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Common Methodological Challenges Encountered with

Multiple Systems Estimation Studies

January 3, 2021

Abstract

Multiple systems estimation refers to a class of inference procedures that are commonly

used to estimate the size of hidden populations based on administrative lists. In this paper we

discuss some of the common challenges encountered in such studies. In particular, we sum-

marize theoretical issues relating to the existence of maximum likelihood estimators, model

identifiability, and parameter redundancy when there is sparse overlap among the lists. We

also discuss techniques for matching records when there are no unique identifiers, exploiting

covariate information to improve estimation, and addressing missing data. We offer sugges-

tions for remedial actions when these issues/challenges manifest. The corresponding R coding

packages that can assist with the analyses of multiple systems estimation data sets are also

discussed.



1 Introduction

Multiple systems estimation (MSE) is a rapidly growing class of quantification methods that are

used for studying hidden populations, such as those comprised of human trafficking victims. The

motivation behind MSE is the United Nations (UN) recommendation to monitor the number of

victims of human trafficking (per 100,000 population). Victims can be detected or undetected,

with data typically collected over a wide span of time. Data sets arise in the form of merged

administrative lists, with each list created by a different organisation such as the Region or Border

police, hospitals, support and protection programs, and non-governmental organisations. As a

standard, sex and age, and possibly form of exploitation, are recorded. However, other information

can also be collected. For example, in the Netherlands, a data set was collected from a number of

sources over six years, comprising six lists and five covariates (age, gender, form of exploitation,

nationality, and year); see Cruyff et al. (2017) for further information, and see Bird and King

(2018) for specific details on how administrative list data are collected.

MSE can be considered a generalization of mark-recapture procedures in that sophisticated mark-

recapture modeling of overlaps of “captures” between the administrative lists can be used to esti-

mate the size of the population. Applications of MSE procedures are typically based on a set of

capture histories that correspond to the administrative lists. Essentially, lists are first ordered and

each individual has a capture history that corresponds to a vector of zeros and ones where these,

respectively and keeping with mark-recapture terminology, refer to a “miss” and a “capture” on

the corresponding lists. The set of capture histories are concatenated to form a capture history ma-

trix. Much like with mark-recapture procedures (Williams et al., 2002), the capture history matrix

forms the data set for which MSE procedures are applied.

When the lists are combined with categorical covariates a number of possible cross-classifications

are generated. For example, for the Netherlands data, one cross-classification for an individual

observed in the first two lists only could be {Yes, Yes, No, No, No, No}with covariate class {adult,

female, beggary, Romania, 2010}. Evidently, the more lists and covariates that are considered the
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larger the number of possible cross-classifications. Consequently, the larger the probability that no

individual is observed for a number of them due to the limited sample size. For instance, in Cruyff

et al. (2020), a data set from Slovakia is analysed where three lists and three covariates (sex, age

and type of exploitation) create 64 possible cross-classifications with observed victims in only 21

of them. Such sparseness gives rise to challenges in estimating the number of victims of human

trafficking, as discussed in Section 2.

MSE is still a relatively new topic. Original contributions have been made by Bales et al. (2015),

where the lists considered are those which arise from the United Kingdom National Crime Agency,

and by Cruyff et al. (2017), where lists are based on reports by various organizations to a government-

funded NGO, Coordination of Human Trafficking, in the Netherlands. Bird and King (2018) pro-

vide a comprehensive summary of MSE methods and applications. Difficulties with model-fitting

for MSE data sets have been detailed in Silverman (2020), and novel approaches to model-fitting

have been presented to help resolve such issues.

There are several challenges that are commonly encountered in MSE, primarily due to the fact that

the study population is comprised of human beings. For example, as people are typically conscious

about “self-selection” and/or reporting their identities to multiple administrative lists that are based

on a hidden population, challenges arise in modeling the erratic patterns of capture histories. The

current mark-recapture literature, which is primarily focused on studying wildlife populations,

does not place a focus on such challenges. In this paper we discuss these challenges and summarize

methods that can address or account for the limitations in commonly used MSE/mark-recapture

estimation procedures.

2 Non-Overlapping Lists

In the context of MSE, it is not uncommon to observe little to no overlap between administrative

lists. This may be due to 1) the fact there is a negative correlation (“trap-shy”) effect between
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pairs of lists; for example, if two lists correspond to service providers that offer similar services to

human trafficking victims, then there may not be a need/tendency for individuals to obtain services

from more than one, 2) a structural zero; for example, one list may be a service provider that only

provides service to females, while another only to males, and/or 3) by chance, which is likely to

happen when there are small sample sizes. An example of such a data set, based on data collated

from a number of sources in the New Orleans area, is presented in Table 1. In total, 185 individuals

are listed as being captured at least once across all administrative sources. Very few individuals

are captured more than once, giving rise to a “sparse MSE data set” commonly seen when based

on such sources. For further information on this data set and results based on an MSE analysis, see

Bales et al. (2018).

Table 1: A modern slavery and trafficking data set based on several administrative sources in New Orleans
(Bales et al., 2018). List combinations for which no cases are observed are omitted.

Cases observed Cases observed Cases observed

only on one list on exactly two lists on exactly three lists

List Number Lists Number Lists Number

A 25 A&C 1 A&C&G 1

B 5 A&D 2 A&D&E 1

C 70 A&E 1

D 33 B&F 1

E 6 C&D 1

F 6 C&E 1

G 6 C&G 1

H 21 D&E 2

E&H 1

Sparsity may lead to difficulty in fitting MSE/mark-recapture models and numerical instability in

the resulting estimates. One possible approach is to either combine such pairs of lists into one
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or to remove the smaller lists altogether (Sharifi Far et al. (2020)). However, in doing so there

is typically a reduction or loss of information that can be exploited for inferential purposes. This

section considers two approaches that can handle such cases.

2.1 Addressing Non-Existence of Maximum Likelihood Estimators and Model

Unidentifiability

For MSE applications, one commonly used approach is to fit a Poisson log-linear model to counts

of the individuals that are observed on each possible combination of the lists. The Poisson distribu-

tion models the number of events occurring in an interval of time or space given a known constant

mean rate. For example, consider a data set with two lists referred to as X and Y . Individuals

could be observed in only one of the two lists, neither of them, or both of them, which results in

four different cross-classifications/combinations. Each variable representing a list has two levels,

namely 1 and 0, that respectively indicate whether individuals are identified or not by that list. The

number of individuals in each case, nk, arises independently from a Poisson distribution with a

mean of µk:

nk | µk ∼ Poisson(µk), k ∈ {00, 01, 10, 11}.

Typically, one models the mean number of individuals in each combination so that

log(µk) = θ + θXi + θYj + θXY
ij , k ∈ {00, 01, 10, 11} i, j = 0, 1

.

This is a generalised linear model which in the literature is known as a Poisson log-linear model.

In this model, θ is an intercept term associated with the mean count of individuals not observed

in any lists, θXi and θYj are main effect terms for each list associated with the probability of being

observed for the list, and θXY
ij is the interaction term which determines the magnitude and direction

of dependency between the two lists. Estimating the model parameters allows one to estimate the
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number of victims not observed on any list, and thus the size of the hidden population. The

approach allows for list interaction effects and ease in evaluating goodness-of-fit criteria based

on summary statistics and visual plots. See Rivest and Daigle (2004) and Baillargeon and Rivest

(2007) for the theoretical framework and empirical examples of such procedures when applied to

commonly studied populations.

The common method to estimate parameters of such a Poisson log-linear model is through max-

imum likelihood. However, no overlap between administrative lists can be problematic and may

result in what is known as “unidentifiability of the model” and “non-existence estimates for the

model parameters”. Chan et al. (2020) examine the non-existence of maximum likelihood esti-

mators (MLEs) and unidentifiability constraints for such models. This is a commonly overlooked

topic in the analysis of categorical data. In fact, most standard generalized linear modeling pack-

ages do not check for the existence of MLEs and when this problem exists, they report misleading

estimates with large standard errors.

Chan et al. (2020) develop a model-fitting routine for sparse MSE data sets that is well-suited

for population size estimation and which can handle existence issues. Essentially, the routine

is a stepwise algorithm based on a predetermined threshold p-value. The algorithm commences

with fitting a main effects model and then sequentially adds the most significant interaction terms

one-by-one, provided that the resulting model passes non-existence of estimates and unidentifi-

able model checks. The algorithm is repeated until convergence to a final model. They apply

their model-fitting routine to empirical data sets and find that it results in stable and reasonable

estimates. An R package titled ‘SparseMSE’ (Chan et al., 2019) has been developed and made

publicly available for application of their methods to MSE data sets.

2.2 Addressing Parameter Redundancy and Model Unidentifiability

An issue related to non-existence and unidentifiability is parameter redundancy. Multiple list data

can be displayed as a 2m contingency table in which m is the number of lists. Each variable has
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two levels (say 1 and 0) that respectively indicate whether individuals are or are not identified by

a list. For example, for m = 2 with lists X and Y , the contingency table cell that corresponds to

X = 0, Y = 0 contains the number of individuals that are not present in either list. As mentioned

before, a standard model to fit to such count data is the Poisson log-linear model. However, this

model may become parameter redundant and therefore unidentifiable because of the presence of

possible zero cell counts in the table.

A parameter redundant model has parameters that are not estimable. We can follow a so-called

parameter redundancy approach to obtain the subset of the original parameters that are estimable,

as well as any estimable linear combinations of the original parameters. After detecting parameter

redundancy, the original model can then be reparametrised as a smaller model with a smaller set

of parameters that are all estimable. Those parameters have reliable estimates with reasonable

standard errors. Examples of applying this method on ecological models can be found in Cole

et al. (2010).

Catchpole and Morgan (1997) and Catchpole et al. (1998) describe a general method for detecting

parameter redundancy for models that describe observations from distributions that belong to the

exponential family of distributions, for example, Normal, Binomial or Poisson distributions. In

this method, a derivative matrix is formed that contains the derivatives of means of table cell

counts with respect to the log-linear model parameters. When the model is parameter redundant

the rank of this matrix is smaller than the number of model parameters. The rank of the derivative

matrix indicates the overall number of estimable model parameters and estimable functions of the

parameters. All estimable parameters and linear combinations of them are obtained by solving a

set of linear first-order partial differential equations (PDE).

Although a Poisson log-linear model is constructed to be identifiable, we expect this will not be

the case after observing some zero cell counts. Sharifi Far et al. (2019) utilise the parameter

redundancy method for Poisson log-linear models by adjusting the derivative matrix elements such

that they include the observations, so any parameter redundancy caused by the number and position
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of observed zero cell counts is detected.

Assume fitting a Poisson log-linear model to a contingency table including some zero observations.

If the rank of the derivative matrix equals the number of model parameters, then despite observing

some zero cell counts the model is still identifiable. However, depending on the number and

pattern of the zero cell counts, the model may become parameter redundant. In such a case some

parameters are not estimable or only some linear combinations of them are estimable. Fitting

the model under this scenario usually shows large standard errors for estimates of parameters

that are not directly estimable, indicating that these estimates are not reliable. There are other

examples, in which the model is detected as parameter redundant but fitting it to the data with the

specified pattern of zeros results in estimates with reasonable standard errors for all the parameters.

Sharifi Far et al. (2019) explain that this happens because of existence of an “esoteric constraint”

in the model. This constraint acts as an extra constraint on the parameters and together with the

other estimable parameters of the model, makes all the model parameters estimable.

The approach described in Section 2.1, which is based on the work by Fienberg and Rinaldo

(2012a,b), detects identifability of the model based on checking the existence of the MLEs. For a

parameter redundant model, this method provides a subset of the initial parameters as the estimable

parameters, but does not necessarily provide the estimable linear combinations of parameters. The

parameter redundancy approach provides those estimable linear combinations, in addition to the

esoteric constraint, when it exists. This process enables one to fit an identifiable log-linear model

and obtain reliable estimates for the parameters to use in an MSE. Solving the relevant set of partial

differential equations, as required, can be done in a symbolic algebra package, such as Maple (see

Sharifi Far et al. (2019)).
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3 Matching When Linkages Are Not Directly Observed

Correctly linking data from different administrative lists is crucial for the successful implementa-

tion of multiple systems estimation. Some research areas such as clinical studies and epidemiology

rely on unique subject identifiers. However, unique identifiers may not exist for some individuals

identified by administrative lists relevant to hidden populations, as they are created by admin-

istrative bodies (for instance police, non-governmental organizations, or charities) for their own

purposes.

The errors that occur when linking different lists are false-matches (linking records that belong to

different individuals) and missed-matches (no linkage of records that belong to the same individ-

ual). Approaches to linkage are broadly either deterministic or probabilistic (Sayers et al. (2015)).

Deterministic linkage employs predetermined rules to effect matching. They are typically prone

to missed matches, as errors (typographical or recording) can prevent matching records from the

same individual. False matching is not observed frequently, as records are less likely to match

exactly by chance. In probabilistic linkage, a probability is assigned to every pair of records, with

higher probabilities corresponding to more likely matches. Data are linked in accordance with

some predetermined threshold. Probabilistic linkage is more prone to false-matches and less to

missed matches. Alternative approaches include the use of Bayesian priors; see Goldstein et al.

(2012). See also Harron et al. (2017) for more details on the above.

Missed-matches can result in bias, particularly when the error is non-random and depends on pop-

ulation subgroup. Bohensky et al. (2010) reported lower matching rates for subgroups according

to age, sex, ethnicity and health status, which can translate to lower matches for vulnerable popu-

lations. Hence, considering the estimation of hidden populations, there is a need for observations

to be recorded as precisely as possible.

False-matches can generate false associations or dilute true ones. See Harron et al. (2017) where

several methods for evaluating the quality of linkage are described. A ‘gold standard’ data set,
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where the true matches are known, may not be straightforward to obtain. Nevertheless, obtaining

such a data set could assist in two ways. First, to evaluate the quality of the performed matching.

Second, it could serve as a training set for informing Bayesian or machine learning algorithms that

would perform probabilistic matching. In the absence of a ‘gold standard’ data set, when multi-

ple systems estimation is performed, data validation (identifying implausible scenarios within the

data) and sensitivity analysis (by varying the threshold used in probabilistic matching) could be

employed for quality evaluation. Bohensky et al. (2011) developed a series of reporting guidelines

for studies involving data linkage. Recent work by Tibble et al. (2018) highlights the importance

of including aliases in data linkage with vulnerable populations. The R package ‘RecordLink-

age’ (Borg and Sariyar, 2016) provides means to implement and evaluate different data linkage

methods.

4 Covariate Information

4.1 Utilizing Covariate Information for Inference

Cruyff et al. (2017) summarize and apply an approach to population size estimation that is based

on a Poisson log-linear model that incorporates categorical covariate information. Essentially,

the observed counts of individuals corresponding to each possible capture history and covariate

combination is regressed against the parameters corresponding to the lists upon which they are

identified and observed levels of covariate information. This work is considered to be an extension

of the Poisson log-linear models that have previously been introduced in the literature.

A forward stepwise approach is used to choose the most appropriate model upon which to base

inference. Either the AIC or BIC criterion may be used. A parametric or nonparameteric bootstrap

procedure is suggested by the authors in order to obtain standard errors and confidence intervals for

the estimates. The authors discuss advantages and disadvantages of using these approaches.
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This Poisson log-linear procedure has the benefit of directly estimating interaction effects between

lists, between covariates, and/or between lists and covariates. Further, estimates of the sizes of sub-

populations corresponding to specific covariate/demographic profiles can be obtained with ease,

along with standard errors and confidence intervals. The utility of this procedure has been dis-

cussed in Cruyff et al. (2017) and has been instrumental in policy making decisions to combat

human trafficking. An R package that can be used to recreate this work and to apply it to MSE

data sets is in development.

A final note on the inclusion of covariates within the log-linear analysis concerns the Yule-Simpson

paradox (Agresti (2002)). This is the phenomenon where the introduction of a third variable in the

contingency table data may change the direction of the association between two existing categorical

variables. In the context of a log-linear analysis it is possible that introducing a third variable in the

analysis, with corresponding two- or three-way interactions, may change the sign of the estimated

interaction effect between two pre-existing categorical variables.

4.2 Missing Covariate Information

It is not uncommon for administrative lists to have covariate information attached to each of the

captured individuals. Such covariate information may come in the form of gender, age, and race.

This information can generally be used to increase the efficiency of population size estimators and

to obtain estimates corresponding to the subpopulations, as detailed in Cruyff et al. (2017).

In some cases covariate information may be missing or erroneously recorded for a subset of the

captured individuals. When covariate information is used for the inferential procedure, the impli-

cations of missing data on the bias and variance of the estimators may be substantial. For such

cases, a multiple imputation based approach to inference can lend itself well to account for the

missing information.

Multiple imputation, as advocated by many researchers (Little and Rubin, 2002), is based on se-
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lecting an appropriate model for imputation. In the context of MSE, this would be based on the

covariates and capture histories of the observed individuals. The choice of imputation model is

critical, and should be tested with techniques like cross validation.

At the inference stage, the missing information is repeatedly imputed to give a set of hypothetical

full data sets, and Rubin’s rules (Rubin, 1976) are used to obtain point estimates and standard

errors. Conclusions can be drawn based on these estimates. The ‘mice’ package in R (van Buuren,

2012) has the capability of performing multiple imputation on a wide range of data sets.

5 Local MSE Challenges

There are specific challenges that local MSE analyses may give rise to, relative to what is unlikely

to be encountered with national MSE analyses. We discuss such anticipated challenges in this

section.

For the local case, MSE data sets are likely to be based on administrative lists that come from

regional law enforcement agencies or non-governmental agencies (NGOs) that operate in the area

where the study population is situated. With respect to data collection, as such agencies typically

operate independently (in contrast to the national case), it is unlikely there will be an agreed upon

definition of the criteria required to identify individuals as part of the study population. This may

give rise to lists which are either restrictive or relaxed towards the individuals they identify. That is,

some lists may be restricted to only containing a subset of the study population (such as females),

while others may contain individuals that fall outside the study population (such as sex workers

that enter the sex trade business by their own accord). Hence, sparse overlap between the lists

is likely to manifest. In such cases, it is imperative to collect as much covariate information as

possible to assist in assessing the limitations of the study.

Challenges are likely to arise with obtaining permission to access such local lists. This may be due

to ethical or confidentiality concerns. Further, anonymizing the information contained within lists
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may be resource intensive and is likely to add a burden to those organizations that are requested to

provide the lists. A high-level of encouragement or incentives may be required by the study team

for organizations to provide the lists.

With respect to inference, even if such anonymized lists are provided it could be the case that

the quality of the data varies across the lists. For example, there may be erroneous entries and/or

missing data that are unique functions of the lists, which can generate further difficulties in link-

ing across lists and hence compound the difficulties that arise with sparse overlap. The methods

discussed in the previous sections can assist with analyses for such cases.

6 Discussion

In this paper we have detailed several commonly encountered challenges when analyzing MSE data

sets. These challenges, motivated by real data, arise from the data collection process in which there

is a need for sharing of information across involved referral systems. Despite sharing information

by the parties, non-overlapping lists are commonly observed. Adding covariate variables to usual

MSE data is helpful due to providing extra information but can complicate the analysis. Moreover,

some difficulties occur because of incorrectly linking different lists, or when the data come from

local administrations rather than national ones. We have discussed methods and approaches that

can be used to address these challenges.

Analyzing MSE data sets is especially challenging because the population consists of hidden indi-

viduals with erratic capture patterns. Further, a full set of direct observations on a human trafficking

population to assess the performance of such methods may be nearly impossible. It is therefore

important for rigorous MSE methods to be developed and made publicly available, while being

upfront with the limitations of these methods. There is a growing number of R computing pack-

ages that can be used to analyze MSE data sets, as mentioned in this paper, when such challenges

arise.
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