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Abstract

Waves in the solar corona have been investigated for many years, as a potential coro-

nal heating mechanism and in the context of coronal seismology, and they play an

important role in our understanding of the solar corona. In this thesis, we present the

results of numerical simulations of transverse MHD waves in coronal loops. In a first

study, we consider an atmospheric model for a coronal loop where the chromosphere is

included as a simple mass reservoir and the effects of gravity, thermal conduction and

optically thin radiation are taken into account, and we investigate the dissipation of

phase-mixed, driven Alfvén waves and the subsequent heating and evaporation from

the lower atmosphere. It has been argued that this evaporation can significantly af-

fect the transverse density profile in the boundary of the loop, thereby changing the

Alfvén speed gradient and the phase mixing process. We analyse the heating from the

phase-mixed Alfvén waves and the evaporation and find that in our setup, with a high-

frequency driver, the effect of the evaporation on the phase mixing process is negligible

as a significant amount of the wave energy in the corona is lost to the lower atmosphere.

Waves usually originate in the lower parts of the solar atmosphere, where the con-

vective motions beneath the photosphere shuffle the magnetic field around, and they

are then transmitted into the corona. However, recent observations have shown that

transverse MHD waves can also be generated in-situ in the corona, by the collision of

counter-propagating plasma clumps (coronal rain). When falling down, these coronal

rain clumps can collide with upflows or other coronal rain clumps, and generate trans-

verse oscillations. In order to investigate this mechanism, we develop a 2D model for

the collision of counter-propagating plasma clumps based on detailed observations and

statistical analysis of these events and study the generation of transverse MHD waves.

We first study the relationship between various physical parameters of the clumps and

the resulting oscillations and subsequently apply the model using observed coronal

rain properties and investigate the likelihood of collisions and oscillations in coronal

loops. In our simulations, we find that the properties of the oscillations are linked to

the properties of the counter-propagating clumps, but also that coronal rain collisions

and oscillations are rather unlikely in active region loops, due to the relatively large

background pressure and magnetic field strength.
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Chapter 1

Introduction

1.1 The solar atmosphere

The solar atmosphere is defined as the part of the Sun from which photons can escape

directly into space (Priest, 2014). It is often represented as a layered structure. The

lowest layer is the photosphere, which is the thin (∼ 500 km) surface of the Sun, and is

defined as the region where most of the visible light is emitted. The temperature of the

photosphere is around 6000 K, as shown by Figure 1.1, which shows the density (blue)

and the temperature (orange) as a function of height in the solar atmosphere. The den-

sity drops off exponentially with height from the base of the photosphere (ρbase ∼ 10−4

kg/m3). In the photosphere, the magnetic field emerges from the interior of the Sun,

and manifests itself in different structures in the solar atmosphere. The magnetic field

can be concentrated in sunspots, which are typically cooler regions in the photosphere

with a strong magnetic field (∼ 103 G). Above these regions, in the corona, we usually

find so called active regions, where the solar atmosphere can show a lot of magnetic

activity, such as eruptions or flares.

The next layer above the photosphere is the chromosphere. The thickness of the

chromosphere can vary but is roughly a few thousand kilometers. Figure 1.1 shows

that the temperature decreases initially to roughly 4000 K and then increases again to

30000 K, whereas the density continues to decrease exponentially with height in the

chromosphere, to ρ ∼ 10−10 kg/m3 near the top of the chromosphere.

The temperature then increases rapidly in the narrow transition region (TR) (of the

order of a few hundred km), from ∼ 104 K in the chromosphere to ∼ 106 K in the

corona. The density decreases similarly with two orders of magnitude. The corona

1



1.1. THE SOLAR ATMOSPHERE 2

hosts different magnetic structures (e.g. coronal loops and prominences) which provide

efficient waveguides (see e.g. Reale 2010; Parenti 2014). We will discuss waves in the

solar atmosphere in more detail in Section 1.3.3. Although represented here as a lay-

ered structure, the solar atmosphere is highly dynamical with a lot of interaction (e.g.

heat, flows) between the different layers, and it is very challenging to model the full

solar atmosphere in detail, due to the large range of spatial and temporal scales.

Figure 1.1: A schematic plot of the temperature (blue) and density (orange) with
height in the solar atmosphere. Figure obtained from Priest (2014).

1.1.1 The coronal heating problem

The coronal heating problem is a long-standing problem in solar physics, which tries to

address how the corona can be maintained at temperatures of a few million degrees. It

is believed that the magnetic field provides the main energy source to heat the corona

(see e.g. Klimchuk, 2006). Due to the convective motions beneath the photosphere,

the surface of the photosphere is constantly in motion and the magnetic fieldlines are

shuffled around. This movement stores energy in the magnetic field - if the footpoint

motions are slower than the Alfvén travel time along the fieldline - or it can generate

waves that propagate along the field - if the footpoint motions are faster than the

local Alfvén travel time. These different mechanisms are sometimes referred to as DC

and AC heating, respectively. In the case of DC heating, the magnetic energy can be

released by magnetic reconnection, whereas in the case of AC heating the wave energy

propagates into the solar atmosphere where it can then be dissipated. In this thesis,

we will mainly focus on MHD wave propagation and dissipation in the solar atmosphere.

Observational studies have shown that MHD waves contain a significant amount of

energy and are a possible candidate for coronal heating (see e.g. De Pontieu et al.

2



1.1. THE SOLAR ATMOSPHERE 3

2007; McIntosh et al. 2011; Morton et al. 2012, Srivastava et al. 2017; or reviews by

Arregui et al. 2012; De Moortel and Nakariakov 2012; Parnell and De Moortel 2012;

Arregui 2015; De Moortel and Browning 2015). However, even with significant wave

energy observed in the corona, the timescales on which the energy is dissipated are

often found to be too long to counteract the coronal losses such as thermal conduction

and optically thin radiation (see e.g. Parnell and De Moortel 2012; Arregui 2015; De

Moortel and Browning 2015). In the corona, the values of viscosity and resistivity are

generally small, and hence in order to dissipate the wave energy fast enough, large

gradients in the velocity field and the magnetic field are needed. There are a few pro-

cesses known to accelerate the cascade of wave energy to smaller length scales, such

as resonant absorption (Ionson, 1978), phase mixing (Heyvaerts and Priest, 1983), the

Kelvin-Helmholtz Instability (KHI) (see e.g. Browning and Priest, 1984) and turbulent

cascade (see e.g. Hollweg, 1986). In Section 1.3.2 we provide more detail on the process

of phase mixing.

1.1.2 Chromospheric evaporation and coronal rain

As heating occurs in the corona, thermal conduction spreads the heat along the field

and a conductive flux is driven downwards from the corona to the lower atmosphere.

This locally increases the pressure and can lead to an upward flow of mass (evapora-

tion), locally increasing the coronal density (see e.g. Kuin and Martens, 1982). This

process is called (chromospheric) evaporation. Due to the increase in density, the op-

tically thin radiative losses (which scale with the density squared) increase and the

corona will start to locally cool. This may cause a run-away effect in the temperature,

as the optically thin radiative loss function increases for decreasing coronal temper-

atures (see e.g. Klimchuk et al., 2008), triggering the thermal instability. The local

condensations can then form cool, dense plasma clumps, which, under the gravita-

tional force, fall towards lower atmospheric heights, draining mass from the coronal

loop (see e.g. Cargill, 1994; Klimchuk, 2006). These cool and dense plasma clumps are

called coronal rain (see e.g. Antolin and Rouppe van der Voort, 2012; Antolin et al.,

2015b). This cycle of evaporation and draining of material is sometimes also referred to

as a thermal non-equilibrium (TNE) cycle (see e.g. Antiochos et al. 1999; Karpen et al.

2005; Antolin et al. 2010b; Xia et al. 2011; Froment et al. 2020). Coronal loops can

undergo a series of these heating-cooling cycles (TNE cycles) (see e.g. Froment et al.,

2020). Hence, observations of coronal rain can be a potential indicator for heating in

coronal loops (Antolin, 2020).

3



1.1. THE SOLAR ATMOSPHERE 4

Multiple observational studies have found evidence for the presence of these upflows

and downflows in the TR and the lower corona (see e.g. Del Zanna 2008; Feldman

et al. 2011; Dadashi et al. 2011, 2012; Tripathi et al. 2012a,b; McIntosh et al. 2012;

Winebarger et al. 2013). Hansteen et al. (2010) studied the mass and energy cycle

between the lower atmosphere and the corona and found that both downflows and

upflows are present at locations of (strong) magnetic field braiding, leading to redshifts

and blueshifts of the order of about 5 km/s (see also e.g. Zacharias et al. 2011; Guer-

reiro et al. 2013).

Because of improved instrumentation, coronal rain has been increasingly observed over

recent years (see e.g. Schrijver 2001; De Groof et al. 2005; Antolin et al. 2010b, Antolin

and Verwichte 2011, Antolin and Rouppe van der Voort 2012). We briefly summarise

the most important characteristics of coronal rain, following the overview given by An-

tolin (2020). Coronal rain is characterised by its clumpiness and multistranded nature,

i.e. it appears in different irregular clumps of plasma which have a rippled transverse

structure (Antolin et al., 2015b; Antolin, 2020). The length of coronal rain clumps is

typically a few hundred of kms up to tens of Mm, while the width is more constant,

around 150-300 km. Because of resolution constraints of the current available instru-

mentation, observations are limited and it is assumed that coronal rain widths can be

smaller than these values, see also Scullion et al. (2014). When the blobs fall, they fall

along loop-like paths and they tend to elongate and clumps can break up into different

parts (so called ‘shower’ events, see e.g. Antolin 2020). Observations show that the

width of the blobs remains roughly constant when falling. The speed of coronal rain

can vary widely, from a few km/s up to 150km/s (with most observed speeds at 70-80

km/s, see e.g. Antolin and Rouppe van der Voort 2012). Due to the nature of its

formation, the temperature of coronal rain blobs is cool compared to the hot coronal

environment, and varies between a few 103 K to 105 K. The coronal rain core number

density varies between 1010−1011 cm−3, roughly one to two orders of magnitude larger

than a typical coronal density in active region loops. Several modelling studies of coro-

nal rain formations by e.g. Fang et al. (2013, 2015); Moschou et al. (2015); Xia et al.

(2017) have confirmed these complex and multi-stranded characteristics of coronal rain.

Fang et al. (2013) reproduced the histograms of the lengths, widths and velocities of

the coronal rain condensations from the observational study by Antolin and Rouppe

van der Voort (2012), by modelling a 2D magnetic arcade where the conditions for the

thermal instability mechanism were met.

4



1.2. THE MHD EQUATIONS 5

1.2 The MHD equations

Because of the high temperature in the solar atmosphere, most of the plasma is ionised

(consisting of electrons and ions), and the plasma can be modelled as a single fluid

which is subject to forces exerted by the magnetic field. This modelling approach is also

known as ‘MagnetoHydroDynamics’ (MHD). The MHD equations consist of Maxwell’s

equations of electromagnetism and the fluid equations (see e.g. Priest, 2014). Below

we give a summary of the MHD equations as used in this thesis.

The MHD equations, in MKS units, are given by

∂ρ

∂t
+∇ · (ρv) = 0, (1.1)

ρ
Dv

Dt
= j×B−∇P + ρg + Fν , (1.2)

ργ

γ − 1

D

Dt

(
P

ργ

)
= −∇ · q− Lr +

j2

σ
+Hν +Hbg, (1.3)

∂B

∂t
= ∇× (v ×B) + η∇2B, (1.4)

∇×B = µ0j, (1.5)

∇ ·B = 0, (1.6)

P =
R

µ̃
ρT. (1.7)

In these equations, ρ is the mass density, t the time, v the velocity, B is the mag-

netic field, j the current density, P the gas pressure, g the gravitational acceleration,

Fν the viscous force, γ = 5
3

the ratio of specific heats, ∇ · q is the thermal conduc-

tion, Lr = n2Λ(T ) is the net radiation, with n = ρ
µ̃mp

the number density, µ̃ the

average particle mass (in terms of the proton mass, mp = 1.67 × 10−27 kg) and Λ(T )

the optically thin radiative loss function (see e.g. Klimchuk et al., 2008). σ is the

electrical conductivity, Hν is the heating by viscosity, Hbg is a background heating

term, η = 1
µ0σ

is the magnetic diffusivity with µ0 = 4π × 107 H m−1 the magnetic

permeability of a vacuum, R = kB
mp
≈ 8.3× 103 J K−1 kg−1 is the gas constant, where

kB = 1.38×10−23 m2 kg s−2 K−1 is the Boltzmann constant and T is the temperature.

Equation (1.1) is the continuity equation, and describes conservation of mass for a

fluid of density ρ. The second equation (Equation (1.2)), is the equation of motion,

where D
Dt

is the Lagrangian derivative (i.e. considering a reference frame moving with

5



1.2. THE MHD EQUATIONS 6

the fluid),
D

Dt
=

∂

∂t
+ v · ∇.

The first term on the right hand side (RHS), j × B, is the Lorentz force, the second

term, −∇P is the pressure gradient force, ρg is the gravitational force and Fν is the

viscous force, given by

Fν = ρν

(
∇2v +

1

3
∇ (∇ · v)

)
, (1.8)

where ν is the kinematic viscosity (assumed uniform). The Lorentz force can be rewrit-

ten as

j×B =
1

µ0

(B · ∇) B−∇
(
B2

2µ0

)
. (1.9)

The first term on the RHS of Equation (1.9) is the magnetic tension force, and scales

with the local curvature of the field. The second term is the magnetic pressure force and

this force acts from regions of high magnetic field strength to regions of low magnetic

field strength. The ratio of the gas pressure to the magnetic pressure is called the

plasma beta and is given by

β =
2µ0P

B2
. (1.10)

When β � 1, the pressure gradient force is the dominant force whereas for β � 1, the

Lorentz force dominates.

Equation (1.3) is the energy equation, where the RHS contains all the terms through

which the plasma may gain or lose energy. Here, the thermal conduction ∇ · q can be

written as (see e.g. Priest, 2014)

∇ · q = ∇|| ·
(
κ||∇||T

)
+∇⊥ · (κ⊥∇⊥T ) , (1.11)

where the subscripts || and ⊥ refer to values along and across the field. In the corona,

κ|| � κ⊥ and the conduction is primarly along the field: ∇ · q ∼ ∇|| ·
(
κ||∇||T

)
, with

κ|| = κ0T
5/2 and κ0 ∼ 10−11 W m−1 K−1, where we also assume that the parallel and

perpendicular length scales are of the same order. We remark, however, that under

the circumstances in which the perpendicular length scale is much smaller than the

parallel length scale, the comparison of the two terms in Equation (1.11) will need to

include the ratio of the length scales.

6



1.2. THE MHD EQUATIONS 7

The term j2

σ
is the Ohmic heating, and the heating by viscosity, Hν , is given by

Hν = ρν

(
1

2
eijeij −

2

3
(∇ · v)2

)
,

where eij = ∂vi
∂xj

+
∂vj
∂xi

is the rate of strain tensor. When the RHS of Equation (1.3) is

zero, the plasma is adiabatic which means that the plasma is thermally isolated from

its surroundings.

Equation (1.4) is the induction equation and it describes how a magnetic field evolves

in time. The terms on the RHS are the advection and diffusion terms, where diffusion

is more important in regions of high η and small lengthscales. In this equation we also

assumed that η is constant.

Equation (1.5) is Ampère’s Law and equation (1.6) is the solenoidal constraint, which

states that there are no sources or sinks in the magnetic field. Equation (1.7) is the

ideal gas law, which relates the gas pressure P , density ρ and temperature T of the

plasma.

The MHD equations described above are based on the following assumptions. First

of all, the typical length and time scales over which the system evolves are assumed

to be much larger than the microscopic ion and electron scales (the gyroradius, the

mean free path length, the Debye length, the gyroperiod and the collision time), which

also implies that the plasma is considered to be quasi-neutral. Secondly, the plasma

is treated as a single fluid. Thirdly, the typical speeds of the plasma are taken to be

much smaller than the speed of light. And lastly, the overall plasma is assumed to be

in thermodynamic equilibrium, such that the particle distribution functions are close

to Maxwellian.

In the solar corona the speeds of the plasma are of the order of the Alfvén speed,

a few thousand km/s, which is much smaller than the speed of light. Typical length-

scales are of the order of a few Mm, larger than the mean free path length, the ion

gyro-radius and the Debye length, and the timescales are larger than the gyroperiod

or the collisional time. Hence, MHD theory is a suitable theory for the solar corona.

7
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1.3 MHD waves

A plasma that is initially in stable equilibrium can be perturbed, such that the pertur-

bation can cause oscillations (waves) about the equilibrium.

1.3.1 Uniform medium

In this section, we derive the linear MHD waves in a uniform medium. We start

from a stationary plasma in equilibrium with B0 = (0, 0, B0) the magnetic field in the

z direction, ρ0 the (uniform) density and P0 the (uniform) pressure. We consider a

perturbation of the equilibrium such that B = B0 + B1, ρ = ρ0 + ρ1, P = P0 + P1

and v = v0 + v1, where the subscript 0 denotes the initial equilibrium state and the

subscript 1 denotes the perturbation. We then linearise the ideal MHD equations and

assume that the perturbations are plane-wave solutions of the form ei(k·r−ωt), where k

is the wave vector, r the position vector and ω the frequency, leading to the following

equation for ω (see e.g. Chapter 4 of Priest, 2014)

(
ω4 − k2

(
c2
s + v2

A

)
ω2 + c2

sv
2
Ak

4 cos θB
)

(k · v1) = 0. (1.12)

Here, k2 = (k · k), vA = B0√
µ0ρ0

is the Alfvén speed, cs =
√

γP0

ρ0
the sound speed and θB

the angle between B0 and k. The solutions to the dispersion relation (1.12) describe

relations for ω in terms of k for the different types of linear MHD waves. Solving this

equation gives the following cases:

1. Incompressible solutions:

k · v1 = 0.

We then have that ω = kvA cos θB (see e.g. Priest, 2014). This is the Alfvén wave,

which is incompressible (k · v1 = 0), transverse (B0 · v1 = 0) and propagates at

the phase speed ω
k

= vA cos θB. This wave behaves like a wave on a string and

the restoring force is the magnetic tension force.

2. Compressible solutions (i.e. the first bracket of Equation (1.12) is zero). This is

a quadratic equation in ω2, and has two solutions:

ω2

k2
=

(c2
s + v2

A)±
√

(c2
s + v2

A)2 − 4c2
sv

2
A cos2 θB

2
. (1.13)

The solution with the positive root is the fast magnetoacoustic wave, and the

solution with the negative root the slow magnetoacoustic wave. These waves are

8
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compressible, which means that they perturb the density and the pressure. In

the corona, for propagation along the field (θB = 0), the phase speed is vA for

fast waves and cs for slow waves (since vA � cs). For propagation across the field

(θB =
π

2
) the fast wave propagates at the phase speed

√
c2
s + v2

A and the slow

wave does not propagate.

1.3.2 Phase mixing of Alfvén waves

Phase mixing of Alfvén waves (Heyvaerts and Priest, 1983) is one of the mechanisms

that has been proposed to address the slow dissipation of wave energy with classical

transport coefficients in the solar corona. This is the process where Alfvén waves on

neighbouring magnetic field lines propagate at different speeds due to a cross-field gra-

dient in the Alfvén speed. Over time, waves on neighbouring field lines move out of

phase and the wavefront tilts, which leads to the generation of large transverse gradi-

ents (“small scales”) in the velocity field and the magnetic field. This, in turn, leads

to enhanced Ohmic and viscous dissipation.

Phase mixing of Alfvén waves has been studied extensively as a possible coronal heating

mechanism (see e.g. reviews by Parnell and De Moortel 2012; Arregui 2015). Browning

and Priest (1984) and Ofman and Davila (1995) investigated the KHI for phase-mixed

standing Alfvén waves in coronal loops and found that, after resonant absorption in

the boundary layer of the loop (see Section 1.3.3), the KHI can be triggered, and that

this can lead to turbulence and a further cascade to smaller length scales. However,

Ofman and Davila (1995) found that the heating rate could decrease due to a shift

in the global mode frequency because of the disruption of the density structure in the

boundary layer of the loop. This was later confirmed with numerical simulations by e.g.

Poedts and Goedbloed (1997). Antolin et al. (2015a), Howson et al. (2017), Karam-

pelas et al. (2017) conducted numerical simulations of standing kink modes in coronal

loops, with resonant absorption transferring the energy into the boundary layer, where

the waves were then subject to phase mixing. They found that the KHI is triggered

and reconfirmed the cascade to smaller length scales and a disruption of the boundary

layer due to turbulent behaviour. Since Heyvaerts and Priest (1983), phase mixing

has been investigated in different magnetic structures, such as a stratified atmosphere

(Ruderman et al. 1999, 1998; De Moortel et al. 1999; Smith et al. 2007), an open and

radially diverging stratified atmosphere (De Moortel et al. 2000; Smith et al. 2007;

Ruderman and Petrukhin 2018; Petrukhin et al. 2018), coronal holes (Parker 1991;

9
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Hood et al. 1997, 2002, 2005), 3D magnetic flux tubes (Pagano and De Moortel, 2017;

Pagano et al., 2018, 2019) and 3D complex coronal magnetic fields (Howson et al., 2019,

2020). Ruderman et al. (1998, 1999), De Moortel et al. (1999, 2000) and Smith et al.

(2007) showed that phase mixing is less efficient in a stratified atmosphere (due to the

increase of the wavelength) compared to a uniform medium, and that in a diverging

magnetic field phase mixing is enhanced (due to a decrease of the wavelength). In a

gravitationally stratified, diverging atmosphere, phase mixing can have an enhancing

or diminishing effect, depending on the pressure scale height (De Moortel et al., 2000;

Ruderman and Petrukhin, 2018). Parker (1991) studied phase mixing in coronal holes

and argued that an ignorable coordinate cannot always be assumed, and that there-

fore Alfvén waves do not always undergo pure phase mixing but can also couple to

fast magnetoaccoustic waves. This was later also shown by Nakariakov et al. (1997,

1998) and Botha et al. (2000). Hood et al. (1997, 2002, 2005) showed that phase

mixing can be a viable heating mechanism in coronal holes, for the observed frequen-

cies of the footpoint motions (periods of the order of 5 minutes) and the background

Alfvén speed (of the order of 4500 km/s). Pagano and De Moortel (2017) investigated

phase mixing of continuously driven, sinusoidal, single-frequency Alfvén waves in a

coronal flux tube and found that only with extreme physical parameters (i.e. large

dissipative coefficients, η = 1010ηS with ηS the Spitzer resistivity, and high-frequency

waves, P = 6s) can heating from phase mixing be sufficient to counter balance coronal

losses such as optically thin radiation. It was previously shown analytically by Abde-

latif (1987), using realistic estimates for the resistivity and viscosity, that propagating

Alfvén waves (with periods of the order of 5s) which undergo phase mixing can deposit

a substantial amount of heating in coronal loops, although not sufficient to balance

coronal losses. In Pagano et al. (2019), the authors drive the coronal flux tube with

a multi-frequency driver based on the observed power spectrum of transverse waves

in the corona (Morton et al., 2016). Again the authors found that the heating from

phase mixing is not sufficient to counteract the coronal losses. When multi-harmonic

standing kink oscillations are considered (Pagano et al., 2018) the higher harmonics can

even prevent the further generation of small length scales. From these series of papers,

the authors conclude that phase mixing as a mechanism on its own is probably not

sufficient to balance the coronal losses, but can play an important role in generating

smaller lengthscales. Howson et al. (2019) studied phase mixing in a braided, coronal

magnetic field and found that phase mixing happens throughout the whole volume,

rather than only in the boundary shell for coronal flux tube models. Howson et al.

(2020) studied counter-propagating, phase-mixed Alfvén waves in a similar magnetic

10
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field configuration and found that the cascade to smaller lengthscales and the rate of

the wave energy dissipation increases. However, the amount of heating is only sufficient

if the driver amplitudes are significantly larger than the currently observed amplitudes.

1.3.3 Transverse oscillations in the solar atmosphere

The atmosphere of the Sun hosts different magnetic structures (e.g. coronal loops)

which are efficient waveguides for MHD waves (see e.g. Reale, 2010). Recent high-

cadence and high-resolution observations have established the presence of waves and

oscillations throughout the solar atmosphere (see e.g. reviews by Nakariakov and Ver-

wichte 2005, Arregui et al. 2012; De Moortel and Nakariakov 2012). Most of these

perturbations have been interpreted as MHD waves and in many cases are reported to

contain a substantial amount of energy, leading to a renewed interest in MHD wave dis-

sipation as a potential coronal heating mechanism (see e.g. reviews by Parnell and De

Moortel 2012; Arregui 2015). This thesis focuses on transverse MHD waves in coronal

loops. Edwin and Roberts (1983) developed the linear MHD wave theory in cylindrical

geometry, and we here briefly mention the definitions of a kink, sausage and torsional

Alfvén mode in a cylinder. A kink mode is a compressible, transverse MHD wave that

displaces the central axis of the cylinder whereas a sausage mode is a compressive,

transverse mode that does not displace the central axis of the flux tube but expands

and contracts symmetrically about the central axis. The incompressible Alfvén mode

in a cylinder is polarized in the azimuthal direction since this is the invariant direction

(i.e. the Alfvén speed does not vary in the azimuthal direction). Below we highlight a

few relevant examples of the literature that discuss transverse MHD waves in coronal

loops (for a more comprehensive review see e.g. Nakariakov and Verwichte 2005; Ar-

regui et al. 2012; De Moortel and Nakariakov 2012).

Using the Transition Region and Coronal Explorer (TRACE) instrument, standing,

transverse oscillations in coronal loops have been observed for the first time by e.g.

Nakariakov et al. (1999); Aschwanden et al. (2002); Schrijver et al. (2002). These

oscillations are often generated by a neighbouring impulsive event, such as a flare,

which causes some of the nearby loops to oscillate transversely. These oscillations have

been interpreted as standing kink modes (see e.g. Aschwanden et al., 1999; Nakariakov

et al., 1999). Observations have shown that these standing kink modes in coronal loops

damp relatively quickly, on timescales of a few periods (see e.g. Ruderman and Roberts

2002; Aschwanden et al. 2003; Ruderman and Erdélyi 2009). However, it has been ar-

11
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gued that this rapid damping does not necessarily indicate dissipation on the same

timescales, as the process of resonant absorption/mode coupling converts the energy of

the global, standing kink mode in the core of the loop to torsional, azimuthal Alfvén

waves in the boundary shell (see e.g. Ruderman and Roberts 2002; Aschwanden et al.

2003; Terradas et al. 2008; Goossens et al. 2011; Okamoto et al. 2015; Pascoe et al.

2016). In this process a resonance occurs in the boundary shell of the coronal loop

at the location where the local Alfvén frequency matches the frequency of the global

transverse kink oscillation (see e.g. Ionson, 1978). In the boundary shell, the torsional

Alfvén waves can then undergo phase mixing - due to the gradient in the Alfvén speed

- and dissipation, and/or they can trigger the KHI which leads to a cascade to smaller

length scales, turbulent behaviour and dissipation (see e.g. Browning and Priest 1984;

Ofman and Davila (1995); Antolin et al. 2015a; Howson et al. 2017; Karampelas et al.

2017).

Propagating transverse motions have been observed ubiquitously in the solar corona,

and are reported to contain a significant amount of wave energy (see e.g. Verwichte

et al. 2005; De Pontieu et al. 2007; Okamoto et al. 2007; Tomczyk et al. 2007; Baner-

jee et al. 2009; Jess et al. 2009; Lin et al. 2009; McIntosh et al. 2009; Tomczyk and

McIntosh 2009; Zaqarashvili and Erdélyi 2009; McIntosh et al. 2011; Thurgood et al.

2014; Morton et al. 2016). Using the Coronal Multi-channel Polarimeter (COMP) in-

strument, Tomczyk et al. (2007) observed periodic Doppler shifts propagating along

large, off-limb coronal loops with periods of the order of minutes, and with the power

spectrum showing a peak at ∼ 5 minutes. The authors suggested a link with the

solar interior p-modes, which was later also argued for by e.g. Morton et al. (2016)

and Cally (2017). Erdélyi and Fedun (2007), Van Doorsselaere et al. (2008a,b), and

Vasheghani Farahani et al. (2009) showed that these transverse propagating displace-

ments in coronal loops can be interpreted as propagating kink modes. Similarly as in

the standing kink modes in coronal loops, propagating kink modes can mode couple

to torsional Alfvén waves in the boundary shell, at the location where the local Alfvén

speed matches the speed of the propagating kink mode (see e.g. Verth et al., 2010).

Pascoe et al. (2010, 2011) have confirmed with numerical simulations that mode cou-

pling can indeed rapidly transport the wave energy from the propagating kink mode

in the core of the loop, to the boundary shells, qualitatively matching the observed

damping length and timescales of the transverse kink mode (Tomczyk et al. 2007;

Tomczyk and McIntosh 2009). As they are incompressible and do not displace the

loop’s axis, torsional Alfvén waves cannot be detected directly by imagers (see e.g. De

12
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Moortel and Nakariakov, 2012). Banerjee et al. (2009) and Jess et al. (2009) attributed

observed non-thermal line broadening to unresolved simultaneous blue- and redshifts,

which these authors interpreted as torsional Alfvén waves. Similarly, Srivastava et al.

(2017) observed periodic Doppler velocities in fine structured flux tubes which they

interpreted as a signature of torsional Alfvén waves.

1.4 Numerical codes

Solving the MHD equations usually requires numerical schemes. Only when simplifi-

cations are made, such as an ignorable coordinate, can the MHD equations be solved

analytically (e.g. MHD equilibria or stability analysis, see e.g. Hood and Priest 1979;

Hood 1992). In the context of modelling a phenomenon on the Sun, the MHD equa-

tions are usually solved numerically on a spatial domain (in 1D, 2D or 3D) where

further assumptions and simplifications (e.g. which physics to be included) can be

made. Although including additional physics generally makes models more realistic,

a simple setup is often a useful way to investigate the effect or behaviour of a sin-

gle physical process. Numerical simulations require appropriate initial conditions and

boundary conditions and need to run for a sufficient amount of time to allow all rele-

vant timescales to come into play.

Numerical schemes make use of a discrete grid, where derivatives are approximated

e.g. using finite difference schemes and hence, the numerical resolution plays a role in

the accuracy of the approximation (i.e. the derivatives are more accurate for higher

resolution and smaller gridsizes). Due to the approximation of derivatives on a dis-

crete grid, numerical dissipation is inherent to each numerical scheme, which can lead

to non-physical dissipation and energy not being conserved. This can usually be im-

proved by increasing the numerical resolution, but the numerical diffusion will always

be non-zero. In this thesis we will use two MHD codes, the Lare code (Arber et al.,

2001) and the MPI-AMRVAC code (Porth et al., 2014).

The Lare code (Arber et al., 2001) is a multidimensional code that solves the nor-

malised MHD equations. Lare is a Lagrangian remap code, which means that each

timestep has a Lagrangian step and a remap step. In the Lagrangian step, the nor-

malised MHD equations in Lagrangian form are advanced in time and the numerical

grid is advected by the plasma. In the remap step, the plasma quantities are then

mapped back to their locations on the original grid. Lare makes use of a staggered
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grid, where the plasma quantities are defined in different locations in a grid cell. This

staggering improves the numerical stability of the code. In Chapter 2, we introduce

the normalisation used in Lare and in Chapter 3, we discuss the normalised MHD

equations in our model.

The MPI-AMRVAC code (Porth et al., 2014) is a multidimensional code that solves

the MHD equations in conservative form. In Chapter 4, we discuss the MHD equations

that we solve in our model.

1.5 Motivation, methods and aims

This thesis focuses on two aspects of MHD wave dynamics in the solar atmosphere.

The first topic is the effect of chromospheric evaporation on the cross-field density

gradient and the phase mixing process in coronal loops. Phase mixing of Alfvén waves

has been studied intensively as a possible coronal heating mechanism (for an overview,

see e.g. Parnell and De Moortel (2012) and Arregui (2015)). However, it has so far

not been done in a full, non-ideal, multi-dimensional MHD model, where the effects of

thermal conduction and optically thin radiation are taken into account. It has been

argued that this thermodynamic feedback of the heating could substantially affect the

transverse density gradient and even inhibit the phase mixing process (Cargill et al.,

2016). Indeed, phase mixing typically heats the boundary layers of a coronal loop,

since this is usually the location where the gradient in the Alfvén speed is present and

the Alfvén waves phase mix. However, radiative losses are higher in the core of the

loop, as they scale as the density squared, and since the dissipation of the phase-mixed

Alfvén waves is predominantly in the boundary layers, the core is not heated which

will lead to draining of mass. This draining could significantly alter the transverse

density gradient, which is required for phase mixing (Cargill et al., 2016). Using the

Lare2D code, we will perform 2D MHD simulations of phase mixing of Alfvén waves

in a coronal loop, including optically thin radiation and thermal conduction. We will

investigate the dissipation of phase-mixed Alfvén waves, and quantify the subsequent

upflows and evaporation of mass from the lower atmosphere into the corona, in order

to examine the effect of the evaporation on the transverse density profile and the phase

mixing process in the coronal loop.

The second topic of this thesis is the generation of transverse MHD waves in coro-

nal loops, by colliding counter-propagating plasma clumps/blobs. Observations have
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shown that MHD waves predominantly originate in the lower layers of the solar atmo-

sphere, resulting from the shuffling of the magnetic field by the photospheric footpoint

motions (see e.g. Nakariakov and Verwichte 2005, Banerjee et al. 2007; Zaqarashvili

and Erdélyi 2009; Matsumoto and Kitai 2010; Arregui et al. 2012; De Moortel and

Nakariakov 2012; Mathioudakis et al. 2013; Arregui 2015; Jess et al. 2015; Krishna

Prasad et al. 2015). However, it was shown recently that MHD waves can also be

generated in-situ in the corona, by the collision of dense, counter-propagating coronal

rain clumps (see e.g. Antolin et al., 2018). We will investigate the mechanism that

generates transverse MHD waves in the solar corona, by colliding counter-propagating

clumps. In a first study, we will investigate how the properties of the clumps affect

the properties of the generated waves, by conducting a parameter study of 2D MHD

simulations, using the MPI-AMRVAC code. In a second study, we will apply this

model to coronal rain clumps, by basing the properties of the clumps on the extensive

observational study of coronal rain by Antolin and Rouppe van der Voort (2012), in

order to investigate the likelihood of collisions and oscillations.

1.6 Thesis outline

This thesis is structured as follows. The first two chapters investigate the effect of chro-

mospheric evaporation on phase mixing of Alfvén waves in coronal loops. In Chapter

2, we introduce the 2D model for a coronal loop. In Chapter 3, we drive Alfvén

waves into the system and investigate the dissipation of the phase-mixed Alfvén waves,

the subsequent upflows and evaporation of mass from the lower atmosphere, and the

effect of the evaporation on the transverse density profile and the phase mixing process.

Chapters 4 and 5 study the in-situ generation of transverse MHD waves in coronal

loops by the collision of counter-propagating plasma clumps. In Chapter 4 we conduct

an extensive theoretical parameter study to investigate the properties of the generated

MHD waves, by varying the properties of the clumps. In Chapter 5 we apply the model

to coronal rain clumps, by basing the properties of the clumps on a large study of coro-

nal rain observations (Antolin and Rouppe van der Voort, 2012), and we investigate

the likelihood of collisions and oscillations, and study the properties of the generated

MHD waves.

In Chapter 6 we present the conclusions of this thesis and discuss possible routes

for future work.
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Chapter 2

Model setup

In this chapter we introduce our 2D model of a coronal loop. We start from the 1D

field-aligned equations for a hydrostatic equilibrium (see e.g. Reale, 2010) of a coronal

loop. These equations are solved using a fourth order Runge-Kutta (RK4) scheme. This

results in a field-aligned (1D) equilibrium, which consists of a fully resolved atmosphere,

including a model-chromosphere acting as a mass reservoir. Subsequently, a cross-

field heating profile is imposed, leading to a central density enhancement which, after

numerical relaxation, we consider to be our (2D) model coronal loop.

2.1 Introduction and motivation

When modelling the solar atmosphere, the numerical grid resolution is important in

order to fully resolve the thermodynamical evolution of the plasma. Especially the

narrow TR needs to be adequately resolved to accurately model the mass and energy

exchange in coronal loops, see e.g. Bradshaw and Cargill (2013). These authors esti-

mated that a grid resolution of less than 1 km (5 km) is required for a loop of length 60

Mm (180 Mm) to obtain correct physical results (coronal densities, heating and cooling

cycles). However, such high resolution simulations are computationally demanding and

might not be feasible in 2D or 3D.

A possible solution to decrease the computational costs is by implementing a non-

uniform grid, with a finer resolution in the TR. The downside of this approach is that

a non-uniform grid can cause reflections when studying wave experiments, and the TR

can spatially move during heating/cooling events, which means the TR would not be

resolved anymore.

Lionello et al. (2009); Mikić et al. (2013) introduced an alternative method to model the
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TR by altering the optically thin radiation (OTR) and/or thermal conduction (TC) in

order to artificially broaden the TR. Decreasing (increasing) the OTR (TC) for temper-

ature ranges of the TR broadens the TR and makes it easier to numerically resolve it.

Another method is to impose jump conditions across the TR (see e.g. Johnston et al.,

2017a,b), which again overcomes the problem of requiring an extremely high resolu-

tion. In this chapter we will focus on broadening the TR by altering the OTR and TC,

as we will drive high-frequency waves from the lower atmosphere into the corona. By

broadening the TR, we have sufficient numerical resolution to resolve and model waves

in the TR. Otherwise a lot of the wave energy would be lost due to the lack of resolution.

This chapter is structured as follows. In Sections 2.2 and 2.3 we discuss the 1D

field-aligned, normalised MHD equations, and use a fourth order Runge-Kutta (RK4)

scheme to set up a field-aligned hydrostatic equilibrium. We discuss the broadening

approach for the TR proposed by Lionello et al. (2009) and Mikić et al. (2013), and

the implementation of this approach in the RK4 scheme. We then extend the field-

aligned (1D) hydrostatic equilibrium to a 2D model for a coronal loop, by imposing a

cross-field background heating profile, and we discuss the relaxation in Lare2D (Arber

et al., 2001). During the relaxation a density gradient in the cross-field direction is

created (hence a gradient in the Alfvén speed), which is required for phase mixing of

Alfvén waves. In Chapter 3 we drive Alfvén waves into the system and investigate the

effect of the evaporation induced by the heating from the phase-mixed Alfvén waves.

2.2 Equations and normalisation

The field-aligned MHD equations (field-aligned coordinate y, time coordinate t) are

given by (see e.g. Reale, 2010)

Dρ

Dt
+ ρ

∂v

∂y
= 0, (2.1)

ρ
Dv

Dt
= −∂P

∂y
− ρg|| + ρν

4

3

∂2v

∂y2
, (2.2)

ρ
Dε

Dt
= −P ∂v

∂y
− ∂Fc

∂y
+Hbg − n2Λ(T ) + ρν

(
∂v

∂y

)2

, (2.3)

P = 2kbnT. (2.4)

In these equations, all the variables have the same meaning as in Chapter 1, section

1.2. The energy equation (equation (2.3)) has been written in terms of the specific
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internal energy ε = P
ρ(γ−1)

, with Fc = −κ0T
5/2 ∂T

∂y
the notation for the conductive flux.

The factor of 4
3

in Equation (2.2) comes from the second term in Equation (1.8).

Gravity

The field aligned gravitational acceleration g|| in Equation (2.2) is defined as

g||(y) = gsun cos

(
πy

ymax

)
, y ∈ [0, ymax]. (2.5)

Here, gsun = 274 m/s2. Remark that g|| acts downwards in both loop legs, and switches

sign at the loop apex (y = ymax/2). Figure 2.1 shows a plot of g||(y) with height for a

loop of length ymax = 120 Mm.

Figure 2.1: Plot of the gravitational acceleration g||(y) (×102 m/s2), for y ∈ [0, ymax].

Optically thin radiation

The optically thin radiation term in the energy equation (Equation (2.3)) is given by

n2Λ(T ), where Λ(T ) is a piecewise continuous function given by

Λ(T ) = χTα.

Here, χ and α are constants depending on the temperature, see Table 2.1. Figure

2.2 shows a plot of Λ(T ) as a function of T . Remark that the Λ(T ) is larger for

chromospheric and TR temperatures (∼ 104 − 105 K) than for coronal temperatures

(∼ 106 K).
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T (MK) Λ(T ) = χTα (Jm3s−1)

0.0100 < T ≤ 0.0933 1.09× 10−44T 2

0.0933 < T ≤ 0.4677 8.87× 10−30T−1

0.4677 < T ≤ 1.5136 1.90× 10−35

1.5136 < T ≤ 3.5481 3.53× 10−26T−3/2

3.5481 < T ≤ 7.9433 3.46× 10−38T 1/3

7.9433 < T ≤ 42.658 5.49× 10−29T−1

42.658 < T ≤ 100.00 1.96× 10−40T 1/2

Table 2.1: Table with OTR constants χ and α, taken from Klimchuk et al. (2008).

Figure 2.2: Plot of the optically thin radiative loss function Λ(T ) = χTα.

2.2.1 Equilibrium and normalisation

To obtain an equilibrium we set the velocity v and time derivatives D
Dt

to zero in

Equations (2.1) - (2.4). These equations then reduce to

dP

dy
= −ρg|| (2.6)

dFc
dy

= n2Λ(T )−Hbg (2.7)

P = 2kbnT. (2.8)

In Equation (2.7) the conductive flux Fc has been redefined as Fc = κ0T
5/2 dT

dy
(upward

conductive flux), hence the terms on the RHS of Equation (2.7) have changed sign. We

normalise these equations in the same way as the normalisation of the MHD equations

in Lare. The Lare normalisation is obtained by normalising the magnetic field, density
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and length:

B = B0B̄, ρ = ρ0ρ̄, L = L0L̄,

We choose B0 = 10−3 T, ρ0 = 1.67 × 10−12 kg/m3 and L0 = 40 Mm. All the other

normalisation constants then follow from the choice of B0, ρ0 and L0.

v0 =
B0√
µ0ρ0

, (2.9)

P0 =
B2

0

µ0

, (2.10)

t0 =
L0

v0

, (2.11)

ε0 = v2
0, (2.12)

T0 =
ε0m̄

kB
, (2.13)

µm0 = m̄, (2.14)

where m̄ = 1.2mp. Normalising Equation (2.6) then gives

∂P̄

∂ȳ
= −ρ̄ḡ||, (2.15)

where we used the fact that g0 =
v20
L0

. Equation (2.7) is normalised as

∂F̄c
∂ȳ

= C1p̄
2χ̄T̄α−2 − C2H̄bg, (2.16)

where

C1 =
L2

0p
2
0χ0T

α0−2−7/2
0

4k2
Bκ0

,

C2 =
Hbg,0L

2
0

κ0T
7/2
0

=
ε0ρ0L

2
0

t0κ0T
7/2
0

,

χ̄ =
χTα0
χ0T

α0
0

.

Here, χ0 and α0 are the values in the RLF function corresponding to the normalising

temperature T0. Finally, the normalised ideal gas law is given by

P̄ = 2ρ̄T̄ . (2.17)
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2.3 Numerical equilibrium using an ODE solver

2.3.1 Runge-Kutta scheme

The set of ordinary differential equations (ODEs) (2.15) - (2.17) can be solved using

an ODE solver. We use a fourth order Runge-Kutta (RK4) scheme. The RK4 scheme

(Press et al., 2007) to solve a differential equation dy
dx

= f(x, y) starts from the initial

values x0, y0 and updates xn+1, yn+1 at the (n+ 1)th step as

k1 = hf (xn, yn) ,

k2 = hf

(
xn +

1

2
h, yn +

1

2
k1

)
,

k3 = hf

(
xn +

1

2
h, yn +

1

2
k2

)
,

k4 = hf (xn + h, yn + k3) ,

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) ,

xn+1 = xn + h,

where h is the stepsize and the subscript n denotes the quantities at the nth step. In

our case, we have to solve the following four (normalised) differential equations:

dP

dy
= −p(y)

g(y)

2T (y)
= fP , (2.18)

dT

dy
=

Fc(y)

T (y)5/2
= fT , (2.19)

dFc
dy

= C1p(y)2χT (y)α−2 − C2Hbg = fF , (2.20)

Equation (2.18) is obtained from substituting the ideal gas law (2.17) in Equation

(2.15). Equation (2.19) is the definition of the conductive flux Fc, Equation (2.20) is

the energy equation (2.16), where the background heating Hbg is constant along the

field. Because we have three ODE’s instead of one, the RK4 scheme extends to

k1P = dyfP (y, Pn, Tn) ,

k1T = dyfT (y, Fn, Tn) ,

k1F = dyfF (y, Pn, Tn) ,

k2P = dyfP

(
y +

1

2
dy, Pn +

1

2
k1P , Tn +

1

2
k1T

)
,
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k2T = dyfT

(
y +

1

2
dy, Fn +

1

2
k1F , Tn +

1

2
k1T

)
,

k2F = dyfF

(
y +

1

2
dy, Pn +

1

2
k1P , Tn +

1

2
k1T

)
,

k3P = dyfP

(
y +

1

2
dy, Pn +

1

2
k2P , Tn +

1

2
k2T

)
,

k3T = dyfT

(
y +

1

2
dy, Fn +

1

2
k2F , Tn +

1

2
k2T

)
,

k3F = dyfF

(
y +

1

2
dy, Pn +

1

2
k2P , Tn +

1

2
k2T

)
,

k4P = dyfP (y + dy, Pn + k3P , Tn + k3T ) ,

k4T = dyfT (y + dy, Fn + k3F , Tn + k3T ) ,

k4F = dyfF (y + dy, Pn + k3P , Tn + k3T ) ,

Pn+1 = Pn +
1

6
(k1P + 2k2P + 2k3P + k4P ) ,

Tn+1 = Tn +
1

6
(k1T + 2k2T + 2k3T + k4T ) ,

Fn+1 = Fn +
1

6
(k1F + 2k2F + 2k3F + k4F ) ,

yn+1 = yn + dy,

with dy the stepsize. The RK4 scheme runs in two times: (1) from the base of the

transition region (y0) to the loop apex (ymax) and (2) from the base of the transition

region (y0) to the base of the chromosphere (ymin = 0). To obtain a solution from

one footpoint to the other footpoint, we mirror the solution for the other half of the

loop about the loop apex. Because the scheme runs for the half loop, the gravity in

Equation (2.18) is defined as

g(y) =
L0v

2
0

gsun
cos

(
πy

2ymax

)
, y ∈ [0, ymax],

which is equivalent to Equation (2.5). We impose 4 initial conditions at the base of

the TR (y = y0).

P = pb, (2.21)

T = Tb, (2.22)

Fc = 0, (2.23)

Hb = Hguess. (2.24)
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A shooting method is performed on Hb = Hguess such that the conductive flux Fc is

zero at the loop apex (Fc(ymax) = 0). This works as follows: we pick two guesses

Hguess,1 and Hguess,2 at y = y0 for which Fc has a different sign at y = ymax. Then we

know that the correct background heating H∗ lies in the interval [Hguess,1,Hguess,2]. We

then perform a bisection method that takes a new initial guess Hmean = Hguess,1+Hguess,2

2

for which the conductive flux Fc at the apex is closer to zero. We then repeat this

procedure and eventually, this bisection method converges to a value for Hb such that

Fc → 0 at y = ymax.

The second iteration with the RK4 scheme to obtain the chromospheric solution is

a ‘backwards’ RK4 scheme (from the base of the TR (y0) to the base of the chromo-

sphere (ymin)). Hence, y is now updated as

y = y − dy.

In our model the chromosphere only acts as a mass reservoir and we assume that the

chromosphere is isothermal and that the radiative losses are switched off. Therefore

the only equation to solve is the hydrostatic equation (Equation (2.18)). The initial

conditions at the base of the TR are the same as before to have a continuous solution

at the base of the TR.

2.3.2 First test results

To test the RK4 solver we run the scheme with the following initial conditions repre-

sentative of the base of the TR (y = y0) (see e.g. Bradshaw and Mason, 2003):

Tb = 104 K, (2.25)

Pb = 2kBnbTb, with nb = 1017 m−3. (2.26)

Fc = 0. (2.27)

The RK4 scheme outputs the temperature T (y), the pressure P (y) and the required

background heating to maintain an equilibrium, Hb = 1.43349× 10−5 Jm−3s−1.

Figure 2.3 shows the solutions of the temperature T (y) and the density ρ(y) for

the half loop. The density decreases exponentially from the base of the chromosphere

(n ∼ 1024 m−3) to the base of the TR (n ∼ 1017 m−3), where it steeply decreases with

two orders of magnitude in the TR and is then fairly constant in the corona (n ∼ 1015

m−3). The temperature is kept constant in the chromosphere (Tchrom = 104 K) and
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Figure 2.3: (Left) Number density n (m−3) as a function of height (y) from the base
of the chromosphere (y = 0) to the loop apex (y = 60 Mm). (Right) Similar plot for
the temperature T (y) (K). The resolution of each profile is 2048 gridpoints for the

half loop, and each asterisk represents one gridpoint.

steeply increases in the TR (T ∼ 105 K), up to 106 K in the corona. We can see that in

both panels the TR is underresolved (especially in the lower TR), in the density range

n ∼ 1016 − 1017 (m−3) and temperature range T ∼ 104 − 105 K.

Figure 2.4: (Left) Plot of the thermal balance along the field. (Right) Plot of the field
aligned force balance.

In Figure 2.4 we show the thermal balance ∂Fc

∂y
= n2Λ(T ) −Hbg and force balance

∂P
∂y

= −ρg|| along the loop for these solutions. The plot of the thermal balance shows

the absolute value of the thermal conduction |∇ ·Fc| = |∂Fc

∂y
| (blue), the optically thin

radiation n2Λ(T ) (red dashed line) and the background heating Hbg = 1.43349× 10−5

Jm−3s−1 (horizontal black line). In the corona the optically thin radiation (∼ n2)

is about an order of magnitude smaller than the thermal conduction, and therefore
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thermal balance is predominantly between the background heating and thermal con-

duction. We define the location where thermal conduction changes sign (∼ y = 14

Mm) to be the top of the TR. At this location ∇ · Fc goes from a loss in the corona

to a gain in the TR. In the TR the optically thin radiation increases, and near the top

of the TR, thermal balance is predominantly between the OTR and the background

heating, whereas near the bottom of the TR, it is mainly between OTR and TC.

The right panel of Figure 2.4 shows the force balance −∂P
∂y

= ρg|| along y, with the

pressure gradient force −∂P
∂y

(black) and the gravitational force ρg|| (red dashed line).

We can see that force balance is well maintained along the field.

2.3.3 Resolution in the TR

In this subsection we discuss a possible solution to resolve the TR. We define

LT (y) = T (y)/

∣∣∣∣∂T∂y
∣∣∣∣

the temperature length scale (m) as a function of y. Figure 2.5 shows a plot of LT for

the half loop in Figure 2.3.

Figure 2.5: (Left) Plot of the temperature lengthscale from the base of the TR (y = 8
Mm) to the apex of the loop (y = 60 Mm).

We can see that LT is small in the TR (min(LT ) = 16.8 km near the base of the

TR) because of the large temperature gradient ∂T
∂y

. This means that we would need

a numerical grid resolution of at most 16.8 km to resolve the TR. The temperature

lengthscale increases in the corona and is of the order of 108 km near the apex of the

loop (because of the small ∂T
∂y

). We have the following relationship for LT in terms of

26



2.4. BROADENING THE TR 27

the thermal conduction and optically thin radiation:

LT ∼

√
κ||(T )T

n2Λ(T )
. (2.28)

This relationship can be derived from the energy equation (Equation (2.16)), by per-

forming a dimensional analysis and assuming that the energy balance is between ther-

mal conduction and optically thin radiation:

∂

∂y

(
κ||(T )

∂T

∂y

)
∼ n2Λ(T ),

=⇒ 1

LT

(
κ0
T 7/2

LT

)
∼ n2Λ(T ),

⇐⇒ 1

L2
T

∼ n2Λ(T )

κ0T 7/2
,

⇐⇒ LT ∼

√
κ0T 7/2

n2Λ(T )
.

The radiation function Λ(T ) is larger for the temperature range in the TR than the

corona (i.e. 104 < T < 105 K, see Figure 2.2). Moreover n2 is about four orders of

magnitude larger for the TR than the corona, and the temperature T is two orders of

magnitude smaller in the TR than in the corona, so LT is a lot smaller in the TR than

in the corona. This results in a larger temperature gradient ∂T
∂y

in the TR than in the

corona. From Equation (2.28) we see that if we want to broaden the TR (i.e increasing

LT ), we can increase the thermal conduction and decrease the optically thin radiation

(below a cutoff temperature Tc) as suggested by Lionello et al. (2009) and Mikić et al.

(2013).

2.4 Broadening the TR

In this section we present the method to broaden the TR introduced by Lionello et al.

(2009) and Mikić et al. (2013). These authors define a cut off temperature Tc below

which κ||(T ) increases and Λ(T ) decreases as

κ||(T ) =

κ0T
5/2 T ≥ Tc

κ0T
5/2
c T < Tc.

(2.29)
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Λ(T ) =

Λ(T ) T ≥ Tc

Λ(T )
(
T
Tc

)5/2

T < Tc.
(2.30)

If T < Tc, the parallel thermal conductivity κ||(T ) is replaced by κ||(Tc) and Λ(T ) is

decreased with a factor
(
T
Tc

)5/2

. This ensures that LT increases by a factor of
(
Tc
T

)5/2

when T < Tc (Equation (2.28)), hence broadening the TR. The modification to the

thermal conduction and optically thin radiation is defined in such a way to preserve

κ||(T )Λ(T ). It was shown in Lionello et al. (2009) and Mikić et al. (2013) that this

broadening technique does not change the coronal density and temperature profiles,

because of the preservation of κ||(T )Λ(T ), and that it also preserves the energetics of

the TR (e.g. evaporation and draining). This was also pointed out in Johnston et al.

(2020). In the latter paper, the authors demonstrated that the conditions enforced

on the parallel thermal conductivity and radiative loss rate conserve the total amount

of energy that is delivered to the chromosphere, and that, while there can be small

differences with the flows in the modified region (where T < Tc), the mass flux out of

the modified region is preserved. Hence this modification does not have an impact on

the evaporative upflows into the corona.

Figure 2.6: Plot of Λ(T ) for different values of Tc (coloured dotted-dashed lines), the
unmodified radiation (solid line, see Klimchuk et al. (2008)).

Figure 2.6 shows a plot of Λ(T ) = χTα for different cut off temperatures Tc (coloured

dotted-dashed lines) and the unmodified radiation (solid line). We can see that in some

cases Λ(T ) can decrease up to four orders of magnitude when T < Tc, compared to the

normal radiation (see e.g. Klimchuk et al., 2008).
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2.4.1 Partial implementation of the Mikić approach in the

RK4 solver

The Mikić approach broadens the TR beyond its original extent and hence the loca-

tion of the base of the TR changes. Because the Runge-Kutta scheme fixes the length

over which it iterates, it cannot adjust the base of the TR and it will not converge

to the correct solution when the full Mikić approach is included. Indeed, because the

RK4 scheme cannot adjust the length over which it iterates, the calculated background

heating rate will be smaller and the coronal density and temperature solutions will be

lower as well.

We prefer however to obtain a coronal profile for the density and the temperature

that already has some broadening of the TR as initial conditions for the Lare2D code,

because the relaxation time in Lare2D will be shorter. We therefore only implement

the modification to the radiation (see Equation (2.30)) in the RK4 scheme. Hence,

the output of the RK4 scheme will only be an approximate equilibrium, which is fol-

lowed by a further relaxation in Lare2D, in which the full Mikić approach has been

implemented. During this relaxation we also impose a transverse background heating

function, to create the transverse density gradient. This process sets up an atmosphere

in approximate hydrostatic equilibrium with a broadened TR, in which we can drive

waves.

Figure 2.7: Plot of the density ρ (kg/m3) (left) and temperature T (MK) (right) from
the base of the chromosphere to the apex (0 < y < 60 Mm), with and without the

Mikić radiation. The symbols represent the gridpoint resolution.

Figure 2.7 shows the density and the temperature solution of the RK4 scheme with

and without the Mikić radiation. The initial conditions at the base of the TR in the
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RK4 scheme are

Tb = 2× 104K, (2.31)

Pb = 2kBnbTb, with nb = 5× 1016 m−3, (2.32)

Fc = 0. (2.33)

These conditions give a loop apex temperature of 1 MK when the Mikić radiation is

included. We can see that the TR already shows some broadening compared to the

solution with the unmodified radiation. We remark that the coronal density in the

solution with the Mikić radiation is lower, because the background heating calculated

by the RK4 scheme is lower.

2.5 Extending the setup to 2D hot loop

In this section we modify the field-aligned approximate equilibrium to a 2D hot loop

model with a cross-field gradient in the density, and hence also in the Alfvén speed.

This is achieved by imposing a transverse profile (in x) in the background heating

function of the form

Hbg(x) =
H1 +H2

2
+
H2 −H1

2
tanh(a(−|x|+ 1)). (2.34)

Here, −2 < x < 2 Mm, H1 = 3.24×10−6 Jm−3s−1 is the background heating calculated

by the RK4 solver for the initial conditions (2.31) - (2.33) with the Mikić radiation,

H2 = 4H1, and a = 5 Mm−1 is a parameter which determines the steepness of the

tanh-profile.

Figure 2.8: Plot of the background heating Hbg(x).
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Figure 2.8 shows a plot of Hbg(x). The background heating Hbg is maximal for

−0.5 < x < 0.5 Mm (H2) and minimal for |x| > 1.3 Mm (H1). In between these

regions the background heating varies smoothly. The aforementioned regions will re-

spectively be refered to as the interior of the loop, the exterior and the boundary shells.

We remark that along each fieldline the background heating is constant. The relation

between the imposed background heating and the resulting apex density can be esti-

mated from the RTV scaling laws (Rosner et al., 1978), which describe the relation

between fundamental parameters at the loop apex of a coronal loop in hydrostatic

equilibrium:

T = cT (pL)1/3, (2.35)

H = cHp
7/6L−5/6. (2.36)

Here, cT = 1.4 and cH = 3 are constants, T and p are the loop apex temperature and

pressure, L is the length of the loop and H the heating rate per unit volume (Reale,

2010, p. 30). From these equations we can estimate how the density ρnew,apex and

the pressure Pnew,apex at the apex would change when imposing H2 as a background

heating. From Eqn. (2.36) we know that (for a constant loop length)

H1 ∼ P
7/6
old,apex/L

5/6 ⇔ 4H1 ∼
(
46/7Pold,apex

)7/6
/L5/6 ⇔ H2 ∼ P 7/6

new,apex/L
5/6,

hence the pressure at the apex is expected to increase with a factor of 46/7 ≈ 3.3. From

Eqn. (2.35) we then have

Tnew,apex ∼ (Pnew,apexL)1/3 =
(
46/7Pold,apexL

)1/3 ∼ 42/7Told,apex,

so the apex temperature is expected to increase by a factor of 42/7 ≈ 1.5. From the

ideal gas law, we know that

ρnew,apex ∼
Pnew,apex
Tnew,apex

∼ 46/7Pold,apex
42/7Told,apex

∼ 44/7ρold,apex,

so the density at the apex is expected to increase with a factor of 44/7 ≈ 2.2. The

scaling laws used in the calculations above are based on the assumption that H1 is the

background heating rate to maintain an equilibrium. However, because of the partial

implementation of the Mikić approach in the RK4 solver (section 2.4.1), H1 is a smaller

background heating for an approximate equilibrium, and we expect the real increase

to be lower than the estimated increase.
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Numerical relaxation

The numerical relaxation performed in Lare2D allows the atmosphere to adjust both to

the full Mikić approach (including the modifications to both the optically thin radiation

and the thermal conduction below Tc) and to the imposed transverse heating profile.

The relaxation is performed with viscosity and resistivity set to zero, but with the

shock viscosities switched on, to allow the forces to fully equilibrate. We stop the

relaxation once the field-aligned velocities are significantly less than the local Alfvén

speed and sound speed (less than 0.1%) and the forces are in equilibrium.

Figure 2.9: (Top) Plots of max(vy) (km/s) and max(vx) (km/s) in the domain with
time. (Bottom) Plots of max(vy)/min(vA, cs) and max(vx)/min(vA, cs) in the domain

with time. The dashed lines are at 0.1%.

Figure 2.9 shows plots of the maximal velocities in the domain with time, during the

relaxation (t ∼ 11000s). The maximal field-aligned velocity, max(vy) (top left panel),

is of the order of 5 km/s in the first 2000s of the simulation, but decreases to less

than 1km/s after approximately 4000s. This is on average less than 1% than the local

Alfvén speed vA and sound speed cs, as shown by the plot of the (relative) maximal
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Figure 2.10: Plot of the volume integrated kinetic energy in the domain with time.

field-aligned velocity (bottom left panel). The maximal transverse velocity, max(vx)

(top right panel in Figure 2.9), is always less than 0.1 km/s, which is significantly less

than the local Alfvén speed and sound speed in the domain (bottom right panel of

Figure 2.9). This means that the transverse adjustment of the loop is minimal during

the relaxation. Near the end of the relaxation, the maximal field-aligned and transverse

velocities are less than 0.1% of the local Alfvén speed and sound speed, as shown by

the dashed lines in the bottom panels of Figure 2.9. Figure 2.10 shows the evolution of

the volume integrated kinetic energy in the domain, confirming a significant decrease

in the kinetic energy during the relaxation.

Figure 2.11: Plot of the horizontal force balance dp
dx

= (j×B)x (left panel) and relative

force balance ( dp
dx
− (j ×B)x)/max( dp

dx
) (right panel) in x at the loop apex (y = 60

Mm). The solid black line in the left panel is dp
dx

and the red dashed line is (j×B)x.

Figures 2.11 and 2.12 show the force balance in the x direction at the apex (y = 60

Mm) and in the y direction in the middle of the domain (x = 0 Mm) respectively, after

relaxation (t ∼ 11000s). In the x direction (∇P )x and (j×B)x equilibrate better than
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Figure 2.12: Plot of the vertical force balance dp
dy

= −ρg (left panel) and relative force

balance (dp
dy

+ ρg)/max(dp
dy

) (right panel) as a function of y in the middle of the loop

(x = 0 Mm). The solid black line in the left panel is
∣∣∣dpdy ∣∣∣ and the red dashed line is

|−ρg|.

0.1%, as shown by the relative plot of the force balance in the right panel of Figure 2.11.

In the y direction the (∇P )y and −ρg equilibrate better than 1% on the line x = 0 Mm

after relaxation (right panel of Figure 2.12). In both cases the forces equilibriate better

than 1%, which shows that an approximate force equilibrium is attained on these two

lines. This analysis shows that the loop is approximately in equilibrium at the end of

the relaxation. We remark however that there are still field-aligned flows present in the

domain (as can be seen from e.g. Figure 2.9), which we will need to take into account

when analysing the driven system in Chapter 3.

Temperature and density evolution

During the relaxation, the plasma adjusts to the imposed background heating profile

and to the (full) Mikić approach in the modified region (T < Tc). Figure 2.13 shows the

final temperature and the density in the core of the loop (x = 0 Mm, green lines) and

the shell region (x = −1 Mm, blue lines), together with the initial temperature and

density (black lines). The temperature increases in both the middle of the domain and

the shell region as a result of the increased background heating. The vertical dashed

line at T = 5 × 105 K is the cut-off temperature below which the Mikić approach is

implemented and the TR is broadened. The right panel of Figure 2.13 shows a similar

plot for the density. We can see that the density increases in the core and the shell

region of the loop.

Figure 2.14 shows the evolution of the temperature and the density at the apex
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Figure 2.13: (Left) Plot of the temperature before relaxation (black) and after
relaxation (t = 11590s), at x = 0 Mm (green) and x = −1 Mm (blue). (Right)

Similar plot for the density.

during the relaxation, in the middle of the loop (x = 0 Mm) and in the shell region

(x = −1 Mm). The black horizontal line on each plot is the average taken over the last

2000s. Compared to the initial 1D equilibrium, the temperature and the density at the

apex increase in the shell region (37% and 25%, respectively) and in the core of the loop

(61% and 59%, respectively). This increase is lower than the estimated increase from

the scaling laws, because of the smaller background heating H1 as mentioned earlier.

We can see that on top of the increase in the temperature and the density, there

are small oscillations with a period of ∼ 500− 600s (related to slow waves during the

relaxation). Near the end of the relaxation the amplitudes of these oscillations decrease

as the system further relaxes and slow waves are damped by thermal conduction (see

e.g. De Moortel and Hood, 2003). In Chapter 3 we provide more details on the 2D

equilibrium.
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Figure 2.14: (Top) Plots of the evolution of the apex temperature (left) and density
(right) during the relaxation, in the middle of the loop (x = 0 Mm). The horizontal
black line on each plot represents the average value over the last 2000s. (Bottom)

Similar plots for the shell region (x = −1 Mm).
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2.6 Conclusions

In this chapter we introduced the model setup for the driven simulations in Chapter 3.

We constructed a 1D field-aligned hydrostatic equilibrium for a coronal strand using

a fourth order Runge-Kutta scheme and a broadening approach for the TR. We then

extended the field-aligned model to 2D by imposing a transverse background heating

profile.
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Chapter 3

Chromospheric evaporation due to

phase mixing of Alfvén waves

In this chapter we present 2.5D numerical simulations of phase mixing of Alfvén waves

in a coronal loop. We introduce a full atmospheric model for a coronal loop, including

gravitational stratification, optically thin radiation, thermal conduction and a back-

ground heating. We aim to quantify the heating from the dissipation of the phase-mixed

Alfvén waves and study the effect of the subsequent evaporation from the lower atmo-

sphere into the corona on the transverse density profile. The results of this chapter

have been published in Van Damme et al. (2020).

3.1 Introduction

Phase mixing of Alfvén waves (Heyvaerts and Priest, 1983) is the process where Alfvén

waves on neighbouring magnetic field lines propagate at different speeds due to a cross-

field gradient in the Alfvén speed. Over time these waves become out of phase and large

transverse gradients (“small scales”) in the velocity and the magnetic field perturba-

tions are generated, which can lead to an enhanced (Ohmic and/or viscous) dissipation

(heating). Hence, since its discovery it has been intensively studied in the literature as

a possible coronal heating mechanism (for a review, see e.g. Parnell and De Moortel

2012; Arregui 2015). We mention a few papers that highlight the difficulties related

to phase mixing of Alfvén waves as a coronal heating mechanism. Pagano and De

Moortel (2017) studied the contribution of phase-mixed, footpoint driven, propagat-

ing Alfvén waves in a coronal loop to coronal heating. These authors found that the

heating from phase mixing can be sufficient to balance coronal losses only when using

extreme physical parameters (e.g. large dissipative coefficients, high-frequency waves,
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large physical amplitudes). Pagano et al. (2019) modify the model from Pagano and

De Moortel (2017), by imposing a footpoint driver based on the power spectrum of

transverse oscillations in the corona (see e.g. Morton et al., 2016). They find that the

heating by phase mixing of Alfvén waves is not sufficient to counteract the coronal

losses, but conclude that transverse waves could still play a role in coronal heating as

they enhance the process of developing small scales.

Numerical simulations of phase mixing of Alfvén waves often assume a cross-field den-

sity gradient, providing the gradient in the Alfvén speed. However, the effect of the

subsequent evaporation, following a heating event in the corona, on the local density

structure - and hence the phase mixing process - is usually not taken into account. Of-

man et al. (1998) studied this feedback mechanism for resonant absorption and found

that, using thermodynamic equilibrium scaling laws, the evaporation caused the heat-

ing layers to drift (although it was later shown by Cargill et al. (2016) that this result

from the scaling laws is likely overestimated). For the process of phase mixing, Cargill

et al. (2016) calculated that, even in the case of sufficient wave heating by phase mixing,

it cannot sustain the required density gradient, because it would lead to draining of the

coronal loop due to optically thin radiation and thermal conduction acting on much

faster timescales than the heating by phase mixing of Alfvén waves. Indeed, because

the heating due to phase mixing of Alfvén waves is located in the shell regions of the

loop, the core of the loop is not heated and the radiation (which scales with the density

squared) cools the core of the loop, which can lead to draining and hence reducing (or

even eliminating) the initially assumed density gradient. Hence, the assumption of a

cross-field density gradient in coronal loop models cannot be self-consistently main-

tained by phase mixing.

In this chapter, we present 2.5D numerical simulations of phase mixing of Alfvén waves

in a coronal loop and study the effect of chromospheric evaporation on the density gra-

dient following heating from the dissipation of phase-mixed Alfvén waves. This chapter

is structured as follows. In Section 3.2 we introduce the model setup for the numer-

ical simulations. We present a full atmospheric model for a coronal loop and (after

numerical relaxation) drive propagating Alfvén waves into the system. In Section 3.3

we discuss the results of the simulations, in particular we aim to quantify the dissipa-

tion from the phase-mixed Alfvén waves and the effect of the evaporation on the local

coronal density. In Section 3.4 we end the chapter with a discussion and a conclusion.
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3.2 Model setup

We use the numerical code Lare2D (Arber et al., 2001) to solve the following (nor-

malised) MHD equations:

∂ρ

∂t
= −∇ · (ρv) , (3.1)

ρ
Dv

Dt
= −∇P + ρg + j×B + ρν

(
∇2v

)
, (3.2)

ρ
Dε

Dt
= −P∇ · v −∇ · Fc − ρ2Λ(T ) +Hbg(x) +

j2

σ
+Qvisc, (3.3)

P = 2ρT, (3.4)

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B) (3.5)

j = ∇×B. (3.6)

Here, all the variables have the same meaning as in Chapter 1, Section 1.2. The field-

aligned gravitational acceleration g = −g||ŷ in equation (3.2), and the optically thin

radiation ρ2Λ(T ) and the background heating function Hbg(x) in equation (3.3) are as

in Chapter 2.

The numerical domain is 4 Mm× 120 Mm and consists of 256 gridpoints in x (cross-field

direction) and 4096 gridpoints in y (field-aligned direction). The boundary conditions

are periodic in x and zero gradient in y with the velocity set to zero. The plasma is con-

sidered to be fully ionised everywhere in the numerical domain. We remark that this is

unrealistic for the chromosphere, however in our model the chromosphere only acts as

a mass reservoir. We also do not take into account the thermodynamic evolution of the

chromosphere, by imposing a cut-off temperature of Tchrom = 2× 104 K, below which

the radiative losses are switched off. In order to fully resolve the TR, we use the same

approach as in Lionello et al. (2009) and Mikić et al. (2013), with a cut-off temper-

ature of Tc = 5×105 K. The details of this approach have been described in Section 2.4.

To determine if the TR is resolved, we compare the temperature length scale LT = T
∂T/∂y

with the field-aligned grid resolution dy. Figure 3.1 shows a logarithmic plot of the

initial (after relaxation) temperature T (MK) at x = 0 Mm (left panel) and the tem-

perature length scale LT (km) (right panel) in the first transition region (y = 8 − 13

Mm), with (blue) and without (red) the full Mikić approach. The profile of the tem-

perature without the Mikić approach is the initial condition obtained from the RK4
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scheme, see Chapter 2, Figure 2.7. The profile with the full Mikić approach is obtained

after relaxation in Lare2D in the middle of the loop (at x = 0 Mm). The dashed hori-

zontal line represents the field-aligned grid resolution (dy = 29.3 km). We can see that

without the Mikić approach the temperature is underresolved in the lower TR, with

min(LT ) ≈ 19 km in this region, which is smaller than the field-aligned grid resolution.

The Mikić approach clearly broadens the lower TR, and increases the minimal LT upto

min(LT ) = 125 km.

Figure 3.1: (Left) Logarithmic plot of the initial temperature T (MK) in the first TR
(y = 8− 13 Mm) in the middle of the loop (x = 0 Mm), with (blue) and without
(red) the Mikić approach. The symbols represent the field-aligned grid resolution.
(Right) Similar logarithmic plot of the temperature lengthscale LT (km), with the

dashed line representing the field-aligned grid resolution (dy = 29.3 km).

Figure 3.2 shows contour plots of the temperature, the density and the plasma

beta which are obtained after the numerical relaxation discussed in Chapter 2. In the

coronal part of the loop, there is a clear cross-field gradient in the temperature and

the density. The coronal temperature ranges between 1.0 − 1.6 MK and the coronal

density varies between ρ = 2.5−6×10−13 kg/m3, with a density ratio of ρi/ρe = 2.4 at

the apex. A plot of the cross-field density and temperature at the apex can be found

in Figure 3.3. This density ratio provides a gradient in the Alfvén speed, which is

required for phase mixing. The black lines overplotted on these contour plots are the

(initial) locations of the chromosphere-TR and TR-corona boundaries. The top of the

TR is defined as the location where thermal conduction ∇ · Fc changes sign (i.e. from

a loss in the corona to a gain in the TR). The chromospheric boundary is defined as

the location where the temperature has decreased to T = 2× 104 K. The locations of

these boundaries are determined in the initial setup and are then assumed fixed in all

subsequent calculations. For the particular setup studied in this paper, this assumption
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Figure 3.2: Contour plots of the temperature T (MK), the density ρ (×10−12 kg/m3)
and the plasma beta β after relaxation (t = 11600 s).

Figure 3.3: Plot of the cross-field temperature T (MK) and density ρ (×10−12 kg/m3)
at the apex (y = 60 Mm) after relaxation (t = 11600 s).

is reasonable as the modest additional heating due to phase mixing occurring in the

corona does not affect the location of the TR and the chromospheric boundaries. The

plasma beta is of the order of 10−2 − 10−1 in the corona.

Figure 3.4 shows a (field-aligned) cross-section of the temperature and density at

x = −2 Mm (exterior, black lines), x = −1 Mm (shell, blue lines) and x = 0 Mm

(middle of the loop, green lines). Inserted panels on these plots show a zoomed version

of the profiles in the first transition regions, with the symbols representing the numerical

grid resolution. It is clear that the temperature and density are well resolved in the

TR. We note that the temperature at the top of the TRs remains between 0.51− 0.83

MK (hence the cutoff temperature Tc = 0.5 MK is always located in the TR).
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Figure 3.4: Plot of the field-aligned temperature (left) and density (right) at x = −2
Mm (black), x = −1 Mm (blue) and x = 0 Mm (green). The small panel inserted on

the plot of the temperature and the density shows a zoomed version in the TR
(between y = 7.5 Mm and y = 12 Mm). The symbols represent the numerical

gridpoints.

Figure 3.5 shows contours of the magnetic field components Bx and By as well as the

Alfvén speed vA. Before relaxation, the background field is uniform and straight, with

By = 10 G. After the (numerical) relaxation, there is a small cross-field gradient in By

as well as a slight expansion of the field in the TR (reflected in the Bx contour). The

Alfvén speed shows a similar pattern as the contour of the density (Fig. 3.2), varying

between 1000−1800 km/s in the corona, with the highest Alfvén speed attained in the

exterior coronal part of the loop. In the TR the Alfvén speed is larger in the interior

of the loop than the exterior (because the TR is shallower for the interior of the loop),

and this profile then reverses in the corona. This means that Alfvén waves will initially

propagate faster inside than outside the loop, and that the phase mixing gradients from

the TR will be reduced before they increase again in the corona (see Section 3.3.1).

3.2.1 Driver

We implement a continuous, sinusoidal, high-frequency driver into the system, near

the top of the first chromosphere (CHROM1) at y = 7.8 Mm, through an additional

force in the momentum equation in the invariant z direction.

ρ
dvz
dt

= −ρv0ω cos (ωt) , (3.7)

with v0 = 0.7 km/s (1% of the local Alfvén speed), and ω = 2π
P

the angular frequency,

where P = 12 s is the period of the driver. We remark that the driver frequency is sig-
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Figure 3.5: Contour plots of the magnetic field components Bx (G) (left) and By (G)
(middle) and the Alfvén speed vA (km/s) (right) after the numerical relaxation.

nificantly higher than many observed frequencies in the corona, where most oscillations

have periods of the order of a few minutes (see e.g. De Moortel and Nakariakov, 2012).

We use a high-frequency driver in order to have a sufficient amount of wavelengths in

the corona and to have significant phase mixing. With max(vA,cor) = 1150 km/s and

Lcor = 94 Mm (at x = 0 Mm), we can roughly fit 7 wavelengths in the coronal part

of the loop for a driver with a period of 12 seconds. The additional force is applied

on a strip of 10 gridpoints, symmetrically distributed about y = 7.8 Mm. This driver

generates (upwards and downwards) propagating Alfvén waves along the field (in the

y direction). The driver is implemented near the top of CHROM1 because of compu-

tational efficiency, i.e. to ensure that the resolution results in at least 5 gridpoints over

a wavelength (λ(y) > 5∆y). Indeed, if we were to implement the driver at the bottom

boundary of the domain, we would need a higher field-aligned resolution to resolve the

smaller wavelength in the chromosphere (because of the low Alfvén speed).

3.3 Results and analysis

We run an ideal and a viscous simulation for ∼ 6000 s (500tP , with tP = 12 s, i.e.

the period of the driver), long enough to see the effects of thermal conduction and

optically thin radiation. These are of the order of 1000− 5000 seconds in the domain

(see Appendix A). The dynamic viscosity we use is ρν = 5× 10−4 kg m−1s−1, which is

two orders of magnitude smaller than the dynamic viscosity in the corona, assuming

a temperature of T ∼ 106 K (see e.g. Priest, 2014, p. 81). This viscosity is chosen to
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maximise the effect of phase mixing. For larger viscosities, the waves already undergo

substantial damping before phase mixing can develop significant cross-field gradients

(near the far end of the coronal part of the loop). We do not include resistivity to

prevent the diffusion of the background field and the Alfvén speed profile. We also run

a continued relaxation simulation for the same amount of time to separate the effects

of the implementation of the driver on the field-aligned flows.

3.3.1 Propagation of the Alfvén waves

Figure 3.6 shows a contour of the velocity vz (km/s) for the ideal simulation at t = 92.7

s (8tP ) and at t = 982.8 s (86tP ). At t = 92.7s the (upward) right-propagating Alfvén

waves have travelled into the corona and the wavefront is in the upper leg of the loop

near the top of TR2 (y ∼ 100 Mm). Due to the Alfvén speed profile (Figure 3.5), the

wavefront travels initially faster in the interior of the loop (−1 < x < 1 Mm) than

the exterior when it enters the corona. The exterior wavefront then catches up with

the interior wavefront (y ≈ 40 Mm), and it is ahead of the interior wavefront for the

upper part of the corona (y > 60 Mm). Hence the transverse gradients associated with

the phase mixing are first “undone” in the lower leg of the loop, and the strongest

gradients are found in the upper leg of the loop near the top of TR2.

Figure 3.6: Contours of vz (km/s) at t = 92.7 s and t = 982.8 s.
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The right panel of Figure 3.6 shows a contour of vz (km/s) at t = 982.8s. At

this stage in the simulation we see a finer scale pattern in vz in the exterior region

and the shell region of the loop (which could lead to additional heating in the viscous

simulation), associated with the fact that reflections of the Alfvén waves of the second

TR-chromosphere boundary interfere with incoming driven waves, see Section 3.3.1.

Due to this interference, the maximal amplitude of vz in the corona has increased to 7

km/s (compared to 2-3 km/s at earlier times).

Partial reflection of the Alfvén waves

Due to the high frequency driver, most of the wave energy does not reflect near the

second TR, because the wavelength of the driven waves is smaller than the width of the

transition region. Indeed, most of the wave energy propagates down into the second

chromosphere, with only a small fraction (∼ 15%) reflected back into the corona.

Figure 3.7 shows a plot of vz (km/s) along x = 0 Mm at t = 178.5 s (green), t =

183.1 s (black) and t = 187.7 s (blue), and displays the constructive and destructive

interference of these reflections with incoming waves from the driver. At this stage in

the simulation (t ∼ 180 s) the wavefront of the reflections has propagated back into the

corona and is located at y ≈ 55 Mm. The interference of these reflections with incoming

(upwards propagating) waves changes the maximal amplitude of vz by about 15%. This

interference is also shown in the right panel of Figure 3.7 which shows max(vz) (km/s)

in the middle of the domain (x = 0 Mm) for the first 500 s. The maximal amplitude

initially increases up to ∼ 2.3 km/s when the Alfvén waves propagate into the corona,

and it remains constant up to t ≈ 150 s. Afterwards, max(vz) oscillates between

∼ 2 − 2.7 km/s because of the interference with the reflections (relative change of

∼ 15%). The vertical blue line at t = 182 s is the time when the front of the first

reflected Alfvén wave reaches the apex of the loop again (y = 60 Mm).

Standing wave regime

The interference of the incoming waves with the reflections sets up an approximate

standing regime in the domain after t ∼ 1000 s. This can be seen in Figure 3.8, which

shows a space time contour of vz in the middle of the loop (x = 0 Mm). In the first

t ∼ 1000 s the propagation of the waves in the corona matches the black diagonal line,

which shows that the Alfvén waves are propagating at the Alfvén speed. After about

1000 s we see a change from a propagating regime to a standing regime as there now are

locations along y where the amplitude of vz becomes a node/antinode. During the time

47



3.3. RESULTS AND ANALYSIS 48

Figure 3.7: (Left) Plot of vz (km/s) at x = 0 Mm at t = 178.5 s (green), t = 183.1 s
(black) and t = 187.7 s (blue). (Right) Plot of max(vz) along x = 0 Mm with time.

when the waves are propagating (t < 1000 s), max(vz) ranges between 2 − 2.5 km/s

in the corona, but after t > 1000 s, max(vz) increases to 1-6 km/s. The wavelength

of the standing wave in the corona (t > 1000 s) is similar to the wavelength of the

propagating Alfvén waves in 0 < t < 1000 s.

Figure 3.9 shows the envelopes of vz (max(vz) and min(vz), taken over each period

of the wave) with time, at a node (y = 60 Mm) and an antinode (y = 63.5 Mm) of

vz. These two locations are marked by the dashed vertical lines in Figure 3.8. In both

panels the envelope is roughly constant (∼ 2 km/s) for the first 1000 s, but afterwards

the envelope decreases (∼ 1 km/s) at y = 60 Mm and increases (∼ 6 km/s) at y = 63.5

Mm. There also seems to be a longer period present in the envelopes of the order ∼ 650

s, which is related to the relaxation of the background plasma (see Section 3.3.2). After

t ∼ 3000 s the envelopes at both locations seem to reach a steady state.

When viscosity is present or when phase mixing takes place, the standing regime

is only partially established because less wave energy is reflected. In this case the

initially propagating regime eventually evolves to a steady-state which is a combination

of standing and propagating waves. This can be seen in Figure 3.10 which shows a

space time contour of vz (km/s) in the middle of the shell region (x = −1.18 Mm)

for the viscous simulation. We can see that most of the wave energy is dissipated by

the phase mixing in the upper part of the corona (y > 60 Mm), before reflection takes

place near the second TR.
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Figure 3.8: Contour of vz (km/s) at x = 0 Mm with time. After t ∼ 1000 s the
interference of right propagating Aflvén waves and the reflected waves leads to a

standing regime in vz. The diagonal line in the corona is the path of an Alfvén wave
propagating at the Alfvén speed in the corona.
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Figure 3.9: (Left) Plot of the maximal and minimal amplitude of vz (km/s) at the
apex (y = 60 Mm) with time. (Right) Similar plot at y = 63.5 Mm.
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Figure 3.10: Contour of vz (km/s) at x = −1.18 Mm with time, for the viscous
simulation.
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3.3.2 Field-aligned flows and relaxation of the plasma

The goal of this chapter is to study the evaporation of TR and chromospheric plasma

into the corona, caused by the (viscous) dissipation of the phase-mixed Alfvén waves.

However, other field-aligned flows are also present in the domain. In order to be able to

distinguish these flows from the evaporation, we make a detailed comparison between

the ideal simulation, the viscous simulation, and the continued (ideal) relaxation sim-

ulation.

Figure 3.11 shows the averaged field-aligned velocity vy (km/s) at the TR-corona

boundaries for the interior part of the loop (−1 < x < 1 Mm), for the continued

relaxation simulation (dotted line), the ideal simulation (dashed line) and the viscous

simulation (solid line). The top panel represents the TR1-corona boundary (y ∼ 13

Mm) and the bottom panel the TR2-corona boundary (y ∼ 107 Mm), hence a positive

(negative) vy in the top (bottom) panel is an upflow from the TR1 (TR2) into the

corona. We can see that the field-aligned flows are generally small, |vy| ∼ 0.1 km/s

(less than 0.1% compared to the local Alfvén and sound speed, vA ∼ 640 km/s and

cs ∼ 130 km/s), but for the ideal driving simulation the upflows into the corona are

larger. This can especially be seen from the larger local maxima and minima of the field-

aligned flows. The reason why the implementation of a driver in the domain creates

larger upflows into the corona is due to the ponderomotive force effect, and is explained

in Appendix B. In the viscous simulation the upflows are slightly smaller than in the

ideal driving simulation, because of the effect of the viscosity. We remark that the

upflows caused by the ponderomotive force might be exaggerated in our model, as the

ponderomotive force from Alfvén waves does not act on neutrals and the chromosphere

in our model is treated as a fully ionised plasma (see e.g. Laming, 2017). However we

note that these upflows are of less interest in this study, as the evaporative upflows

are obtained by comparing the upflows in the non-ideal and ideal simulations (and we

essentially subtract the ponderomotive upflows). The field-aligned flows in Figure 3.11

show a periodicity of ∼ 650 s in all the simulations, which is related to the relaxation

of the background plasma to the imposed background heating profile. This movement

of plasma along the field (due to the relaxation) propagates at the slow speed. Indeed,

the time for a slow wave to travel from the top of CHROM1 (y = 8 Mm) to the top

of CHROM2 (y = 112 Mm) is 652s for the interior region, which corresponds to the

period of the field-aligned flows.

The extra upflows from the TRs into the corona induced by the driver increase the

mass in the corona. Figure 3.12 shows the mass change
∫

(ρ− ρ0)dV (kg/m) with time

52



3.3. RESULTS AND ANALYSIS 53

Figure 3.11: Plots of the mean(vy) (km/s) with time on the TR-corona boundary for
the interior of the loop (−1 < x < 1 Mm) for the continued relaxation simulation
(dotted line), the ideal simulation (dashed line) and the viscous simulation (solid
line). The top panel represents the TR1-corona boundary (y = 13 Mm) and the

bottom panel the TR2-corona boundary (y = 107 Mm). A positive (negative) vy in
the top panel (bottom panel) is an upflow in the corona.

in the corona (black), the TRs (red) and the chromospheres (blue) for the continued

relaxation simulation (left panel) and the ideal simulation (right panel). Here, ρ0 is

the initial density at t = 0 s. The green line is the sum of the blue and the red line and

represents the combined mass change of the TRs and chromospheres. The continued

relaxation simulation shows no significant change in the mass of the corona, while the

mass in the corona in the ideal driving simulation increases due to the ponderomotive

force effect associated with the Alfvén waves. We see a corresponding decrease in mass

in the lower atmosphere (green line), as well as a mass flow from the chromosphere
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Figure 3.12: Plot of the mass change (kg/m) in the corona (black), TRs (red) and
chromospheres (blue) for the continued relaxation simulation (left) and ideal

simulation (right). The green line is the sum of the red and blue line and represents
the mass change in the chromospheres and TRs.

into the TR.

Before we discuss the heating by the (viscous) dissipation from the phase-mixed

Alfvén waves, we first discuss the plasma changes (heating, mass increase) present in

the continued relaxation simulation. Figure 3.13 shows the space time contours of

the absolute temperature change T − Tmean (×104 K) and the relative density change

(ρ− ρmean)/ρmean in the middle of the shell region (x = −1.18 Mm) for the continued

relaxation simulation. Here, the average that is subtracted is taken over the course

of the continued relaxation simulation (∼ 5800 s), for every y. We see a periodic,

adiabatic heating and cooling (∼ 650 s) near the corona-TRs boundaries and at the

loop apex, related to the relaxation of the loop. The same periodicity is seen in the

contour of the relative density change. The size of the heating and cooling events is

of the order ∼ 300 K (0.02%) for the first 3000 s, and this gets smaller near the end

of the simulation as the relaxation is ongoing. The space time contour of the relative

density change shows a similar decrease and increase in the density at the loop apex

and near the corona-TRs boundaries (of the order of ∼ 0.3%).

54



3.3. RESULTS AND ANALYSIS 55

Figure 3.13: Time space contours of T − Tmean (×104 K) and (ρ− ρmean)/ρmean for
the continued relaxation simulation in the shell of the loop (x = −1.18 Mm). The

average that is subtracted is taken over the course of the continued relaxation
simulation (∼ 5800 s) for every y.

3.3.3 Plasma changes in the ideal and the viscous simulation

Energies and Poynting flux

Figure 3.14 shows the volume integrated kinetic (blue), magnetic (green) and internal

(red) energy change (Jm−1) in the domain for the ideal (left panel) and the viscous

simulation (right panel). The curves are plotted every 34s to cancel out the period of

the driver (12s) and make the plot clearer. We can see that the magnetic and kinetic

energies increase from the start as the driver injects wave energy into the system.

The magnetic and kinetic energy oscillate out of phase as soon as the partial standing

regime is established in the domain (∼ 600 s) and after t ∼ 2000 s they reach a

steady state and oscillate about an equilibrium. This steady state was also discussed
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in Figure 3.9. The steady state in the viscous simulation is 25% lower than in the ideal

simulation, which is consistent with the fact that more dissipation is present in the

viscous simulation. The internal energy increases in the ideal simulation due to the

work done on the system by the driver, which injects energy into the domain. The top

panels of Figure 3.15 show the volume integrated wave energy,
∫ (ρv2z

2
+ B2

z

2µ0

)
dV , in

the corona (left) and in the left shell (right) for the ideal simulation (dashed line) and

the viscous simulation (solid line). We can see that the wave energy in the corona for

the viscous simulation is 18% smaller in the first 1000 s and 25% smaller near the end

of the simulation (compared to the ideal simulation). In the left shell, 45% of the wave

energy has been damped in the viscous simulation compared to the ideal simulation.

This leads to a larger increase in the internal energy in the viscous simulation, about

five times larger in the left shell for the viscous case than the ideal case (bottom panels

of Figure 3.15).

Figure 3.14: Plots of the volume integrated kinetic (blue), magnetic (green) and
internal energies (red) components minus their initial value in the whole domain for

the ideal simulation (left panel) and the viscous simulation (right panel). These
curves are sampled every 34s rather than every timestep to make the graph clearer.

The left panel of Figure 3.16 shows the averaged vertical component of the Poynt-

ing flux 〈(E ×B)y〉, on the boundaries of the (left) shell of the loop, for the ideal

simulation (dashed lines) and the viscous simulation (solid lines). The green lines rep-

resent the lower corona-TR boundary (inflow), and the red line the upper corona-TR

boundary (outflow). The inflow of Poynting flux on the lower corona-TR boundary

is of the order of ∼ 2 Jm−2s−1 in the ideal and the viscous simulation. Although the

outflow of energy is of the same order in the ideal simulation, in the viscous case this

is about an order of magnitude smaller (∼ 0.2 Jm−2s−1). This means that the shells

are powered by ∼ 1.8 Jm−2s−1 (the difference between the inflow and outflow), which
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Figure 3.15: The top panels show the integrated wave energy (J/m) in the corona
(left) and the left shell (right), for the ideal (dashed line) and the viscous simulation
(solid line). The bottom panel shows a similar plot of the integrated internal energy
(J/m) in the corona (left) and the left shell (right). In all panels the initial volume

integrated energy has been subtracted.

is four orders of magnitude too low to heat active region loops in the corona (∼ 104

Jm−2s−1), and two orders too low to heat the quiet corona (∼ 3 × 102 Jm−2s−1), see

e.g. Withbroe and Noyes (1977). The right panel of Figure 3.16 shows the time and

volume integrated vertical component of the Poynting flux
∫ t

0

∫
(E ×B)y dSdt̃ (J/m),

over the boundaries of the left shell. The coloured lines represent the same boundaries

as in the left panel. Again, the inflow and outflow of energy is similar for the ideal

simulation, but in the viscous simulation the difference between the green and the red

solid line is of the same order as the internal energy increase (∼ 109 J/m) (see Figure

3.15). This means that most of the wave energy has been dissipated in the shell regions

in the viscous simulation, which contributes to an increase in the internal energy. In

the ideal simulation the internal energy increase in the shell regions is five times smaller

than the viscous simulation near the end of the simulation. The right panel of Figure
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3.16 also shows that the standing regime (t > 1000 s) decreases the inflow (mostly in

the ideal simulation (green dashed line), but also in the viscous simulation (green solid

line)), because the standing regime creates a node in vz which decreases the Poynting

flux (see e.g. Prokopyszyn et al., 2019). In the viscous simulation the standing regime

is less prominent in the shell regions because the waves are predominantly damped

before they reach TR2.

The main reason why the injected Poynting flux is so low (∼ 2 Jm−2s−1) is because

of the small amplitude driver and the small background field (∼ 10 G). Increasing the

driver amplitude with an order of magnitude (factor of 10) increases the Poynting flux

by a factor 102, which would be similar to the energy requirements of the quiet Sun

(Withbroe and Noyes, 1977). Indeed, using Ohm’s law (E = −v ×B) we can rewrite

the vertical component of the Poynting flux as

(E ×B)y = vy(B
2
z +B2

x)−By(vxBx + vzBz),

≈ vyB
2
z −ByvzBz,

where we have neglected the (cross-field) x component because this is negligible com-

pared to the y and z component. Increasing the driver amplitude vz by an order of

magnitude also increases Bz by an order of magnitude, hence the Poynting flux would

be a factor of 100 larger and the energy requirements for the quiet Sun would be ob-

tained. Increasing the background field By would further increase the injected Poynting

flux, but the Alfvén speed would then be higher in the corona, which would lead to

fewer wavelengths in the corona and smaller phase mixing gradients (and consequently

less heating). We remark that although the energy input would be higher, the ques-

tion about dissipating the energy into heat on the relevant timescales remains to be

investigated.

Heating in the shell regions

In Figure 3.17 we show contours of the relative temperature increase (T − T0)/T0 at

t = 5340 s for the ideal (left panel) and the viscous simulation (right panel). The

viscous dissipation of the phase-mixed Alfvén waves in the shell regions of the loop

leads to a temperature increase. The temperature increase starts in the far leg of the

loop (y ∼ 60 Mm), as this is where the strongest phase mixing gradients occur (see

Figure 3.6). At later times, when a steady state is established (Figure 3.14), a small

increase in the relative temperature (3600 K, 0.5% relative increase) all along the shell
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Figure 3.16: (Left) Plot of the averaged Poynting flux 〈(E ×B)y〉 (Jm−2s−1) on the
boundaries of the left shell, for the ideal simulation (dashed lines) and the viscous

simulation (solid lines). The green lines represent the lower boundary and the red line
the upper boundary. (Right) Similar plot of the time integrated Poynting flux.

regions can be observed, however the increase remains slightly higher in the far leg of

the loop. The temperature increase spreads along the full length of the shell region

because phase mixing happens in different locations (due to the Alfvén speed profile,

see right panel of Figure 3.5) and because thermal conduction spreads the heat along

the field. In the interior and the exterior of the loop the Alfvén waves are not phase

mixing and there is no noticable temperature increase. In the ideal simulation, we do

not see any increase in the temperature in the shell regions.

Figure 3.18 shows a space time contour of T−Tmean (×104 K) of the ideal (top panel)

and the viscous simulation (bottom panel) in the middle of the left shell (x = −1.18

Mm), indicated by the dashed vertical line in Figure 3.17. The average temperature

Tmean that is subtracted is taken over the last 5800 s in the continued relaxation

simulation, for every y. In the ideal simulation we see again periodic heating and

cooling events (of the order of 500 K, with a period of ∼ 650 s), respectively near

the TRs and at the apex of the loop, which were also seen in the space time contour

of T − Tmean for the continued relaxation simulation (Figure 3.13). In the viscous

simulation stronger heating events (of the order of 4000 K) are present due to the

dissipation of the phase-mixed Alfvén waves. In Figure 3.18 we see a first heating

event around t ∼ 300 s in the upper leg of the loop (at y ≈ 70 Mm). Comparing

with the contour plots of vz (Figure 3.6), it is clear that this heating event is a result

of the viscous dissipation of the phase-mixed Alfvén waves. Following this heating

event, a thermal conduction front can be seen in the form of a downward propagating

increase in temperature (i.e. towards higher values of y). Stronger heating events
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Figure 3.17: Contour of (T − T0)/T0 for the ideal (left panel) and viscous simulation
(right panel) at t = 5340 s. The dashed line at x = −1.18 Mm denotes the location in

the shell where the maximal T − T0 increase is observed.

occur at later times at y ≈ 70 Mm, and eventually there is heating all along y, as

phase mixing happens in different locations due to the Alfvén speed profile (Figure

3.5) and thermal conduction spreads the heat along the field. We remark that the

heating is less strong towards the end of the simulation (t > 4000 s), as the system

reaches a steady state (see e.g. Figure 3.14) and the radiation starts to become more

significant (τrad ∼ 3000− 4000 s in the corona, see Appendix A). In the contour of the

viscous simulation, there also seems to be a 650 s periodicity present in the heating

events. This could mean that viscosity also affects the slow waves (present from the

relaxation and/or associated with the driver), since these slow waves also phase mix

in the shells, as there is a gradient in the sound speed present in the shells of the loop

because of the temperature gradient (see e.g. Figure 3.2). We therefore run a fourth

simulation with viscosity on but without a driver, in order to investigate the effect of

viscosity on the slow waves present from the relaxation. This is the dominant source

of slow waves in the simulations, as can be seen from e.g. Figure 3.11, which shows

that the field-aligned flows are dominated by a ∼ 650 s period and have a similar

amplitude for all the simulations. In Figure 3.19 we show the equivalent of Figure 3.18
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Figure 3.18: Space time contour of T − Tmean (×104 K) for the ideal (top panel) and
the viscous simulation (bottom panel) in the shell of the loop (x = −1.18 Mm). The
Tmean is taken over the last 5800 s in the continued relaxation simulation, for every y.

for this fourth simulation. We can see that there is essentially no heating present in

the shell regions in this simulation, which means that the effect of the viscosity on the

slow waves phase mixing is minimal. Hence the heating events in Figure 3.19 can be

predominantly attributed to the phase mixing of Alfvén waves.

The top panel of Figure 3.20 shows a space time contour of T −Tmean (×104 K) for

the viscous simulation with paths of the thermal conduction fronts overplotted. These

paths are based on the local conduction speed vcond,local,

vcond,local ∼
(γ − 1)κ0T

5/2 dT
dy

P
, (3.8)

which is an estimate for the local propagation speed of a heat front, derived from the

energy equation (Equation (3.3)). The bottom panel of Figure 3.20 shows a plot of
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Figure 3.19: Space time contour of T − Tmean (×104 K) for the viscous simulation
without a driver, in the shell of the loop (x = −1.18 Mm). The Tmean is taken over

the last 5800 s in the continued relaxation simulation, for every y.

vcond,local (km/s) in the shell region, at x = −1.18 Mm, as a function of y from the

apex (y = 60 Mm) to the top of the second chromosphere (y = 120 Mm). We can see

that vcond,local is slow at locations where the temperature gradient dT
dy

is small (near the

apex and the chromosphere), and that it accelerates from the apex towards the TR.

The conduction paths in the top panel of Figure 3.20 are (t (s),y (Mm)) curves, and

are based on the local conduction speed vcond,local. We fix a start point (t0, y0) and an

end point (tend, yend) by eye, to match where the heating starts in the corona (y ≈ 67

Mm) and ends in the TR (y ≈ 105 Mm; the location where T = Tc). We then obtain

the next point through an iteration such that (tk+1, yk+1) = (tk+dy/vcond,local, yk+dy),

and at the end of the iteration (when yfinal = yend) we rescale tfinal to tend. Hence

these paths only show the acceleration of the conduction towards the lower TR. We can

see that, although these paths are based on an estimate of the speed of the conduction

front, there is some similarity between the spread of the heating and the paths.

Evaporative upflows and coronal mass increase

The heating events in the viscous simulation discussed in the previous section lead to

evaporative upflows from the lower atmosphere into the corona. Figure 3.21 shows a

plot of the average upflows 〈vy〉 on the (left) shell corona-TR boundaries, for the ideal

(dashed lines) and the viscous simulation (solid lines). Again, we see that the upflows

are dominated by a period of the order ∼ 650 s, associated with the relaxation of the

loop, which was also present in the average upflows on the coronal boundaries of the

interior of the loop (Figure 3.11). The upflows are of the order of |vy| ∼ 20− 30 m/s,
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Figure 3.20: (Top) Space time contour of T − Tmean (×104 K) for the viscous
simulation in the shell of the loop (x = −1.18 Mm), with the paths of several

conduction fronts overplotted. The Tmean subtracted is taken over the last 5800 s in
the continued relaxation simulation, for every y. (Bottom) Plot of the conduction

speed vcond,local (km/s), at x = −1.18 Mm as a function of y.

which is smaller than the average upflows on the coronal boundaries of the interior of

the loop. For the first 1000 s the upflows are very similar for the ideal and the viscous

simulation, as the largest heating events in the shell regions happen when t > 1000 s

(Figure 3.18). Indeed, after t ∼ 1500 s larger upflows from the TRs into the corona

are present on both boundaries in the viscous simulation. The difference between the

ideal and the viscous upflows - i.e. the evaporation - is largest on the upper coronal

boundary, as the strongest heating events happen in the upper leg of the loop (Figure

3.18). This evaporation is of the order 5-10 m/s. Remark that the viscosity also acts

on the ponderomotive upflows and the evaporation in the viscous simulation, hence

the difference between the ideal and the viscous simulation is a lower limit for the

evaporative upflows. Near the end of the simulation (t > 4000 s) the upflows in the
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ideal and the viscous simulation are smaller because a steady state has been reached and

the heating events are smaller (Figure 3.14 and Figure 3.18). The continued relaxation

of the system also leads to smaller field-aligned flows (e.g. Figure 3.13).

Figure 3.21: Plot of the mean upflow 〈vy〉 (km/s) on the two corona-TR boundaries
of the (left) shell (−1.35 Mm < x < −0.75 Mm), for the viscous simulation (solid

line) and the ideal simulation (dashed line). A negative upflow on the upper
boundary (right panel) is an upflow from TR2 into the corona.

We remark that the broadening technique of the TR (Lionello et al., 2009; Mikić

et al., 2013) used in the simulations does not affect the induced evaporation. Indeed,

Johnston et al. (2020) demonstrate that this technique conserves the total amount of

energy that is delivered to the chromosphere. It was also shown that, while there can

be small differences with the flows in the modified region (where T < Tc), the mass

flux into the corona is preserved and the induced flows converge above Tc. Hence, the

evaporative upflows are not affected by the broadening technique in our simulations.

However, we remark that the artificial broadening of the TR likely increases the trans-

mission of Alfvén waves to the lower atmosphere, hence reducing the amount of wave

energy available for dissipation (heating) in the corona and the subsequent evaporation.

These evaporative upflows in the viscous simulation move mass from the TRs and

the chromospheres into the corona. Figure 3.22 shows a contour of the relative density

(ρ−ρ0)/ρ0 for the ideal (left panel) and the viscous simulation (right panel) at t = 5340

s. We can see a mass increase in the coronal part of the shell regions in the viscous

simulation of the order of ∼ 1%, with a corresponding decrease in the TRs. This mass

increase is not present in the ideal simulation. Both contours show a slight increase in

the interior region in the corona due to the ponderomotive force effect by the driver

(see Appendix B).

In order to quantify the mass increase in the shell regions, Figure 3.23 shows time-
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Figure 3.22: Contour of the relative density (ρ− ρ0)/ρ0 for the ideal (left panel) and
the viscous simulation (right panel) at t = 5340 s.

distance contours of the relative density change (ρ − ρ0)/ρ0 along x = −1.18 Mm for

the viscous (bottom panel) and the ideal simulation (top panel). In both contours the

periodicity of the density changes is associated with the background long-period oscil-

lations (∼ 650 s) as discussed before. In the ideal simulation only the ponderomotive

mass increase is present, visible as the green diagonal bands (at e.g. 900 s,1600 s)

from the TRs into the corona which show a mass flow from the lower atmosphere into

the corona (dotted lines). Similar diagonal features can also be seen in the contour

of T − Tmean in the shell region in the ideal simulation (Figure 3.18). In the viscous

simulation a larger mass increase is present. For t < 1000 s the two panels do not

differ much, but after t ∼ 1500 s the evaporation is stronger which corresponds with

the largest evaporative upflows (Figure 3.21) and the largest heating events by the

dissipation of the phase-mixed Alfvén waves (Figure 3.18). The mass evaporation is

present from both TRs into the corona, and both TRs show a decrease in the density

when the evaporation starts.

Figure 3.24 shows a plot of the mass increase
∫

(ρ − ρ0)dV (kg/m) for the lower

layers of the atmosphere (chromospheres and transition regions; green lines) and the

corona (black lines), for the ideal (dashed line), viscous (solid line) and the continued
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Figure 3.23: Time distance maps of (ρ− ρmean)/ρmean for the ideal (top panel) and
the viscous simulation (bottom panel) in the shell of the loop (x = −1.18 Mm). The
ρmean subtracted is taken over the last 5800 s in the continued relaxation simulation,

for every y.

relaxation simulation (dotted line). This figure repeats the findings we found earlier. In

the continued relaxation simulation there is no significant mass increase in the corona

given that the upflows due to the background evolution are oscillatory (Figure 3.11).

The ideal and the viscous simulation both show a mass increase in the corona, and a

corresponding mass decrease in the TRs and the chromospheres. In the ideal simulation

this is due to the implementation of the driver and the ponderomotive effect associated

with the Alfvén waves, and in the viscous simulation there is the extra effect of the

evaporation due to the (viscous) dissipation of the phase-mixed Alfvén waves. At the

end of the simulation, the coronal mass increase (i.e. integrated over the entire coronal

region of the numerical domain) in the viscous simulation is about 35% larger than the

ideal simulation.

The right panel of Figure 3.24 shows the mass increase in the coronal part of the
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Figure 3.24: (Left) Plot of the mass change
∫

(ρ− ρ0) dV (kg/m) for the corona
(black lines) and the CHROMs and TRs (green lines) for the ideal simulation (dashed

lines), the viscous simulation (solid lines) and the continued relaxation simulation
(dotted lines). (Right) Plot of the mass change

∫
(ρ− ρ0) dV (kg/m) for the shells of

the loop (blue lines) for the viscous (solid line) and the ideal simulation
(dotted-dashed line). The green lines are the time integrated average mass flux

coming through the boundaries of the shells.

shells of the loop (blue) for the viscous (solid line) and the ideal simulation (dotted-

dashed line). The green lines represent the time integrated averaged mass flux through

the corona-TR boundaries of the shell,
∫ t

0
〈ρ〉(〈v〉 · 〈n〉)Ldt̃, with L the length of the

shell boundary and 〈n〉 the average normal vector to each respective shell boundary.

The mass increase in the shell region is about 2.5 times larger near the end of the

simulation in the viscous case, due to the net evaporation from the dissipation of the

phase-mixed Alfvén waves. The green lines confirm that the mass increase is due to a

mass flux coming through the boundaries (hence an evaporation from the lower atmo-

spheres).

We can estimate the evaporation that is required for the larger mass increase in the

shells in the viscous simulation (right panel of Figure 3.24), using the continuity equa-

tion (Equation (3.1))
∂ρ

∂t
= −∇ · (ρv) .

Integrating both sides over the coronal volume of the shells (V) and over time from 0

to t gives ∫
V

(ρ(t)− ρ(t = 0)) dV = −
∫ t

0

∫
S

(ρv) · ndSdt̃. (3.9)

where we have used the divergence theorem to rewrite the integral on the RHS. The

inner integral on the RHS can be approximated by 〈ρ〉〈vy〉4L, with L the width of
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the shell, if we assume that most of the mass change is due to an evaporative upflow.

This was already shown by the green curves in the right panel of Figure 3.24. Hence

Equation 3.9 can be rewritten as

d

dt

(∫
V

(ρ(t)− ρ(t = 0)) dV

)
≈ 〈ρ〉〈vy〉4L, (3.10)

so the average upflow 〈vy〉 through the shell boundaries can be approximated by

〈vy〉 ≈
1

〈ρ〉4L
d

dt

(∫
V

(ρ(t)− ρ(t = 0)) dV

)
. (3.11)

By taking the difference in the mass increase in the coronal part of the shells between

the viscous and the ideal simulation (the blue lines in the right panel of Figure 3.24), we

get an approximation for the average evaporation 〈vevap〉 through the shell boundaries.

〈vevap〉 = 〈vy,visc〉 − 〈vy,ideal〉 ≈
1

〈ρideal〉4L
d

dt

(∫
V

(ρvisc(t)− ρideal(t)) dV
)
, (3.12)

where we have also used the fact that 〈ρvisc〉 ≈ 〈ρideal〉 on the shell boundary. Equation

(3.12) is shown in the right panel of Figure 3.25. Initially 〈vevap〉 is negative because

the mass increase in the shells is initially larger for the ideal simulation (right panel

of Figure 3.24). After t > 1000 s when the mass increase is larger for the viscous

simulation, the evaporation is of the order of 10m/s, with a peak of 20m/s around

t ∼ 2000 s. This profile of the estimated evaporation is very similar to the actual

difference (between the viscous and the ideal simulation) in the average upflows on the

boundaries of the shell, as shown by the left panel of Figure 3.25, which was obtained

from Figure 3.21.

Effect on the Alfvén speed gradient and the phase mixing

Figure 3.26 shows a plot of the relative temperature T−T0
T0

, density ρ−ρ0
ρ0

and Alfvén

speed vA−vA0

vA0
in the upper half of the corona (y = 88 Mm) at the end of the simulation

(t = 5800 s), for the ideal simulation (left panel) and the viscous simulation (right

panel). At this location the strongest heating events (Figure 3.18) and the largest mass

increase (Figure 3.23) were present. In the ideal simulation there is a small increase

(∼ 0.1%) in the density in the interior part of the loop, due to the ponderomotive effect

of the driver. The viscous simulation shows a relative change in the temperature and

the density of the order 0.3% in the shells of the loop, which leads to a decrease in the

local Alfvén speed of ∼ 0.2% (a similar change is not present in the ideal simulation).
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Figure 3.25: (Left) Plot of the difference in mean upflows 〈vy,visc〉 − 〈vy,ideal〉 on the
lower boundary (solid line) and the upper boundary (dashed line) of the left shell.
(Right) Plot of the mean evaporation 〈vevap〉 through the shell boundary, estimated

from the continuity equation.

This is however insignificant compared to the Alfvén speed gradient (vAe

vAi
∼ 2 at the

apex) and hence, the effects are too small to significantly change the phase mixing

process.

Figure 3.26: Plot of the relative change in T, ρ, vA at y = 88 Mm, at the end of the
simulation (t = 5800 s), for the ideal simulation (left) and the viscous simulation

(right).

3.4 Discussion and conclusion

In this chapter, we have investigated whether a pre-existing density profile is modified

by evaporative upflows following (viscous) heating from phase mixing of Alfvén waves.
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Throughout the simulations (running for a total time of ∼ 6000 s), a complex com-

bination of Alfvén waves (vz) and longitudinal (field-aligned) flows (vy) is present in

the domain. The longitudinal flows are caused by (1) long-period oscillations (∼ 650

s) resulting from the ongoing relaxation due to the imposed cross-field background

heating profile, (2) the ponderomotive effects associated with the driven Alfvén waves

and (3) the evaporative upflows resulting from (viscous) heating of the phase-mixed

Alfvén waves in the coronal part of the shell regions of the loop. By comparing with

the ideal simulation, we are able to distinguish the evaporative upflows present in the

viscous simulation from the other (ideal) field-aligned perturbations. This allows us

to identify the change in mass in the coronal part of the shell regions caused by the

(viscous) heating from the phase-mixed Alfvén waves. For the particular setup studied

in this chapter, we find that the amount of heating through viscous dissipation of the

phase-mixed Alfvén waves in the corona is very small (maximal relative temperature

increase of 1% in the shell regions). The evaporative upflows associated with this heat-

ing are insignificant and hence, in this study, the effect of the heating-evaporation cycle

on the transverse density profile (or the Alfvén speed profile) is negligible.

One of the reasons for the small effects of the (viscous) heating from the phase-mixed

Alfvén waves is the choice of our driver. The high-frequency driver (P ∼ 12 s) allows

on the one hand the rapid development of phase mixing in the shell regions but on the

other hand, a substantial amount of the Poynting flux (about 10-15%) is transmitted

down to the far TR and chromosphere (see e.g. Hollweg 1984a,b; Berghmans and de

Bruyne 1995; De Pontieu et al. 2001). We estimated that increasing the amplitude of

the driven Alfvén waves by an order of magnitude would increase the Poynting flux

by two orders of magnitude, which could account for the heating requirements of the

Quiet Sun (see e.g. Withbroe and Noyes, 1977). However, given that 10-15% of the

Poynting flux in the coronal shell regions is lost to the lower atmosphere, it remains

to be investigated if this could have a substantial effect. Increasing the background

field with an order of magnitude would also increase the Poyting flux further, although

this would increase the coronal Alfvén speed and would lead to fewer wavelengths in

the corona, smaller phase mixing gradients and less viscous dissipation from the phase-

mixed Alfvén waves. In the interior of the loop, almost all energy (of the order of 85%)

is transmitted to the far TR and chromosphere. The viscosity used in this study is a

uniform viscosity and is two orders of magnitude smaller than the (parallel) viscosity

in the corona (see e.g. Priest, 2014). However, the perpendicular (cross-field) viscos-

ity is ten orders of magnitude smaller than the parallel viscosity (see e.g. Braginskii,
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1965), hence it is likely that we have overestimated the effect of the viscosity on the

(cross-field) phase mixing gradients (and the viscous dissipation) in this study.
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Chapter 4

Transverse MHD waves generated

by colliding clumps

In this chapter, we investigate the generation of transverse MHD waves in the solar

corona by the collision of counter-propagating clumps. In particular, we describe the

results of several parameter studies of the collision of two counter-propagating clumps.

The results of these parameter studies have been published in Pagano et al. (2019). The

parameter study builds on a 2D MHD model from Antolin et al. (2018) who analyse

observations of collisions of clumps along a coronal rain complex at the limb of the Sun.

Using the 2D MHD model, Antolin et al. (2018) interpret the generated oscillations as

transverse MHD waves. In this chapter we conduct a parameter study to investigate

how changing the properties of the clumps affects the wave generation.

4.1 Introduction

Over recent decades, MHD waves have been increasingly observed in the Sun’s atmo-

sphere (e.g. Tomczyk et al. (2007), De Moortel and Nakariakov (2012), Arregui (2015)).

Observations have shown that these waves can have a photospheric/chromospheric ori-

gin, i.e. they are generated by photospheric footpoint motions driven by convective

cells beneath the photosphere (e.g. Suzuki and Inutsuka (2005), Matsumoto and Kitai

(2010)). However, waves that are generated in the lower layers of the atmosphere, can

undergo strong reflection when propagating into the corona (e.g. Soler et al. (2017)).

Besides being generated in the lower layers of the Sun’s atmosphere, MHD waves

can also be excited in-situ in the corona. A series of studies (Kohutova and Verwichte

(2017), Kohutova and Verwichte (2018a), Verwichte and Kohutova (2017) and Ver-

wichte et al. (2018)) showed that transverse MHD waves can be excited in coronal rain
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systems. Coronal rain systems typically consist of a coronal loop which is subject to

the thermal instability and undergoes a cycle of condensations (e.g. Antiochos et al.

(1999) and Antolin et al. (2010a)). During these cycles the loop cools drastically and

dense blobs of plasma form in the interior of the loop. These blobs, coronal rain, then

fall along the loop towards lower heights under the force of gravity. The formation

of coronal rain can perturb the magnetic field and excite transverse oscillations, as

reported by Kohutova and Verwichte (2017), Kohutova and Verwichte (2018a), Ver-

wichte and Kohutova (2017) and Verwichte et al. (2018). Another way that coronal

rain can generate transverse oscillations is by collisions with other plasma material.

Falling coronal rain can collide with hotter material propagating upwards in the loop

(e.g. from evaporation of chromospheric material). These counter-propagating clumps

of plasma can collide and perturb the magnetic field, leading to transverse oscillations

of the coronal strands. Antolin et al. (2018) observed collisions of counter-propagating

clumps along a coronal rain complex, and analysed the oscillations produced by these

collisions. They modelled the colliding clumps using 2D MHD simulations and in-

terpreted these transverse oscillations as transverse kink and sausage modes. They

conclude that the mechanism of colliding clumps can be a source of transverse MHD

waves in the corona.

The parameters of the simulation in the MHD model introduced in Antolin et al.

(2018) were chosen to match one particular observation of transverse oscillations by

colliding clumps. However, there remains open questions about the mechanism of gen-

erating transverse oscillations by colliding flows/clumps, such as the evolution of the

forces during the collision and the influence of different parameters of the flows on

the generation of the oscillations. In this chapter, we analyse the mechanism and the

evolution of the forces during the collision in more detail. We also present a param-

eter study to investigate how different parameters of the clumps affect the nature of

the generated transverse MHD waves. The parameter studies we consider are varying

(1) the density and the velocity of the clumps, (2) the speeds of the clumps, (3) the

distribution of the mass of the clumps, (4) the angle of the colliding interface of the

clumps, (5) the offset between rectangular clumps, (6) the length of the clumps and

(7) the width of the clumps. Studies (1), (2) and (3) are related to the momentum

and kinetic energy of the clumps, studies (4), (5) are related to the asymmetry of

the system and studies (6) and (7) to the dimensions of the clumps. In future stud-

ies, we would like to investigate if these collisions of counter-propagating clumps are

common in the corona, and if they can contribute to the energy budget of the corona
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(coronal heating). These collisions could also be an interesting tool for helioseismology.

This chapter is outlined as follows. In Section 4.2 we introduce the numerical MHD

model used for the parameter studies and describe in detail a ‘reference simulation’.

This reference simulation is a scenario where two clumps of plasma collide and trans-

verse MHD waves are generated. We analyse the evolution of the forces and introduce

a method for measuring the amplitudes of the generated modes. Next, we discuss the

7 parameter studies outlined in the previous paragraph. These are separated in three

sections: in Section 4.3 we discuss the parameter studies related to the momentum

and the kinetic energy of the clumps, by changing the density and the velocity of the

clumps. In Section 4.4 we discuss the effect of asymmetry in the system on the gen-

erated modes, by considering a change in the inclined colliding interface and an offset

between the clumps. In Section 4.5 we discuss how the dimensions of the clumps -

changing the length and the width of the clumps - can change the generated modes.

We end the chapter with a discussion and a conclusion in Section 5.6.

4.2 Model setup and reference simulation

Using the numerical MHD code MPI-AMRVAC (Porth et al., 2014), we implement

a 2D model for counter-streaming plasma clumps. This code solves the ideal MHD

equations given by

∂ρ

∂t
+∇∇∇ · (ρv) = 0, (4.1)

∂ (ρv)

∂t
+∇∇∇ · (ρvv) = −∇∇∇P +

1

c
j×B, (4.2)

∂B

∂t
=∇∇∇× (v ×B) , (4.3)

∂e

∂t
= −∇∇∇ ·

[(
e+ P +

B2

8π

)
v − (B · v) B

]
. (4.4)

Remark that the MHD equations stated here are in cgs units, with c the speed of

light, j = c
4π
∇∇∇×B the current density and e = P

γ−1
+ 1

2
ρv2 + B2

8π
the total energy. We

assume that the plasma is fully ionised. Although coronal rain is only partially ionised

(Antolin and Rouppe van der Voort, 2012), Oliver et al. (2016) showed that in the

case of partially ionised plasmas the neutrals are still coupled to the ions (even in the

case of 50% ionisation the coupling is strong). Hence in this study the particles are

still coupled to each other and can be treated as a single MHD fluid. A contour of the
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Figure 4.1: Contour of the number density n at t = 0 s, with magnetic fieldlines
(green) overplotted (traced from the x = −6 Mm boundary). The angle θ of the

interface of the clumps is denoted in pink.

number density n at t = 0 s of the reference simulation is shown in Figure 4.1.

The numerical domain is a 2D, cartesian domain and has dimensions 12 Mm (x-

direction) by 6 Mm (y-direction). Two trapezoidal clumps of plasma, both 1 Mm wide

(in y) and 3 Mm long (in x, measured along y = 0), are placed opposite one another

in the x-direction at a distance of 3 Mm. The angle of the interface of the clumps is

θ = 50 degrees with the positive y axis (see Figure 4.1). The magnetic field is uni-

form and in the x-direction, Bx = 6.5 G. The clumps are 100 times denser than the

coronal background number density, next = 1.2 × 109 cm−3 (nclump = 100next). The

background temperature is 1 MK, and the temperature of the clumps is 100 times

cooler to maintain pressure equilibrium (Tclump = 104 K). The plasma beta is β ∼ 0.1.

The clumps travel towards each other at an initial velocity of ±70 km/s, which is cho-

sen to match the observations presented in Antolin et al. (2018). The external Alfvén

speed is vA,ext = 580 km/s and the external sound speed is cs,ext = 165 km/s. This

results in an external Alfvén Mach number of MA,ext = v
vA,ext

= 0.12 and an external

Mach number of MS,ext = v
cs,ext

= 0.42, so we do not expect the formation of shocks

when the clumps are propagating. The internal Alfvén speed (vA,int = 58 km/s) and

internal sound speed (cs,int = 16.5 km/s) are however 10 times smaller and hence the

internal Mach number (MS,int = 4.2) and Alfvén Mach number (MA,int = 1.2) are

10 times larger than their external counterpart. Since the Mach numbers are larger

than 1, information cannot be transmitted upstream inside the clumps when they

are propagating, which will lead to a more violent collision. The ram pressure ρv2

of the clumps is 0.5 J/m3 and this is 30 times larger than the thermal pressure and

3 times larger than the magnetic pressure. Note that these ratios are proportional to

the square of the Mach number and the square of the Alfvén Mach number respectively.
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The boundary conditions in the simulation are continuous in x and y (i.e. the val-

ues in the outmost cell in the domain are copied in the ghost cells), which allows

plasma to leave the domain. The simulation runs for 300 s, which is sufficient for the

system to reach a new equilibrium after the collision. Hereafter we refer to this simu-

lation as “the reference simulation”, as we will take this simulation as a benchmark to

compare with.

4.2.1 Collision

Figure 4.2 shows contours of the density, pressure and temperature at t = 25, 66, 78

s (1st, 2nd and 3rd column respectively). These times are chosen to represent the

different phases of the simulation. In a first phase of the simulation (t < 66 s) the

clumps are propagating towards each other and are colliding, and their kinetic energy

is used to deform the magnetic field. We refer to this phase as the ‘collision phase’.

At t = 66 s the magnetic field deformation reaches a maximum, and for t > 66 s the

system responds to the collision and produces oscillations as it evolves towards a new

equilibrium. The generated waves propagate in the domain, and we will refer to this

phase as the ‘propagation phase’.

In the early stage of the collision phase, the two clumps of plasma approach each

other and compress the plasma in front of the clumps. This leads to an increase of the

gas pressure and the temperature in the region between the two clumps as can be seen

in the contour of the pressure and the temperature at t = 25 s. The contour of the

temperature shows an increase up to 3 MK in the region between the clumps, which is

the maximal temperature over the whole simulation. This temperature is only attained

for a few seconds, after which it decreases because of mixing with cooler plasma. This

increase of pressure in the middle of the domain leads to strong gradients causing a

pressure gradient force (∇∇∇P ) pointing outwards of the middle of the domain. The x

component (∇∇∇P )x slows the clumps down and the y component (∇∇∇P )y creates a vy

and causes a distortion of the magnetic field. This can be seen in the contour of vy at

t = 25 s in Figure 4.5. The contour of the density at t = 25 s shows the expansion

of the magnetic field in the y direction in the middle of the domain. The magnetic

field is mostly deformed on the interface where the clumps initially touch. Because the

interface of the clumps is at an angle, the deformation is also tilted and asymmetric.

At t = 66 s the magnetic fieldlines show a significant deformation. The internal

magnetic field (the magnetic field inside the clumps (−0.5 < y < 0.5 Mm)) shows an
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Figure 4.2: Contours of the density, temperature and pressure at t = 25, 66, 78 s for
the reference simulation.

asymmetric deformation because of the inclined interface of the clumps. The external

field has expanded due to the higher gas pressure caused by the collision. After the

collision phase (t > 66 s) the system responds to the collision and generates several

oscillations. In Subsection 4.2.3 we will discuss the generated modes in greater detail.

Energies and forces

We now discuss the evolution of the different volume integrated energies and forces

in the simulation to understand the collision and the response of the system. Figure

4.3 shows a plot of the volume integrated kinetic, magnetic and internal energy in the

domain with time (minus their initial value). We look at the kinetic energy in the x

direction and the y direction separately. Similarly the magnetic energy is split up in

an x component and a y component.

The vertical dashed line at t = 66 s divides the simulation into the ‘collision phase’

(t < 66 s) and the ‘propagation phase’ (t > 66 s). In the first phase, the clumps of

plasma travel towards each other and slow down due to the increase of gas pressure

(pressure gradient force (∇∇∇P )x) in the middle of the domain. This leads to a decrease

in vx and a decrease in the x component of the kinetic energy (
∫ ρv2x

2
dV; blue solid
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Figure 4.3: Plot of the volume integrated energies (minus their initial value) with
time for the reference simulation. The dashed line at t = 66 s marks the two phases
in the simulation: a ‘collision phase’ (t < 66 s) and a ‘propagation phase’ (t > 66 s).

line). The y component of the kinetic energy (
∫ ρv2y

2
dV; blue dashed line) increases

slightly as the pressure gradient force (∇∇∇P )y generates a vy. The internal energy

(
∫

p
γ−1

dV; black line), increases as the plasma between the clumps is compressed and

is adiabatically heated. The x component of the magnetic energy (
∫ B2

x

2µ0
dV; solid red

line) decreases because the internal magnetic field is kinked by the collision, decreasing

Bx and increasing By. Hence we see an increase in the y component of the magnetic

energy (
∫ B2

y

2µ0
dV; dashed red line).

In Figure 4.4 we show vector plots of the pressure gradient force∇∇∇P and the Lorentz

force j × B at t = 25, 66, 78 s. The vector plots at t = 25 s show that the pressure

gradient force ∇∇∇P is mainly perpendicular to the interface of the clumps (θ = 50

degrees), opposing the direction of propagation of the clumps. The x component slows

the clumps down and the y component accelerates the plasma in the y direction, leading

to a distortion of the magnetic field. The vector plot of the Lorentz force j×B at t = 25

s shows that the Lorentz force acts as a restoring force, since it is mainly pointing in

the y direction towards the centre of the domain. This is due to a magnetic tension

force and magnetic pressure gradient force caused by the expansion of the external

magnetic field as a result of the collision. In Figure 4.6 we show the forces in the y

direction and the speed vx and vy averaged over the rectangular box shown in the top

panel. The vertical dashed lines at t = 25, 66, 78 s are the same times as the contours

shown in Figures 4.4 and 4.5. During the collision phase we again see an increase in

the pressure gradient force (∇∇∇P )y and a build up of the restoring Lorentz force (j×B)y

as the magnetic field expands. The pressure gradient force is larger in the first 40 s
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Figure 4.4: Vector plots of the pressure gradient force ∇∇∇P (left column) and the
Lorentz force j×B (right column) at t = 25, 66, 78 s.

of the simulation, which explains the increase in vy in this period. After t = 40 s, the

restoring Lorentz force becomes larger and the overall force is pointing inwards. We

see a stagnation in vy because the collision continues at this stage and plasma is still

coming into the centre of the domain. Only at t = 60 s does vy start to decrease and 4s

later, vx starts to decrease as well, reversing the motion of the plasma. At t = 66 s, the

restoring Lorentz force reaches its maximum. At this time the magnetic field has been

deformed maximally by the collision. The Lorentz force then drives the oscillatory

behaviour seen in the propagation phase. The contour of j × B at t = 66 s (Figure

4.4) shows that the Lorentz force is directed inwards and is larger than the opposing

pressure gradient force. The contour of vy at t = 66 s shows the reversement of the

plasma motion.

In the propagation phase (t > 66 s), the system responds to the collision and

undergoes a series of oscillations as it tries to reach a new equilibrium. This oscillatory
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Figure 4.5: Contours of the velocity components vx (left column) and vy (right
column) at t = 25, 66, 78 s.

behaviour can be seen in
∫

p
(γ−1)

dV,
∫ ρv2y

2
dV and

∫ B2
x

2µ0
dV (Figure 4.3). The local

maxima and minima in the internal energy correspond to compressions followed by

rarefractions of the plasma. The internal energy overall is decreasing as the plasma

evolves to a new equilibrium after the collision. Note that after t = 150 s the internal

energy is below its initial value, because at this time plasma starts to leave the domain.

Hence the total energy of the system is not conserved. The oscillations in
∫ ρv2y

2
dV

represent the compressions and expansions of the system as a response to the collision.

We see that
∫ B2

x

2µ0
dV also oscillates as magnetic field is leaving and entering through

the y boundaries (y = ±3 Mm) as a response to the oscillations. The x component

of the kinetic energy starts to increase again as the plasma motion is inverted and the

flows travel now outwards from the centre of the domain. This can be seen in the

contour of vx at t = 78 s in Figure 4.5. After t = 150 s the x component of the kinetic

energy starts to decrease as plasma is leaving the domain. The contours of the forces

and velocities at t = 78 s show the system during one of its oscillations. The restoring
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Lorentz force points inwards to the centre of the domain and vy is directed towards the

centre of the domain, which means the system is compressing at t = 78 s. In Figure

4.6 the propagation phase is characterised by a strong oscillatory (j×B)y and vy. vx

becomes negative as the motion of the plasma has reverted and plasma flows away from

the centre of the domain. It takes about 6-7 oscillations to damp vy and (j×B)y.

Figure 4.6: Plots of the average forces (left) and speed (right) with time in the
rectangular box shown in the top panel. The rectangular box ranges from −1 < x < 1

Mm and 0 < y < 1 Mm.

4.2.2 Measurement of the amplitudes

In this subsection we explain how the amplitudes of the generated modes are measured.

Figure 4.7 illustrates with a 2D example how the amplitudes are measured. Suppose

we have an initial straight waveguide with boundaries given by the horizontal mag-

netic fieldlines L1, L2 (dashed black lines). At a later time, the waveguide has been

deformed and the boundaries L1 and L2 are now given by the black solid lines. The de-

formation consists of a displacement of the central axis of the waveguide (“a kink-like

perturbation”) and a compression/expansion about the central axis (“a sausage-like

perturbation”). The central axis of the waveguide at t = 0 s is the line y = 0.
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Figure 4.7: Illustration of how the kink and sausage amplitudes are measured. The
black lines L1 and L2 are magnetic fieldlines placed symmetrically about the central

axis (y = 0) of a waveguide, that undergoes a kink and sausage-like perturbation.
The function D(x) represents the displacement of the central axis, the function E(x)

an expansion/compression about the central axis.

We define d1(x) (d2(x)) as the displacement of the fieldline L1 (L2) compared to

its initial position. This is shown by the green vertical lines for some x in Figure 4.7.

Remark that d1(x) (d2(x)) is positive when L1(x) > 1 Mm (L2(x) > −1 Mm) and

negative otherwise. The displacement of the central axis of the waveguide at each x is

then given by

D(x) =
d1(x) + d2(x)

2
.

The expansion/compression about the central axis of the waveguide at each x is given

by

E(x) =
d1(x)− d2(x)

2
.

These two quantities are illustrated by the blue and red line, respectively. We can use

D(x) (E(x)) for the definition of the kink-like (sausage-like) amplitude of the generated

perturbations in our simulation. For each time t we define a kink amplitude K(t) as

the total displacement of the central axis of the waveguide,

K(t) = max(D(x))−min(D(x)).

The sausage amplitude S(t) is defined as the total expansion/compression about the

central axis,

S(t) = max(E(x))−min(E(x)).

Because the collision of two clumps of plasma is a highly dynamical and complex sys-
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tem, the system is not an ideal waveguide, and the generated perturbations are highly

non-linear. We do not claim that K(t) and S(t) are the amplitudes of the kink mode

and the sausage mode, but they give an indication of the total energy of these modes.

To apply this method to the simulation, we identify a pair of internal and external

fieldlines. Figure 4.8 shows the pair of internal (dark blue lines) and external fieldlines

(pink lines) for t = 0 s and t = 63 s, together with a contour of the density and the

magnetic fieldlines overplotted in green. The magnetic fieldlines are traced from the left

hand boundary (x = −6 Mm) throughout the simulation. The internal fieldlines are at

y = ±0.1 Mm initially. The external fieldlines are determined from a density threshold

(i.e. the density of the clumps) such that this pair of fieldlines initially encloses the

two clumps. The location of this pair of fieldlines is initially at y = ±0.5 Mm. We

apply the method described previously in Figure 4.7 to these two pairs of fieldlines.

Figure 4.9 shows the evolution of K(t) and S(t) for these two pairs of fieldlines. We

denote by Kint(t) and Sint(t) (Kext(t) and Sext(t)) the evolution of K(t) and S(t) for

the internal (external) fieldlines. Except for the initial phase of the simulation (t < 40

s), we can see that Kint is always larger than Kext, and similarly that Sext is larger than

Sint. This happens because the internal fieldlines are closer to the central axis and they

show the displacement/kinking of the central axis more clearly. The external fieldlines

show more expansion than the internal fieldlines as they are outside the collision region

and they respond stronger to the expansion caused by the collision. In the analysis

that follows we will use the internal fieldlines to measure “the kink amplitude” K(t)

and the external fieldlines are used to measure “the sausage amplitude” S(t).

Figure 4.8: Contours of the density for t = 0 s and t = 63 s, with magnetic fieldlines
(green) overplotted. The black fieldlines are internal fieldlines used for the

measurement of K(t), the pink fieldlines are external fieldlines used to measure S(t).

In Figure 4.10 we show how the measurement of the kink amplitude K(t) (i.e.

Kint(t)) and sausage amplitude S(t) (i.e. Sext(t)) is applied in the simulation at t = 63 s.

The left panel shows the internal fieldlines (black lines) together with the displacement
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Figure 4.9: Plot of the evolution of Kint(t), Kext(t) in blue and Sint(t) and Sext(t) in
red. The thicker (thinner) lines represent the amplitudes for the internal (external)

fieldlines.

D(x) (blue line) of the central axis and the resulting kink amplitude K(t = 63 s) ≈ 0.95

Mm. Similarly, the right panel shows the external fieldlines (black lines) together with

the expansion E(x) (red line) of the waveguide about the central axis and the resulting

sausage amplitude S(t = 63 s) ≈ 0.45 Mm.

Figure 4.10: Measurement of the kink amplitude K(t) (left panel) and sausage
amplitude S(t) (right panel) for the reference simulation at t = 63 s.

4.2.3 Analysis of the amplitudes of the generated modes

In Figure 4.11 (left panel) we show the kink amplitude K(t) (blue line) and sausage

amplitude S(t) (red line) for the reference simulation with time. The kink amplitude

K(t) increases during the collision phase (t < 66 s) as the internal magnetic fieldlines

are continuously deformed by the collision of the clumps. The asymmetric setup of the

clumps (the interface of the clumps is inclined at an angle of θ = 50◦) is crucial in the

kinking of the internal fieldlines and is investigated in detail in Section 4.4.1. Both the
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maximal amplitudes max(K(t)) and max(S(t)) are attained at t = 66 s. After t = 66 s,

the kink amplitude decays and shows an oscillatory behaviour as the system responds

to the collision. The sausage amplitude S(t) shows a similar behaviour. It increases

initially as the external magnetic field expands from the collision and then decays in a

similar manner as the kink amplitude.

Figure 4.11: (Left) Plot of the kink amplitude K(t) (blue line) and sausage amplitude
S(t) (red line) with time for the reference simulation. (Right) Plot of the kink

wavelength λkink and the sausage wavelength λsaus with time.

Maxima Pkink Psaus

1st & 2nd 76 s 80 s
2nd & 3rd 56 s 30 s
3rd & 4th 42 s 24 s

Table 4.1: Table with the period of the kink oscillation Pkink and the period of the
sausage oscillation Psaus, determined from the time difference of the local maxima of
the oscillations in Figure 4.11.

From the oscillations in the kink amplitude K(t) and sausage amplitude S(t) in

Figure 4.11 we can deduce an estimate for the period of the generated modes using the

time difference in the local maxima of the oscillations. This is half the period because

a consecutive maximum is reached when K(t) reverses its profile. Table 4.1 shows the

period Pkink for the kink mode and Psaus for the sausage mode determined from the

first four local maxima (t = 66, 104, 132, 153 s for K(t) and t = 66, 106, 121, 133 s for

S(t)). The period Pkink is initially 76 s but decreases to 42 s later in the simulation.

The period Psaus similarly decreases from 80 s to 24 s. Near the end of the simulation

the sausage period Psaus is of the order of ∼ 20 s which is consistent with the transverse

Alfvén travel time in the clumps. The right panel of Figure 4.11 shows the wavelength
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λkink of the kink mode (blue) and λsaus of the sausage mode (red) with time. The kink

wavelength λkink is defined as

λkink = 2|x1 − x2|,

where x1 (x2) is the x-coordinate of the maximum (minimum) of D(x). The method

for determining the kink wavelength is not possible for the sausage modes because the

minimum of E(x) is always at the left boundary of the domain (x = −6 Mm) where we

start tracing the external pair of fieldlines. Instead we define the sausage wavelength

λsaus as

λsaus = 2|x∗1 − x∗2|,

with x∗1 (x∗2) the location where d2E
dx2

is maximal (i.e. x∗1 and x∗2 are the locations where

the first derivative dE(x)/dx changes most, hence these are the locations where the

“bump” in E(x) starts and ends, see e.g. the right panel of Figure 4.10). Figure

4.11 shows the wavelengths for the first 130 s of the simulation. After t = 130 s

the method for calculating λkink gives unphysical results (due to unphysical changes

in the location of x1 and x2 because the kink and sausage oscillations are damped

significantly). Initially when the clumps are not yet colliding (t < 25 s) λkink and

λsaus do not represent anything physical. Once the clumps start colliding, they distort

the magnetic field (t > 25 s) and λkink increases because max(D(x)) and min(D(x))

propagate away from x = 0 at the local Alfvén speed. The maximal distortion is

at x = 0 when the clumps start colliding, but because of the inclined interface the

maximal distortion moves further away from x = 0 until the collision is over. Hence

λkink is proportional to the collision time. λsaus similarly increases in the collision phase

(t < 66 s) as the width of the “bump” in E(x) increases due to the larger expansion of

the external field. After t = 66 s the λkink and λsaus show a more oscillatory behaviour.

The maxima in λkink at t = 80 s and t = 119 s correspond with the local minima in

K(t) in the left panel of Figure 4.11 when the oscillation reverses. λsaus decreases after

t > 66 s because the restoring Lorentz force reduces the expansion of the external field.

The minima at t = 90 s and t = 123 s are the times when the oscillation reverses and

the magnetic field is less expanded. These times coincide with the local minima of

S(t).

One way to check if the method for calculating the wavelength gives good results

is to fit a cosine to D(x) and E(x), based on λkink and λsaus respectively. In Figure

4.12 we plot the kink and sausage measurements at t = 66 s together with a cosine fit

that matches D(x) and E(x) empirically. The left panel shows the displacement D(x)
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Figure 4.12: (Left) Plot of D(x) (blue) and the kink amplitude K at t = 66 s,
together with a cosine fit (black dashed line). (Right) Similar plot for the sausage

perturbation at t = 66 s.

(blue), the kink amplitude K and a cosine fit (dashed line), given by

y = AK cos(kKx− bK).

The cosine fit has wavelength λkink (kK = 2π
λkink

) and amplitude AK = max(D(x)) of

the kink perturbation at t = 66 s. The parameter bK is a phase parameter, which is

chosen by eye to align the cosine fit with D(x). The right panel of Figure 4.12 shows

a similar plot for the sausage mode at t = 66 s, with E(x) the expansion of the central

axis (red) and S the sausage amplitude. In this case, the cosine fit is given by,

y = AS cos(kSx− bS),

where kS = 2π
λsaus

, AS = max(E(x)) and bS the (empirical) phase parameter for the

sausage mode. In both cases the cosine fit is a good fit for D(x) and E(x) which shows

that the method for calculating λkink and λsaus is satisfactory.

We can estimate the propagation speed of the kink and sausage perturbations, by

using the fact that vph = λ
P

, where vph is the phase speed, λ the wavelength and P

the period. The wavelength λkink is 4.3 Mm at t = 104 s (corresponding to the second

local maximum in K(t)) and the period at that time is P = 56 s. This gives a speed of

vph,K =
λkink
P

=
4.3× 106 m

56 s
= 76.8 km/s,

which corresponds to the internal Alfvén speed at this time calculated from the average
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Figure 4.13: Plot of the running difference in D(t = i+ 1)−D(t = i) (left panel) and
E(t = i+ 1)− E(t = i) for i = 60, 61, 62, 63, 64. We can see the front of the fast wave

travelling outwards from the centre of the domain.

magnetic field and density inside the collision (|B| ∼ 6 G and ρ ∼ 5 × 10−11 kg/m3,

giving vA,int = 75.7 km/s). The phase speed of the sausage mode at t = 106 s is given

by

vph,S =
λsaus
P

=
5.4× 106 m

80 s
= 67.5 km/s.

This is again similar to the internal Alfvén speed (vA,int = 75.7 km/s) of the clumps.

During the collision fast waves are also produced. This can be seen in Figure 4.13

where we plot the running difference of D(x) and E(x) between t = 60 − 65 s, at the

end of the collision phase. A clear front can be seen propagating towards negative x

from the centre of the domain, travelling at a speed of 680 km/s. This is similar to

the external Alfvén speed, vA,ext = 580 km/s. In this study the fast waves are of less

interest, and we will not go into further detail.

4.3 Parameter studies related to the mass and the

speed of the clumps

In this section we present three parameter studies that are related to the mass and

speed of the clumps. We are interested how the mass and speed of the colliding clumps

affect the amplitudes of the generated modes. Antolin et al. (2018) remarked that the

plasma β has an effect on the wave amplitude; indeed, a lower plasma β results in a

larger magnetic tension force and will lead to smaller amplitudes. In these parameter

studies we will keep the plasma β constant and the same as in the reference simulation,

β ∼ 0.1. In the first parameter study (PS1) we vary the density contrast ρc and the
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Figure 4.14: Contour of the number density n (1011 cm−3) at t = 0 with magnetic
fieldlines overplotted in green.

velocity v of both clumps. The density contrast and velocity are varied in such a way

to keep the momentum and the kinetic energy of the clumps the same for some cases.

In the second parameter study (PS2) we vary the individual velocities v1 and v2 of

the clumps, while keeping ρc constant. In the last parameter study (PS3) we vary the

individual density contrasts ρc,1 and ρc,2 of the clumps and keep the velocity v constant.

4.3.1 PS1: Varying the density contrast ρc and the velocity v

of the colliding flows

In the first parameter study we vary the speed v and the density contrast ρc of

the flows, and we investigate how the size and nature of the amplitudes K(t) and

S(t) change accordingly. We run 25 cases, by considering 5 different speeds v =

[70/2, 70/
√

2, 70, 70×
√

2, 70× 2] = [35, 49.5, 70, 99, 140] km/s and 5 different density

constrasts ρc = ρi
ρe

= [100/2, 100/
√

2, 100, 100×
√

2, 100×2] = [50, 70.7, 100, 141.1, 200].

Recall that the reference simulation has v = 70 km/s and ρc = 100. Figure 4.14 ex-

plains the setup of PS1.

Figure 4.15 shows a 5 × 5 table of all 25 simulations. The speed v and density

contrast ρc are chosen in such a way that on each diagonal of the table (blue dots) all

simulations have constant momentum (∼ ρcv) and on each “L-pattern” (red dots) the

kinetic energy
(
∼ 1

2
ρcv

2
)

is constant. The reference simulation is located in the middle

of the table (ρc = 100, v = 70km/s).

In Table 4.2 we show the internal Alfvén Mach number MA = v/vA,int (top table)

and the internal Mach number MS = v/cs,int (bottom table) of the clumps for each

simulation of PS1. We can see that the clumps in all simulations are supersonic and

that for the majority of the simulations the clumps are super-Alfvénic. For these
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Figure 4.15: Table with the 25 cases we consider in PS1. On each diagonal (blue
dots) the momentum is fixed, on each L-shape pattern (red dots) the kinetic energy

of the system is constant.

simulations we expect the collisions to be more violent than for simulations where the

clumps are sub-Alfvénic. Note that simulations with the same initial kinetic energy

have the same Mach numbers, and that the Mach numbers increase with increasing v

and increasing ρc.

v \ ρc 50 70.7 100 141.4 200

35 0.43 0.51 0.6 0.72 0.85
49.5 0.6 0.72 0.85 1.01 1.2
70 0.85 1.01 1.2 1.43 1.71
99 1.2 1.43 1.71 2.03 2.41
140 1.71 2.03 2.41 2.87 3.41

v \ ρc 50 70.7 100 141.4 200

35 1.49 1.77 2.11 2.51 2.98
49.5 2.11 2.51 2.98 3.54 4.21
70 2.98 3.54 4.21 5.01 5.96
99 4.21 5.01 5.96 7.09 8.44
140 5.96 7.09 8.44 10.03 11.93

Table 4.2: Tables of the internal Alfvén Mach number MA = v/vA,int (top) and the
internal Mach number MS = v/cs,int of the clumps for each case in PS1.

Kink amplitude K(t)

In Figure 4.16 we show the evolution of the kink amplitude K(t) with time for 5

simulations with constant momentum (left panel) and 3 cases with constant kinetic

energy (right panel). These cases are given by the blue and red dots in Figure 4.15.

For both panels the maximal kink amplitude max(K(t)) is attained at different

times because clumps with a larger initial speed lead to an earlier collision of the

clumps. The scaling is not linear in the sense that the maximal amplitude occurs later
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Figure 4.16: (Left) Plot of the kink amplitude K(t) (Mm) with time for 5 simulations
with constant momentum. (Right) Plot of K(t) (Mm) with time for 3 simulations

with constant kinetic energy.

when the clumps have more kinetic energy (e.g. faster travelling clumps in the left

panel), because it takes longer for the restoring magnetic forces to invert the plasma

motion. Max(K(t)) for the 5 cases with constant momentum is larger for simulations

where the clumps have a larger initial speed v, and hence also a larger kinetic energy

(max(K(t)) ∼ ρcv
2). The right panel of Figure 4.16 shows that the max(K(t)) is

constant for simulations with constant kinetic energy. This implies that the kinetic

energy of the system is the key parameter that determines the maximal amplitude of

the generated mode. The evolution of K(t) after the collision is also very similar for

these three cases. For cases where the clumps have a lower density contrast ρc, the

evolution of K(t) shows shorter period oscillations after max(K(t)). In general the

period of the oscillations is dependent on the density constrast of the clumps, because

this decreases the internal Alfvén speed and the propagation speed of the modes.

Table 4.0 shows the max(K(t)) obtained in each case and confirms that max(K(t))

scales with the kinetic energy, as boxes with the same color have the same initial kinetic

energy. Simulations that have the same momentum (on the diagonals of the table) do

not have a similar maximal amplitude. The cases where we do not report a maximal

amplitude are too extreme (too large v and ρc in 5 cases), because the magnetic field

is too distorted from the collision. In some of these cases the magnetic fieldlines show

cusps and the field does not act as a waveguide anymore and our method of determining

the amplitudes fails. An example of such a case can be found in Figure 4.17.

The lower half of Table 4.0 shows the wavelength λkink at the time of max(K(t))

for each case. We see that the wavelength is shorter for cases where the clumps have a
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Table 4.0: (Top) Table with the maximal kink amplitude max(K(t)) (Mm) for each
case. Boxes with the same color have the same initial kinetic energy. We do not

report on 5 cases because the collision is too extreme and the magnetic field is too
distorted. (Bottom) Table with the kink wavelength λkink (Mm) of the kink mode at

the time of max(K(t)) for each case.

Figure 4.17: Contour of the number density at t = 40 s for the simulation with
v = 140 km/s and ρc = 200. The magnetic fieldlines are overplotted in green.

higher velocity and the collision time is shorter. For cases that have the same velocity

but a different ρc (rows of Table 4.0), the wavelength is larger when ρc is smaller

because the Alfvén speed increases and max(D(x)) and min(D(x)) are further apart.

Cases with the same kinetic energy have similar wavelengths but the wavelength is in

general larger when ρc is smaller. The wavelength for the case ρc = 50 and v = 35

km/s is smaller than expected because the collision in this case is too weak to cause a

significant distortion of the magnetic field.

Sausage amplitude S(t)

In Figure 4.18 we plot the evolution of the sausage amplitude S(t) for the same cases

as in Figure 4.16.
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Figure 4.18: (Left) Plot of the sausage amplitude S(t) (Mm) with time for 5
simulations with constant momentum. (Right) Plot of S(t) (Mm) with time for 3

simulations with constant kinetic energy.

Similar conclusions as for K(t) can also be drawn for S(t). The maximal amplitude

max(S(t)) scales with the kinetic energy of the system, i.e. cases with the same initial

kinetic energy produce a similar max(S(t)). The evolution of S(t) after the max(S(t))

again shows shorter period oscillations for clumps with smaller ρc, as the Alfvén speed

inside the collision has increased.

v \ ρc 50 70.7 100 141.4 200

35 0.094 0.124 0.161 0.21 0.275
49.5 0.163 0.212 0.278 0.393 0.558
70 0.282 0.379 0.545 0.75 0.971
99 0.535 0.74 0.972 / /
140 0.968 1.242 / / /

Table 4.3: Table with the maximal sausage amplitude max(S(t)) (Mm) for each case.

Table 4.3 shows the maximal sausage amplitude max(S(t)) obtained in each case.

As for the kink amplitude K(t), the maximal sausage amplitude max(S(t)) is simi-

lar for simulations with the same initial kinetic energy. Table 4.4 shows the sausage

wavelength λsaus for each case. We can see that λsaus is similar for cases with the

same kinetic energy, as the distortion and the expansion of the field is similar in these

cases. For example, the first row shows that when ρc increases, the sausage wavelength

decreases as the collision has more kinetic energy and the magnetic field has more

expanded in the y direction, which decreases the width of the bump in E(x). This

is shown in Figure 4.19 which shows the expansion E(x) for the cases with v = 35

km/s and ρc = 50, 100, 140 at the time of max(S(t)). However, the sausage wavelength
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does not always decrease when the kinetic energy increases. For some cases with larger

kinetic energy (towards the bottom right corner of the table), the expansion of the

external field is also in the x direction, which increases λsaus. This is shown in the

right panel of Figure 4.19 which shows the expansion E(x) for the cases with ρc = 70.7

and v = 70, 99, 140 km/s at the time of max(S(t)).

v \ ρc 50 70.7 100 141.4 200

35 7.898 7.664 6.82 6.07 4.852
49.5 7.055 6.773 5.086 6.305 6.539
70 5.367 4.477 6.727 6.586 7.102
99 6.07 6.773 7.055 / /
140 7.43 7.523 / / /

Table 4.4: Table with the sausage wavelength λsaus at the time when S(t) reaches its
maximum for each case.

Figure 4.19: (Left) Plot of the expansion E(x) at the time of max(S(t)) for the cases
with v = 35 km/s and ρc = 50 (red), ρc = 100 (green), ρc = 140 (blue), together with
the cosine fit (dashed lines), determined by the wavelength λsaus. (Right) Similar plot

for the cases with ρc = 70.7 and v = 70, 99, 140 km/s.

4.3.2 PS2: Varying the speeds v1, v2 of the colliding flows

In PS2 we vary the speeds of the flows v1, v2, where v1 denotes the speed of the left

clump (x < 0 initially) and v2 the speed of the right clump (x > 0 initially). The

density contrast ρc = 100 is held constant.

We consider 5 cases: v1/v2 = [70/70, 80/60, 90/50, 100/40, 110/30] km/s. The

speeds are varied in such a way that the relative speed between the clumps stays
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constant (140 km/s), and the kinetic energy of the system (with respect to the centre

of mass) of each case is the same. The kinetic energy with respect to the centre of

mass is defined as

Ekin,CM =
1

2
ρ (v −VCM)2 ,

where VCM is the velocity of the centre of mass,

VCM =

∫
ρvdV∫
ρdV

.

Remark that when the two clumps have the same density, we have that VCM = 0.5(v1+

v2) where v1 and v2 are the velocities of the left and right clump respectively. In the

previous parameter study (PS1) VCM = 0 for all cases because both clumps have the

same density and v1 = −v2. In this parameter study, the centre of mass travels at a

velocity VCM = [0, 10, 20, 30, 40] km/s for each case respectively, which gives for each

clump an initial kinetic energy of

EK,clump =
ρclump (v −VCM)2

2
=
ρclump702

2
,

so the total initial kinetic energy of the system for each case is ρclump702. Because the

kinetic energy is the same for all cases, we expect the maximal amplitudes to be similar

in each case.

Table 4.5 shows the internal Alfvén Mach numbers MA and the internal Mach numbers

MS for each case in PS2, for the first blob (top table) and the second blob (bottom

table). The first blob is always supersonic and super-Alfvénic, while the second blob

is supersonic but only super-Alfvénic when v2 ≥ 60 km/s.

v1/v2 70/70 80/60 90/50 100/40 110/30

MA = v/vA,int 1.2 1.38 1.55 1.72 1.89
MS = v/cs,int 4.21 4.82 5.42 6.03 6.62

v1/v2 70/70 80/60 90/50 100/40 110/30

MA = v/vA,int 1.2 1.03 0.86 0.69 0.52
MS = v/cs,int 4.21 3.62 3.01 2.41 1.81

Table 4.5: Tables of the internal Alfvén Mach number MA = v/vA,int and the internal
Mach number MS = v/cs,int of the first blob (top) and the second blob (bottom) for
each case in PS2.
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Figure 4.20: (Left) Plot of the kink amplitudes K(t) with time for each case
(v1/v2 = [70/70, 80/60, 90/50, 100/40, 110/30] km/s). (Right) Similar plot for the

sausage amplitudes S(t).

Figure 4.20 shows the evolution of the kink amplitude K(t) (left panel) and sausage

amplitude S(t) (right panel) for each case with time. The maximal kink amplitude

max(K(t)) is indeed very similar for each case and the evolution of K(t) in the propa-

gation phase (t > 66 s) also shows a very similar behaviour. Because the relative speed

between the clumps is the same for each case, the time when max(K(t)) is attained is

also the same. Max(S(t)) and the evolution of S(t) are similar for each case as well

(the right panel of Figure 4.20). This shows again that the kinetic energy with respect

to the centre of mass is the key parameter that determines the size of the maximal

amplitudes of the generated modes.

4.3.3 PS3: Varying the density contrasts ρc,1, ρc,2 of the collid-

ing flows

In PS3 we vary the density contrast ρc of the clumps and keep the speed v = 70 km/s

constant. We consider the cases ρc,1/ρc,2 = 100/100, 200/100, 400/100, 800/100, 1000/100.

The reference simulation has ρc,1/ρc,2 = 100/100. We also ran a test case where the

clumps had a significantly lower density (ρc,1/ρc,2 = 3/3), which we have omitted here

because the clumps come to a halt before they collide (due to the increase of the gas

pressure in the centre of the domain). In Table 4.6 we give the initial kinetic energy

with respect to the centre of mass for each case. When ρc,1 is different from ρc,2 the

centre of mass shifts towards the heavier clump. The velocity of the centre of mass vCM

is always in the range 0−70 km/s, where vCM = 0 when ρc,1 = ρc,2 and vCM = 70km/s

when ρc,2 = 1 (i.e. ρ2 = ρext and there is essentially no second clump). The latter
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extreme case is not considered in this parameter study.

ρc,1 ρc,2 vCM (km/s) Total kin. energy ρ(v − vCM)2/2 (erg) Rel. kin. energy

100 100 0 1.08× 105 1
200 100 21.75 1.46× 105 1.34
400 100 40.24 1.77× 105 1.64
800 100 53.16 1.99× 105 1.84
1000 100 56.16 2.05× 105 1.88

Table 4.6: The total initial kinetic energy (w.r.t. the centre of mass) and relative
total kinetic energy (w.r.t. the reference simulation) for each case in PS3.

Table 4.7 shows the internal Alfvén Mach numbers MA and the internal Mach

numbers MS for each case in PS3. As the density of the first blob is increased, the

internal Alfvén Mach number and internal Mach number increase. The second blob

has MA = 1.21 and MS = 4.21 in each case, as the density is unchanged (ρc,2 = 100).

Both blobs are always supersonic and super-Alfvénic.

ρc,1/ρc,2 100/100 200/100 400/100 800/100 1000/100

MA = v/vA,int 1.2 1.71 2.41 3.41 3.81
MS = v/cs,int 4.22 5.96 8.43 11.93 13.33

Table 4.7: Table of the internal Alfvén Mach number MA = v/vA,int and the internal
Mach number MS = v/cs,int of the first blob for each case in PS3.

Figure 4.21: (Left) Plot of the evolution of the kink amplitude K(t) for each case
with time. (Right) Similar plot for the sausage amplitude S(t).

Figure 4.21 shows the evolution of the kink amplitude K(t) and sausage amplitude

S(t) with time for each case. We restrict the time axis to t = 140 s, because after
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this time in some cases the clumps propagate out of the domain through the x = 6

Mm boundary. This happens for the cases with ρc,1 = 800 and ρc,1 = 1000. Note

that the maximal amplitudes are still reached at a similar time as in the reference

simulation (t ∼ 65s), because we have not changed the speed of the clumps. For the

cases with ρc,1 ≥ 200, max(K(t)) and max(S(t)) increase as the kinetic energy of the

system increases, however the maximal amplitudes seem to saturate, and they do not

scale anymore with the kinetic energy of the system. When the density contrast ρc,1

differs too much from ρc,2, the collision becomes less efficient because the clump with

the smaller ρc is compressed and pushed backwards and downwards in the direction

of negative y due to the inclination of the interface of the clumps. This leads to

less kinking and expansion of the field. This is shown by Figure 4.22, which shows a

contour of the density for the case ρc,1 = 1000 at t = 62 s (the time of max(K(t))). This

case is representative for all the other cases where ρc,1 6= ρc,2. The saturation effect

of the maximal amplitudes is also shown in Figure 4.23 where we show the maximal

amplitudes for each case.

Figure 4.22: Contour of the density for the case ρc,1 = 1000 at t = 62 s.

Figure 4.23: Plot of the max(K(t)) (blue) and max(S(t)) (red) for each case.
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4.4 Parameter studies related to the asymmetry of

the setup

In this section we investigate how the asymmetry of the system affects the relative size

of the amplitudes of the generated kink and sausage perturbations by varying the angle

of the interface of the clumps (PS4) and the offset of rectangular clumps with respect

to the y = 0 axis (PS5).

4.4.1 PS4: Varying the angle θ of the colliding clumps

In this parameter study we vary the angle θ of the interface of the colliding clumps

(see Figure 4.1 for the definition of θ). All other quantities (ρc and v) are unchanged

and as in the reference simulation (ρc = 100, v = 70km/s). We consider the cases

θ = 0, 20, 40, 50, 60, 80 degrees. The angle of the interface of the reference simulation

is θ = 50 degrees. Figure 4.24 shows contours of the number density at t = 0 for the

6 cases we consider in PS4. Each case has the same initial kinetic energy, because the

angle θ is varied in such a way that the area of the clumps - and therefore the total mass

of the clumps - does not change. The internal Alfvén Mach number (MA = 1.21) and

the internal Mach number (MS = 4.22) are unchanged from the reference simulation,

as the speed (v = 70 km/s) and the density (ρc = 100) of the clumps are the same for

each case.

Figure 4.25 shows the evolution of the kink amplitude K(t) (left panel) and sausage

amplitude S(t) (right panel) for each case. For the case θ = 0 no kink amplitude is

generated due to the symmetric setup of the clumps. Only a sausage amplitude is

generated in this case (max(S(t)) = 0.52 Mm). When the angle θ increases, the asym-

metry of the system increases and a larger max(K(t)) is generated, due to a larger

force imbalance in the y direction (see Figure 4.26 and paragraph below). The maxi-

mal K(t) of 1.05 Mm is attained for the case with θ = 50 degrees. For θ > 60 degrees

the asymmetry is too large and the collision of the clumps is less efficient, which leads

to smaller max(K(t)).

The max(S(t)) does not seem to be affected by the asymmetry of the system, as

for the cases with θ ≤ 60 degrees the max(S(t)) is ∼ 0.6 Mm. This seems to be in

accordance with the fact that the initial kinetic energy of all the simulations is the

same. When θ = 80 degrees, the asymmetry is too large and the max(S(t)) is smaller.

The evolution of K(t) and S(t) after the collision does not seem to depend on the angle
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Figure 4.24: Contours of the number density at t = 0 (with magnetic fieldlines
overplotted in green) for the different cases considered in PS4. From top left to

bottom right are the cases with θ = 0, 20, 40, 50, 60, 80 degrees.

θ. This shows that the period of the oscillations (i.e. the time differences between local

maxima) is determined by the local properties of the clumps (ρc, vA,int) rather than the

asymmetry of the system.

Figure 4.25: (Left) Plot of the kink amplitudes for each angle θ with time. (Right)
Similar plot for the sausage amplitudes.
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Figure 4.26: (Top) Contours of the density at t = 45 s for the case θ = 0 (left) and
θ = 50 degrees (right). (Bottom) Plot of the average Lorentz force (j×B)y (blue)

and pressure gradient force −(∇∇∇P )y (red) in the two black squares in the top panels.
The solid (dashed) lines correspond to the average forces taken in the square where

x < 0 Mm (x > 0 Mm).

To investigate how the asymmetry of the clumps leads to a different distortion of

the magnetic field (more or less kinking), we look at the forces in the vertical direction

(y) inside the collision. In Figure 4.26 we show the average forces in the y direction

for two regions in x < 0 Mm and x > 0 Mm, for the case θ = 0 degrees and θ = 50

degrees. We average the Lorentz force (j×B)y (blue lines) and pressure gradient force

−(∇∇∇P )y (red lines) in the two black squares shown in the top panels of Figure 4.26.

The solid (dashed) lines represent the forces in the square with x < 0 Mm (x > 0 Mm).

In the case where θ = 0 the dashed and solid lines are almost identical for all averaged

forces, because the system is perfectly symmetric. This results in the generation of a

sausage mode only. For the case θ = 50 degrees, the averaged −(∇∇∇P )y is very similar

for x > 0 Mm and x < 0 Mm in the collision phase (t < 50 s), however (j×B)y is now

larger for x > 0 Mm and smaller for x < 0 Mm. This results in a negative net force for

x > 0 Mm (black dashed line) and a positive net force for x < 0 Mm (black solid line).
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This asymmetry in the Lorentz force (caused by the angle θ of the interface) leads to

a kinking of the internal fieldlines and the generation of a kink perturbation.

Figure 4.27: (Left) Plot of the maximal averaged net force in the left square shown in
Figure 4.26 for each case and 0 < t < 60 s. (Right) Plot of the max(K(t)) (blue) and

the max(S(t)) (red) for each case.

In the left panel of Figure 4.27 we show the maximal averaged net force (j×B)y −
(∇∇∇P )y in the left square (x < 0 Mm) for all cases and t < 60 s. We can see that this

corresponds with the max(K(t)) for each case shown by the right panel of Figure 4.27.

The maximal averaged net force is reached for the case θ = 50 degrees which agrees

with max(K(t)). The collision of the clumps becomes less efficient when the interface

is strongly inclined (θ = 80 degrees), which leads to a smaller averaged net force inside

the collision and smaller maximal amplitudes.

In Table 4.8 we show the initial angular momentum w.r.t. the origin of the Carte-

sian frame of reference (x = 0, y = 0) for each case in PS4, normalised to the reference

simulation (θ = 50 degrees). The origin (x = 0, y = 0) is also the initial location

of centre of mass of the system. The initial angular momentum is expected to par-

tially govern the kink distortion of the magnetic field, as absorbing angular momentum

requires a torque from magnetic tension. The angular momentum L is calculated as

|L| =
∫
V

|r× (ρv)|dV =

∫
V

|r|ρ|vx| sin(α)dV,

where r is the positional vector from the origin, and α the angle between r and v. We

see from Table 4.8 that the initial angular momentum increases when the angle θ of the

interface of the clumps increases, because the asymmetry of the setup increases with
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larger θ. The initial angular momentum is zero when θ = 0, as the setup is symmetric

about y = 0. Note that a larger angular momentum does not necessarily mean that

the maximal kink amplitude will be larger, as for extreme cases (e.g. θ = 80 degrees)

the collision is less efficient.

Angle (degrees) θ = 0 θ = 20 θ = 40 θ = 50 θ = 60 θ = 80

|L| 0 0.16 0.64 1 1.55 3.91

Table 4.8: Table of the initial angular momentum |L| =
∫
V
|r× (ρv)|dV for each case

in PS4, normalised against the reference simulation (θ = 50 degrees).

4.4.2 PS5: Varying the offset of rectangular clumps

In PS5 we investigate the asymmetry of the system by varying the offset of rectangular

clumps (θ = 0) about the y = 0 axis. We use rectagular clumps in this parameter

study rather than trapezoidal clumps for simplicity reasons (otherwise there is another

degree of complexity). This parameter study could be useful to relate with observations

of colliding clumps where the clumps only partially collide or shear past each other.

Figure 4.28 shows the initial setup for each case in this parameter study. We consider

the following 9 cases: ycent,i = [±0,±0.05,±0.1,±0.125,±0.166,±0.2,±0.3,±0.4,±0.5]

Mm, where ycent,i represents the y coordinate of the central axis of clump i. The left

clump (‘clump 1’) is offset towards positive y and the right clump (‘clump 2’) towards

negative y. Due to the offset of the clumps the width of the interface of the clumps

that is colliding is 2× (0.5− |ycent,i|) Mm. In terms of a percentage of the width of the

clumps that is colliding, we have the cases: 100%(offset = ±0), 90%(offset = ±0.05),

80%(offset = ±0.1), 75%(offset = ±0.125), 67%(offset = ±0.166), 60%(offset = ±0.2),

40%(offset = ±0.3), 20%(offset = ±0.4), 0%(offset = ±0.5). The density contrast

(ρc = 100) and speed (v = 70 km/s) of the clumps are as in the reference simulation,

hence the internal Alfvén Mach number (MA = 1.21) and the internal Mach number

(MS = 4.22) of the clumps are the same as in the reference simulation for each case.

Before analysing the evolution of the amplitudes it is worth noting that the chosen

pair of external fieldlines to measure the sausage amplitude S(t) changes when the

offset changes. The external fieldlines are chosen from the density threshold of the

clumps and are hence at the location where they enclose the clumps. Because of the

offset the external fieldlines now enclose a larger region. The external fieldlines are for
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Figure 4.28: Contour of the number density for the simulations in PS5 with varying
offset. From top left to bottom are the simulations with offsets:

ycent,i = 0,±0.05,±0.1,±0.125,±0.166,±0.2,±0.3,±0.4,±0.5 (in Mm). Here ycent,i
represents the y coordinate of the central axis of clump i.

each case initially at y = (±0.5+ycent,i) Mm. The pair of internal fieldlines to measure

K(t) is still the same as before (chosen to be at y = ±0.1 Mm). These fieldlines are

always internal and symmetrical w.r.t the part of the interface that is colliding, except

for the cases when the offset is ycent,i = ±0.4 Mm and ycent,i = ±0.5 Mm. In the former
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case the internal fieldlines enclose the part of the interface that is colliding, while in

the latter case the clumps do not collide but travel past each other. In Figure 4.29 we

show the internal and external pair of fieldlines for the case ycent,i = ±0.2 Mm at t = 0

s.

Figure 4.29: Contour of the density at t = 0 s for the case ycent,i = ±0.2 Mm with
magnetic fieldlines overplotted (green). The pink fieldlines are the external fieldlines

used to measure the sausage amplitude S(t). The dark blue fieldlines are internal
fieldlines used for the measurement of the kink amplitude K(t).

To illustrate a typical collision, we show in Figure 4.30 contours of the density

for the case with ycent,i = ±0.2 Mm at t = 35, 64, 103 s together with plots of the

measurement of the amplitudes at these times. At t = 35 s the collision is ongoing (the

clumps start to touch at t = 30 s). The top 40% of clump 1 and the bottom 40% of

clump 2 do not collide and keep propagating in the x direction. As the interface of the

clumps is straight (θ = 0), the internal fieldlines are not kinked and K(t) is small at

this stage. The middle row shows a contour of the density at the end of the collision

phase (t = 64 s) when K(t) reaches a local maximum (K(t = 64s) = 0.28 Mm). The

collision has also caused an expansion of the magnetic field which results in a sausage

amplitude of S(t = 64s) = 0.4 Mm. Max(S(t)) is reached a little bit later at t = 69s

(S(t = 69s) = 0.45 Mm). The bottom two panels of Figure 4.30 show the simulation

at t = 103 s when max(K(t)) is reached, K(t = 103s) = 0.6 Mm. It is only after the

collision (when the system produces oscillations to reach a new equilibrium) that the

internal fieldlines are more kinked and max(K(t)) is attained.

In Figure 4.31 we plot the evolution of the kink amplitude K(t) and sausage ampli-

tude S(t) for each case. We can see that max(K(t)) increases when the clumps are more

offset (up to an offset of ycent,i = ±0.3 Mm), and that the maximum is attained for the

offset ycent,i = ±0.3 Mm (40% collision). For the cases with offsets ycent,i = [±0.4,±0.5]

Mm the clumps mostly travel past each other and the collision is less efficient, which
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Figure 4.30: (Left) Contours of the density (with magnetic fieldlines overplotted in
green) of the case ycent,i = ±0.2 Mm at t = 35, 64, 103 s. (Right) Plots of the
corresponding measurements of the kink amplitude K(t) (blue) and sausage

amplitude S(t) (red) at these times.

leads to smaller maximal amplitudes. The maximal amplitudes obtained in this pa-

rameter study are smaller than the maximal amplitudes in PS4, because the clumps

only partly collide. The evolution of K(t) shows a different behaviour than in the

previous parameter studies. K(t) only slightly increases in the collision phase (t < 66

s) and max(K(t)) is obtained at a later time, around t ∼ 100 s instead of at the end

of the collision phase (t ∼ 66s). This is because the internal fieldlines are initially not

significantly kinked because the angle θ of the colliding interface of the clumps is at

zero degrees. The maxima of K(t) after the collision phase are also a lot larger and do

not seem to undergo the same damping as in the previous parameter studies. This is
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because the width of the collision region is larger when the clumps are offset. A similar

result is obtained in Section 4.5 when the width of the clumps is varied (PS7). For the

cases ycent,i = [±0.4,±0.5] Mm, K(t) remains rather large after t ∼ 200 s. This is an

artificial effect because the clumps have left the numerical domain by this time and

the fieldlines are not perfectly horizontal, which results in an (artificial) displacement

of the central axis and a non-zero K(t). As before, the sausage amplitude S(t) (right

panel of Figure 4.31) increases during the collision phase and reaches a maximum at

t ≈ 65 s. The max(S(t)) is largest when there is no offset and decreases when the offset

increases, because the collision becomes less efficient and produces smaller forces. The

evolution of S(t) after the collision phase is similar as in PS4 (except for the cases with

an offset of ycent,i = [±0.4,±0.5] as described earlier).

Figure 4.31: Plot of K(t) (left) and S(t) (right) for each case with time.

In Figure 4.32 we show max(K(t)) (blue) and max(S(t)) (red) for each case. This

Figure summarises the results above and is similar to Figure 4.27 in the sense that

max(K(t)) increases when the offset (asymmetry) increases, and a maximum is reached

for an offset of 0.3 Mm. When the offset is too large (0.4 Mm or 0.5 Mm), max(K(t))

decreases as the collision is less efficient because the clumps mostly travel past each

other. For max(S(t)), the maximum is reached when there is no offset, and it decreases

when the offset increases because the collision produces smaller forces.

In Table 4.9 we again show the initial angular momentum |L| =
∫
V
|r × (ρv)|dV

w.r.t. the origin (x = 0, y = 0) for each case in PS5, normalised to the simulation

where the largest kink amplitude is obtained (offset of 0.3 Mm). We can see that the

initial angular momentum increases for increasing offset, because the asymmetry of the

setup increases. Again, we note that a larger angular momentum does not result in a

larger maximal kink amplitude, as for extreme cases the collision is less efficient and

the clumps only partially collide.
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Figure 4.32: Plot of max(K(t)) (blue) and max(S(t)) (red) for each case.

Offset (Mm) 0 0.05 0.1 0.125 0.166 0.2 0.3 0.4 0.5

|L| 0 0.16 0.32 0.4 0.56 0.67 1 1.36 1.68

Table 4.9: Table of the initial angular momentum |L| =
∫
V
|r× (ρv)|dV for each case

in PS5, normalised against the simulation with an offset of 0.3 Mm.

4.5 Parameter studies related to the size of the

clumps

In this section we investigate the influence of the shape of the clumps on the generated

modes by varying the length (PS6) and the width of the clumps (PS7).

4.5.1 PS6: Varying the length Lclump of the colliding clumps

Figure 4.33 shows the 6 cases we consider in PS6: Lclump = 1.5, 2.4, 3, 3.6, 3.9, 4.2 Mm.

The length of the clumps in the reference simulation is Lclump = 3 Mm. We also consider

a case where we have infinitely long clumps by having the clumps initially touch the

x-boundaries of the domain. Due to the boundary conditions this is equivalent to

having infinitely long clumps. Observations of coronal rain where the clumps have a

significant length (in some cases of the order of several tens of Mm) are reported in

e.g. Antolin et al. (2015b).

The density contrast ρc = ρi/ρe = 100 and the speed v = 70 km/s are the same as

in the reference simulation, hence the internal Alfvén Mach number (MA = 1.21) and

the internal Mach number (MS = 4.22) of the clumps are the same as in the reference

simulation for each case. By varying the length of the clumps, their area changes and
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Figure 4.33: Initial conditions for the simulations with varying Lclump. From top left
to bottom are the simulations with Lclump = 1.5, 2.4, 3, 3.6, 3.9, 4.2Mm.

hence the kinetic energy is different in each case. This is shown in Table 4.10. If we

scale the length with a factor m the kinetic energy also scales with m.

Lclump (Mm) Total kin. energy ρcv
2/2 (erg) Relative tot. kin. energy

1.5 5.41× 104 0.5
2.4 8.67× 104 0.801
3 1.08× 105 1

3.6 1.3× 105 1.199
3.9 1.41× 105 1.301
4.2 1.51× 105 1.398

Table 4.10: The total initial kinetic energy and relative total kinetic energy for each
case in PS6.

Figure 4.34 shows the evolution of the kink amplitude K(t) (left panel) and sausage

amplitude S(t) (right panel) with time for each case. Max(K(t)) increases when the

110



4.5. PARAMETER STUDIES RELATED TO THE SIZE OF THE CLUMPS 111

length of the clumps increases, because the kinetic energy of the system is larger.

The scaling is initially linear, but there seems to be a saturation effect for the cases

with Lclump > 3.6 Mm (max(S(t)) shows a similar saturation effect). This saturation

happens because the restoring Lorentz force of the external field becomes strong enough

at a certain point such that it prevents any further growth of the internal magnetic

field distortion. This is also seen in the case with infinite clump length. We also

remark that the maximal amplitudes are reached at a later time when the clumps are

longer, because the time of the collision is longer and the field gets more distorted.

The evolution of K(t) and S(t) after the collision do not show significant differences

between the cases.

Figure 4.34: (Left) Plot of the evolution of the kink amplitude K(t) for each length
Lclump. (Right) Similar plot for the sausage amplitude S(t).

In Figure 4.35 we show the evolution of K(t) and S(t) for the case with infinite

clump length. Again we notice a saturation effect in K(t) and S(t), which can be

explained in terms of the forces. The right panel of Figure 4.35 shows the average

forces for the case Lclump = 3 Mm and Lclump = ∞ (averaged over the left square

in Figure 4.26). The forces for the case Lclump = 3 Mm are representative for the

cases with finite clump length, and these forces follow a similar behaviour as the one

discussed in Section 4.4.1. The average forces for the case Lclump = ∞ do not show

any oscillations as the clumps are continuously colliding, due to the fact that mass

is constantly flowing through the x boundaries. The pressure gradient force −(∇∇∇P )y

(red dashed line) and the Lorentz force (j×B)y (blue dashed line) keep growing up to

t ≈ 150s. At this stage part of the clumps are leaving the x boundaries on the other

side and the system is evolving into two counter-propagating streams of plasma (see

Figure 4.36). The distortion of the magnetic field can no longer grow and K(t) and
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S(t) remain constant. The increase in K(t) and S(t) near the end of the simulation

(t ≈ 250 s) is an artificial effect and happens because the plasma streams diverge in the

y direction (due to a significantly distorted magnetic field, see e.g. Figure 18 in Pagano

et al. (2019)). It is also worth looking at the wavelength of the generated modes when

Lclump is varied.

Figure 4.35: (Left) Plot of the evolution of K(t) and S(t) for the case Lclump =∞.
(Right) Plot of the average forces −(∇∇∇P )y (red), (j×B)y (blue) and

(j×B)y − (∇∇∇P )y (black) in the square with x < 0 Mm (see e.g. Figure 4.26), for the
case Lclump = 3 Mm (solid lines) and Lclump =∞ (dashed lines).

Figure 4.36: Contour of the number density n (×1011 cm−3) at t = 0 with magnetic
fieldlines overplotted in green, at t = 150s for the simulation where the clumps have

infinite length.

The left panel of Figure 4.37 shows the displacement D(x) for the case Lclump = 1.5

and Lclump = 4.2 Mm at the time of max(K(t)) (t = 45 s and t = 81 s respectively). The

kink amplitude K(t) = max(D(x))−min(D(x)) is larger for clumps with longer length,

but also max(D(x)) and min(D(x)) are further apart (and hence the wavelength λkink

is larger). This is shown by the dashed vertical lines for each case. For cases with longer
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Lclump, λkink is larger because the collision lasts longer and max(D(x)) and min(D(x))

propagate away from x = 0 at the local Alfvén speed (which is the same for all cases)

as soon as the collision starts. This is also confirmed by the right panel of Figure

4.37 where we plot the wavelength λkink for each case at the time of max(K(t)). The

wavelength increases approximately linearly when Lclump increases. We find similar

results for the sausage wavelength λsaus (bottom panels of Figure 4.37).

Figure 4.37: (Top left) Plot of the displacement D(x) at the time of max(K(t)) for
the cases Lclump = 1.5, 4.2 Mm. The dashed lines mark the locations of max(D(x))
and min(D(x)). The distance between the dashed lines is an estimate for half the

wavelength. (Top right) Plot of wavelength λkink for all cases with finite clump length,
at the time of max(K(t)). (Bottom) Similar panels for the sausage wavelength λsaus.
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4.5.2 PS7: Varying the width Wclump of the colliding clumps

Figure 4.38 shows the 3 cases we consider in this parameter study: Wclump = 1, 2, 3

Mm. The width of the clumps in the reference simulation is Wclump = 1 Mm. All other

quantities are as in the reference simulation. By increasing the width of the clumps

the area increases and hence the kinetic energy for each case is different. This is shown

in Table 4.11.

Figure 4.38: Setup of the three cases in PS7 (Wclump = 1, 2, 3 Mm).

Width (Mm) Total kin. energy ρcv
2 (erg) Relative tot. kin. energy

1 1.08× 105 1
2 2.14× 105 1.98
3 3.22× 105 2.98

Table 4.11: The total initial kinetic energy and relative total kinetic energy for each
case in PS7.

Figure 4.39 shows the evolution of K(t) and S(t) for each case. Max(K(t)) is

attained at t ≈ 65s for all cases, but again shows a saturation. This is because for

wider clumps the distortion of the magnetic field is less efficient as the width of the

interface that is colliding is larger. The kinetic energy that is available now has to

distort more internal magnetic fieldlines, but it does not increase the maximal distortion

(max(K(t))). This is also shown by Figure 4.40 which shows contours of the density
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(left panels) together with the measurement of the amplitudes (right panels) for the

three cases at t = 66 s. We can see that more fieldlines are distorted for wider clumps,

but the maximal distortion is essentially the same in all three cases. The evolution of

K(t) after the collision is different for wider clumps, in the sense that the oscillations in

K(t) seem to be decay less. This is because the wave guide is larger in the y direction,

and the damping time is proportional to the travel time across the clumps. A similar

result was found in PS5 when the offset of rectangular clumps was investigated. The

evolution of S(t) shows that max(S(t)) is larger for wider clumps, but again max(S(t))

seems to saturate. The evolution of S(t) after the collision does not show a difference

in the damping of the oscillations between the cases. The width of the clumps does not

have an effect on the wavelength of the oscillations, because the length of the clumps

is the same for all three cases.

Figure 4.39: (Left) Plot of the evolution of the kink amplitude K(t) for each case.
(Right) Similar plot for the sausage amplitude S(t).

115



4.6. DISCUSSION AND CONCLUSION 116

Figure 4.40: Contours of the number density (with magnetic fieldlines overplotted in
green) of the cases Wclump = 1, 2, 3 Mm at t = 66 s, together with plots of the

measurement of K(t) and S(t) at t = 66 s. Max(K(t)) (Max(S(t))) for
Wclump = 1, 2, 3 Mm is attained at t = 66, 67, 65 s (t = 66, 67, 67 s) respectively.

4.6 Discussion and conclusion

In this chapter we have analysed the collision between clumps of plasma and the subse-

quent in-situ generation of transverse MHD waves. These collisions have been observed

in, for example, coronal rain complexes and could be a source of transverse MHD waves

in the corona.

In Section 4.2 we introduced a 2D MHD model for colliding flows (based on the model

from Antolin et al. (2018)) and analysed the reference simulation of two colliding,
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trapezoidal clumps in a coronal environment. We have seen that the collisions between

the clumps is characterised by two phases, a ‘collision phase’ where the clumps collide

and the kinetic energy of the clumps is used to distort the magnetic field. In the second

phase, the ‘propagation phase’, the restoring magnetic forces produce oscillations that

propagate in the domain. We developed a way of measuring the amplitudes of the

generated modes: we associated a kink mode with a displacement of the central axis of

the wave guide, and a sausage mode with a symmetric expansion/compression about

the central axis.

In Sections 4.3, 4.4 and 4.5 we conducted an extensive parameter study to investi-

gate the size and nature of the generated perturbations. In the first section (Section

4.3) we varied the density and the speed of the clumps and found that the amplitude

of the generated modes scales with the kinetic energy of the system (PS1). When the

speed is varied in an asymmetric manner (PS2), we found that the maximal amplitudes

still scale with the kinetic energy of the system (with respect to the centre of mass).

An asymmetry in the speed of the clumps does not change the maximal amplitudes,

as long as the kinetic energy is maintained. We have seen that varying the density

asymmetrically (PS3) leads to less efficient collisions and a saturation in the maximal

amplitude of the generated modes. It can even distort the magnetic field in such a way

that it no longer behaves as a waveguide (i.e. the magnetic field is too distorted). This

could potentially lead to small reconnection events and the formation of plasmoids

if non-ideal MHD effects were to be included, although it should be noted that the

timescales of this process might be longer than the time of the collision.

In Section 4.4 we investigated the asymmetry of the setup by varing the angle of

the colliding interface (PS4) and the offset between rectangular clumps (PS5). We

found that an asymmetric setup of the clumps preferentially generates kink modes

(due to kinking of the internal fieldlines) and that sausage modes are more apparent in

a symmetric setup. However, we also found that the generation of sausage modes is less

dependent on the angle. An angle of 50 degrees (or an offset of 0.3 Mm) seems to be the

angle (offset) which generates the largest kink amplitude. Too much asymmetry (an

extreme angle or offset) leads to less efficient collisions and smaller maximal amplitudes.

In the final section (Section 4.5) we investigated how the size of the clumps deter-

mines the generated perturbations. We varied the length (PS6) and width (PS7) of

the clumps. We found that longer clumps lead to longer collision times and this in-
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creases the wavelength of the generated modes. Increasing the length too much however

leads to saturation effects of the maximal sausage and kink amplitudes as the restoring

magnetic forces limit the growth of the distortion of the magnetic field. Increasing the

width of the clumps has a similar saturation effect on the size of the amplitude, as the

kinetic energy of the collision is now distributed over a larger area. The width of the

clumps does not have a significant effect on the wavelength of the generated modes.

We also found that wider clumps seem to undergo less damping as the waveguide is

larger in the transverse direction.
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Chapter 5

Coronal rain collisions and

oscillations in coronal loops

5.1 Introduction

In Chapter 4, we conducted a parameter study of colliding plasma clumps, and in-

vestigated in detail the generation of the transverse MHD waves. In this chapter, we

extend the investigation of the colliding clumps/blobs by basing the parameters of the

clumps in the model on the observational study of coronal rain presented in Antolin

and Rouppe van der Voort (2012). We will run a large set of simulations of colliding

clumps using the techniques from Chapter 4 to analyse the transverse MHD waves

resulting from the collisions. In Section 5.2 we discuss the observational study of An-

tolin and Rouppe van der Voort (2012), and in section 5.3 we obtain distributions for

the parameters of the blobs in our simulations. In Section 5.4 and 5.5 we present the

results and the analysis of the simulations. We end the chapter with a discussion and

conclusion section (Section 5.6).

5.2 Observational study of coronal rain

Antolin and Rouppe van der Voort (2012) (Antolin2012 from now on) observe coronal

rain in Active Region (AR) 11017, a plage region at the east solar limb on 2009 May 10,

with the CRISP instrument of the Solar Swedish Telescope (SST). The observations

are in Hα and run from 8:50 to 10:15 UT with a cadence of 6.36s. The dataset consists

of 2552 coronal rain blobs falling along 242 loop-like paths at the east limb of the Sun,

with a smaller subset of blobs falling along loop-like paths on the disk. We will present
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the histograms for both subsets of the dataset, but when determining the parameters

for the simulations we will only use the observations of the blobs on the limb, since

this is the larger dataset.

Velocity

The velocity of the blobs is determined by measuring the projected velocity on the

plane of sky (POS), vproj, and the Doppler velocity, vDop. The total velocity of the

blobs is then obtained from vtot =
√
v2
proj + v2

Dop.

Figure 5.1: Normalised histogram of the total velocity vtot of the coronal rain blobs
(km/s). The solid histogram indicates the dataset on the limb of the Sun and the
dashed histogram the dataset on the disk. The dotted vertical line marks the average
velocity, 70 km/s. Figure obtained from Antolin2012, Figure 4.

Figure 5.1 shows the normalised histogram of the total velocity vtot (km/s) for all

observations. The speed of the falling blobs ranges widely from v = 3 − 150 km/s

with an average of 70 km/s, shown by the dotted line. The standard deviation of the

total velocity is of the order of 5 km/s, which is also the binwidth of the histogram.

The speed of the blobs is smaller than their expected free-fall speed (i.e. the speed

they would obtain falling under the force of gravity from the location where they are

formed), with the average acceleration of the blobs of the order of 0.08 km/s2 compared

to the estimated effective gravity of 0.13 − 0.21 km/s2. These smaller velocities and

accelerations have also been mentioned by e.g. Schrijver 2001; De Groof et al. 2005;

Antolin and Rouppe van der Voort 2012; Ahn et al. 2014; Kohutova and Verwichte

2016; Verwichte et al. 2017. Recent numerical simulations have shown that the pressure

gradient along the loop is the major agent that slows the blobs down (see e.g. Oliver

et al. 2016; Kohutova and Verwichte 2018b; Mart́ınez-Gómez et al. 2020).
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Length and width

Blobs can change their shape when falling down. In general blobs tend to elongate

when falling, but they can even break up into smaller clumps, leading to so called

“shower” events (see Antolin2012). Figure 5.2 shows a normalised histogram of the

lengths (left panel) and the widths (right panel) of the observed blobs in Antolin2012.

The length of the blobs varies between L = 0.2− 2.5 Mm with an average of 0.71 Mm,

and with a peak at 0.5 Mm. Observations shows that the width of the blobs remains

more constant when falling and only for extremely wide blobs (larger than 0.7 Mm)

does the width seem to decrease due to shearing with the environment. The width

of the blobs ranges from 0.15 − 0.8 Mm with an average of 0.3 Mm. However, the

authors note that the width histogram is likely an upper estimate, as smaller widths

are harder to observe due to the resolution of the instrument (the lower threshold of

the instrument is 150 km, see Antolin2012). This was also mentioned by Scullion et al.

(2014).

Figure 5.2: Normalised histograms for the lengths and the widths of the blobs. The
black histograms denote the measurements for which the 1σ errors are above 10% of
the measured values (See Antolin2012, section 3.2 for more details). Figures obtained
from Antolin2012, Figure 10.

Temperature

Figure 5.3 shows the normalised histogram of the temperature of the blobs. Due to

the nature of its formation (thermal instability), coronal rain is characterised by cool,

chromospheric temperatures of the order of ∼ 103 − 104 K. The distribution shows a

peak around ∼ 7000 K and the average temperature of the blobs is 104 K.
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Figure 5.3: Normalised histogram of the temperature of the blobs. Figure obtained
from Antolin2012, Figure 15.

5.3 Parameter study

In order to study the oscillations generated by collisions of coronal rain blobs in active

regions, we use the 2D model from Chapter 4 and devise a large set of representative

simulations (201) for which we base the properties of the blobs in our model on the

study by Antolin2012. The number of simulations is large enough such that statistical

conclusions can be made, but it keeps computational costs reasonable.

We will use a “bullet-like” shape for the blobs, as shown in Figure 5.4. This shape

is more natural than the trapezoidal shape which we used in Chapter 4, which was

used to initiate a kink-like deformation of the field. Because in our model we will

include an offset between the blobs, this will provide an asymmetry to get a kink-like

deformation of the field. It was also shown by Antolin et al. (2018) that bullet-shaped

blobs with an offset give similar deformations of the field and oscillations compared to

trapezoidal-shaped blobs.

The following parameters need to be determined in each simulation: the veloc-

ity of the blobs, v1, v2, the density ρ1, ρ2, the lengths L1, L2, the widths W1,W2 and

the offset O. In our model we will assume that v1 = v2 = v and that the mass

M = ρ1Area1 = ρ2Area2 (kg/m) is the same for both blobs, in order for the collision

and the early evolution after the collision to take place in the centre of the domain.

Our model can represent the collision between a downwards propagating coronal rain

blob and an upward propagating blob or flow (e.g. an evaporation), as observed in
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Figure 5.4: Contour of the number density of two bullet-shape blobs.

Antolin et al. (2018). In our setup, this would be the left and right blob, respectively.

In Chapter 4 (section 4.3.2) we showed that the relative velocity of the blobs deter-

mines the collision. Hence, our model could also represent collisions between coronal

rain blobs which are falling down at different speeds.

5.3.1 Blob parameters

Velocity v

Figure 5.5 shows the histogram of the n = 201 velocities in our parameter study. We

obtain this histogram by rescaling the normalised histogram of the total velocity of

the observed coronal rain blobs (Figure 5.1) to n observations and then drawing (at

random) ki velocities in bin i, where ki is the number of observations in bin i (hence∑
i ki = n). The velocity ranges between 12.5− 132.2 km/s, with the average velocity

〈v〉 = 67.6 km/s (vertical dashed line) and the standard deviation σ(v) = 22.4 km/s.

This is in agreement with the observed histogram in Figure 5.1.

Widths W1,W2

Figure 5.6 shows the histograms of the widths W1 (green) and W2 (orange) of the blobs

in our parameter study. These were obtained by applying the same procedure as before,

and drawing twice n points from the rescaled histogram of the observed coronal rain

widths in Figure 5.2. The dashed lines represent the average width, 〈W1〉 = 〈W2〉 =

0.31 Mm and σ(W1) = σ(W2) = 0.09 Mm, which is consistent with the observed

histogram in Figure 5.2.
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Figure 5.5: Histogram of the n velocities of the blobs for our simulations, based on the
normalised histogram in Figure 5.1. The dashed vertical line is the average velocity,
〈v〉 = 67.6 km/s.

Figure 5.6: Histogram of the n widths W1 (green) and W2 (orange) in Mm, based on
the normalised histogram in Figure 5.2. The dashed vertical line is the average width,
〈W1〉 = 〈W2〉 = 0.31 Mm.

Lengths L1, L2

Antolin2012 states that blobs tend to get longer and accelerate when falling (although

they experience a less than free-fall acceleration). We therefore link the length of the

blobs with the velocity in our model, by re-ordering the lengths array for the first blobs,

such that longer blobs travel faster and shorter blobs travel slower.

Figure 5.7 shows the histogram of the n lengths L1 in Mm, based on the (rescaled) nor-

malised histogram of the observed lengths of the coronal rain blobs in Figure 5.2. This

was again obtained by applying the same procedure as before. The dashed vertical line
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Figure 5.7: Histogram of the n lengths L1 (Mm), based on the normalised histogram
in Figure 5.2. The dashed vertical line is the average length of L1, 〈L1〉 = 0.73 Mm.

Figure 5.8: (Left) Plot of the distribution f(α) = − tanh(0.5(α − 8)) for 1 < α < 10.
(Right) Histogram of the n lengths L2 (red) in Mm. The red dashed line is the average
L2, 〈L2〉 = 3.3 Mm.

represents the average, 〈L1〉 = 0.73 Mm and the standard deviation is σ(L1) = 0.35

Mm, which is in agreement with the observed histogram in Figure 5.2.

In this parameter study, we will assume that the right blob is always longer or equal

in length than the left blob in a simulation. If we assume the right blob would be

travelling upward along a coronal loop, this setup allows us to model the collision of a

short, dense (falling) blob with an (evaporative) upflow (modelled as an elongated blob

travelling upwards) within our parameter study. We therefore have that α := L2

L1
≥ 1,

and we assume that α is distributed according to some function such that it is more

likely that L2 ≈ L1 and less likely that L2 is much longer than L1. The left panel of
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Figure 5.8 shows the function f(α) = − tanh(0.5(α− 8)) with 1 < α < 10. The upper

value of α = 10 was chosen arbitrarily. Using a Monte Carlo method, we create a

probability distribution from f(α). We draw points (αi, yi) at random in the rectangle

defined by [1, 10]× [min(f),max(f)] and discard a point if yi > f(αi). We repeat this

procedure until we have n points αi. The length L2 of the second blob is then deter-

mined from L2 = αL1, where α = [α1, α2, ..., αn]. The right panel of Figure 5.8 shows

the histogram for the length L2 (red) in Mm. The average length of the second blob,

〈L2〉 = 3.3 Mm (red dashed line), is larger than 〈L1〉 = 0.73 Mm, and the standard

deviation σ(L2) = 2.3 Mm is also larger.

Densities ρ1, ρ2

Figure 5.9: Histogram of the n densities ρ1 (blue) and ρ2 (brown) in kg/m3. The dashed
lines on Figure 5.9 are the median of ρ1 and ρ2, 8.5 × 10−11 kg/m3 and 1.9 × 10−11

kg/m3 respectively.

Figure 5.9 shows the histogram of the n densities ρ1 (blue) and ρ2 (brown) of

the blobs. The density ρ1 is drawn uniformly from the interval for coronal rain core

densities, [1.67 × 10−11, 1.67 × 10−10] kg/m3 (Antolin, 2020). The density ρ2 of the

second blob is then calculated from the assumption that both blobs have the same

mass. Hence

ρ2 =
M

Area2

=
ρ1Area1

Area2

,

where Areai is the area of blob i. The area of a (bullet-shape) blob consists of a

rectangle and a half ellipse, as sketched in Figure 5.10. The rectangle has length

L′ = L− 3W
2

and width W , and the ellipse has short axis W/2 and long axis 3W
2

, such

that the total length of the blob is L. As we determine L and W independently for

each blob, it can happen that 3W
2
> L (L′ < 0). When this happens (very wide and
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short blobs), the blobs only have a bullethead (ellipse) with short axis W/2 and long

axis L (right panel of Figure 5.10). In this way the blobs always have length L and

width W as required. The area of the blobs is then L′W + 3πW 2

8
when L′ > 0 and πLW

4

when L′ < 0.

Figure 5.10: (Left) Schematic plot of a bullet-shaped blob, when L′ > 0. The blob
consists of a rectangle and a half ellipse, separated by the dotted vertical line in the
plot. (Right) Similar plot when L′ < 0, with the blob now only consisting of a half
ellipse.

The dashed lines on Figure 5.9 are the median of ρ1 and ρ2, 8.5× 10−11 kg/m3 and

1.9×10−11 kg/m3 respectively. Because the second blob in general has larger dimensions

(L2 ≥ L1), the density ρ2 is on average smaller than ρ1, as can be seen in the histogram.

We remark that in 107 simulations we still have a density ρ2 in the interval of the

observed coronal rain densities in Antolin (2020) ([1.67× 10−11, 1.67× 10−10] kg/m3).

The standard deviations are σ(ρ1) = 4.3×10−11 kg/m3, and σ(ρ2) = 3.3×10−11 kg/m3.

Offset

A last parameter in our model is the offset of the blobs, which determines whether the

blobs partially or fully collide.

Because coronal rain blobs are tied to magnetic strands, we assume that the possible

offset between the centres of two blobs is [−Rstrand, Rstrand], with Rstrand the average

radius of a strand. The average area of a strand is Astrand =
Aloop

Nstrands
≈ 0.1 Mm2,

where Aloop ≈ 8.8× 102 Mm and Nstrands ≈ 9000 are estimated in Antolin2012. Hence

Rstrand =
√

Astrand

π
= 0.18 Mm. The y coordinates of the centre of the blobs will be in

[−Rstrand, Rstrand] = [−0.18, 0.18] Mm, therefore we draw n coordinates uniformly at

random from this interval for the first and the second blob.

The offset O is then given by the difference in the y coordinates of the centres of the

blobs (see Figure 5.11). In the simulations, we place the clumps symmetrically about

the y = 0 line in the domain, i.e. the central axis of the left blob at y = O/2 and the

central axis of the right blob at y = −O/2.

127



5.3. PARAMETER STUDY 128

Figure 5.11: Sketch of the offset between the clumps. The solid black lines mark the
boundary of the strand, and the dashed line is the central axis of the strand (y = 0).
The dashed blue lines are the symmetry lines of the clumps.

Figure 5.12: Histogram of the n offsets O (Mm) in our parameter study. The dashed
vertical line represents the average offset, 〈O〉 = 0.115 Mm.

Figure 5.12 shows the histogram of the n offsets O, with the dashed line representing

the average offset (0.115 Mm), and the standard deviation is 0.08 Mm. The offset

between the blobs is sometimes too large to lead to a collision. We find 10 simulations

where the blobs do not collide, which we exclude from the parameter study (bringing

the total number of simulations down to 191).

5.3.2 Background parameters: active region loops

So far, we have focused on establishing the parameters of the blobs but the external

parameters in the simulations are still to be determined. To begin, we set the exterior

density to be the minimal blob density, ρe = min(ρi) = 1.44 × 10−12 kg/m3. This is

a typical coronal density for an active region loop (see e.g. Brooks et al., 2012) and it

ensures that the blobs are denser than the exterior, apart from one simulation where

one blob has the density of the environment. Figure 5.13 shows the histograms of the

density contrasts for the blobs, ρ1
ρe

and ρ2
ρe

. We can see that the contrast ranges from

1−150, which is consistent with observations (Antolin, 2020). The dashed lines on the

histograms represent the median, 59 for ρ1
ρe

and 13 for ρ2
ρe

.
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Figure 5.13: Histograms of the density contrast ρ1
ρe

(left) and ρ2
ρe

(right). The dashed
vertical lines represent the median, 59 for ρ1

ρe
and 13 for ρ2

ρe
.

The background temperature is uniform and set to a typical coronal value of 1 MK.

The temperatures of the blobs is then determined from the fact that the blobs are

in pressure equilibrium with the environment (i.e. the gas pressure is uniform in the

domain). Hence,

Ti =
ρeTe
ρi

.

Figure 5.14: Histograms of the temperature of the blobs. The dashed vertical lines
represent the median temperature, Med(T1) = 1.7×104 K and Med(T2) = 7.8×104 K.
The binsize in the histogram on the left is 103 K, in the histogram on the right 104 K.

Figure 5.14 shows the histograms of the temperatures of the blobs for the first blob

(blue) and the second blob (red). We can see that the temperature of the first (left)

blob ranges between 8000 K and 8× 104 K, with the peak of the distribution towards

lower temperatures. This is consistent with the histogram of the temperatures in
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Antolin2012 (Figure 5.3). The median is given by the dashed line, Med(T1) = 1.7×104

K. The right panel of Figure 5.14 shows the histogram of the temperatures of the

second blob. This distribution is flatter and ranges between 5000 K and 106 K, and

the median is Med(T2) = 7.8 × 104 K. The plasma beta is chosen to be 0.01 such

that the resulting magnetic field is 25 G, which corresponds to a typical magnetic field

in active region loops, see e.g. Froment et al. (2017). These parameters result in an

exterior Alfvén speed of vA,ext = 1858 km/s and an external sound speed of cs,ext = 166

km/s, which means that all simulations are sub-Alfvénic and subsonic with respect to

the environment.

5.3.3 Mach number regimes

Figure 5.15 shows a histogram of the internal Mach numbers MS = v/cs,int (left) and

the internal Alfvén Mach numbers MA = v/vA,int (right) of the first (top row) and

second blob (bottom row) in all 191 simulations. We can see that the majority of the

blobs are supersonic (Med(MS,1) = 3.04 and Med(MS,2) = 1.45), and that all blobs

are sub-Alfvénic (Med(MA,1) = 0.27 and Med(MA,2) = 0.13). This means that, as the

Alfvén speed is the more important one in a low beta regime, information will be able

to transmit upstream in the blobs and the collisions will likely be less violent.

5.3.4 Model setup and numerical code

We use the numerical MHD code MPI-AMRVAC (Porth et al., 2014) to run the 191

simulations. For more details on this code and the equations we refer to Chapter 4,

section 4.2. The numerical domain is a 2D, cartesian domain and has dimensions 18

Mm (x-direction) by 6 Mm (y-direction), with 1536 gridpoints in the x-direction and

512 gridpoints in the y-direction. The grid resolution is then dx = dy = 11.7 km.

The boundary conditions in the simulation are continuous in the ghost cells in x and y

(i.e. the values in the outmost cell in the domain are copied in the ghost cells), which

allows plasma to leave the domain. The simulations run for 200s, which is sufficient to

investigate the oscillations resulting from the collision. We do not include gravity, non-

ideal effects or thermal conduction, optically thin radiation or a background heating,

as these do not affect the generation of the waves and/or act on a longer timescale.
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Figure 5.15: Histograms of the internal Mach numbers MS (left) and the internal Alfvén
Mach numbersMA (right), for the first blob (top row) and the second blob (bottom row)
in the simulations. The dashed vertical lines represent the median in each histogram,
Med(MS,1) = 3.04, Med(MA,1) = 0.27, Med(MS,2) = 1.45, Med(MA,2) = 0.13. The
vertical line at MS = 1 in the left histograms marks the separation between subsonic
and supersonic blobs.

5.4 Results: Active region loops

5.4.1 Measured amplitudes

We first analyse the amplitudes of the oscillations that are generated by the collision

of the blobs in each simulation. These amplitudes are measured in the same way as

in Chapter 4, with an external pair of fieldlines enclosing the two blobs measuring the

sausage amplitude, and an internal pair of fieldlines symmetrically placed at a distance

of 1 gridpoint along the symmetry line of collision, to measure the kink amplitude. An

example of these pairs of fieldlines is shown in Figure 5.16.

Figure 5.17 shows a histogram of the maximal kink and maximal sausage amplitudes
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Figure 5.16: Contour of the number density of two blobs. The pink lines are the
external pair of fieldlines used for the measurement of the sausage amplitude, the
light blue pair of fieldlines is the internal pair of fieldlines used to measure the kink
amplitude. The green solid lines mark the overlapping region of the colliding blobs and
the green dashed line is the symmetry line of collision.

for all 191 simulations. The median maximal amplitudes are given by the blue (kink)

and the red (sausage) dashed lines, and are 1.7 km and 3.1 km, respectively. The dotted

vertical line marks the gridsize in the simulations (11.7 km). The maximal amplitudes

are extremely small and the majority are smaller than the gridsize. Although we

are able to obtain sub-grid measurements for these amplitudes by interpolating the

magnetic field components and field line coordinates between grid points, we will not

consider these amplitudes as reliable. Even the largest of the maximal amplitudes

(∼ 33 km) is too small to be observable with the resolution of current instruments (the

resolution of Hinode SOT, used for the observations in Antolin et al. (2018), is ∼ 80

km.). Future instruments, such as DKIST VBI blue (393−486 nm) (see e.g. Tritschler

et al., 2016), will have a resolution of 16 km and could be able to observe some of these

amplitudes.

5.4.2 Collisions

We investigate the collisions in three different simulations in more detail, to understand

why the maximal ampitudes are a lot smaller than the observations presented in Antolin

et al. (2018). We choose the simulation which generates the largest maximal amplitudes

(simulation 158), and two simulations where the maximal amplitudes are within 10% of

the median maximal amplitudes (simulations 137 and 165). Table 5.1 gives an overview

of the different parameters in these simulations.

Figure 5.18 shows contours of the number density for these three simulations at

t = 0s (left panels) and at the time of the maximal kink amplitude (right panels). The

first two rows are the average simulations (simulations 137 and 165) and the bottom row

is the maximal simulation (simulation 158). We can see that in the average simulations

the blobs do not collide at the time of the maximal kink distortion. There is barely
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Figure 5.17: Histogram of the maximal kink amplitudes (blue) and the maximal sausage
amplitudes (red) in Mm for the 191 simulations. The dashed blue and red lines at
0.0017 Mm and 0.0031 Mm represent the median of the maximal kink and maximal
sausage amplitudes. The dotted vertical line is the gridsize in the simulations (0.0117
Mm).

Simulation 137 158 165

v 78.7 km/s 89.7 km/s 95 km/s
ρ1 2.8× 10−11 kg/m3 1.6× 10−10 kg/m3 9.8× 10−11 kg/m3

ρ2 8.7× 10−12 kg/m3 2.7× 10−10 kg/m3 5.2× 10−12 kg/m3

L1 0.87 Mm 1.04 Mm 1.14 Mm
L2 1.97 Mm 1.22 Mm 10.23 Mm
W1 0.32 Mm 0.45 Mm 0.12 Mm
W2 0.41 Mm 0.2 Mm 0.26 Mm

Offset 0.11 Mm 0.04 Mm 0.12 Mm

Table 5.1: Table of the different parameters for simulations 137, 158 and 165.

any distortion visible in the magnetic field, as was already clear from the histogram of

the maximal amplitudes (Figure 5.17). This happens for two reasons. Firstly, in the

majority of the simulations there is a lack of collisions as the increase of the thermal

pressure between the blobs slows the blobs down and eventually brings them to a

halt before they can collide. Secondly, the field distortion is very small because of

the relatively large restoring Lorentz force (due to the relatively large magnetic field

strength, B = 25 G), which prevents a significant distortion of the field, and prevents

the onset of oscillations. The maximal simulation (bottom row) is one of the few

simulations where the clumps do collide, but the resulting distortion in the field is

extremely small. Hence in this case ‘kink amplitude’ does not imply the presence of a

true kink wave, but rather refers to the presence of a kink-like distortion of the field.
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Figure 5.18: Contours of the number density at t = 0s (left panels) and at the time of
the maximal kink amplitude (right panel) for three simulations. The top two rows are
two average simulations (simulation 137 and simulation 165), the bottom row is the
simulation where the largest amplitudes are obtained (simulation 158).

Figure 5.19 shows the pair of internal and external fieldlines used to measure the

amplitudes at the time of the maximal kink amplitude (t = 20s) for the simulations

137 (left) and 158 (right). In simulation 158, we see a sausage-like expansion of the

external pair of fieldlines and a kink-like displacement in the internal pair of fieldlines

(max(K) = 0.024 Mm and max(S) = 0.033 Mm). In simulation 137, there is barely a

sausage-like expansion and a kink-like displacement visible in the external and internal

pair of fieldlines (max(K) = 0.0019 Mm and max(S) = 0.003 Mm).
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Figure 5.19: Plot of the internal pair L1,int, L2,int and external pair L1,ext, L2,ext of
fieldlines at t = 20s, together with the expansion E and the displacement D of the
external pair and internal pair of fieldlines, respectively, and the kink K (blue) and
sausage S (red) amplitudes, for simulation 137 (left panel) and simulation 158 (right
panel). In the left panel we have not overplotted the size of K and S, to keep the plot
readable.

Kinetic energy and thermal pressure

In this section we investigate in more detail why the blobs in most simulations do

not collide. Figure 5.20 shows the initial volume integrated kinetic energy associated

with the x-component of the velocity (
∫ ρv2x

2
dV ) in the domain of the 191 simulations,

normalised to the initial kinetic energy of the reference simulation of Chapter 4, which

was used to model the oscillations presented in Antolin et al. (2018). We normalise

against this simulation as we know that for the parameters in this reference simulation

there is a collision beteen the blobs, followed by significant oscillations. The blobs in

the reference simulation have a trapezoidal shape and are 3 Mm long and 1 Mm wide.

They have a density of 1×10−10 kg/m3 and a speed of 70 km/s, which are both slightly

higher than the median values in the current parameter study, Med(ρ1) = 8.5× 10−11

kg/m3 and Med(v) = 65.6 km/s. The magnetic field in the reference simulation is

initially straight and uniform, with a field strength of B = 6 G.

The left panel of Figure 5.20 shows that all of the simulations have a smaller kinetic

energy than the reference simulation (shown by the dashed line at 1). The average

relative kinetic energy of the simulations is 0.08 (blue dashed line). The kinetic energies

are smaller mainly because of the smaller blob dimensions (〈L1〉 = 0.73 Mm, 〈L2〉 = 3.3

Mm and 〈W1〉 = 〈W2〉 = 0.31 Mm), and the smaller densities. The velocities of the

blobs are on average comparable. Generally speaking, the blobs need to have enough

kinetic energy in order to collide, to overcome the negative work done by the thermal
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Figure 5.20: Histograms of the relative kinetic energy of the simulations (left panel)
and the relative maximal thermal energy in the simulations (right panel), normalised
to the reference simulation (black dashed vertical lines). The blue dashed vertical lines
mark the average relative kinetic energy, 0.08 and the average relative maximal thermal
pressure, 0.46.

pressure gradient force on the blobs. The right panel of Figure 5.20 shows a plot of

the maximal thermal energy p
γ−1

in the domain in all the simulations, compared to the

reference simulation (dashed line at 1). The maximal thermal energies are on average

smaller than in the reference simulation (black dashed line), with 0.46 the average

relative maximal thermal energy. This is because the blobs have on average a smaller

kinetic energy (see left panel of Figure 5.20), and hence they compress the plasma less.

However, in 11 simulations the maximal thermal energy is larger. The main reason

for this is that the background density is 44% larger than in Chapter 4. Because of

the smaller kinetic energies and the smaller and comparable thermal energies in the

domain, collisions will be less common in most simulations. The kinetic energy of the

blobs is in general not sufficient to overcome the thermal pressure which builds up

between the blobs as they propagate towards each other.

Figure 5.21 shows a plot of the evolution of the ratio of the volume integrated

kinetic energy associated with the x-component of the velocity in the domain, to the

average thermal energy in a square between the blobs, for the 3 simulations discussed

previously and the reference simulation. The square over which the thermal energy is

averaged is 20× 20 gridpoints (0.23× 0.23 Mm2), centred on x = y = 0. The ratio of

the kinetic energy to the average internal energy is significantly larger for the reference

simulation (black), than for the three simulations considered here (the blue line is the

maximal simulation (158), and the green and red line are the average simulations, 137

and 165, respectively). When the blobs approach each other, the energy ratio decreases
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Figure 5.21: Plot of the ratio of the volume integrated kinetic energy associated with
the x-component of the velocity in the domain, to the average internal energy in a
0.23 × 0.23 Mm2 square centred at x = y = 0 Mm, for the reference simulation
(black line), the maximal simulation (simulation 158, blue line), and the two average
simulations (simulation 137, green line and simulation 165, red line).

as the blobs are slowed down due to the increase in thermal pressure between the blobs.

This figure suggests that on average, the blobs in the new simulations do not collide

because they do not have enough kinetic energy to overcome the increasing thermal

pressure between the blobs. In the reference simulation, there is a collision and the

oscillations in the domain are also reflected in this quantity. This behaviour is not

present in the blue, green or red lines.

Figure 5.22 shows a log-log plot of the initial kinetic energy to the average thermal

energy ratio for all 191 simulations, with the density ratio ρ1/ρ2 of the blobs on the x-

axis. The horizontal and vertical dashed lines are the median kinetic to thermal energy

ratio (0.015) and the median density ratio (4.67). The symbols indicate whether there

is a collision (diamond symbol) or no collision (asterisk symbol). Blobs are considered

to be colliding if the front of the blobs are closer than a certain distance (0.3 Mm)

during the course of the simulation, and if the density between the blobs reaches a

certain threshold (40 times the external background density) due to a compression of

the external plasma by the blobs. The simulations are coloured according to the offset

between the blobs in a simulation: blue if the blobs have an offset O less than half of

the median offset (O ≤ 0.048 Mm), green if the offset is between half the median and

the median offset (0.048 < O ≤ 0.097 Mm), and red if the blobs have an offset larger

than the median (O > 0.097 Mm). We can see that the blobs collide in only 7 simula-

tions, and that these simulations have, on average, a larger kinetic to thermal energy

ratio (energy ratio larger than ∼ 10−1.5 ≈ 0.03). However, there are a substantial
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Figure 5.22: Log-log plot of the ratio of the volume integrated kinetic energy associated
with the x-component of the velocity in the domain, to the average internal energy in
a 0.23 × 0.23 Mm2 square centred at x = y = 0 Mm at t = 0s for each simulation,
with the density ratio ρ1/ρ2 of the blobs on the x-axis. The horizontal and vertical
dashed lines are the median energy ratio (0.015) and the median density ratio (4.67).
The diamond symbols represent a collision, and the asterisk symbols no collision. The
simulations are coloured according to the offset between the blobs in a simulation: blue
if the blobs have an offset O less than half of the median offset (O ≤ 0.048 Mm), green
if the offset is between half the median and the median offset (0.048 < O ≤ 0.097 Mm),
and red if the blobs have an offset larger than the median (O > 0.097 Mm).

number of simulations which have an equally large energy ratio but where a collision

does not occur. One reason is that in these simulations, the blobs have a relatively

large offset (red colour). Five of the seven simulations that do collide have an offset

smaller than the median offset. In addition, in six of the seven simulations the density

ratio ρ1/ρ2 is smaller than the median density ratio (vertical dashed line). In some

of the simulations that have a high energy ratio, but there is no collision, the density

ratio between the blobs is too large (ρ1 � ρ2, top right corner of Figure 5.22). In this

case, when the blobs approach each other, the second (less dense) blob is compressed

and pushed ‘downwards’ (i.e. towards y < 0). It was shown in Chapter 4 (parameter

study 3) that if the density ratio ρ1/ρ2 of the blobs is too large, the collision is less

efficient and the second (less dense) blob is compressed and pushed downwards.

It is worth remarking that in all of the simulations where a collision happens, the

blobs have an Alfvén Mach number of 0.4− 0.7 (first blob) or 0.25− 0.7 (second blob),

which is significantly larger than the median Alfvén Mach numbers (Med(MA,1) = 0.27

and Med(MA,2) = 0.13).
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5.4.3 Decreasing the magnetic field and the background pres-

sure

We repeat the three simulations discussed in the previous section with a lower mag-

netic field and a lower background pressure. We first decrease the magnetic field

and keep the other background plasma parameters as before. We consider the cases

B = {5, 10, 15, 20, 25} G, where 25 G is the magnetic field used previously and which

we consider representative of active region loops.

Figure 5.23: Plots of the maximal kink (blue) and maximal sausage (red) amplitudes
for simulations 137 (top left panel), 165 (top right panel) and 158 (bottom panel), as a
function of the magnetic field strength. The horizontal dotted line marks the gridsize
in the simulations (11.7 km).

Figure 5.23 shows a plot of the maximal kink (blue) and sausage (red) amplitudes

for simulations 137 (top left panel), 165 (top right panel) and 158 (bottom panel)

for the different magnetic field strength cases. The horizontal dotted line marks the

gridsize in the simulations (11.7 km). We see that in simulations 137 and 165, the

maximal amplitudes are only above the gridsize for B ≤ 10 G. We remark that the
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blobs in these cases still do not collide, because the background pressure is unchanged,

but the field distortion is now larger. In all cases, the maximal amplitudes increase

with decreasing magnetic field strength and the increase roughly follows a ∼ 1
B2 scaling,

which is not unexpected, as the restoring forces (the magnetic tension force and the

magnetic pressure force), also scale with B2. In simulation 158 in the B = 5 G case,

the relative increase in the kink and sausage amplitudes appears smaller, which could

be because the collision is now quite violent and the fieldlines become very distorted

(see left panel of Figure 5.24), such that the method to measure the kink amplitude

fails. This is shown by the right panel of Figure 5.24 which shows the internal and

external pair of fieldlines used to measure the amplitudes, at t = 32s. The interpolated

internal fieldlines L1,int, L2,int used for the measurement of the kink amplitude do not

capture the complete distortion of the fieldlines in the left panel of Figure 5.24, and the

measured kink amplitude is significantly smaller. The increase of the sausage amplitude

in this case is also smaller, possibly because of a saturation effect due to the restoring

forces of the external magnetic field. A similar saturation effect was also present in

Parameter Study 6 of Chapter 4.

Figure 5.24: (Left) Contour of the number density at t = 32s with magnetic fieldlines
overplotted in green, for simulation 158 in the B = 5 G case. (Right) Plot of the
internal pair and external pair of fieldlines at t = 32s for the same simulation, together
with the expansion E and the displacement D of the external pair and internal pair of
fieldlines, respectively, and the kink K (blue) and sausage S (red) amplitudes.

We also rerun the three simulations with a decreased background pressure to see if

this allows the blobs to collide. We decrease the background density with a factor of

10 such that ρext,new = 1.44 × 10−13 kg/m3 and we keep the external temperature at

Text = 1 MK. The magnetic field is kept at 25 G, and the plasma beta is 0.001. Figure

5.25 again shows contours of the number density for the simulations 137 (top row), 165
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Figure 5.25: Contours of the number density initially (left panels) and at the time of
the maximal kink amplitude (right panel) for the three simulations 137 (top row), 165
(middle row) and 158 (bottom row) with the lower background pressure.

(middle row) and 158 (bottom row), at t = 0s (left column) and at the time of the max-

imal kink amplitude (right column). A clear difference with Figure 5.18 is that now the

blobs also collide in simulations 137 and 165, because of the lower background pressure.

Figure 5.26 again shows a plot of the evolution of the ratio of the volume integrated

kinetic energy associated with the x-component of the velocity to the average thermal

energy between the blobs, for the three simulations discussed previously and the refer-

ence simulation. We see that the initial values are 10 times higher, compared to Figure

5.21, which facilitates the onset of collisions. The blue curve goes up after t ∼ 30s

because in simulation 158 the blobs still have a lot of kinetic energy after the collision
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and the thermal energy in the middle of the domain decreases because of rarefraction.

Figure 5.26: Plot of the ratio of the volume integrated kinetic energy associated with
the x-component of the velocity in the domain, to the average internal energy in a
0.23× 0.23 Mm2 square between the blobs, for the same simulations as in Figure 5.21,
but with the lower background density for simulation 137 (green line), 158 (blue line)
and 165 (red line). The black line corresponds to the reference simulation.

5.5 Results: Quiet Sun background

In this section, we rerun the 191 simulations from section 5.4 but with a lower back-

ground pressure and in a lower magnetic field configuration, in order to allow more

collisions of blobs and oscillations. We decrease the background density by a factor

of 10, ρext = 1.44 × 10−13 kg/m3 and keep the external temperature at Text = 1 MK.

Because the background pressure is 10 times lower, the temperatures of the blobs will

also be 10 times lower compared to Figure 5.14. The magnetic field is taken to be 5 G

and the plasma beta is 0.024. Although these background quantities are reasonable for

the Quiet Sun (QS) (see e.g. Brooks et al. (2009), Long et al. (2013), Brooks (2019)),

coronal rain is not commonly observed in QS regions. Therefore, this modified param-

eter study should mostly be seen as a theoretical investigation.

The external Alfvén speed is vA,ext = 1175 km/s and the external sound speed is

cs,ext = 166 km/s. As the magnetic field is 5 times lower, the internal Alfvén speed of

the blobs is 5 times lower and the internal Alfvén Mach number is 5 times larger. This

results in Med(MA,1) = 1.36 and Med(MA,2) = 0.65, with 72% of the first blobs super-

Alfvénic (19% of the second blobs). Because the temperature of the blobs is 10 times

lower than before, the internal sound speed is
√

10 times lower and Med(MS,1) = 9.61

142



5.5. RESULTS: QUIET SUN BACKGROUND 143

Figure 5.27: Histogram of the maximal kink amplitudes (blue) and the maximal sausage
amplitudes (red) in Mm for the 191 simulations. The dashed blue and red lines at 0.064
Mm and 0.053 Mm represent the median of the maximal kink and maximal sausage
amplitudes. The dotted vertical line is the gridsize in the simulations (0.0117 Mm).
The binsize of the histogram is 0.025 Mm.

and Med(MS,2) = 4.58, with all blobs supersonic in the simulations. Because a large

proportion of the simulations have super-Alfvénic blobs, information will not be able

to transmit upstream and the colliding blobs will not immediately be slowed down by

the collision, hence we expect more (violent) collisions to happen.

Figure 5.27 shows the histogram of the maximal kink (blue) and sausage (red) am-

plitudes for all simulations. The median maximal kink amplitude (64 km) and median

maximal sausage amplitude (53 km) are represented by the blue and red dashed line,

respectively. The dotted vertical line marks the gridsize of the simulations (11.7 km).

We can see that the maximal amplitudes are on average 10 − 20 times larger than in

Figure 5.17. We find that in 28 simulations the maximal kink and/or sausage ampli-

tude is smaller than the gridsize, i.e. some of the simulations in the first histogram bin

in Figure 5.27.

5.5.1 Collisions

Figure 5.28 shows the equivalent plot of Figure 5.22, but now for the QS simulations.

The horizontal and vertical dashed lines are the median kinetic to thermal energy ra-

tio (0.15) and the median density ratio (4.67). Due to the lower background pressure

and the lower magnetic field strength, the blobs can collide more easily and produce

oscillations. There are 155 simulations where the blobs collide (∼ 81%) which is a
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significant increase, compared to the 7 collision cases with the higher magnetic field

strength and background density (see Figure 5.22). The simulations for which there

is a collision (diamond symbols) have an energy ratio larger than ∼ 10−1.5 ≈ 0.032.

This is a similar lower bound as in Figure 5.22 for the active region background. The

simulations where there is no collision (asterisk symbols) have, on average, an energy

ratio of ∼ 10−2. There are a few simulations for which the energy ratio is larger that

do not collide, but they have, on average, a large density ratio (bottom right corner of

the plot) such that the second (less dense) blob is compressed when the blobs approach

each other (see also parameter study 3 of Chapter 4).

In all of the simulations where a collision happens, the median Alfvén Mach num-

bers are significantly larger (Med(MA,1,collision) = 1.5 and Med(MA,2,collision) = 0.71)

than the median Alfvén Mach number of all simulations (Med(MA,1) = 1.36 and

Med(MA,2) = 0.65). In the simulations where there is no collision the Alfvén Mach

numbers are nearly all (94%) lower than the median Alfvén Mach numbers of all sim-

ulations (Med(MA,1,nocollision) = 0.66 and Med(MA,2,nocollision) = 0.28).

Figure 5.28: Log-log plot of the ratio of the volume integrated kinetic energy associated
with the x-component of the velocity in the domain, to the average internal energy in
a 0.23×0.23 Mm2 square centred at x = y = 0 Mm at t = 0s for each simulation in the
Quiet Sun background, according to the density ratio ρ1/ρ2 of the blobs. The horizontal
and vertical dashed lines are the median energy ratio (0.15) and the median density
ratio (4.67). The diamond symbols represent a collision, and the asterisk symbols no
collision. The simulations are coloured according to the offset between the blobs in
a simulation: blue if the blobs have an offset O less than half of the median offset
(O ≤ 0.048 Mm), green if the offset is between half the median and the median offset
(0.048 < O ≤ 0.097 Mm), and red if the blobs have an offset larger than the median
(O > 0.097 Mm).
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5.5.2 Density oscillations

So far, we have analysed the amplitudes of the collision-induced oscillations by mea-

suring distortions in the magnetic field. However, observationally, such measurements

would not be possible and instead, these oscillations would most likely be analysed in

intensity images. Therefore, in this section, we look at whether the oscillations are

present in the simulation densities, as a proxy for intensities. We will consider 2 simu-

lations from the Quiet Sun study in detail, namely simulation 158 (maximal kink and

sausage amplitudes of 745 km and 527 km, respectively) and simulation 137 (maximal

kink and sausage amplitudes of 73 km and 50 km, respectively).

Figure 5.29 shows a plot of the evolution of the kink (blue) and sausage (red) am-

plitude with time, for simulations 137 (left) and 158 (right panel). We can see that

there are clear oscillations in the kink and sausage amplitudes for simulation 158, but

they are less apparent in simulation 137. From the difference in minima and maxima

we estimate the kink period to be ∼ 55s and the sausage period ∼ 40s in simulation

158. In simulation 137, the kink period is ∼ 35s but the sausage period is less clear

from the evolution of S(t) after t = 24s since there are no significant oscillations in

S(t) following the initial peak.

Figure 5.29: Plot of the evolution of the kink (blue) amplitude K(t) and the sausage
(red) amplitude S(t) for simulation 137 (left panel) and simulation 158 (right panel).
The dashed vertical lines are the times of the maximal K(t) and S(t).

To analyse the oscillations in the density, we create time-distance maps of the den-

sity along a slit in the domain. We will consider two different types of slits, namely a

fixed slit, placed symmetrically between the initial positions of the two blobs (x ∼ 0

Mm), and a moving slit following the maximal density along the symmetry line of the
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Figure 5.30: Contour of the number densities for simulations 137 (left panel) and 158
(right panel) at the time of the maximal kink amplitude (t = 24s and t = 55s). The
dashed vertical line is the fixed slit, the solid vertical line the moving slit at the relevant
time.

collision (i.e. the symmetry line of the overlapping area of the blobs). A contour of

the density of the two simulations at the time of their maximal kink amplitude with

the two different slits overplotted can be found in Figure 5.30, where the solid vertical

line is the moving slit and the dashed vertical line the fixed slit.

Figure 5.31 shows a time-distance map for the fixed (left panel) and moving (right

panel) slit for simulation 158. We can see in the contour of the fixed slit that the blobs

collide around t ∼ 15s and that this produces several oscillations in the domain. The

amplitude of the oscillations is of the order of 0.5 Mm, which is consistent with the

maximal sausage amplitude for simulation 158 measured from the magnetic field (0.53

Mm). From the oscillations we estimate the period to be 40s (the difference between

the first and third peak of the oscillations), which agrees with the sausage period in

Figure 5.29. The moving slit shows less clear results. Between 15s and 35s the colli-

sion and oscillation are visible, however afterwards the oscillations are a lot less clear.

This is because the moving slit is positioned at the location of the maximal density

along the symmetry line of the collision, and after the collision this location can jump

when the plasma compresses and rarefies at different locations in the domain during

the oscillations, as can also be seen in the right panel of Figure 5.30.
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Figure 5.31: Time-distance maps of the fixed slit symmetrically between the blobs (at
x = 0.2 Mm) (left panel) and the moving slit following the maximal density along the
symmetry line of collision (right panel), for simulation 158.
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Figure 5.32 shows similar time-distance maps for the fixed (left panel) and moving

(right panel) slits for simulation 137. For the fixed slit, we see that the first blob arrives

at around 15s but afterwards there is no clear collision or oscillation visible. This is

because the denser, left blob compresses the right, less dense blob and the region of

the collision is located towards larger x (x ∼ 0.2 Mm, see left panel of Figure 5.30).

The right panel of Figure 5.32 shows the moving slit, following the maximal density

along the symmetry line of the overlapping region of the blobs. Initially the moving slit

follows the denser left blob, and we can see that the collision starts at around t ∼ 15s.

Because of the offset, the upper part of the first blob and the lower part of the second

blob continue to propagate (as can also be seen in the left panel of Figure 5.30), which

is represented by the diagonal green bands at y = ±0.2 Mm around t ∼ 20s (see e.g.

Figure 5.25 for the initial offset of the blobs). The collision is located between y = 0

Mm and y = 0.1 Mm, but it is difficult to see any oscillations. This is also because the

amplitudes are significantly smaller, compared to simulation 158. Moreover, because

the blobs have an offset, the vertical oscillation is somewhat tilted, which makes it

harder to observe the oscillations in a vertical slit.

Because in our parameter study the blobs have different dimensions, densities and

offsets, it is difficult to have one automated method to measure the oscillations in a

slit. Although the oscillations can be measured as distortions in the magnetic field, they

are harder to measure in the densities and hence they are less likely to be observable.

5.5.3 Frequencies and wavelengths

In this section, we investigate the different frequencies and wavelengths of the oscilla-

tions, and how much power there is in the oscillations.

The period/frequency of an oscillation can be obtained via different methods. In Chap-

ter 4, we calculated the kink and sausage period from the difference in minima and

maxima in the evolution of the kink and sausage amplitudes. We also verified that

this period matched with the wavelength and the internal Alfvén speed resulting from

the collision (P = λ/vA). In this chapter, we introduce a third method to obtain the

frequencies, by performing a Fast Fourier Transform (FFT) on the evolution of the kink

and sausage amplitudes in each simulation. We then assign a kink frequency and a

sausage frequency to each simulation by taking the frequency at the second maximum

(as the first maximum tends to pick up the overall trend in the data rather than the
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Figure 5.32: Time-distance maps of the fixed slit symmetrically between the blobs (at
x = −0.07 Mm) (left panel) and the moving slit following the maximal density along
the symmetry line of collision (right panel), for simulation 137.

oscillations). This method is essentially the same as the first method, but is easier to

automate.

Figure 5.33 shows log-log plots of the kink (left panel) and sausage (right panel) fre-

quency vs the FFT power, for each simulation. We see that the frequencies range

between ∼ 10−1 − 10−2 Hz, which corresponds to periods between ∼ 10 − 100s. The

median kink frequency is 0.04 (period of 25s) and the median sausage frequency is

0.055 (period of 18s). Both panels show a downwards trend with more power in the

lower frequencies (longer periods). This is expected since longer period oscillations are

generally produced by longer blobs (Parameter Study 6 in Chapter 4), and longer blobs

have, on average, more kinetic energy than shorter blobs, since they have, on average,

more mass and a higher velocity since longer blob lengths correspond to faster blobs

in our model.
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Figure 5.33: Log-log plots of the kink frequency (left panel) and sausage frequency
(right panel) vs FFT power for each simulation.

Figure 5.34 shows a plot of the kink (blue) and sausage (red) wavelengths (at the

time of the maximal amplitudes) vs the maximal kink (blue) and maximal sausage

(red) amplitudes squared, for each simulation. The wavelengths are measured in the

same way as in Chapter 4. We can see that the majority of the kink and sausage

wavelengths are in the range 1 − 10 Mm (median kink wavelength is 1.5 Mm), and

that the sausage wavelength is on average slightly larger (median of 2.2 Mm). The

wavelengths are of a similar order as the length of the blobs, which is a consequence of

how these oscillations are generated: first a distortion of the field due to the collision

of the blobs, and then the release of the field after the collision. Although observing

the distortions of the magnetic field with sufficient accuracy to analyse the oscillations

in detail is currently not possible (Section 5.5.2), comparing the ‘size’ of the oscillation

with the size (length) of the blobs would be possible with current instrumentation. In

general, we would expect there to be more energy in the longer wavelength oscillations,

since these oscillations are again, on average, produced by longer blobs (Parameter

Study 6 in Chapter 4) which have, on average, more kinetic energy. However, the

trend in Figure 5.34 seems to be less clear, as similar wavelength oscillations can have

different maximal amplitudes squared. It was also shown in PS6 of Chapter 4 that

there can be a saturation effect in the maximal amplitudes for longer blobs, because of

the restoring force of the external magnetic field. This effect could possibly also play

a role here.
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Figure 5.34: Log-log plot of the kink wavelength (blue) and sausage wavelength (red)
vs maximal kink and sausage amplitude squared, respectively, for each simulation.

5.6 Discussion and conclusion

In this chapter we have investigated coronal rain collisions and oscillations in coronal

loops. We ran a large number of simulations (∼ 200) of colliding coronal rain blobs,

using the model of Chapter 4. We based the properties of the blobs on the extensive

observational study of coronal rain by Antolin and Rouppe van der Voort (2012).

In a first parameter study, we considered simulations of the blobs in a background

representative of active region loops, where coronal rain is mostly observed on the Sun.

We found that the blobs collided only in a few simulations and that because of the

large magnetic field strength (25 G), the distortion of the field was minimal and no

oscillations were present. In most of the simulations, the increase in thermal pressure

between the blobs was too large for a collision to happen and the resulting field distor-

tion was extremely small. The internal Alfvén Mach numbers of the blobs were also

significantly smaller than 1. Hence, from this first set of simulations we can conclude

that coronal rain collisions are rather unlikely in active region loops. Only if the blobs

have enough kinetic energy can they collide and produce oscillations. The collision and

oscillations presented in Antolin et al. (2018) did possibly only happen because of the

large dimensions, and large kinetic energy, of the blobs (∼ 3 Mm long and ∼ 1 Mm

wide), which are significantly longer than the average length and width of the blobs in

our simulations (〈L1〉 = 0.73 Mm, 〈L2〉 = 3.3 Mm and 〈W1〉 = 〈W2〉 = 0.31 Mm).

In the second parameter study, we considered a Quiet Sun background, by decreas-

ing the background density with a factor of 10, and decreasing the magnetic field
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to 5 G. In this setup, the background pressure is 10 times smaller and the restoring

magnetic forces are 25 times smaller, which facilitates blob collisions and oscillations.

We remark that this setup might be less representative, since coronal rain has mostly

been observed in active region loops. We found that in the Quiet Sun simulations,

the majority of the blobs collide (∼ 81%; with a large proportion of the blobs super-

Alfvénic), and the maximal amplitudes were 10 to 20 times larger than in the first

parameter study. However, most of the amplitudes would still be too small to be ob-

servable with the resolution of current instruments (the median maximal amplitudes

were of the order of 60 km). Analysing the evolution of the densities, we found that

the time-distance maps of the density along both a fixed and moving slit only showed

measurable oscillations in a very limited number of cases, with the largest amplitudes.

We investigated the frequencies and wavelengths of these oscillations and found that

the periods range between 10−100s and the wavelengths are of the order of 1−10 Mm,

which is comparable to the length of the clumps. We found that there was, on average,

more power in the longer wavelength and longer period oscillations, as we expected

from Parameter Study 6 in Chapter 4.

In summary, the simulations and analysis presented in this chapter suggest that coro-

nal rain collisions are rather unlikely in active region loops, as a typical background

pressure and magnetic field strength are on average too large to facilitate collisions

and oscillations. If the blobs have large dimensions such that they have enough kinetic

energy, collisions and oscillations can be possible in this environment (see e.g. Antolin

et al., 2018).
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Chapter 6

Conclusions and future work

In this thesis, we have presented the results of numerical simulations of MHD waves

in coronal loops. In Chapters 2 and 3 we investigated the effect of chromospheric

evaporation on phase mixing of Alfvén waves in coronal loops. In Chapters 4 and 5

we studied the generation of transverse MHD waves by colliding counter-propagating

clumps in coronal loops.

In Chapter 2, we introduced the detailed setup of our 2D coronal loop model for

the phase mixing simulations presented in Chapter 3. The setup included the effects

of gravitational stratification, thermal conduction, and optically thin radiation, with

the chromosphere included as a mass reservoir. Sufficient resolution in the field-aligned

direction was obtained by artificially broadening the Transition Region, using the tech-

nique proposed by Lionello et al. (2009) and Mikić et al. (2013). Imposing a background

heating function which is uniform in the field-aligned direction, but which varies in the

cross-field direction, generated a density profile representative of a coronal loop which

is suitable for our phase mixing simulations.

In Chapter 3, we used an additional force term in the momentum equation to generate

Alfvén waves near the top of the chromosphere. The Alfvén waves subsequently prop-

agated in the corona and phase-mixed in the shell regions of the loop. By comparing

with the equivalent ideal and non-driven simulations, we showed that the field-aligned

flows were a combination of long-period oscillations (∼ 650s) resulting from the ongo-

ing relaxation to the imposed background heating profile, the ponderomotive effects

associated with the driven Alfvén waves, and the evaporative upflows resulting from

the heating of the phase-mixed Alfvén waves. Despite their relatively small amplitude,

we were able to distinguish the evaporative upflows from the other field-aligned flows
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by comparing with the ideal simulation. The amount of heating through viscous dissi-

pation of the phase-mixed Alfvén waves in the corona was found to be extremely small

(∼ 4000 K). Consequently, the evaporative upflows associated with this heating were

insignificant (∼ 5−20 m/s). Hence, in our study, the heating-evaporation cycle has no

noticeable effect on the transverse density profile (or the Alfvén speed profile) in the

loop.

One of the reasons why the heating, and hence, evaporation, in our simulations was

limited is the choice of a high-frequency driver (P ∼ 12 s). Although a high-frequency

driver allows the rapid development of phase mixing in the shell regions of the loop,

the high-frequency waves suffer less reflection in the TRs and, hence, more energy is

lost to the lower atmosphere (see e.g. Hollweg 1984b,a; Berghmans and de Bruyne

1995; De Pontieu et al. 2001). We found that about 10-15% of the Poynting flux is

not dissipated in the shell regions by the time the waves reach the far TR. However,

increasing the amplitude of the driven Alfvén waves in future simulations could have a

significant effect as there is still a subtantial amount (∼ 85− 90%) of the wave energy

dissipated in the shell regions. In the core of the loop, almost all energy (∼ 85%) is

transmitted to the far TR and chromosphere.

Future work could also focus on how to contain more wave energy in the coronal

volume of the loop. One way of doing this is to decrease the frequency of the driver, as

this will lead to longer wavelengths in the corona and more reflection at the boundaries

between the coronal part and the lower atmosphere. Moreover, waves and oscillations

observed so far in the solar corona mostly have periods on the order of a few minutes

(e.g. De Moortel and Nakariakov 2012; Morton et al. 2016). For longer wavelength

waves, the phase mixing process would initially be less pronounced, but over time it

would lead to large gradients and the subsequent dissipation of the wave energy in

the coronal part of the shell regions of the loop. However, longer wavelength waves

would take longer to phase mix and therefore, even if more energy is contained in the

corona, it is still to be investigated whether this can result in more energy converted

into heating and stronger evaporative upflows on relevant timescales. In summary,

these considerations do not allow definitive predictions on heating and evaporation in

the presence of lower frequency waves and thus more investigation is needed.

Several other aspects could be included to make our model more representative of

actual coronal loops. For example, in the current study we have only considered vis-
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cosity and neglected the effect of resistivity. As the resistivity is expected to be very

low in the solar corona, omitting the effect of resistivity might be acceptable but it

would still be instructive to investigate the potentially competing effects of a chang-

ing background Alfvén speed profile (because of diffusion of the background magnetic

field), and the stronger heating resulting from the additional resistive dissipation. Fur-

ther possibilities include a more realistic broadband driver (see e.g. Pagano et al.,

2019) to establish how this affects the energy input into the corona or a magnetic field

configuration with concentrated sources near the footpoints, as stronger divergence of

the magnetic field in the TR and the corona could enhance the phase mixing process

(see e.g. De Moortel et al., 2000). Finally, the study presented here mostly maintains

the background initial conditions (i.e. the actual loop profile) through the presence

of an imposed artificial background heating function. Without the presence of the

background heating, Cargill et al. (2016) argued that the thermal evolution (the loop

cooling) would lead to significant changes in the cross-field density profile (mostly due

to draining of the core of the loop) on timescales quicker than the heating provided

by the phase mixing of Alfvén waves. This heating occurs moreover in the boundary

shells of the loop, and not in the interior, where the strongest radiation is present, and

hence, the process of phase mixing alone cannot sustain the required density gradient.

In Chapter 4, we investigated the generation of transverse MHD waves in coronal

loops by colliding counter-propagating clumps of plasma, inspired by the observations

presented in Antolin et al. (2018). Using a 2D MHD model, we conducted a large

parameter study to investigate the relationship between the parameters of the clumps

and the properties of the generated transverse MHD waves. By varying the density

and the speed of the clumps, we found that the amplitude of the generated modes

scales with the kinetic energy of the system. If the density is varied in an asymmetric

way, the collisions are less efficient and the less dense clump is compressed. We var-

ied the angle of the colliding interface and the offset between rectangular clumps and

found that kink modes are preferentially generated when an asymmetry in the sys-

tem is present and that sausage modes are unaffected by the symmetry of the setup.

On the other hand, too much asymmetry leads to less efficient collisions and smaller

maximal amplitudes. We varied the length and the width of the clumps and found

that longer clumps lead to longer collision times and an increase in the wavelength of

the generated modes. The width of the clumps does not have a significant effect on

the wavelength of the generated modes, but affects the damping time of the oscillations.
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In Chapter 5, we applied the model of Chapter 4 to coronal rain clumps, by basing the

properties of the clumps on an extensive observational study by Antolin and Rouppe

van der Voort (2012). We devised a set of representative simulations and investigated

the likelihood of collisions and oscillations of coronal rain clumps in coronal loops. We

found that in active region loops, coronal rain collisions and oscillations are rather un-

likely to happen, because of the large background pressure and magnetic field strength.

The increase of thermal pressure between the counter-propagating clumps brought the

blobs to a halt before they collided and the distortion of the field was extremely small

due to the relatively large magnetic field strength (∼ 25 G). In a second parameter

study, we decreased the background pressure and magnetic field strength, to facilitate

collisions and oscillations. Although this background could be representative of Quiet

Sun regions, coronal rain has been observed mostly in active regions, and therefore this

parameter study should be considered mostly as a theoretical investigation. We found

a significant increase in the number of collisions of clumps and oscillations, however the

majority of the maximal amplitudes and oscillations were still too small to be observ-

able with current instrumentation. We investigated the amplitudes and wavelengths of

the oscillations, and found that there is more power in the lower frequency oscillations,

which corresponded to longer period oscillations and collisions by longer blobs in our

model.

In Chapter 4 and 5, we have demonstrated a potential mechanism for the in-situ gener-

ation of MHD waves in the solar corona, by the collision of counter-propagating plasma

clumps. Future work could investigate whether the collision of two clumps can lead to

the formation of the Kelvin-Helmholtz instability (KHI) due to shearing of the clumps

with the environment. This could lead to mixing and smaller length scales, which, when

non-ideal MHD effects such as magnetic resistivity or viscosity are included, could lead

to dissipation and potentially magnetic reconnection in cases where the collision pro-

duces strong distortions of the magnetic field, with further fragmentation and clump

formation. Fang et al. (2016) performed similar numerical simulations of colliding and

shearing flows which lead to the generation of the KHI and magnetic reconnection.

However it should be noted that the timescales of these processes are in general larger

than the evolution of the collisions.
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Appendix A

Radiation and conduction

timescales

In this appendix, we derive the conduction and radiation timescales in our 2D coronal

loop model in Chapter 3. The radiation and conductive timescales can be derived by

considering the thermal conduction and optically thin radiation in turn on the RHS of

the energy equation (Equation (3.3)):

ρ
Dε

Dt
= −∇ · Fc, (A.1)

ρ
Dε

Dt
= −ρ2χTα. (A.2)

By performing a dimensional analysis, we can rewrite equation (A.1) and (A.2) as

τcond ∼
PL2

(γ − 1)κ0T 7/2
, (A.3)

τrad ∼
P

(γ − 1)ρ2χTα
, (A.4)

where all the variables have been defined before and L is a relevant length scale. We

use L = 50 Mm, which is roughly half the length of the coronal part of the loop, as

a representative length scale. This is also the maximum length scale over which heat

can propagate in the domain. Figure A.1 shows a plot of the radiation τrad (left panel)

and the conduction timescale τcond (right panel) as a function of y (along x = 0 Mm)

after the numerical relaxation of our 2D model in Chapter 3. The vertical lines mark

the boundaries of the TR. We can see that τrad ∼ 3000 − 4000s in the corona, and

that τcond ∼ 1000 − 5000s for most of the corona. From these plots we can conclude
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that running the simulations in Chapter 3 for ∼ 6000s is sufficient to see the effects of

thermal conduction and optically thin radiation.

Figure A.1: Plot of the radiation τrad (left) and conduction τcond (right) timescales in
the domain as a function of y (along x = 0 Mm). The vertical lines mark the

boundaries of the TR.
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Appendix B

Ponderomotive force

The aim of this appendix is to investigate the ponderomotive effects associated with

the Alfvén wave driver in our 2D model in Chapter 3.

B.1 Introduction

The ponderomotive force is the non-linear magnetic pressure force associated with an

Alfvén wave. Suppose we have a straight initial magnetic field B0 = (0, B0, 0) in the

y direction and a linear perturbation b = (0, 0, b) in the invariant z direction. The

magnetic field is then given by B = B0 + b, and the Lorentz force can be written as

j×B =
1

µ0

((∇× (B0 + b))× (B0 + b)) , (B.1)

=
1

µ0

((∇×B0)×B0 + (∇× b)×B0 + (∇×B0)× b + (∇× b)× b) . (B.2)

The last term is second order and is the non-linear component of the Lorentz force.

This can be further reduced to

(∇× b)× b =

(
−b ∂b

∂x
,−b ∂b

∂y
, 0

)
, (B.3)

= −b · ∇b, (B.4)

= −∇
(
b2

2

)
, (B.5)

where we have also used the fact that z is the invariant direction ( ∂
∂z

= 0). The

ponderomotive force has a transverse (x) and a field aligned (y) component. The

former can create fast waves (see e.g. Thurgood and McLaughlin, 2013), while the

159



B.1. INTRODUCTION 160

latter can create upflows along the field. Verwichte et al. (1999) analyse the evolution

of an Alfvén pulse in a cold uniform plasma (β = 0). This Gaussian pulse splits into

a left and right propagating Alfvén pulse along the field (y), such that the expression

for b is

b ∼ f(y + vAt) + g(y − vAt),

with f and g the left and right propagating wave respectively, propagating at the Alfvén

speed vA. The field aligned ponderomotive force is then given by

−1

2

∂b2

∂y
∼ −1

2

∂

∂y

(
f 2(y + vAt) + g2(y − vAt)− 2f(y + vAt)g(y − vAt)

)
.

Here f 2 and g2 are the ponderomotive wings associated with the Alfvén waves and the

last term is the cross-ponderomotive force, which is related to the slow wave. Note

that in a cold plasma the slow wave does not propagate. The associated upflows and

density perturbations can be derived from the second order part of the linearised MHD

equations (Verwichte et al., 1999):

ρ(y)

ρ0

∼ f 2(y + vAt) + g2(y − vAt) + F1(t), (B.6)

vy ∼ −f 2(y + vAt) + g2(y − vAt) + F2(t). (B.7)

The upflows consist of a strictly positive (negative) part associated with the right

(left) propagating Alfvén pulses (‘ponderomotive wings’) and a function F2(t) related

to the cross-ponderomotive force. The expression B.6 for the density perturbations also

shows a positive density perturbation for right and left propagating Alfvén waves. This

means that the ponderomotive wings carry mass away from the location where they are

generated. In both expressions the upflows and density perturbations associated with

the ponderomotive wings propagate at the Alfvén speed and have half the wavelength

of the Alfvén wave (e.g. f 2(x + vAt) compared to f(x + vAt)). The terms associated

with the cross-ponderomotive force in Equations B.6 and B.7 (F1(t) and F2(t)) have

mixed properties and for more information on these terms we refer to Verwichte et al.

(1999).
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B.2 Uniform model

We set up an experiment using the numerical code Lare2D Arber et al. (2001). The

x dimension extends from x = −2 Mm to x = 2 Mm, and the y domain runs from

y = 0 − 600 Mm. The magnetic field is uniform and straight in the y direction,

By = 10 G. The x and z directions are invariant. The plasma has a uniform coronal-

like density of ρ = 6 × 10−13 kg/m3 and a uniform coronal temperature of T = 1.55

MK, which results in an Alfvén speed of vA = B√
µ0ρ

= 1150 km/s and a sound speed

of cs =
√

pγ
ρ

= 188 km/s. The plasma beta is β = 0.03. The boundary conditions are

periodic in x and zero-gradient at y = 0. At y = 600 Mm we add a damping layer

of length 900 Mm where the velocities and magnetic field perturbations in x and z

are artificially damped to mimic an open boundary. More precisely, the velocity and

magnetic field components (except for the guide field By) are damped as follows:

vx = g(y)vx,

vy = g(y)vy,

vz = g(y)vz,

Bx = g(y)Bx,

Bz = g(y)Bz,

where g(y) is the dimensionless function

g(y) =

−b(y − d)p + 1 for y > d,

1 for y < d,

with y in Mm and b = 3 × 10−7 Mm−2, d = 600 Mm, p = 2 constants. This means

that the velocities and magnetic field perturbations are damped for y > 600 Mm and

that the damping increases quadratically.

We run two simulations with a driver implemented in different locations. In the first

simulation we drive the bottom boundary (y = 0 Mm) continuously in the invariant

direction (z):

vz = v0 sin (ωt) , (B.8)

Bz = −vz
√
ρ, (B.9)
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where v0 = 10.4 km/s is 1% of the Alfvén speed and ω = 0.54 Hz. This results in a

period P of 11.6s. This driver creates right propagating Alfvén waves along y. Slow

waves are also generated as a consequence of the non-linear ponderomotive force which

creates a pressure perturbation.

The second simulation has a driver implemented in the domain at y = 200 Mm. Instead

of driving vz and Bz directly, we drive the system through a force in the momentum

equation in the z direction:

ρ
dvz
dt

= ρv1ω cos (ωt) , (B.10)

with ω described as above and v1 chosen such that the amplitude of vz is 10.4 km/s.

Because the implementation of the force driver is different to the boundary driver,

v1 has been multiplied by a constant (v1 = αv0) to have the same vz amplitude as

in the boundary driver simulation. This driver generates left and right propagating

Alfvén waves along y. The force is applied to a strip of 10 gridpoints, symmetrically

distributed about y = 200 Mm.

In both simulations we define a region over which we analyse the mass evolution,

to investigate the effect of the ponderomotive force on the upflows and the mass flow

along the field. In the first simulation the region extends from y = 30 Mm to y = 60

Mm, and in the second simulation from y = 230 Mm to y = 260 Mm.

B.2.1 Propagation of the Alfvén waves and associated upflows

Figure B.1 shows a plot of vz and Bz/
√
ρ for the boundary driver (top panels) and the

force driver (bottom panels) at x = 0 Mm at t = 46s (4 periods of the driver). The

vertical lines at y = 30 Mm (y = 230 Mm) and y = 60 Mm (y = 260 Mm) mark the

boundaries of the region over which we analyse the mass evolution in the respective

simulations. In both panels the maximal amplitude of vz is v0 = 10.4 km/s and we can

see that vz = −Bz/
√
ρ holds, a property of right propagating Alfvén waves. Moreover

these waves propagate at the Alfvén speed. Remark that the first pulse of the force

driver simulation is discontinuous as the applied force is maximal at t = 0 (see Equation

B.10). However in both simulations the same number of wavelengths (1.75λAlfvén) is

located in the region at t = 46s. The two panels on the right of Figure B.1 show

the simultaneous field aligned upflows vy (km/s) along x = 0 Mm. These upflows

are generated by the ponderomotive force ∇
(
B2

z

2

)
, as discussed in section B.1. They

consist of the ponderomotive wings (always positive) for y > 10 Mm (y > 210 Mm for
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Figure B.1: (Top left) Plot of the Alfvén wave vz (km/s) (solid line) and Bz√
ρ

(dashed

line) at t = 46s and at x = 0 Mm for the boundary driver. (Top right) Plot of the
upflows vy (km/s) caused by the ponderomotive force at t = 46s and at x = 0 Mm for

the boundary driver. (Bottom panels) Similar plots for the force driver.

the force driver) associated with the Alfvén waves and a separate oscillation associated

with the slow waves (y < 10 Mm for the boundary driver and y < 210 Mm for the force

driver). The ponderomotive wings propagate at the Alfvén speed and have half the

wavelength of vz and Bz. Because the ponderomotive wings are strictly positive, these

upflows move mass upwards along the field. The separate oscillation is the response

to the cross-ponderomotive force (associated with the slow wave) and propagates at

the sound speed. These upflows are not strictly positive, and they have a very short

wavelength (λAlfvén/12) on top of the longer wavelength (λAlfvén/2), because of the

smaller slow speed (see the right panels of Figure B.1), which is consistent with the

ratio of cs
vA
≈ 1

6
. The amplitude in vy of the cross-ponderomotive tail is about twice as

large for the force driver simulation compared to the boundary driver simulation. This

happens because of the different implementation of the force driver, although it needs
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more investigation. The ponderomotive wings associated with the left propagating

Alfvén waves have a negative field aligned vy (see Equation B.7). However the density

perturbation ρ/ρ0 is positive (Equation B.6), which means that the left propagating

Alfvén waves in the force driver simulation also move mass away from the location of

the driver.

B.2.2 Standing modes

The force driver generates left propagating Alfvén waves and slow waves and these

Alfvén waves reflect of the bottom boundary (y = 0 Mm) at t = 174s. A standing

mode is generated at a particular location in 0 < y < 200 Mm when the reflected

Alfvén waves reach that location. At t = 347s the standing mode reaches the location

of the driver (y = 200 Mm) where it becomes a node in vz from that time onwards,

and Bz becomes an antinode. This is shown by the top left panel of Figure B.3. The

wavelength of the standing mode is determined by the length of the domain (200 Mm)

and the driving frequency of the driver. In general the wavelength of the n-th harmonic

of a standing mode is given by

λn =
2L

n
,

where L = 200 Mm is the length from the bottom boundary to the location of the driver.

The wavelength of the Alfvén waves generated by the driver is given by λdriver = vAP =

13.3Mm = L
15

, where vA is the Alfvén speed and P the period of the driver. This shows

that the 30th harmonic has λ30 = λdriver, and that this harmonic will resonate as a

standing mode. The location of the nodes and antinodes of vz are respectively given

by

{y = 2i
L

2n
|i ∈ {0, ..., n}} = {y = i

λn
2
|i ∈ {0, ..., n}},

{y = (2i+ 1)
L

2n
|i ∈ {0, ..., n− 1}} = {y = (2i+ 1)

λn
4
|i ∈ {0, ..., n− 1}}.

Remark that for a standing mode, vz and Bz are out of phase and that the nodes of Bz

are the antinodes of vz and vice versa. In Figure B.2 we plot vz and Bz as a function

of time at the 10th node (y = 10L
30

= 66.6 Mm) and the 10th antinode (y = 21L
60

= 70

Mm) of vz. At t = 240s the reflected Alfvén waves reach y = 66.6 Mm and the regime

changes from propagating waves to a standing wave. This can be seen by the fact that

y = 66.6 Mm becomes a node of vz and y = 70 Mm an antinode of vz for t > 240s.

The right panel of Figure B.2 shows a similar plot of Bz and confirms that the nodes

of Bz are the antinodes of vz and vice versa.
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Figure B.2: (Left) Plot of vz (km/s) as a function of time at y = 66.6 Mm (blue) and
y = 70 Mm (red). (Right) Similar plot but for Bz (G).

In Figure B.3 we plot vz/max(vz) and Bz/max(Bz) at the location of the driver

(y = 200 Mm), averaged over the 10 gridpoints of the driver. We can see that at

t = 347s - the time when the reflected Alfvén waves reach the location of the driver -

the propagating wave becomes a standing wave and the location of the driver becomes

a node of vz and an antinode of Bz. The top right panel of Figure B.3 shows the

magnetic pressure force −∇y

(
B2

z

2

)
(black line), the pressure force −∂p

∂y
(black dotted

dashed line) and the sum of these forces (green line) in the y direction as a function of

time at the location of the driver. At t = 347s the magnetic pressure force increases

significantly as a consequence of the antinode of Bz at the location of the driver, which

leads to a larger positive upflow vy at the location of the driver (middle panel of Figure

B.3). As mass is moved upwards along the field by this upflow, the pressure increases

for y > 200 Mm and decreases at the location of the driver (y = 200 Mm) (bottom

panel in Figure B.3). This increases the pressure force at the location of the driver

(top right panel of Figure B.3), soon after the magnetic pressure force increases. This

delay in the increase of the pressure force is also shown by the total force in the y

direction (green line) which has a large peak at t = 347s, but afterwards it oscillates

about zero. After t = 347s, vy oscillates about a positive value (0.15km/s). Remark

that for t < 347s, vy oscillates about 0 (with the period of the ponderomotive wings

(6s)) because of the cross-ponderomotive response which is immediately generated at

the location of the driver (similar as in the bottom right panel of Figure B.1). We also

remark that a larger period (30s) on top of the period of the ponderomotive wings (6s)

is visible in the plots of the pressure and the upflows (vy) after t = 347s, because a slow

wave is generated at t = 347s when the plasma is compressed by the larger upflows.
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Figure B.3: (Top left) Plot of vz/max(vz) and Bz/max(Bz) as a function of time at

y = 200 Mm. (Top right) Plot of the ponderomotive force −∇y

(
B2

z

2

)
(solid black

line), the pressure force −∂p
∂y

(black dotted dashed line) and the total force

−∇y

(
B2

z

2

)
− ∂p

∂y
in the y direction (green line) at the location of the driver. (Middle)

Plot of the upflows vy at y = 200 Mm as a function of time. (Bottom) Plot of the
pressure P at y = 200 Mm as a function of time.

Standing mode and length of the domain

The location of the nodes and antinodes of vz and Bz depends on the length L between

the bottom boundary and the location of the driver. In some cases L is not necessarily a

multiple of λdriver, and the standing regime will be less efficiently generated. Therefore,
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the location of the driver does not always have to be a node of vz and an antinode of Bz.

To show this we run a simulation where we increase the length L by moving the bottom

boundary a distance of λdriver/4 to the left, so Lnew = L+λdriver/4 = L+L/60 = 203.33

Mm. The driver is still at y = 200 Mm, but the lower boundary is now at y = −3.33

Mm instead of y = 0 Mm. The wavelength of the n-th harmonic of the system is then

given by

λn =
2Lnew

n
=

2(L+ L
60

)

n
=

61L

30n
.

If we equate λn and λdriver, we get

61L

30n
=

L

15
⇔ n =

61

2
= 30.5.

Because n is not an integer, there is no harmonic which has λn = λdriver. The standing

mode in the system will be less efficiently generated and it will be a superposition of

different harmonics. The bottom boundary (y = −3.33 Mm) is still a node of vz and

an antinode of Bz, but the location of the driver is now a node of Bz and an antinode

of vz. This is shown in Figure B.4 which plots vz and Bz at the location of the driver

(200 Mm) and at y = 196.7 Mm. The location y = 196.7 Mm is a node in vz and an

antinode in Bz, but the location of the driver is an antinode in vz and a node in Bz.

This shows that in general the location of the driver does not always have to be an

antinode of Bz, and that this is determined by the length L between the location of

the driver and the location where the Alfvén waves reflect. The consequence of this

is that the magnetic pressure force associated with Bz will not necessarily increase at

the location of the driver, and hence it will not lead to higher upflows along the field.

Indeed, this is shown in Figure B.5 where we show the forces and the upflows at the

location of the driver. The magnetic pressure force decreases at the location of the

driver when the standing mode is generated, because of the node in Bz. This leads to

an overall decrease in the upflows vy.
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Figure B.4: (Left) Plot of vz (km/s) as a function of time at y = 196.7 Mm (blue)
and y = 200 Mm (red). (Right) Similar plot for Bz (G).

Figure B.5: (Top) Plot of the ponderomotive force −∇y

(
B2

z

2

)
(solid black line), the

pressure force −∂p
∂y

(black dotted dashed line) and the total force −∇y

(
B2

z

2

)
− ∂p

∂y
in

the y direction (green line) at the location of the driver. (Bottom) Plot of the field
aligned flows vy at y = 200 Mm as a function of time.
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B.2.3 Density perturbations and mass increase

Figure B.6: Plot of the density perturbations ρ
ρ0

at t = 46, 233, 554s and at x = 0 Mm

for the boundary driver (left panels) and the force driver (right panels).

In this section we analyse the mass evolution in the region from y = 30 Mm to

y = 60 Mm for the boundary driver simulation, and in the region from y = 230

Mm to y = 260 Mm for the force driver simulation. Before we do this, we show the
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density perturbations caused by the ponderomotive wings, the cross-ponderomotive

force and the standing wave (generated in 0 < y < 200 Mm). Figure B.6 shows the

density perturbations ρ/ρ0 at t = 46, 233, 554s, for the boundary driver (0 < y < 100

Mm; left panels) and force driver (200 < y < 300 Mm; right panels). These times

are chosen such that the ponderomotive wings, the cross-ponderomotive force and the

density perturbation associated with the standing wave are approximately located in

the middle of the region. At t = 46s the front of the Alfvén wave train is located at

y = 53 Mm (y = 253 Mm for the simulation with the force driver). The ponderomotive

wings associated with the Alfvén wave cause a positive density perturbation (ρ/ρ0 > 1)

and hence these increase the mass when they enter the region until they leave the region

again (because then the inflow of mass equals the outflow of mass). This is also shown

by Figure B.7 where we show the mass increase
∫

(ρ − ρ0)dV and the relative mass

increase
∫

(ρ − ρ0)/ρ0dV for the boundary driver simulations (left panels) and the

force driver simulation (right panels) (ρ0 = ρ(t = 0)). Here the vertical coloured lines

represent the timescales related to the travel time of an Alfvén wave (blue) and a slow

wave (red) to reach and leave the region. The first two vertical blue lines at t = 25s

and t = 51s represent the time when the front of the (right propagating) Alfvén wave

train reaches and leaves the region. During this time span the density perturbations

caused by the ponderomotive wings increase the mass in the region. After t = 51s the

mass then remains constant as the ponderomotive wings carry mass into the region at

the same rate they are carrying mass out of the region (until t = 156s). The cross-

ponderomotive force associated with the slow waves causes an overall negative density

perturbation, as can be seen in the middle panels of Figure B.6, at t = 232s, when

the cross-ponderomotive force has propagated into the region and has reached y ≈ 43

Mm (y ≈ 243 Mm). The cross-ponderomotive force decreases the mass when these

density perturbations propagate through the region. Indeed in Figure B.7, we see that

at t = 156s (the first vertical red line) the front of the slow wave train reaches the

beginning of the region and the mass starts to decrease. The mass then decreases

for 155s (the time it takes for the slow waves to propagate through the region) until

t = 311s when the front of the slow waves leaves the region. In the simulation of the

boundary driver the mass in the region then remains constant after t = 311s, and has

decreased with 0.01% compared to the initial mass.

The bottom right panel of Figure B.6 shows the density perturbations at t = 554s

for the force driver simulation. We see an increase in the density perturbations for

200Mm < y < 240Mm. This is a consequence of the standing mode generated at

t = 347s at the location of the driver (y = 200 Mm), which creates a larger upflow vy
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Figure B.7: Plots of the mass increase
∫

(ρ− ρ0)dV (top panels) and the relative mass
increase

∫
(ρ− ρ0)dV/

∫
ρ0dV (bottom panels) in the region. The left panels are for

the boundary driver simulation, the right panels for the force driver simulation. The
blue (red) vertical lines are timescales when Alfvén waves (slow waves) reach and
leave the region y = 30 Mm to y = 60 Mm for the boundary driver simulation, or

y = 230 Mm to y = 260 Mm for the force driver simulation.

along the field as shown in the previous section. These upflows compress the plasma

and increase the density perturbations significantly, which then propagate as slow waves

in the domain. At t = 554s these slow waves have reached the region (y = 230 Mm)

where they start to increase the mass. This is shown by the right panels in Figure B.7,

where the red vertical lines at t = 503s and t = 659s represent the time when these slow

waves reach and leave the region. The mass increases significantly and at the end of the

simulation is 0.08% higher than the initial mass of the region. There is also an earlier,

slight decrease in the mass from t = 373s to t = 399s in the force driver simulation

(second pair of vertical blue lines). This is due to (right propagating) Alfvén waves

that are generated by the driver at t = 347s, the time when the reflected Alfvén waves

reach the location of the driver. The generated Alfvén waves (destructively) interfere

with the reflected Alfvén waves and have a smaller Bz perturbation. This leads to a

smaller ponderomotive wing in the density perturbation, so when these Alfvén waves

reach the start of the region (y = 230 Mm) the inflow is smaller than the outflow.
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B.3 Model with a stratified atmosphere

Figure B.8: (Top row) Plot of the initial density (left) and temperature (right) at
x = 0 Mm. (Bottom) Plot of the initial Alfvén speed vA (blue) and the sound speed

cs (red) at x = 0 Mm. The vertical solid black lines in each figure mark the
boundaries of the first and second TR, the dashed vertical lines mark the boundaries

of the region in the corona over which the mass evolution is calculated.

In this section we extend the uniform model to a model including gravity, thermal

conduction, optically thin radiation and a background heating. The field aligned coor-

dinate is y and extends from 0 to 120 Mm. The x coordinate is the invariant direction

and extends from x = −2 Mm to x = 2 Mm. The model consists of two chromospheres

(CHROM) each with a length of 8 Mm, two transition regions (TR) of length ∼ 5 Mm

and a corona of length ∼ 94 Mm. The TR has been broadened using the technique

proposed by Lionello et al. (2009) and Mikić et al. (2013), with Tc = 5× 105 K. Figure

B.8 shows a plot of the density and the temperature as a function of y at x = 0 Mm.

The density decreases exponentially from the base of the chromospheres (ρ ∼ 10−6

kg/m3) to the base of the TR (at y = 8 Mm and y = 112 Mm) (ρ ∼ 10−10 kg/m3).
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In the corona the density is fairly constant (ρcor ∼ 10−12 kg/m3). The temperature

is uniform in the chromospheres (Tchrom = 2 × 104 K) and increases in the corona up

to 1.5 MK. The vertical solid lines at y = 8 Mm, y = 13 Mm, y = 107 Mm and

y = 112 Mm mark the base and top of the TRs. The vertical dashed lines mark the

boundaries of the region (y = 44 Mm and y = 50 Mm) over which we track the mass

evolution. Figure B.8 also shows a plot of the Alfvén speed vA and the sound speed cs

as a function of y at x = 0 Mm. The plasma beta in the corona is β = 2
γ

(
cs
vA

)2

∼ 0.03.

The system is numerically relaxed in Lare2D (until the field aligned flows are sig-

nificantly less than 1% of the local cs or vA). After the relaxation, we implement the

force driver (Equation B.10) near the top of the first chromosphere (y = 7.8 Mm), with

ω = 0.54 Hz and v0 = 0.7 km/s (1% of the local vA) as before.

B.3.1 Standing mode

Because of the stratified atmosphere in our model, waves can reflect at other locations

besides the bottom (y = 0 Mm) and top boundary (y = 120 Mm) of the domain. In

general, waves can reflect at locations of high density gradient and regions where the

Alfvén speed gradient is high. Several papers have studied the reflection and trans-

mission of Alfvén waves from the corona into the lower atmosphere (see e.g. Hollweg

1984b,a; Berghmans and de Bruyne 1995; De Pontieu et al. 2001; Ofman 2002). In our

model we expect the Alfvén waves to significantly leak into the chromosphere because

of the short wavelength (∼ 85%), where they undergo damping and reflection.

Because the reflection happens throughout the chromosphere and not exactly in

one location, the generation of the standing mode will be less efficient (as was also

discussed in section B.2.2).

Figure B.9 shows the envelope of vz (km/s) and Bz (G) (maximal amplitudes over

each period) at the location of the driver (y = 7.8 Mm) with time. The vertical blue

line at t = 703s in Figure B.9 is the time for a left propagating Alfvén wave to reflect

in the first chromosphere (y ∼ 3 Mm) and come back at the location of the driver.

The blue line at t = 1019s is the time when the front of a right propagating Alfvén

wave similarly reflects in the second chromosphere (y ∼ 117 Mm) and reaches the

driver again. Because the reflection happens throughout the chromosphere, these lines

only represent an average time for the reflection in the chromosphere, and they are

chosen to match the decrease and increase in Bz in Figure B.9. From the previous

experiments we expect a standing mode to be generated at the time the reflected left
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Figure B.9: Plot of the maximal and minimal amplitude of vz (km/s) and Bz (G)
(taken every period 11.6s of the driver) at the location of the driver (y = 7.8 Mm).

propagating Alfvén waves reach the driver again (∼ 700s). We see that the sudden in-

crease (decrease) in Bz (vz) can indeed be associated with this timescale. The standing

regime seems to last for ∼ 300 − 400s, which corresponds with the second blue line.

Because the reflection happens throughout the chromosphere, the length between the

location of the driver and the location of reflection is not exact, and the location of

the driver is not a perfect node/antinode. This was also explained in Section B.2.2.

In the timespan ∼ 700− 1100s the magnetic pressure force increases at the location of

the driver, which increases the upflows and the associated mass flows (see Figure B.11).

The reason why the standing mode regime only seems to last for a short time, is

because it can be destroyed by the interference with other propagating waves. When

the right propagating Alfvén waves reflect in the second chromosphere and propagate

back to the location of the driver, the standing regime can be destroyed. To show

this we repeat the uniform simulation with the force driver implemented at y = 200

Mm from section B.2.2, however the top boundary of the numerical domain (y = 600

Mm) is now a reflective boundary rather than the location where a damping layer has

been added. Figure B.10 shows a plot of vz (km/s) at the location of the driver. At

t = 347s (the first vertical blue line), the reflected left propagating Alfvén waves reach

the location of the driver again and create a standing mode with a node in vz. However

at t = 694s (the second vertical blue line) the right propagating Alfvén waves that have

reflected of the top boundary reach the location of the driver and vz is no longer a node.

This happens because the reflected right propagating Alfvén waves interfere with the

standing wave and the regime changes to a propagating wave again.
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Figure B.10: Plot of vz (km/s) at the location of the driver (y = 200 Mm), for the
uniform simulation with reflective boundaries.

B.3.2 Mass evolution

Figure B.11 shows the relative mass evolution in the region (44 < y < 50 Mm), for the

continued relaxation simulation (dashed line) and the driving simulation (solid line).

In the continued relaxation simulation no driver has been implemented, but the system

is allowed to relax further for the same amount of time as the driven simulation. We

see that for the continued relaxation simulation the mass change oscillates about zero,

because of the field aligned flows present from the continued relaxation. The period of

the mass change is related to the travel time for a slow wave from one end of the loop to

the other (∼ 500s). The mass change in the driving simulation increases from the start

and it then gradually increases until it reaches a steady state (t > 1500s). The largest

increase corresponds with the time of the antinode in Bz (Figure B.9). The reason why

the mass starts to increase earlier than 700s is because of the gradual reflection of the

Alfvén waves in the chromosphere. Near the end of the simulation (3000s) the relative

mass has increased by ∼ 0.03%.
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Figure B.11: Plot of the relative mass increase
∫

(ρ− ρ0)dV/
∫
ρ0dV for the region

44 < y < 50 Mm, for the continued relaxation simulation (dashed line) and the driver
simulation (solid line).
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R. Erdélyi and V. Fedun. Are There Alfvén Waves in the Solar Atmosphere? Science,

318(5856):1572, December 2007. doi: 10.1126/science.1153006.

X. Fang, C. Xia, and R. Keppens. Multidimensional Modeling of Coronal Rain Dynam-

ics. Astrophys. J. Lett., 771(2):L29, July 2013. doi: 10.1088/2041-8205/771/2/L29.

X. Fang, C. Xia, R. Keppens, and T. Van Doorsselaere. Coronal Rain in Magnetic

Arcades: Rebound Shocks, Limit Cycles, and Shear Flows. Astrophys. J., 807(2):

142, July 2015. doi: 10.1088/0004-637X/807/2/142.

Xia Fang, Ding Yuan, Chun Xia, Tom Van Doorsselaere, and Rony Keppens. The

Role of Kelvin-Helmholtz Instability for Producing Loop-top Hard X-Ray Sources in

Solar Flares. Astrophys. J., 833(1):36, Dec 2016. doi: 10.3847/1538-4357/833/1/36.

U. Feldman, I. E. Dammasch, and G. A. Doschek. Redshifts, Widths, and Radiances

of Spectral Lines Emitted by the Solar Transition Region. Astrophys. J., 743(2):

165, December 2011. doi: 10.1088/0004-637X/743/2/165.

C. Froment, F. Auchère, G. Aulanier, Z. Mikić, K. Bocchialini, E. Buchlin, and
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