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Path-finding in real and simulated rats: assessing
the influence of path characteristics on navigation learning
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Abstract A large body of experimental evidence sug-
gests that the hippocampal place field system is in-
volved in reward based navigation learning in rodents.
Reinforcement learning (RL) mechanisms have been
used to model this, associating the state space in an RL-
algorithm to the place-field map in a rat. The conver-
gence properties of RL-algorithms are affected by the
exploration patterns of the learner. Therefore, we first
analyzed the path characteristics of freely exploring rats
in a test arena. We found that straight path segments
with mean length 23 cm up to a maximal length of
80 cm take up a significant proportion of the total paths.
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Thus, rat paths are biased as compared to random
exploration. Next we designed a RL system that
reproduces these specific path characteristics. Our
model arena is covered by overlapping, probabilisti-
cally firing place fields (PF) of realistic size and cov-
erage. Because convergence of RL-algorithms is also
influenced by the state space characteristics, different
PF-sizes and densities, leading to a different degree of
overlap, were also investigated. The model rat learns
finding a reward opposite to its starting point. We
observed that the combination of biased straight ex-
ploration, overlapping coverage and probabilistic fir-
ing will strongly impair the convergence of learning.
When the degree of randomness in the exploration
is increased, convergence improves, but the distrib-
ution of straight path segments becomes unrealistic
and paths become ‘wiggly’. To mend this situation
without affecting the path characteristic two additional
mechanisms are implemented: A gradual drop of the
learned weights (weight decay) and path length limita-
tion, which prevents learning if the reward is not found
after some expected time. Both mechanisms limit the
memory of the system and thereby counteract effects
of getting trapped on a wrong path. When using these
strategies individually divergent cases get substantially
reduced and for some parameter settings no divergence
was found anymore at all. Using weight decay and
path length limitation at the same time, convergence
is not much improved but instead time to convergence
increases as the memory limiting effect is getting too
strong. The degree of improvement relies also on the
size and degree of overlap (coverage density) in the
place field system. The used combination of these two
parameters leads to a trade-off between convergence
and speed to convergence. Thus, this study suggests
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that the role of the PF-system in navigation learning
cannot be considered independently from the animals’
exploration pattern.

Keywords Reinforcement learning · SARSA ·
Place field system · Function approximation ·
Weight decay

1 Introduction

The learning of goal-directed navigation in rats and
other rodents is one likely function of their hippocam-
pal place field system. Several studies exist that use
variants of reinforcement learning (RL) algorithms to
show that the place field system could indeed serve as
a substrate for navigation learning (Foster et al. 2000;
Arleo and Gerstner 2000; Arleo et al. 2004; Strösslin
et al. 2005; Krichmar et al. 2005). In general, RL as-
sumes that the space in which learning takes place is
tiled into states where certain actions can be taken from
every state to reach a goal (e.g. a reward location).
Through exploration of the state space, an agent will try
out different actions at different states and in this way it
can recursively find the best possible route (the optimal
policy) to a goal (for a review see Sutton and Barto
1998). In the most general case of a RL system, all states
in the state space will have to be visited “often enough”
to try out the different actions necessary for conver-
gence. This can, however, lead to a problem because
convergence is very slow if the combined state-action
space is large (the “curse of dimensionality” problem).
Thus, in big state spaces, value function approximation
versions of RL algorithms are used (Tesauro 1995;
Sutton and Barto 1998). These cover the state space
with large, possibly overlapping kernels and run RL
over this feature space, instead of iterating over every
individual state.

A second problem concerns the way RL algorithms
usually choose exploration strategies. In order to learn,
the agent has to explore the state-action space. Proofs
exist that sufficiently dense, unbiased exploration will
lead to convergence to the optimal solution in the
most common RL-algorithms (Sutton and Barto 1998).
To this end, conventional RL methods use random
exploration, which in a navigation task leads to random
walk patterns that appear incompatible with biolog-
ical paths. Animals typically produce more ballistic
(straight) exploration paths with only a limited degree
of randomness, the length of which gradually increases
from a home-base into the unknown terrain. Their
paths often follow walls and landmarks, especially in
daylight (Etienne et al. 1996; Eilam 2004; Zadicario

et al. 2005). This, however, leads to an exploration bias
that jeopardizes the convergence of the RL methods.

Thus, in this study we focus on the interaction be-
tween path shapes and learning in a simulated rat. The
place field representations we use are abstract. Thus,
our intention is not to produce a model of the hip-
pocampus and its function. Rather, this study will focus
on the interaction between biological path generation
strategies and the convergence properties of learning.
Specifically, we will also explore how the extent of the
overlap and coverage of the location representations,
the place fields, affect convergence and the speed to
convergence.

We implement different path generation strategies
that are realistic in that they reproduce specific sta-
tistical properties of actual rat paths, recorded and
analyzed for this study. We observe that convergence of
RL is not generally assured when using a realistic explo-
ration pattern by our simulated rats. We will, however,
show that our system can be stabilized by weight decay
or path length limitation. These two mechanisms are
in the Discussion section linked to bio-psychological
aspects of forgetting and frustration.

2 Methods

The study uses methods from RL with function ap-
proximation to achieve fast convergence. The descrip-
tion of these methods is quite technical. Hence we
present the RL methods in the Appendix as it is not
of central interest for the topics of this study. Here it
may suffice to explain that in this study we are using
on-policy SARSA learning. SARSA stands for “state-
action-reward-state-action” referring to the transitions
an agent goes through when learning (Sutton and Barto
1998). This is motivated by recent findings in the mid-
brain dopaminergic system (Morris et al. 2006). Alter-
natives would be Q-learning or Actor-Critic Learning
and we will in detail discuss the choice of SARSA-
learning in the Discussion section.

2.1 Model environment

Our model animal performs a simple navigation to-
wards a goal task in a homogeneous environment sim-
ilar to a Morris water maze task (Morris 1984), in
that there are no odor cues or obvious landmarks. In
Fig. 1(a) a schematic picture of the model environment
is provided.

The model environment is 150 cm × 150 cm, dis-
cretized using a grid of 10000 × 10000 units. The model
animal at each learning trial is placed at a predefined
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Fig. 1 Model environment: the start is shown as a circle, and the
goal is a rectangular area of the size 15 cm × 15 cm, located oppo-
site to the start 15 cm away from the upper border. Big circles
schematically show place fields covering the arena. (b) Neural
network of a model animal where motor activity is obtained as
combination of learned direction values (Q-values, Learned) and
path straightening components (Random). The stars show exam-
ples how these components could look like. The two components
are combined summing learned and random components for each
direction with appropriate coefficients (Learned & Random), and
then choosing the prevailing direction for a motor action

position (75 cm, 15 cm). A reward of the size 15 cm ×
15 cm is placed opposite to the start 15 cm away
from the upper border of the environment. The model
animal travels in predefined steps (6 cm ± a random
component of up to 1.5 cm). After the model animal
reaches the reward or does not reach the reward in a
predefined number of steps the animal is reset to the
start position for the next trial.

The substrate for learning in our system are simu-
lated place fields distributed within an arena. We as-
sume that a place cell i produces spikes with a scaled
Gaussian probability distribution:

p(δi) = A exp
(−δ2

i /2σ 2
)

(1)

where δi is the distance from the i-th place field center
to the sample point on the trajectory, σ defines the
width of the place field, and A is a scaling factor. In
the areas where the values of this scaled distribution
are above 1, cells fire with a probability of 1.

Place cell centers are distributed in the model envi-
ronment randomly, with a uniform distribution. Exper-
iments are performed with 20-2000 cells. Field width is
defined by σ = 2.12, 4.24, 6.36, 8.48 cm. Fields are cut
wherever they touch a boundary. A scaling factor of
A = 2.5 Eq. (1) is applied to the probability distrib-
utions of place cell firing, to make cell spiking more
regular inside a place field. The size of a place field
can be estimated by its firing probability cut off, e.g.
10%, using: sizeP=0.1 = 2σ

√−2ln(P/A). This yields,
for σ = 4.24 cm, a firing field of about 22 cm size, which
is in correspondence with the literature (Muller 1996;
O’Keefe and Burgess 1996; Mehta et al. 1997).

2.2 General scheme for navigation

We are investigating learning in a network composed of
two layers of cells (see Fig. 1(b)). At the lower layer of
the network are the place cells. In the upper layer are
motor cells, which learn to perform the navigation task.
To keep the setup simple, we do not model head direc-
tion cells that are often also included in hippocampus-
like navigation models (Brown and Sharp 1995; Arleo
and Gerstner 2000), but allow the motor cells to direct
the model animal movement towards eight directions:
North, North-East, East, South-East, South, South-
West, West and North-West. The actual direction is
obtained combining motor cell outputs and path
straightening components, used for a realistic path
forming strategy (see below and also Fig. 1(b)).

2.3 Path generation and exploration strategies

In general, if the model animal did not attain the goal
in 300 steps, it was reset to the start position for a
new trial. This applies to all strategies (E,S,F,L), which
will now be introduced one by one. Two path forming
strategies are employed.

E-strategy is a usual RL strategy, with exploration
and exploitation, where the path is chosen according to
the learned Q-values most times, (probability 1 − pe),
and a random move is made with probability pe, where
0.1 ≤ pe ≤ 0.2. For random moves all directions are
given equal probability. If not stated otherwise, we have
set pe = 0.2.

S-strategy performs straightening of the paths, where
probabilities p1, p2, ..., p8,

∑
i pi = 1, are used, depend-

ing on the direction of the previous step. We define p1
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as the probability to proceed along the same direction
as before, p2 and p8 then correspond to 45◦ to the left
and right of this direction, p3, p7 reflect 90◦, etc. In most
of our studies we exclude backwards movement, setting
p5 = 0, to prevent an animal from performing small
forward-backward cycles. When Q values are present,
a weighted mixture of Q-based drives and randomized
path-straightening drives is used:

d1 = wqN
1 + (1 − w)p1

d2 = ....

...

d8 = wqN
8 + (1 − w)p8 (2)

where d1, ..., d8 are the final drives, qN
1 − qN

8 , the
normalized Q-values of the eight possible directions.
Normalization is used to get

∑
i qN

i = 1, and to bring Q-
values in correspondence with the probabilities of the
randomized drives. As default, we have used p1 = 0.5,
p2 = 0.156, p3 = 0.063, p4 = 0.031, p5 = 0, p6 = 0.031,
p7 = 0.063, p8 = 0.156, w = 0.5.

We also investigated a mixture of strategies E and
S, where Q-values with straightening and some random
exploration 0.1 ≤ pe ≤ 0.2 were used.

2.4 Weight decay and path length limitation

We are dealing with a learning system based on func-
tion approximation using place fields, which samples
the space in a biased way (S-strategy). As a conse-
quence this system can get trapped in divergent paths.
Against this weight decay should help as the animal
gradually forgets wrong paths, while path length lim-
itation reduces the danger of trapping to begin with.
Path length limitation can be linked to the return to
home base behavior found in rats (Eilam and Golani
1989; Whishaw et al. 2001; Wallace et al. 2002; Hines
and Whishaw 2005; Nemati and Whishaw 2007). There
are other psychologically motivated variables which can
influence learning, like surprise, hunger, mood, fatigue,
etc. In the context of this study these variables were
not modeled as they do not match to the time scale of
individual rat trials. Weight decay and path length lim-
itations act on every single trial, surprise has a shorter
time scale (acting at one moment in time), while the
other variables act on longer time scales (across many
trials). Hence, introducing other variable would make
the model at this state unduly complex.

Weight decay (F-strategy, F for forgetting) is imple-
mented with a slow exponential decay characteristics:

θ(t + 1) = c f θ(t) (3)

where cf is in the interval 1.0-0.99, and 1.0 represents
no weight decay. Each θ is a learned weight between
a place cell and a motor cell, coding for the usefulness
of moving into the direction represented by the motor
cell when the rat is at the position represented by the
place cell. A formal description for θ is given in the
Appendix. When in use, the F-strategy is applied to
all weights from sensor to motor layer in each step
of a model animal. If not stated otherwise we use
cf = 0.9995 for the experiments. If weights fall below
a threshold tf due to decay, they are set to zero. We
used tf = 0.000001. Note, as weight decay happens step
by step these apparently small decay rates act in an
exponential way and decay over long paths becomes
indeed quite strong.

Path length limitation (L-strategy) is implemented
as a return to the start position if the reward is not
found within an expected number of steps. Hence in
this case the trial is aborted. Initially we limit learn-
ing to kl = 200 steps. If the reward is found in trial
n within k(n) ≤ 200 steps, we set the limit kl for the
maximally allowed number of steps for the next trial
n + 1 to kl(n + 1) = k(n) + √

k(n). From there on, for
every occurring failure trial, where the reward has not
been found within the currently allowed path length
limit, we increase the limit kl(n + j), j ≥ 2 by a constant
cl using:

kl(n + j ) = k(n + 1) + ( j − 1)cl, j ≥ 2 (4)

If the reward is then again found in trial m within the
currently allowed limit we reset the limit kl to kl(m +
1) = k(m) + √

k(m) and the counter to j = 1.
Thus, exceeding the limit for the first time leads to

a Weber-Law like increase, where we use the square
root function instead of the logarithm for simplicity.
For every following trial, where the reward is not found,
kl is increased by some constant cl, which resembles
a relaxation process that gradually widens the explo-
ration horizon. There is no rigorous data about this
type of behavior in real animals, but it is known that
rats start to explore again more and more, possibly
due to gradually increasing hunger and/or motivation.
Furthermore we note that during unsuccessful trials
nothing is learned and Q-values are not updated. This
is motivated by the situation that a real animal can only
learn when the reward is indeed found.

Parameters of the model system are provided in a
condensed way in Table 1.

2.5 Experimental methods

A total of 5 male Lister hooded rats weighing be-
tween 300-400 g were used. In this and the subsequent
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Table 1 Default parameters
used for modeling
experiments in a standard
setup

aNote, additional justification
for these default parameters
is given in section ‘Place field
size and density’

Parameter type Parameter name Value

SARSA-learning (see Appendix) Learning rate α 0.7
Discount factor γ 0.7

Environment/steps Size 150 cm × 150 cm
Step size 6 cm
Noise on the step size ± 1.5 cm
Reward size 15 cm × 15 cm

Place fieldsa Number 500
Width, through σ 4.24 cm
Scaling factor A 2.5

Learning strategies Exploration probability pe in E 0.2
Probabilities for S
p1 0.5
p2 0.156
p3 0.063
p4 0.031
p5 0
p6 0.031
p7 0.063
p8 0.156
Weighting factor w in S 0.5
Weight decay factor c f in F 0.9995
Zero weight threshold t f in F 10−6

Starting path length limitation in L 200
Path increase step in L, cl 5
Path limit in steps for any strategy 300

experiments, compliance was ensured with national
(Animals [Scientific Procedures] Act, 1986) and inter-
national (European Communities Council Directive of
24 November 1986 [86/609/EEC]) legislation governing
the maintenance of laboratory animals and their use
in scientific experiments. The rats were equipped with
chronic recording electrodes, as described by Ainge
et al. (2007), although the primary interest of this ex-
periment was the behavior of the rats in finding a goal
location. Rat trials were recorded in a square shaped
arena of size 1.5 × 1.5 × 0.4 (length, width, height in
meters) with blue walls. Each wall was equipped with
small (10 × 10 cm) black felt “curtains”, spaced equally
from one another along the base of the wall. At the be-
ginning of each trial the rat was placed at the same start
location close to the center of the arena. A small piece
of food (a chocolate cereal loop) was presented to the
rat by the experimenter whenever the rat approached
a pre-specified curtain. Rats were initially unfamiliar
with this arena, and 10-40 trials were run with the rat
being rewarded with food whenever it approached the
“correct” curtain. The total number of trials depended
on the rat’s motivation and learning performance. Our
measure of performance was the directness of the rats’
paths to the correct location. After obtaining a reward,
the rat was put back into a smaller opaque container

(50×50 cm) for a short inter-trial interval. We have
also manually removed the rat from the arena when it
stopped searching for food, because these animals do
not have a real home base to which they could run
back, which would be their normal type of behavior
in such a case. These cases are, however, rare for a
motivated (hungry) rat and do not influence the path
statistics. The position of the rat was monitored during
the recording session through a black and white camera
mounted on the ceiling above the arena. Two groups
of ultra-bright LEDs were attached to the end of the
recording cable, which in turn was connected to the
chronic electrode. The LEDs were tracked using a
recording system (Axona Ltd., St. Albans, UK), which
detected the position of the two lights, thus providing
information regarding the rat’s location and the direc-
tion that the rat was facing at a sampling rate of 50 Hz.
Data from the LED coordinates were stored on the
hard drive of a PC.

2.6 Analysis of path statistics

For real and simulated rat trials, we determined the
length of straight path segments and also how often
they turn (directional change). Straight segments have
been determined by standard linear regression moving
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along the path on a sliding window. This window was
extended along the signal until a threshold for the aver-
age residual of r ≈ 1.25% was reached corresponding
to 2 cm. For real rats, we reset the analysis window
with every stop. The choice of this threshold will clearly
influence the placing of the break-points between seg-
ments, and local analysis with a sliding window will not
give the optimal division of a path into longest possible
straight segments, but we are not concerned with an ex-
haustive analysis. We are only interested in generating
paths with statistical properties that are similar enough
to the real rat trials. Using the same threshold relative
to the environment size for real and simulated trials
will allow for this comparison. Using this algorithm, we
computed the segment length distributions for real and
simulated rats for different cases as shown in the results
section.

Furthermore, we calculated the turning angle distri-
butions. For this, we move along the path (real and
artificial) in predefined steps, such that the step length
takes the same proportion of the arena both in the real
and artificial example, and evaluate the angle between
each two successive steps. We then bin angles into 8
categories: zero degrees turn, ±45 degrees turn, ±90
degrees turn, ±135 degrees turn, and 180 degrees turn
to arrive at a distribution.

For a quantitative comparison between real and
simulated rat path distributions we are using the
Kolmogorov-Smirnov test (Stuart et al. 1999). The
Kolmogorov-Smirnov test is known as the sharpest
statistical test for comparing two different (unknown)
distributions because it is sensitive not only to mean
and median changes but also to skewness and kurtosis.
We are testing the distributions against the threshold η

for a 1.0% significance level, which is a strong criterion.
Note, the threshold depends on sample sizes n of both
distributions. Tested is the Null-hypothesis that two
distributions are identical by comparing test variable D
against the threshold. If D > η then the Null-hypothesis
needs to be rejected and distributions are different at
the 1.0% significance level. (see Table 2).

3 Results

3.1 Qualitative analysis of real and simulated rat paths
before learning

Figure 2 shows examples of real and simulated rat
trials and their statistical properties. As we are first
concerned with setting up the initial conditions for our
model in an appropriate way, we will now describe path
characteristics of real and simulated rats without learn-
ing focusing on visual inspection of the presented data.
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Fig. 2 Statistical analysis of real and simulated rat trials. (a) Ex-
ample of a real rat trial in a rectangular arena. Walls of the arena
are shown by the dashed box. Dots mark break points between
straight stretches. (b) Simulated trial. Start and end-points are
marked (s, e). (c, d) Distribution of turning angles for a real (c)
and a simulated (d) trial. (e–g) Distribution of straight stretches
for real (e, f) and simulated (g) trials scaled to their individual
peak height. Panel (e) shows the distribution of straight stretches
for a single rat (all trials), inset in (e) shows a single rat trial as
given in panel (a). Panel (f) contains all five experimental sessions
with real rats and (g) simulated trial. The simulated path was

generated using ‘SE’ strategy (see subsection ‘Path Generation
and Exploration Strategies’). Panels (h) and (i) show scatter
plots of subsequent path segments. Small panels (j) depict the
distributions from trials with different S and E components as
shown by the labels. For S1 the default parameters were used,
for S2, S3 and S4 we have S2: p1 = 0.8475, p2 = 0.0656, p3 =
0.0087, p4 = 0.0019, p5 = 0, p6 = 0.0019, p7 = 0.0087, p8 =
0.0656; S3: p1 = 0.9386, p2 = 0.0286, p3 = 0.0018, p4 = 0.0002,
p5 = 0, p6 = 0.0002, p7 = 0.0018, p8 = 0.0286; S4: p1 = 0.9940,
p2 = 0.0030, p3 = p4 = p5 = p6 = p7 = 0, p8 = 0.0030

Only after having introduced the different learning
properties, we will compare simulated with real paths
also during learning, providing also a large quantitative
comparison based on statistical distributions (see
Table 2).

The example of a real rat path in (a) shows that
rats have the tendency to continue on their path for
some time often along the walls and exploring inwards.
Smooth curves are rare; instead the animals turn rather
sharply. Accumulations of dots occur at locations where
the rat had stopped and performed behaviors such as
sniffing or resting. Panels (e, f) show segment length

distributions from several real rat trials. Stopping and
sniffing creates almost all the contributions for the
leftmost bins in the distributions (e, f), where we have
clipped the bin for segment length 1.0 because a huge
number of such mini-segments occur when a rat stops
and just moves its head. In general, the distributions for
single trials (inset in e), all trials of one rat (e), and all
trials of all rats (f) are smoother as the amount of data
increases.

In (b) we show a simulated trial that has been gener-
ated using the SE strategy. Judging by eye, real (a) and
simulated paths (b) appear similar. Also, the segment
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length distribution of one simulated long trial (g) is
similar to (f), very small segments, however, occur very
rarely in the simulations as simulated rats do not stop.

Averaging over more simulated trials will lead to a
smoother distribution (not shown), but does not oth-
erwise alter its shape as the same generative algorithm
is always used. Panels (h) and (i) present scatter plot
of subsequent path segments in simulated (h) and real
(i) rat trials. Also here there are no clear differences
visible.

Distributions (c) and (d) represent the number of
turns and their degree for a given path. We have binned
angles into 8 categories: zero degrees turn, ±45 degrees
turn, ±90 degrees turn, ±135 degrees turn, and 180
degrees turn. Note, the zero-bin is 10 times larger than
shown in the histograms. Both distributions are similar,
and somewhat skewed to the left as the actual rat trial
used was dominated by a leftward running tendency
(see a, b). The 180 deg bin is empty in the simulated
trials, because we did not allow the rat to directly run
back. For the real rat some entries in this bin are prob-
ably due to switchbacks that occurred while stopping.

Finally the small panels (j) at the bottom; labeled E,
S1, S1 E, S2, S3, S4; depict different distributions of sim-
ulated trials. Specific parameters for path generation
are given in the figure legend. Note scaling of the x-
axis is here 210 cm and not 90 cm as above. Panel S1 E
shows the same case as (g). Panel E contains no path
straightening and, as a consequence, small segments
begin to dominate. S1, on the other hand, contains
only the S component. In spite of missing E, it is still
very similar to S1 E. Hence, concerning path charac-
teristics cases S1 E and S1 are essentially the same as
will be quantified in Table 2, below. Cases S2, S3 and
S4 show what happens when we change the asymmetry
in the path generation algorithm toward increasingly
straighter path segments. S4 is an extreme case, where
the rat runs almost all the time along the walls. Very
long straight segments dominate in this case and this
distribution is strongly different from any of the ones
above.

3.2 Artificially generated path shapes
with and without learning and quantitative
comparison to real rat trials

The previous section showed data and a qualitative
comparison of real and artificial paths before learning.
Now we will show examples and provide a more de-
tailed quantitative analysis of paths generated during
learning. Figure 3 displays several more artificially gen-
erated paths to the reward. Examples are shown from
early (panels a-d) as well as late (panels e-h) learning.

1
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Fig. 3 Examples of paths obtained with SARSA learning under
different strategies: (a, b) - traditional exploration-exploitation
(E) for initial learning stages, (c, d) - exploration-exploitation
mixed with path straightening (SE) for initial learning stages,
(e) - learned optimal path with (S). When adding an E-
component (SE) sometimes kinks exist from an exploratory
move early on the path (inset in e), (f)- zigzagging learned
path in straightened case (S). The inset shows that adding the
E component (SE) will reduce zigzagging. Panels (g, h) show
divergent paths for the straightened case (S), inset in (h) - di-
vergent pattern when direction “back” is not forbidden. Default
parameters (Table 1) were used. Small numbers at the bottom
refer to the trial number from which the examples were taken
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If paths are generated in the ’traditional’ way by mixing
exploration and exploitation (strategy E), as neces-
sary to assure convergence of Q- or SARSA-learning,
(panels a and b) they are ’wiggly’ and do not resemble
those of real animals. Similar to Fig. 2(a), mixing tradi-
tional E (exploration-exploitation) with path straight-
ening (S) provides more realistic paths (Fig. 3(c, d))
when learning starts.

Figure 3(e) shows two optimal paths after learning.
Using path-straightening strategy (S) only (or in con-
junction with weight decay and path length limitation),
straight paths were often learned. If an exploration
component was added (mixing strategies E and S) a few
off-path moves occur (inset in panel e). The learned
components, however, assure that in these cases the
rat gets back on track immediately. When using the
strategy S, we find that SARSA learning can produce
zigzagging paths at the end of learning (Fig. 3(f)). Note,
when using Q-learning, such zigzagging does only occur
in very rare cases, and curved paths occur instead.
Zigzagging paths are normally not fully constant but
zigzags will change often to a small degree trial by trial
due to the random component in place cell firing which,
as a consequence, also leads to some oscillations of the
Q-values. Note, when using a regular (no variability)
place field structure we are approximating an ideal
SARSA learner and no more zigzagging occurs. When
a mixture of strategies S and E is used, zigzagging
is greatly reduced and - if convergent - paths are es-
sentially stable in the end (inset in panel f). In such
a situation nothing will change anymore, as we did
not model motivational variables (like hunger), which
would at some point again lead to more exploration in
a real rat as soon as it is well fed. Panels (g) and (h)
show divergent paths, which frequently develop when
using strategy S. The inset in Fig. 3(h) shows a divergent
pattern when the direction “back” was not forbidden,
which for divergent cases often leads to very fast switch-
backs. Divergent paths are often characterized by a
weight vector field which points towards a boundary or
corner such that the rat has little chance to escape and
produces random loops like in (g).

In one of the following chapters we will compare the
convergence properties of 12 different combinations of
path formation and learning strategies. For this it is first
necessary to show to what degree these different strate-
gies produce realistic paths. To this end we used real
and simulated trials to calculate segment and turning
angle distributions (compare to Fig. 2) during learning.
trials were subdivided into three learning phases (start,
middle, end) by using the first, second and last 1/3rd of
all trials from every experiment in a real or simulated
rat. In simulated rats, for “middle” we excluded all

trials where the target had not been found between 50
and 100 steps this way including only trials of medium
length in the statistics. For “end” we excluded trials
with more than 50 steps, to assure that only converged
paths were included in the statistics. For real rats a
similar procedure was adopted, calibrated against the
minimal possible path length between starting point
and reward. Note, “middle” trials are in general rare
as real rats learn fast and keep running quite straight to
the target as long as they are hungry, while afterward
they begin to explore again which again leads to long
trials.

We used the Kolmogorov-Smirnov test at the thresh-
old η for the 1% significance level and tested the Null-
hypothesis that two distributions are identical, which
holds if D ≤ η, where D is the test variable calculated
by the test. Note, D and η depend on sample size and
vary accordingly.

Table 2 shows that in all 24 cases, except 2, distrib-
utions of segments and angles from rat behavior differ
from simulated behavior at a 1% significance level if the
S-component is missing (cases E,EL,EF,ELF, bottom).
With an S-component the situation is different and in
all 48 cases, except 1, distributions are not significantly
different at the 1% level. The three exceptions happen
in the “end” learning phase. Here, simulated and real
rats begin to run briskly towards target generating only
a few path segments in each trial and distributions
become rather featureless. This introduces a higher
variance leading to the three outliers.

This allows the conclusion that simulated trials with
an S-component are realistic with respect to segment
length and angle distribution, while trials where the
S-component is missing produce unrealistic statistics.
Paths with random exploration E only, however, are
often optimally convergent to the straight path between
start and goal. Path straightening S, on the other hand,
leads to zigzagging or even divergent paths. In the
next section we substantiate these statements and try
to provide a solution for combining realistic paths with
good convergence.

3.3 Convergence patterns

First we consider individual examples of convergence
for different combinations of path generation strategies
(Fig. 4, number of steps to goal is shown). In the top
row convergent cases for different path strategies are
shown. In the bottom row cases, where convergence
was less clear, are displayed. In panel (a) quick con-
vergence to an optimal path is shown for a case of
path straightening S. By optimal path we mean the
one path which is straight between start and goal. The
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Fig. 4 Patterns of convergence for different path generation and
learning strategies as given above each panel (S, E, EL, SF). (a,
b) show situations where an optimal and (c) where a non-optimal
(zigzagging) path has been learned. The small dots in panel (d)
indicate trials where the rat had not found the reward within its
limited learning horizon (strategy EL). Finally the optimal path
has been found here, too. Panels (e–h) show different cases that

can happen when using the SF-strategy. In (e) a very late con-
vergence to the optimal path is seen. In (f) late convergence to a
non-optimal path occurred. In (g) the system was intermediately
divergent and finally found the optimal path, while in (h) the
system seemed to converge, but then finally diverged. Default
parameters (Table 1) were used in all cases

randomness in the spiking of the place fields leads
to path lengths which vary minimally. In (b) quick
convergence using traditional exploration-exploitation
E is presented. One can see that here the path length
fluctuates more due to occasional off-path steps (com-
pare with inset in panel f of Fig. 3). In panel (c) a
case is shown where the path straightening strategy S
converges to a non-optimal (zigzagging) path-type and
in panel (d) we give an example for convergence with
limited path length L combined with exploration E.
The dots indicate trials where the reward has not been
found, which leads to a gradually growing path length
limit. As a consequence of the L-mechanisms, it often
happens that several successive trials are unsuccessful
which leads to the upward slanted dotted “lines” in the
diagram as the path length limit gets larger with every
unsuccessful trial. At the end of these learning trials
convergence to an optimal path is reached.

In cases (e–h) we show examples of convergence
patterns for cases where we used straightened paths S
with weight decay F. A longer time to convergence is
a typical feature here and cases exist (e, g) where the
behavior intermittently diverges. If weight decay is too

strong, convergence is bad and even cases that begin to
converge will at the end not find a good path (h).

Note, time to convergence (hence, the number of
trials to find an optimal path to the reward) cannot eas-
ily be compared to real animals, because this depends
again on the relative size of reward and arena. When
being trained to find food, real rats found good paths
in about 10 trials, which roughly compares to the sim-
ulation results shown here. Many times, however, after
having learned, real animals would “get distracted” and
kept on exploring, eventually going towards the reward
much later. Furthermore, real animals also use other
cues (like odor) for navigation (Save et al. 2000), which
have not been modeled. Real animals sometimes show
very strong inter-individual differences probably driven
by more general states of, e.g., motivation, intention,
fright, etc. Modeling behavioral states is beyond the
scope of this study.

3.4 Statistical analysis of mixed strategies

In Fig. 5 a summary of the influence of the differ-
ent mechanisms is presented. For each diagram 100
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Fig. 5 Statistical analysis
of mixed strategies for path
generation and learning as
given inside each panel for
100 experiments each.
Arrows indicate how
properties get inherited from
each other. Gray panels are
the ones containing an S
component. Three histograms
are shown in each panel:
convergence to an optimal
path (left histogram), to a
non-optimal path (middle
histogram) and divergence
cases (right single-bin). For
panels below the dashed lines
the mixing of both memory
limiting strategies - F and
L - leads to a visible
deterioration of the
performance. Note, panels
(j) and (l) are identical.
Default parameters (Table 1)
were used
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experiments were analyzed. Arrows indicate how his-
tograms inherit properties from top to bottom. The
two top diagrams (a) and (b) show the basic cases
of pure exploration E and pure path straightening S
respectively. Below, cases with path length limitation
L are shown (mostly) in the left and middle part of the
diagram, cases with weight decay F are found right and
middle. Towards the bottom more and more strategies

are mixed and the left-right separation in the diagram
vanishes.

Histograms in the figure show three groups of bins.
In the leftmost group the optimal path has been found,
the middle group shows cases where a sub-optimal path
was found (e.g. zigzag) and the rightmost group, which
consists of a single bin, shows the number of divergent
cases. Bins in the groups are ordered to show cases of
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convergence in less than 50 trials (leftmost bin) up to
less than 300 trials (rightmost bin).

Gray shading indicates those cases where the paths
contain an appropriate S component. This particular
S-component leads to the situation in the main part
of Fig. 2, which appears realistic relative to the other
combinations shown there. Cases without shading
produce unrealistic paths.

As expected, pure exploration (a) often leads to con-
vergence, but several cases (20 out of 100) are observed
where the system diverges. While biologically more
realistic, the type of place field-like function approx-
imation used here does not belong to the few known
classes of function approximation algorithms for which
convergence has been proved. With path straightening
(b), the convergent cases converge faster (mean opt
for S = 31.5 trials, for E = 56.9 trials), but there are
many more divergent trials (52) now. “Mean opt” gives
the mean value for the optimally convergent histogram
(leftmost histogram). Mixing cases S and E (c) produces
a result in between the pure S and E cases (mean opt for
SE = 39.9 trials, divergent cases = 28).

Note, diagrams below this level (below panel c),
which descend from an ancestor above (arrow) can
be best understood by a leftward redistribution of
the members in the bins of the respective ancestor,
hence, one finds an improvement when going down.
This picture generally holds well for all panels until (i),
hence, above the dashed line, below of which too many
mechanisms mix and performance deteriorates again.
This will now be quantified in the following.

Limiting the learning horizon (L, panel d) or adding
weight decay (F, panel g) efficiently eliminates all di-
vergence from the pure exploration case (compare to
a). As expected, learning is now slower though (mean
opt for EL = 102.0 trials, for EF = 50.0 trials). If not
concerned with realistic paths, strategies EF would be
the best choice for fairly fast and robust convergence.
Doing the same with straight paths (panels e, f) also
leads to substantial improvement with respect to re-
moving divergence cases as compared to (b) (divergent
cases for SL=25, for SF=5), but convergence is again
slower as in (b) (mean opt for SL = 76.4 trials, for SF =
38.4 trials).

In general this confirms the motivation for F and L
presented in the Methods section as both mechanisms
reduce the danger of getting trapped in a divergent
situation.

Panels ( j) and (l) represent the case (note, j and l
are identical!) where the other (F or L) component
has been added to cases EL and EF, respectively. Now
learning becomes again slower because L and F both

limit the memory of the learning system (mean opt =
126.4 trials, no divergence).

Mixing path straightening with a bit of exploration
in general seems to be a good strategy (panels c, h, i, k,
m), by which convergence is most of the time assured
together with realistic looking paths. Case SEF (panel
i) leads to fairly fast and robust convergence (mean opt
for SEF = 45.6 trials, no divergence). Many cases were
found where convergence happened within 10 to 30
trials, not much slower than in real rats. For case SEL
(panel h) convergence was much slower (mean opt =
138.4 trials, one divergent case) and this also holds true
when mixing both limiting strategies L and F in cases
SLF (k) and SELF (m), where also more divergent
cases begin to appear for SFL (18). Convergence times
for SEL, SLF and SELF became, however, unrealisti-
cally long with a mean opt larger than 100 trials in all
these cases.

In summary, when using realistic paths that contain
an appropriate S-component (as judged by Fig. 2),
convergence deteriorates and this suggests that other
mechanisms are needed to counteract this effect, where
here we used F and L. We find that straight paths
together with weight decay and/or path length limita-
tion will not lead to good performance (panels: e,f,k;
representing cases SL, SF, SLF). Adding exploration
(SE, c) will immediately improve on this, while still
leaving the path shape realistic, but many divergent
cases remain. This can be mended by adding weight
decay (SEF, i), which represents the most realistic case
concerning path shapes and convergence times. Path
length limitation is also a powerful mechanism to elimi-
nate divergence, but in these simulations convergence
times became now rather long (h). Mixing too many
strategies will also lead to performance deterioration,
because they all work in the same way, reducing the
memory of the system.

Furthermore, we investigated how sensitive the sys-
tem reacts to parameters L and F, because, clearly, too
much weight decay or path length limitation is also
harmful. In Fig. 6 we show how the number of divergent
cases depends on the decay rate for the SF case. It
shows a minimum between 0.999 and 0.99999, and any
weight decay rate within this range may be advanta-
geously used. We also used path length limitation (SL)
with constants cl = 2, cl = 3, cl = 5, and cl = 7, and
found that with cl = 2 the process converges about 60%
slower as compared to the here used standard case of
cl = 5 (mean opt for SLcl=2 = 124.3 steps as compared
to mean opt for SLcl=5 = 76.4 steps), whereas with
cl = 7 many more divergent cases remain, similar to the
pure S case. Cases between cl = 3 and cl = 5 performed
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similarly, successfully diminishing the number of diver-
gent cases. Exploration has similar effects for a wide
range of values, from pe = 0.05 to around 0.5. With
increasing exploration, learning is mostly successful,
but the paths get more disordered because of frequent
off-path exploratory steps.

Concerning our real rats, time to convergence is
more difficult to measure as animals always maintain
a high degree of exploration drive and are easily dis-
tracted even when hungry. The following observations
were made. Rats found for the first time a short and
direct path to food after 6-10 trials (rat1: 9, rat2: 10,
rat3: 6, rat4: 9, rat5: 7 trials). In rats 1 and 2 this was
then followed by another exploratory phase and consis-
tent food targeting was found for these two animals at
around trial 20. Rats 3-5, on the other hand, continued
to run to the food until not hungry anymore with some
exploration around trial 15. Thus, convergence is faster
than for the simulated rats which is probably due to
the fact that the arena cannot be stripped of all visual
and or self-generated odor cues (self-generated as a
consequence of the rat’s running), which both provide
a very strong signal to target.

3.5 Place fields size and density

As discussed above, the convergence properties of RL-
algorithms are not only affected by the path structure
but also by the state space characteristics. This prob-
lem arises here as a consequence of the structure of
our place field map. Thus, next we will address the

question of how the obtained results depend on place
cell radius and density. Hippocampal place fields often
have a radius of around 1/4th-1/5th of the arena (10-
20 cm), though smaller and bigger fields have also been
observed, and the size may depends on the size of the
arena (Wilson and McNaughton 1993; O’Keefe and
Burgess 1996; Muller 1996; Mehta et al. 1997). In our
model e.g. for σ = 4.24 cm we have a P=10%-firing
field of 22 cm diameter within the 1.5 × 1.5 m. arena,
and that matches well the observed size of place fields.
Little is known about place field density, because from
standard recordings in a single animal density is not
straightforward to evaluate. Some authors find over-
representations of places that are more important for
an animal or are more densely explored (Hollup et al.
2001).

To investigate the influence of place field size and
density we performed an exhaustive analysis over
size/density pairings adjusted to lead to a similar cov-
erage for the whole arena. Coverage in our model
is calculated as the average number of cells that will
actually fire at any given location. Coverage values of
0.8, 2.4 and 4.5 were investigated. Depending on their
size, different numbers of cells were required for this,
as given in the central part of Table 3.

Note, as coverage is not uniform, a certain part of
the surface will always on average remain uncovered.
For an average coverage of 4.5 we have about 1%, for
2.4 about 6% and for 0.8 about 45% of the surface area
of the arena uncovered.

Convergence of paths was evaluated through path-
length histograms for 100 trials each (Fig. 7). The best
performing strategy (SEF) for path generation and
learning was employed with default parameters. The
shortest path found in these experiments contained
16 steps and path length was limited to 300 steps; a
new trial was started if this number was exceeded (see
x-axis labeling in panel d). Hence, in a given bin, we plot
how many times the rat had found the reward within

Table 3 Number of cells required to achieve a certain coverage
given the field width σ

Coverage Field Width (σ) in cm

2.12 4.24 6.36 8.48

4.5 2000 (a) 500 (b) 230 (c) 140 (d)
2.4 1100 (e) 300 (f) 130 (g) 80 (h)
0.8 350 (i) 100 (j) 50 (k) 25 (l)

Value of σ = 4.24 cm, n = 500 have been used for most other
experiments. Labels (a-l) refer to the panels in Fig. 7
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Fig. 7 Path length distributions for different combinations of
place field size σ and number of cells n, leading to different
degrees of coverage as shown on the left side (a–l). Colors encode

the stage of learning (blue=beginning of learning, red=end). For
further explanation see text

the number of steps with which that bin is labeled from
100 experiments performed. Clearly, early in learning,
paths are longer and later they are, if convergent,
shorter. To show this, histograms are color coded. Start-
ing phase of learning is shown in blue (leftmost color in
each bin), and ending phase in red (rightmost color in
each bin). Middle stages are shown by the other colors.
For each field size/density pair a separate histogram is
provided in the figure. Histograms are given in the same
order as in Table 3; they are normalized to 100.

Because 300 steps is the absolute path length limi-
tation, which is often used in the first few trials, one
finds a blue peak in all panels in the 300-bin. Next,
we note that the peak of all blue contributions (early
during learning) is, as expected, in all cases shifted to
the right with respect to the red contributions (late
during learning). Trivially, learning makes the paths
shorter.

Looking in more detail at the red contributions (after
learning), one can see that the shortest paths were
found on average for panels (a) and (b), where the
red peak falls in the 10-30 bin, where in (b) conver-
gence is faster. In general many times the red peak
falls in the 10-30 bin, but often the other colors are
not much found in this bin. This means that the fi-

nally reached path length was indeed 10-30 steps but
that this has been reached only after many (100-200)
trials. In panel (b), on the other hand, also the blue
color is represented with a high peak in the 10-30 bin,
hence short paths have been already found early during
learning. Panel (b) corresponds to σ = 4.24 cm, n = 500
and this combination has, therefore, been used for all
experiments reported above. With smaller place fields
σ = 2.12 cm (column one, a, e, i) convergence is much
slower. Bigger place fields (right two columns) produce
poorer convergence, introducing many red contribu-
tions into the higher order bins, pointing to long, final
path lengths. Small coverage (last row), independent of
the field width, produced poor convergence.

In summary one finds that high coverage corre-
sponds to highly overlapping place fields, which in gen-
eral increases the speed of convergence. For a given
place field density, small place fields increase the pro-
portion of convergent paths, but also increase the time
to convergence. The effect of place field size could,
thus, be understood to be the product of a trade-off
between convergence and speed to convergence. This
can be explained largely by the following observations:
For bigger fields we get correlations from further away,
which makes learning quicker, while for smaller fields,
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we get a finer approximation of the space, which makes
it more accurate and less prone to divergence.

4 Discussion

The goal of this study was to investigate how path
formation strategies interact with RL in a place field-
like system for action value function approximation. To
this end we have first analyzed rat path characteristics
in freely exploring rats showing that these paths contain
a significant proportion of long straight segments. This
analysis allowed us to model path formation more real-
istically also in the RL-simulation using what we called
the S-strategy (path straightening). The RL-simulation
was based on overlapping, probabilistically firing place
fields. We found that the number of divergent cases
with path straightening (S) increased two-fold com-
pared to traditional exploration-exploitation strategies
(E-strategy). Thus, increasing random exploration (E)
improved convergence but this way we received unre-
alistic, wiggly paths. We showed that two biologically
plausible mechanisms (weight decay and path length
limitation) will improve the learning in such a (S or
SE) system. Both mechanisms limit the memory of the
system and thereby they act against trapping. Specifi-
cally we could show that convergence can be improved
if weight decay (F) or path length limitation (L) are
added to the path straightening setup. Briefly: For the
S-strategy, weight decay recovers and improves perfor-
mance while path length limitation reduces the diver-
gence. Mixing too many strategies (e.g. using F and L)
will in general not anymore lead to an improvement;
rather often a deterioration of the performance is now
found as both mechanisms act limiting on the memory
of the system. Furthermore, we have demonstrated that
the degree of improvement also relies on the size and
degree of overlap in the place field system. Here, we
showed that the effect of place field size and density
will, essentially, lead to a trade-off between conver-
gence and speed to convergence.

4.1 Relevance and influence of the chosen
learning algorithm

In this study we have chosen SARSA learning for
our experiments. This choice is motivated by several
reasons. In the first place, SARSA is on-policy learning.
Hence, an agent updates (synaptic) weights by the
outcome of the actually performed action, different
from the (more commonly used) Q-learning algorithm,
where weights are being updated by the best possible
action outcome, even if the agent has actually chosen

a different performed action. Q-learning would thus
require some kind or reasoning along the lines: “I know
the best possible outcome and update my learning
with this even though I am trying out something else
(exploration).” It has been shown that such human-like
“reasoning” does not seem to be represented in the
midbrain dopaminergic system, which is the structure
mostly held responsible for the implementation of re-
ward based learning in the animal brain (Schultz 2002,
2007). At the level of monkeys it seems that SARSA
learning prevails (Morris et al. 2006) as discussed by Niv
et al. (2006). We have also performed quite an exhaus-
tive analysis of Q-learning. In fact, as observed often
for systems with function approximation (Tsitsiklis and
Van Roy 1997; Sutton and Barto 1998; Wiering 2004),
Q-learning performs far worse under a mixed (SE)
strategy (data not shown). Paths will differ though.
For example zigzagging observed in badly convergent
SARSA is much less pronounced and will now be
replaced by long curved paths in badly convergent Q-
learning cases.1 An interesting suggestion to possibly
improve convergence of such systems would be to em-
ploy information from head-direction cells (for a review
see Sharp et al. 2001) to augment the state space, which
is currently represented by the place fields as such. To
test this idea we have augmented the state-action space
in a Q-learner by a head-direction system. We have per-
formed a set of control experiments (data not shown)
were path straightening had been implemented via a
heading asymmetry, hence, through biasing Q-values
for the different relative movement directions, includ-
ing the same exploration tendency as in our SE-system.
We observed that initial paths of this system are then
indeed indistinguishable from those of the SE-system
used here. However, when such a system learns, the first
thing that happens is that the initial motion trajectories,
which are still not targeting the reward, will destroy the
directional bias reverting the system into one similar
to our pure E-component. Hence, before convergence
the simulated rat undergoes a phase where quite un-
realistic, wiggly paths segments prevail. Furthermore,
due to the larger state-action space, convergence is
often slower. In view of this, we had decided against
including the head-direction system into this model.
This is also supported by the fact that there is conflicting
evidence as to the influence of head-direction cells on
rats’ navigation behavior. Golob et al. (2001) showed

1Note, to be more specific, we have used SARSA(λ = 0). There
would also be the choice of using SARSA or Q with λ �= 0. Speed
of convergence in conventional RL can change as a consequence
of λ. There are, however, in general no predictions possible for
which value the fastest convergence is obtained.
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that navigation cannot be predicted from head direc-
tion cell activity, while Dudchenko and Taube (1997)
could show some influence on behavior.

Another alternative for further investigations would
be to employ Actor-Critic modules (Barto et al. 1983;
Barto 1995; Sutton and Barto 1998), for example using
a temporal-difference (TD, Sutton 1988) based critic
to decide about possible actions. Such a choice would
be justifiable by the suggested relation of Actor-Critic
architectures to the interfacing between basal ganglia,
prefrontal cortex, and the motor system (Barto 1995;
Houk et al. 1995). Indirect evidence exists that humans
seem to be able to perform an off-line actor-critic up-
date (O’Doherty et al. 2004). Indeed, a wide variety of
such architectures has been suggested during the last
years (Houk et al. 1995; Berns and Sejnowski 1998;
Brown et al. 1999; Contreras-Vidal and Schultz 1999).
However, their relation to the basal ganglia and pre-
frontal cortex remains rather abstract and these models
are often quite incompatible with the physiology and
anatomy of the biological substrate (discussed in great
detail in Wörgötter and Porr 2005).

Actor-Critics usually rely on the interpretation of the
dopaminergic signal as being the δ-error of TD learn-
ing, supported by studies of Schultz and collaborators
(Schultz 2002, 2007; Contreras-Vidal and Schultz 1999;
O’Doherty et al. 2004). More recently, the dopamine
signal has been re-interpreted rather as a timing signal
for the learning (Redgrave and Gurney 2006) as there
appear to be timing conflicts between the different
neuronal responses when using the traditional inter-
pretation (Redgrave et al. 1999). This may also lead
to a reinterpretation of the Actor-Critics idea and its
relation to the neuronal circuitry.

On the more technical side it is known that the
convergence of Actor-Critics is often quite difficult to
achieve and there are many ways to construct such
an architecture (Sutton and Barto 1998), which leaves
the choice too unconstrained in conjunction with this
investigation. Little is known about the behavior of
Actor-Critics together with function approximation. As
the possible relations of this different RL-algorithms
to brain function is still a matter of debate (Wörgötter
and Porr 2005, 2007), SARSA seems to be a justifiable
choice.

4.2 Biological behavioral mechanisms

Our study is the first to consider rat path statistics dur-
ing exploration in conjunction with navigation learning.
Some other studies were concerned with open-field
experiments and also there paths with long straight
stretches have been observed (Etienne et al. 1996;

Eilam 2004; Zadicario et al. 2005). In daylight animals
tend to run along walls or hide in the corner, while at
night some more exploration in the center of the field
happens (Eilam 2004; Zadicario et al. 2005). Our path
generation algorithms did not include all the complex-
ity (loops, stopping) observed in actual rodent paths,
but nevertheless our path geometry, and path statistics
resemble real rat paths.

In real rats strategies similar to F or L are a common
observation. Different forms of forgetting (weight de-
cay) are common in animals and humans. The “frustra-
tion” (path length limitation) mechanism used here can
be linked to the return-to-home-base drive in real rats.
It is known that rats return to their home location in
an open arena exploration process and investigate the
environment in loops of increasing length (Eilam and
Golani 1989; Whishaw et al. 2001; Wallace et al. 2002;
Hines and Whishaw 2005; Zadicario et al. 2005; Nemati
and Whishaw 2007). Furthermore there are again be-
havioral differences during daylight as compared to the
night, where homing is less prevalent because animals
are less frightened (Eilam 2004; Zadicario et al. 2005).

Our model makes relatively few assumptions about
the determinants of behavior. We have not accounted
for motivational state, thigmotaxic tendencies, arousal,
and fatigue, to name but a few factors that likely influ-
ence path learning. To capture the full complexity of
real animals, additional mechanisms would have to be
considered. However, a strength of the current model is
that with just a few assumptions we can produce a good
approximation of actual rat navigation.

Some limitations may arise from the fact that start
and goal locations for the real rats were not varied.
However, as long as rats are not being directly at-
tracted by other landmarks (e.g. starting them close to a
wall), one should hope that path characteristics will not
change too much. Observations in the water maze seem
to support this notion and rats go after learning straight
to the platform (Morris 1981; Foster et al. 2000), but
quantitative data for these paths are not available. In
the model, changing start and goal will only lead to
a rotation of the Q-value vector field as there are no
additional attraction or repulsion mechanisms built in.

There are some further considerations as to the con-
tingencies of the animal experiments, which we would
like to briefly discuss. For practical purposes animals
found the reward always at a curtain in a wall. Orienting
with respect to the walls (and their multiple curtains)
represents a form of allothetic navigation, where the
place field activity is driven by sensor inputs. Without
explicitly having modeled such inputs, our Q-value
system is also based on allothetic (coordinate based)
information, which is the common way to model such
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systems (see Recce and Harris 1996; Burgess et al. 2000;
Foster et al. 2000 and for a discussion on idiothetic,
path integration influences see e.g. Kulvicius 2008). The
fact that the reward for the model rat has not been
provided when touching a wall leads sometimes to more
trials until convergence as compared to experiments
with the reward given at a wall, because in the former
case model rats can bypass the reward on the other side,
too. In the model we have furthermore assumed that a
minimal step of the model rat is 6 cm. This corresponds
to about half the body length of a rat (without tail) and
reflects the fact that we do not model sharp, local turns,
where a rat would bend back on itself. This happens
only when an animal stops, sniffs (most often), and
turns, which we are not modeling as our model focuses
only on continuous path segments. Furthermore, the
step size is tuned to the place field size, making each
step small enough for the model rat not to pass over
place fields ‘unnoticed’ due to discretization effects.

4.3 Hippocampus modeling

It was not our objective to create a general hippocam-
pus model (Kali and Dayan 2000; Becker 2005). We
do not distinguish between regions of hippocampus
(dentate gyrus, CA1, CA3), nor do we model its inputs
or the process of place cell development (Samsonovich
and McNaughton 1997; Tsodyks 1999; Hartley et al.
2000). Instead we focused on the interaction between
behavioral constituents (paths) with RL in a place-field
like function approximation system.

In the field of hippocampus-based navigation our
model has similar properties to models by Arleo and
Gerstner (2000), Krichmar et al. (2005), Strösslin et al.
(2005). Those models try to incorporate many known
details about the included brain structures and types
of cells present, thus attempting to study hippocampal
function. No special attention has been devoted in
these studies to path formation and its influence on the
learning. Implications how path characteristics could
influence such studies will be discussed later.

4.4 Machine learning

We have emulated navigational learning using RL with
function approximation, based on hippocampus-like
place field representation. We used the SARSA algo-
rithm to stay closer to biological learning mechanisms,
though Q-learning can be implemented in the same
framework, as discussed above. The algorithm is similar
to the one proposed by Reynolds (2002). However,
we do not normalize the learning equation and our

learning rates are, thus, independent of the number of
activated features (activated place fields). This is moti-
vated by the problem of how to emulate such a global
normalization in a neuronally plausible way. Global
normalization by neuronal mechanisms is a well-known
difficulty also for other simpler learning algorithms
for example when wanting to limit weight growth in
Hebbian learning (Dayan and Abbott 2005). In spite of
the lacking normalization, the current algorithm pro-
duces convergent weights as well as convergent behav-
ior in a conventional exploration-exploitation setup.
On many occasions it produces optimal paths to re-
ward. As our place field system fires probabilistically,
it is difficult, if not impossible, to provide a rigorous
convergence proof. In general, such proofs are noto-
riously hard to obtain for any function approximation
system even under more relaxed conditions (Szepesvari
and Smart 2004). While of possible theoretical interest,
these machine learning related issues may not relate
directly to our more biologically-inspired model.

In machine learning weight decay is known from the
general purpose neural network learning literature as
a means to prevent weights from saturation (Werbos
1988). In a RL framework, weight decay has been used
in several isolated studies, usually to produce agents
who can adapt to changing environments (Yen and
Hickey 2004). Hence, as such the idea of using forget-
ting is not new, but here we show how learning in a sta-
tic environment can also benefit from this mechanism
in preventing divergence.

Path length limitation in our setup is implemented as
return to the home base if the reward was not reached
in predefined number of simulation steps. Path-to-goal
limiting is a natural option for any simulation of RL;
it is reasonable to stop a trial after some steps if the
reward is not found (e.g. Glaubius and Smart 2004).
Here we used a more complex path limiting process,
where the allowed number of steps depends of the
path-to-goal length in the previous epoch. In robotics
applications with RL, path length limitation is often
included to switch the pattern of behavior when the
goal is not reached (e.g. Okhawa et al. 1998), which is
not of relevance, though, for our system.

4.5 Possible relevance

The findings presented here could possibly influence
at least three fields: biological modeling of place field
based navigation, RL theory, and machine learning
applications (robotics).

Several models for navigation exist based on hippo-
campal place fields (Arleo and Gerstner 2000; Krichmar
et al. 2005; Strösslin et al. 2005; Sheynikhovich et al.
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2005). In some of them eligibility traces are used (Arleo
and Gerstner 2000; Strösslin et al. 2005; Sheynikhovich
et al. 2005) for memorizing the most recent path seg-
ments. In our study, we could show that such a memory
mechanism is not required to achieve efficient learning.
It is unclear to what degree such eligibility traces exist.
Thus, following a more conservative attitude one might
choose our approach to simplify modeling.

In Strösslin et al. (2005) and Sheynikhovich et al.
(2005) not only the action performed, but also actions
from the spatially near states are involved in learn-
ing, thus introducing an averaging effect, that leads to
better convergence in their case. SARSA or Actor-
Critic learning do not foresee an action memory of
this kind and such a neighborhood action excitation
mechanism may be difficult to justify from a biological
point of view. Alternatively, here we show that also
other simpler mechanisms, weight decay and path
length limitation, can improve convergence.

Hence in general the results presented here suggest
that convergence in existing models could possible also
be assured by mechanisms of weight decay and path
length limitation thereby making it possible to elimi-
nate aspects of unclear biological realism used so far.

Furthermore, none of the mentioned studies explic-
itly deals with path smoothing, and the examples in
the study of Krichmar et al. (2005) clearly demonstrate
that the paths are wiggly in the beginning. Their robot
was very slow, stopping and orienting for navigation,
quite unlike real animals. Thus, to assure that paths are
realistic one needs to include mechanisms similar to the
ones used here also in the other studies.

The field of RL theory is dominated by attempts to
arrive at rigorous convergent proofs for their methods.
However, several theoretically sound machine learn-
ing algorithms cannot be used without alterations in
praxis as their proven convergence is far too slow in
real world problems with large state and action spaces
(temporal credit assignment problem, (Wörgötter and
Porr 2007)). SARSA and Q-learning behave like this,
too. Function approximation has been used to improve
speed of convergence, but these systems are now many
times very hard to analyse mathematically and - even
worse - often not strictly convergent anymore. In this
context it appears of interest that mechanism can in-
deed be found empirically (here F and L), which im-
prove convergence while maintaining speed. Machine
learning has increasingly started to investigate such
“difficult” systems knowing that one needs both, speed
and reliability (of convergence). The memory limit-
ing aspect and the observed un-trapping when using
mechanisms similar to F and L ought to be a general
theoretical interest for RL-systems. It would, thus, be

interesting, albeit probably quite difficult, to investigate
such mechanisms from a mathematical point of view,
using a more rigid state-action RL-system to better
constrain the problem.

The aspects on RL theory discussed above directly
reach out into the applied fields. It is worth noting
that exploration-exploitation strategies as required by
theory are in some cases totally incompatible with the
compliance requirements of machines. Especially in
multi-joint robot arms the very jerky, wiggly move-
ments obtained by random exploration are not permis-
sive as they will damage such a machine (T. Asfour,
personal communication). Hence, straighter explo-
ration paths should be employed for RL problems in
these domains. The improved convergence found in
our study could therefore help to better adapt RL-
methods to such problems. Indeed, we have started to
employ our methods now in the context of a humanoid
robot (Asfour et al. 2006), learning to reach for a target
currently still limited to 4 Degrees of Freedom in a
3-D reaching space. Preliminary results show that the
machine can often learn this task using about 10000
“place fields” in only 20-30 trials taking a few minutes.
In such a large state-action space, conventional ma-
chine learners without additional mechanisms would
converge only after days, while their exploration pat-
terns would damage the arm. Clearly there are other
ways to implement efficient RL in such robot systems,
but this example shows that our approach appears also
promising.
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Appendix: RL with function approximation

RL is a procedure where a value function V(s) over
states s develops as an agent acts in its environment and
attains goals. In RL with delayed reward, the function
shows a gradient towards a goal. In the Q and SARSA
learning approaches (Watkins and Dayan 1992;
Kaelbling et al. 1996), instead of the state value
function, the state-action value function Q(s, a) (short:
action value function) is developed, where s denotes a
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state and a an action. Action-value functions describe
values of concurrent actions in every state, and can be
directly used for making a decision on which action to
perform.

Q-learning is described by the following equation:

Q(st, at)←Q(st,at)+α
(
rt+1+γ max

a
Q(st+1, a)−Q(st, at)

)

(5)

Where Q(st, at) is the action value function at time
step t, rt+1 is a reward obtained with action at, α is the
learning rate and γ a discount factor. SARSA learning
differs by a single aspect that the current action value
is updated according to the value of the next actual
action, but not by the best possible next action, as in Q
learning:

Q(st, at) ← Q(st, at)+α(rt+1+γ Q(st+1, at+1)−Q(st, at))

(6)

Hence, SARSA is designed to work on-policy, which
means that learning takes place as an agent moves in
the state space according to the path that was actually
performed. Evidence exists that animals follow an
on-policy, rather than an off-policy, learning strategy
(Morris et al. 2006, see also commentary by Niv et al.
2006). Hence in this study we are investigating the
SARSA algorithm and only sometimes comment on
Q-learning.

For big and/or continuous state spaces, function ap-
proximation methods need to be used, where the action
value function is a function of more abstract and wider-
embracing entities commonly called features in the
RL-literature. We define normalized Q-values by:

Q(st, at) =
∑

i

θi,at	i(st)/
∑

i

	i(st) (7)

where 	i(st) are the features over the state space, and
θi,at are the adaptable weights binding features to ac-
tions (Reynolds 2002).

We assume that a place cell i produces spikes with a
scaled Gaussian-shaped probability distribution:

p(δi) = Ae−(δ2
i /2σ 2) (8)

where δi is the distance from the i-th place field center
to the sample point (x, y) on the trajectory, σ defines
the width of the place field, and A is a scaling factor.
In the areas where the values of this scaled distribution
are above 1, cells fire with a probability of 1.

We then use the actual place field spiking to deter-
mine the values for features 	i, i = 1, .., n, which take
the value of 1, if place cell i spikes at the given moment

on the given point of the trajectory of the model animal,
otherwise it is zero:

	i(st) =
{

1 if place cell i spikes at st

0 else.
(9)

SARSA learning then can be described by:

θi,at ← θi,at + α(rt+1 + γ Q(st+1, at+1) − θi,at)	i(st) (10)

where θi,a is the weight from the i-th place cell to
action(-cell) a, and state s is defined by (x, y), which are
the actual coordinates of the model animal in the field.

We sum over all features, but in each place only a
specific subset of cells will fire rendering their corre-
sponding features non-zero. Note that function 	i(s)
has a probabilistic nature in our approach, differently
from usual features used for function approximation in
RL. The update rule Eq. (10) we use has a straightfor-
ward biological interpretation: the weight of a particu-
lar action is increased at the given place if this weight
leads either to a reward, or if it leads on to pieces of
an already known rewarding path. In the latter case
this results from the non-zero Q(st+1, at+1)-values in the
next state.
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