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Abstract
Need for regional economic development and global demand for agro- industrial com-
modities have resulted in large- scale conversion of forested landscapes to industrial 
agriculture across South East Asia. However, net emissions of CO2 from tropical peat-
land conversions may be significant and remain poorly quantified, resulting in contro-
versy around the magnitude of carbon release following conversion. Here we present 
long- term, whole ecosystem monitoring of carbon exchange from two oil palm planta-
tions on converted tropical peat swamp forest. Our sites compare a newly converted 
oil palm plantation (OPnew) to a mature oil palm plantation (OPmature) and combine 
them in the context of existing emission factors. Mean annual net emission (NEE) 
of CO2 measured at OPnew during the conversion period (137.8 Mg CO2 ha−1 year−1) 
was an order of magnitude lower during the measurement period at OPmature 
(17.5 Mg CO2 ha−1 year−1). However, mean water table depth (WTD) was shallower 
(0.26 m) than a typical drainage target of 0.6 m suggesting our emissions may be a 
conservative estimate for mature plantations, mean WTD at OPnew was more typi-
cal at 0.54 m. Reductions in net emissions were primarily driven by increasing bio-
mass accumulation into highly productive palms. Further analysis suggested annual 
peat carbon losses of 24.9 Mg CO2- C ha−1 year−1 over the first 6 years, lower than 
previous estimates for this early period from subsidence studies, losses reduced to 
12.8 Mg CO2- C ha−1 year−1 in the later, mature phase. Despite reductions in NEE and 
carbon loss over time, the system remained a large net source of carbon to the at-
mosphere after 12 years with the remaining 8 years of a typical plantation's rotation 
unlikely to recoup losses. These results emphasize the need for effective protection 
of tropical peatlands globally and strengthening of legislative enforcement where 
moratoria on peatland conversion already exist.
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1  |  INTRODUC TION

The need for economic development across South East Asia, and 
global demand for agro- industrial commodities such as palm oil, 
rubber and pulp wood have driven the expansion of industrial- 
scale agriculture and associated land- use change in recent decades. 
Agricultural crop production now covers 122 million hectares in the 
region (Kenney- Lazar & Ishikawa, 2019), around a quarter of the 
total land area.

In Malaysia and Indonesia alone, oil palm plantations now cover 
an estimated 23 million hectares (Cheng et al., 2018; Gaveau et al., 
2018; Miettinen et al., 2017). A significant proportion of this conver-
sion has occurred recently on tropical peatlands; between 1990 and 
2015, some 7.8 million hectares of these wetland peat swamp for-
ests (PSFs) were converted through forest clearance and land drain-
age (Miettinen et al., 2016). The economic contribution of expanding 
oil palm production, particularly in rural areas (Qaim et al., 2020), has 
come at a, yet to be fully determined, cost to the local environment 
and the global carbon balance.

Conversion of tropical forests, and particularly PSFs, results 
in carbon emission (Cook et al., 2018; Couwenberg et al., 2009; 
Manning et al., 2019; Miettinen et al., 2017; Wijedasa et al., 2018), 
biomass loss (Kho & Jepsen, 2015), changes in carbon cycling dy-
namics (Swails et al., 2017) and the disturbance of previously stable 
soil carbon pools (Cheng, 2009; Kuzyakov, 2010). The majority of 
studies to date have employed subsidence and/or soil surface res-
piration measurements to estimate soil organic carbon (SOC) losses 
and estimates vary greatly, ranging (as CO2- equivalent) from 20 to 
100 Mg CO2 ha−1 year−1 (e.g. Cooper et al., 2020; Couwenberg & 
Hooijer, 2013; Dariah et al., 2014; Hergoualc'h et al., 2017; Hooijer 
et al., 2012; Ishikura et al., 2018; Manning et al., 2019; Melling et al., 
2005; Wösten et al., 1997). While different experimental techniques 
and/or sampling designs may be influencing this variability, site- 
specific factors are thought to strongly contribute to the wide range 
of observed SOC losses.

Measurements from soil surface chambers and subsidence 
focus on SOC losses which is often advantageous, but these mea-
surements do not allow direct monitoring of the net CO2 change in 
the atmospheric carbon pool as they cannot concurrently capture 
photosynthetic carbon uptake and above- ground sources of CO2. In 
this regard, the eddy covariance (EC) technique (Baldocchi, 2003) 
provides distinct advantages: EC measures the net ecosystem ex-
change (NEE) of carbon, capturing both emission and uptake, and 
spatially integrates over complex intra- site sources, such as drain-
age ditch peat extraction and autotrophic respiration from plant 
biomass. EC has previously been employed in peatland forests in 
the region; Hirano et al. (2012) used it to investigate the impact 
of large- scale anthropogenic disturbance on the carbon balance 
of tropical PSF in Indonesian Borneo, concluding that PSF were 
all now likely to be sources of atmospheric carbon (in the range of 
7– 18 Mg CO2 ha−1 year−1). A conclusion supported by another, very 
recent, EC study in logged PSF that showed a mean net emission 
of CO2 over 4 years at 15.4 Mg CO2 ha−1 year−1 (Tang et al., 2020). 

However, the logistical and financial costs associated with EC have, 
to date, limited its deployment (Hill et al., 2017) and more studies are 
needed in tropical peatlands.

Only very recently have studies using EC started to report net 
carbon flux from oil palm plantations (Meijide et al., 2020), with 
only one monitoring oil palm cultivation on tropical peat (Kiew et al., 
2020). The Kiew et al. (2020) study monitored a mature oil palm plan-
tation on peatland in Sarawak, Malaysia and reported a mean annual 
net emission of 36.4 Mg CO2 ha−1 year−1, three times the Meijide 
et al. (2020) estimate for oil palm on mineral soils and double the 
emissions seen in even the most disturbed PSF reported in Hirano 
et al. (2012). Kiew et al. (2020) echoed Meijide et al. (2020) in calling 
for more EC studies on peatland plantations, particularly in the early 
years of conversion where net emissions are expected to be at their 
highest but are, as yet, unreported. The implications of this lack of 
EC monitoring of different age classes of peatland oil palm is signif-
icant; Meijide et al. (2020) state they were unable to perform a full 
carbon life cycle assessment (LCA) as a result, despite the need for 
better quantification being highlighted in earlier LCA studies of palm 
oil production (Mattsson et al., 2000; Schmidt, 2015).

In the absence of field studies of oil palm peatland conversions 
across the entire cultivation lifetime, emission factors determined 
for tropical forest conversion to agriculture on peatland have so 
far had to rely on very limited data. In deriving their Tier 1 emis-
sion factor of 40 Mg CO2 ha−1 year−1 for conversions to oil palm on 
drained peatland, the IPCC list only eight direct studies, of which six 
were soil flux chamber studies and two were based on subsidence 
measurements. No ecosystem- level monitoring of carbon flux was 
available to be included in the assessment. The IPCC (Hiraishi et al., 
2014) stated that emissions during the early years of plantation es-
tablishment are expected to be significantly higher than their emis-
sion factor but were not included due to this lack of available data.

The absence of directly measured net carbon flux from peatland 
conversions to industrial plantation led to controversy around the 
GWP impacts of conversion (Wijedasa et al., 2017). Reviewers for an 
Environmental Protection Agency (EPA) report into peatland emis-
sion factors for oil palm (EPA, 2014) were split over the importance 
of these early year emissions; debating the evidence of Hooijer et al. 
(2012) who had reported that very rapid subsidence recorded in the 
first 5 years of conversion was the result of large CO2 emissions. 
There was a suggestion that compaction may be contributing more 
to this large initial subsidence than the Hooijer et al. (2012) study 
might suggest, and that there was not enough scientific evidence to 
the contrary.

Despite their limitations, current emission factors continue to 
play a crucial role in informing national and international policy. The 
industry standard Round Table on Sustainable Palm Oil, the world's 
largest certification initiative for palm oil (Qaim et al., 2020), rely on 
two synthesis studies, Hooijer et al. (2010, 2012), as the key com-
ponents in their assessment of the peat carbon impact of peatland 
conversion. The figure of CO2 (Mg CO2 ha−1 year−1) emissions being 
91 times water table depth (WTD; m) from Hooijer et al. (2010) is the 
default value in their current GHG calculator (https://rspo.org/certi 

https://rspo.org/certification/palmghg/palm-ghg-calculator
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ficat ion/palmg hg/palm- ghg- calcu lator) which underpins estimates 
of peat decomposition in their certification scheme (https://rspo.
org/certi fication). This coefficient of 91 was derived from a linear fit 
(with a fixed intercept of zero) to just eight data points collated from 
five studies, yet plays an important role in modelling the global car-
bon budget (Friedlingstein et al., 2019; Houghton & Nassikas, 2017; 
Le Quéré et al., 2018).

In this study, we begin to address this important knowledge 
gap by contributing data collected by EC at two adjacent oil palm 
plantations established on tropical peatlands in South East Asia. 
One site captures a period following the initial conversion from 
PSF and another captures the mature phase. We present annual 
net ecosystem CO2 fluxes from individual measurement years 
at both sites and partition them into photosynthetic uptake and 
whole ecosystem respiration. We then combine both data sets 
into a single chronosequence over a 151- month period and use a 
mass balance approach (incorporating estimates of biomass accu-
mulation and forest residue decomposition) to calculate changes 
in soil carbon stocks. We present emission factors both for indi-
vidual years and across relevant time periods (e.g. years 1– 6, as 
highlighted by the IPCC). Finally, we investigate the relationship 
between soil water drainage and carbon loss in the context of pre-
vious emission coefficients and consider the potential impact of 
changes in plantation drainage targets.

2  |  METHODS

2.1  |  Site location and description

The two study sites were individual blocks of commercially man-
aged oil palm plantation situated within the Sabaju (OPnew: 
3°9.615′N, 113°25.163′E) and Sebungan (OPmature: 3°9.965′N, 
113°21.198′E) plantation estates in Sarawak, northern Malaysian 
Borneo. Climate is tropical equatorial with stable air tempera-
tures (mean 26°C) and high humidity and rainfall, typically 
~3000 mm year−1. The sites are located 7.3 km from each other 
and represent typical oil palm plantation established on deep 
peat (up to 8 m) in the region. Both sites were established into 
previously logged PSF cleared and drained by cutting a regular 
network of drainage channels prior to palm establishment (see 
Cook et al., 2018 for a more detailed description of the plantation 
estates). The previously degraded forest at OPnew was cleared 
(without burning) at the beginning of 2016 with forest biomass cut 
and compacted on site and drainage channels cut into the peat. 
Establishment of oil palm (~160 plants ha−1) was completed by the 
end of April 2016 and followed commercial practice throughout, 
no harvest was taken from the immature palms at OPnew dur-
ing the study period. OPmature was established in July 2007 with 
fruit bunch harvesting (fresh fruit bunch [FFB]) beginning from 
month 32. EC monitoring at OPnew begins 4 months after forest 
clearance and continues for 41 months while at OPmature it be-
gins 10 years after conversion and continues for 33 months.

2.2  |  Instrumentation

Eddy covariance was carried out at both sites using identical instru-
mentation with the only significant difference being that profile 
measurements, for canopy storage of CO2 and energy, were from 
three heights on a 20- m tower for the taller palms at OPmature com-
pared to two on a 6- m tower at OPnew. LI- COR closed path sys-
tems (LI- 7200/7550; LI- COR Environmental coupled to R3- 50 Sonic 
Anemometer; Gill Instruments Ltd.) were used at both sites, with 
sensors sited at the top of each tower. For OPmature this resulted 
in a measurement height (above- ground) of 20.19 m, approximately 
12 m above an 8 m canopy; for OPnew, sensors were at 6.06 m above 
a canopy that reached 2.6 m by the end of the study period. Prior to 
canopy development at OPnew topography was dominated by for-
est destruction residues compacted into rows of approximately 2 m 
in height which gave a typical measurement height above canopy 
of around 4 m. Canopy profile CO2 and energy storage was meas-
ured using CO2 diffusion sensors coupled with air and relative hu-
midity sensors (GMP343 and HMP155A; Vaisala Corporation). For 
OPmature these were placed at 1, 6 and 18 m above- ground, for 
OPnew this was at 1 and 6 m. Energy balance was monitored at two 
locations for each site using heat flux plates (HFP01SC; Hukseflux 
Thermal Sensors) at 0.08 m soil depth coupled to soil moisture/tem-
perature sensors (Steven's Hydraprobe; Stevens Water Monitoring 
Inc.) at 0.04 m. WTD was monitored within 0.05- m- diameter porous 
plastic pipe inserted to a depth of 2.5 m (PX709GW submersible 
pressure transducer; Omega Engineering Inc.). Precipitation was 
measured at the top of each tower using a tipping bucket gauge 
(TR- 525M; Texas Electronics). EC data were collected at 10 Hz and 
written to an industrial- grade USB drive within the LI- 7550, meteor-
ological data at 1- minute intervals stored to Xlite 9210 dataloggers 
(Sutron Corporation).

2.3  |  Eddy covariance data processing

2.3.1  |  Flux calculations

Raw flux data (10 Hz) were initially processed into 30- min average 
CO2 flux rates (µmol CO2 m−2 s−1) using EddyPro software (v6.2.2 
LI- COR Environmental) before being storage corrected, gap- filled 
and further summed into mass integrations of NEE over time (e.g. 
Mg CO2- C ha−1 month−1). Data handling, quality control and analyses 
were carried out using R (v3.5.1, R Core Team, 2018; R Foundation 
for Statistical Computing).

Statistical outliers (spikes) in the 10 Hz data were detected fol-
lowing Vickers and Mahrt (1997); vertical wind speed measurements 
were only accepted at <5 SDs (σ) from the 30- min mean, other vari-
ables at 3.5σ; 30- min periods containing spikes at greater than 1% 
were flagged as poor quality. Time lags, discrepancies between precise 
sampling times at the anemometer and gas analyser, are compensated 
for using site- specific covariance maximization derived from data col-
lected at the site. Detrending of turbulence fluctuations over each 

https://rspo.org/certification/palmghg/palm-ghg-calculator
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30 min was through block averaging. Co- ordinate rotation, to accom-
modate imperfect alignment to the horizontal wind vector, was carried 
out through the planar fit method of Wilczak et al. (2001) using site- 
derived parameters. Co- spectral analysis and correction of low-  and 
high- pass filtering effects were carried out following Moncrieff et al. 
(1997, 2004). Spatial estimation of the areal source of sensor data cap-
ture (footprint assessment) followed Kljun et al. (2004) or Kormann 
and Meixner (2001), where turbulent friction was <0.2 m s−1. CO2 stor-
age below the sensor height, which is not captured in turbulent eddy 
transfer through the EC sensor pathways, was accounted for through 
profile monitoring of CO2 concentrations between the ground and 
sensor heights as outlined in Baldocchi et al. (2001): time- stamped 
changes in absolute CO2 concentration are captured by profile sensors 
and converted to volumetric ratios using the ideal gas law. These are 
then added to the corresponding flux measurements captured by EC 
at the half- hour time step.

2.3.2  |  Quality control flagging

Initial quality control flagging of each 30- minute flux average (statis-
tical testing of the 10 Hz data) followed the Carbo- Europe standard 
0- 1- 2 system of Foken et al. (2004). Zero being the highest qual-
ity, values flagged at 2 were automatically discounted from further 
processing. Data spikes in the half- hourly processed CO2 data were 
identified and removed following Papale et al. (2006) using the sug-
gested median deviation threshold (z value) of 4. Absolute thresh-
olds for sensible heat (H) were set between −200 and 350 W m−2 and 
for latent energy (LE) at −50 to 500 W m−2.

2.3.3  |  Study site area (measurement fetch and 
footprint)

The available study area which satisfied EC assumptions of homogene-
ity and representation of the area of interest (fetch) covered 41.7 ha at 
OPnew and 907 ha at OPmature. A combination of Google Earth (GE 
v7.3.2.5776, Imagery date 24/03/2016) and ARCGIS (ArcMap 10.5.1; 
ESRI) was used in conjunction with the output from the footprint model 
to filter out any measurement periods where data collection extended 
beyond the ideal fetch. Taking the sensor tower location as a datum 
point, distances to the edge of the fetch boundary were measured at 
10° increments. Half- hourly output from the footprint model (percent-
age data contribution to total, distance to peak contribution and wind 
vector) was compared to these boundaries within 10° bins (total of 36) 
and considered acceptable where 70% of the information collected in 
each half- hour was sourced within the fetch boundary.

2.3.4  |  Energy balance

Energy balance closure (EBC) was investigated using an ordinary 
least square (OLS) regression at the half- hour time step between 

turbulent heat flux (LE plus H) and available energy (net radiation 
plus soil heat flux). EBC was considered as the slope of the result-
ing OLS fit. Energy storage in relevant pools (canopy air space and 
soil volume) was calculated using specific heat capacity and moisture 
fluctuations. Energy lost to photosynthetic utilization was calculated 
following Masseroni et al. (2014). The ratio between turbulent heat 
flux and available energy over the entire study period is presented as 
the energy balance ratio following Wilson et al. (2002).

2.3.5  |  Gapfilling and flux partitioning

Gapfilling of data rejected through quality control and partition-
ing of NEE into photosynthetic uptake (gross primary productivity 
[GPP]) and ecosystem respiration (Reco) was carried out using the 
ReddyProc package (Wutzler et al., 2018) within R. For gapfilling, 
this package utilizes the mean diurnal separation (MDS) approach of 
Falge et al. (2001) with flux partitioning carried out using the light 
response curve method of Lasslop et al. (2010) to estimate daytime 
GPP, the sum of NEE and GPP being Reco. Night- time fluxes (below a 
global radiation (Rg) threshold of 20 W m−2) are assumed solely Reco 
(Reichstein et al., 2005). Underestimation of fluxes during periods 
of insufficient turbulence was avoided by removing data recorded 
below site- derived friction velocity thresholds (u* filtering) during 
the gap- filling process (Reichstein et al., 2005). Uncertainties in the 
half- hour fluxes are calculated, for gapfilled values, as the standard 
error of the mean (SEM) of the values used to fill gaps. For retained 
original data these are artificially marked as gaps and again the 
standard error is calculated for the mean of values that would have 
been used to fill them. Standard errors are then propagated through 
cumulative sums.

2.3.6  |  Chronosequence data series

Data collection from OPnew starts from the beginning of September 
2016 and runs to the end of January 2020, this represents months 
5– 45 in the plantation's life cycle. For OPmature, data start from 
May 2017 and again run to January 2020, capturing months 119– 151 
of that plantation's life cycle.

The first 4 months of data immediately following the conversion 
of PSF at OPnew were not collected due to the sensor installations 
not yet being in place. An estimation of these values has been made 
through modelling backwards at a monthly time step from the first 
data available. For GPP, an assumption is made that this would be 
zero immediately following conversion (dead forest residues and 
bare soil), therefore linear interpolation was carried out from a 
start point of zero at the beginning of May 2016 to the beginning of 
September 2016 (the first complete month's data). For Reco, a linear 
trend line was fitted to the existing Reco monthly data set and ex-
tended back over these first 4 months.

Trends in fluxes (GPP, Reco and NEE) over the measurement period 
at each site are indicated by the slope of a linear model fitted against 
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time, with significance accepted at p < 0.05. Estimation of annual 
means within specific periods is calculated by multiplying the mean 
monthly values for that period by 12. A complete chronosequence 
of NEE, from months 1– 151 was established using exponential inter-
polation (Stineman, 1980) between the OPnew and OPmature data 
sets at a monthly time step. This interpolation was also applied to 
months 141– 146 (April 2019– August 2019) at OPmature, where data 
were excluded due to sensor malfunction resulting in a gap too large 
for the MDS gap- filling routine.

2.4  |  Calculation of net primary productivity

2.4.1  |  Live standing biomass

Net primary productivity (NPP) is the sum of photosynthetic car-
bon sequestered into biomass pools on site during any given pe-
riod. For live palm biomass carbon stocks, data were interpolated 
at a monthly time step between biomass, and associated carbon 
concentration, for age classes 3, 8 and 12 years, measured from 
destructive sampling from appropriately aged planting blocks at 
the Sabaju (age classes 3 and 8 years) and Sebungan plantations 
(age class 12 years) in 2019 and presented in Lewis et al. (2020). 
Individual palm component carbon stocks are summed to total 
palm biomass carbon using Equation (1). Root biomass was not 
directly sampled in Lewis et al. (2020) so has been assumed at 
16% of total standing biomass following Khalid et al. (1999). This 
resulted in a timeseries of biomass carbon stocks across months 
1– 144; differences between values at the beginning and end of 
periods correlated with the EC flux measurements give NPP for 
that period (Equation 2).

where all components' dry mass multiplied by fraction of carbon con-
tent (see Table S.1.2 for full details)

where NPP denotes the net primary productivity (carbon sequestered 
into vegetative biomass, Mg CO2- C ha−1) and t denotes time (period 
[months])

2.4.2  |  Fresh fruit bunch harvest offtake

Harvest offtake, as FFB, was provided by the site managers for the 
OPmature planting block specifically within the Sebungan planta-
tion at a monthly time step from the date of first harvest in month 
32 to month 144. For months 0– 31, linear interpolation was used 
to complete the monthly timeseries from zero to first harvest. For 
sequestration calculations, all FFB is considered to remain within the 

system (see Section 4), therefore total NPP of FFB for any given pe-
riod is the cumulative sum of all harvest offtake during that period.

2.4.3  |  Pruned frond biomass

At each harvest, a number of fronds are cut to facilitate access to 
FFB and left in piles to decompose on site. While uptake of carbon 
into these fronds during growth, and return to atmosphere through 
decomposition, will be captured by EC in NEE, the carbon stored 
within the ecosystem in the total frond pile biomass at any given time 
needs to be accounted for in NPP. An estimate for this was derived 
from monthly interpolation between the numbers of frond bases 
(remnants of removed fronds) present on the palms at the 3- , 8-  and 
12- year time points. While multiplying these by a mean frond mass 
(for each age class of frond, similarly interpolated) gives an estimate 
of frond mass pruned in each month, account needs to be taken of 
the decomposition of each monthly addition to the pruned frond pile 
over the remaining study period. This was carried out by applying an 
exponential decay function, Equation (3) (Moradi et al., 2014; Olson, 
1963) to each monthly pruned frond mass and continuing to the end 
of the chronosequence, then summing across the remaining biomass 
from all previous prunings to a total pruned frond biomass pool per 
hectare for each month. The decomposition rate constant (fractional 
mass loss per month [k]) for frond biomass was set at 0.15, calculated 
from empirical measurements by Moradi et al. (2014).

where t denotes time (month) and k denotes decomposition rate con-
stant (fractional mass loss per month).

2.5  |  Calculation of forest debris decomposition

The contribution to ecosystem respiration (Reco) from the de-
composition of the previous forest biomass (Rfr) that was cut and 
compacted on site prior to establishment of oil palm needs to be 
considered in the overall carbon budget as these emissions will be a 
significant contribution to the net flux captured by EC. Starting bio-
mass and decomposition rate were not measured directly on site, so 
literature estimates have been used. As with the frond pile biomass, 
the decay rate for forest coarse woody debris (CWD) decomposition 
is calculated using Equation (3) at a monthly time step, but in this 
case just considers a single biomass addition at the beginning of the 
conversion. Kho and Jepsen (2015) estimated 58.7 ± 10.7 Mg C ha−1 
for logged PSF (as at OPnew); using their dry stem biomass car-
bon content of 47.4%, we derive forest biomass at clearance of 
123.8 ± 22.6 Mg DM ha−1. Only one paper was found that monitored 
CWD decay under tropical peatland conditions in the same region 
(Law et al., 2019), who were working in Sabah, Malaysian Borneo 
under very similar climatic conditions to this present study. That 
study reported that after 12 months there had been a mean loss of 

(1)
Carbonbiomass =Carbonroots+Carbontrunks+Carbonfrondbases+Carbonfronds

+CarbonFFB+Carbonspears+Carboncabbage+Carbonresidual,

(2)NPPperiod = Carbonbiomass(t) − Carbonbiomass(t−period),

(3)masst = masst−1 ⋅ exp
( − kt ) ,
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25.6% of the starting biomass. From this we calculated a rate con-
stant (k) at 0.02464 for decomposition of forest CWD at a monthly 
time step which would result in the correct biomass loss by month 
12.

2.6  |  Changes in SOC

Changes in SOC (ΔSOC) during specific periods were calculated as 
the difference between GPP and Reco, taking account of seques-
tration of GPP into biomass stocks (NPP) and contribution of Rfr 
to Reco. Following production of a complete monthly timeseries of 
NPP and Rfr, as described above, periods corresponding to direct 
measurements of NEE (partitioned into GPP and Reco) were used 
as parameters in Equation (4) to estimate peat carbon loss for the 
study period months at OPnew and OPmature. For annual carbon 
emission factors over the entire 151- month chronosequence of NEE, 
and for specified periods, Equation (4) is modified using Equation (5) 
(see Equation S.2.1) and uses parameters derived by taking mean 
monthly values within selected time periods and multiplying by 12. 
Emission factors were calculated for years 0– 6 (establishment), 6– 12 
(mature) and across the entire period. Additional exports of carbon 
(ε), such as drainage losses of dissolved and particulate organic car-
bon or methane emissions (CH4), are not captured in our EC results 
and are therefore not accounted for in these calculations; however, 
their potential magnitude is considered in the discussion section 
below.

where ΔSOC is the change in soil organic carbon (Mg CO2- C ha−1), GPP 
is the gross primary productivity (photosynthetic uptake of carbon, 
Mg CO2- C ha−1), Reco is the Ecosystem respiration (Mg CO2- C ha−1), 
NPP is the net primary productivity (carbon sequestered into biomass, 
Mg CO2- C ha−1), Rfr is the respiration contribution from decomposition 
of forest residue (Mg CO2- C ha−1), ε denotes the unaccounted factors 
(e.g. export as dissolved organic carbon, carbon content of emitted 
CH4, etc., Mg CO2- C ha−1) and t denotes the time (year)

where NEE is the net ecosystem exchange of carbon (Mg CO2- C ha−1)

2.7  |  Relationship between peat carbon 
loss and WTD

The relationship between our estimate of SOC emission (as CO2) 
and WTD was considered in two separate analyses. Firstly, at an 
annual time step in the context of the Hooijer et al. (2010) analysis, 
by the recreation of their original linear regression (from data pro-
vided in Hooijer et al. (2006)) and subsequent inclusion of annual 

ΔSOC from OPnew and OPmature. Secondly, taking advantage of 
our high- frequency respiration data (at the half- hour time step) at 
OPnew, we fit a non- linear second- order polynomial curve to night- 
time NEE, assumed to be entirely respiration, and WTD following 
detrending of the data series and binning of Reco into 0.01 m incre-
ments of WTD. Only original measured data (not gapfilled) were 
used and selected at the highest quality (qc flagged at zero; Foken 
et al., 2004). The output of the model fit was then used to predict 
respiration rates for 0.1 m WTD increments between 0 and 0.8 m 
below the soil surface (the measured WTD range at OPnew within 
the study period).

3  |  RESULTS

See Supporting Information for full details of EC data capture and 
retention following quality control. Values ± given throughout these 
results indicate the standard error of the mean (SEM)

3.1  |  Climate data

As expected in equatorial, tropical climate rainfall was high and tem-
peratures were relatively stable over time with only a minimal sea-
sonal component (Figure 1). Rainfall averaged 2856 ± 96 mm year−1 
across the two sites, and had a mean temperature of 26.9 ± 0.03°C. 
The exposed soils at OPnew were on average 2°C warmer than at 
OPmature, with a mean soil temperature in the upper 0.04 m of 
30.3 ± 0.03°C compared with 28.3 ± 0.03°C under the canopy at 
OPmature. The mean WTD was 0.26 ± 0.04 m at OPmature and 
0.54 ± 0.05 m at OPnew.

3.2  |  Measured carbon flux (as CO2)

3.2.1  |  Ecosystem respiration

A small, but statistically significant, difference was seen be-
tween mean monthly Reco at the two sites (Welch two- sample 
t test, t = 7.2, df = 47.4, p < 0.0001). OPnew was higher at 
17.6 ± 0.4 Mg CO2 ha−1 month−1 (± SEM of monthly totals) com-
pared to OPmature 14.2 ± 0.4 Mg CO2 ha−1 month−1. For OPnew, 
there was no significant change in monthly Reco over the monitor-
ing period (F = 0.6, df = 39, p = 0.4); in contrast, at OPmature there 
was a slight, but significant, decline in Reco over time, reducing by 
0.11 Mg CO2 ha−1 month−1 (f = 6.35, df = 25, p = 0.02).

3.2.2  |  Photosynthetic uptake

Monthly GPP at OPnew showed a significant increase 
over the study period (f = 194.7, df = 39, p < 0.0001); from 
1.1 Mg CO2 ha−1 month−1 in September 2016 (4 months after 

(4)ΔSOC =

(

GPP − (Reco + NPP) + Rfr

)

− �

t
,

(5)NEE = Reco − GPP,
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conversion) it increased by 0.18 Mg CO2 ha−1 month−1. GPP at 
OPmature also changed over time, but in this case showed a small, 
but significant, reduction in uptake; declining over the study period 

by 0.07 Mg CO2 ha−1 month−1 (f = 6.35, df = 25, p < 0.05). Mean 
monthly GPP was 6.2 ± 0.4 Mg CO2 ha−1 month−1 at OPnew and 
12.8 ± 0.2 Mg CO2 ha−1 month−1 at OPmature (Figure 2).

F I G U R E  1  Daily climate data from OPnew and OPmature. Plots (a) and (b) show rainfall (left Y axis) and water table depth (right Y axis) for 
each site with mean water table depth (WTD) indicated by a dashed red line. Plots (c) and (d) show air and soil temperature at each site, again 
with dashed red lines indicating the mean for each parameter over the study period
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F I G U R E  2  Monthly total CO2 flux 
for OPnew and OPmature partitioned 
into gross photosynthetic uptake (GPP) 
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3.2.3  |  Net ecosystem exchange

Both sites were cumulative net sources of carbon to the atmosphere, 
with a mean annual NEE calculated over the entire study period of 
137.8 ± 4.9 Mg CO2 ha−1 year−1 at OPnew and 17.5 ± 2.1 Mg CO2 ha−1 year−1 
at OPmature. Only two monthly totals of NEE showed a net uptake, 
and both were at OPmature: November 2018 at −0.3 Mg CO2 ha−1  
month−1 and September 2019 at −0.6 Mg CO2 ha−1 month−1. NEE de-
creased significantly during the study period at OPnew (f = 98.9, df = 39, 
p < 0.0001), reducing by 18.3 Mg ha−1 CO2 month−1; in contrast, due 
to corresponding decreases in both GPP and Reco, NEE did not change 
significantly over time at OPmature (f = 2.2, df = 25, p = 0.16). Table 1 
shows NEE for individual 12- month periods captured at both study sites.

3.3  |  Soil organic carbon loss (as CO2- C) for 
individual study years at both sites

The ΔSOC was 2.5 to three times higher in OPnew compared to 
OPmature (Table 1). The sequestration rate of carbon into the 

extant biomass pool (NPP) increased between years 1 and 3 of 
the study at OPnew from 0.8 ± 0.07 Mg CO2- C ha−1 year−1 (planta-
tion cycle months 5– 16) to 2.3 ± 0.3 Mg CO2- C ha−1 year−1 (months 
29– 40). At OPmature, NPP declined slightly over the 2 years of 
monitoring, from 7.2 ± 2.7 Mg CO2- C ha−1 year−1 (plantation cycle 
months 119– 130) to 6.8 ± 3.0 Mg CO2- C ha−1 year−1 (months 131– 
142). The estimated contribution of respiration from the decompo-
sition of forest biomass (Rfr) to gross ecosystem respiration (Reco) 
over the study periods at each site reduced from a mean of 19% at 
OPnew to 1.5% at OPmature.

3.4  |  Chronosequence of cumulative NEE

Total cumulative NEE across the entire chronosequence suggested 
a net emission of CO2 from the site at 823.3 ± 0.9 Mg CO2 ha−1 
(224.9 ± 0.2 Mg CO2- C ha−1) after 151 months. As can be seen in 
Figure 3, interpolating across the missing months in the OPmature 
data set (months 141– 146) suggested the system might have been 
showing a net monthly uptake during this period which would 

TA B L E  1  Annual carbon fluxes and biomass uptake (Mg CO2- C ha−1 year−1) for complete measurement years during the study period and 
resulting estimates of changes in soil organic carbon (ΔSOC) calculated using Equation (4)

Site OPnew OPnew OPnew OPmature OPmature

Sampling period Sep 16 to Aug 17 Sep 17 to Aug 18 Sep 18 to Aug 19 May 17 to Apr 18 May 18 to Apr 19

Plantation cycle months 5– 16 17– 28 29– 40 119– 130 131– 142

ΔSOC −33.4 ± 7.5 −28.3 ± 1.3 −29.2 ± 1.8 −11.3 ± 2.7 −12.2 ± 3.0

Rfr 13.9 ± 0.7 10.4 ± 0.6 7.7 ± 0.4 0.8 ± 0.04 0.6 ± 0.03

GPP 9.9 ± 7.4 19.7 ± 1.1 26.2 ± 1.8 44.1 ± 0.02 40.3 ± 0.05

Reco 56.4 ± 0.03 57.4 ± 0.05 60.9 ± 0.05 49.00 ± 0.02 46.3 ± 0.02

NEE 46.5 ± 0.03 37.7 ± 0.03 34.7 ± 0.06 4.9 ± 0.05 6.0 ± 0.06

NPP 0.8 ± 0.07 1.0 ± 0.1 2.3 ± 0.3 7.2 ± 2.7 6.8 ± 3.0

Note: Mass units: Mg CO2- C ha- 1 year−1 (± propagated SEM).
Abbreviations: GPP, gross primary productivity; NPP, net primary productivity; Reco, total ecosystem respiration, NEE, net ecosystem exchange of 
carbon; Rfr, respiration of carbon from decomposition of forest residue; ΔSOC, changes in soil organic carbon during period.

F I G U R E  3  Monthly chronosequence 
plot of net ecosystem exchange of carbon 
(NEE), combining OPnew and OPmature 
into a single timeseries. Blue solid line 
shows measured monthly sums of NEE 
from each site plotted against month 
since respective plantation establishment. 
Dotted grey line shows interpolated 
monthly values, green line shows NEE 
extrapolated for the first 4 months at 
OPnew, dashed red line shows cumulative 
NEE summed from the resulting complete 
timeseries. Positive values (i.e. Y > 0) 
indicate a net emission of carbon from 
the ecosystem to the atmosphere, and 
negative values (i.e. Y < 0) indicate a net 
uptake
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offset the rate of increase in NEE. This can be seen in the cor-
responding levelling off in the cumulative NEE curve beyond 
month 140. The first 4 months following conversion, extrapo-
lated backwards from the beginning of monitoring at OPnew, 
month 5 (see Section 2), suggested total Reco during that period 
of 68.8 Mg CO2 ha−1 with GPP during the same 4- month period 
at 1.6 Mg CO2 ha−1. This resulted in an estimated net emission 
(NEE) of 67.2 ± 0.5 Mg CO2 ha−1 over these first 4 months. Adding 
these months (1– 4) to the beginning of the monthly time series 
for OPnew (months 5– 45) gave a net cumulative NEE by the end 
of the OPnew monitoring period at 536.7 ± 0.6 Mg CO2 ha−1 
(146.7 ± 0.2 Mg CO2- C ha−1).

3.5  |  Annual carbon emission factors  
(as CO2- C)

Mean annual NEE across the 151- month chronosequence showed 
a net annual emission of 17.9 ± 1.3 Mg CO2- C ha−1 year−1 (65.6 ± 4.
8 Mg CO2 ha−1 year−1). Using Equation (4) (modified by Equation 5) 
to account for carbon sequestered into on  site biomass at a mean 
annual NPP of 4.9 ± 0.2 Mg CO2- C ha−1 year−1 and a mean annual 
carbon emission from the decomposition of forest residue (Rfr) at 
4.6 ± 0.1 Mg CO2- C ha−1 suggested a mean ΔSOC over the entire pe-
riod at −18.3 ± 1.3 Mg CO2- C ha−1 year−1 (equivalent to a soil surface 
emission of 67 ± 4.8 Mg CO2 ha−1 year−1).

For years 1– 6 (months 1– 72), mean annual NEE was 30.2 ± 0.1 Mg 
CO2- C ha−1 year−1, mean annual NPP was 2.9 ± 1.3 Mg CO2- C ha−1 year−1 
and Rfr was 8.1 ± 0.2 Mg CO2- C ha−1 year−1 which resulted in an early 
years' emission factor for peat carbon at −24.9 ± 1.3 Mg CO2- C ha−1 

year−1 (91.4 ± 4.8 Mg CO2 ha−1 year−1).
This was much reduced for years 7– 12 (months 73– 144), with NEE at 

7.2 ± 0.4 Mg CO2- C ha−1 year−1, NPP at 6.9 ± 6.1 Mg CO2- C ha−1 year−1 
and Rfr at 1.4 ± 0.01 which resulted in a mature phase emission factor of 
−12.8 ± 6.1 Mg CO2- C ha−1 year−1 (46.9 ± 22.3 Mg CO2 ha−1 year−1). 
Table 2 shows annual and cumulative components for the chrono-
sequence (NEE, NPP and Rfr) with the resulting estimates of ΔSOC 
for years 1– 12 (months 1– 144).

3.6  |  Linear fit of ΔSOC (as CO2 flux) to WTD

Adding our sites' annual soil carbon emissions (ΔSOC in Table 1, as 
CO2) and mean WTD (see Figure 4) to the Hooijer et al. (2010) data 
set increased the model coefficient to CO2 = 118.1 ± 14.5 x WTD (m), 
with a highly significant fit (F = 66.48, df = 12, p < 0.0001). Allowing 
the intercept to solve gave a model fit of CO2 = 7.4 + 105.6 × WTD (m) 
but only the slope was found to be significant (p = 0.04). Excluding 
the very high fluxes seen from the conversion period at OPnew, by 
including only fluxes from OPmature (see Figure S.1.5), resulted in a 
model fit in close agreement with the original Hooijer et al. (2010) 
analysis with a highly significant model fit at CO2 = 93.7 ± 9.8 × WTD 
(m; F = 91.4, df = 9, p < 0.0001). TA
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3.7  |  Non- linear fit of ecosystem respiration 
to WTD

The second- order polynomial fit of night- time Reco to WTD (see 
Figure S.1.6.) was highly significant with an adjusted R2 of 0.83 
(F = 157.6, df = 64, p < 0.0001). Model coefficients across the range 
of WTD found at OPnew (0– 0.8 m below the surface, binned into 
0.1 m increments) predicted a 154% increase in annual Reco when 
moving from the shallowest WTD (0 m) to the deepest (0.8 m). 
Table 3 shows predicted annual Reco for each 0.1 m WTD increment 
and their magnitude relative to a typical plantation drainage target 
of 0.6 m. Figure 5 shows a graphical representation of these esti-
mated percentage changes in annual Reco when comparing different 
mean annual WTDs. For example, raising WTD to 0.2 m would see a 
31% reduction in respiration compared to the typical 0.6 m target. In 

F I G U R E  4  Recreation of Hooijer et 
al. (2010) linear fit of CO2 emission to 
water table depth (closed symbols) with 
the inclusion of individual years from 
OPnew and OPmature (open symbols). 
Solid black line shows linear fit with 
intercept constrained to zero, dashed red 
line shows linear fit with intercept free. 
The effect of excluding the early years 
of very high emission at OPnew can be 
seen in Supporting Information (Figure 
S.1.5.); units are presented as CO2 as in 
the original Hooijer analysis, these may 
be converted to CO2- C (carbon) through 
multiplying by a factor of 12/44_
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TA B L E  3  Modelled relationship between ecosystem respiration 
(Reco) and water table depth (WTD)

WTD (m)
Annual Reco (CO2- C) 
(Mg ha−1 year−1)

Flux relative to 
WTD 0.6 m (%)

0 22.2 ± 4.8 40.4

0.1 30.8 ± 2.9 55.8

0.2 38.0 ± 1.6 69.1

0.3 44.1 ± 1.0 80.1

0.4 49.0 ± 1.1 89.0

0.5 52.7 ± 1.1 95.6

0.6 55.1 ± 1.0 100.0

0.7 56.3 ± 1.2 102.3

0.8 56.4 ± 2.1 102.3

Note: ± indicates the 95% confidence interval of the model fit.

F I G U R E  5  Relative change (%) in soil 
carbon emission following a change from 
an existing mean annual water table depth 
(WTD) below the peat surface to a new 
target depth. Negative (green) values 
indicate a reduction, positive (orange) 
indicate an increase, ns (grey) values 
indicate changes that are not statistically 
significant. For example, changing from 
0.4 m WTD (horizontal row) to 0.3 m 
(vertical column) would results in a 
10% reduction in soil carbon emission 
(intersect at −10)
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0.4 –55 –37 –22 –10 0 +7 +12 +15 +15

0.5 –58 –42 –28 –16 –7 0 +5 +7 +7

0.6 –60 –44 –31 –20 –11 –4 0 +2ns +2ns

0.7 –61 –45 –32 –22 –13 –7 –2ns 0 0ns

0.8 –61 –45 –33 –22 –13 –7 –2ns 0ns 0
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All crosswise comparisons are significantly different to each other at the 95% confidence interval except where stated as zero 
or not significant (ns)
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contrast, differences between depth increments deeper than 0.6 m 
were insignificant.

4  |  DISCUSSION

4.1  |  CO2 flux

We have presented, for the first time, a comparative study of 
measured NEE of carbon as CO2 between the initial years of peat-
land conversion to oil palm and the later mature phase. Our re-
sults show the dramatic difference between the very high early 
conversion period annual emission of CO2 to the atmosphere 
at 137.8 Mg CO2 ha−1 year−1, and the mature phase emission at 
17.5 Mg CO2 ha−1 year−1. Our mature phase figure for NEE is rea-
sonably consistent with the estimated value for mature peatland of 
12.1 ± 10.2 Mg CO2 ha−1 year−1 from Meijide et al. (2020), though 
less than half the 36.4 Mg CO2 ha−1 year−1 measured by Kiew et al. 
(2020) at their mature peatland plantation. Our 151- month chron-
osequence demonstrated that while the much lower NEE in later 
years might level off the rate of increase in cumulative NEE, it was 
highly unlikely to offset that cumulative carbon emission over a plan-
tation lifetime. Recouping the total emissions over our chronose-
quence period (around 800 Mg CO2 ha−1) would require an average 
net uptake of ~100 Mg CO2 ha−1 year−1 for the remaining 7.5 years of 
a typical 20- year plantation lifetime.

While our results show that conversion may be adding around 
110 Mg CO2 ha−1 year−1 (30.2 Mg CO2- C ha−1 year−1) to the atmo-
sphere in the first 6 years of the conversion (months 1– 72), not all of 
this would be coming directly from soil carbon decomposition. Our 
simple forest decomposition model suggested that around a quarter 
of this net emission could have been coming from CO2 released by 
the decay of forest biomass. In contrast, while NEE had dropped to 
around 26 Mg CO2 ha−1 year−1 over the next 6 years (months 73– 144), 
soil carbon emission remained high at around 47 Mg CO2 ha−1 year−1 
but was being masked by NPP. Sequestration of carbon into the bio-
mass pool (NPP) was equivalent to around 54% of the peat carbon 
loss for that period. A small proportion of that carbon will be con-
tained within the fruit harvest offtake, removed from the site and 
returned to the atmosphere during oil production and consumption, 
the remainder will be held within the palm and frond litter biomass 
pool until re- cultivation (typically at around year 20) where it will 
begin to return to the atmosphere during the decomposition of the 
palm biomass following clearance.

We also considered the relative contributions to NEE from up-
take (GPP) and emission (Reco). The common approach for parti-
tioning NEE (Reichstein et al., 2005) uses parameterization of the 
relationship between night- time NEE (assumed to be entirely Reco) 
and air temperature to estimate the contribution of Reco to daytime 
NEE (the residual being GPP). However, this approach relies on a 
strong relationship between respiration and temperature. This can 
be problematic in tropical climates where temperature ranges (both 
diurnally and seasonally) tend to be very much narrower than in 

temperate zones, and likely compounded by the strong relationship 
in drained peatlands between Reco and WTD. As an alternative, we 
adopted the approach of Lasslop et al. (2010) using a light response 
curve fitted to daytime NEE to estimate GPP. Kiew et al. (2020) 
concluded that low GPP in their poorly established plantation was 
responsible for their large on site net emissions. In line with their 
conclusion, as seen in Figure 2, while Reco was slightly lower at our 
mature site compared to OPnew, it was the much higher GPP into 
the mature palms that was primarily responsible for driving this re-
duction in NEE. There was a small, but statistically significant, reduc-
tion in both GPP and Reco over time during the OPmature monitoring 
period, which appears to be most apparent in the period between 
August 2018 and February 2019. This dip in activity appears to have 
recovered at some point during our missing data period between 
then and September 2019. Stiegler et al. (2019) showed that drought 
conditions resulting from an El Nino- Southern Oscillation (ENSO) 
event in 2015 led to reduced CO2 uptake into their study site at 
an Indonesian oil palm plantation. This might suggest that another 
ENSO event in the region, recorded between September 2018 and 
June 2019 (https://www.metof fice.gov.uk/resea rch/clima te/seaso 
nal- to- decad al/gpc- outlo oks/el- nino- la- nina), could be linked to our 
indication of a drop- off in photosynthetic activity. The later period 
of this ENSO event also coincided with a particularly bad period of 
air pollution haze due to extensive vegetation burning across the 
entire region (https://www.bbc.co.uk/news/world - asia- 34265922), 
which may also have contributed to this. Monthly yield data from 
the site (not published) suggest a corresponding dip in FFB harvest 
during this period which might corroborate this, though more de-
tailed analysis would be required to reach any firm conclusion.

4.2  |  Relationship between WTD and soil carbon 
loss (as CO2)

Adding our estimate of soil carbon loss (as CO2) from OPmature to 
the Hooijer et al. (2010) linear regression model, we found that our 
mature site fitted remarkably well within their original data set, only 
raising the coefficient to 93.7 from their CO2 = 91*WTD. However, 
including our early conversion period at OPnew increased this sen-
sitivity estimate by 26%. This reinforces the importance of incorpo-
rating the early years of conversion into assessments of the carbon 
impacts of peatland conversion and emphasizes the need for emis-
sion factors covering entire cropping periods.

A single coefficient such as this may, though, be too simplistic. As 
discussed in Hooijer et al. (2006), a coefficient for the relationship 
between CO2 flux and WTD is unlikely to be consistent throughout 
the soil profile, and it was a lack of available data which limited their 
original analysis to a simple linear fit. In their discussion (see note 
under figure 12 in Hooijer et al. (2006)), the authors suggest that 
CO2 emissions might be reduced at WTD of 0.2– 0.3 m and at zero 
when WTD = 0, that is, waterlogged conditions would promote the 
formation of peat and net CO2 emissions would <= 0. Their sugges-
tion that a linear coefficient of 91 would hold true for WTD from 

https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/el-nino-la-nina
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/el-nino-la-nina
https://www.bbc.co.uk/news/world-asia-34265922
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0.25 and 1.1 m was discussed in Couwenberg et al., 2010) who con-
cluded that there was not enough evidence to clearly state whether 
rates of subsidence (as a measure of peat decomposition) became 
static beyond a WTD of 0.5 m.

Taking advantage of our high- frequency, long- term data set 
at OPnew, where heterotrophic respiration should heavily out-
weigh the limited autotrophic respiration from immature, widely 
spaced palms, we investigated this relationship using a non- 
linear, polynomial fit. Here we found not only a highly significant 
relationship (in contrast to Cooper et al., 2020, whose study had 
very little regression data available) but one that implied the op-
posite to what was suggested in Hooijer et al. (2006). We found 
a much greater sensitivity to drainage in the upper half of the 
soil profile compared to the lower half over our 0– 0.8 m WTD 
range (see Table 3). Each additional 0.1 m drainage within the 
upper 0.4 m produced an additional 24.5 Mg CO2 ha−1 year−1 
(compared to 9.1 Mg CO2 ha−1 year−1 expected from Hooijer 
et al. (2010)), while between 0.5 and 0.8 m this decreased to 
6.8 Mg CO2 ha−1 year−1. This trend may be reasonably intuitive, 
Leifeld et al. (2012) showed that peat decomposition rates were 
dependent on organic matter quality and that decomposability 
was higher in the newer organic matter nearer the peat sur-
face. Given the importance of temperature in driving soil carbon 
decomposition (Lloyd & Taylor, 1994), it would also follow that 
the drained upper layers (with a corresponding decrease in soil 
heat capacity) would see greater (and faster) soil temperature 
responses to incoming solar radiation, again suggesting that we 
might expect this greater sensitivity of respiration to drainage 
in the upper profile. While our results (Figure 5) are only from 
a single site, they do indicate the potential impact (and signifi-
cant carbon conservation) that might be achieved through more 
strategic management of water table in the upper soil layers. 
However, more work is needed to investigate the impact that 
reducing WTD would have on fruit yield.

4.3  |  Comparison to subsidence studies

Hooijer et al. (2012) estimated (from subsidence studies) that the first 
5 years of conversion from PSF to plantation (acacia as this is the con-
version they used to estimate 0– 5 year fluxes) would see a mean loss 
of peat carbon at 48.6 Mg CO2- C ha−1 year−1 (calculated from CO2eq. 
figures in their Table 2); our estimate for OPnew mean peat carbon 
loss was considerably lower than this at 30.3 Mg CO2- C ha−1 year−1 
over the first 3 years. For mature oil palm sites (>6 years) they sug-
gest a mean annual loss of 19.9 Mg CO2- C ha−1 year−1 at a mean 
WTD of 0.71 m (therefore CO2eq. = 102.6*WTD [m]), a figure in close 
agreement with a modelled range of 18– 22 Mg CO2- C ha−1 year−1 at 
WTD of 0.7 m given in Carlson et al. (2015). The OPmature site in our 
study (years 11 and 12) again showed a lower carbon loss than this at 
only 11.7 Mg CO2- C ha−1 year−1. However, mean WTD at OPmature 
was much closer to the soil surface (0.26 m) than in the Hooijer et al. 
(2012) analysis, which gives a relationship of CO2 = 164.7*WTD (m), 

around 60% higher, which might be expected from our comparison 
between the polynomial and linear fits discussed above.

Hooijer et al. (2012) estimated a long- term (years 0– 18) mean 
annual carbon loss of 32.5 Mg CO2- C ha−1 year−1, a figure that agrees 
well with an annualized 20- year figure of 29 Mg CO2- C ha−1 year−1 
calculated through literature review by Page et al. (2011). These 
values are both heavily influenced by the inclusion of very high 
peat carbon emissions in the early years estimated from observed 
rapid initial subsidence. Our chronosequence estimate of mean 
annual soil carbon loss (over 12 years) was 35% lower than this at 
18.9 Mg CO2- C ha−1 year−1, a figure in very close agreement to the 
mean annual carbon loss for conversions estimated in Couwenberg 
and Hooijer (2013) at 18 Mg CO2- C ha−1 year−1, a study aimed at 
improving the methodology for subsidence estimates of carbon loss 
from peatland-  conversions. However, this later study assumed, 
but did not account for, peat carbon losses in the early years being 
far higher and the figure of 18 Mg ha−1 year−1 was recommended 
only for mature conversions in a ‘steady state’. Our results for the 
early years, which are twice the mature value, are included in our 
12- year estimate, suggesting, from our sites at least, that includ-
ing these early years does not raise the mean emission beyond 
the Couwenberg and Hooijer (2013) estimate. However, we must 
acknowledge that drainage at our mature site particularly may not 
have been as effective as site managers would typically prefer. A 
recent meta- analysis (Prananto et al., 2020) showed a mean WTD 
across 138 tropical peatland plantations at 0.56, 0.3 m deeper than 
our mean for OPmature (0.26 m). With reference to Figure 5, in-
creasing WTD from 0.3 to 0.6 m below the surface could see an 
increase in CO2 emission of up to 25%, suggesting that emissions 
for OPmature may be lower than might be expected from deeper 
drained plantations.

It should also be noted that our estimate of CO2 flux from the 
decomposition of the forest biomass was contributing around a 
quarter of the total ecosystem CO2 emission to the atmosphere 
(Reco). This contribution would be reducing the estimate of early 
years' peat decomposition considerably in our mass balance equa-
tion, 75% of the forest residue was decomposed within 4 years in 
our decomposition model. This estimate was based on a literature 
figure for the starting biomass (Kho & Jepsen, 2015) and an as-
sumption that 25% had decomposed by the end of the first year 
from a single decomposition study (Law et al., 2019). Our decom-
position rate can be compared to a study carried out under simi-
lar climatic conditions in Panama, South America (Hoyos- Santillan 
et al., 2015), which reported 44% of starting biomass remaining 
after 2 years (stems up to 0.05 m diameter, when left above- 
ground), our chosen decay constant would result in 55% remaining 
after the same period. Given that our assumption includes CWD 
over a range of diameters, including much larger than 0.05 m, this 
might seem a reasonable value, however it is an assumption. Any 
decrease in decomposition rate or starting biomass would have a 
corresponding increase in the estimate of SOC loss for these early 
years. Our sensitivity analysis (see Supporting Information S.2) 
showed that while adjusting these values did have this impact on 
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estimates of ΔSOC, particularly in the early years, even at unreal-
istic levels they did not bring emissions from our sites to the levels 
suggested in subsidence studies. Uncertainty levels were also high 
in our estimate of NPP and increased over time with propagation 
of all the uncertainties in individual vegetation component assess-
ments. Again, the implications of this can be seen in our sensitivity 
analysis in Table S.2.2 where we consider the impact of doubling 
our estimate of NPP across a range of residue decomposition rate 
scenarios. Even at our lowest decomposition rate and doubled 
NPP, our long- term estimate of peat carbon loss remained 18% 
lower than the corresponding subsidence estimate.

An aspect not captured in our direct monitoring of the ecosys-
tem/atmosphere exchange of CO2 is peat loss due to the export of 
carbon in groundwater as dissolved and particulate organic carbon. 
This is represented within ε in Equation (4) and is something that 
would be captured in subsidence studies. A recent paper (Cook et al., 
2018) investigated fluvial carbon losses from study sites in the same 
plantation estates as our current study and reported losses of or-
ganic carbon in the range of 0.3– 0.5 Mg ha−1 year−1. This would add 
around 2.5% to our estimated peat organic carbon loss but would 
not raise it to the levels expected in Hooijer et al. (2012) or Page et al. 
(2011). Similarly, consideration needs to be given to potential emis-
sions of soil carbon as CH4 even though, as reported in Couwenberg 
et al. (2009), CH4 emissions from tropical peatlands are typically far 
lower than those from boreal/temperate peatlands. Manning et al. 
(2019) monitored CH4 emission from soils (and drainage channels) at 
the Sabaju and Sebungan plantations (though from different planting 
blocks to our OPnew and OPmature) and, as with their CO2 results, 
found fluxes from Sabaju (0.03 Mg CH4- C ha−1 year−1) to be higher 
than from Sebungan (0.006 Mg CH4- C ha−1 year−1). While the GWP 
impact of CH4 is calculated at 34 times that of CO2 (Myhre et al. 
2013), in terms of soil carbon loss, this level of carbon mobilization 
would add only around 0.1% to our estimate of annual carbon loss 
over the entire chronosequence (increasing to around 0.3% if drain-
age water CH4- C emissions were included).

4.4  |  Comparison to existing emission factors (as 
CO2)

Our long- term emission factor (calculated across all 151 months) 
for peat carbon loss (as CO2) at 67 Mg CO2 ha−1 year−1 is closer 
to the IPCC emission factor for peatland conversion to acacia 
plantation, 73 Mg CO2 ha−1 year−1 than oil palm which is lower at 
40 Mg CO2 ha−1 year−1 (Hiraishi et al., 2014). The effect of planta-
tion species on peatland CO2 emission was not found to be a sig-
nificant factor in the study of Carlson et al. (2015), who discussed 
the likely importance of time since drainage, though their data set 
was limited to a narrow age range. Miettinen et al. (2017) preferred 
to use the mean of the two IPCC factors (55 Mg CO2 ha−1 year−1), 
in their calculation of carbon loss across the region due to peatland 
conversion which agrees well with the Cooper et al. (2020) mean 
figure of 53.1 Mg CO2 ha−1 year−1. All these estimates remain lower 

than the EPA- accepted emission factor of 95 Mg CO2 ha−1 year−1 
(EPA, 2014). The IPCC explicitly exclude the first 6 years of con-
version in their emission factor due to lack of data but acknowl-
edge that this period would see much higher carbon losses. This is 
clearly demonstrated by our estimate of soil carbon emission for 
years 1– 6 at 91.6 Mg CO2 ha−1 year−1. The overall net emission of 
CO2 to the atmosphere (NEE) for this period, incorporating forest 
biomass decomposition and photosynthetic uptake, was higher at 
110.8 Mg CO2 ha−1 year−1.

This difference between direct soil carbon emission (ΔSOC, as 
CO2) and the net ecosystem scale addition of CO2 to the atmosphere 
(NEE) is an important distinction, particularly in the early years of 
conversion, and should be considered when assessing the impacts 
of land- use change. In Table 2, we present, based on our results, es-
timates of emission factors for both NEE and ΔSOC at an annual 
time step across a 12- year period. Taking the cumulative sum (for 
either component) for any given period and dividing by that number 
of years will provide an estimate of mean annual CO2 emission for 
that period.

5  |  CONCLUSIONS

Despite our results reporting lower peat carbon loss in the early 
years following conversion than subsidence studies might have 
suggested, there is no doubt that these emissions remain extremely 
significant and PSF conversion to agriculture results in very large 
net emissions of CO2. We have shown that the impact of these 
fluxes on the atmospheric carbon pool can be larger than emission 
factors for soil carbon loss alone might suggest, and that is highly 
unlikely that ‘carbon debts’ incurred early in a plantation lifecycle 
could be recouped over the remaining years. Evidence has shown 
that moratoria on peatland conversion within protected areas 
can be effective (Chen et al., 2019) but huge challenges remain, 
and newly identified areas of extensive peatland being reported 
from tropical zones across the globe (Lähteenoja & Page, 2011; Xu 
et al., 2018) reveal regions that may be particularly vulnerable to 
land- use change. Despite policy development in South East Asia, 
limitations in regulatory frameworks and enforcement capabilities 
combined with political and socio- economic factors still challenge 
peatland protection (Padfield et al., 2016; Wijedasa et al., 2018). 
Our results should make it clear that conservation of these glob-
ally important carbon stocks is vital to any efforts to minimize the 
impacts of future climate change and reduce the contribution of 
land- use change to it.
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