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Abstract

We define BitPart (Bitwise representations of binary Part itions), a novel
exact search mechanism intended for use in high-dimensional spaces. In outline,
a fixed set of reference objects is used to define a large set of regions within the
original space, and each data item is characterised according to its containment
within these regions. In contrast with other mechanisms only a subset of this
information is selected, according to the query, before a search within the re-
cast space is performed. Partial data representations are accessed only if they
are known to be potentially useful towards the calculation of the exact query
solution.

Our mechanism requires Ω(N logN) space to evaluate a query, where N is
the cardinality of the data, and therefore does not scale as well as previously
defined mechanisms with low-dimensional data. However it has recently been
shown that, for a nearest neighbour search in high dimensions, a sequential scan
of the data is essentially unavoidable. This result has been suspected for a long
time, and has been referred to as the curse of dimensionality in this context.

In the light of this result, the compromise achieved by this work is to make
the best possible use of the available fast memory, and to offer great potential
for parallel query evaluation. To our knowledge, it gives the best compromise
currently known for performing exact search over data whose dimensionality is
too high to allow the useful application of metric indexing, yet is still sufficiently
low to give at least some traction from the metric and supermetric properties.

Keywords: Similarity search, metric space, metric indexing, metric search,
four-point property

1. Context

To set a formal context, we are interested in searching a (large) finite set
of objects S which is a subset of an infinite set U , where (U, d) is a metric
space: that is, an ordered pair (U, d), where U is a domain of objects and d is a
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total distance function d : U × U → R, satisfying postulates of non-negativity,
identity, symmetry, and triangle inequality [? ]. The general requirement is to
efficiently find members of S which are similar to an arbitrary member of U
given as a query, where the distance function d gives the only way by which any
two objects may be compared. There are many important practical examples
captured by this mathematical framework, see for example [? ? ]. The simplest
type of similarity query is the range search query: for some threshold t, based
on a query q ∈ U , the solution set is R = {s ∈ S| d(q, s) ≤ t}.

The essence of metric search is to spend time pre-processing the finite set S
so that solutions to queries can be efficiently calculated. In all cases distances
between members of S and selected reference or “pivot” objects are calculated
during pre-processing. At query time the relative distances between the query
and the same pivot objects can be used to make deductions about which data
values may, or may not, be candidate solutions to the query.

Many pre-processing mechanisms attempt to organise the data set in terms of
locality. To achieve this, they construct a data structure (typically a recursively
defined tree of some kind) where objects that are close to each other within
the metric space are similar in terms of navigational paths within the data
structure. In the best possible case, this allows data within a small distance
of a given query to be almost deterministically identified by navigation of the
structure at query time. In turn this gives a query cost which is logarithmic
with respect to the size of the data.

As the dimensionality of the data increases, however, the property of locality
is increasingly lost: from the perspective of an individual data item, sampled
distances become increasingly similar and the concept of data clustering is en-
tirely lost. This is just one effect of the attribute commonly referred to as the
curse of dimensionality.

Navigational solutions become ineffective in these conditions. Most research
aimed at searching high-dimensional spaces is dedicated to approximate search,
where a selection of pre-determined reference objects is used, and distances to
all these are calculated for every element during construction. These distances
are used to re-cast the original space into some other space where indexing
properties are better, distance calculations are cheaper, or both. Typically
the main tradeoff is that extra query efficiency is achieved in return for a loss
of semantic query effectiveness. Such mechanisms are either approximate, or
produce candidate sets of results from within which the true results must be
determined by re-accessing the original data.

In our work, we also pursue the strategy of performing all of the reference
point distances at the start of a query, rather than incrementally during a nav-
igational calculation. A fixed set of reference points is chosen, and used to
partition the infinite space into a large set of discrete subspaces. During pre-
processing, every element of the finite space is characterised according to which
of these subspaces it is in. The novel aspect of our approach is that, at query
time, a subset of these subspaces is identified, with respect to the query, accord-
ing to those which must, or alternatively cannot, contain solutions to that query.
For only these subspaces, the containment information is used to calculate an
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accurate set of potential query solutions. In this way, the mechanism maximises
the use of main memory for a search calculation.

This paper is an extended version of one originally published in the 11th

International Conference on Similarity Search and Applications (SISAP18) [?
]. That paper introduced the core mechanism, of which we now give a more de-
tailed description, and demonstrated its credibility via promising experimental
results over the SISAP benchmark data sets. In this paper we add a full analy-
sis of the mechanism applied to higher-dimensionality spaces and experimental
analysis of the parallelisation potential of the mechanism. All of the code used
to perform the many experiments is available online1.

The novelty of the work lies in the combination of using a fixed set of ref-
erence objects to characterise the data, followed by their use in an exact met-
ric search algorithm which maximises the efficacy of memory use. There are
many mechanisms which use similar fixed sets of reference objects (see for ex-
ample Section 2); our mechanism is particularly well-suited to exact search as
the dimensionality of the underlying data increases, by minimising the memory
footprint required for the search algorithm. Furthermore our algorithm is in-
herently decomposable and parallelisable, and is well-suited to implementation
on modern processors.

2. Related Work

There are a large number of metric search algorithms described in the litera-
ture. In Section 2.1 we outline some others which, like ours, use a fixed number
of reference objects in a “one-time” manner. Section 2.2 gives a short outline of
a conditional hardness result which contextualises the approach followed in this
paper. Our approach can also benefit greatly from recent work which establishes
stronger mathematical properties for an important subset of metric spaces, as
outlined in Section 2.3. Finally, Section 2.4 describes some relational database
technology from which this work can potentially benefit.

2.1. Search using Fixed Reference Objects

There are a number of well-known mechanisms in which the distances be-
tween a query and a fixed set of reference objects are used to guide a first phase
of search. All such mechanisms may either be regarded as approximate, or
subsequently checked against the original data set for accuracy.

LAESA [? ] has typically been used for metric filtering, rather than approx-
imate search. For each element of the data, distances to a fixed set of reference
points are recorded in a table. At query time, the distances between the query
and each reference point are calculated; the table can then be scanned row at
a time, and each distance compared; if, for any reference object pi and data
object sj the absolute difference |d(q, pi) − d(sj , pi)| > t, then it is impossible

1http://github.com/aldearle/BitPart
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for sj to be within distance t of the query, and the distance calculation can be
avoided. LAESA can be used as an efficient pre-filter for exact search when
memory size is limited. The same data can be re-cast into a metric space us-
ing the Chebyshev metric but this does not typically result in any significant
performance increase.

The best known mechanisms which use a fixed partition of the original data
for approximate search are based on permutation orderings [? ? ? ]. There
is a significant variety of techniques, but the essence of the approach is to
characterise each element of the data in terms of its distances to a set of pre-
selected reference objects, and then to compare elements using various aspects of
similarity in this ordering. The approach is similar in that this effectively creates
a large number of regions within the universal space, one for each ordering.
However in all cases that we know of, an approximate search mechanism is
created based on some cost function over the resulting orderings; there does not
seem to be any clear mechanism for using the regions thus defined as an exact
search mechanism. Especially in higher dimensional spaces, two very similar
objects in the original space may lie on opposing sides of a number of the
important boundaries, which then appear as distant objects and fail to appear
in the search results.

Sketches [? ] uses a fixed set of reference objects. A large number of enclosed
regions is established based on these objects, in which each element of the data
can be judged to be contained or otherwise. An ordering is imposed on the
regions, allowing each element of the data to be characterised by a bitstring,
where each bit position represents membership of the corresponding region. This
bitstring is referred to as the Sketch of the object.

The idea is that, if two objects are close to each other within the data space,
then they will be in many of the same regions, and thus have many of the same
bits set. Therefore, the Hamming Distance over the Sketches should give a good
proxy to distance in the original space. The purpose of the technique is that the
proxy objects should be much smaller, and the Hamming metric much cheaper,
than those of the original metric space.

The technique suffers from the same probabilistic issues as permutation or-
derings, in that for any two very similar objects there is a finite probability that
they will appear very different in the proxy space.

Other probabilistic mechanisms have also been proposed, for example [? ?
? ]. These are all quite similar in outline but with different ways of defining
regional boundaries and treating the proxy space. Our work differs significantly
in that we describe a mechanism which is guaranteed to give all correct results
from the original space, and in the way that the increased cost of increasing
dimensionality or query threshold can be controlled.

2.2. Hardness of High-Dimensional Querying

A recent conditional hardness result given in [? ] shows that a sequential
scan is virtually unavoidable for nearest neighbour search in high dimensional
spaces. This has of course been suspected for a long time by the indexing
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community, and the observed phenomenon has been named the curse of dimen-
sionality in this context.

Our mechanism does comprise a sequential scan, but this scan is highly
optimised. For each element of the data, an n-bit representation is required in
main memory, where n requires to be greater than log2N . The result of the
computation over this data however is a single bitmap of size N , whose positive
bits correspond to data which may be a valid solution to a query. The necessary
sequential scan then occurs over this bitmap, considering only the bits that are
set. If these comprise a small percentage of the total, then this scan can be
achieved very efficiently in engineering terms: that is, while the computation is
conceptually Ω(N), this is associated with a very small constant factor.

2.3. Metrics and Supermetrics

Much work on finite isometric embeddings was conducted in the 20th cen-
tury, by e.g. Blumenthal [? ], Wilson [? ] and Menger [? ]. Blumenthal
uses the phrase four-point property to mean a space that is 4-embeddable in
3-dimensional Euclidean space.

This property means that, for any selection of four objects from the original
space, it is possible to construct a tetrahedron where the vertices correspond to
the objects, and the length of each side is equal to the corresponding inter-object
distance. Any metric space is 3-embeddable in 2-dimensional Euclidean space;
this property is equivalent to triangle inequality [? ]. Spaces with the four-point
property are thus also metric spaces but also have some stronger properties,
which can have profound consequences in metric search. The four-point prop-
erty exists in many commonly-used metric spaces, including Euclidean, Cosine2,
Jensen-Shannon, Triangular and Quadratic Form distances.

Connor and Vadicamo have applied these results in theoretical mathematics
to this more practical domain [? ? ] and the term supermetric is now used to
refer to metrics with the property.

Use of the supermetric property gives better exclusion conditions, as detailed
in Section 4.2. The concepts given in this paper are equally applicable to both
metric and supermetric spaces; as would be expected from a space with tighter
geometric properties, however the results we show using the four-point property
are significantly better than results relying only on the three-point property.

2.4. Column Databases

Column databases differ from Relational and NoSQL databases in that
data is stored in columns rather than as records (rows) or in an object, semi-
structured or unstructured manner. Column databases were introduced to the
academic community in 2005 with the presentation of C Store [? ] which was
later developed into the commercial product Vertica [? ]. Column databases
are optimised for data warehousing applications in which read operations dom-
inate; they permit the database to read only those columns required for specific

2for the correct formulation, see [? ].
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queries, for example finding the addresses of all customers, and avoiding fetching
attributes that are not required for that particular query. Even with complex
indexing mechanisms this is hard to achieve using relational technology. The
metric search application described in this paper is a perfect fit with column
databases since there are a low number of writes (often 1), few updates (if any)
and the requirement to be able to select columns of bit values attributes.

A column database would therefore provide a perfect implementation agent
for a major part of our mechanism, referred to as Phase 2 in Section 4. Commer-
cial implementations are available, although at this time we are yet to perform
any experimental analysis of their use.

3. Conceptual Overview of BitPart

The core of the technique is to define a large set of binary partitions over the
original space; the data is stored as a set of bitmaps according to containment
with these regions. At query time, the query is assessed against this containment
information, but without reference to the original data representation.

For each region, one of three possible conditions may be determined: (a)
the solution set to the query must be fully contained in the region, or (b)
there is no intersection between the region and the solution set, or (c) neither
of these is the case. In either case (a) or (b), the containment information
stored may be useful with respect to solving the query, and is used as part of
the query computation. In case (c) however the containment information is
of no value, and is not accessed as a part of the computation. This approach
maximises the effectiveness of memory used for calculation against the original
data representation: the amount of memory required depends on the cardinality
of the original data, but not on the size of its individual objects.

3.1. Illustrated Example

Figure 1 shows a simple example within the 2D plane, comprising four ref-
erence objects p1 to p4 and a set of six regions defined by them. The regions
are respectively: A, the area to the left of the line between p1 and p2; B, the
area above the line between p1 and p3; and the areas within the variously sized
circles drawn around each p1 to p4, labelled C, D, E and F respectively. Note
that each regional boundary defines a binary partition of the total space, such
that each element of the space is either in, or out, of the region, and that this
membership is defined only in terms of distances from defined reference objects.
Thus in Figure 1, A = {u ∈ U |d(u, p1) ≤ d(u, p2)}, C = {u ∈ U |d(u, p1) ≤ µ}
for some value of µ, etc.

Figure 1 also shows a range query q drawn with a threshold t. It can be
seen that all solutions to this query must lie within the area highlighted on the
right hand side of the figure. The circle around the query intersects with two
regional boundaries (A and E), and so no information is available with respect
to these; however it is completely contained within two of the defined regions (B
and D), and fails to intersect with the final two (C and F ). Such containment
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Figure 1: Any solution to the query q with threshold t must be in the circle centred around
p2, and above the dashed horizontal line; it cannot be in the circles centred around p1 or
p4. No information is available wrt the circle around p3 nor the vertical line; these partitions
take no part in the exclusion calculation as the region boundaries intersect the query solution
boundary. The shaded area shown on the right shows the possible loci of query solutions with
respect to these regions.

and intersection is derivable only from the measurement of distances between
the query and the reference objects, the definition of the regions, and the search
radius. Here for example the possible solution area shown is determined using
only the four distance calculations d(q, p1).. d(q, p4).

Table 1 shows how the example data objects a to f are stored in terms of
their regional containment. The row labelled Q shows the containment relation
between the region containing all solutions to the query, and each pre-defined
region A to F . Where the boundaries intersect, a ∩ is shown; where they do
not, a Boolean value shows whether the query ball is contained or otherwise.
Therefore, the only possible solutions to the query are those which match on
all non-intersecting fields; in this case, the objects a, e and f . Note that this is
equivalent to the Conjunctive Normal Form (CNF) expression B∧¬C∧D∧¬F .
This expression therefore covers the set of all possible solutions to the query.

3.2. Overview of the Query Algorithm

The concepts shown in the example may be implemented as follows:

Phase 1 The query is checked against the regional definitions, and the two
types of regions with non-intersecting boundaries are identified.

Phase 2 The regions thus identified are used to conduct a series of logical
operations, thus identifying a set of candidate solutions for the query.
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Table 1: The data representation according to containment of regions (see Figure 1). The
representation of the query Q is equivalent to the CNF expression B ∧ ¬C ∧D ∧ ¬F

Point Regions
A B C D E F

a true true false true true false
b true false false false true true
c false false false false false false
d false false false true false true
e false true false true false false
f true true false true false false
Q ∩ true false true ∩ false

Phase 3 These candidate solutions are checked against the original data set to
identify the exact solution to the query.

This gives interesting performance tradeoffs. Phase 1 is likely to be domi-
nated by the cost of the distance calculations; as will be seen, the computation
of non-intersecting regional boundaries requires only simple arithmetic calcu-
lations based on these. Phase 2 cost is dominated by the number of selected
regions, and efficiency with which the logical operations can be performed; this
is highly efficient on modern hardware, and also highly optimisable. The cost
of Phase 3 directly depends on how much exclusion can be achieved, and will
always be better with a larger number of regions, which will in turn require an
increase in the cost of Phase 1.

However, a larger than necessary number of regions will result in redun-
dancy during Phase 2 and therefore may increase the cost of this phase of the
calculation more than a larger residue would do so. Finding exactly the best
parameters for these phases depends on the size and dimensionality of the data
as well as the cost of the distance metric, and is further discussed in Section 8.

4. Detailed Mechanism Description

4.1. Data structures

Before describing the algorithm in more detail, we describe the data struc-
tures used in the algorithm and their initialisation. We refer to a finite space
(S, d) which is a subset of an infinite metric space (U, d).

A set P of enumerated reference objects p0 to pm is first selected from the
finite metric space S. Based on this, we define a set of surfaces within U ,
defined according to the distance function d, each of which divide U into two
parts. Surfaces within U are either balls, for example {u ∈ U | d(u, pi) ≤ µ} for
some values i, µ, or sheets, for example {u ∈ U | d(u, pi)) ≤ d(u, pj)} for some
values i, j. For each such surface, it is easy to categorise any element of ui of U
as being inside or outside an associated region, according to whether it is on the
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same side of the surface as pi or otherwise. That is, for a ball region “in” means
within the ball, and for a sheet region “in” means on the same side of the sheet
as the first reference point used to define it. Note that there can be many more
regions than reference objects; for example a set of m reference objects defines
at least

(
m
2

)
sheet regions, plus m ball regions, and can be used to define many

more than this.
We now define the notion of an exclusion zone (EZ) as a containment map

of S based on a given region; this is the information we will use at query time
to perform exclusions and derive a candidate set of solutions. We impose an
ordering on S, then for each si map whether it is a member of the region or
otherwise. This logical containment information is best stored in a bitmap of n
bits, where n = |S|. One such exclusion zone is generated per region and stored
as the primary representation of the data set.

It is worth noting that an essential difference between our mechanism and
others that use the same characterisation of the data (see Section 2) is that
each of our bitmaps represents the containment of the whole data set within
an individual region, rather than those regions which contain an individual
object. The same information is thus divided with the opposite orientation;
with reference to Table 1, we store the columns rather than the rows.

4.2. Query
The query process comprises three distinct phases as mentioned above.

Phase 1 Initially, the distance from the query q to each reference object pi is
measured. For each region, it can be established if the boundary of the
solution ball intersects with the boundary of the region. If there is such
an intersection, then the region is of no value to the ongoing computation.
If there is no intersection, any solution to the query must lie on one or
other side of the region’s boundary, and that region is carried forwards to
the computation in Phase 2.

For a ball region defined by reference object pi and a radius µ, then the
condition for intersection is:

|d(pi, q)− µ| ≤ t

For a sheet region, the condition depends on whether the metric d has
the supermetric property (see Section 2.3) or otherwise: if it does, the
intersection condition is:

|d(pi, q)
2 − d(pj , q)

2|
2d(pi, pj)

≤ t

otherwise the weaker3 condition is:

|d(pi, q)− d(pj , q)|
2

≤ t

3As this condition is weaker, the probability of an exclusion is lower. A full explanation is
given in [? ].
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If the intersection condition holds, then the exclusion zone related to the
region is not considered further; if it does not, then the exclusion zone
is brought into the query calculation in one of two sets, depending on
whether the query solutions are fully contained within, or without, the
region in question. We will name these two sets of bitmaps Bin and Bout.

Phase 2 The second phase comprises the manipulation of the bitmaps deriving
from the first phase to identify a set of candidate solutions. This may be
efficiently achieved by a series of bitwise operations over these bitmaps.
The solution to the query is guaranteed to lie within the intersection of
the inclusion sets (derived by bitwise and operations) and not in the union
of the exclusion set (derived by bitwise or). Thus any solution is guar-
anteed to be identified by the bitmap deriving from the following logical
expression: ( ∧

b∈Bin

b

)
∧

(
¬

( ∨
b∈Bout

b

))

Phase 3 The last phase consists of performing a sequential scan of the single
bitmap resulting from Phase 2 and checking the data corresponding to any
remaining set bits using the original space and distance metric in order to
produce an exact solution to the query.

4.3. Balancing

In our initial experiments, we have tried both balanced and unbalanced
bitsets. Balancing can be achieved by selecting a set of witness objects from
the finite space S and finding a median distance or offset for these, so that the
regional boundary divides the finite set into two equal parts. A large enough set
of witness objects will give a good statistical approximation to the distribution
of S.

For ball partitions, the median distance to the centre is used. For sheet
partitions, an offset can be selected to balance the partition as explained in
Section 7.

For unbalanced experiments we used a fixed radius partition for balls initially
set to a median sampled distance from the space. For sheet partitions we used
an offset of zero.

5. Experiments with SISAP data sets

The efficacy of the algorithm was first tested by running queries against the
SISAP colors and nasa benchmark data sets [? ]. The “colors” set contains
112,682 feature vectors of dimension 112, representing colour histograms from
an image database. The “nasa” data set contains a set of 40,700 20-dimensional
feature vectors, generated from images downloaded from NASA. In each case
ten percent of the data is used as queries over remaining 90 percent of the set, at
threshold values which return 0.01%, 0.1% and 1% of the data sets respectively.
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Figure 2: Percentage of data accessed for different numbers of reference points. Three different
thresholds are used for the SISAP colors and nasa datasets. Although this space has the
supermetric property it is not exploited in this experiment.

The benchmark thresholds for this purpose are t0 = 0.052, t1 = 0.083, t2 = 0.13
for colors and t0 = 0.12, t1 = 0.285, and t2 = 0.53 for nasa.

The metric used for both datasets is Euclidean distance. Reference objects
are selected randomly from the dataset. The number of reference objects is
varied from 10 to 60 in steps of 5. In this set of experiments the number of ball
exclusion zones per reference point is set to 5, with the radii being set to a mean
radius of 1.814 and mean ± 0.3 and mean ± 0.6. A single partition is used for
the sheet portion exclusion zones. We report only residual distance calculations,
which are the number of calculations made in phase 3 of the algorithm, excluding
the (fixed number of) reference object distance calculations. The results of this
experiment are shown in Figures 2 - 4, with the figures for 60 reference objects
(the right hand side of the graph) given in Table 2. To put these figures into
the metric indexing context, the top two rows of the table give the number of
distance calculations per query reported in [? ] for the Distal SAT operating
with both normal metric and supermetric exclusion mechanisms.

The three sets of graphs shown in Figures 2 - 4 show the percentage of data
points accessed by the query algorithm against the number of reference points
for the colors and nasa datasets. These illustrate a number of interesting facets

4For balanced versions (see Section 7) the central radius is reset, but the same increments
are applied
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Figure 3: Percentage of data accessed for different numbers of reference points. Three differ-
ent thresholds are used for the SISAP colors and nasa datasets exploiting the supermetric
property.

Figure 4: Percentage of data accessed for different numbers of reference points. Three differ-
ent thresholds are used for the SISAP colors and nasa datasets exploiting the supermetric
property and balancing.
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Table 2: Residual distance calculations required when 60 reference objects are used (the
numbers reported do not include the 60 distance calculations required for these.) The top two
rows give comparable figures for the state-of-the-art Distal SAT. The data size is 90% of the
original data after queries have been removed, i.e. 101,414 for colors and 36,630 for nasa.

colors nasa
t0 t1 t2 t0 t1 t2

DiSAT: metric 4049 9112 19745 554 2176 6448
DiSAT: supermetric 2015 5737 16199 320 1300 5444

metric, unbalanced 4207 14930 42139 14 1120 9202
metric, balanced 2246 9610 30250 11 822 7671
supermetric, unbalanced 544 3114 13045 3 296 4122
supermetric, balanced 434 2961 17080 1 141 4182

of the algorithm. As would be expected, increasing the number of reference
objects has a significant effect of the number of distance calculations performed.
However the number of reference objects used in these experiments is really quite
small, much smaller than has been reported for other regional approaches e.g.
[? ? ] given the accuracy shown by the relatively small number of residual
distance calculations required. In particular, as shown in Table 2 we have the
quite stunning result that, using 60 reference objects, the supermetric property,
and balancing the data structures, we have an almost perfect characterisation
of the nasa data set, with less that one false positive result per query.

Finally, we note that using balanced versions of the EZs helps, sometimes
quite substantially, in all cases other than the larger search radii in the colors
space. In cases where balancing makes the performance worse, this is because
balancing the data set can reduce the probability of an individual EZ being
selected during Phase 1, and this issue can be overcome by increasing the number
of reference points. We return to this topic in Section 7.

6. Increasing Dimensionality

It is now understood that, as dimensionality increases, any search mechanism
will degenerate to a linear scan of the data [? ]. In this section we demonstrate
that BitPart performs differently from conventional indexing methods in this
respect. For low dimensional search, indexing mechanisms can achieve logarith-
mic performance (O(log n) where n is the size of the data.) This approach will
therefore have better scalability for low dimensions than BitPart, which always
requires a sequential scan of order O(n).

However, at some point, increasing dimensionality will cause the spread of
sampled distances to be smaller than the smallest distances within the set.
When this happens, it is always impossible to achieve any traction from metric
or supermetric properties.

13



Table 3: Values used in experiments for uniformly generated Euclidean spaces between 1 and
20 dimensions. Figures shown are: the mean distance sampled from within the space; the
Intrinsic Dimensionality, and the search radius used, in each case representing the radius of a
hypersphere whose volume is one-millionth of the unit hypercube volume.

dim 1 2 3 4 5 6 7 8 9 10
mean 0.333 0.521 0.662 0.778 0.878 0.969 1.052 1.128 1.2 1.268
IDIM 1.0 2.2 3.5 4.9 6.3 7.7 9.1 10.5 11.9 13.4
radius 5.0e−7 5.6e−4 6.20e−3 0.021 0.045 0.076 0.111 0.149 0.189 0.229

dim 11 12 13 14 15 16 17 18 19 20
mean 1.332 1.393 1.452 1.508 1.562 1.615 1.665 1.715 1.763 1.81
IDIM 14.8 16.2 17.6 19.1 20.5 21.9 23.3 24.8 26.2 27.6
radius 0.269 0.309 0.348 0.387 0.425 0.462 0.498 0.533 0.568 0.602

Our intention with this mechanism is to explore the use of the Ω(n log n)
space required by our mechanism as the best possible use of a finite sized memory
in which exclusion calculations can be performed. In the best case, we require
only log2 n bits per datum. In this context we are pushing to find the limits of
exact search, rather than resorting to approximate mechanisms. As we show in
Section 6.4, our mechanism continues to work well at dimensionalities that are
sufficiently high to stop metric indexing mechanisms from functioning usefully.

6.1. Experimental Framework

In order to investigate increasing dimensionality, we use an experimental
framework where we control dimensionality by using generated Euclidean spaces
of increasingly higher dimensions, up to 20. For each of these spaces, data are
randomly generated using a uniform distribution in each dimension within the
unit hypercube. Range searches are conducted over queries generated within
the same space, using a query radius which corresponds to one-millionth of the
unit hypercube volume. Table 3 gives the figures used in experiments for each
of these spaces.

It is worth noting that while the Euclidean dimensions vary from 2 to 20,
the Intrinsic Dimensionality (IDIM, [? ]) ranges from 2 to 28. While IDIM is
not a perfect measure of tractability, it is usually a reasonable estimate. Among
our results we present both elapsed clock times, and the percentage of the data
accessed, to perform queries.

The percentage data access figures should be representative of other metric
spaces with similar IDIM values. Such spaces may include physically much
larger data objects with more expensive metrics; for example the IDIM of the
Profiset5 data set, which comprises 4,096-dimensional vectors taken from the

5http://disa.fi.muni.cz/profiset/
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post-Relu fc7 layer of the AlexNet convolutional neural network, is 25.3. This
means not only that the distance metric cost is much greater, it also implies
increased costs due to the necessity of moving large volumes of data within the
memory hierarchy and caching effects. Therefore a mechanism which shows a
clock time similar to exhaustive search in our framework may perform orders of
magnitude better if the data size and metric cost are much greater in a different
space with similar indexing characteristics.

For every generated space, one thousand queries are executed against one
million data and the values reported are the mean values over these experiments,
repeated as necessary to reduce the error of the mean to an acceptable level. All
experiments described in this section were written in Java and conducted on a
MacBook Pro with a quadcore 3.1 GHz Intel Core i7 and 16 GB of 2133 MHz
LPDDR3 memory; no other processes were running and network was disabled.
All data fits in main memory and, as is normal with metric space experiments,
only relative values should be regarded as being significant.

6.2. Phase Costs

As previously noted, the cost of each of these queries is divided into three
phases: (1) the cost of measuring distances between query and reference points,
and assessing which of the exclusion zones can be used in the calculation; (2) the
cost of performing the bitwise operations over the exclusion zones, and (3) the
cost of performing distance calculations over those elements of the data which
have not been excluded.

All experiments described in this section are conducted using the `2 distance
which is relatively cheap for a memory-resident implementation; for a more
expensive metric, the value of the BitPart mechanism is increased as shown in
Section 8.1.

In all experiments, the Phase 1 cost is negligible. The distance calculation
cost ranges between around 10−8 and 10−7 seconds between 2 and 20 dimensions
which does not feature as our results are presented in terms of milliseconds per
query; the maximum contribution for 60 reference points being less than 0.1ms.
The cost of testing whether an individual EZ may be excluded or not is always
a cheap arithmetic calculation based only on these calculated distances, which
we have measured at around 10−8s per EZ. This gives a cost of up to 0.2ms
for our largest experiments, so again does not contribute significantly to the
results presented. This is not to say that Phase 1 costs can always be ignored,
as our figures do show potential for increasing the number of reference points,
and therefore hugely increasing the number of zones, to address a further rise
in dimensionality.

In the experiments we describe, at low dimensions almost all of the defined
EZs are selected for use in Phase 2. This therefore gives the maximum possible
cost for Phase 2, which depends linearly on the number of selected EZs. Again
at low dimensions, this yields an almost perfect exclusion of data, therefore
minimising the Phase 3 costs. As the dimensionality increases however, ever
fewer EZs are selected by Phase 1, therefore the cost of Phase 2 decreases. As a
direct consequence of this, the cost of Phase 3 increases, as more objects which
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Figure 5: Elapsed time (left) and distance calculations (right) for the Vantage Point Tree as
dimensionality increases, compared with exhaustive search. Distance calculations are shown
as a proportion of the number required for exhaustive search.

are not solutions to the query fail to be excluded. The cost balances between
these two phases depend on the characteristics of the space, particularly the
dimensionality and the cost of distance evaluation. These issues are highlighted
for our experimental framework in Section 6.4.

6.3. Comparison with Indexing Mechanisms

To demonstrate the effect of dimensionality increase over standard scalable
mechanisms, the left hand side of Figure 5 shows the performance of these
searches using a balanced Vantage Point Tree (VPT) index structure compared
with an exhaustive search. It can be seen that, as dimensionality increases, the
value of using the data structure becomes less, until the cost actually exceeds the
cost of a simple exhaustive search of the data. This is a well-known phenomenon,
caused by the joint effects of (a) ever fewer distance calculations being avoided by
the exclusion mechanism, and (b) the cost overhead of the indexing mechanism
itself, which increases as locality is lost due to increases in dimensionality. Where
the cutoff occurs depends on both the intrinsic dimensionality and the absolute
cost of the distance function; here the distance function is simple Euclidean
(`2) distance which is relatively cheap. It can be seen here that the crossover
point occurs at an IDIM of around 15 (which occurs at 11 dimensions for our
generated data.) The figure on the right shows the proportion of the data set
being accessed per query by the VPT. At the crossover point this is only around
2.7% of the data being searched. However the overhead of the search mechanism
even for this simple index is such that its use is no longer cost-effective.

Of course our mechanism will also suffer from the effects of increasing di-
mensionality, however the cost parameters are quite different from those of a
standard indexing approach, and here we examine the effect of these different
parameters as dimensionality increases.

16



Figure 6: Elapsed Time (left) and Distances (right) per query for generated 20-dimensional
Euclidean space. Distances are given as the proportion of the data accessed per query. Figures
are shown for simple metric and supermetric variants of the BitPart mechanism with 10 and
60 reference points, compared with equivalent figures for a VPT query index. The distance
used (`2) is relatively cheap so these figures show mostly the mechanism cost; true costs with
a more expensive metric can be estimated from the combination of these values. Note the log
scales on both Y-axes.

6.4. BitPart Cost Profile

Next, we show the essentially different properties of the BitPart mechanism.
Figure 6 shows graphs of elapsed time and distance calculations performed for
four variants of the BitPart, with the previous VPT figures also shown as a
guide.

For these experiments we demonstrate the mechanism with 10 and 60 refer-
ence points respectively, and used the supermetric (four-point) and non-supermetric
versions of the exclusion mechanism. In all instances, for n reference points n
ball exclusion zones and

(
n
2

)
sheet exclusion zones were created, and for each

query as many of these as possible were brought into Phase 2 of the calculation.
These are not optimal parameters for the mechanism but give the best insight
into the relative costs for different numbers of dimensions and reference points.

There are several points of interest to note here. First, the lowest dimensional
figures for elapsed time effectively gives the maximum overhead cost of the
mechanism itself - around 1ms for 10 reference points and 15ms for 60. This
is because in both cases almost all exclusion zones are being selected for all
queries (55 for 10 reference points, 1,830 for 60) and consequently almost all of
the data is excluded from the Phase 3 calculation. In the lower dimensions, for
all configurations of BitPart shown in Figure 6, this means that many redundant
EZs are being included in the Phase 2 calculation. As can also be seen, VPT will
always be best at these low dimensions as the indexing structure effectively gives
a deterministic route to the correct solutions as almost all incorrect branches
are excluded.

Also for all configurations it can be seen that the elapsed time cost reduces,
at first, as dimensions are increased; this is due to less EZs being brought into
the second phase calculation, until the cost starts to rise again as this smaller
number of EZs become less effective in excluding Phase 3 calculations.
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To the left of this inflection point, redundant information is being used
during both Phase 1 and Phase 2 computations. For example, using 60 reference
points and the 3-point property, the inflection point occurs at a dimensionality
of around 16. This implies that 60 references is more than optimal for this
space, and fewer should be used. In this sense, the smallest elapsed time values
for each of the four mechanisms represent a maximum cost for any space up to
that dimensionality if the mechanism is correctly tuned.

Considering the 60 reference point versions, this means that both 3-point
and 4-point mechanisms start to become more effective than the VPT as di-
mensionality exceeds around 15. One underlying reason for this is clear from
the right-hand graph, where it can be seen that these mechanisms exclude all
but 0.1% and 0.01% of the original distance calculations respectively, whereas
the indexing structure at 10 dimensions accesses 1.7%. However the main extra
cost is the manner in which the memory is accessed, as discussed in Section 9.

At the right-hand side of the elapsed time graph, it can be seen that the
cost for all mechanisms other than the four-point at 60 reference points has
essentially become the cost of an exhaustive search plus the mechanism cost:
less than 50% of the data is being excluded by any mechanism, and at this stage
the cost of an exhaustive search is not significantly more that the cost of random
access plus distances to the non-excluded data.

6.5. Balls vs Sheets

We have already noted the value of using sheet partitions, in that the number
of partitions and therefore EZs which can be generated from a fixed number of
reference points is

(
n
2

)
, therefore allowing very few Phase 1 distance calculations

to generate a huge number of geometrically distinct zones. However this may be
of moderate value if the zones themselves are not as useful as those provided by
balls, as in many cases a much larger number of calculations performed during
Phase 1 would not add significantly to the overall mechanism cost.

To test the relative value of the different zone types, an experiment separat-
ing ball-based and sheet-based EZs was performed. Using 60 reference points,(
60
2

)
(i.e. 1,770) sheets were generated with both three-point and four-point ex-

clusion criteria, and independently 1,770 reference points were used to generate
the same number of ball partitions. Across the dimensions, the effectiveness of
each type of zone was measured by the proportion of distance calculations, and
also by the proportion of zones selected per query. Results are shown in Figure
7.

These results are quite surprising. We had expected the ball EZs to perform
better than either sheet EZ type, however the four-point zones clearly perform
best except for in very low dimensions. The right-hand chart suggests that the
reason for this is that more zones are selected per query. At present, we cannot
give a clear reason for this.
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Figure 7: Performance of different zone types for Euclidean spaces of different dimensionalities.
1,770 zones are tested in each case with either ball, simple metric sheet, or supermetric sheet
types of EZ. The left-hand sub-figure shows the number of zones selected per query as dimen-
sionality increases, and the right-hand sub-figure shows the number of distance calculation
required in Phase 3 as a proportion of the data size.

7. Balancing of Exclusion Zones

For our mechanism to work perfectly, we require two properties from the set
of EZs selected for Phase 2 of the calculation:

balance: For each individual EZ, every element of the data will be set to 1
or 0 depending on whether it is an element of the zone or not. An EZ is
perfectly balanced when exactly half the set is deemed to lie within the
zone, and correspondingly exactly half the set lies outside the zone.

orthogonality: For each pair of EZs, there should be no correlation between
the bits generated for individual data items. That is, for every element
of the data, the probability of it being represented as a 1 in the first EZ
should be independent of its representation within the second EZ.

If it was possible to achieve both of these properties, then only a small num-
ber of EZs would be required for Phase 2 in order to give very good exclusion.
For an individual datum which is not within the threshold t of the query, then
the probability of its representation failing to be excluded from a set of n EZs
is 1

2n , and therefore from a set of N data, a set of approximately log2N EZs is
most likely to exclude all but one datum from the search. As the experiments
described here have a data size of 106, then if the set of Phase 2 EZs is both
balanced and orthogonal, only a few more than 20 EZs should be optimal.

As described below, balanced EZs can be achieved. Finding orthogonal
regions in a metric space is well known to be a difficult problem which we do
not address further. However, we have noted in our experiments over 106 data,
around 50-100 EZs in Phase 2 seems to suffice to exclude over 99% of the data
in the highest dimensional spaces we have tested.

For a ball partition balancing can be achieved by selecting an appropriate
radius, as the median distance between the reference point and the rest of the
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data. For a particular reference point pi, a constant α is selected so that the
membership condition for a data element s to be within the region becomes

d(pi, s) ≤ α

and the conditions under which the exclusion zone is selected as a part of the
calculation for a given query over q with threshold t are either

d(pi, q) + t ≤ α

in which case the EZ is added to the Bin set, or

d(pi, q)− t > α

in which case the EZ is added to the Bout set.
Calculating the correct value for α for every EZ would be expensive; in

the experiments a witness set of 5,000 values is used to calculate α with no
significant loss of accuracy.

For the sheet partitions, an offset can be used to achieve the same effect.
For non-supermetric spaces, the normal inclusion condition for a data point s
with respect to the pair of reference points pi, pj is

d(pi, s)− d(pj , s) ≤ 0

However, it is possible to replace this zero with a constant value, i.e. the con-
dition becomes

d(pi, s)− d(pj , s) ≤ α

where again α is calculated as the median value of d(pi, si)− d(pj , si) where si
ranges over a large enough set of witness objects. The condition for inclusion
in Bin becomes

d(pi, q)− d(pj , q)

2
+ α ≤ t

and inclusion in Bout is

d(pi, q)− d(pj , q)

2
− α > t

The use of a modifier value for hyperplane exclusion seems not to be well-
known in general, but was first justified in [? ]. The four-point membership and
exclusion conditions are also modified equivalently to achieve balanced exclusion
zones, this use has also been previously explained in [? ].

8. Parameter Selection

Unlike most indexing mechanisms, BitPart requires to be parameterised to
perform at its peak for a given space by selection of the best number of ref-
erence objects. The implications for performance over the three Phases of the
computation as the number of reference points increases are as follows:
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Phase 1 A larger number of distance calculations are required; typically how-
ever this number will be very small compared to those required in Phase 3.
Apart from the distances, only simple arithmetic operations are required
to identify the non-intersection zones, making the whole cost of Phase 1
insignificant.

Phase 2 More EZs will be selected for this phase, increasing its cost. The
number selected is proportional to the number available, but the propor-
tion varies with the dimensionality of the space.

Phase 3 As more EZs are selected for Phase 2, less residual distances are
required, thus reducing the cost of Phase 3.

Therefore, the overall effect is that as the number of reference objects in-
creases, Phase 2 cost increases and Phase 3 cost decreases.

Figure 8: Mean proportion of EZs selected per query as dimensionality increases

Figure 8 shows the rapid decline in the proportion of the available EZs
selected as the dimensionality of the space increases.

Figure 9 shows how this effect can be countered without a large increase in
the number of distance calculations required. As the number of reference points
is increased, the increase in available zones increases very rapidly, as there are(
n
2

)
+ n zones for n references. The left-hand figure shows this increase, while

the right-hand figure shows the average number selected per query in a 20-
dimensional Euclidean space.

Figure 10 shows the effect of increasing the number of reference points. The
left-hand sub-figure shows the residual (Phase 3) distance calculations required
when using the same reference objects as in Figure 9. The right-hand sub-figure
shows the elapsed time of execution.

In this case it can be seen that a “sweet spot” exists for the number of refer-
ence points, in this case at around 70. This occurs because, as explained earlier,
as the number of EZs increases, the Phase 2 cost increases, but the Phase 3
cost decreases. The left-hand side of Figure 10 effectively shows Phase 3 costs
as these are directly proportional to the number of distance calculations per-
formed. In the right-hand sub-figure it can be seen that at around 70 reference
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Figure 9: The effect of increasing the number of reference objects on the 20-dimensional
Euclidean space. The X-axis represents the number of reference objects used. In the left-
hand sub-figure shows the total number of EZs available for selection, i.e.

(n
2

)
+ n. The

right-hand sub-figure shows the mean number of these EZs selected per query.

Figure 10: The effect of increasing the number of reference objects on the 20-dimensional
Euclidean space. The X-axis represents the number of reference objects used. In the left-hand
sub-figure shows the number of residual calculations required for Phase 3, and he right-hand
sub-figure shows the mean elapsed time per query.

objects, the increase in the Phase 2 cost starts to outweigh the saving in the
Phase 3 costs. This “sweet spot” can in general be established by experiment.
We show an example of this for a different metric space in the following section.

8.1. Jensen-Shannon example

The BitPart mechanism will be most useful in metric spaces where the di-
mensionality is too great to allow effective indexing, yet not so high that no
traction is available from the metric properties, and in particular where the in-
herent cost of a distance measurement is sufficiently great to make the cost of
the bit mechanism worthwhile. We now show the example of performing search
using the Jensen-Shannon metric over l1-normalised 20-dimensional spaces. For
this space a threshold of 0.126 was calculated to give approximately one result
per million data, and one thousand queries were executed over one million data.
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Figure 11: Times and distances for increasing numbers of reference points with 20-dimensional
Jensen-Shannon distance, shown with log-scaled Y-axis on the right. It can be seen that
the residual distance costs for this expensive metric almost completely outweigh the BitPart
mechanism cost until a very large number of EZs is used.

The Jensen-Shannon metric has the four-point property; the IDIM of this space
is 20.2.

In an exhaustive search, the elapsed time per query is 1100ms, i.e. a cost per
distance calculation of 1µs, around 100 times greater than Euclidean distance
over the same data. When the data is used to build a Vantage Point Tree, the
time per query is 650ms; only 47.3% of the data is accessed, i.e. the mechanism
cost in the context of this space is around 130ms per query over and above the
cost of making the distance measurements.

For BitPart, the results using different numbers of reference points are shown
in Figure 11. As mentioned above, a “sweet spot” exists where the number of
zones being selected per query is optimal; in this case it is around 180 reference
points, when an average of 567 of the 16290 available EZs are selected per query;
at this point, only around 1.1% of the data is accessed, resulting in a mean query
time of 18ms. Note that this figure shows that the mechanism cost is around
6ms, in return for a saving of the cost of 9.9e5 distance calculations per query,
giving over 100 times speedup.

9. Parallelisation

In the reference implementation of the algorithm the Regions data structure
is stored column wise with each column encoded as a Java BitSet. Whilst this
makes the algorithm easier to understand and prototype, it does not lead to an
efficient implementation due to the stress it places on the memory system of a
modern processor. Recall that each row-wise operation requires the logical and
of the Bin sets combined with the negation of the logical or of the Bout sets.
If each of the inclusion bitsets is stored column-wise the row wise operations
require many disparate locations to be accessed resulting in poor locality of
reference and therefore relatively poor performance. A further problem with

23



this arrangement is that the bitwise operations must be performed one row at
a time due to the need to combine the single bits from the columns.

9.1. SIMD Parallelism

The first optimisation that may be made to the implementation is to store
the bits in a row-wise rather than column-oriented fashion. The first benefit
of doing this is to obtain better locality of reference. However storing rows as
vector of bits still requires the operations to be performed sequentially. Most
modern processors can perform bitwise operations in parallel. For example,
since 2013 the Intel X86 family supports Advanced Vector Extensions (AVX)
which support SIMD bitwise operations over data of various sizes (at the time of
writing up to 512 bits). On the hardware available to us, storing the exclusion
data structure as 2 dimensional arrays of long values with the primary index
being the row and the secondary the column permits 64 (size of long) bitwise
operations to be processed in parallel rather than sequentially. On more modern
processors and if the code were written in a lower level programming language
(such as C) 512 bitwise operations could be executed in parallel on a single core.

9.2. Thread level Parallelism

Operation/word level parallelism is not the only parallelism to which the
algorithm is amenable. Since the bitwise operations are essentially independent,
blocks of bits may be evaluated in parallel. Thus, if n cores are available on
some processor, in principle, the rows may be partitioned into n slices and the
bitwise operations may be performed in parallel using n threads. This approach
is similar to the well-known Map-reduce pattern in which the map operations
are executed in parallel rather than sequentially. However, when this approach
was implemented, on an Intel(R) Xeon(R) CPU E5-2630 running SElinux with 2
CPUs (each with 6 cores with 2X hyperthreading) (giving 24 virtual cores) and
132 GB of memory in 2 banks) the parallel code ran slower than the sequential
version.

The increase in speed for the parallel version is due to the Non Uniform
Memory Access (NUMA) architecture on which the code was being executed.
NUMA is the most prevalent architectural pattern in usage today and as the
name suggests, the access time to memory is non-uniform. For this algorithm
(and any algorithm with large shared data structures), if possible, the memory
should be allocated on the same processor as the threads which access it. If not,
high latencies are experienced when the processor is required to access data
stored on a remote memory bank. Therefore rather than have a single data
structure created by one thread and accessed by many, the logical conclusion is
to make the threads create the data partitions on which they operate. Unfortu-
nately, and somewhat surprisingly, there is a lack of good programming models
to support such a memory model. We therefore implemented an actor model
to support the required data locality. Each slice abstracts over a partition of a
number of rows from the original monolithic data structure. Slices extend Java
Threads and are responsible for creating and accessing the encapsulated data.
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public interface BlockSlice {

Future<Object> buildSliceBitSetData();

Future<List<T>> querySlice(double threshold,

Metric<T> metric, T q);

void terminate ();

}

Figure 12: The BlockSlice interface

Each slice exports three methods which are called by a choreography thread
these are: buildSlice(), querySlice() and terminate() as shown in Figure 12.

Each of the 3 interface methods enqueues a message on an internal message
queue which is in turn serviced by an internal thread. This mechanism ensures
that the data and the threads are located on (glued to) the same bank of memory
associated with a single core. When an operation is requested of a slice a Future
is returned. This decouples the choreography thread from the worker threads
within the slices and permits parallel execution. Thus when a query is executed,
the choreography thread calls the querySlice interface methods in each slice
and collects the results from the Futures as they become available. Lazy list
concatenation of the partial results which creates lists of lists conforming to the
List interface results in efficient results collection.

Figure 13 shows the performance of three different parallel implementations
of the code. In each case the degree of parallelism was varied between 1 and 24.
Recall that the experimental machine has 12 real cores on 2 CPUs and support
for 24 hyper-threads. The data used for this experiment was one million 20
dimensional Euclidian array of doubles with a Gaussian distribution for each
of the coordinates. The intrinsic dimensionality of this data set is around 27.
50 reference objects were used yielding 1475 exclusion zones (5 ball radii per
reference object). Each test consisted of 1000 random queries with a threshold
of 0.6 (designed to return 1% of the data) and each test was repeated ten times.

The first (V1) shows a parallel version of the reference code base. The bits
are stored column wise in Java BitSet data structures and row-wise operations
are performed on the bit matrix by between 1 and 24 threads. As can be seen,
there is some performance improvement for a small number of threads but above
4 threads the time taken per query is not significantly less than using a single
thread.

The second implementation (V2) has a similar structure to V1 but instead
of storing the bits in a column-wise fashion, they are stored row-wise in arrays
of longs with each long encoding 64 bits from a single column. The performance
of this version is similar (although slightly worse) than the original.

The third implementation V3 follows the BlockSlice approach described
above. As can be seen, the performance of this algorithm shows the performance
increasing as the number of threads is increased. The increase of performance is
less than linear however (1.92 improvement for 2 threads, 4.61 for 8 threads and
5.22 for 12 threads). It can also be seen that whilst the use of hyper-threading
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Figure 13: Parallel performance of three parallel code variations

does decrease the time per query a little, the improvement is less marked than
is achieved with parallel cores.

10. Conclusions

This paper presents a novel exact search mechanism which is effective in
metric spaces whose dimensionality is too high to allow effective navigational
indexing. Rather than a navigational solution, we characterise the entire space
according to a large number of binary partitions and use this structure to create
an exact search mechanism.

The performance tradeoffs are interesting. It is well known that navigational
indexing mechanisms start to fail as dimensionality increases, and also that, at
a still higher dimensionality, all metric-based mechanisms fail. Furthermore, a
recent theoretical result [? ] shows that at a certain dimensionality, any query
requires a linear scan of the data to be performed. Our mechanism inherently
requires a linear scan, and therefore does not scale as well as navigational mech-
anisms at relatively low dimensions. However we have shown that it minimises
the cost of this scan between the points where navigational indexes fail, up to
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the point where all metric-based mechanisms fail. In Section 8.1 we have shown
an example speedup of two orders of magnitude for one example metric space
within this region.

We have described the algorithm in three phases. The Phase 1 cost is in-
dependent of the data size, depending only on the number of Exclusion Zones
defined, which may be tuned according to dimensionality and metric distance
cost. Phase 2 theoretically uses space and time which are both Ω(n log n) for
data of size n. In terms of space, the theoretical minimum requirement is n log2 n
bits, and in one practical experiment described in Section 8 we demonstrate an
optimum size of around 16 megabytes for a space of one million objects whose
IDIM is 27.6, which is only one order of magnitude greater than the theoretical
minimum. Even when n = 109 the computation can still fit within the memory
of a modern laptop computer. In terms of time, we have shown in Section 9
that the computation for this phase is highly parallelisable.

Phase 3 comprises two separate costs: a sequential scan of the bitmap, and
a residual distance calculation for each bit which remains set. For the bitmap
scan, the space and time cost are both O(n). The space cost is fixed at precisely
n bits, and the time cost is small on modern hardware.

For the residual scan, the practical cost depends entirely on the efficacy of
the first two phases, as any number between 0 and n distance calculations may
be required. This depends mostly on the dimensionality of the metric space
and the number of available exclusion zones. In our example of Section 8 the
proportion of residual calculations required is around 0.01 of n.

However it can be noted also that Phase 3 is essentially optional, and required
only for exact search. As an alternative, the first two phases alone can be
considered as an approximate search technique, with perfect recall but varying
precision. Whether this is desirable or not depends on how well the data is
characterised according to the selected regions.

The algorithm is inherently decomposable and parallelisable. Every phase of
the computation is parallelisable: the distances between queries and reference
objects, the assessment of queries against regions, the bitwise operations over the
data representation, and finally the filtering of the candidate results. Amdhal’s
law applies to the end to end pipeline but we have demonstrated that great
speedups are possible by exploiting parallel hardware resources due to the nature
of the algorithm.

The algorithm exhibits further opportunities for tuning which are yet to be
explored. We have demonstrated the effect of changing the number of reference
objects and how this may help in combating increasing dimensionality. However
it may be possible to employ techniques to choose pivots which could enable
queries to perform a number of distance calculations that are closer to the
theoretical minimum. We have experimented with choosing pivots to optimise
sheet exclusions but reporting on this work here would also be premature. The
size, number and uniformity of the radii used for ball exclusions is also worthy
of exploration.
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