schematic diagram of the electrical resistivity apparatus is shown in figure 4.6. A
constant ac current generator supplies a 5mA current. This is passed to earth through a

100Ω reference resistor and the sample. The sample is mounted in a copper sample
block together with an AlGaAs diode thermometer. Measurements can be taken over

the temperature range 2K to 330K by cooling the sample in a Janis "Supervaritemp"
continuous flow He cryostat. Temperature measurement and control is maintained by a

Lakeshore L330 temperature controller, connected to the AlGaAs diode sample

thermometer, and a control AlGaAs thermometer and copper wire heater which are

attached to the heat exchanger of the cryostat. The voltages across the sample and a 1Ω
resistor are monitored by two Brookdeal lock-in Amplifiers. Operation of the system

and data collection are fully computer controlled. A typical measurement takes of the
order of 18 hours, depending on the warming rate of the cryostat and the time constant

of the lock-in amplifiers. This enables the collection of several hundred data points at a

particular temperature. The data collection program includes an algorithm for the
removal of data points lying outside one standard deviation of the data set at each

temperature, before the final averaging takes place. This greatly reduces the signal to
noise ratio of the measurement.

4.5.4 Resistivity Measurements of β-Μη and β-Μπη^ΑΙη t

Electrical resistivity measurements were successfully carried out on β-Μη and

β-Μηο.9Α10.ι· Resistivity measurements of many other concentrations were attempted.
However these samples were found to contain many cracks and defects, especially at

high A1 concentrations, and many broke or crumbled during the measurements.

Figure 4.7 shows plots of p(T) for β-Μη and β-Μηο.9Α10.ι. The residual resistivity po,

was found to be large in these samples, with p0 ~ 81.2 μΩαη for β-Μη and

po ~ 147.4 μΩαη for β-Μη0.9Α1ο.ι. The high temperature resistivity above -120K is

very similar in the two samples, being roughly proportional to Τ in accordance with the
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high temperature phonon contribution given by eq.(4.9). Below, 110K, p(T) continues

to fall steadily in β-Μη, but in the β-Μη0.9Α1ο.ι sample, p(T) reaches a minimum at

~95K and then starts to increase with decreasing temperature. The appearance of a

resistivity minimum, followed by a negative temperature coefficient of resistivity is
consistent with the formation of local moments in β-Μηο.9Α1ο.ι (see section 2.4.3.1). If
local moments are being stabilised with decreasing temperature in this system, then
electrons removed from the conduction band will increase the resistivity of the material.
This observation of a negative temperature coefficient in β-Μη0.9Α1ο.ι is in agreement

with the measurements of Nakamura and co-workers. [3], The appearance of a

negative temperature coefficient has been observed in several disordered binary alloys
such as Tio.67Alo.33, Tio.gVo.2 and Nio.sCro.2 [10],

In order to obtain the functional form of p(T) in β-Μη, a log-log plot of p(T) - po is

presented in figure 4.8. The low temperature region of the data below 20K is fitted to a

straight line, revealing the power law,

P(T) - Po = ΒΤγ, (4.16)

where γ and Β are found to be 1.503 and 0.056 respectively.

The value, γ = 1.503, of the power coefficient shows that the functional form of p(T) for

β-Μη is in good agreement with Moriya's prediction of p(T) for nearly and weakly

antiferromagnetic metals on the edge of the magnetic non-magnetic instability, given in

eq. (4.13).

In conclusion, our resistivity measurements show that β-Μη exhibits non-Fermi liquid

scaling, consistent with the SCR theory prediction for nearly antiferromagnetic metals.
To our knowledge, this is the first observation of non-Fermi liquid scaling in a

paramagnetic elemental metal. The addition of 10at%Al to β-Μη causes a drastic

change in p(T) with a minimum at ~95K followed by a region where p(T) contains a

negative temperature coefficient. This observation, which is in qualitative agreement

with previous measurements [3] is consistent with the temperature induced formation of
local moments in the system.
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Figure 4.7

Temperature dependence ofthe electrical resistivity p(T) ofβ-Μη and β-Μη0.9Α10.ι· p(T) of
both β-Μη and β-Mno.gAlo.i in the high temperature region at T> 120K is proportional to
Τ indicating dominant phonon scattering of the conduction electrons. A minimum in p(T)
is observed at Τ ~ 100K in β-Μηο.ςΑΙο.ι, followed by a region where p(T) has a negative
temperature coefficient.
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Figure 4.8

Log-log plot ofp(T) - p0for β-Μη. The fit to a straight line ofthe form given by eq. (4.16)
shows that p(T) oc T3/2 at low temperatures in agreement with the SCR prediction for nearly
antiferromagnetic metals on edge ofthe magnetic non-magnetic boundary where αχ0 ~ 1.
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5 Neutron Powder Diffraction Studies

5.1 Introduction

Two neutron diffraction studies have been undertaken as part of this thesis. Firstly, the
nature of the α-Mn to β-Μη phase transition has been investigated using real time
kinetic neutron diffraction. This study was undertaken in order to gain an insight into
the structural properties inherent in α-Mn and β-Μη, which support the formation of an

antiferromagnetic ground state in α-Mn and prevent long-range magnetic order in

β-Μη.

Secondly, we have investigated the site occupancy and structural properties of dilute

β-Μη alloys with Al, In, Sn, Co and Fe. These alloys have been shown to possess a

static magnetic ground state by the NMR studies of Kohara and Asayama [1] and the
Mossbauer spectroscopy studies of Nishihara [2] (see chapter 1). We have identified
the lattice site in the β-Μη structure which is preferentially occupied by the impurity
atoms in order to gain further understanding of the mechanisms behind the formation of
a static magnetic ground state in these alloys.

5.2 Time ofFlisht Neutron Powder Diffraction

In a time of flight neutron diffraction experiment a pulse of neutrons having a

distribution ofwavelengths η(λ) is scattered by a powdered sample. The neutron pulse
will contain a Maxwellian distribution of neutron speeds, the width of which is
determined by a neutron moderator situated in front of the neutron source. The

wavelength of a neutron of velocity ν within the pulse is given by the de Broglie

equation,

λ =—. (5.1)
mv

The speed of the neutron is determined by the time of flight t over the length of the
neutron flight path L, giving [3]

88



ht

mL
λ(Α) = 3.956

t(ms)
L(m)

(5.2)

For elastic scattering the incident and scattered neutron wavevectors are such that

|ki| = |k'|, so that the scattering triangle shown in figure 5.1 is isosceles with the
wavevector transfer given by,

4π sin θ
Q (5.3)

Figure 5.2 shows the Q values available from eq (5.3) for a given scattering angle and
incident wavelength.

Figure 5.1
Elastic scattering triangle in a neutron diffraction measurement with A, = \k'\.

10

0.0 0.5 1.0 1.5 2.0 2.5

t(ms)/L(m)

Figure 5.2
Q values available for a time of flight neutron diffraction measurement for a given
scattering angle. The time offlight axis from which the wavelengths are found is shown.
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Combining eqs. (5.2) and (5.3) we can write the Bragg condition for a time of flight
diffraction measurement,

4π sin 9mL

ht
G hkl

2π

hkl

ht
(5.4)

'hkl
2mL sin θ

The resolution of the observed d spacing is obtained by partial differentiation of eq.

(5.4) with respect to the three experimental degrees of freedom; Θ, t and L. If these
variables are assumed to be independent, then the uncertainties add in quadrature so that
the resolution is given by,

R
Ad

d
ΔΘ2 cot2 Θ +

fAt>
2

(ΔίΛ
+

V t , L L J (5.5)

High resolution is therefore achieved at high scattering angles and long flight paths and
times of flight. It can be shown that for a neutron diffraction experiment with the three

degrees of freedom in present in eq. (5.5) the experimental resolution is depends mainly
on the flight path with, R = 35/L, where δ depends on the time spread of the neutron

pulse caused by the moderator [3],

5.3 ReitveldRefinement ofPowder Diffraction Data

In the Reitveld refinement method, a structural model of the crystal structure is assumed
and the neutron intensities expected from the model are calculated using eqs. (3.11) and

(3.12). The model is iteratively adjusted and the calculated powder pattern is compared
with the measured powder pattern using a least-squares refinement procedure. The

quality of the fit is quantified by the following "R-factors".

a) The Bragg R-factor Rb, is the sum of the magnitude of the residuals for each Bragg

reflection, normalised to the total observed intensity of all the Bragg reflections.

b) The profile R-factor Rp, is the sum of the magnitude of the residuals for each point
in the powder pattern, normalised to the total integrated intensity of the pattern.

c) The weighted profile R-factor Rwp, is similar to Rp but the residual of each point is
squared and weighted , the square-root being taken after the summation, i.e.,
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(5.6)

where the weighting factor wn = l/In,obs, η is the number of points in the pattern and

ln,obs and locale are the observed and calculated intensities respectively.

d) The expected R-Factor Rexp, is defined such that (Rwp/Rexp)2 = χ2, where χ2 is the
standard measure of the quality of a least-squares fit [4],

The model from which the theoretical intensity is calculated contains up to 400

independent parameters which may be adjusted during a Reitveld refinement. The
most important factors to be taken into account in a Reitveld refinement are outlined
below.

a) The scale factor accounts for the measured integrated neutron intensity.

b) The background is usually fitted to a polynomial function.

c) The unit cell constants and atomic coordinates define the contents of the assumed
unit cell and hence the location and intensities of the Bragg reflections from eq

(3.12).

d) The zero shift adjusts the zero point of the measurement (often this value is
determined by independent calibration of the particular diffractometer and should
not be varied in the refinement).

e) The isotropic temperature factors Uiso in units of A2 adjust the Bragg intensities

according to the Debye-Waller factor [eq. (3.15)].

f) The absorption correction accounts for the reduction in the observed intensity of a

Bragg reflection due to the attenuation of neutrons passing through the sample. This
correction is dependent on neutron wavelength and scattering angle. In the

backscattering limit (2Θ ~ 180°) the intensity is given by

I^A-O-e-), (5.7)
2μΤ

where μ is the linear absorption coefficient.

g) The peak shape is determined by the intrinsic instrumental lineshape and powder
particle size and strain effects. In a time of flight neutron diffractometer, the
intrinsic lineshape is described by the Ikeda-Carpenter function [3,5] which
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represents the combination of a Gaussian lineshape determined by the instrumental
resolution convoluted with a pulse shape represented by a sharp rise, followed by a

"fast" exponential decay arising from the slowing down of epithermal neutrons and
a "slow" exponential decay representing the thermal neutrons. Broadening effects
due to the sample are taken into account by convolving the lkeda-Carpenter function
with a Lorentzian lineshape.

5.4 The a-Mn to β-Μη Phase Transition

5.4.1 Introduction

When a physical system is brought to a non-equilibrium state by a sudden change of

temperature the system will transform to the equilibrium state at a rate dependent on the
difference in Gibbs free energy between the initial and final states. The manner in
which the transformation proceeds will depend upon random fluctuations from the
initial state and whether these fluctuations raise or lower the free energy of the system.

A metastable system is resistant to all possible fluctuations.

In a heterogeneous phase transformation, the system can be separated into distinct

regions some of which have transformed and others which have not. The
transformation begins from nucleation centres and then spreads throughout the system

in a manner depending on the topology of the free energy surface. In forming a

nucleation centre, the stable region within the nucleus will decrease the free energy of
the system while the interface between the nucleus and the initial phase will, in general,
increase the free energy. The rate of creation and growth of the nucleation centres

therefore depends upon the ratio between these surface and volume contributions to the
free energy. For instance, if the increase in free energy at the surface of the nucleation
centre is small, more nuclei will be formed in a given volume and a given time. In the
limit that the surface free energy disappears altogether, all parts of the system will
nucleate simultaneously, in which case the phase transition is homogeneous.

Heterogeneous phase transformations can be subdivided into the following two types.
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a) Nucleation and growth transformations. Nucleation centres are formed when a

thermal activation energy barrier determined by the free energy of the system is
overcome. The new phase grows at the expense of the initial phase by atoms

migrating across the interface between the nucleation centre and the initial phase.
The atoms move independently at a rate determined by the temperature of the

system and the free energy difference between the initial and final states.

b) Martensitic transformations. These transformations do not involve atomic
diffusion but a co-operative movement of several thousand atoms occurring at very

high velocity. Such a phase transformation is often called a "shear transformation".
While a martensitic phase transformation occurs at a particular temperature, the rate

of the transformation is independent of the transition temperature. This

phenomenon cannot be explained by processes of thermal activation such as those
which occur in nucleation and growth transformations.

5.4.2 Isothermal Transformation Curves

The nature of a phase transformation may be investigated by examining the time

dependence of the volume of the transformed region at a constant temperature. This
time dependent behaviour is known as the isothermal transformation curve.

In a homogeneous transformation, all regions of the system have an equal probability of

transforming in a given time which is proportional to the untransformed volume

remaining at that time. A transformation from state α to state β can thus be expressed
in terms of the differential rate equation,

dV„
-J-=k(V-V„), (5,8)

where Vp is the volume of the transformed region, V is the total volume of the system

and k is the rate constant. Defining the β-phase fraction Sp = Vp/V eq. (5.8) can be
solved to obtain,

Sp =1 — exp(-t/x), (5.9)
where τ = 1/k is the time constant of the phase transformation.

93



In nucleation and growth transformations it is assumed that a nucleation centre is
formed at a time to called the induction period. It is found experimentally that any
dimension of the transformed region increases linearly with time, until the transformed

regions impinge on each other, thereby interfering with each other's growth rate. This

problem is essentially geometrical and was first addressed by Johnson and Mehl [6],
and later by Avrami [7,8,9], Avrami proposed that growth and nucleation
transformations may be described in terms of the general equation,

Sp = 1 - exp[-(t/x)n], (5.10)
where the exponent η represents the dimensionality of the growth of the nucleated

regions as shown in table 5.1. Eq.(5.10) is known as the Avrami-Johnson-Mehl (AJM)

equation. If the exponent η = 1 the AJM equation reduces to eq. (5.9) and the
transformation is homogeneous.

Tabic 5.1 Type of growth process indicated by the exponent η in the AJM

equation.

exponent η Type of growth
1 homogeneous
1 < η < 2 1 dimensional - "<dendritic"

2 < η < 3 2 dimensional - "plate like'''

3 < η < 4 3 dimensional

5.4.3 The High Resolution Powder Diffractometer (HRPD)

The HRPD diffractometer at the ISIS pulsed neutron facility is the highest resolution
neutron powder difffactometer in the world, with a resolution R = Ad/d ~ 4 χ 10"4 in the

backscattering detector bank used in these measurements. HRPD is therefore ideal for
the study of phase transformations which may involve subtle changes in the dimensions
of the unit cell of the material under investigation. The incident neutron pulse is
moderated by methane at 100K, providing HRPD with a wavelength range of 0.5A < λ
< 12A, with the peak flux at λ = 2A. The high resolution on HRPD results from an

extremely long flight path of almost 100m from the target station at ISIS together with

optimal use of backscattering geometry. These two features minimise the At/t, AL/L

and cot20 contributions to the resolution function given by eq. (5.5). Since this flight
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path entails extremely long times of flight of the incident neutrons, a chopper is placed
in the beam line which admits 1 out of every 5 neutron pulses available at ISIS at a

repetition rate of 10Hz, in order to avoid pulse overlap. Our measurements were taken

using the backscattering ZnS scintillator detector on HRPD covering a scattering angle

range of 160° < 2Θ < 176°.

5.4.4 Experimental Procedure

The finely powdered Mn samples were placed in a vanadium sample can of 12mm
diameter and inserted into a standard ISIS furnace covering a temperature range of
300K to 1200K. The Mn samples were held at a temperature of 500C for at least lhr
before the temperature was raised rapidly at time t = 0 to the desired temperature

required for the measurement of the isothermal transformation curve. This ensured that
the sample was phase pure α-Mn at t = 0. Raising the temperature from 500C to

slightly above the phase transition temperature (-700C) took approximately 5 minutes.
The excellent temperature control of the sample furnace on HRPD ensured minimum
overshoot of the desired temperature. Real time diffraction patterns were obtained in
time slices of between 5 and 15 minutes depending on the rate of the phase
transformation. A 5 minute measurement was found to be the shortest practical time
slice on HRPD.

5.4.5 Results

Figure 5.3 shows a typical measurement of the α-β Mn phase transition. The observed
diffraction patterns are shown as a function of time at a constant temperature of 71 OK.
Four such measurements were performed at temperatures of 700K, 705K, 71 OK and
715K. The β-Μη phase fraction Sp at each time interval was obtained by full two-
phase Reitveld refinement of the measured diffraction patterns using the "General
Structure Analysis System" (GSAS) suite of programs [10], A typical GSAS
refinement is shown in figure 5.4. The time dependence of Sp at each temperature is
shown in figure 5.5. The solid lines shown in figure 5.5 are fits of the data to the AJM

equation (5.8). The time constant and exponent found by fitting the data are presented
in table 5.1.
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Figure 5.5
Measured time and temperature dependence of the β-Μη phase fraction Sp for the a to β
Μη transition.
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Figure 5.6

Graph of lnln(l/l-Sf) against ln(t/r) demonstrating the scaling behaviour of the β-Μη
phase fraction expressed in the form of a straight line ofslope η. η is found to be 1.04 ±
0.02for the a to βΜη phase transition.
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Table 5.1 The time constant τ and exponent η for the α to β Μη phase
transition at the temperatures shown, found by fitting the data shown in

figure 5.5 to the AJM equation.

Temperature (C) χ (minutes) η

700 ±0.5 310 ± 10 0.79 ± 0.03

705 ±0.5 175 ±2 1.05 ±0.01

710 ± 0.5 34.0 ±0.3 1.04 ±0.02

715 ±0.5 9.7 ±0.2 1.17 ±0.06

The form of the AJM equation implies that the α to β Μη isothermal transformation
curves should scale with respect to time. This is demonstrated in figure 5.6 which
shows the four isothermal transformation curves plotted in straight line form,

In In nln
Ό

ν
(5.11)

as a function of t/τ.

η = 1.04 ±0.02.

The curves scale precisely with an average gradient of

Figure 5.7 shows that the time constants measure for the α to β Μη phase transition are

consistent with an Arrhenius process, of the form,

ln(x) = Ea/kBT + ln(x0), (5.12)

where Ea is the activation energy of the transformation. Ea/kB was found to be

(1.4 ± 0.2)xl05 C.
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Figure 5.7
Arrhenius behaviour of the temperature dependence of the time constant τplotted in terms
of Ιη(τ) vs 1/T. The activation temperature was found to be (1.4+0.2) χ 10s C.

5.4.6 Discussion

The value of the exponent η = 1 found in this study implies that the α to β Μη phase
transition is homogeneous throughout the sample. This is perhaps not surprising since
the phase transformation is rather subtle, involving a very slight volume expansion with
both phases displaying cubic symmetry as shown in figures 5.3 and 5.4. We might
therefore expect that the free energy difference at the interface between the two phases
is extremely small, leading to homogeneous nucleation of the β-Μη phase. The

metastable β to α Μη phase transformation which occurs at -230C has been shown by
Husband and co-workers [11] to transform according to the AJM equation with an

exponent of η = 4. This is thought to be due to the large drop in free energy from the
local free energy minimum associated with the metastable β-Μη phase to the α-Mn free

energy, leading to a large free energy barrier at the interface between the transformed
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regions and nucleation centres. Similar behaviour has been observed in the α to β and

β to α Sn transformations which have exponents of η = 2 and η = 5 respectively [12].

As can be seen from figure 5.4, the major peaks of α-Mn and β-Μη are very close in d-

spacing. The transformation from a peak of index (4 2 0) in α-Mn to (2 2 1) in β-Μη

corresponds to a subtle change of symmetry with the <1 0 0> planes of the α phase

forming the <1 1 0> planes of the β phase. As a result, the room temperature lattice
constants ofα and β Μη (8.89Ά and 6.32A respectively) are such that,

aa~V2ap. (5.13)
The change of symmetry is accompanied by an overall lattice expansion of Ad/d = 4 χ

10"3.

5.4.7 Conclusions

We have investigated the transformation kinetics of the α to β Μη phase transformation

using high resolution neutron powder diffraction.

The form of the observed isothermal α to β Μη transformation curves is well described

by the Avrami-Johnson-Mehl (AJM) equation with an exponent η = 1, implying that the
α to β Μη phase transition is homogeneous.

The α to β Μη phase transition involves a subtle change of symmetry with the

<1 0 0> planes of the 14 3m α-Mn phase forming the <1 1 0> planes of the Ρ4ι32 β-Μη

phase, with an associated 0.4% linear expansion of the lattice.

While a net expansion of the lattice might be expected to result in a greater distance
between neighbouring Mn atoms, and hence favour the formation of local magnetic
moments (see section 2.4.3.1), analysis of the Mn-Mn near neighbour distances found in
the current study and shown in table 5.2, reveals that β-Μη is a closer packed structure

than α-Mn.
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Table 5.2 α and β Μη near neighbour distances at 700C for each of the

crystallographic sites shown.

Site α-Μη NN distance (Α) β-Μη NN distance (A)
I

II

III

IV

2.81 2.41

2.62 2.70

2.41

2.41

In the antiferromagnetic state, α-Μη is thought to possess localised magnetic moments

on site I, the most localised site in the matrix [13]. However, the Mn atoms are much
more evenly distributed in the β-Μη structure with smaller Mn-Mn near neighbour
distances than the site I near neighbour distance in α-Μη. The closer atomic packing in
the β-Μη structure may therefore prevent moment localisation in the matrix. In

addition, it is likely that frustration between the triangularly coordinated site II Mn
atoms in the β-Μη structure will prevent long-range magnetic order.

5.5 Site Substitution in β-Μη Alloys

5.5.1 Introduction

The NMR studies of Kohara and Asayama [1] presented in chapter 1 show that a static

magnetic ground state is often stabilised in dilute β-Μη alloys with transition metal and
non-transition metal impurities.

Transition metal impurities are thought to occupy the non-magnetic site I in the β-Μη

matrix, where they either donate 3d electrons to the band, or polarise the surrounding
site II Mn spins (see chapter 1). Non-transition metal impurities are thought to

preferentially occupy site II, where they may bring about magnetic order due to moment

localisation through lattice expansion, or the removal of spin-configurational

degeneracy brought about by possible geometrical frustration in the β-Μη lattice [1,14],
The evidence for site preference of impurities in the β-Μη lattice is however, mainly
indirect (Mossbauer [2] and NMR [1,15]) and is still the subject of some debate.
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We have carried out a comprehensive neutron diffraction study of the alloys,

β-(Μηο.95δηο.ο5), β-(Μη0.98ΐη0.05), β-(Μηο.9Ρεο.ι), β-(Μηο.9Οο0.ι), and β-(Μηχ.χΑ1χ) with

χ=0,0.03, 0.06, 0.08, 0.1, and 0.2, in order to determine their impurity site occupancies
and lattice expansion properties. Determination of impurity site occupancy was

facilitated by the large contrast exhibited between the Mn atoms and the impurity

atoms, due to the negative scattering length ofMn. The measurements were performed

using the LAD neutron diffractometer at the ISIS pulsed neutron facility, and were

refined using the GSAS [10] suite of programs.

5.5.2 The Liquids and Amorphous Diffractometer (LAD)

The LAD difffactometer is optimised for high neutron flux and low resolution
measurements of the structure factor S(Q) of liquid and amorphous materials.

However, the backscattering detector on LAD at 2Θ = 148° and with a total flight path
of L = 11.128m has a high enough resolution (Ad/d = 6x 10"3) for powder diffraction
measurements to be obtained. The incident neutron pulse is moderated by the same

100K methane moderator as HRPD.

5.5.3 Results

The measured diffraction patterns and Reitveld refinements of pure β-Μη, β-Mno.gCoo.i
and β-Μη0.8Α10.2 are shown in figures 5.8, 5.9 and 5.10 respectively.

The relative peak intensities in figures 5.9 and 5.10 are significantly different to those
observed in the pure β-Μη spectrum shown in figure 5.8, illustrating the effect of the

high contrast in neutron scattering length between the Mn and impurity atoms. The

fitting parameters obtained from Reitveld analysis of all the samples studied are

presented in table 5.3. The occupation factors and site preferences found are presented
in table 5.4.

Figure 5.11 shows the concentration dependence of the room temperature lattice
constant for all samples studied. The concentration dependence of the near neighbour
distances and lattice constants of the β-ΜηΑΙ alloys studied in this investigation is
shown in figure 5.12.
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Figure5.9 PowderdiffractionpatternandGSASReitveldrefinementoff-Mn0.gCo0jatroomtemperature.
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Figure5.10 PowderdiffractionpatternandGSASReitveldrefinementoffi-Mn0.sAlo.2atroomtemperature.



Table5.3ParametersobtainedbyReitveldrefinementofthepowderneutrondiffractionpatternsfortheβ-Μηalloysshown.
At%

Lattice

X

Y

UisositeI

UisositeII
SiteI

SiteII

R-Factor

Imparity

Constant(A)

separation(A)
separation(A)Rwp

Oat%

6.3203(2)
0.0632(2)
0.2019(1)
0.40(3)

0.64(3)

2.3669

2.6461

0.0395

3at%A1

6.3288(1)
0.0637(1)
0.2023(1)
0.39(3)

0.66(3)

2.3682

2.6521

0.0291

6at%A1

6.3350(2)
0.0641(1)
0.2025(1)
0.46(3)

0.72(4)

2.3685

2.6539

0.0419

8at%A1

6.3406(2)
0.0646(1)
0.2024(1)
0.42(3)

0.64(4)

2.3691

2.6576

0.0320

10at%A1
6.3500(3)
0.0651(1)
0.2026(1)
0.39(5)

0.65(5)

2.3704

2.6628

0.0407

20at%A1
6.3787(4)
0.0662(1)
0.2037(2)
0.26(5)

0.54(6)

2.3766

2.6816

0.0310

5at%In

6.4328(4)
0.0653(2)
0.2017(2)
0.25(5)

0.79(6)

2.4001

2.6919

0.0307

5at%Sn

6.4181(2)
0.0652(1)
0.2020(2)
0.29(4)

0.75(5)

2.3955

2.6876

0.0268

10at%Fe
6.3141(2)
0.0628(3)
0.2020(2)
0.29(4)

0.71(5)

2.3666

2.6441

0.0280

10at%Co
6.3259(2)
0.0632(2)
0.2024(1)
0.45(8)

0.76(4)

2.3692

2.6515

0.0315



Table5.4Sitepreferencesandoccupationfactorsofvariousimpurityconcentrationsinβ-Μη at%Impurity

PreferredSite

OccupationFactor
%Occupancy

3at%A1

SiteII

0.049(3)

99(1)%

6at%A1

SiteII

0.060(4)

80(1)%

8at%A1

SiteII

0.097(4)

86(1)%

10at%A1

SiteII

0.122(5)

87(1)%

20at%A1

SiteII

0.272(3)

91(1)%

5at%In

SiteII

0.084(5)

100(1)%

5at%Sn

SiteII

0.081(3)

99(1)%

10at%Fe

SiteI

0.120(3)

74(1)%

10at%Co

SiteI

0.235(5)

97(1)%



Impurity concentration (at%)

Figure 5.11
The impurity concentration dependence ofthe lattice constant in the β-ΑΙη alloys studied in
this investigation.

10 15

A1 concentration (at%)

Figure 5.12
Expansion of the site I and site II near neighbour distance compared with the lattice
expansion as a function ofAl concentration in the β-ΜηΑΙ alloys studied.
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5.5.4 Conclusions

We have investigated the site preferences of various dilute impurities in β-Μη alloys.

• Our results show that the transition metal substituents Fe and Co preferentially

occupy Site I in the β-Μη lattice, while the non-transition metal substituents occupy

site II, thus confirming the previous Mossbauer [2] and NMR [15] studies.
• The substitution of non-transition metal Al, In and Sn into β-Μη causes expansion

of the lattice (0.003 A/at% Al, 0.020A/at% Sn, and 0.023 A/at% In), while
substitution of the transition metals Fe and Co leaves the lattice constant almost

unchanged.
• Moment localisation associated with site II Mn atoms in β-ΜηΑ1 [14] may be

associated with the Al concentration dependence of the site II near neighbour

distance, which is found to increase at a higher rate than the lattice constant.

The observation that Al atoms strongly prefer site II in the β-Μη matrix is crucial to

understanding the nature of the magnetic ground state in the β-MnAl alloys studied in
this thesis. Since the site II Mn atoms have been shown to possess large magnetic
moments [14,16] the substitution of non-magnetic Al atoms into the site II sublattice
will introduce a magnetic defect in the matrix. This observation supports the

suggestion of Nakamura et. al. [14] that Al substitution lifts the spin configurational

degeneracy of the triangularly frustrated Mn atoms. Analysis of the static component

of the β-MnAl magnetic ground state presented in chapter 7 will be greatly facilitated

by the fact that both nuclear and magnetic disorder in β-MnAl resides solely on the site
II sublattice.
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6 A Muon Spin Relaxation Study of β-ΜηΑΙ

6.1 Introduction

From the description of the magnetic and physical properties of β-Μη presented in

chapter 1, it is apparent that β-MnAl affords an ideal opportunity to investigate the

processes of spin fluctuations, moment formation and frustration in a relatively simple,
almost elemental, 3d transition metal system. Muon spin relaxation (pSR) has already

proved a particularly powerful tool with which to study such phenomena, and previous
studies have provided valuable insights into the nature of spin fluctuations in YMn2,

Y(Mni.xFex)2 and Y(Mni.xAlx)2 [1,2]. In this chapter, I shall present the results of a pSR

study of the effects of A1 substitution on the spin fluctuations and magnetic ground state

of β-Μη.

6.2 Theory ofMuon Spin Relaxation

6.2.1 The Properties of Positive Muons

Positive muons are unstable second generation leptons which decay with a lifetime of
τ = 2.2 ps into a positron, a μ-neutrino and a μ-antineutrino. The properties of the
muon are summarised in table 6.1.

Table 6.1: The fundamental properties of the positive muon.

Mass 208.6 χ me

0.113 χ nip

1/2ΠSpin

Charge

Magnetic Moment

Gyromagnetic ratio γμ/2π
Lifetime

+e

3.183μκ

135.5 MHz Γ1

2.197 [is
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In the muon decay process, violation of parity causes the positrons to be emitted

preferentially along the direction of the muon spin. The probability of detecting a

positron as a function of the angle between the muon spin polarisation and the positron
detector is given by,

Ρ(θ) = 1+ao cos6, (6.1)

where ao is termed the initial muon asymmetry parameter which is determined by the
kinetic energy of the muon, and varies between -1/3 and 1. The angular probability
distributions Ρ(θ) for ao = 1/3 and 1 are shown in figure 6.1.

90

Figure 6.1
Polar plot of the angular probability distribution Ρ(θ) for positron emission from positive
muon decay, ao = 1 is shown in black and a0 = 1/3 is shown in red.

6.2.2 The uSR Experiment

In a pulsed muon spin relaxation experiment, a pulse ofmuons which are spin polarised
in their direction ofmotion is thermalised in the sample under investigation.
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ν

Forward detectors Sample Backward detectors
►z

Figure 6.2
Schematic experimental arrangement for a muon spin relaxation (pSR) experiment. Ha
shows the direction of the longitudinal field, which is turned off in a zero-field pSR
experiment. The z-direction is defined by the direction ofmotion of the muons.

The angular distribution of positron decay products Ρ(θ) leads to a spatial asymmetry in
the number of positrons counted in detector bank arrays in the forward and back
directions (see figure 6.2). The resulting positron count rates in the two detector banks
are,

NF.B(t) = NFB(0)exp
ρ \

t
[1 +0,(0], (6.2)

where Gz(t) is the longitudinal muon spin relaxation function.

Gz(t) is extracted from the measured count rates by taking the ratio

Rz(t) = a0Gz(t)=NF(t)~aNB(t), (6.3)
NF(t) + dNB(t)

where a is a normalisation term which accounts for the relative efficiencies of the

forward and backward detectors and the anisotropic absorption of positrons by the

sample and surrounding ancillary equipment, α is determined for each sample by

applying a field of 2mT perpendicular to the initial muon polarisation, in essence a

muon spin rotation experiment. The muon spin polarisation precesses at the Larmor

frequency, odl = γμΒ, and thereby periodically intersects the forward and backward
detector banks. Upon taking the ratio given by eq. (6.3) we expect the muon

asymmetry plot to oscillate with frequency g>l and to be modulated by a depolarisation

envelope, Gx(t).
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R,(t)=^-SW7^ = a»G'(t)cos(°>1-t)· (64)NF(t) + aNB(t)

The value of α is assigned by inter-normalising the forward and backward detector
banks until the measured asymmetry oscillates around zero. Figure 6.3 shows a typical
uncorrected muon rotation spectrum of pure β-Μη in a transverse field of 2mT. The
line is a least squares fit to the equation,

Rx(t) = aoGx(t)cos(coit) + abgcos(ci)Lt) + k, (6.5)
where Rx(t) is the measured spectrum, k is the offset, abg is a background asymmetry

term arising from muons thermalised in the silver sample holder and Gx(t) is a Gaussian

decay function. The value ofα is found by iteratively assigning values ofα to eq. (6.4)
until the measured value of k in eq (6.5) is equal to zero.

Time (ns)

Figure 6.3
Muon spin rotation spectrum ofpure β-Μη at 290K in a transverse magnetic field of2mT
obtained on the ARGUS spectrometer, used to obtain the calibration factor a. The solid
line is afit ofeq. (6.5) to the data, a was found to be 1.132for this measurement.
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6.2.3 Dead Time Correction

After detecting a single positron, the detector becomes unable to register further events
for a period id known as the detector dead time. The measured positron count rate nm is
therefore less than the true count rate nt. In the so-called non-paralysable model [3]

positrons which hit the detector during the dead time will not extend the dead time
further. The true number of counts Nt per detector in a time bin ofwidth Xb is Nt = ivtb.

Similarly, Nm = nmXb is the measured number of counts per detector. The number of
counts which must be added to correct for detector dead time is ΔΝ = Nt - Nm. Within

the time bin Xb the total dead time is Nmxa and therefore AN = ntNmXb. We can therefore

write.

N.-N, n,Nmxb

N.N V
vT»y

(6.7)

N.
N.

1 —Ν
r \
X,

VXb J

The true number of counts can be determined provided Xd is known for each detector.

To measure xa a measurement of the asymmetry of pure silver is performed.

0.25 ι · · ■ · 1 · · · · ι ■ ■
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Figure 6.4

Longitudinal pSR spectrum ofhigh purity silver before and after dead time correction.
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Since silver does not depolarise the muon ensemble, Nt = Nt(0)exp(-t/xu) from eq. (6.2).

Substituting this expression into eq. (6.7) we obtain,

Nm exp
V τμ J

f _ Λ

_Nt(0) -± Nm+Nt(0).
VXb J

(6.8)

Therefore, plotting Nmexp(-t/h^) against Nm one obtains a straight line of gradient,
m = -Nt(0)(xd/xb) from which Xd may be calculated. Figure 6.4 shows both corrected

and raw pSR spectra of high purity silver taken at room temperature. The fall off in the
uncorrected spectrum at short times where the muon count rate is highest, is attributed
to detector dead time effects. Detector dead times must be determined for each detector

element individually before grouping into the forward and backward detector arrays and

taking the asymmetry ratio of eq. (6.3).

6.2.4 Muon Depolarisation Functions

6.2.4.1 Muon Depolarisation Due to Static Dipolar Fields

For a concentrated randomly oriented system of magnetic moments, such as an array of
nuclear dipoles which appear static on the timescale of the muon lifetime, the x, y and ζ

components of the local magnetic field distribution may be represented by a Gaussian
function. If the local random dipolar fields are also assumed to be isotropic, then each

orthogonal field component is given by,
2 Λ

p(B,)=Jirxp B;

2Δ2 (6.9)

where i= x, y, ζ and Δ is the Gaussian field distribution width. The second moment of
the distribution is defined as,

= JBw2P(B„,,)dB,„, (6.10)

so that for a Gaussian distribution where P(BXiY;Z) is given by eq. (6.9), the second
moment is given by M2 = Δ2.

If the muons are introduced into the sample at t = 0 with their spins aligned along the z-

axis then the time evolution of the z-component of the muon spin mz is given by,

mz = cos20 + sin20cos^Bt), (6.11)
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where Β is the magnitude of the field that a particular muon experiences and θ is the

angle between Β and the z-axis. The depolarisation function is given by the statistical

average ofmz,

Gz(t) = JJJmz(t)P(Bx)P(By)P(Bz)dBxdBydBz (6.12)

o2t2

.·. GGKTz(t) = ^-+j(l-o2t2)e (6.13)
where the nuclear depolarisation rate, σ, is related to the second moment of the field
distribution by,

σ2 = γμ2Μ2 = γμ2Δ2. (6.14)

Eq. (6.13) is known as the zerofield static Gaussian Kubo-Toyabefunction [4].

In a longitudinal external magnetic field, Bi in eq. (6.9) where i = z, should be replaced

by Bz + Bcxt. Taking the average of eq. (6.12) then yields,

GGKTz(t,oL) = l
2σ

r

2
ω,

1-exp
G t

2 j
coscoLt

2σ
+
ω

4 t

rjexp
' σ2τ2^

3

L 0 V "* J2
sincfliTdT, (6.15)

which is known as the appliedfield static Gaussian Kubo-Toyabe function [5], As the

longitudinal field is increased, the contribution to the muon depolarisation from the
static dipoles, σ, is dominated by the contribution from the external field. In this way

the application of an external magnetic field decouples the muon spin from the random
internal fields, decreasing the time dependence of the depolarisation and restoring the

asymmetry. Numerical solutions of eq. (6.15) have shown that in an applied

longitudinal field Bext = 5Δ, which is typically around 3mT for a system of nuclear

dipoles, the asymmetry is almost completely recovered.

If the system of static dipolar fields is sufficiently dilute, then one may assume a

Lorentzian field distribution of the form,

(6l6)
π (Λ +γμ Bi )

where Λ is the Lorentzian field distribution width. Substituting this into eq. (6.12)

gives,

GLfcrz(t) = ^ + |(l-At)eA', (6.17)
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which is known as the zero-field static Lorentzian Kubo-Toyabefunction [4],

6.2.4.2 Muon Diffusion in Static Spin Systems

The muon is assumed to jump between sites with a mean hopping frequency v, within
the strong collision model [6] which assumes that the muon experiences a sudden

change in the value of the local field and that there is no correlation between the fields

experienced by the muon before and after a jump. In this model, the evolution of the

polarisation of a particular muon immediately following a jump is described by the
static Kubo-Toyabe function [eq. (6.13)] with an initial amplitude determined by the
muon polarisation vector immediately prior to the jump. The total muon polarisation at

a time t is the superposition of the polarisation of each muon at that time. The

probability that a muon has not experienced a jump is given by e-vt, and therefore the
contribution to the total polarisation from those muons which have not jumped is given

by,

G(0)z(t) = GGKTz(t)e"vt. (6.18)
The probability that a muon has jumped once at time f and thereafter has remained

stationary is given by e"v(t4) and therefore its polarisation will be given by

(GGKTz(f )xe~vt) χ (GClKTz(t - f )x e"v(t"1 -*). The total contribution to the muon

polarisation from these muons is therefore [5],

G(1)z(t) = vjGGfcr2(f)e'vt'GCKrz(t-T)e-v(,-,')dt\ (6.19)
0

The higher order terms can be successively derived by the recurrence relation,

G(n)z(t) = vj'G(0)z(fi)G(n~1)z(t - f )df , (6.20)
0

and therefore the total relaxation function given by the sum of eq. (6.20) between η = 0
and η = oo , GDKTz(t) = Ση G(n)z(t), can be written as,

GDKrz(t) = G(0)z (t) + νJGdktz (t - Τ )G(0)Z (f )dfi, (6.21)
o

and is known as the dynamic Kubo-Toyabefunction.

Eq. (6.21) can be solved by taking the Laplace transform to obtain GDKT2(co), and using
a numerical algorithm to take the inverse Laplace transform giving the time domain
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depolarisation function. Alternatively eq.(6.21) can be solved by numerical methods

directly. However, since numerical calculation of GDKTz(t) requires considerable time
and computing power, GDKTz(t) may be tabulated and fitted to the experimental data

using a linear interpolation routine [3],

An analytical expression for the dynamic Kubo-Toyabe has been derived [7] by

applying a perturbation expansion [8] to the strong collision model. The expansion of

(6.21) is performed on a time scale of 1/v and a field scale of σ, and is therefore

expected to hold for σ/ν < 1. The analytical approximation in zero longitudinal field is,
ί Ο—2

GDKTz(t) = exp
2σ

vv2 ■je_vt -1 +vt] . (6.22)

This function is compared to a numerical solution of eq. (6.21) in figure 6.5 as a

function of the dimensionless parameters R = ν/σ and Τ = at.

1.0

0.8

0.6

GDKI7(t)

0.4

0.2

0.0 L
0

Figure 6.5

R=0.5 -

R=50

R=20

The dynamic Kubo-Toyabe function plotted as a function of the dimensionless parameters,
T=ot and R=v/a. The numerical calculation of eq (6.21) is shown in red and the
analytical solution of eq. (6.22) in black. The analytical formula is shown to be a good
approximation ofGDKJft) forR> 1.
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6.2.4.3 Muon Depolarisation from Dynamic Spin Systems

If the magnetic field at the muon site is time dependent, the muon randomly samples

many local fields, weighted by their probability distribution. In this way the muon will
see a time average of the total field distribution, thereby effectively reducing the total
width of the distribution. This is the familiar motional narrowing phenomenon.

Motional narrowing is seen clearly in the behaviour of the dynamic Kubo-Toyabe

function, in which the effective depolarisation of the muons decreases as the muon

hopping rate ν increases. Motional narrowing of the field distribution at the muon site
is also caused by fluctuating atomic spins surrounding a static muon. Making a

comparison between electronic and nuclear field widths Aa and Δη, we would expect Δ3
to be several orders ofmagnitude larger than Δη since μκ ~ 10"3xpB. Despite this, for a
wide range of atomic spin fluctuation rates (108Hz < ν < 1013Hz) the parameter

R = ν/σ is in the fast fluctuation limit (R > 20), and eq.(6.22) reduces to,

indicating that the muon depolarisation is well described by an exponential form [9,7],
Unlike the case of a diffusing muon however, one cannot assume that the modulation of
the field is sudden and uncorrelated in dynamic spin systems. The field modulation is
more appropriately described by the autocorrelation function,

where the brackets denote statistical averages. In a conventional paramagnet for which
there is no spin-spin correlation and a unique spin relaxation time at a particular

temperature (see section 2.5 3), the spin autocorrelation function is given by a simple

exponential,

where ν is the inverse of the spin relaxation time. The field autocorrelation function

qB(t) is also expected to follow this form. Despite the fact that the strong-collision
model can no longer be assumed, muon depolarisation is usually taken to be exponential
in form. This is justified by the fact that Kubo and Toyabe originally assumed an

exponential field autocorrelation of the form given by eq. (6.25) in the derivation of the

_ f 2σ t^Gz(t) = exp
I v J

(6.23)

(6.24)

qs(t)= exp(-vt), (6.25)
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dynamic Kubo-Toyabe function, from which they obtained a depolarisation function
which is not significantly different from that obtained using the strong collision model

[10], If one then assumes the spin autocorrelation function given by eq. (6.25), the
muon depolarisation function due to fluctuating atomic spins in the fast fluctuation limit
is given by,

where λ is the atomic contribution to the muon depolarisation rate. This is related to the

atomic field distribution width Δ and the characteristic spin fluctuation time xc by,

where ωο = γμΒζ, and Bz is the applied longitudinal field. It follows that in zero

applied field or in the limit of motional narrowing where ωο tc « 1, eq.(6.27) becomes,

Referring to eqs. (6.14) and (6.28), eq.(6.26) reduces to the expression given in eq.

(6.23) where the fluctuation rate ν = l/xc.

6.2.4.4 Muon Depolarisation from Spin Glasses

Muon depolarisation in conventional dilute spin glasses such as Au0.99Fe0.01 and

Cu0.97Mn0.03 has been described by Uemura and co-workers [10,11], In Uemura's

model, it is assumed that fluctuation of magnetic impurity moments in dilute spin

glasses leads to a time modulated field at the muon site. The dynamic range of this
field modulation will depend on the proximity of the muon to its neighbouring spins, as
illustrated in figure 6.6.

In Uemura's treatment, the dynamic variable range of the local fields at each muon site
is approximated by a Gaussian distribution ofwidth Δ = σ/γμ,

Gz(t) = exp(-Xt), (6.26)

λ = γμ2Δ\. (6.28)

, i = x,y,z, (6.29)

The probability of choosing a muon at a site ofwidth σ is calculated to be,

(6.30)
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so that the total field distribution obtained by summing over all muon sites weighted by
their probabilities, is a Lorentzian distribution of width a/γμ given by,

(6.31)
00

PL(Bi)-jpG(Bi)p(a)da,
0

where the L superscript indicates a Lorentzian distribution.

Ο
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Ο P(H) Ο
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Ο

Ο Ο Ο Ο
Η

Figure 6.6
Schematic view of the different dynamic ranges offields available at different muon sites in
a dilute spin-glass. The fluctuation ofthe Fe moments causes a wider range of local fields
available at muon sites closer to the magnetic atoms (taken from [11])·

If we now assume that we are in the fast fluctuation limit so that the muon

depolarisation at each site of width σ is given by eq. (6.23), the total dynamic spin glass
muon depolarisation function is given by,

w

GSGz(t) = j*Gz(t,o,v)p(a)do

exp
4a t

ν v y

(6.32)

This simple "root exponential" function has been shown to account for the observed
zero-field muon response in several dilute spin systems [11] and recently in the dilute

superparamagnetic cluster system Cu0.98Co0.02 [12],

124



In concentrated spin glasses every muon site will be situated next to a magnetic ion.
Therefore it is expected that there will not be a wide variation of Gaussian field
distributions between the muon sites. If one then assumes a spin autocorrelation

function given by eq. (6.25) implying a unique spin relaxation time xc = 1/v at each

temperature, one obtains a muon depolarisation function which is close to exponential
in form. However, as was shown in section 2.5.3, the spin autocorrelation function in
concentrated spin glasses was found to follow so-called "stretched exponential" or

Kohlrausch relaxation given by eq. (2.65) [13],

q(t) = ct"x exp[-(t/xc)P], (6.33)

with the stretched exponential exponent β having a value of around 1/3 at Tg rising
towards the simple exponential value β = 1 at a temperature of around 4Tg. It has been
shown by Campbell and co-workers [14] that the form of the stretched exponential
autocorrelation function and the muon depolarisation function are extremely similar,

though not identical, to each other. For instance, if we assume a stretched exponential
muon depolarisation function of the form,

Gz(t) = εχρ[-(λΐ)β], (6.34)
with β = 'Λ, we can obtain the implied distribution of muon depolarisation rates λ;

proportional to the relaxation times xj, via an analytic Laplace transform, giving

Ρ(λ;)
λ2

>(πλ;3)^
exp

λ4 Λ

V 4Ks
(6.35)

Ifwe further assume that the depolarisation of each muon is due to a local spin with a

relaxation time τ,, then the spin autocorrelation function will be given by,
10

t

q(t) = j*Ρ(λί)εχρ( )ύλ;,
ο αλ;

where Χ; = αλί. This is calculated to be,

q(t) =

(6.36)

1
4t

αλ4

\~Vi
(6.37)

If the calculated q(t) is compared with the assumed form of Gz(t) it is found that the two
curves are quite similar and that they correspond to very similar relaxation times.
Numerical integrations of eq.(6.34) with β=1/3 and 2/3 performed by Campbell and co¬

workers have confirmed the result obtained analytically for β = 1/2. A comparison of
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Time (arbitrary)
Figure 6.7
The comparison of the stretched exponential Gz(t) shown in solid symbols, and the spin
autocorrelation function (open symbols) calculated analytically for β=1/2 and numerically
otherwise, presented by Campbell et. al. [14]. The curves have been arbitrarily shifted
along the time axis as only their relative shapes are important.

the stretched exponential depolarisation function and the autocorrelation function
calculated by Campbell et. al. is shown in figure 6.7.

The stretched exponential muon depolarisation function has been observed in many

concentrated spin glass systems, such as Ago.gMno.i [14] and Y(Mno.9Alo.i)2 [1,2].

However, the observation of stretched exponential muon depolarisation, while being
consistent with concentrated spin glass spin dynamics, cannot be relied upon to show
that the system under investigation is a spin glass. Stretched exponential muon

depolarisation has recently been observed by Hillier et. al. [15] in long-range

antiferromagnetically ordered RENi2B2C compounds with RE = Er and Tb. This
behaviour is thought to be due to a distribution of local relaxation times associated with
rare-earth single ion anisotropy in these systems.
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6.3 Experimental

6.3.1 The EMU and ARGUS Muon Spectrometers

Our muon spin relaxation measurements were carried out on the EMU and ARGUS

spectrometers at the ISIS pulsed muon and neutron facility at the UK's Rutherford

Appleton Laboratory. ISIS produces high intensity pulses of spin polarised muons of

approximately 70ns FWHM at a repetition rate of 50Hz. Diagrams of the ARGUS and
EMU spectrometers are shown in figures 6.8, and 6.9.

Cryostat

Forward detector bank Sample position

Figure 6.8
The ARGUS muon spectrometer located on the RIKEN-RAL muon facility at the Rutherford
Appleton Laboratory. Theforward and backward detector banks are each made up of 128
separate muon detectors.
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Ο 0.5 lm

Figure 6.9
The EMU muon spectrometer located on the European Surface Muon facility at the
Rutherford Appleton Laboratory. The forward and backward detector banks each consist
of 16 muon detectors.
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The forward and backward muon detector banks on the ARGUS and EMU

spectrometers consist of a 128 and 32 positron scintillator counters respectively. The

photons emitted when a positron is captured by a scintillator travels along a Plexiglas

light guide to a photomultiplier tube where it is amplified and subsequently transmitted
to the data acquisition electronics. The data for each scintillator is stored in the form of
a time histogram with time bin widths of 16ns. The muon asymmetry spectrum is
obtained by grouping the individual detectors into the forward and backward detector
banks and taking the asymmetry ratio given in eq. (6.3). The EMU and ARGUS muon

spectrometers are both optimised to work in longitudinal geometry with longitudinal
fields of up to 0.4T and 0.35T available respectively. A set of 3 orthogonal Helmholtz
coils at the sample position is used to cancel the Earth's magnetic field to within a few

μΤ for precise zero-field pSR experiments.

The principal advantage of the pulsed pSR technique is that the intrinsic beam-borne

background is extremely small, allowing reliable data to be collected to several muon
lifetimes. Consequently even small muon depolarisation rates can be measured with
some accuracy. However, the finite muon pulse width imposes constraints on the

upper limit of the muon spin relaxation rates that can be extracted from the data. In

particular the experimental convolution of the finite pulse width with the relaxation
function precludes the observation of both high relaxation rates and coherent muon

precession in transverse (internal or applied) fields exceeding 50mT. The onset of

magnetic order is therefore often signalled by an apparent decrease of the initial

asymmetry to one third of its high temperature value.

6.3.2 Background determination

The powdered β-Μηι_χΑ1χ alloys were mounted as disk shaped samples, 30mm in
diameter and 2mm thick on silver sample holders. A gas flow (Oxford Instruments)

cryostat enabled measurements to be made over the temperature range from 1.5K to

300K. The time independent background asymmetry arising from those muons in the
beam penumbra which localise in the sample holder was determined by mounting Fe203

(haematite) at the sample position and performing a transverse field measurement at

ambient temperature. Those muons implanted into the silver sample holder experience
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negligible depolarisation and rotate at the Larmor frequency of 1.7MHz appropriate to a

2mT transverse field. Randomly oriented antiferromagnetic domains will immediately

depolarise muons localising in the haematite by a factor of 2/3, representing the

component of the muon polarisation transverse to the domain magnetisation. The

remaining 1/3 component of the muon polarisation parallel to the domain magnetisation
is lightly damped due to the presence of water in the haematite. The resulting

asymmetry plot is shown in figure 6.10, where the solid line is a least squares fit of the
data to the equation,

A(t) = abg cos^uy^^expi-^AgO+ aH εχρ(-λΗΐ), (6.38)

where, abg is the background asymmetry, Β is the applied transverse field, λAg is the
small depolarisation rate of muons thermalised in the silver sample holder, aH is the 1/3

asymmetry component of the muons thermalised in the haematite and λ» is the

depolarisation rate of the 1/3 component. Background asymmetries were found to be
of the order of abg = 0.045 on ARGUS and abg = 0.035 on EMU.

Time (μβ)
Figure 6.10
Transverse pS'R spectra of haematite taken at ambient temperature on the ARGUS
spectrometer, used to determine the background contribution to the total muon asymmetry
due to muons implanted into the silver sample holder.
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6.3.3 Muon Depolarisation Spectra of β-ΜηΑ1

Typical muon spectra obtained from the β-Μηι.χΑ1χ samples are shown in figure 6.11.

It is possible to fit the background subtracted spectra from all samples at most

temperatures with the relatively simple relaxation function:

a0Gz(t)=a0GGKTz(t)exp[-(Xt)13], (6.39)

in which GOKTz(t) is the static Kubo-Toyabe function given by eq. (6.13), associated
with a Gaussian distribution of local magnetic fields at the muon site arising from

neighbouring nuclear spins. G^^t) =exp[-^t)p] represents the magnetic spin

relaxation function arising from dynamic magnetic fields associated with the fluctuating
atomic spins. The multiplicative combination of the nuclear and magnetic relaxation
functions in eq. (6.39) is valid providing that the nuclear and atomic fields represent

independent channels for muon depolarisation. For the most part this is the case in

β-Μηι.χΑ1χ, although there may be some evidence for "double relaxation" processes

(see section 6.3.3.2).

Whereas the Kubo-Toyabe function, GGKTz(t), provides direct information on the
interstitial site occupancy of the muon, it is GmagO) which provides an insight into the

spin fluctuations and moment localisation in β-Μηι_χΑ1χ. Each of these terms will now
be discussed in detail.

6.3.3.1 Muon Site Determination in β-ΜηΑ1

Figure 6.12 shows the background subtracted muon relaxation spectrum for pure β-Μη
at a temperature of 5K in both zero field and a longitudinal field of lOmT. The solid
lines represent best fits of eqs. (6.39) and (6.26) to the data. For the zero field spectrum

the fitted nuclear depolarisation rate, σ, is 0.37ps_1, while the magnetic depolarisation

rate, λ is 0.03ps~\ β = 1, implying simple exponential relaxation. As can be seen in

figure 6.12, a lOmT longitudinal field is clearly sufficient to decouple fully the muon

from the small static nuclear fields. The residual magnetic depolarisation in the lOmT

applied field remains simple exponential in form, with X=0.03ps_1. Neither σ nor λ

exhibit significant temperature dependence in β-Μη. Such an absence of temperature

dependence in σ is a clear indication of a stationary muon.
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Time (μ5)

Figure 6.11a

Background subtractedmuon depolarisation spectra ofβ-Μη0.94Α10.6 at 5K, 10K and 100K.
Solid lines shown are fits to eq. (6.39) with Gmag(0 following a simple exponential form
given by eq. (6.26).
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Figure 6.11b

Background subtracted muon depolarisation spectra of P-Mn0.8sAl0.is at 33K, 43K and
240K. Solid lines shown are fits to eq. (6.39) with GM4G(t) following a stretched
exponentialform given by eq. (6.34)
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Figure 6.12

Background subtractedmuon depolarisation spectra for pure β-Μη at 5K. Solid lines are
fits to eq. (6.39) for the zero-field data and eq. (6.26) for the lOmT data.
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Candidate interstitial sites for the muon in the β-Μη matrix can be established by using
finite element analysis to determine the second moment of the Gaussian field
distribution at all points within the unit cell. Δ2, and hence σ2. can be calculated for the
case of odd half integer nuclear spins (such as Mn and A1 for which 1=5/2) using the
relation [4,16]

When this calculation is performed for the β-Μη lattice, taking the sum to a radial
distance of 12A, the nuclear depolarisation rate associated with almost all the candidate
muon sites within the cell is found to exceed greatly the experimentally determined

for the (110) and (3/8 0 0) crystal planes.

Only the four crystallographically equivalent interstitial sites at (3/8,3/8,3/8),

(1/8,5/8,7/8), (5/8,7/8,1/8) and (7/8,1/8,5/8), for which σ is calculated to be 0.40ps_1,
can be accepted as viable muon sites. These sites have a distorted octahedral

coordination, as shown in figure 6.14 with six site II Mn near neighbours at a distance
of 1.97A from the muon site.

In order to confirm our muon site determination calculations, we have used a Monte-

Carlo simulation procedure to determine the nuclear dipolar field distribution at the

(3/8,3/8,3/8) muon site in β-Μη. In this procedure, we randomly assign a nuclear spin
direction to each Mn nucleus up to and including the 3rd near neighbour shell around the

(3/8,3/8,3/8) site and calculate the resultant dipolar field. A field distribution in the x, y

and ζ directions is built up by repeated iterations of this procedure. The calculated field
distributions in the x, y and ζ directions were found to be isotropic and the field
distribution in the x-direction P(BX) is plotted in figure 6.15a. The solid line is a fit to a

Gaussian distribution given in eq. (6.9).

(6.40)

value of a=0.37ps"'. Figure 6.13 shows a contour map of the calculated values of σ
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Figure 6.13
Contour maps of the calculated nuclear depolarisation rate σ for the β-Μη (110) and
(3/8 0 0) crystal planes. A deep minimum is revealed at (3/8,3/8,3/8) where σ = 0.40ps'1.
This was found to be the only general interstitial lattice position with a value of σ
consistent with the experimental data.
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Figure 6.14
The (3/8,3/8,3/8) muon site in β-Μη. The muon is shown in yellow, surrounded by
distorted octahedron ofsite IIMn near neighbours.
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Field (mT)

Figure 6.15

a) Calculatedmuon field distribution at the (3/8, 3/8, 3/8) muon site in pure β-Μη. The
solid line is afit to a Gaussian distribution function.

b) Fractional difference between Gaussianfit and calculatedfield distribution.
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The second moment of the calculated distribution was derived numerically using eq.

(6.10) and was found to be M2 = 1.95 χ 1CT7 T2, while the Gaussian fit gave

M2 = Δ2 = 1.98 χ 10"7 T2. These values of the second moment are both consistent with

the data, giving σ = 0.376 ps"1 and 0.378 ps"1 respectively. While at first glance, a

Gaussian distribution appears to be a fair representation of the calculated field
distribution at the (3/8,3/8,3/8) site, a plot of the fractional difference between the
calculated distribution and the fit, shown in figure 6.15b, shows a significant deviation
from the Gaussian form particularly within the wings of the distribution. Our
calculated field distribution is in fact slightly narrower than a Gaussian. This point is
more clearly demonstrated in figure 6.16a which shows the resultant field distribution

P(B), where Β = V(BX2 + By2 + Bz2). If P(Bx,y>z) is Gaussian in form, then P(B) will be
Maxwellian in form,

P(B)xB2exp(-^), (6.41)
where Δ = Δχ,γ,ζ. However, the fractional difference between our calculated field
distribution and a Maxwellian fit plotted in figure 6.16b, highlights the non-Gaussian
nature of the field distributions in the x, y and ζ directions, with the resultant field
distribution being much narrower than a Maxwellian, but peaked around the same field,

Bpeak = ^2Δ = 0.62 mT.

In order to simulate the muon depolarisation function expected at the (3/8,3/8,3/8) site
in β-Μη, we have used Monte-Carlo pSR simulation techniques similar to those
described by Crook and Cywinski [17], except that no assumptions have been made as

to the nature of the nuclear field distribution. Instead we have used the calculated field

distribution at the muon site in β-Μη explicitly in the simulation procedure. In figure
6.17 the zero-field muon depolarisation spectrum is shown, normalised to an initial

asymmetry, ao = 1. The solid line is our simulated muon depolarisation spectrum

multiplied by the exponential damping observed in pure β-Μη. Our simulation is in

remarkable agreement with the measured pSR spectrum, especially around the area of
the minimum between 3ps and 8ps, where the fit of the Kubo-Toyabe function shown
in fig. 6.12, shows a significant deviation from the data. The dip in the measured

spectrum at longer times may be attributed to quadrupolar coupling of the I = 5/2 Mn
nuclei to a radial electric field gradient set up by the interstitial muon [18]
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Figure 6.16
a) Calculated resultant muon field distribution at the (3/8, 3/8, 3/8) muon site in pure

β-Μη. The solid line is afit to aMaxwellian distribution function.
b) Fractional difference between the Maxwellian fit and calculatedfield distribution.
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Figure 6.17

Background subtracted muon depolarisation spectrum for β-Μη at 5K, normalised to an
initial asymmetry of 1. The solid line is the simulated depolarisation spectrum, using the
theoretically calculatedfield distribution at the (3/8,3/8,3/8) muon site in β-Μη.
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Our simulations then, provide an excellent description of the observed nuclear
contribution to the muon relaxation, and confirm our muon site determination

calculations. They also point out the tremendous sensitivity of the functional form of
the muon depolarisation to the precise nature of the nuclear dipolar field distribution at

the muon site [19],

However, while the field distribution at the muon site has been found to be non-

Gaussian, the second moment of that distribution, and hence the muon depolarisation
rate σ, are found to be almost identical to those found by fitting a conventional Kubo-

Toyabe function to our data. Furthermore, the deviation from the Kubo-Toyabe form is

only apparent in our depolarisation spectrum for β-Μη at 5K, shown in figures 6.12 and

6.17, which has on average, 3 times the counting statistics of our other pSR spectra

taken during the course of this experiment. The remaining pSR spectra are therefore
fitted to eq. (6.39), with the proviso that the nuclear field distributions are non-Gaussian
in nature.

6.3.3.2 Concentration Dependence of the Nuclear depolarisation rate

The nuclear depolarisation rate has been extracted from the zero field pSR spectra of all
seven β-Μηι.χΑ1χ samples at ambient temperature. As both Mn and A1 are spin 5/2
nuclei it is expected that the principal contribution to the concentration dependence of π
will arise from the lattice expansion associated with A1 substitution. However, the
concentration dependence of σ, plotted in figure 6.18 shows a considerably more rapid

decrease with increasing A1 concentration than that expected from the lattice expansion
alone. In addition a slight discontinuity in the monotonic decrease of σ with
concentration is observed between x=0.09 and x=0.10.
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A1 Concentration (at%)

Figure 6.18
Plot of the nuclear depolarisation rate σ, vs. Al concentration, σ is seen to decrease in a

roughly linear fashion, with a sharp drop around 10at% AI. The expected decrease in σ
calculated using the neutron diffraction data presented in chapter 5 is also shown. The
lines shown are guides to the eye.
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It is tempting to account for the discrepancy between the calculated and observed values
ofσ by invoking a local distortion of the β-Μηι_χΑ1χ lattice around the muon site. Such
a dilation of the host lattice is consistent with the so-called small polaron model, within
which the muon exerts an electrostatic repulsion on the neighbouring nuclei [20,21,22],
This model, which is also used in the description of hydrogen in metals, predicts local

displacements of up to a few per cent of the inter-atomic spacing, (for example, 5% in

pure Copper [21]), while the lattice distortion falls off as a power law in distance for
more distant neighbouring atomic shells. If the discrepancy between the measured and
calculated values of σ is attributed entirely to a local distortion, over and above the
concentration dependent expansion of the lattice, we estimate a local linear lattice
distortion which rises from 2.9% in pure β-Μη to 8.2% in β-Μη0.8Α1ο.2· These values
are of the same order as those observed in pure Cu [21], The concentration dependence
of the local lattice distortion shown in figure 6.19, emphasises the apparent change in
behaviour between x=0.09 and x=0.1.

An alternative explanation for the apparent additional and excessive decrease in σ with

increasing A1 concentration may be provided by the phenomenon known as "muon-

nuclear-spin double relaxation" [23] wherein the precession of nuclear dipoles in strong

fluctuating atomic fields leads to motional narrowing of the nuclear dipolar field
distribution. Within this model the increasing discrepancy between the measured and
calculated σ is a consequence of the increasing localisation of atomic moments as A1 is
added to β-Μη and the lattice expands. The discontinuity in the concentration

dependence of σ between x=0.09 and x=0.1 is then seen as evidence for a marked

change in the nature of the Mn moments at this concentration.
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20

Figure 6.19
The calculated local lattice distortion around the interstitial muon site expressed as a
percentage of the lattice constant, plotted againstAl concentration. The lines shown are
guides to the eye.
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6.3.3.3 Spin Dynamics of β-ΜηΑ1

In section 6.3.3 it was shown that the muon spin relaxation spectra for all the

β-Μηι.χΑΙχ alloys are well described by eq. (6.39),

a0GI(t)=a0Go",(t)exp[-^t)p].

In fitting this relaxation function to the data the background contribution to the total
initial asymmetry, abg, was fixed at the experimentally determined values. The initial
asymmetry, ao, the nuclear depolarisation rate σ, the magnetic depolarisation rate, λ,
and the exponent β remain as free parameters. In all cases σ is found to be temperature

independent, and remains within a few percent of the values extracted from the high

temperature spectra of the respective alloys in which the contributions to the muon

depolarisation from the atomic fields are extremely motionally narrowed. The

temperature dependence of ao, λ and β is shown in figures 6.20 and 6.21.

It is immediately apparent, even from a cursory inspection of figures 6.19 and 6.20, that
the muon spin relaxation function, GMAG(t), changes dramatically and suddenly as the
A1 concentration increases beyond x=0.09.

Α. β-Μηι.χΑ1χ with 0 < χ < 0.09

For β-Μηι.χΑ1χ alloys with x<0.09 the relaxation function is simple exponential in form,
with β in eq. (6.39) refining to unity at all temperatures. The temperature dependence
of the initial asymmetry, ao, shows clear evidence of the approach to a magnetic
transition at low temperatures in all alloys. However the decrease in the initial

asymmetry is gradual, indicating that this transition is essentially inhomogeneous in
character. Moreover, at the lowest temperatures, ao falls below 1/3 of its high

temperature value, indicating the persistence of residual atomic spin dynamics below
the transition. While it is not possible to extract reliable transition temperatures from the

temperature dependence of ao, the relaxation rate, λ, shows a marked critical-like

divergence at low temperatures.
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Temperature (Κ)

Figure 6.20
The temperature dependence of, a) the initial asymmetry a0 and b) the muon depolarisation
rate λfor β-ΑΙη ,.^Α lx with x=0.03, 0.06, 0.08 and 0.09. Solid lines in a) are guides to the
eye and in b) are fits to the data ofthe criticalform given in eq. (6.42)
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Temperature (Κ)

Figure 6.21
The temperature dependence of, a) the initial asymmetry aa b) the atomic depolarisation
rate λ and c) the stretch exponent β, for β-Μη^χΑΙχ with x=0.1, 0.15 and 0.2. Solid lines in
a) and c) are guides to the eye, and in b) are fits to the data ofthe critical form given in eq.
(6.42)
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It has been possible to fit the critical form

λ(Τ)=λ0
f τ Λγ
J-Tν c y

(6.42)

to the temperature dependence of λ, as shown by the solid lines in figure 6.20.

Although at present we attach little physical significance either to such critical scaling
or to the critical exponent itself, eq. (6.42) is useful in allowing the magnetic transition
to be parameterised consistently. For all β-Μηι.χΑ1χ alloys with x<0.09 we find an

intrinsic depolarisation rate of λ0 ~ 0.02ps"1. Significantly this value is close to that of
the temperature independent magnetic depolarisation rate found for pure β-Μη. The
critical temperature, Tc, increases slightly with concentration from 1.5K for x=0.03 to

6.4K for x=0.09. γ remains relatively independent of concentration taking values in the

range 1.1 to 1.4. A summary of the fitted parameters is given in table 6.1.

Table 6.1 Nuclear depolarisation rate, σ, and the fitting parameters, T0, λο
and γ from eq. (6.42) for β-Μηι_χΑ1χ.

A1 conc. (at%) a/ps"1) TC(K) λο (ps1) γ

0 0.371(5) 0

3 0.362(5) 1.78(5) 0.023(1) 1.37(2)

6 0.356(5) 1.76(5) 0.023(1) 1.12(2)

8 0.345(5) 2.42(5) 0.014(1) 1.27(2)

9 0.347(5) 6.40(5) 0.017(1) 1.43(2)

10 0.321(5) 24.4(5) 0.020(1) 0.74(2)

15 0.317(5) 30.8(5) 0.022(1) 1.25(2)

20 0.318(5) 37.9(5) 0.026(1) 1.42(2)

Β. β-Μηι_χΑ1χ with 0.09 < χ < 0.2

There is an abrupt change in the nature of the spin fluctuation spectrum of β-Μηι.χΑ1χ
between concentrations of x=0.09 and x=0.1 with the muon spin relaxation exhibiting a

sudden transition from simple exponential to stretched exponential behaviour. The

exponent β in eq. (6.39) is no longer temperature independent, but is now found to

decrease from unity at high temperatures to a value close to 1/3 at the transition

temperature, as shown in figure 6.21c. Moreover the initial asymmetry exhibits a

relatively sharp magnetic transition (figure 6.21a), although there remains some
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evidence of residual spin fluctuations below the transition temperature. The

temperature dependence of λ is not significantly different from that observed at lower
concentrations: its divergence towards the magnetic transition is still well described by
the critical form of eq. (6.42) and the intrinsic depolarisation rate, λ0, remains close to

0.02ps~\ However, the transition temperatures associated with the critical divergence
are now significantly higher in these more concentrated alloys, rising from 24.4K for

β-Μη0.9Α1ο.ι to 37.9K for β-Μηο.8Α1ο.2· These transition temperatures are in close

agreement with the values obtained from the magnetisation measurements described in

chapters 1 and 4. The parameters obtained from the fitting procedure are given in
Table 6.1.

6.4 Discussion

Our pSR measurements have highlighted a remarkable evolution of atomic spin
fluctuations with increasing A1 concentration in β-Μηι_χΑ1χ. Three distinct regimes have
been identified.

Firstly, in pure β-Μη we observe simple exponential relaxation, implying a single spin
fluctuation frequency. The muon spin relaxation rate, λ, is found to be small and

independent of temperature. This result is in marked contrast to the observed Vt
dependence of the nuclear relaxation rate 1/Tι measured by NMR as shown in chapter 1

[24,25], In situations where the muon relaxation is dominated by the Fermi contact
field at the muon site 1/T ι and λ are expected to scale according to the relation

(6.43)
*1

where Aj^ and A^f" are the hyperfine coupling constants for the interstitial muon and
the Mn atom respectively. The breakdown of this scaling indicates a significant

fluctuating atomic dipolar contribution to the muon relaxation which is at least

comparable with any Fermi-contact field contribution. At the Mn nuclear site, it is
assumed that the Fermi-contact field is the dominant contribution to the nuclear

relaxation, and indeed the SCR theory prediction of a Vt dependence in 1/T ι assumes

this [26], However, for antiferromagnetically correlated spins, the electron spin-density
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at the interstitial muon site may be extremely small, effectively eliminating any Fermi-
contact contribution, and allowing the dipolar contribution to dominate the muon

depolarisation [27], The temperature independence of λ in pure β-Μη is therefore

suggestive of a system of antiferromagnetically correlated, longitudinally fluctuating
atomic moments, in the extreme motional narrowing limit.

Secondly, for β-Μηι.χΑ1χ with 0.03 < χ < 0.09, we still observe simple exponential
relaxation. However the muon depolarisation rate λ diverges at low temperatures,

accompanied by a gradual drop in the initial asymmetry indicative of the formation of a
static magnetic ground state. In general, such a static magnetic ground state with

randomly oriented internal fields, will result in a time independent muon asymmetry of

exactly 1/3 of its high temperature value, since 1/3 of the muon ensemble remains

polarised along the static field direction, while fields orthogonal to the muon spin
direction will immediately depolarise the remaining 2/3. A fall in ao to below 1/3 of its

high temperature value implies a residual fluctuating field component at the muon site
in these alloys, at low temperatures. In addition, the gradual decrease ao with

decreasing temperature indicates a steady statistical growth of strongly depolarising

regions within the sample, rather than a critical phase transition at a well defined

temperature. However, the observation of a divergent muon depolarisation rate λ in
these alloys is an indication that a truly static field component is formed at the muon

site at low temperatures, and that A1 concentrations of as little as 3at% are sufficient to

dampen the zero-point spin fluctuations in β-Μη.

Thirdly, for β-Μηι.χΑ1χ with χ > 0.1, we observe stretched exponential relaxation,

generally associated with spin glass order. The initial asymmetry ao falls sharply at the

magnetic transition temperature in contrast to the more gradual decrease in ao observed
in the dilute alloys. The critical form of λ(Τ) is very similar to that observed in dilute

β-Μηι_χΑ1χ alloys.
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The most striking difference between the dilute β-Μηι_χΑ1χ alloys with χ < 0.09, and the
more concentrated alloys, is an abrupt rise in transition temperature, along with a

concomitant change in the nature of the spin dynamics from a simple to a stretched

exponential form. This is depicted in figure 6.22 which shows the magnetic phase

diagram of β-Μηι.χΑ1χ system determined by these pSR measurements.

5 10 15

A1 Concentration (at%)

Figure 6.22

Magnetic phase diagram of the β-Μηlx system. The regions of simple and stretched
exponential relaxation are shown.

6.5 Conclusion

We have undertaken a muon spin relaxation study of β-Μηι.χΑ1χ. We have identified
the interstitial muon site in the material and have observed a nuclear contribution to the

muon relaxation function which is consistent with a non-Gaussian distribution of

nuclear dipolar fields at the muon site.
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We have provided a systematic account of the dynamical magnetic behaviour in

β-Μηι_χΑ1χ for 0 < χ < 0.2. These measurements have provided the first published

phase diagram of the β-MnAl system and have revealed a remarkable change in the
nature of the spin dynamics at A1 concentrations of greater than 9at%. This spin

dynamical behaviour has been interpreted in terms of both amplitude spin fluctuations
and transverse spin fluctuations arising from the band nature of the magnetic
correlations in β-Μη and local moment characteristics promoted by the introduction of
Al. The process of increasing Mn moment localisation as the A1 substitution increases
has been attributed to lattice expansion, local magnetic disorder and a reduction in the

degree of magnetic frustration present in the β-Μη matrix.
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7 A Neutron Polarisation Analysis Study of β-ΜηΑΙ

7.1 Introduction

A diffuse neutron scattering experiment in which the incident neutron beam is polarised
and the scattered neutrons are analysed for their final spin state, is a powerful tool for
the analysis of both nuclear and magnetic short-range order in antiferromagnetically
correlated systems. Analysis of the x, y and ζ components of the neutron spin-
dependent scattering allows total and unambiguous separation of the nuclear and

magnetic contributions to the differential scattering cross-section. In this chapter we

present an XYZ neutron polarisation analysis study of β-Μηι.χΑ1χ alloys with χ = 0.03,

0.06, 0.1 and 0.2. This experiment was undertaken in order to gain information on the
nature of the magnetic correlations between Mn atoms in the β-MnAl system, taking
into account the role played by any possible nuclear short-range order between the A1

impurity atoms in the β-Μη matrix.

7.2 Theory ofXYZNeutron Polarisation Analysis

The theory of the XYZ difference method of neutron polarisation analysis has been

presented by Scharpf and Capellmann [1] and will be briefly summarised here.

We start with the expression for the neutron partial differential cross-section given by

equation (3.5). For magnetic scattering, we can define an interaction potential V in eq.

(3 .5) which describes the interaction of the electron magnetisation density M(r) and the

magnetic dipole moment of the neutron as,

V = ~r~ M(r).Bn (r),
4πε0

where Bn(r) is the magnetic dipole field of the neutron,

(7.1)

Bn(r) = Vr Λ Vr At — (7.2)
r-r.η
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and |μη| = γμΝ is the magnetic dipole moment of the neutron. To obtain the magnetic
cross-section we need to evaluate the matrix element <k |V|k> in eq. (3.5). Defining the
wavevector transfer Q = If - k, we can write,

(k'|V|k) = (k'|M(r).Bn(r)|k) = M(r). Q
Λ

qiTIqi
Q ,iQr M(r).^e iQ.r (7.3)

where μκχ is the component if the neutron spin perpendicular to Q [1],

Non-Spin Flip

Spin Flip

Figure 7.1
The geometry ofan XYZ neutron polarisation analysis experiment with initial polarisation
in the z-direction.

Ifwe choose the geometry of our neutron scattering instrument so that Q is always in the

x-y plane as shown in figure 7.1, each detector will lie at an angle α with respect to the
x-axis in the direction,

iQl
(cosa,sin a,0). (7.4)

We can then write the magnetic interaction matrix element given by eq. (7.3) as,

Μ.μη! = μχ(Μχ sin2 a-My sinacosa)-l^y(My cos2 a-Mx sinacosa)-pzM2
= Μ1.μη

(7.5)
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where Mx, My and Mz are the components of the magnetisation density, μη = -γμΝση is
the spin dependent magnetic moment of the neutron and ση are the Pauli spin matrices
for the neutron spin [2], Equation (7.5) highlights the well known result that only
those components of the magnetisation perpendicular to the wavevector transfer Q will
be effective in scattering the neutrons [3,4],

We now need to include the nuclear contribution to the interaction potential V, in which
the spin-dependent nuclear scattering lengths must be taken into account (see section
3.2 1). The total interaction is then described by,

2nh2
(k'|v|k) = ·

m„

,iQ(r-R) (b coh+Βξ.ση)+ -2— M(r).onle iQr (7.6)

where bCOh is the coherent nuclear scattering length, Βξ is the nuclear spin-dependent

scattering length and R is the position vector of the nucleus. Using the properties of
the Pauli spin matrices in the x, y and ζ directions,

σ„ =
'ο Ε ο I Ί 0^

σν = , and σ, =
Ε ο,

' y

U °,
Ζ

ιο
(7.7)

it can be shown that the total cross-section given by eq. (3.5) with the interaction

potential given by eq (7.6), for a power diffraction measurement, can be separated into
the following partial differential cross-sections [1,2].
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The subscripts SF and NSF in eqs (7.8) signify spin flip or non-spin flip scattering cross

sections in the directions indicated. Referring to figure 7.1, the polarisation component

P z of the neutron spin will either be in the same direction as the incident neutron

polarisation P, and hence contribute to the NSF partial differential cross-section in the
z-direction, or P\ will be in the opposite direction to Ρ having been spin flipped by the

sample, therefore contributing to the SF partial differential cross-section in the z-

direction. The contributions to the total cross-section in eq (7.8) have the following
definitions.

The nuclear coherent partial differential cross-section is given by,
( 2 Λdo

dΩdE
/NUC

= fb2S(Q,co).k

The spin incoherent partial differential cross-section is given by,

h2„ ^α σ

dOdE
/si

= fB2SSI(Q,co)·k

The isotope incoherent partial differential cross-section is given by,

(7.9)

(7.10)

dzO
dOdE

711

= f(b2-(b)2)S„(Q,co)·k

The magnetic partial differential cross-section is given by.

d σ

dOdE
/MAG

k)2
k 3

ί \2

2 |f (Q)|2N12(Q,ω)'

(7.11)

(7.12)

where Μ (Q,co) is the Fourier transform of the spatial magnetisation density.

By combining the measured partial differential cross-sections given by eq. (7.8) one can

separate out the different contributions from one another, with the exception that the

isotope incoherent cross-section cannot be distinguished from the nuclear coherent
cross-section. Once the spin incoherent cross-section is found via,

do

dQdE
/SI

do

dOdE

f i2_ \Xd σ

/SF
dOdE

/SF

do

dOdE
/SF

(7.13)

we obtain the nuclear coherent (neglecting the isotope incoherent contribution) and

magnetic cross sections using the equations,
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f Λΐ-π ^α σ

dQdE
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dQdE
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+-

/sf

' d2a Λ

vdQdEAl
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/ ,2 Λd σ

dQdE
/si

(7.14)

A full derivation of these equations is given in references [1] and [2],

7.3 The PolarisedNeutron Spectrometer. D7

7.3.1 Layout of D7

Our neutron polarisation analysis measurements were performed on the polarised
neutron spectrometer D7 at the Institut Laue-Langevin (ILL) in Grenoble. The layout
ofD7 is shown in figures 7.2, 7.3 and 7.4. D7 is a general-purpose long wavelength
multidetector spectrometer. The neutron polariser and analysers can be removed if
desired to facilitate conventional diffraction measurements. The inclusion of a neutron

chopper enables energy analysis of the scattered neutrons by the time-of-flight method

(see section 8.2.1). Our measurements of β-MnAl were performed using D7 in
diffraction mode, with the chopper removed. Neutrons from the HI5 cold neutron

source at the ILL are monochromated by a focusing graphite monochromator crystal.
The take-off angle from the monochromator crystal defines the incident neutron

wavelength. The three wavelengths available on D7 are, λ = 3.1A, 4.8A or 5.7A. The
neutrons pass through a beryllium filter which removes higher orders of the incident

wavelength, λ/η where η = 2, 3, .... etc. The neutrons are then polarised by a

supermirror polariser (see figure 7.5) and pass through a Mezei π spin flipper which is
turned on when measuring the SF cross-section and turned offwhen measuring the NSF
cross-section. The neutron polarisation, which is in the z-direction, is maintained by a

neutron guide field of around lmT. The neutrons pass through the sample which in our

measurements was situated in an ILL "Orange" Cryostat, placed in the centre of 3

orthogonal Helmholtz coils, known as the spin turn coils. These coils rotate the initial
neutron polarisation by π/2 from the z-direction onto the x- or y-direction before hitting
the sample and then rotate the scattered neutrons back by -π/2. This allows the

sequential measurement of the SF and NSF cross-section in each direction.
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Figure 7.2
Otto Scharpf with the D7polarised neutron spectrometer [5].
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Detector banks

Analyser
Monitor

Diaphragm
flipper

Monochromatic
Neutrons

Polariser

Figure 7.3
Schematic diagram ofD7. Three 45 degree detector banks are placed on one side of the
instrument, with the 4,h bank positioned to cover the blind spot created by the spin turn
coils. The neutrons arrive at the polariser via a graphite monochromator and a beryllium
filter.

Figure 7.4
Aerial view ofthe D7 spectrometer layout [6]
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The neutrons then enter the detector banks, each of which consists of a neutron guide

field, 8 removable supermirror analysers and 16 3He detector tubes (see figure 7.4).
With the supermirror analysers in place only 8 detectors are used in each bank. The 8
detectors are placed 6 degrees apart, each bank subtending an angle of 45 degrees.
With four identical banks, there are in total over 6000 supermirrors on D7. The banks
can be placed on either side of the instrument and can cover scattering angles from
20 = 7° to 160°. Figure 7.5 shows the supermirror polariser/analyser used on D7.

Glass
Substrate

Supermirror

Neutron
Absorber

General view ofa polarising collimator constructed of a
group of curved Supermirrors in a magnetic field.

Figure 7.5
The supermirrorpolariser/analyser used on D7 [7]

A polarising supermirror consists of alternate nonmagnetic and magnetic Ni layers, the
latter being magnetised in plane by permanent magnets situated above and below the

layers. Since the scattering potential of the magnetised Ni layers depends on the
direction of the spin of the incident neutron, neutrons of one spin state are reflected by
the supermirror at the Bragg angle which corresponds to the layer thickness, while all
the other neutrons are transmitted by the Ni layers and then absorbed by a suitable
substrate on the non magnetic layers. By selecting a suitable range of layer thicknesses
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it is possible to extend the wavelength range of total reflection for one spin state while
almost completely suppressing the other spin state. The neutron supermirror polariser

comprises a number of such individual supermirrors in the form of a collimator. The

supermirrors are curved to ensure that all neutrons are reflected at least once on a mirror
surface.

The transmission of the supermirror polariser and analysers is dependent on the incident

wavelength used in the measurement. Figure 7.6 shows the wavelength dependent
transmission of the supermirrors used on D7.

0 2 4 6 8 10 12

IncidentWavelength (A)
Figure 7.6

Wa\>elength dependence ofthe supermirror transmission on D7 [8]

In our measurements of β-MnAl the incident wavelength used was 3.02Ά. Using this
fact and the above wavelength dependence of the supermirror analysers, we can extract

the energy window over which we are integrating eq.(7.8) to extract the differential
cross-sections in this measurement. Figure 7.7 shows the supermirror analyser
transmission as a function of neutron energy transfer, where we have used the equation,
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ΔΕ = Ε-Ε'=81.72
1

λ7(3.02γ

where Ε and Ε" are in incident and scattered neutron energies respectively.

(7.15)

Ο
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Energy transfer (meV)

Λ io

Incident energy = 8.5 meV

Figure 7.7
The transmission of the supennirror analysers as a function of energy transfer with
incident wavelength λ=3.02Ά. This represents the energy window of the experiment over
which eqs. (7.8) are integrated. The upper limit of the energy window is given by the
incident energy ofthe experiment.

Figure 7.7 demonstrates that the available energy window is extremely narrow on D7.

Consequently, measurements of the magnetic cross-section on D7 should only be

attempted for static magnetic materials. In view of this fact, our measurements of

β-MnAl were all taken at the lowest possible temperature of 1.2K, where our pSR
measurements had indicated a transition to a largely static magnetic ground state.

Since pure β-Μη does not show a transition to a static magnetic ground state at low

temperatures, measurement of the magnetic cross-section of β-Μη was not attempted.

165



7.3.2 Operation of D7

All of the supermirror analysers on D7 are arranged to transmit neutron spins in the

positive z-direction. Therefore, in order to measure the SF cross-sections in eq. (7.8)
the spins are flipped by a Mezei π spin flipper so that only neutrons that have been spin

flipped by the sample will be counted (see figure 7.4). The operation of the π spin

flipper is depicted in figure 7.8.

Guide Field
neutron spin

processing inside
Guide Field

Flipped: leutrons ^ 1 ^ Polarised Ineutrons

Figure 7.8
The operation ofα πspin flipper [2]

The neutron is flipped in a flipper field Ηπ as a result of a classical Larmor rotation.
The transition from the neutron guide field to the flipper field is sudden, corresponding
to an adiabatic change in field, ensuring that the neutron energy state is unchanged

during the flipping process. Before a neutron polarisation analysis experiment, the
current in the π spin flipper coil is adjusted until the field in the coils is given by,

67.825
H = H =

XL
(7.16)

where λ is the neutron wavelength in A and L is the coil width in cm [2],

In practice, after the flipper current has been set to the current given by eq. (7.16) a

correction coil must be included in the spin flipper to compensate for the neutron guide
field. The correction current is adjusted until the transmission of the analyser in front
of the transmission monitor is a minimum, corresponding to the maximum number of
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spin flipped neutrons. After setting the flipper currents, the typical flipping ratio in the
transmission monitor is,

transmitted neutron counts/incident neutron counts with flipper off
rRT — ; ~3j — 40.

transmitted neutron counts/incident neutron counts with flipper on

In order to obtain finer coverage of the available angular range on D7 it is possible to

successively step the detector banks by an angle during the measurement. In our

measurements the detector banks were each stepped in 5 one degree increments so that
each measurement consisted of 4x8x5 = 160 data points between 10° < 2Θ < 170°.

In addition to full XYZ polarisation analysis, D7 may also be operated in z-up/z-down

mode, in which the spin turn coils are removed from the instrument and the SF and NSF
cross-sections are measured in the z-direction only. Full separation of the nuclear and

magnetic cross-sections can now be performed only if the spin incoherent cross-section
is known in advance. In our measurements the spin incoherent cross-section was found
for β-Μη0.8Α1ο.2 using full XYZ polarisation analysis. Thereafter our measurements

were performed in z-up/z-down mode. Performing measurements in z-up/z-down
mode reduces counting time in a typical experiment by a factor of 2.

7.4 Corrections to the Raw Data

In order to obtain the absolute cross-section from the raw number of neutron counts, the

following corrections must be applied.

i) The relative detector efficiency correction

ii) The supermirror analyser transmission correction

iii) The background scattering correction

iv) The sample self-attenuation correction

v) The absolute scale of cross-section

7.4.1 The Relative Detector Efficiency Correction

In order to correct the data for detector efficiencies, a measurement of the total (SF plus

NSF) differential cross-section of vanadium is performed. Vanadium has the property
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that the total neutron scattering cross section is almost 100% spin incoherent. Since the

scattering is incoherent, V scatters isotropically over 4π steradians. The number of
neutron counts in each detector should therefore be the same if all of the detectors are

equally efficient. The measured V counts, having been corrected for self-attenuation

(see section 7.4.4) and background scattering (see section 7.4.3), therefore give the
relative efficiencies of each detector assuming that a full integration over energy has
been performed. This is quite a good assumption on D7, since the total cross-section of
V is largely elastic with inelastic phonon contributions to the scattering being small.
The measured neutron counts are therefore divided by the corrected vanadium integrals
in order to correct the raw data for relative detector efficiency

7.4,2 The Supermirror Analyser Transmission Correction

In order to ensure an accurate separation of the SF and NSF cross-sections, the flipping
ratios of each of the supermirror analysers has to be measured. Variations in the

flipping ratios of the analysers will occur since a finite number of neutrons of the wrong

spin state will be incorrectly transmitted.

In order to measure the flipping ratios of each supermirror analyser, the SF and NSF
cross-sections of amorphous quartz are measured in each direction. The cross-section
of quartz (S1O2) is entirely non-spin flip. The flipping ratio for each detector is then
defined as,

normalised NSF cross-section
rK — 7 . (/.lo)

normalised SF cross-section

In order to obtain similar statistical counting errors in the NSF and SF cross-sections,
the SF cross-section is usually measured for between 15 and 20 times longer than the
NSF cross-section.

Once the flipping ratios for each detector are obtained, neutron counts are swapped
between the measured SF and NSF channels in proportion to the flipping ratio of each
detector.
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7.4.3 The Background Scattering Correction

The total background scattering in a neutron experiment arises from scattering from the

cryostat and sample holder, scattering from parts of the instrumentation and air

scattering. We can separate the total background scattering into two components.

Bi This term represents background scattering from neutrons which have

passed through the sample position.
B2 This term represents background scattering from neutrons which have

not passed through the sample position.
We can therefore write the relation,

Isample = (T(9)sampleXl) + (T(0)samplexBi) + B2, (7.19)
where Isampie is the measured neutron counts, T(0)sampie is the angle dependent
transmission coefficient of the sample and I is the corrected number of counts. The
definition of T(0)sampie will be given in section 7.4.4. In order to find the background
terms Bi and B2 two measurements need to be performed. Firstly, the scattering from
an empty sample holder, Iempty is measured. Iempty will include both background
contributions which allows us to write,

Iempty = Bi+ B2. (7.20)
Secondly, the scattering from a sheet of cadmium in place of the sample is measured.
Cd is opaque to neutrons at the energies available on D7, and therefore the measured Cd

counts, led will only include the second background term,

Icd = B2. (7.21)

Combining eqs. (7.19), (7.20) and (7.21) we arrive at the expression for the background
subtracted counts,

I Τ (O)samplcX (1 sample-1 cd) (lempty led)· (7.22)

7.4.4 The Sample Self-Attenuation Correction

The angle dependent transmission coefficient of a cylindrical sample is given by the
Blech-Averbach formula [9],

T(0) = exp[ -(ai + bisin20)(pR) - (a2 + b2sin20)^R)2], (7.23)
where the coefficients ai, a2, bi and b2 are,

ai = 1.7133 a2 = -0.0927

bi = -0.0368 b2 = -0.3750,
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and where μ = Νσω is the linear absorption coefficient and R is the radius of the

cylindrical sample. pR may be calculated from the equation

hma&L - exp(-2|iR), (7.24)
^
empty

where Isampie and Iempty are the measured counts in the transmission monitor with the
neutrons passing through a very thin slit formed with cadmium metal in front of the

sample can. The cadmium slit ensures that the counted neutrons have passed through a

thickness of sample equal to the sample diameter.

7.4.5 The Absolute Scale of the Cross-Section

In order to obtain the absolute differential cross-section in units of barns st"1 atom"1. We

need to normalise I given by eq. (7.22) by the number of atoms in the sample. The
absolute scale is obtained from the measured vanadium intensity. Vanadium has a well
known differential cross-section of 5.07 barns atom"1. We can therefore write,

^vanadium _ (bams Sf1atOm"1) . (7.25)
Ν 4πvanadium

The absolute differential cross-section is then given by,

(7.26)
do

_ 5.07 I/Nsample
dQ 4π 1 vanadium ^vanadium

7.5 XYZNeutron PolarisationAnalysis ofβ-ΜπηΛΙη^
Fully corrected magnetic, nuclear and spin incoherent cross-sections of β-Μη0.8Α1ο.2
obtained from the x, y and ζ SF and NSF cross-sections using eqs. (7.13) and (7.14) are
shown in figure 7.9.

Figure 7.9a shows a strong magnetic response in β-Μηο.8Α1ο.2 peaked at Q ~ 1.4A"1.
This data is very similar to the graph of the Q-dependence of f2(Q)M2(Q) measured by

Shiga and co-workers, shown in figure 1.14 [10], The nuclear cross-section shown in

figure 7.9b shows the (1 1 0), (2 2 1) and (3 2 1) nuclear Bragg peaks.

170



0.0 0.5

30

25

ε
ο
3 20

<D
<ζ>

•ο

£
'μ

α

b
Ό

15

10

5

1.5 2.0 2.5 3.0 3.5 4.0

Q (Α1)

ι

·

1

j
Ο

ο i

·1
•—1

—1 —·1
1·

■ι·— ι·-
•

ο It'#
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Q (Α1)
Figure 7.9
The a) magnetic, b) nuclear and c) spin incoherent cross-sections obtainedfor β-Μη0.»ΑΙο.2·
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There is also an indication of a diffuse peak in the nuclear cross-section centred at Q ~

Ι.όΑ"1. This implies short-range substitutional order between the A1 impurities in

β-Μη0.8Α1ο.2· The spin incoherent cross-section ofMn shown in figure 7.9c was found
to be,

= 7.3 ±0.3 mb sf1 Mn atom"1. (7.27)unjsl
This result is in agreement with the previously reported value measured using pure

β-Μη by Davis and Hicks [11] of 9 ± 5 mb st"1 Mn atom"1. Their result is slightly

higher due to the fact that they assumed that the magnetic scattering of pure β-Μη
would be negligible. This is in fact not the case, even at the elastic line, as will be
shown in chapter 8.

The XYZ neutron polarisation analysis data taken for β-Μη0.8Α1ο.2 allow us to draw
several useful conclusions. The magnetic scattering is strong and approaches zero at

Q = OA"1, the nuclear cross-section displays nuclear substitutional short-range order, and
the spin incoherent cross-section is small for β-Μηο.8Α1ο,2 Since the spin incoherent
cross-section is small, it was decided that the remainder of the experiment would be
conducted in z-up/z-down mode. The value of the spin incoherent cross-section needed
to isolate the magnetic and nuclear scattering using eq. (7.14) was hereafter estimated to
be the value required to reduce the magnetic cross-section to zero at

Q = OA"1. From eq.(7.14) this means that the background level of the SF cross-section
was assumed to be 2/3 of the spin-incoherent cross-section. Since the spin-incoherent
cross-section measured for β-Μη0.8Α1ο.2 is small compared to the magnetic cross-

section, it was concluded that any error in the estimation of the spin-incoherent cross-
section would not significantly affect the extracted magnetic scattering. The significant

advantage of measuring the samples in z-up/z-down mode was that the counting time
need for equivalent statistical errors in the data was halved. This allowed us to obtain
more data points in the measured spectra by stepping the detector banks in 1° steps as

described in section 7.3.2.
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7.6 Nuclear Short-Range Order in β-ΜηΑΙ

7.6.1 Theory of Nuclear Short-Range Order

For a binary alloy of the form Ai„cBc, the nuclear disorder cross-section may written as

r ά<5 Λ
dQ I

= LS(Q), (7.28)
NUC

where L is defined as,

L = c(l - c)(bB - bA)2, (7.29)

and where bA and bB are the scattering lengths of the A and Β nuclei. S(Q) is the
structure factor of the nuclear disorder scattering and manifests itself as a modulation to

and otherwise isotropic background. If the binary alloy forms a random solid solution,
there being no nuclear short-range correlations, S(Q) = 1 and eq. (7.28) represents the
well known Laue scattering. In the mean-field approach suggested by Moss and
Walker [12] S(Q) can be written as,

S(Q) = (l +V(Q))-\ (7.30)

where V(Q) is the Fourier transform of the pair interaction potential,

V(Q) = XV(Rn)eiQR". (7.31)
R.

The pair interaction potential V"(Rn) is proportional to the interaction between a nucleus
at an arbitrary origin and a nucleus of the same type at position vector Rn. In the limit
of small V(Q) we can make the approximation,

- L(1 - V(Q) + V2(Q) - V3(Q) +....)' (7·32)
^ da ^
dΩ /nuc

where we have assumed that terms in V4(Q) and higher are negligible. If one further
assumes that first near neighbour interactions are dominant, eq.(7.32) can in principle be

spherically averaged to produce an expression for the nuclear disorder cross-section

appropriate to a powder measurement [13]. This calculation is however impractical for

β-Μη.

Although the underlying symmetry of β-Μη is simple cubic, the point group symmetry

is non-centrosymmetric. This means that if we take an arbitrary origin in the β-Μη
matrix, the near neighbour nuclei do not fall into well defined nuclear shells with well
defined coordinations. To illustrate this point: if we assume that substitutional disorder
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will be restricted to the site II sublattice in β-Μη since the A1 nuclei show a strong

occupational preference for site II in the β-Μη matrix (see chapter 5), we can calculate
the site II near neighbour shells around an arbitrary A1 atom. Table 7.1 shows the first
25 neighbouring shells around an arbitrary site II origin in pure β-Μη.

Table 7.1 The first 24 neighbouring shell coordination numbers and shell
distances of an arbitrary site II nucleus in the pure β-Μη matrix.

η Zn R*(A)
1 6 2.6557

2 2 3.2675

3 2 3.8958

4 4 4.3696

5 2 4.4259

6 4 4.5555

7 4 4.6312

8 4 5.1505

9 4 5.1982

10 2 5.2646

11 4 5.7698

12 4 6.2506

13 6 6.3200

14 8 6.3816

15 2 6.5248

16 4 6.5715

17 4 6.7700

18 4 6.8190

19 4 6.9892

20 4 7.2984

21 4 7.3773

22 2 7.4241

23 4 7.6188

24 2 7.7155

Table 7.1 shows that the near neighbour shells around site II in β-Μη are extremely

tightly spaced. For instance, shells 8, 9 and 10 have almost the same radial distance
from the origin. In consequence, consideration of the first 24 near neighbour shells

only covers a radial distance of 7.7155A. Another consequence of the non-
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centrosymmetric point group is the that the coordination numbers of the shells do not

increase with increasing radial distance.

The calculation of the radial average eq. (7.32) is therefore extremely complicated due
to the complex β-Μη crystal structure and would probably need to include many terms

in Rn to cover the required radial correlation distance.

7.6.2 The Warren-Cowley Formalism

According to the formalism of Cowley [14] the nuclear disorder structure factor may be

expressed as,

S(Q) = Xa0NelQR»N , (7.33)
Ν

where the sum is over all atomic sites Ν at position vectors Ron· «on is the Warren-

Cowley (WC) parameter for site N, which is defined using the conditional probabilities

ΡθΝνμ of finding a μ nucleus at site Ν if a ν nucleus is at the origin, i.e.,

ρ ΒΑ ρ BB
α0Ν=1-·&ϋ-=-^ £. (7.34)

c 1 —c

where c is the concentration of the Β nucleus. Factorising eq.(7.33) to obtain the

Warren-Cowley parameters for near neighbour shells, and taking the polycrystalline

average we obtain the expression,

S(Q) = I«o„z„^®· <7·35>
η

where the sum is over η near neighbour shells of radial distance Rn from the origin each
with coordination number Zn. Combining eqs. (7.28) and (7.35), the nuclear disorder
cross-section can then be written as,

- c(l -c)(bB -bA){1 + αο,Ζ,ι»++.... 1. (7.36),/NUC L k>K2

where we have used the result that (Xoo = 1. Notice that in a randomly substituted

binary alloy, the conditional probability of finding a Β nucleus is the concentration c,

ensuring that the Warren-Cowley parameters are equal to zero as required. The sum in

eq. (7.36) should be performed over sufficient nuclear shells so that the short-range
correlation length is less than the radius of the largest shell considered.

da

άΩ.
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Attempts at a least-squares fit of eq. (7.36) to our nuclear diffuse scattering data over

the β-Μη nuclear shells proved to be fruitless. The first difficulty is that the shells are

extremely close packed and contain relatively few nuclei. One is therefore forced to

include a very large number of terms in the sum of eq. (7.36), with each fitted WC

parameter having extremely little statistical significance in the fit. The second
difficulty is that in attempting to fit eq.(7.36) to the data with a predetermined number
ofWC parameters, one is forcing the inclusion of Fourier components in the sum which

may not be physically consistent with each other.

in order to extract physically meaningful WC parameters from the measured nuclear
diffuse cross-section, we have developed a Reverse Monte-Carlo algorithm which
calculates eq.(7.36) from first principles and iteratively compares the calculated cross-

section to the measured cross-section.

7.6.3 RMC Modelling of Nuclear Disorder Scattering

A full listing of the RMC nuclear disorder modelling program "INTA" is given in

appendix A.

In our program a β-Μη lattice of 4x4x4 unit cells with periodic boundary conditions is

generated. Since we are assuming that the nuclear disorder resides completely on site II,
we have 12 atoms per unit cell giving 4x4x4x12 = 768 nuclei in the simulation. The

impurity concentration and the Laue scattering level, L (eq. (7.29)) are input by the user.

The program then randomly assigns A1 atoms to lattice positions until the desired
concentration level is reached. Alternatively, the user can specify the A1 positions by

using a nuclear position file, previously generated by the program. The program then
calculates the conditional probabilities of finding an A1 atom in the nth near neighbour
shell with each A1 atom in turn taken as the origin. The probabilities are then summed
and averaged, and the WC parameters calculated from eq (7.34). The cross-section is

calculated, summing over the first 24 near neighbour shells, and the calculated cross-

section is compared to the measured cross-section. The goodness of the fit of the

calculated cross-section to the data is given by the usual definition of χ2 [16],
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λ2 =

Zw
D

f do(QD) do(QD)
\

I dQ cal dQ
exp )

D
(7.37)

where D is the number of experimental data points and where w is the weighting factor,
defined as,

1
w

(Eexp(QD))2
(7.38)

where Eexp(Qi)) is the experimental error of the Dth data point.

After the initial calculation of χ2 up to 5 A1 nuclei atoms are swapped randomly with
Mn nuclei and the cross-section is recalculated. If the value of χ2 is less than the

original value then the moves are accepted. The process is then repeated with moves

only being accepted if χ2 is less than the previously accepted χ2 value. Each time a

move is accepted, the program outputs files containing the calculated fit to the data, the
conditional probabilities for each shell and the Mn and A1 nuclear position file, enabling
the progress of the program to be monitored without interruption. The program

continues until a tolerance value of χ2 input by the user is achieved. The program was

found to achieve a reasonable fit to the data in about 30 minutes, corresponding to

around 2000 moves. The program was run in two stages with 5 A1 nuclei initially

swapped with Mn nuclei per move, followed by only 1 swap per move as the value of χ2
became smaller.
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Figure 7.10
Plot of% versus the number ofmoves for a typical run of the RMC modelling program
"INTA The solid line demonstrates that f decreases exponentially.
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The variation of χ2 with the number of moves for a typical program run is shown in

figure 7.10. The solid line in figure 7.10 indicates that χ2 decreases exponentially with
the number of moves. INTA was run several times with different initial random

configurations. The results, within statistical accuracy were the same.

Extracting the WC parameters from the measured data in this manner has several

advantages over a straightforward least-squares fitting procedure:

i) No assumptions are made as to the shell sizes and coordinations.

ii) The WC parameters obtained are physically consistent with one another.

iii) The procedure automatically produces a table of the Mn and A1 nuclear

positions.

iv) The WC parameters are automatically constrained to lie within the limits;

Otmin = "C/(1 -c) ^ 0Cmax = 1 ·

7.6.4 Results

The measured nuclear cross-sections of β-Μηο.97Α1ο.ο3, β-Μηο.94Α10.ο6, β-Μηο.9Α1ο.ι and

β-Μηο.8Α1ο.2 measured using z-up/z-down neutron polarisation analysis is shown in

figure 7.11. The nuclear Bragg peaks have been removed from the raw data. Figure
7.11 shows that the experimental cross-sections are extremely well represented by the
simulation output. The pair probabilities PnBB, and corresponding WC parameters 0Cn

calculated using eq (7.34), for each of the alloys studied, are given in table 7.2. The

pair probabilities are plotted as a function of radial distance in figure 7.12.

The dependence of PnBB on radial distance was parameterised using a damped cosine
function, shown as a solid line in figure 7.12. The errors shown in figure 7.12 and given
in table 7.2 are the standard errors calculated from variance of the distributions of the

pair probabilities for each of the 24 shells used to generate the calculated cross-section

using eq. (7.36). The standard procedure for extracting errors in the fitting parameters

associated with a least-squares fitting procedure (see, for example [16]) is inappropriate
here, since in our RMC procedure the pair probabilities are not arbitrarily adjusted

fitting parameters. They are ab-initio values calculated from the modelled crystal

lattice, and therefore are inter-dependent. Errors associated with the χ2 fit could
therefore not be extracted from our simulations.
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Table7.2WarrenCowleyparametersandcorrespondingpairprobabilitiesofthefirst14near neighbourshellsfromthe"INTA"simulationprogramforthealloysshown.
β-Μηο.97Α1ο,03

β-Μηο.94Α1ο.06

β-Μηο.9Α1ο.ι

β-Μη0.8Α1ο.2

η

Rn

αη

ρbb
rη

Rn

αη

ρββ Γη

Rn

αη

ρββ Γη

Rn

α„

ρββ
rn

1

2.6599

-0.02(1)
0.03(1)

2.6620

-0.05(1)

0.05(1)

2.6687

-0.08(1)

0.10(1)

2.6830

-0.14(2)

0.24(1)

2

3.2726

-0.05(1)
0.000(1)
3.2753

-0.11(1)

0.000(1)
3.2835

-0.19(1)

0.01(1)

3.3011

-0.29(2)

0.14(2)

3

3.9018

-0.02(2)
0.03(2)

3.9050

-0.04(2)

0.07(2)

3.9149

0.0(3)

0.16(2)

3.9358

0.16(3)

0.44(2)

4

4.3771

0.01(2)

0.07(2)

4.3800

0.13(3)

0.22(2)

4.3911

0.10(2)

0.25(2)

4.4146

0.10(2)

0.40(1)

5

4.4329

0.08(4)

0.13(3)

4.4364

0.03(3)

0.13(3)

4.4476

0.12(4)

0.27(3)

4.4714

0.08(3)

0.39(2)

6

4.5627

0.0(2)

0.05(2)

4.5663

0.01(2)

0.11(2)

4.5778

0.08(2)

0.23(2)

4.6023

0.06(2)

0.38(1)

7

4.6380

-0.01(2)
0.04(1)

4.6422

0.06(2)

0.15(2)

4.6539

0.02(2)

0.18(2)

4.6788

0.05(2)

0.37(1)

8

5.1587

0.02(2)

0.07(2)

5.1627

-0.08(1)

0.02(1)

5.1758

-0.11(1)

0.07(1)

5.2035

-0.04(2)

0.30(1)

9

5.2064

0.02(2)

0.07(2)

5.2105

-0.07(1)

0.04(1)

5.2237

-0.06(2)

0.11(1)

5.2517

-0.11(2)

0.26(1)

10

5.2729

0.0(3)

0.05(2)

5.2771

-0.01(2)

0.09(2)

5.2904

-0.05(2)

0.12(2)

5.3187
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Figure 7.11
Nuclear cross-sections of α) β-Μη0.97Α10.03 and b)f-Mn0.94Al0.06 with nuclear Bragg peaks
removed. Solid line is simulated cross-section from "INTA
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Q (A"1)
Figure 7.11 (continued)
Nuclear cross-sections of c) β-Μη0.<Α10.ι and d) f3-Mn0.sAlo.2 with nuclear Bragg peaks
removed. Solid line is simulated cross-section from "INTA
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Radial distance (A)

Radial distance (A)
Figure 7.12
Pair probabilities PnBB from "INTA" simulation of α) β-Μη0.^ΑΙο.ο3 and b)
β-Μη0 94Α10.ο& The solid lines shown are fits to a damped cosine curve. The straight line
indicates the probability level expectedfor a random substitution.
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c) β-Μη0.9Α1ο.ι

d) β-Μηο.8Α1ο.2

4 6
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Radial distance (A)
Figure 7.12 (continued)
Pair probabilities P„ from "INTA" simulation of c) β-Μηΰ9Α101 and d)
β-Μη0.8ΑΙο.2· The solid lines shown are fits to a damped cosine cur\>e. The straight line
indicates the probability level expectedfor a random substitution.
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The graphs of the dependence of the pair probabilities on radial distance all display the
same frequency of oscillation around PnBB = c where c is the A1 concentration, with the
first peak in the curve coming at around R = 4Ά. This corresponds to a Q of-1.6A"1
which is the position of the first maximum in the nuclear cross-section for all the alloys
studied. The parameters obtained from a fit to a damped cosine function of the form,

an(R) = cos(-kR)exp(-dR), (7.40)
are given in table 7.3.

Table 7.3 Laue scattering level and parameters obtained from eq. (7.40) for
the concentrations shown.

Laue scattering

(mb st"1 atom"1)
k (A"1) d (A"1)

β-Μηο.97Α1ο.ο3 15 3.03+0.06 0.95+0.2

β-Μηο.94Α1ο.ο6 29 3.07±0.02 0.64+0.04

β-Μηο.9Α1ο.ι 43 3.03+0.02 0.53+0.03

β-Μηο.8Α1ο,2 68 3.05+0.02 0.54+0.04

While the frequency of oscillation remains constant throughout the concentration range

studied, the damping of the nuclear correlations decreases as the A1 concentration

increases, implying that the correlation length of the nuclear disorder increases with

increasing A1 concentration.

In conclusion, we have isolated the nuclear disorder cross-section of β-Μηι.χΑ1χ with

x=0.03, 0.06, 0.1 and 0.2, and extracted the short-range Warren-Cowley parameters

using an RMC algorithm. A1 impurities display a tendency to anti-cluster in the β-Μη
site II sublattice with the first maximum in the nuclear disorder cross-section appearing
at Q ~ 4A"1. The range of the short-range nuclear correlations increases with increasing
A1 concentration whereas the frequency of oscillation of the WC parameters remains

unchanged, implying that the effective pair interaction potentials between A1 impurities
in the β-Μη matrix are independent of A1 concentration. Figure 7.13 shows the output

positions ofMn and A1 nuclei in β-Μηο.8Α1ο.2 generated by "INTA".

184



Figure 7.13

Depiction of the site β-Μη sublattice of β-Μη08.4102 using the nuclear position file
generated by "INTA Mn atoms are shown in blue andAl atoms in green. The β-Μη unit
cell is shown in the centre. The triangular coordination oftheMn atoms is clearly seen to
be disrupted by the introduction ofA I, supporting the assertion that relief ofgeometrical
frustration occurs in the β-Μη structure whenAl is added.
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7.7 Magnetic Short-Ranse Order in β-ΜηΑΙ

7.7.1 Theory of Magnetic Short-Range Order

The expression for the magnetic differential cross-section is obtained by integrating eq.

(7.12)to obtain

fdGl 2Μ
^dQy MAG

"

3 , 2 J |f (Q)|2 S(Q)M2 (Q), (7.41)

where M(Q) is the Fourier transform of the spatially dependent magnetisation density

M(r). Μ (Q) can be written as,

Sn.S„
M!(Q) = g,!S(S + R"

Ν 6(6 + 1)
(7.42)

where So and Sn are the atomic spin vectors at an arbitrary origin and the Nth atom

respectively. S(S+1) is the self correlation term. Factorising eq. (7.42) into near

neighbour shells and taking a polycrystalline average we obtain the expression [15],
,2'da"

_ 2Μ
MAG

~

3 I 2 J |f(Q)|2gs2S(S + l) ι | (S0-S')N sin(QRl)
S(S + 1) 1 QR,

, (7.43)

where the factor 2/3(roy/2)2 = 0.049 barns, gs2 = 4 for Mn atoms and Rn and Nn are the
radii and coordination numbers of the nth near neighbour shells respectively, and where
we have assumed that there are no concentration driven variations in the magnetic
moment distribution arising from nuclear short-range order, so that S(Q) = 1 in eq

(7.41). However, we know from the previous section that there is marked nuclear

short-range order present in the Mn site II sublattice. The possibility of nuclear short-

range order affecting the moment distribution is therefore extremely likely to affect the
measured magnetic cross-section in this experiment. In order to obtain an expression
for the magnetic differential cross-section therefore, we have to perform a spherical

average of f®(Q)S(Q)M2(Q).

In practice, this calculation is extremely complicated, especially for the complex β-Μη
structure. We have therefore used a further reverse Monte-Carlo algorithm to model
the magnetic moment distribution in β-ΜηΑ1.
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7.7.2 RMC Modelling of Magnetic Diffuse Scattering

The RMC program "MAG" for the modelling of our experimental magnetic neutron

scattering data was based on the program "INTA" described in section 7.6.3. A full

listing of the program "MAG" is given in appendix B.

In our magnetic diffuse scattering RMC modelling program "MAG", the nuclear

positions and species are defined by the nuclear position file which is output from the

program "INTA", with periodic boundary conditions being defined as before.

Magnetic Heisenberg spins of unit length are then assigned to each Mn atom in the
matrix and are oriented randomly. Alternatively, the spin directions and nuclear

positions can be read from a previously generated magnetic position file. The value of
the β-MnAl lattice constant and the estimated value of S(S+1) is input by the user. The
fact that the spins have unit length satisfies the requirement that,

The magnetic short-range correlations are therefore calculated by taking the dot product
of each Mn spin with each other Mn spin taken as the origin in turn. The magnetic
correlation parameters are then summed and averaged for each shell, and the cross-

section is calculated from eq. (7.43) where the sum is performed over the first 24 near

neighbour shells. Since eq. (7.43) is calculated over a lattice where the A1 positions are

known, the nuclear short-range order structure factor S(Q) is automatically taken into
account. The calculated cross-section is compared to the fully corrected experimental
data in the same way as in the program "INTA". Up to 5 Mn spins are rotated at

random and the cross-section is recalculated and compared with the data. Any move in
which the value of χ2 is less than the value found in the last accepted move is accepted.
In addition, the value of S(S+1) may be varied in "MAG" using a traditional gradient
search of the best fit value [16], Each time a move is accepted output files containing
the calculated cross-section, magnetic spin configuration and the magnetic short-range
correlation parameters for each of the first 24 near neighbour shells are generated. The

program is executed until a tolerance level input by the user has been satisfied as before.

"MAG" takes very much longer to converge than "INTA", as there are many more

degrees of freedom in the direction of a spin vector, than in the occupation of a nuclear

(7.44)
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site by Μη or A1 nuclei. Good agreement between the calculated cross-section and the
data for all of the β-MnAl alloys studied was found after approximately 30,000 moves

in the program (between 12 and 24 hours CPU time depending on the number of Mn

spins in the model). MAG was run several times with different initial random

configurations. The results, within statistical accuracy were the same.

This approach to the modelling of magnetic short-range order in β-MnAl relies on two

assumptions.

i) Only site II Mn atoms carry a magnetic moment. This observation has been borne
out by NMR and Mossbauer studies as well as theoretical band structure calculations

(see chapter 1).

ii) The value of the Mn moment is constant throughout the lattice. We need to make
this assumption in order to assert that the magnetic short-range correlations are merely

dependent on the angle between the Mn spins. This assumption may be justified by the
fact that the magnetic moment carried by Mn atoms in the β-Μη matrix is determined

by the details of the band rather than the local magnetic environment. It will be shown
in chapter 8, that while β-MnAl adopts characteristics consistent with partial moment

localisation, it remains essentially an itinerant system.

7.7.3 Results

The fully corrected measured magnetic differential cross-sections of β-Μηο.97Α1ο.ο3,

β-Μηο.94Α1ο.ο6, β-Μηο.9Α1ο.ι and β-Μηο.δΑ1ο.2 are presented in figure 7.14. These cross-

sections were extracted from the measured z-up/z-down cross-sections using eq. (7.14),
with the value of the spin incoherent cross-section obtained as described in section 7.5.
The simulated magnetic cross-section produced by "MAG" is shown to provide an

excellent description of the magnetic data. The extracted magnetic short-range
correlations for each of the first 24 near neighbour shells as a function of radial distance
are shown in figure 7.15 and tabulated in table 7.4.
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a) β-Μηο.97Α1ο.ο3

Figure 7.14

Magnetic cross-section of a) [i-Mno.97Alo.03 and b) [i-Mno.94Alo.06· The solid line is the
calculatedmagnetic cross-section produced by the program "MAG".
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Figure 7.14 (continued)
Magnetic cross-section of c) β-Μηη <>Λ10Ι and d) β-Μη08ΛΙη2· The solid line is the
calculatedmagnetic cross-section produced by the program "MAG".

190



Table 7.4 magnetic short-range order correlation parameters from the
"MAG" simulation program for the β-MnAl alloys shown

β-Μη0. J7AI0.03 β-Μη0. 54AI0.O6 β-Μηο.9Α1ο.ι β-Μη0.8Α1 3.2

η Rn <S0,Sn> Rn <S0,Sn> Rn <S0,S„> Rn <So,Sn>

1 2.659 -0.33(1) 2.662 -0.30(1) 2.668 -0.33(1) 2.683 -0.31(1)

2 3.272 0.28(1) 3.275 0.15(2) 3.283 0.47(2) 3.301 0.49(2)

3 3.901 -0.21(1) 3.905 -0.10(2) 3.914 -0.28(2) 3.935 -0.28(2)

4 4.376 -0.02(1) 4.380 -0.17(1) 4.391 0.00(1) 4.414 0.03(2)

5 4.432 0.08(2) 4.436 0.04(2) 4.447 0.08(2) 4.471 0.0(2)

6 4.562 0.04(1) 4.566 0.02(1) 4.577 -0.07(1) 4.602 -0.02(2)

7 4.638 0.03(1) 4.642 0.08(1) 4.653 -0.08(1) 4.678 -0.03(2)

8 5.158 0.23(1) 5.162 0.24(1) 5.175 0.21(1) 5.203 0.02(2)

9 5.206 0.01(1) 5.210 0.14(1) 5.223 0.08(1) 5.251 -0.02(2)

10 5.272 0.16(2) 5.277 0.20(1) 5.290 0.16(2) 5.318 0.04(2)

11 5.779 -0.15(1) 5.783 -0.18(1) 5.798 -0.07(1) 5.829 0.10(2)

12 6.260 0.09(1) 6.265 -0.05(1) 6.281 0.13(1) 6.314 0.13(2)
13 6.330 0.07(1) 6.335 0.07(1) 6.351 0.08(1) 6.385 0.01(1)

14 6.391 -0.03(1) 6.396 0.01(1) 6.412 -0.02(1) 6.447 0.00(1)

15 6.535 -0.07(1) 6.540 -0.10(2) 6.556 -0.03(2) 6.591 0.02(2)

16 6.581 0.00(1) 6.587 0.06(1) 6.603 0.00(1) 6.639 0.02(2)

17 6.780 -0.03(1) 6.786 0.06(1) 6.803 -0.07(1) 6.839 -0.08(2)
18 6.829 0.06(1) 6.835 0.12(1) 6.852 0.01(1) 6.889 -0.06(2)

19 7.000 -0.09(1) 7.005 -0.01(1) 7.023 -0.04(1) 7.061 -0.01(2)

20 7.309 -0.11(1) 7.315 -0.18(1) 7.334 -0.13(1) 7.373 0.01(2)

21 7.389 0.00(1) 7.394 -0.12(1) 7.413 -0.05(1) 7.453 0.10(2)

22 7.435 -0.08(1) 7.441 -0.04(1) 7.460 -0.07(1) 7.500 0.05(2)

23 7.630 0.02(1) 7.636 -0.03(2) 7.656 0.05(2) 7.697 -0.10(2)

24 7.727 -0.01(1) 7.733 -0.13(1) 7.753 -0.01(1) 7.794 -0.05(2)

The errors in the magnetic correlation parameters listed in table 7.4 and shown in figure
7.15 were produced in the same manner as the errors in the pair probabilities (see
section 7.6.4). The oscillation observed in the magnetic correlation parameters could
not be parameterised by a damped cosine function.
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Shell Radius (A)

Shell Radius (A)

Figure 7.15
Magnetic correlation parameters extractedfrom "MAG" as a function ofshell radius, for
α) β-Μη0.9τΑΙο.ο3 and b) β-Μη0.94Α10.06· The solid lines are guides to the eye.
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Shell Radius (A)

Shell Radius (A)

Figure 7.15 (continued)
Magnetic correlation parameters extracted from "MAG" as a function of shell radius, for
c) β-Μη0.9Α10.ι and d) β-Μη0.»ΑΙο.2· The solid lines are guides to the eye.
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The oscillatory behaviour of the magnetic correlation parameters is very similar in all
four β-MnAl compositions studied, with the 1st and 3rd near neighbour shells strongly

antiferromagnetically correlated, and the 2nd near neighbour shell strongly

ferromagnetically correlated. The radius of the second shell (between 3.27Ά and

3.30A) corresponds to Q ~ 1.9A"1, where we see a small peak in the experimental cross-
section. A broad region of ferromagnetic correlations is observed centred at around R
= 5.2A corresponding to Q ~ 1.2A"1. This peak in the magnetic correlation parameters

falls steadily with increasing A1 concentration, from around 0.23±0.13 for

β-Μη0.97Α1ο.ο3 to 0.02+0.05 for β-Μηο.8Α1ο.2· This indicates that the correlations are of

longer range in the more dilute β-ΜηΑΙ alloys, and is borne out by the fact that the

magnetic cross-section becomes increasingly broad as the A1 concentration increases.

However, figure 7.15 shows that the magnetic correlations in the first 3 shells increase
as the A1 concentration increases. This may be due to the fact that the frustration
inherent in the β-Μη matrix is being disrupted by the introduction of A1 atoms,

therefore facilitating the alignment of the neighbouring Mn spins.

It is instructive to investigate how the magnetic correlations between individual atoms
in each shell are distributed around the mean value. An average correlation of

<So.S„> = 0 may either imply an even distribution of spins around 4π steradians (and
therefore a total absence of correlations), or a sharp distribution of spins oriented at π/2
radians to one another. The analysis of each individual distribution of magnetic
correlations will also allows us to analyse the errors inherent in the calculation of the
mean magnetic correlation of the each distribution.

The normalised distributions of the magnetic correlations for the first 6 near neighbour
shells are shown in figure 7.16. The errors shown are the statistical errors based on the
size of each distribution sample. Notice that the errors in shells 2 and 3, each with a

coordination number of 2, are considerably larger than those on shell 1 which has a

coordination number of 6. These distributions clearly demonstrate the rapid fall-off in

magnetic correlations with radial distance in each of the compositions studied with the
distribution ofmagnetic correlations for shell 6 being almost flat. The distributions for
shells 9-24 are all more or less flat.
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Figure 7.16a
Distributions ofmagnetic correlations in p-Mn0.97Al0.03for near neighbour shells 1 -6.
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7.8 Discussion

While the magnetic correlations extracted from the measured magnetic cross-sections
do not change dramatically with A1 concentration in β-MnAl, the measured Mn spin
number changes significantly. Figure 7.17 shows a plot of the A1 concentration

dependence of S(S+1) for the four β-MnAl samples studied in this investigation.

A1 concentration (at%)
Figure 7.17
The quantum mechanical square of the spin quantum number S as a function of Al
concentration. The inset shows the concentration dependence of the effective Bohr
magneton number. The lines shown are guides to the eye.

Figure 7.17 shows that S(S+1) rises with Al concentration from 0.122±0.002 for β-

Mn0.97Al0.03 to 0.274±0.001 for β-Μηο.8Α1ο.2· This corresponds to a rise in effective Mn
moment from 0.70+0.02 ge in β-Μηο.97Α10.ο3 to 1.04±0.02pB in β-Μη0.8Α1ο.2, as shown
in the inset of figure 7.17. From figure 7.17 there appears to be a discontinuity in the
observed increase of S(S+1) with increasing Al concentration between β-Μηο.94Α1ο,06
and β-Μη0.9Α1ο.ι. It is tempting to associate this discontinuity with the sudden change
of spin dynamical behaviour and increase of magnetic transition temperature observed
between Al concentrations of 9at% and 10at% observed in our pSR study presented in

chapter 6 (see figure 6.22). The most likely explanation for the observation of a
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decrease in the effective moment with decreasing A1 concentration is that there are

residual dynamic spin fluctuations present in the more dilute β-MnAl compositions
which reduce the magnetic intensity around the elastic line and contribute to the

magnetic intensity lying outside the available energy window. Our inelastic neutron

scattering measurements presented in chapter 8 will show that there are considerable

spin-fluctuations persisting down to low temperatures in both pure β-Μη and

β-Μηο.8Α1ο.2, despite the observation of a critical divergence in λ observed in our pSR

measurements. The values of the effective moment of the Mn spins in the β-Μη alloys
studied in this experiment should therefore not be considered as accurate. However,
the overall shape and nature of the nuclear and magnetic short-range correlations have
been successfully analysed both qualitatively and quantitatively.

7.9 Conclusions

We have used neutron polarisation analysis to investigate both nuclear and magnetic

short-range order in β-MnAl. We have developed a reverse Monte-Carlo modelling

algorithm to extract the Warren-Cowley nuclear short-range order parameters and the

magnetic correlations in the material.

• We have observed strong short-range order scattering due to A1 nuclei anticlustering
on the site II β-Μη sublattice.

• We have found that the sudden change in the spin dynamics of β-MnAl between

9at% and 10at% A1 observed by pSR does not result in a dramatic change in the

nature of the antiferromagnetic spin correlations.
• Our RMC modelling programs have allowed us to analyse the magnetic correlations

in β-MnAl while automatically accounting for the effects of the observed nuclear

short-range order. The measured magnetic cross-sections suggest strong

antiferromagnetic coupling of neighbouring site II Mn spins over the first 3 near

neighbour shells. For dilute β-MnAl alloys there is a small peak in the magnetic
correlations at R =~5.1A, which dies away as the A1 concentration increases. This
indicates that the correlations in dilute β-MnAl are of longer range than those in the
more concentrated alloys. However, no evidence of long-range antiferromagnetic
order has been found in any of the β-MnAl alloys.
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8 An Inelastic Neutron Scattering Study of β-ΜηΑΙ

8.1 Introduction

The inelastic polarised neutron scattering study of pure β-Μη and β-Μηο.9Α1ο.ι by Shiga
and co-workers [1] presented in chapter 1, showed that the introduction of A1 into the

β-Μη matrix significantly reduces the spectral width of the spin fluctuations present in
the pure metal. This observation, which has been supported by our own μ8ΙΙ study of

β-MnAl alloys presented in chapter 6, has led Shiga to characterise the transition from
the dynamic magnetic ground state of pure β-Μη to the largely static magnetic ground
state of β-Μη0.9Α1ο.ι as a quantum spin liquid (QSL) to spin glass transition. However,

Shiga's measurement of the inelastic linewidth was performed at an incident neutron

energy of 34meV and consisted of only 11 data points per measurement with rather

large error bars (see figure 1.15). Shiga's measurement of the magnetisation density in

β-Μη and β-Μηο.9Α1ο.ι suffered from the same problem as the measurements taken on

D7 presented in chapter 7 of this thesis; namely that the differential magnetic cross-

section was not integrated over all energies, therefore underestimating the calculated
values of the mean Mn moment.

In order to expand and improve on Shiga's original study, we have used inelastic
neutron scattering to study the spin dynamics and magnetic ground states of pure β-Μη

and β-Μη0.8Α1ο.2· Our measurements were performed at an incident energy of

Ε; = lOOmeV ensuring that a broad range of spin fluctuation energies was observable.
The staggered magnetic susceptibility has been extracted from these measurements (see

eqs. (2.53) and (3.26)) via a full energy integration of the data. Finally, we have

interpreted our results in terms of the self consistent renormalisation (SCR) theory of

spin fluctuations described in chapter 2.
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8.2 Inelastic Neutron Scattering

8.2.1 Time of Flight Inelastic Neutron Scattering

In a time of flight inelastic neutron scattering experiment, we wish to measure both the
incident and scattered neutron energies and wavevectors. In a neutron scattering

experiment, the neutron energy ΐιω and the wavevector transfer Q abide by the
conservation laws,

The momentum conservation defines the scattering triangle of the scattering event. On
a pulsed neutron source the neutron time of flight is used to determine either kj or k~.
In a direct geometry spectrometer, the incident neutron wavevector k; is known and the
scattered wavevector k* is determined by measuring the time of flight of the neutron

over the scattered flight path Li, thus defining the neutron velocity,

v=^ =^. (8.3)
t m

The layout of a direct geometry inelastic spectrometer and the range of scattering

triangles available to a single detector at angle 2Θ is shown in figure 8.1

Q = ki - k , (8.1)

and (8.2)

k

Source Chopper

Detector

Figure 8.1
Layout of a direct geometry inelastic neutron spectrometer on a pulsed source. The
incident wavevector is fixed by a Fermi neutron chopper. Also shown is the range of
scattering triangles a\>ailable to each detector at angle 2Θ which is scanned by analysing
the neutron time offlight.
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The kinematical constraints of the conservation laws restrict the available range of Q-ω

space observable in an inelastic neutron experiment. Applying the cosine rule to eq.

(8.1) we obtain,

|Q|2 = |ki|2 + |kf - 2|ki||k'| cos(20). (8.4)

Rewriting this equation in terms of the incident energy Ej = ft2|kj|2/2m, and the energy

transfer Άω given by eq. (8.2) we obtain the Q-ω trajectory for a single detector at

scattering angle 2Θ as,

ft2|Q|2 r ,,/—^ = 2Ei-fao-2cos(20)[Ei(Ei-7to)f2. (8.5)
2m

A graph of the region of Q-ω space available from eq. (8.5) for an incident energy of
Ej = lOOmeV on the HET spectrometer used in this study is shown in figure 8.2.

Q (A'1)

Figure 8.2
The region of Ο-ω space available on the HET spectrometer at an incident energy of
lOOmeV. The shaded regions represent the four detector banks present on the HET
spectrometer.
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Figure 8.2 shows the region over which the dynamical structure factor S(Q,co) can be
extracted from the measured partial differential cross-section using eq. (3.19).

8.2.2 The HET (High Energy Transfer) Spectrometer

The High Energy Transfer (HET) neutron spectrometer is a direct geometry time of

flight instrument at the ISIS pulsed spallation neutron facility at the Rutherford

Appleton Laboratory. A schematic diagram of the HET spectrometer is shown in

figure 8.3.

Closed Cycle

Figure 8.3
The HET spectrometer at the ISISpulsed neutron source.

A pulse of neutrons from the source arrives at the HET spectrometer after having been
collimated to reduce beam divergence. The presence of a nimonic chopper rotating at

the incident neutron pulse frequency of 50Hz removes unmoderated fast neutrons and

gamma-rays produced by the proton target station. A particular neutron energy is then
selected from the incident pulse using a curved-slit Fermi chopper shown in figure 8.4.
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Figure 8.4
A curved-slit Fermi chopper with slit width w andperipheral speed vp [2].

The Fermi chopper allows the passage of neutrons of pulse width At around the incident
time of flight tj given by [2],

w α /0 „At = + , (8.6)
2vp 2πΐ

where w is the slit width, vp is the peripheral chopper speed, f is the frequency of
rotation and α is the angular collimation of the incident beam. The incident time of

flight is selected by applying a suitable phase shift to the chopper rotation. The
curvature of the slits accounts for the fact that the neutrons have finite velocity vo. The
radius of curvature of the slits will be given by [2],

R =7^r· (8.7)4πΐ

From eq. (8.6) the resolution At/ti will be improved as the rotation frequency is
increased in multiples of the incident neutron pulse frequency (50Hz).

There are 4 choppers available on HET which have different radii of curvature and slit
widths optimised for various incident energies and resolutions. In this measurement,

the HET "sloppy" chopper was used. This chopper has relaxed resolution and is

optimised for maximum incident neutron flux. At the incident energy of lOOmeV used
in this measurement the sloppy chopper provided a resolution of AEres = 4.43meV and
an incident neutron flux of 14,400 neutrons/cm2/sec.
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Neutrons scattered by the sample are detected by four detector banks covering the

scattering angles, 3°-7°, 9°-29°, 110°-125° and 130°-140°, as shown in figure 8.3. The

range of Q-co space covered by these detector banks is shown in figure 8.2.

8.3 ExperimentalResults

8.3.1 Introduction

Powdered β-Μη and β-Μηο.8Α10.2 samples were mounted as flat plates of typical

dimensions, 4.5cm χ 4.5cm χ 0.5cm, sandwiched between thin layers of A1 foil.

Approximately 50g of powder was used in each case. The samples were placed in a top

loading closed cycle refridgerator (CCR) enabling temperature coverage from 15K to

300K. The measured spectra were corrected for energy dependent detector efficiency
and sample absorption, and converted to absolute cross-section units using the
LEONARDO inelastic neutron scattering analysis package. Constant Q cuts of the
measured spectra were also obtained using the LEONARDO package.

Typical inelastic neutron spectra obtained for β-Μη and β-Μη0.8Α10.2 are shown in

figures 8.5 and 8.6 in the form of contour plots of the partial differential cross-section
θ2σ/<9Ω<9Ε as a function of both the modulus of the wavevector transfer |Q| and the

energy transfer ΔΕ. The shape of the spin fluctuation response observed in both pure

β-Μη and β-Μη0.8Α1ο,2 is very similar and appears not to change greatly with

temperature, except for the effects of detailed balance which suppresses the neutron

energy gain (AE < 0) response at low temperatures (see section 3.2.3). A peak in the

magnetic response is observed at around Q -1.4A"1 in both β-Μη and β-Μη0.8Α10.2·

The phonon response which dominates the scattering at high Q, where the magnetic

response is reduced almost to zero due to the magnetic form factor, can clearly be seen

in the high angle bank data shown in figure 8.6.
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1 2 3 4 5

IQI (A"1)

β-Μη 303K

IQI (A-1)
Figure 8.5
Contour plots of σσ/δΩοΕ for pure β-Μη at 15K and 303K. The quasi-elastic spin
fluctuation response is clearly visible, peaked around Ο = 1.4A'1. The spin fluctuation
response is extremely broad extending out beyond 40meV, and changes little with
temperature, apartfrom the effects ofdetailed balance.
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2 4 6 8 10 12 14

IQI (A"1)

IQI (A-1)
Figure 8.6
Contour plots of 3σ/dQcE for (3-Mn0Sj\ 10.2 at 15K and 303K. The high angle data are
shown with the coherent phonon excitations clearly visible around ΔΕ = 20meV. The spin
fluctuation response is very similar to that observed in pure β-Μη, and depends little on
temperature.
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8.3.2 Subtraction of the Phonon Response

In the absence of neutron polarisation analysis it is impossible to separate the magnetic
and phonon contributions to the measured inelastic partial differential cross-section.

Often, the phonon scattering can be measured using a non-magnetic "blank" sample
with the same structure as the sample under investigation. For example, the magnetic
rare-earth ions in intermetallic compounds may be replaced by non-magnetic lanthanum
ions to produce a non-magnetic version of the parent compound. However, this

technique is unsuitable for the study of β-Μη alloys as no other metal forms with the

β-Μη structure.

8.3.2.1 Measurement of the Phonon Response

The magnetic contribution to the measured partial differential cross-section in a neutron

scattering experiment decreases as a function of the square of the magnetic form factor
as discussed in section 3.2.2. If the Mn2+ form factor is assumed, then at Q = 5A"1 the

magnetic cross-section is reduced to 5.7% of its Q = OA"1 value, and falls to 0.01% of its

Q = OA"1 value at Q = 9A"1 (see figure 3.3). However, the phonon contribution to the

partial differential cross-section rises quadratically with increasing Q and may be

approximated by [3],

d2a/dQdEphonon ~ A(co) + B(co)Q2, (8.8)

where Β(ω) is the contribution from single phonon scattering events in which one or

more phonons are created, and Α(ω) is the contribution from multiple phonon scattering
events in which one or more phonons are created more than once by the same neutron.

The form of the phonon cross-section as observed in the high angle detector banks on

HET, is such that

Β(ω)*Ζ(ω)[' + η(ω)], (8.9)
ω

where Z(co) is the generalised phonon density of states (PDOS) and [1 + n(co)] is the
detailed balance factor.
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The form of B(co) for β-Μη was parameterised by fitting three Gaussian lineshapes to

the energy loss side of the spectrum obtained from the 135° detector bank on HET as

shown in figure 8.7. The contribution to d2a/dQdE from the elastic line and the

multiple scattering tail above ΔΕ = 40meV has been subtracted from the fit shown.

At low energy transfers the phonon spectrum may be described by the Debye

approximation in which the longitudinal and transverse phonon modes are

approximated by the linear dispersion relationship [4],
ω = cxQ, (8.10)

where c is a constant. Therefore, at temperatures less than the Debye temperature, the

single phonon density of states can be written,

Ζ(ω) = αχω2, (8.11)

where α is a constant. Ζ(ω) is, therefore, obtained from the parameterised form of

Β(ω) using eq. (8.9), and is then adjusted so that the low energy transfer region (ΔΕ <

5meV) is quadratic in ω. Finally, Ζ(ω) is normalised to unit area. The final form of

the single phonon density of states of pure β-Μη is shown in figure 8.8.

1.4

1.2

ο ίο
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5
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TJ
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>

0.0
0 10 20 30 40 50

Energy (meV)
Figure 8.7
The form ofB(a) ofpure β-Μη parameterised byfitting the neutron energy loss response of
the high angle (135 °) bank data to three Gaussian lineshapes, shown as a solid line. This
measurement was taken at a temperature of 109K. The multiple scattering contribution
above 40meV and the elastic line contribution have been excludedfrom the fit.
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Energy (meV)
Figure 8.8
The single phonon density ofstates, Ζ(ω) for pure β-Μη, derived from the parameterised
form ofB(co) shown in figure 8.7 using eqs. (8.9) and (8.11) and normalised to unit area.

8.3.2.2 Monte-Carlo Phonon Simulations

The calculated form of Ζ(ω) may be used as input to a Monte-Carlo phonon simulation

program called "DISCUS" written by Μ W Johnson [5], The simulation output

produces the phonon scattering cross-section as a function of energy transfer at a

constant scattering angle input by the user, fully corrected for temperature and neutron

absorption. The phonon simulation was performed for sixteen different scattering

angles corresponding to specific detectors on HET. A simulation was also obtained for
the 135° detector bank so that the simulated phonon cross-section could be compared
with the experimental phonon cross-section used to calculate the phonon density of
states. This provided a check on the internal consistency of the simulation procedure.
The output phonon simulations as a function of energy transfer at constant scattering

angle were converted to functions of both ΔΕ and Q using eq. (8.5) to produce a grid of
the simulated phonon cross-section. Cuts at constant energy transfer ΔΕ were then
extracted from the simulated d2a/dQdEphonon grid and eq. (8.8) was fitted to these
constant ΔΕ cuts. In this way the Α(ω) and Β(ω) contributions to the phonon cross-

section were extracted and the entire d2a/dDdEph0non grid was calculated.
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IQI (A"1)
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IQI (A"1) IQI (A"1)

Figure 8.9
Constant energy transfer cuts through the total phonon cross-section ofpure β-Μη at 109K
simulated using the "DISCUS" Μοηίέ-Carlo program. The observed Ο dependence was

fitted using eq. (8.8) to the parametersΑ (ω) and Β(ω). The fits are shown as solid lines in
the diagrams.
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Multiple phonon contribution - A(co)
Single phonon contribution - Β(ω)

.·
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Energy transfer

The single phonon and multiple phonon contributions B(co) andA(a>) extractedfrom fitting
eq. (8.8) to the constant energy transfer cuts of the simulated phonon cross-section ofpure
β-Μη at 109K shown in figure 8.9.

0.30

ΔΕ (meV)
Figure 8.11

Temperature dependence of the phonon cross-section cfa/d£kITphonon for pure β-Μη
derivedfrom A (ω) and Β (ω) using eq. (8.8). The data for each temperature was derived by
multiplying the 109K data by the relevant ratio ofdetailed balancefactors.
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Figure 8.12
The simulatedphonon cross-section ofpure β-Μη at 109K at low Οfrom 0.8A'1 to 3.2A'1.
This region covers the low angle detector banks on HET at an incident energy of lOOmeV.
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Figure 8.9 shows six constant energy cuts through the simulated d2a/dQdEpho,K)n grid
fitted to eq. (8.8). The form of Α(ω) and Β(ω) extracted from these fits is shown in

figure 8.10. Figure 8.11 shows the phonon scattering at a constant wavevector transfer
of 1.4A"1 calculated from the values of A(co) and Β(ω) using eq. (8.8). The response at

each temperature was found by multiplying the simulated response at 109K by a ratio of
detailed balance factors,

d2o d2a
dQdE

Τ

χϋ±ίτ«]_ (8.12)
109Κ Π + ηΐ09κ(ω)]dOdE

The values of d2a/dQdEphonon at each temperature found in this way were found to agree

well with the measured phonon response at high angles. Finally, the d2o/dQdE,,h0non
grid calculated from these simulations is shown in figure 8.12. The Q range shown in

figure 8.12 of 0.6 < Q < 3.2 corresponds to the Q range of the low angle detector banks
on HET at the incident energy used in this experiment (lOOmeV).

After subtracting the calculated phonon cross-section from low angle data, the magnetic

response remains, isolated from the total scattering. The form of the phonon cross-

section calculated for pure β-Μη was found to scale well with the measured phonon

response in β-Μη0.8Α1ο.2 at high angles. Therefore, in order to isolate the magnetic

scattering from the total scattering for β-Μη0.8Α1ο.2, the calculated d2a/dQdEPh0»on grid
was scaled to the experimental data at high Q before subtraction.

8.3.3 Analysis of Results

8.3.3.1 Modelling of the Inelastic Cross-section at Constant Q.

It was shown in section 3.2.3 that the magnetic partial differential cross-section can be
written as,

do

dQdE

k (yr0)2
magnetic

k; k

1
g.f(Q) S(Q,<o), (8.13)

where the structure factor S(Q,o) can be related to the imaginary part of the dynamical

susceptibility of the system using the fluctuation-dissipation theorem [6],

S(Q,Q) = ™ [! + η(ω)]—x"(Q,co):
(SsEb ) π

(8.14)
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where the symbols have their usual meanings. In section 2.3.3 it was shown that the

ω-dependence of the dynamical susceptibility was Lorentzian in form with,

X*(Q,to) = mx(Q)r(Q). (8.15)
T(Q) +co

Therefore, combining equations (8.13), (8.14) and (8.15) we can write the magnetic

partial differential cross-section as,

dsi = f-7f%if<Q>r['+η<ω>] » <8i6>dQdE
noetic ^π(2μΒ) r(Q) +ω

where we have assumed that gs = 2. The partial differential cross-section at a constant

Q is then given by a Lorentzian lineshape of width Γ multiplied by ω, with an area

proportional to the Q-dependent magnetic susceptibility x(Q) of the system.

The measured, phonon subtracted, spectra at constant Q cuts through the measured
inelastic response were modelled by eq. (8.16) convoluted with the spectrometer

resolution which was measured using pure vanadium and taken to be a Gaussian with a

FWHM of 3.66meV. The elastic contribution to the scattering was simultaneously
fitted to an Ikeda-Carpenter function (see section 5.3).

Fits of eq. (8.16) plus an elastic lineshape to the measured response in β-Μη and

β-Μη0.8Α1ο.2 at Q = 1.4Ά"1 are presented in figures 8.13 and 8.14 for various sample

temperatures.

The fitting parameters used to model the observed constant Q cuts of the inelastic

response were as follows.

a) The Ikeda-Carpenter function used to fit the elastic line was determined by three

parameters; the elastic integrated intensity, Hei, the exponential damping coefficient,

λει and the elastic linewidth Tei. Both λει and Tei were found to be independent of

temperature and wavevector Q, with λ*ι ~ 3.4meV and Tei ~ 1.7meV for pure β-Μη

and λεΐ ~ 2.7meV and Tei ~ 2.7meV for β-Μηο.8Α1ο.2·

b) Equation (8.16) used to model the magnetic quasi-elastic response was determined

by two parameters; the inelastic linewidth Γinei and the inelastic intensity Hjnei which
is directly proportional to the wavevector dependent susceptibility x(Q).
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Figure 8.13
The partial differential cross-section ofpure β-Μη at Q = 1.4Λ'1 at Τ = 15K, 159K and
303K. The solid lines are fits of eq. (8.16) plus an elastic lineshape given by an Ikeda-
Carpenter function all convoluted with the instrumental resolution function. The energy

gain side (ΔΕ < 0) illustrates the effects of detailed balance, while the energy loss side of
the spectra shows remarkably little temperature dependence.
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Energy Transfer (meV)

Figure 8.14
The partial differential cross-section ofβ-Μη0.»Ί Iο.2 at Q = 1.4A'1 at Τ = 15K, 58K and
209K. The solid lines are fits of eq. (8.16) plus an elastic lineshape given by an Ikeda-
Carpenter function all convoluted with the instrumental resolution function. The energy
loss side ofthe spectra now displays strong temperature dependence.
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The parameters derived from the fits of the Q = 1.4A"1 data shown in figures 8.13 and
8.14 are presented in tables 8.1 and 8.2 and figures 8.15 and 8.16. Since the value of

Q = 1.4Ά"1 corresponds to the peak in the magnetic response observed in figures 8.5 and

8.6, the measured wavevector dependent susceptibility x(Q) at

Q = 1.4Ά"1 corresponds to the staggered susceptibility χ8 of both β-Μη and β-Μη0.8Α10.2,
as defined in section 2.3.2.3.

Table 8.1: Fitting parameters derived from the partial differential cross-
section of pure β-Μη at Q = 1.4A"1. Plots of these parameters are shown in

figure 8.15

Temp Hel Hinel finel χίΟ^ΤΑ"1) ι/χ(0=ι 4A1)
(K) (mb st"1 Mil atom"1) (mb st"1 Mn atom"1) (meV) (μΒ2 meV"1 Mn atom'1) (meV Mn atom μη 2)

15 33.8 4.3 8.3 0.061 16.5

58 30.2 12.3 12.0 0.045 22.1

109 27.1 19.1 14.9 0.037 26.9

159 25.9 22.5 18.8 0.030 33.1

209 23.6 27.1 23.1 0.028 36.3

302 21.6 30.9 27.9 0.022 46.2

Table 8.2: Fitting parameters derived from the partial differential cross-

section of β-Μηο,8Α1ο2 at Q = 1.4A"1. Plots of these parameters are shown in

figure 8.16

Temp Hel Hinel Tinel χ(0=1.4Α"1) ι/χ(0=ι 4A1)
(K) (mb st'1 Mn atom'1) (mb st'1 Mn atom'1) (meV) (μη2 meV"1 Mn atom"1) (meV Mn atom μΒ 2)

15 188.0 2.9400 16.6 0.049 20.2

58 177.7 11.7000 13.8 0.055 18.1

109 156.8 22.5500 13.9 0.057 17.7

159 146.3 28.9100 16.7 0.050 20.1

209 139.2 31.2600 18.4 0.041 24.4

302 135.2 37.0600 29.7 0.033 29.9
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Figure 8.15
Plots of the temperature dependence of the fitting parameters of the inelastic partial
differential cross-section ofpure β-Μη at Q = 1.4A'1. a) Shows a steady increase in the
intensity of the elastic line with decreasing temperature, while b) shows a concomitant
decrease in the inelastic scattering intensity, c) shows that the inelastic linewidth rinei
decreases linearly with decreasing temperature, d) Shows that the staggered susceptibility
derived from the inelastic intensity follows a Curie-Weiss law, in accordance with the
predictions ofthe SCR theory. The lines shown are guides to the eye.
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Figure 8.16
Plots of the temperature dependence of the fitting parameters of the inelastic partial
differential cross-section ofβ-Μη0 $Α10 2 at Q = 1.4Λ'1. a) and b) show similar behaviour
for the elastic and inelastic intensity as was found in pure β-Μη. The inelastic linewidth
rinei shown in c) displays a minimum at Τ ~70K. The staggered susceptibility shown in the
inset of d) reaches a maximum at Τ ~ 70K coincident with the minimum observed in the
temperature dependence ofrinei. The inverse staggered susceptibility is shown to follow a
Curie-Weiss law for temperatures above the peak position. The lines shown are guides to
the eye.

222



In pure β-Μη, the integrated intensity of the elastic line is found to increase steadily
with decreasing temperature as shown in figure 8.15a while the inelastic intensity is
shown in figure 8.15b to fall sharply with decreasing temperature. Figure 8.15c shows
that the inelastic spin fluctuation linewidth rmei is directly proportional to the

temperature. The form of the staggered susceptibility is shown in figure 8.15d to obey
a Curie-Weiss law in accordance with the predictions of the SCR theory for nearly and

weakly antiferromagnetic metals (see section 2.4.1.2). The observation of temperature

independence on the energy loss side of the β-Μη spectrum has also been observed in
the Kondo lattice system UCu4Pdi [7], where this behaviour was interpreted as an

indication of non-Fermi liquid scaling of the dynamical susceptibility.

While the temperature dependence of the elastic and inelastic integrated intensities
found in β-Μη0.8Α1ο.2 is very similar to that observed in pure β-Μη, figures 8.16c and
8.16d reveal striking differences in the form of both the inelastic linewidth and the

staggered susceptibility. T^ei no longer displays Korringa-like behaviour, but passes

through a minimum at Τ ~ 70K and then increases with decreasing temperature tending
towards a value of Γί„6ι(Τ=ΟΚ) ~ 18meV. A peak is observed in the temperature

dependence of the staggered susceptibility χ8 at Τ ~ 70K. Above this temperature, χ8 is

found to obey a Curie-Weiss law. The observed peak in χδ(Τ) is somewhat reminiscent
of the peak observed in the magnetisation measurements performed on β-Μηο.8Α1ο.2 (see

figure 4.4). Both pure β-Μη and β-Μηο.8Α1ο.2 have large inelastic linewidths at the
lowest temperatures studied, indicating the presence of strong zero-point spin
fluctuations. The Curie-Weiss nature of the staggered susceptibility will be discussed
in section 8.3.3.4.

8.3.3.2 Analysis of the Wavevector Dependent Susceptibility

The values of x(Q)f2(Q) for β-Μη and β-Μηο.8Α1ο.2 extracted from the integrated
inelastic intensity of constant Q cuts through the inelastic cross-section using eq. (8.16)
are plotted in figures 8.17 and 8.18.
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β-Μη

Figure 8.17
The wavevector dependent susceptibility ofpure β-Μη derivedfrom the integrated inelastic
intensity ofthe magnetic cross-section at constant Ο using equation (8.16). The solid lines
are guides to the eye.
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β-Μηο.8Α1ο.2

Figure 8.18
The wavevector dependent susceptibility of β-Μη0^Α102 derived from the integrated
inelastic intensity of the magnetic cross-section at constant Q using equation (8.16). The
solid lines are guides to the eye.
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The Q-dependence ofx(Q)f2(Q) illustrated in figures 8.17 and 8.18 is very similar to the

Q-dependence of the elastic magnetic cross-section of the β-Μηι.χΑ1χ alloys presented
in the neutron polarisation analysis study presented in chapter 7 (see figure 7.14).

In pure β-Μη, x(Q)f2(Q) is peaked around Q = 1.4Ά"1 at all temperatures. x(Q)f2(Q) is

sharply peaked around Q = 1.4Ά"1 at Τ = 15K. At higher temperatures, the peak in

X(Q)f2(Q) broadens and reduces in intensity with increasing temperature. In

β-Μη0.8Α1ο.2, the peak in xiQ^Q) is much broader at low temperatures, and a second

peak is observed at approximately Q = 2.0Ά"1. This second peak in x(Q/(Q)
disappears at Τ > 159K, above which the form of x(Q)f2(Q) is very similar to that

observed for pure β-Μη.

The observation of a magnetic response which is sharply peaked around Q = 1.4Ά"1 in

pure β-Μη and more broadly peaked in β-Μη0.8Α1ο.2, and the appearance of a second

peak in the susceptibility at around Q = 2.0Ά"1 in β-Μηο.8Α10.2, is fully consistent with
our observations of the elastic magnetic scattering presented in chapter 7 (see section

7.7.3). This behaviour indicates that the magnetic correlations are of longer range in

pure β-Μη and dilute β-MnAl alloys, than in the more concentrated alloys. However,

figures 8.17 and 8.18 show that the intensity of the magnetic response integrated over

all energies changes little between pure β-Μη and β-Μη0.8Α1ο.2, in contrast to our

observation of increasing elastic magnetic intensity in β-MnAl alloys as the A1
concentration increases. This implies that the apparent reduction in the Mn moment in
dilute β-MnAl alloys observed in our neutron polarisation analysis study (see figure

7.17) is due to an increasingly inelastic component of the magnetic scattering, which is
not observable on D7 due to the narrow energy window available (see figure 7.7).

8.3.3.3 The Local Susceptibility Xl

The local susceptibility at each Mn atom in β-Μη and β-Μηο.8Α1ο.2 is derived by

integrating the wavevector dependent susceptibility over Q, as given by equation (2.40).

Defining <x(Q)>Qm to be the sum over x(Q) up to a maximum value of Q = Qm, we

have,
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Qm

Jx(Q)dQ
<X(Q)>Qm =

*Q«
(8.17)

To facilitate this calculation, eq. (8.18) was approximated to a form based on the
modulus of the wavevector transfer [8],

<x(Q)> i=l
Qm

ZQ.2
(8.18)

i=l

The value of <x(Q)>Qm as a function of Qm is found to increase from zero wavevector

transfer, and then to oscillate about a constant value as Qm increases. This constant

value is taken to be the local susceptibility Xl since the oscillation ensures that an

integration over an adequate Q range has been performed. An example of the Qm

dependence of ^(Q^Qm is shown in figure 8.19. The limit of Qm in the low angle
bank on HET at E; = lOOmeV is 3.2Ά"1, which is only enough to observe the first
maximum in the oscillation of <x(Q)>Qm·

0.08

0.00

Figure 8.19

Qm (A"1)

The values of <z(Q)>Qm shown as a function of Qmfor P-Mn0.sAlo.2 °t a temperature of
159K. The value of the local susceptibility χι is taken to be the level at which <z(Q)>Qm
oscillates at high wavevector transfers.
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The temperature dependence of the inverse of the local susceptibility 1/xl thus derived
for β-Μη and β-Μηο.8Α1ο.2 is shown in figure 8.20. The error associated with the

determination of χι. was typically around 10%, or ± 0.05 pB2 meV"1 Mn atom"1.

Figure 8.20 shows that the form of χι, is Curie-Weiss like at all temperatures in β-Μη
and for Τ > 70K for β-Μη0.8Α1ο.2. Fitting l/χι, to a straight line of the form,

—=2γ(τ-θ„),
Xl c

we can calculate the mean Mn moment per atom via eq. (2.3),

C
_ gs2S(S + l)

(8.19)

μΒ 3k,

where Pmean §s s pB.

(8.20)

(8.21)

Taking gs = 2 for Mn, we obtain S = 0.68 ± 0.01 giving pmean = 1.36 ± 0.02pB per Mn

atom in β-Μη, and S = 0.72 ± 0.02 giving pmean = 1.44 ± 0.04pB per Mn atom in

β-Μη0.8Α1ο.2· The value of the Curie-Weiss constant determined from fitting eq. (8.19)

to the data was 0cw = 295 ± 2K for β-Μη and 0cw = 136 ± 3K for

β-Μηο.8Α1ο.2·
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Figure 8.20
The Curie-Weiss temperature dependence of l/χι. The solid lines are fits to eq. (8.19).
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The value of the pmean = 1.44 ± 0.04μΒ for β-Μη0.8Α10.2 is in close agreement with the

value reported by Nakamura and co-workers [9] of pmCan = 1.5 ± 0.2μΒ. However, the

foregoing analysis assumes that there is a well defined localised paramagnetic moment in

β-Μη and β-Μηο.8Α1ο.2. While β-Μη0.8Α1ο.2 displays certain characteristics of local

moment formation, as indicated by our magnetisation (chapter 4) and pSR (chapter 6)

studies, it is likely that both β-Μη and β-Μη0.8Α1ο.2 are essentially itinerant in nature. A

more valid approach to the analysis of the local susceptibility χΒ and staggered

susceptibility χ8, is provided by the SCR theory introduced in chapter 2.

2.1.1.1 Analysis of%l and χ* Using SCR Theory

It was shown in section 2.4.1.1 that the local susceptibility xL is related to the square of
the thermal average of the longitudinal and transverse local spin fluctuation amplitude

<Sl>2 [10] by the equation,

Xl(T>= N&W <SL (8.22)
Β

If <Sl>2 is independent of temperature, then eq. (8.22) is of the form of the Curie Law

[eq. (2.2)]. The observation of a Curie-Weiss dependence of χι.(Τ) in itinerant electron

systems can only be described by eq. (8.22) with a temperature dependent spin
fluctuation amplitude <SL(T)>2. Values of <SL(T)>2 calculated using eq. (8.22) for β-
Μη and β-Μηο.8Α1ο.2 are plotted in figure 8.21. The solid lines in figure 8.21 are guides
to the eye.

The temperature dependence of <SL(T)>2 changes dramatically from pure β-Μη to

β-Μη0.8Α1ο.2· In pure β-Μη, <SL(T)>2 increases linearly with increasing temperature,

which from figure 2.12 is indicative of a nearly antiferromagnetic metal with a small

longitudinal stiffness constant (see section 2.4.3.2). In β-Μηο.8Α1ο.2, <SL(T)>2 increases

more rapidly than for β-Μη, and then shows a tendency to saturate at a value of

approximately <SL>2 — 0 33. This behaviour is characteristic of temperature dependent
local moment formation, discussed in section 2.4.3.2, and suggests that the Mn moments

in β-Μηο.8Α1ο.2 are partially localised due to an increased longitudinal stiffness constant.
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Temperature (Κ)

Figure 8.21

The temperature dependence of the square of the thermal average of the longitudinal and
trans\>erse local spin fluctuation amplitude <SL(T)>2 for pure β-Μη and β-Μηο.&ΔΙ0.2· The
form of<SL(T)>2 indicates the presence ofpurely itinerantMn moments in pure β-Μη and
the partial localisation of the Mn moments in β-Μη0.sAl0.2· The point shown in red
indicates the magnetic transition temperature of β-Mno.sA1ο.2 given by eq. (8.25) The
dotted line indicates the expected temperature dependence of <SL(T)>2 of an
antiferromagnet below the transition temperature.
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The value of the saturation moment indicated by the saturation amplitude of <Sl>2 ~

0.33 for β-Μη0.8Α1ο.2 is μ ~ 1.15μΒ. This value is in broad agreement with both the

value of μ = 1.5 ± 0.2μΒ obtained by Nakamura et. al., and the value of μ = 1.44 ±

0.04μΒ obtained from a conventional fit of the local susceptibility to a Curie-Weiss law.

The fact that the values of the Mn moment in β-Μηο.8Α1ο.2 calculated using conventional
local moment theory and SCR theory are of the same order, is suggestive of the

increasing local moment nature of β-MnAl alloys with high Al concentrations.

However, a Curie-Weiss analysis of the local susceptibility of β-MnAl alloys is clearly
an inadequate description of the data, due to the variation of the Mn spin fluctuation

amplitude with temperature shown in figure 8.21.

Having obtained the form of the temperature dependence of the local Mn spin
fluctuation amplitude, we can now use eq. (2.45) to parametei ise the observed staggeied

susceptibility at Q = 1.4A"1 in terms of the mode-mode coupling constant Fs, the square

of the staggered spin magnetisation per Mn atom at Τ = OK, Ms2(0) and the non-

interacting Hartree-Fock contribution to the susceptibility X.hf(q), where q is the

antiferromagnetic wavevector, via

+ϊ-τν3 FsXmAq)
+Ms2(0) (8.23)

In order to fit the observed temperature dependence of the staggered susceptibility of

β-Μη and β-Μηο.8Α1ο.2 (see figures 8.15 and 8.16) to eq. (8.23), the temperature

dependence of<Sl>2 shown in figure 8.21 was parameterised by fitting a straight line in
the case of pure β-Μη and a quadratic in the case of β-Μηο.8Α1ο.2·

Figure 8.22 shows the temperature dependence of the inverse staggered susceptibility of

β-Μη and β-Μη0.8Α10.2 fitted to eq. (8.23). The values of Fs and [l/FsxBF(q) + Ms2(0)]
obtained from the fits are shown in the figure. Since eq. (8.23) is defined only for the

paramagnetic regime, the fit of the β-Μηο.8Α10.2 data is shown above the position of the

peak in χ8 at Τ ~ 70K (see figure 8.16d).
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Figure 8.22
The temperature dependence of the inverse staggered susceptibility J/ys of β-Μη and
β-Μη08Α10.2 fitted to eq. (8.24). The parameters Fs and [l/FsxHP(q) + Ms2(0)] for each fit
are shown.
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Taking the value of the ordered Mn moment of μ - 1.05μβ/Μη atom for β-Μηο.8Α1ο.2
obtained from our neutron polarisation analysis study (see figure 7.17), the value of

Ms2(0) in β-Μηο.8Α1ο.2 is approximately -0.275 /Mn atom. Therefore, from the value of

[l/FsXHF(q) + Ms2(0)] = 0.12 + 0.01μΒ2 obtained from the fit of eq. (8.24) to 1/χκ shown
in figure 8.22, we can infer that,

l/XHp(q) ~ - 7.192 meV Mn atom μΒ"2.
From eq. (2.30), a negative value of l/xuriq) indicates that the Stoner condition for the

appearance of magnetic order, αχο > 1, is satisfied in β-Μηο.8Α1ο.2·

Since the magnetic transition temperature is defined as the point at which 1/χ8 = 0, we
can rearrange eq. (8.24) to obtain,

Sl2(T*) =3/5[l/FsXHF(q) + Ms2(0)], (8.24)
= 0.072 ± 004 for β-Μη0.8Α10.2-

where T* is the transition temperature predicted by SCR theory. This is shown as the
red point in figure 8.21, and indicates a transition temperature of Τ* ~ 53K for

β-Μη0.8Α1ο.2 This value of the transition temperature is higher than that obtained from
our magnetisation (Tg = 34K) and pSR (Tg = 38K) measurements. This discrepancy is
accounted for by the fact that the SCR theory does not take the effects of moment
frustration into account, which will inevitably depress the magnetic transition

temperature of the system. The SCR prediction of the temperature dependence of
<Sl>2 below the magnetic transition temperature is shown as the dotted line in figure
8.21.

For pure β-Μη we can assume that there is zero ordered moment per Mn atom at

Τ = OK. Therefore, the non interacting Hartree-Fock susceptibility in pure β-Μη is

given by,

1/Xhf = 16.762 μΒ2 mev"1 Mn atom"1,
which is the intercept on the 1/χ8 axis at Τ = OK.
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8.4 Discussion

The inelastic polarised neutron scattering study of Shiga et. al. [1] presented in chapter 1
indicated that the introduction of Al into the β-Μη lattice resulted in a significant
reduction in the Mn spin fluctuation spectral width, from 20meV at 7K in pure β-Μη to

0.7meV at 7K in β-Μη0.9Α1ο.ι. This observation led Shiga to characterise the transition

from the dynamic β-Μη ground state to the largely static β-Μηο.9Α1ο.ι ground state as a

quantum spin liquid (QSL) to spin glass transition. Our measurements, however,
indicate that the spectral width of the spin fluctuations in β-Μη is not reduced by the
introduction of Al. We do, however, observe a sharp reduction in the inelastic intensity
of both β-Μη and β-Μηο.8Α1ο.2 together with a concomitant rise in the elastic intensity
as the temperature decreases.

The observation of a persistent dynamic component in β-Μηο.8Α1ο.2 is consistent with

our μ8ΙΙ measurements (see chapter 6). Figure 6.21a shows that the initial muon

asymmetry ao(T) in β-Μη0.8Α1ο.2 recovers to 1/3 of its high temperature value at Τ ~ 5K,

indicating a truly static magnetic ground state only at that temperature. The lowest
available temperature in our inelastic neutron study was 15K, at which point the initial
muon asymmetry lies well below 1/3 of its high temperature value, indicating residual

spin dynamics below the observed magnetic transition temperature of Tg = 38K.

The most striking difference between pure β-Μη and β-Μηο.8Α1ο.2 is the change in the
nature of the staggered susceptibility χ8 and the local Mn spin fluctuation amplitude

<Sl>2. The forms of the temperature dependence of χ5, %l and <Sl>2 in both β-Μη and

β-Μη0.8Α1ο.2 are in extremely good agreement with the theoretical predictions of the
SCR theory of nearly and weakly antiferromagnetic metals. The form of the

temperature dependence of <Sl>2 indicates that β-Μη is an archetypal itinerant electron,

nearly antiferromagnetic metal, with <Sl> increasing linearly with temperature.

<Sl>2 in β-Μηο.8Α1ο.2 displays a tendency to saturate at high temperatures, thus

displaying both itinerant and local moment characteristics in accord with Moriya's
unified theory [10].
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8.5 Conclusions

We have undertaken an inelastic neutron scattering study of β-Μη and β-Μη0.8Α1ο.2·

We have shown that the large zero-point spin fluctuation spectral width of pure β-Μη is
not greatly reduced by the introduction of Al. Our measurements do not, therefore,

support the notion of a dynamic QSL to static spin glass phase transition.

The form of the magnetic scattering obtained by integrating over the entire inelastic
linewidth agrees well with the form of elastic magnetic scattering observed in our

neutron polarisation analysis study (chapter 7). The intensity of the magnetic scattering
is found not to vary greatly between β-Μη and β-Μηο.8Α1ο.2, indicating that the loss in

magnetic intensity observed in our neutron polarisation analysis study is due to an

increasingly inelastic component of the scattering cross-section.

The temperature dependence of the staggered susceptibility is found to be Curie-Weiss
like in the paramagnetic regime for both β-Μη and β-Μη0.8Α1ο.2 as predicted by the SCR

theory. The form of the observed temperature dependence of the local Mn spin
fluctuation amplitude indicates the presence of purely itinerant moments in β-Μη and

partially localised moments in β-Μη0.8Α1ο.2·
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9 Conclusions and Further Studies

In this thesis, I have characterised the magnetic and structural properties of pure β-Μη

and β-Μηι.χΑ1χ alloys with concentrations in the range 0 < χ < 0.2, using a combination
of experimental techniques. I have attempted to describe the mechanism by which the
inclusion of non magnetic A1 impurities in the non-magnetic β-Μη lattice results in the
stabilisation of short-range magnetic order, and to characterise the nature of the spin

dynamics and the magnetic ground states of the β-Μηι_χΑ1χ series.

9.1 Structural Properties

We have demonstrated that the formation of β-Μη from α-Mn results in a close packed

crystal structure in which there is geometrical frustration between the triangularly
coordinated site II Mn moments. A1 impurities display a strong preference for the site
II crystallographic position in the β-Μη matrix, lending support to the contention that

the introduction of A1 impurities in β-Μη disrupts the spin configurational degeneracy
associated with the site II sublattice. We have also shown that there exists short-range
order of the A1 impurities on the site II β-Μη sublattice, with the A1 nuclei displaying

anticlustering behaviour.

9.2 Masnetic Properties

9.2.1 In-house Characterisation

Magnetisation studies of β-Μηι.χΑ1χ reveal spin glass like behaviour for concentrations
χ > 0.1. The observation of a temperature dependent bulk susceptibility in β-Μηι.χΑ1χ

alloys with χ > 0.1 in contrast to the weak temperature dependence observed in pure

β-Μη indicates partial moment localisation in the concentrated alloys.
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We have observed non-Fermi Liquid scaling properties of the electrical resistivity of

pure β-Μη with p(T) »= T3/2 at low temperatures, in accordance with the SCR prediction
for nearly antiferromagnetic metals.

9.2.2 uSR Measurements

From our muon spin relaxation ^SR) studies, we have obtained the first published [1]

magnetic phase diagram of the β-Μηι_χΑ1χ series (figure 6.22). This phase diagram
reveals an abrupt rise in the transition temperature of β-Μηι_χΑ1χ alloys at a

concentration of χ = 0.09, which is accompanied by a change in the nature of the spin

dynamics from simple exponential to stretched exponential, indicating spin glass-like

magnetic relaxation in the paramagnetic state of the more concentrated alloys.

It is tempting to interpret this remarkable behaviour in terms of a quantum spin liquid to

spin glass phase transition. Nakamura and co-workers [2] have observed magnetic

ordering in β-Μηι_χΑ1χ for χ > 0.05, using NMR, and have attributed this magnetic
order to just such a transition process. Their observations of the temperature

dependence of the nuclear relaxation rate 1/Tt show a VΤ dependence for β-Μηο.97Α1ο.ο3

going over to a critical divergence in 1/Ti vs. Τ for β-Μηο.9Α1ο.ι (see chapter 1). It
would be instructive to investigate whether this change in the temperature dependence
of the nuclear relaxation rate in β-MnAl occurs at A1 concentrations between 9at% and

10at%, where we observe the crossover from simple to stretched exponential spin

dynamics. However, our results are in broad agreement with those of Nakamura, in
that spin glass like magnetic behaviour is only observed in β-Μηι.χΑ1χ alloys with
χ > 0.1, the NMR signal for alloys with χ < 0.1 being too weak to observe.

The question remains as to what precipitates this extraordinarily abrupt crossover region
in the β-MnAl phase diagram at an A1 concentration between 9at% and 10at%. One can

identify three main mechanisms which will affect the degree of local moment formation
and the nature of the spin dynamics in β-MnAl.
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a) Lattice expansion

As the β-Μη lattice expands with increasing A1 substitution, the intersite electron

hopping rate will decrease (see section 2.4.3.1), leading to a narrowing of the spin
fluctuation spectral width. However, neutron diffraction studies of the β-MnAl series

presented in chapter 5 reveal no discontinuity in the lattice constant at the crossover

concentration.

b) Local environment

The substitution of non-magnetic A1 atoms onto the magnetic site II β-Μη sublattice
introduces a degree of disorder into the matrix, and disrupts the magnetic exchange
between the magnetic site II Mn atoms.

c) Spin configurational degeneracy
Recent work by Asada [3] has shown a high degree of spin configurational degeneracy
in β-Μη, brought about by geometrical frustration in the site II β-Μη sublattice. We
believe that substitution of non-magnetic A1 atoms into this sublattice reduces this
frustration and, at least partially, lifts the spin-configurational degeneracy, thereby

reducing the spectral width of the spin fluctuations in the manner suggested by Pinettes
and Lacroix [4],

The indication of a unique spin relaxation time in dilute β-Μηι_χΑ1χ alloys provided by
our pSR measurements implies that the nature of the spin relaxation in these alloys is
determined by the details of the 3d electron band, where itinerant moments, forming on

site II Mn atoms, do so uniformly throughout the lattice, as determined by the density of
3d electron states at the Fermi energy. The sudden appearance of a broad distribution
of spin relaxation times in β-Μηι_χΑ1χ alloys with χ > 0.09, indicated by the stretched

exponential form of the muon relaxation function, implies that the spin dynamics in this

regime are determined by a wide range of local magnetic environments over the site II
Mn atoms, as the degree of local magnetic disorder increases. The muon therefore,
becomes increasingly sensitive to localised transverse spin fluctuations, characterised by
a broad distribution of relaxation times. The reduction in the muon initial asymmetry

to well below 1/3 of its high temperature value indicates that while these transverse spin
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fluctuations effectively "freeze", longitudinal (amplitude) spin fluctuations still persist
to very low temperatures.

9.2.3 Neutron Polarisation Analysis Studies

Analysis of the magnetic short-range order in β-MnAl alloys at low temperature using a

novel Monte-Carlo procedure shows that the nature of the magnetic correlations in

β-MnAl changes little throughout the series. The strength of the magnetic correlations
increases but extend over a shorter range as the A1 concentration increases. This
concentration dependence of the magnetic correlations is consistent with a system in
which long-range antiferromagnetic order is disrupted by geometrical frustration of the
Mn spins at the dilute end of the series and local chemical disorder at the concentrated
end of the series. However, since the magnetic correlations are similar in form

throughout the β-MnAl concentration range, the abrupt nature of the crossover region in
the μ8ϊ^ phase diagram should not necessarily be interpreted as a transition between

magnetic ground states at a critical A1 concentration, but rather as a consequence of a
sudden change in the nature of the fundamental spin dynamics.

9.2.4 Inelastic Neutron Scattering Studies

Inelastic neutron scattering studies of pure β-Μη and β-Μηο.8Α1ο.2 reveal that the wide

spin fluctuation spectral width at low temperatures in pure β-Μη is not significantly
reduced by the introduction of Al, and that there remains a significant dynamic

component to the magnetic ground state at low temperatures. This observation is in
full agreement with our μδΙΙ measurements. However, the magnetic ground state of

β-Μηο.8Α10.2 is observed to be largely static at low temperatures. Analysis of the

integrated magnetic intensity reveals that our polarised neutron scattering experiment
measured only the dominant elastic contribution to the magnetic cross-section at these

temperatures. The observed decrease in the static Mn moment with decreasing Al
concentration is, therefore, assumed to be due to an increasingly large contribution to

the magnetic response from residual dynamical spin fluctuations at low temperatures.
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The staggered susceptibility of both β-Μη and β-Μηο.8Α1ο.2 displays Curie-Weiss
behaviour in the paramagnetic regime in full agreement with the predictions of the SCR

theory. The origin of the Curie-Weiss temperature dependence is interpreted in terms

of the temperature dependence of the thermal average of the local spin fluctuation

amplitude, which indicates purely itinerant moments in pure β-Μη and partially
localised moments in β-Μηο.8Α1ο.2.

9.2.5 Comparison of uSR and Inelastic Neutron Measurements

It has been shown [5,6] that in the case of a Lorentzian spin fluctuation lineshape, the
muon spin relaxation rate λ is related to the Q-dependent susceptibility and linewidth

according to the relation,

where Β is a coupling constant and the subscript η signifies that λ is determined from

neutron measurements. In practice we do not have detailed information about T(Q),

since we are measuring the powder averaged r(|Q|) over a small Q-range. However, it
would appear from our inelastic neutron data that the Q-dependence of T(Q) is weak.
We may therefore write eq. (9.1) as [6],

Thus, the functional form of λ(Τ) measured in a pSR experiment may be derived from
the inelastic linewidth and local susceptibility measured in an inelastic neutron

experiment. It has recently been shown that this relationship holds extremely well for
the CI5 laves phase compounds, YMn2 and Y(Mno.9Alo.i)2 [6].

Figure 9.1 shows the form of the muon depolarisation rate derived from our inelastic
neutron scattering data (λη) for β-Μη and β-Μηο.8Α1ο.2, compared with the measured

muon depolarisation rate from our pSR study (λμβιι) scaled to the data at high

temperatures by the coupling constant B. Figure 9.1 shows that eq. (9.2) does not hold
for either β-Μη or β-Μηο.8Α1ο.2· In fact, the form of λ„(Τ) is much more reminiscent of
the temperature dependence of the NMR relaxation rate 1/T ι shown in figure 1.12.

(9.1)
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Figure 9.1
The mnon depolarisation rate λ„ of β-Μη and β-Μη08ΑΙ(ΐ2 derived from our inelastic
neutron data using eq. (9.2) compared to the measured muon depolarisation rate
scaled to the data at high temperatures using the value of Β shown. ληΓΓ) is shown to
follow a I'"2 temperature dependence in common with the NMR relaxation rate 1/T
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Figure 9.1 shows that the paramagnetic low temperature region of λη(Τ) approximately
follows a T1/2 dependence, in common with 1/Ti.

This observation leads one to conclude that the muon and inelastic neutron data do not

scale according to eq. (9.2) for the same reason as the muon and NMR relaxation rates

are found not to scale according to eq. (6.43) (see section 6.4). Namely, that the muon

and nuclear and atomic spins are sensitive to different local environments and relaxation
rates.

As discussed in section 6.4, the Fermi contact contribution to the spin relaxation rate at

the interstitial muon site may be greatly reduced if the system is antiferromagnetically
correlated. Therefore, while the NMR and inelastic neutron measurements are sensitive

to the intrinsic spin relaxation rate, the muon relaxation rate is determined only by the

fluctuating dipolar fields at the muon site. One would therefore expect that the NMR
and neutron data would scale with each other according to eq. (9.2) but not necessarily
scale with the muon data. In contrast, the temperature dependence of both the inelastic
neutron linewidth and the muon depolarisation rate in YMn2 and Y(Mni_xAlx)2 is found
to follow an Arrhenius law of the form, λ = Xoexp_E/kT and Γ = Toexp^1 [6].

Therefore, while antiferromagnetic correlations prevail in these systems, the Fermi
contact interaction does not determine the spin relaxation and the conflict between the

μSR and NMR relaxation rates is avoided.

9.3 Classification of β-ΜηΑΙ

In this thesis we have shown that β-Μη is an archetypal nearly antiferromagnetic metal.
The measured temperature dependence of the NMR 1/Ti, the specific heat, the

resistivity and the staggered susceptibility χ5 all follow the functional forms predicted

by the SCR theory of nearly antiferromagnetic metals. We have demonstrated that the
addition of A1 to β-Μη results in the formation of partially localised magnetic moments

and a spin glass-like magnetic ground state at low temperatures. Between 9at% and
10at% we have observed an abrupt change in the nature of the fundamental spin

dynamics of β-MnAl from simple to stretched exponential.
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Referring to Moriya's classification diagram (figure 2.10), the increased amplitude of
the spin fluctuations and the observation of partially localised moments allows us to

characterise β-Μηο.8Α1ο.2 as an intermediate system at the centre of the diagram. On the
evidence of our magnetisation and inelastic neutron scattering experiments, one might

expect that the route followed by the β-Μηι_χΑ1χ series across the classification diagram
shown in figure 9.2 would be given by a smooth transition from pure β-Μη to β-
Mn0.8Alo.2 involving a gradual process of moment localisation and a gradual increase in
the spin fluctuation amplitude. The precise route across the Moriya classification

diagram will be determined by further inelastic neutron scattering studies of
intermediate β-Μηι.χΑ1χ concentrations, scheduled on HET.

The most likely origin of the abrupt increase in the observed transition temperatures of

β-Μηι_χΑ1χ, is the sudden lifting of the degeneracy of the Mn spin configurations, and
the creation of a unique local spin configuration, caused by the reduction in the

topological frustration of the Mn moments. This reduction in frustration will suddenly
decrease the spectral width of the amplitude spin fluctuations, allowing the spin

dynamics to become dominated by the transverse spin fluctuations associated with ever

more localised Mn moments in the system.

Small

ω
-α
3

Local in

Q space
Spin Fluctuations Local in

real space

Saturated

Figure 9.2
The positions of β-Μη and β-Μη08Α102 on Moriya's classification diagram estimated from
our inelastic neutron scattering and pSR studies.
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It is clear from this study that the characterisation of the transition from β-Μη to

β-Μηο.8Α1ο.2 as a quantum spin liquid to spin glass transition [2] is an oversimplification
of the problem. Our studies show that while we see a well defined magnetic transition

temperature in the more concentrated β-MnAl alloys, there remains a residual spin

dynamical component of the magnetic ground state. This indicates that, while the
transverse spin fluctuations associated with partially localised moments may be

critically damped, some amplitude spin fluctuations remain.

9.4 Suggestions for Further Study

As a further investigation of the magnetic properties of the β-MnAl system, we shall be

undertaking a comprehensive study of the pressure dependence of the electrical

resistivity. Such studies have provided valuable insight into the role played by spin
fluctuations in the laves phase compounds YMn2 and YCo2 [7], Analysis of the

pressure dependence of p(T) will allow us to characterise the magnetic properties of the

β-MnAl series as a function of lattice constant alone in alloys with fixed chemical
disorder.

The analysis of the magnetic diffuse scattering of β-MnAl using Monte-Carlo modelling
has proved a very successful method of analysing magnetic short-range order in

powdered samples, while simultaneously taking nuclear short-range correlations into
account. Having established the basic framework for this type of analysis, there is a

great deal of scope for future work.

Investigations of β-MnFe and β-MnCo alloys are also planned, in which the formation
of a magnetic ground state is related to 3d electron donation (see sections 1.3.2 and

1.3.3), and in which the substituent atoms reside on the site I β-Μη sublattice (see

chapter 5). It will be instructive to classify these alloys in terms of their moment

localisation and spin dynamical properties.
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Appendix A
The code of the Reverse-Monte-Carlo program "INTA" used to model the nuclear
diffuse scattering in β-MnAl alloys in chapter 7 is here annotated and listed.

The program was compiled and run on a Digital VMS Alpha computer. The intrinsic
function "RAN(I)" is specific to VMS FORTRAN 77 and generates an random number
between 0 and 1 from the integer seed I.

c

C Reverse Monte-Carlo program to model nuclear disorder scattering in
C a binary alloy.
C

PROGRAM INTA

C

C ROSS STEWART: CREATED 12/5/98
C LAST MODIFIED 22/5/98
C

IMPLICIT NONE

C

INTEGER X2(1000),Y2(1000),Z2(1000)
INTEGER X3(1000),Y3(1000),Z3(1000)
INTEGER XSEP,YSEP,ZSEP,CURR,ACOUNT,SNUM
REAL TOLL,SUMDSQ,OLDDSQ,STEP,STAR,SUMDSQ1(10),LAUT(10)
REAL A,CONC,LS, SDIST(30),DIST(1000),RAN,DIST2(1000),LATT
REAL QD(200),COD(200),ERRD(200),WC,PROB,RES(200),SUMSINC(200)
REAL SINCF(30,200),CAL(200),LAUE,CHISQ(90000),GRACHI(10)
INTEGER HOLD,NUMD,ΡFLAG,HOLDX,HOLDY,HOLDZ,F
INTEGER LOOP,COUNT,NX,NY,NZ,MX,MY,MZ,N,YES(30),ITER,RSHELL,NMN
INTEGER NAL,HIT,I,HITS(1000),AL(1000),MAIN,C(100),HOLDAL
INTEGER FIRST,LAST,INDCENT,CENT,COORD(30),SHELL,NUM,SH,NAT(30)
INTEGER SWAP(10),MISS(1000),ARSE,MCOUNT,GOODAL(1000),SENT
INTEGER COUNTAL,COUNTMN,NINSH,PAV(30),G,L,SCOORD(30),SUMS
LOGICAL SORTED

CHARACTER*60 TITLE

CHARACTER*8 DFILE,PFILE,UFILE
CHARACTER*33 DAFILE,PAFILE,CHIFILE
CHARACTER*30 PARFILE

CHARACTER*1 ANS

C

C Title
C

PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,

k IIIIII NN NN Ττττττττ ΑΑ ■Α"

k II NNN NN ττ ΑΑΑΑ ★

k II NNNN NN ττ ΑΑ ΑΑ ■k

k II NN NN NN ττ ΑΑΑΑΑΑ k

k II NN NN NN ττ ΑΑ ΑΑ k

k II NN NNNN ττ ΑΑ ΑΑ k

k IIIIII NN NNN ττ ΑΑ ΑΑ k

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk *

RMC Modelling of Nuclear Diffuse Scattering'
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PRINT*, ' by Ross Stewart'
PRINT*, ' '
PRINT*, ' University of St Andrews, May 1998'
PRINT*, ' '
PRINT*, ' '

C

C Parameters

C

1=9762

PARFILE='MUSER1:[JRS2.NUC_SIM]PAR.DAT'
C

F=8

OPEN (UNIT=F,FILE=PARFILE,STATUS='OLD')
PRINT*, ' Input Data File (.DAT assumed) '
READ(F,73) DFILE
DAFILE='MUSER1; [JRS2.NUC_SIM] '//DFILE//' .DAT'
PRINT*, ' Generate Random substitution (R) or '
PRINT*, ' read positions from "pos" file? (P) '
READ (F,72) ANS
IF(ANS.EQ.'Ρ'.OR.ANS.EQ.'ρ') THEN

PFLAG=1
ELSE

PFLAG=0
END IF

PRINT*, ' Input
READ(F,*) CONC
PRINT*, ' Input
READ(F,*) LAUE
PRINT*, ' Input
READ(F,*) LATT
PRINT*, ' Input
READ(F,*) TOLL
PRINT*, ' Input
READ(F,*) SNUM
PRINT*, ' Input
READ(F,73) UFILE

C

A=LATT*IE-04
C

C Format Statements

C

71 FORMAT(A60)
72 FORMAT (Al)
73 FORMAT (A8)
C

C Read in data
C

OPEN(1,FILE=DAFILE,STATUS='OLD')
READ(1,71)TITLE
READ(1,*)NUMD
DO L=1,NUMD
READ(1,*) QD(L),COD(L),ERRD(L)

END DO

CLOSE(1)
C

IF(PFLAG.EQ.1) GO TO 222
C

C Coordinates for Site II nuclei
C

X2(1)=3750
Y2(1)=7965

impurity concentration '

Laue Scattering level (barns/st/atom)

Lattice constant (A) '

tolerence level '

number of swaps per iteration (max 5)

name for output files '
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Z2 1)=9535
X2 2)=9535
Y2 2)=3750
Z2 2)=7965
X2 3)=7965
Y2 3)=9535
Z2 3)=3750
X2 4)=8750
Y2 4)=7035
Z2 4)=465
X2 5)=4535
Y2 5)=1250
Z2 5)=2035
X2 6)=2965
Y2 6)=5465
Z2 6)=6250
X2 7)=6250
Y2 7)=2965
Z2 7)=5465
X2 8)=465
Y2 8)=8750
Z2 8)=7035
X2 9)=2035
Y2 9)=4535
Z2 9)=1250
X2 10)=1250
Y2 10)=2035
Z2 10)=4535
X2 11)=5465
Y2 11)=6250
Z2 11)=2965
X2 12)=7035
Y2 12)=465
Z2 12)=8750

c

C Generate two unit cells in X,Y, and Ζ directions IN FIRST QUADRANT
C

COUNT=0
DO NX=0,1

DO NY=0,1
DO NZ=0,1

CALL UNITGEN(X2,Y2,Z2,NX,NY,NZ,COUNT)
END DO

END DO

END DO

COUNT=0

C

C Transform nuclei in first quadrant onto other seven quadrants
C

MX=-2
MY=0
MZ=0

40 CALL QUADGEN(X2,Y2,Z2,MX,MY,MZ,COUNT)
IF (COUNT.EQ.l) THEN
MX=-2
MY=-2

MZ=0
GO TO 40

END IF

IF (COUNT.EQ.2) THEN
MX=0
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MY=-2
ΜΖ=0

GO TO 40
END IF
IF (COUNT.EQ.3) THEN

MX=0
MY=0
MZ=-2
GO TO 40

END IF

IF (COUNT.EQ.4) THEN
MX=-2
MY=0
MZ=-2
GO TO 40

END IF
IF (COUNT.EQ.5) THEN
MX=-2
MY=-2
MZ=-2
GO TO 40

END IF

IF (COUNT.EQ.6) THEN
MX=0
MY=-2
MZ=-2
GO TO 40

END IF

IF (COUNT.EQ.7) THEN
COUNT=0

END IF

C

N=768

C

C Number of A1 nuclei in matix
IF (CONC.EQ.O) THEN
NAL=0

ELSE
NAL=N*CONC

END IF

NMN=N-NAL

C

C Set all nuclei to be Mn
C

DO LOOP=l,Ν
AL (LOOP)=0

END DO

C

C Randomly assign the A1 nuclei
C

COUNT=l
IF (NAL.GT.0) THEN

DO LOOP=l,NAL
200 LS=RAN(I)

HIT=INT(LS*N)
DO L=l,COUNT-1
IF(HIT.EQ.HITS(L)) GO TO 200

END DO
IF (HIT.EQ.0) GO TO 200
HITS(COUNT)=HIT
COUNT=COUNT+1
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AL(HIT)=1
END DO

END IF

PRINT*, 'THERE ARE COUNT-1,* AL ATOMS'
GO TO 223

C

C Read A1 and Mn nuclear positions from a previously generated
C input file
C

222 PRINT*, ' Input position file (.POS assumed) '
READ(F, 73) PFILE

PAFILE='MUSER1:[JRS2.NUC_SIM]'//PFILE//'.POS'
N=7 68

OPEN(12,FILE=PAFILE,STATUS='OLD')
DO LOOP=l,N
READ(12,*) X2(LOOP), Y2(LOOP), Z2(LOOP), AL(LOOP)

END DO

CLOSE(12)
CLOSE(F)

C

C Count A1 and Mn nuclei
C

223 COUNT=l
ACOUNT=l

DO LOOP=l,N
IF(AL(LOOP).EQ.0) THEN
MISS(COUNT)=LOOP
COUNT=COUNT+1

ELSE

HITS(ACOUNT)=LOOP
ACOUNT=ACOUNT+l

END IF

END DO

IF(PFLAG.EQ.1) THEN
PRINT*, 'THERE ARE ',ACOUNT-1,' AL NUCLEI'
NAL=ACOUNT-1
NMN=N-NAL

END IF

C

MCOUNT=0

C

c

C Work out shell transformations
C

SENT=5
DO LOOP=l, Ν
XSEP=X2(LOOP)-X2(SENT)
YSEP=Y2(LOOP)-Y2(SENT)
ZSEP=Z2(LOOP)-Z2(SENT)
DIST(LOOP)=SQRT(REAL(XSEP**2)

+ +REAL(YSEP**2)
+ +REAL(ZSEP**2))

END DO

C

C Sort DISTANCE and separation arrays into ascending distance order
C

SORTED=.FALSE.

FIRST=1
LAST=N-1

80 IF (.NOT.SORTED) THEN
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SORTED=.TRUE.

C

DO 90 LOOP=FIRST,LAST
IF (DIST(LOOP).GT.DIST(LOOP+1)) THEN

HOLD=DIST(LOOP)
HOLDAL=AL(LOOP)
HOLDX=X2(LOOP)
HOLDY=Y2(LOOP)
HOLDZ=Z2(LOOP)
DIST(LOOP)=DIST(LOOP+1)
AL(LOOP)=AL(LOOP+1)
X2(LOOP)=X2(LOOP+1)
Y2(LOOP)=Y2(LOOP+1)
Z2(LOOP)=Z2(LOOP+1)
DIST(LOOP+1)=HOLD
AL(LOOP+1)=HOLDAL
X2(LOOP+1)=HOLDX
Y2(LOOP+1)=HOLDY
Z2(LOOP+1)=HOLDZ
SORTED=.FALSE.

END IF

90 CONTINUE
LAST=LAST-1
GO TO 80

END IF

C

C Ignore shells greater than 8 angstroms away
C

DO 120 LOOP=l,N
DIST(LOOP)=DIST(LOOP)*A
IF (DIST(LOOP).GT.8.0) THEN
NINSH=LOOP-l

GO TO 12
END IF

120 CONTINUE
C

C Sort nuclei into shells
C

12 NUM=1
SHELL=0

DO 110 LOOP=l,NINSH
IF ((DIST(LOOP+1)-DIST(LOOP)).LT.0.001) THEN

NUM=NUM+1
ELSE

COORD(SHELL+1)=NUM
SDIST(SHELL+1)=DIST(LOOP)
SHELL=SHELL+1
NUM=1

END IF

110 CONTINUE

C

RSHELL=SHELL-1

C

C Reinspect spins and assign
C

COUNTAL=l

COUNTMN=l
DO LOOP=l,Ν
IF(AL(LOOP).EQ.1) THEN

HITS(COUNTAL)=LOOP
COUNTAL=COUNTAL+l
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ELSE

MISS(COUNTMN)=LOOP
COUNTMN=COUNTMN+1

END IF

END DO

C

C Check on internal consistency
C

IF(COUNTMN-l.NE.NMN.OR.COUNTAL-1.NE.NAL) GO TO 876
C

C Initialise arrays
C

DO LOOP=l,RSHELL
YES(LOOP)=0
NAT(LOOP)=0

END DO

C
★ ★ -k -k -k ★ -k ★ ★ -k -k ★ -k ★ ★ -k ★ ★ -k -k -k -k -k -k ★ -k -k -k -k ★ ★ -k -k -k -k -k -k -k ★ ~k -k ★ -k -k ~k ★ -k -k ★ ★ ★ -k -k -k -k -k -k -k "k -k -k ★ ★ ~k ~k

C Start of main Loop
C

999 CONTINUE

C

C calulate sum of probability of each shell
C

DO L=1,NAL
CENT=HITS(L)
IF(AL(CENT).NE.1) THEN

PRINT*, 'MISTAKE AT ITER,CENT,AL(CENT)
END IF

C

C Transform to neighbours and apply boundary conditions
C Identify and add AL
C

DO LOOP=l,N
XSEP=X2(LOOP)-X2(CENT)
YSEP=Y2(LOOP)-Y2(CENT)
ZSEP=Z2(LOOP)-Z2(CENT)
X3(LOOP)=X2(LOOP)
Y3(LOOP)=Y2(LOOP)
Z3(LOOP)=Z2(LOOP)
IF(XSEP.GT.20000) X3(LOOP)=X2(LOOP)-40000
IF(YSEP.GT.20000) Y3(LOOP)=Y2(LOOP)-40000
IF(ZSEP.GT.20000) Z3(LOOP)=Z2(LOOP)-40000
IF(XSEP.LT.-20000) X3(LOOP)=X2(LOOP)+40000
IF(YSEP.LT.-20000) Y3(LOOP)=Y2(LOOP)+40000
IF(ZSEP.LT.-20000) Z3(LOOP)=Z2(LOOP)+40000
XSEP=X3(LOOP)-X2(CENT)
YSEP=Y3(LOOP)-Y2(CENT)
ZSEP=Z3(LOOP)-Z2(CENT)
DIST2(LOOP)=SQRT(REAL(XSEP**2)+REAL(YSEP**2)

+ +REAL(ZSEP**2))*A
DO ITER=2,RSHELL
IF(ABS(DIST2(LOOP)-SDIST(ITER)).LT.0.001) THEN
IF(AL(LOOP).EQ.1) YES(ITER-1)=YES(ITER-1)+1
NAT(ITER)=NAT(ITER)+1

END IF

END DO

END DO

END DO

C

C Re-initialise arrays
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DO LOOP=l,RSHELL-1
PAV(LOOP)=YES(LOOP)
NAT (LOOP)=0
YES(LOOP)=0

END DO

C

C compare simulation with experimental data
C

SUMDSQ=0.0
DO L=1,NUMD
SUMSINC(L)=0.0

END DO

C

C Calculate pair probabilities and Warren-Cowley parameters
C Calculate simulated cross-section
C

DO LOOP=l,RSHELL-1
PROB=REAL(PAV(LOOP))/(NAL*COORD(LOOP+1))
WC=1.0+((PROB-1.0)/(1.0-CONC))
DO L=1,NUMD

SINCF(LOOP,L)=REAL(COORD(LOOP+1))*WC
+ *SIN(QD(L)*SDIST(LOOP+1))/(QD(L)*SDIST(LOOP+1))

SUMSINC(L)=SUMSINC(L)+SINCF(LOOP,L)
END DO

END DO

C

C Calculate ChiSq
C

DO L=1,NUMD
CAL(L)=LAUE*(1+SUMSINC(L))
RES(L) = (COD(L)-CAL (L) )/ERRD(L)
SUMDSQ=SUMDSQ+(RES(L)**2)

END DO

SUMDSQ=SUMDSQ/FLOAT(NUMD)
C

C Is tolerance satisfied
C

IF (SUMDSQ.LT.TOLL) THEN
CALL ACCEPT(AL,GOODAL)
CHISQ(MCOUNT)=SUMDSQ
GO TO 666

END IF

C

66 FORMAT(' CHISQ =',F8.4,2X,' compared with ',F8.4,
+' MOVE',15,' ACCEPTED')

67 FORMAT(' CHISQ =',F8.4,2x,' compared with ',F8.4,
+' MOVE',15,' REJECTED')

C

C Accept first move
C

IF(MCOUNT.EQ.0) THEN
CALL ACCEPT(AL,GOODAL)
CHISQ(MCOUNT)=SUMDSQ
OLDDSQ=SUMDSQ
CALL OUT(X2,Y2,Z2,SDIST,PAV,RSHELL,GOODAL,NUMD,QD,COD,CAL,ERRD

+ ,UFILE)
GO TO 333

END IF

C

C Allow moves which minimise SUMDSQ
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c

IF(SUMDSQ.LT.OLDDSQ) THEN
CALL ACCEPT(AL,GOODAL)
CALL OUT(X2,Y2,Z2,SDIST,PAV,RSHELL,GOODAL,NUMD,QD,COD,CAL, ERRD

+ ,UFILE)
WRITE(*,66)SUMDSQ,OLDDSQ,MCOUNT
CHISQ(MCOUNT)=SUMDSQ
OLDDSQ=SUMDSQ

ELSE

WRITE(*,67)SUMDSQ,OLDDSQ,MCOUNT
END IF

DO LOOP=l,Ν
AL (LOOP)=GOODAL(LOOP)

END DO

C

C Swap 5 A1 atoms with Mn
C

333 SWAP(1)=HITS(INT(RAN(I)*REAL(NAL))+1)
SWAP(2)=HITS(INT(RAN(I)*REAL(NAL))+1)
SWAP (3) =HITS (INT (RAN (I) *REAL (NAL) ) +1)
SWAP (4) =HITS (INT (RAN (I) *REAL (NAL) ) +1)
SWAP(5)=HITS(INT(RAN(I)*REAL (NAL))+1)
SWAP (6) =MISS (INT (RAN (I) *REAL (NMN) ) +1)
SWAP (7) =MISS (INT (RAN (I) *REAL (NMN) ) +1)
SWAP (8) =MISS (INT (RAN (I) *REAL (NMN) ) +1)
SWAP (9) =MISS (INT (RAN (I) *REAL (NMN) ) +1)
SWAP(10)=MISS(INT (RAN (I) *REAL (NMN) ) +1)

C

C Check nuclear type
C

DO LOOP=l,5
IF(AL(SWAP(LOOP)).NE.1) GO TO 333
IF(AL(SWAP(LOOP+5)).NE.0) GO TO 333

END DO

C

DO LOOP=l,10
DO L=l,10

IF(SWAP(L) .EQ.SWAP (LOOP) .AND.L.NE.LOOP) GO TO 333
END DO

END DO

C

DO LOOP=l,SNUM
AL(SWAP(LOOP))=0
AL(SWAP(LOOP+5))=1

END DO

C

C Re-inspect spins and assign
C

COUNTAL=1
COUNTMN=l
DO LOOP=l,N
IF(AL (LOOP) .EQ.1) THEN

HITS(COUNTAL)=LOOP
COUNTAL=COUNTAL+1

ELSE

MISS(COUNTMN)=LOOP
COUNTMN=COUNTMN+1

END IF

END DO

IF(COUNTMN-l.NE.NMN.OR.COUNTAL-l.NE.NAL) GO TO 876
C
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PRINT*,' '
C

MC0UNT=MC0UNT+1
GO TO 999

C

C End of main loop
ζ^-k -k -k -k -k -k -k -k -k -k -k ~k ~k ~k -k -k "k -k -k ~k -k -k -k ~k -k -k -k -k -k -k -k -k kc -k -k -k ~k -k -k "k -k -k -k -k -k ~k -k ~k -k ~k ~k -k -k -k -k -k -k -k -k ~k ~k -k -k ~k -k -k ~k -k -k -k

C

666 PRINT*, 'Tolerance achieved'
PRINT*, 'END'
PRINT*,' '
CHIFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.CHI'
OPEN (3,FILE=CHIFILE,STATUS='UNKNOWN')
DO LOOP=l,MCOUNT

WRITE(3,*) LOOP,CHISQ(LOOP)
END DO

CLOSE(3)
CALL OUT(X2,Y2,Z2,SDIST,PAV,RSHELL,GOODAL,NUMD, QD, COD, CAL, ERRD

+ ,UFILE)
GO TO 101

C

C Consistency check failed
C

876 PRINT*, 'ERROR - FAILED CONSISTENCY CHECK'
C

101 END

C

C

SUBROUTINE UNITGEN(X2,Y2,Z2,NX,NY,NZ,COUNT)
C

INTEGER X2(1000),Y2(1000), Z2(1000)
INTEGER NX,NY,NZ,COUNT,LOOP
IF (NX.EQ.0. AND.NY.EQ.0.AND.NZ.EQ.0) THEN

RETURN

END IF

DO 101 LOOP=l,12
X2(12+(COUNT*12)+LOOP)=X2(LOOP)+(NX*10000)
Y2(12+(COUNT*12)+LOOP)=Y2(LOOP)+(NY*10000)
Z2(12+(COUNT*12)+LOOP)=Z2(LOOP)+(NZ*10000)

101 CONTINUE

COUNT=COUNT+1

C

RETURN

END

C

C

SUBROUTINE QUADGEN(X2,Y2,Z2,MX,MY,MZ,COUNT)
C

INTEGER X2(1000),Y2(1000),Z2(1000)
INTEGER MX,MY,MZ,COUNT,LOOP,Β
B=96
DO 100 LOOP=l,B
X2(B+(COUNT*B)+LOOP)=X2(LOOP)+(MX*10000)
Y2(B+(COUNT*Β)+LOOP)=Y2(LOOP)+(MY*10000)
Z2(B+(COUNT*Β)+LOOP)=Z2(LOOP)+(MZ*10000)

100 CONTINUE

COUNT=COUNT+l
C

RETURN
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END

C

Qk k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

C

SUBROUTINE ACCEPT(AL,GOODAL)
C

INTEGER AL(1000), GOODAL(IOOO)
C

N=768
DO LOOP=l,N

GOODAL (LOOP)=AL(LOOP)
END DO

C

RETURN

END

C

Qk k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k
c

SUBROUTINE

+OUT(X2,Y2,Z2,SDIST,PAV,RSHELL,GOODAL,NUMD,QD,COD,CAL,ERRD
+,UFILE)

C

INTEGER X2(1000),Y2(1000),Z2(1000),PAV(30),GOODAL(1000),NUMD
INTEGER LOOP, RSHELL
REAL SDIST(30),LAUE
REAL COD(200),CAL(200),ERRD(200),QD(200)
CHARACTER*8 UFILE

CHARACTER*33 OFILE, PFILE, RFILE, FFILE
C

OFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.OUT'
PFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.POS'
RFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.RAW'
FFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.FIT'

OPEN(1,FILE=OFILE,STATUS='UNKNOWN')
DO LOOP=l,RSHELL-1
WRITE(1,*) SDIST(LOOP+1),PAV(LOOP),0.0

END DO

CLOSE(1)
OPEN(2,FILE=PFILE,STATUS='UNKNOWN')
DO LOOP=l,768
WRITE(2,*) X2(LOOP), Y2(LOOP), Z2(LOOP), GOODAL(LOOP)

END DO

CLOSE(2)
OPEN(3,FILE=RFILE,STATUS='UNKNOWN')
DO LOOP=l,NUMD
WRITE(3,*) QD(LOOP),COD(LOOP),ERRD(LOOP)

END DO

CLOSE(3)
OPEN(4,FILE=FFILE,STATUS='UNKNOWN')
DO LOOΡ=1,NUMD
WRITE(4,*) QD(LOOP), CAL (LOOP), 0.0

END DO

CLOSE(4)
C

RETURN

END

C

C

Q^k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k
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Appendix Β
The code of the Reverse-Monte-Carlo program "MAG" used to model the magnetic
diffuse scattering in β-MnAl alloys in chapter 7 is here annotated and listed.

The program was compiled and run on a Digital VMS Alpha computer. The intrinsic
function "RAN(I)" is specific to VMS FORTRAN 77 and generates an random number
between 0 and 1 from the integer seed I.

c

C Reverse Monte-Carlo program to model magnetic disorder scattering in
C a binary alloy.
C

PROGRAM INTMAG

C

C ROSS STEWART: CREATED 20/5/98
C LAST MODIFIED 22/5/98
C

IMPLICIT NONE

C

INTEGER X2(1000),Y2(1000),Z2(1000)
INTEGER X3(1000),Y3(1000),Z3(1000)
INTEGER X4(1000),Y4(1000),Z4(1000)
INTEGER XSEP,YSEP,ZSEP,HOLDX,HOLDY,HOLDZ
REAL TOLL,SUMDSQ,OLDDSQ,DUM,THETA,THI,MUX(1000),MUY(1000)
REAL MUZ(1000),PI,YES(30),PAV(30),FFS(200),PLIER,SELF
REAL A,CONC,LS,SDIST(30),DIST(1000),RAN,DIST2(1000)
REAL QD(200),COD(200),ERRD(200),WC,PROB,RES(200),SUMSINC(200)
REAL SINCF(30,200),CAL(200),LAUE,FF1,FF2,FF3,LATT
REAL GMUX(1000),GMUY(1000),GMUZ(1000),SUMDSQ1(10)
REAL CHISQ(90000) , STEP,STAR,SELT(10) ,GRACHI(10)
INTEGER HOLD,NUMD,ΡFLAG,IPRINT
INTEGER LOOP,COUNT,N,ITER,RSHELL,NMN,CURR
INTEGER NAL,HIT,I,HITS(1000),AL(1000),MAIN,C(100),HOLDAL
INTEGER FIRST,LAST,INDCENT,CENT,COORD(30),SHELL,NUM,SH
INTEGER SWAP(10),MISS(1000),ARSE,MCOUNT,SENT,VFLAG,NAT(30)
INTEGER COUNTAL,COUNTMN,ΝIΝSΗ,G,L,SUMS,SNUM,F
LOGICAL SORTED

CHARACTER*60 TITLE

CHARACTER*8 DFILE, PFILE, UFILE, MPFILE
CHARACTER*33 DAFILE, PAFILE, MPAFILE,CFILE
CHARACTER*1 ANS

CHARACTER*31 PARFIL
C

C User input
C

PRINT*, '
PRINT*, ' ★ MM MM AA GGGGGG *

PRINT*, ' MMM MMM AAAA GG *

PRINT*, ' * MM Μ MM AA AA GG GGG *

PRINT*, ' ★ MM MM AAAAAA GG GG *

PRINT*, ' * MM MM AA AA GGGGGG *

PRINT*, ' *****************************
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RMC Modelling of Magnetic Diffuse Scattering'

by Ross Stewart'
University of St Andrews, May 1998'

I

PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,

C

C Input Parameters
C

1=9762
IPRINT=0

F=8

PARFIL='MUSER1:[JRS2.NUC_SIM]MAGPAR.DAT'
OPEN(UNIT=F,FILE=PARFIL,STATUS='OLD')

C

PRINT*, ' Input data file (.DAT assumed)
READ(F,73) DFILE

DAFILE='MUSER1:[JRS2.NUC_SIM]'//DFILE//'.DAT'
PRINT*, ' Input position file from INTA (.POS)
READ(F,73) PFILE
PAFILE='MUSER1:[JRS2.NUC_SIM]'//PFILE//'.POS'
PRINT*, ' Generate random spins (R) or '
PRINT*, ' read from magnetic position file (P)?
READ(F,72) ANS
IF(ANS.EQ.'Ρ'.OR.ANS.EQ.'ρ') THEN

PFLAG=1

ELSE

PFLAG=0

END IF

PRINT*, ' Input S(S+1) '
READ(F, *) SELF
PRINT*, ' Do you want to vary (V) or fix (F) S(S+1)?
READ(F,72) ANS
IF(ANS.EQ.'V'.OR.ANS.EQ.'v') THEN
VFLAG=1

PRINT*, ' Look for hits?
READ(F,72) ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'y') IPRINT=1
PRINT*, ' Input Stepsize '
READ(F,*) STEP
STAR=5.0*STEP

ELSE

VFLAG=0
END IF

PRINT*, ' Input Lattice constant (A) '
READ(F,*) LATT
A=LATT*lE-04

PRINT*, ' Input number of spin rotations (max 5)
READ(F,*) SNUM
PRINT*, ' Input Tolerance level '
READ (F,*) TOLL
PRINT*, ' Input name for output files '
READ(F,73) UFILE

C

N=768
PI=3.1415927

C

C Format statements

C

71 FORMAT(A60)
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72 FORMAT (ΑΙ)
73 FORMAT (A8)
C

C Read in data
C

OPEN(1,FILE=DAFILE,STATUS='OLD')
READ(1,71)TITLE
READ(1,*)NUMD
DO L=1,NUMD
READ(1,*) QD(L),COD(L),ERRD(L)

END DO

CLOSE(1)
C

C Calculate Free Mn form factor
C

DO LOOΡ=1,NUMD
FF1=0.2438*EXP(-24.963*((QD(LOOP)/12.566)**2))
FF2=0.1472*EXP(-15.673*((QD(LOOP)/12.566)**2))
FF3=(0.6189*EXP(-6.54*((QD(LOOP)/12.566)**2)))-0.0105
FFS(LOOP)=(FF1+FF2+FF3)**2

END DO

C

C "Plier" is (gamma*ro)**2
C

PLIER=0.1936807
C

C Read in Mn and A1 atomic position file
C

OPEN(2,FILE=PAFILE,STATUS='OLD')
DO LOOP=l,N
READ(2,*) X2(LOOP),Y2(LOOP),Z2(LOOP),AL(LOOP)

END DO

C
★ ★ -k -k ·*■ ★ -k -k -k -k -k -k -k -k Άτ -k -k -k ★ -k ~k -k -k -k ★ -k -k ★ ★ ★ ★ -k ★ -k -k -k -k -Je -k -k -k -k -k ★ ★ ★ ★ "k ★ -k -k -k ★ ★ ★ ★ ★ ★

C

C Sort out neighbouring shells and coordinations
C

SENT=5
DO LOOP=l,N

XSEP=X2(LOOP)-X2(SENT)
YSEP=Y2(LOOP)-Y2(SENT)
ZSEP=Z2(LOOP)-Z2(SENT)
DIST(LOOP)=SQRT(REAL(XSEP**2)

+ +REAL(YSEP**2)
+ +REAL(ZSEP**2))
END DO

C

C Sort DISTANCE and separation arrays into ascending distance order
C

SORTED=.FALSE.

FIRST=1
LAST=N-1

80 IF (.NOT.SORTED) THEN
SORTED=.TRUE.

C

DO 90 LOOP=FIRST,LAST
IF (DIST(LOOP).GT.DIST(LOOP+1)) THEN

HOLD=DIST(LOOP)
HOLDAL=AL(LOOP)
HOLDX=X2(LOOP)
HOLDY=Y2(LOOP)
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H0LDZ=Z2(LOOP)
DIST(LOOP)=DIST(LOOP+1)
AL(LOOP)=AL(LOOP+1)
X2(LOOP)=X2(LOOP+1)
Y2(LOOP)=Y2(LOOP+1)
Z2(LOOP)=Z2(LOOP+1)
DIST(LOOP+1)=HOLD
AL(LOOP+1)=HOLDAL
X2(LOOP+1)=HOLDX
Y2(LOOP+1)=HOLDY
Z2(LOOP+1)=HOLDZ
SORTED=.FALSE.

END IF

90 CONTINUE
LAST=LAST-1
GO TO 80

END IF

C

C Ignore shells greater than 8 angstroms away
C

DO 120 LOOP=l,Ν
DIST(LOOP)=DIST(LOOP)*A
IF (DIST(LOOP).GT.8.0) THEN

NINSH=LOOP-l
GO TO 12

END IF

120 CONTINUE

C

C Sort into shells
C

12 NUM=1
SHELL=0
DO 110 LOOP=l,NINSH
IF ((DIST(LOOP+1)-DIST(LOOP)).LT.0.001) THEN

NUM=NUM+1
ELSE

COORD(SHELL+1)=NUM
SDIST(SHELL+1)=DIST(LOOP)
SHELL=SHELL+1
NUM=1

END IF

110 CONTINUE

C

RSHELL=SHELL-1
C

C inspect spins and assign
C

COUNTAL=1
COUNTMN=l
DO LOOP=l,Ν
IF(AL(LOOP).EQ.l) THEN

HITS(COUNTAL)=LOOP
COUNTAL=COUNTAL+l

ELSE

MI S S(COUNTMN)=LOOP
COUNTMN=COUNTMN+1

END IF

END DO

NAL=COUNTAL-l
NMN=COUNTMN-l

IF(NAL+NMN.NE.N) GO TO 876
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CONC=REAL(NAL)/REAL(N)
PRINT*,' Input file consistent with a ',CONC,'% concentration'

C

C Assign spin directions randomly or read from file
C

IF(PFLAG.EQ.1) THEN
PRINT*,'Input magnetic position file (.MOS assumed) '
READ(F,73) MPFILE
MPAFILE='MUSER1:[JRS2.NUC_SIM]'//MPFILE//'.MOS'
OPEN(4,FILE=MPAFILE,STATUS='OLD')

END IF

COUNT=l

DO LOOP=l,N
IF(AL(LOOP).EQ.0) THEN
IF(PFLAG.EQ.0) THEN

X3(COUNT)=X2(LOOP)
Y3(COUNT)=Y2(LOOP)
Z3(COUNT)=Z2(LOOP)

33 DUM=RAN(I)*PI
IF (RAN(I).GT.SIN(DUM)) THEN

GOTO 33
END IF

THETA=DUM

THI=RAN(I)*2.0*PI
MUX(COUNT)=SIN(THETA)*COS(THI)
MUY(COUNT)=SIN(THETA)*SIN(THI)
MUZ(COUNT)=COS(THETA)

ELSE

READ (4,*) X3(COUNT),Y3(COUNT),Z3(COUNT),
+ MUX(COUNT),MUY(COUNT),MUZ(COUNT)

END IF

COUNT=COUNT+l

END IF

END DO

C

IF(PFLAG.EQ.1) CLOSE(4)
CLOSE(F)

C

C initialise arrays
C

DO LOOP=l,RSHELL
YES(LOOP)=0
NAT (LOOP)=0

END DO

C

MCOUNT=0
C

0 -k-k-k-kgTA.RT OF MAIN *

C

999 CONTINUE

C

C calculate sum of each shell
C

DO L=l,NMN
CENT=L

C

C Find neighbours, calculate total dot product of each shell
C for all Mn atoms

C

DO LOOP=l,NMN
XSEP=X3(LOOP)-X3(CENT)
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YSEP=Y3(LOOP)-Y3(CENT)
ZSEP=Z3(LOOP)-Z3(CENT)
X4(LOOP)=X3(LOOP)
Y4(LOOP)=Y3(LOOP)
Z4(LOOP)=Z3(LOOP)

C

C Boundary Conditions
C

IF(XSEP.GT.20000) X4(LOOP)=X3(LOOP)-40000
IFfYSEP.GT.20000) Y4(LOOP)=Y3(LOOP)-40000
IF(ZSEP.GT.20000) Z4(LOOP)=Z3(LOOP)-40000
IF(XSEP.LT.-20000) X4(LOOP)=X3(LOOP)+40000
IF(YSEP.LT.-20000) Y4(LOOP)=Y3(LOOP)+40000
IF(ZSEP.LT.-20000) Z4(LOOP)=Z3(LOOP)+40000
XSEP=X4(LOOP)-X3(CENT)
YSEP=Y4(LOOP)-Y3(CENT)
ZSEP=Z4(LOOP)-Z3(CENT)
DIST2(LOOP)=SQRT(REAL(XSEP**2)+REAL(YSEP**2)

+ +REAL(ZSEP**2) ) *A
DO ITER=2,RSHELL
IF(ABS(DIST2(LOOP)-SDIST(ITER)).LT.0.001) THEN

YES(ITER-1)=YES(ITER-1)+(MUX(CENT)*MUX(LOOP))+
+ (MUY(CENT)*MUY(LOOP) ) +
+ (MUZ(CENT)*MUZ(LOOP))

NAT(ITER-1)=NAT(ITER-1)+1
END IF

END DO

END DO

END DO

C

C Convert to <So.Sl> values
C

DO LOOP=l,RSHELL-1
PAV(LOOP)=YES(LOOP)/REAL(NAT(LOOP))
NAT(LOOP)=0
YES(LOOP)=0.0

END DO

C

C Calculate theoretical cross-section
C

SUMDSQ=0.0
DO L=1,NUMD
SUMSINC(L)=0.0

END DO

C

DO LOOP=l,RSHELL-1
DO L=1,NUMD

SINCF(LOOP,L)=REAL(COORD(LOOP+1))*PAV(LOOP)
+ *SIN(QD(L)*SDIST(LOOP+1))/(QD(L)*SDIST(LOOP+1))

SUMSINC(L)=SUMSINC(L)+SINCF(LOOP,L)
END DO

END DO

C

C Compare with experimental cross-section data and obtain ChiSq
C

IF(VFLAG.EQ.1) THEN
DO CURR=1,10

SELT(CURR)=SELF-STAR+(CURR*STEP)
DO L=1,NUMD
CAL(L)=FFS(L)*SELT(CURR)*PLIER*(1+SUMSINC(L))
RES(L)=(COD(L)-CAL(L))/ERRD(L)
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SUMDSQ1(CURR)=SUMDSQ1(CURR)+(RES(L)**2)
END DO

SUMDSQ1(CURR)=SUMDSQ1(CURR)/FLOAT(NUMD)
END DO

C

C Test dShiSq/d(s(s+1)) and to adjust S(S+1) value (if desired)
C

DO CURR=2,10
GRACHI(CURR)=(SUMDSQ1(CURR)-SUMDSQ1(CURR-1))/STEP
IF(IPRINT.EQ.1) PRINT*, SELT(CURR),GRACHI(CURR)
IF(GRACHI(CURR).LT.0.0.AND.GRACHI(CURR-1).GT.0.0) THEN
SELF=SELT(CURR)-(STEP/2)
IF(IPRINT.EQ.1) PRINT*, 'GOTCHA1'

END IF

IF(GRACHI(CURR).GT.0.0.AND.GRACHI(CURR-1).LT.0.0) THEN
SELF=SELT(CURR)-(STEP/2)
IF(IPRINT.EQ.1) PRINT*, 'GOTCHA2'

END IF

END DO

END IF

C

C Calculate final ChiSq
C SUMDSQ is normalised ChiSq
C

DO L=1,NUMD
CAL (L)=FFS(L)*SELF*PLIER*(1+SUMSINC(L))
RES(L)=(COD(L)-CAL(L))/ERRD(L)
SUMDSQ=SUMDSQ+(RES(L)**2)

END DO

SUMDSQ=SUMDSQ/FLOAT(NUMD)
C

C Is tolerance satisfied?
C

IF (SUMDSQ.LT.TOLL) THEN
CALL ACCEPT(NMN,MUX,MUY,MUZ,GMUX,GMUY,GMUZ)
CHISQ(MCOUNT)=SUMDSQ
GO TO 666

END IF

C

66 FORMAT(' CHISQ =',F8.4,2X,' compared with ',F8.4,
+' MOVE',15,' ACCEPTED')

67 FORMAT(' CHISQ =',F8.4,2x,' compared with ',F8.4,
+' MOVE',15,' REJECTED')

C

C Accept first calculated spin configuration
C

IF(MCOUNT.EQ.0) THEN
CALL ACCEPT(NMN,MUX,MUY,MUZ,GMUX,GMUY,GMUZ)
CHISQ(MCOUNT)=SUMDSQ
OLDDSQ=SUMDSQ
CALL OUT(X3,Y3,Z3,SDIST,PAV,RSHELL,NUMD,QD,COD,CAL,ERRD

+ ,GMUX,GMUY,GMUZ,SELF,NMN,UFILE)
GO TO 333

END IF

C

C Allow spin re-orientations which reduce SUMDSQ
C

IF(SUMDSQ.LT.OLDDSQ) THEN
CALL ACCEPT(NMN,MUX,MUY,MUZ,GMUX,GMUY,GMUZ)
CALL OUT(X3,Y3,Z3,SDIST,PAV,RSHELL,NUMD,QD,COD,CAL,ERRD

+ ,GMUX,GMUY,GMUZ,SELF,NMN,UFILE)
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WRITE(*, 66)SUMDSQ,OLDDSQ,MCOUNT
CHISQ(MCOUNT)=SUMDSQ
OLDDSQ=SUMDSQ

ELSE

WRITE(*,67)SUMDSQ,OLDDSQ,MCOUNT
END IF

DO LOOP=l,NMN
MUX(LOOP)=GMUX(LOOP)
MUY(LOOP)=GMUY(LOOP)
MUZ(LOOP)=GMUZ(LOOP)

END DO

C

C Rotate up to 5 spins at random
C

333 SWAP(1)=INT(RAN(I)*REAL(NMN))+1
SWAP (2) =INT (RAN (I) *REAL (NMN) ) +1
SWAP(3)=INT(RAN(I)*REAL(NMN))+1
SWAP(4)=INT(RAN(I)*REAL(NMN))+1
SWAP(5)=INT(RAN(I)*REAL(NMN))+1
DO LOOP=l,5

DO L=l,5
IF(SWAP(L).EQ.SWAP(LOOP).AND.L.NE.LOOP) GO TO 333

END DO

END DO

C

DO LOOP=l,SNUM
34 DUM=RAN(I)*PI

IF (RAN(I).GT.SIN(DUM)) THEN
GOTO 34
ENDIF

THETA=DUM

THI=RAN(I)*2.0*PI
MUX(SWAP(LOOP))=SIN(THETA)*COS(THI)
MUY(SWAP(LOOP))=SIN(THETA)*SIN(THI)
MUZ(SWAP(LOOP))=COS(THETA)

END DO

C

PRINT*,' '
C

MCOUNT=MCOUNT+l
GO TO 999

C

OF MAIN

c

666 PRINT*, 'Tolerance acheived'
PRINT*, 'END'
PRINT*,' '
CFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.CHI'
OPEN (3,FILE=CFILE,STATUS='UNKNOWN')
DO LOOP=l,MCOUNT

WRITE(3,*) LOOP,CHISQ(LOOP)
END DO

CLOSE(3)
CALL OUT(X3,Y3,Z3,SDIST,PAV,RSHELL,NUMD,QD,COD,CAL,ERRD

+ ,GMUX,GMUY,GMUZ,SELF,NMN,UFILE)
GO TO 101

C

C Consistency check failed
C

876 PRINT*, 'ERROR - FAILED CONSISTENCY CHECK'
C
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101 END

C

Q-k -k -k -k -k -k -k ~k ~k -k ~k -k -k -k -k -k -k ~k ~k ~k ~k -k k -k -k -k -k -k -k -k k -k -k k -k k -k -k k -k ~k -k k -k -k -k -k -k -k -k -k -k -k -k -k -k -k -k -k -k ~k k k -k -k -k
C

SUBROUTINE ACCEPT(NMN,MUX,MUY,MUZ,GMUX,GMUY,GMUZ)
C

REAL MUX(1000),MUY(1000),MUZ(1000),GMUX(1000),GMUY(1000)
REAL GMUZ(1000)
INTEGER NMN

C

DO LOOP=l,NMN
GMUX(LOOP)=MUX(LOOP)

GMUY(LOOP)=MUY(LOOP)
GMUZ(LOOP)=MUZ(LOOP)

END DO

C

RETURN

END

C

C

SUBROUTINE OUT(X3,Y3,Z3,SDIST,PAV,RSHELL,
+ NUMD,QD,COD,CAL,ERRD,GMUX,GMUY,GMUZ,SELF,NMN,UFILE)

C

INTEGER X3(1000),Y3(1000),Z3(1000),NUMD,NMN
REAL PAV(30),GMUX(1000),GMUY(1000),GMUZ(1000)
INTEGER LOOP, RSHELL
REAL SDIST(30),SELF
REAL COD(200),CAL(200),ERRD(200), QD(200)
CHARACTER*8 UFILE

CHARACTER*33, OFILE, PFILE, RFILE, FFILE
C

OFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.OUT'
PFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.MOS'
RFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.RAW'
FFILE='MUSER1:[JRS2.NUC_SIM]'//UFILE//'.FIT'

C

C Output <S0.S1> file in "genie" format
C

OPEN(1,FILE-OFILE,STATUS='UNKNOWN')
WRITE(1,*) SELF
DO LOOP=l,RSHELL-1
WRITE(1,*) SDIST(LOOP+1),PAV(LOOP),0.0

END DO

CLOSE(1)
C

C Atomic position and magnetic configuration file
C

OPEN(2, FILE=PFILE, STATUS='UNKNOWN')
DO LOOP=l,NMN
WRITE(2,*) X3(LOOP),Y3(LOOP),Z3(LOOP),GMUX(LOOP),GMUY(LOOP)

+ ,GMUZ(LOOP)
END DO

CLOSE(2)
C

C Raw data file in "genie" format
C

OPEN(3,FILE=RFILE,STATUS='UNKNOWN')
DO LOOP=l,NUMD
WRITE(3,*) QD(LOOP),COD(LOOP),ERRD(LOOP)

END DO
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CLOSE(3)

C Calculated cross-section in "genie" format
C

OPEN(4,FILE=FFILE,STATUS='UNKNOWN')
DO L00P=1,NUMD
WRITE(4,*) QD(LOOP), CAL(LOOP), 0.0

END DO

CLOSE(4)
C

RETURN

END

C

C
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