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Abstract: Since its introduction in 1952, with a further refinement in 1972 by Gierer and Meinhardt,
Turing’s (pre-)pattern theory (the chemical basis of morphogenesis) has been widely applied to a
number of areas in developmental biology, where evolving cell and tissue structures are naturally
observed. The related pattern formation models normally comprise a system of reaction-diffusion
equations for interacting chemical species (morphogens), whose heterogeneous distribution in some
spatial domain acts as a template for cells to form some kind of pattern or structure through, for
example, differentiation or proliferation induced by the chemical pre-pattern. Here we develop a
hybrid discrete-continuum modelling framework for the formation of cellular patterns via the Turing
mechanism. In this framework, a stochastic individual-based model of cell movement and proliferation
is combined with a reaction-diffusion system for the concentrations of some morphogens. As an
illustrative example, we focus on a model in which the dynamics of the morphogens are governed
by an activator-inhibitor system that gives rise to Turing pre-patterns. The cells then interact with
the morphogens in their local area through either of two forms of chemically-dependent cell action:
Chemotaxis and chemically-controlled proliferation. We begin by considering such a hybrid model
posed on static spatial domains, and then turn to the case of growing domains. In both cases, we
formally derive the corresponding deterministic continuum limit and show that that there is an excellent
quantitative match between the spatial patterns produced by the stochastic individual-based model and
its deterministic continuum counterpart, when sufficiently large numbers of cells are considered. This
paper is intended to present a proof of concept for the ideas underlying the modelling framework,
with the aim to then apply the related methods to the study of specific patterning and morphogenetic
processes in the future.
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1. Introduction

1.1. Turing’s (pre-)pattern theory

In 1952, Alan M. Turing’s seminal work ‘The chemical basis of morphogenesis’ introduced the
theory according to which the heterogeneous spatial distribution of some chemicals that regulate
cellular differentiation, called “morphogens”, acts as a template (i.e., a pre-pattern) for cells to form
different kinds of patterns or structures during the embryonic development of an organism [1]. In his
work, Turing proposed a system of reaction-diffusion equations, with linear reaction terms, modelling
the space-time dynamics of the concentrations of two morphogens as the basis for the formation of
such pre-patterns. The system had stable homogenous steady states which were driven unstable by
diffusion, resulting in spatially heterogeneous morphogen distributions, as long as the diffusion rate of
one of the chemical was much larger (order 10) than the other. Twenty years after the publication of
Turing’s paper, in 1972 Alfred Gierer and Hans Meinhardt further developed this theory through the
introduction of activator-inhibitor systems (i.e., reaction-diffusion systems with nonlinear reaction
terms) and the notion of “short-range activation and long-range inhibition” [2]. The application of this
theory to many problems in developmental biology was discussed a further ten years later in 1982, in
Meinhardt’s book ‘Models of Biological Pattern Formation’ [3], shortly after the specific application
of the theory to animal coat markings by James D. Murray [4]. Turing (pre-)patterns and resulting
cellular patterns have now been discussed widely since their introduction and investigated through
further mathematical modelling approaches.

1.2. Mathematical exploration of cell pattern formation via the Turing mechanism

Several continuum models formulated as systems of partial differential equations (PDEs) have
been used to study cell pattern formation via the Turing mechanism, in different spatial dimensions
and on domains of various shapes and sizes. Generally, spatial domains can be static or growing to
represent the growth of an organism over time. In [5], the authors highlighted that there can be a
minimum domain size required for pattern formation to occur, and that when considering a growing
domain Turing patterns generally become more complex. Multiple authors have analytically and
numerically studied pattern formation on growing domains [6–14]. Specifically, in the case where
chemotaxis of cells is included (i.e., when cells move up the concentration gradient of the activator),
various authors have considered pattern formation mediated by the Turing mechanism on
exponentially growing domains [15, 16]. Along with spatial aspects of cellular patterning, temporal
aspects can be considered, such as the role of time-delays in pattern formation. For instance, in [17]
the authors investigated Turing pattern formation on a morphogen-regulated growing domain where
there was a delay in the signalling, gene expression and domain-growth processes.

Turing patterns can arise as stripes, spots (peaks of high density) or reverse-spots (troughs of low
density) depending on the particular choice of parameter values and initial distributions of
morphogens [18]. The different scenarios leading to these three distinct classes of pre-patterns have
been explored mathematically by various authors [19, 20]. For example, in [21] the authors showed
that, if there is a low level of production of the morphogens, striped patterns are formed by a wider
range of parameter settings than spotted patterns. However, Turing patterns can be sensitive to small
perturbations in the parameter values and the initial distributions of the morphogens, often leading to
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a discussion on the robustness of such patterns, or lack thereof [5, 17]. In regard to a lack of
robustness of the Turing mechanism to perturbations in the initial morphogen distributions, it has
been found that incorporating stochastic aspects can improve robustness of pattern formation [13].

Discrete models and hybrid discrete-continuum models have also been used to describe cell pattern
formation via the Turing mechanism in a range of biological and theoretical scenarios [22–30]. In
contrast to continuum models formulated as PDEs, such models permit the representation of biological
processes at the level of single cells and account for possible stochastic variability in cell dynamics.
This leads to greater adaptability and higher accuracy in the mathematical modelling of morphogenesis
and pattern formation in biological systems [31]. In particular, softwares like CompuCell [32] and
CompuCell3D [33] have been employed to implement hybrid discrete-continuum models to investigate
the interplay between gene regulatory networks and cellular processes (e.g., haptotaxis, chemotaxis,
cell adhesion and division) during morphogenesis. The three main components of models for cell
pattern formation implemented using these softwares are: A Cellular Potts model for the dynamics
of the cells and the extracellular matrix; a reaction-diffusion model for the dynamics of the diffusible
morphogens; a combination of a state automaton and a set of ordinary differential equations to model
the dynamics of gene regulatory networks.

1.3. A hybrid discrete-continuum approach to model cell pattern formation via the Turing mechanism

Here we develop a discrete-continuum modelling framework for the formation of cellular patterns
via the Turing mechanism. In this framework, a reaction-diffusion system for the concentrations of
some morphogens is combined with a stochastic individual-based (IB) model that tracks the dynamics
of single cells. Such an IB model consists of a set of rules that describe cell movement and proliferation
as a discrete-time branching random walk [34].

A key advantage of this modelling framework is that it can be easily adapted to both static and
growing spatial domains, thus covering a broad spectrum of applications. Moreover, the deterministic
continuum limits of the IB models defined in this framework can be formally derived. Such
continuum models are formulated as PDEs, which cannot capture phenomena that are driven by
stochastic effects in the dynamics of single cells but are more amenable to analytical and numerical
approaches. For instance, the numerical simulation of these models requires computational times that
are typically much smaller than those required by the numerical exploration of the corresponding IB
models for large cell numbers. Continuum models for spatial dynamics of living organisms have been
derived from underlying discrete models through different mathematical methods in several previous
works. Possible examples include the derivation of continuum models of chemotaxis from
velocity-jump process [35–39] or from different types of random walks [40–44]; the derivation of
diffusion and nonlinear diffusion equations from random walks [45–51], from systems of discrete
equations of motion [52–58], from discrete lattice-based exclusion processes [59–66] and from
cellular automata [67–69]; and the derivation of nonlocal models of cell-cell adhesion from
position-jump processes [70].

This paper is intended to be a proof of concept for the ideas underlying the modelling framework,
with the aim to then apply the related methods to the study of specific patterning and morphogenetic
processes, such as those discussed in [71–73] and references therein, in the future.
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1.4. Contents of the paper

As an illustrative example, we focus on a hybrid discrete-continuum model in which the dynamics
of the morphogens are governed by an activator-inhibitor system that gives rise to Turing pre-patterns.
The cells then interact with the morphogens in their local area through either of two forms of
chemically-dependent cell action: Chemotaxis and chemically-controlled proliferation. We begin by
considering such a hybrid model posed on static spatial domains (see Section 2) and then turn to
growing domains (see Section 3). Using methods similar to those we have previously employed
in [44,46], we formally derive the deterministic continuum limit of the model. When sufficiently large
numbers of cells are considered, the results of numerical simulations demonstrate an excellent
quantitative match between the spatial patterns produced by the stochastic IB model and its
deterministic continuum counterpart. Section 4 concludes the paper and provides a brief overview of
possible research perspectives.

2. Mathematical modelling of cell pattern formation on static domains

In this section, we illustrate our hybrid discrete-continuum modelling framework by developing
a model for the formation of cellular patterns via the Turing mechanism on static spatial domains
(see Section 2.1). The corresponding deterministic continuum model is provided (see Section 2.2)
and results of numerical simulations of both models are presented (see Section 2.3). We report on
numerical results demonstrating a good match between cellular patterns produced by the stochastic
IB model and its deterministic continuum counterpart, in different spatial dimensions and biological
scenarios, as well as on results showing the emergence of possible differences between the cell patterns
produced by the two models for relatively low cell numbers.

2.1. A hybrid discrete-continuum model

We let cells and morphogens be distributed across a d-dimensional static domain, with d = 1 or
d = 2. In particular, we consider the case where the spatial domain is represented by the interval [0, `]
when d = 1 or the square [0, `] × [0, `] when d = 2, with ` ∈ R∗+, where R∗+ is the set of positive real
numbers not including zero. The position of the cells and the molecules of morphogens at time t ∈ R+

is modelled by the variable x ∈ [0, `] when d = 1 and by the vector x = (x, y) ∈ [0, `]2 when d = 2.
We discretise the time variable t as tk = kτ with k ∈ N0 and the space variables x and y as xi = i χ

and y j = j χ with (i, j) ∈ [0, I]2 ⊂ N2
0, where τ ∈ R∗+ and χ ∈ R∗+ are the time- and space-step,

respectively, and I := 1 +

⌈
`

χ

⌉
, where d·e denotes the ceiling function. Here, N0 is the set of natural

numbers including zero. Throughout this section we use the notation i ≡ i and xi ≡ xi when d = 1, and
i ≡ (i, j) and xi ≡ (xi, y j) when d = 2. The concentrations of the morphogens at position xi and at time
tk are modelled by the discrete, non-negative functions uk

i and vk
i , and we denote by nk

i the local cell
density, which is defined as the number of cells at position xi and at time tk, which is modelled by the
dependent variable Nk

i ∈ N0, divided by the size of the ith site of the spatial grid, that is

nk
i :=

Nk
i

χd . (2.1)

We present here the model when d = 2 but analogous considerations hold for d = 1.
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2.1.1. Dynamics of the morphogens

The dynamics of uk
i and vk

i are governed by the following coupled system of difference equations
uk+1

i = uk
i +

τDu

χ2

(
δ2

i uk
i + δ2

j uk
i

)
+ τ P(uk

i , v
k
i ),

vk+1
i = vk

i +
τDv

χ2

(
δ2

i vk
i + δ2

j vk
i

)
+ τQ(uk

i , v
k
i ),

(k, i) ∈ N × (0, I)2, (2.2)

subject to zero-flux boundary conditions. Here, δ2
i is the second-order central difference operator on

the lattice {xi}i and δ2
j is the second-order central difference operator on the lattice {y j} j, that is,

δ2
i uk

i := uk
(i+1, j) + uk

(i−1, j) − 2 uk
(i, j) and δ2

ju
k
i := uk

(i, j+1) + uk
(i, j−1) − 2 uk

(i, j). (2.3)

Moreover, Du ∈ R
∗
+ and Dv ∈ R

∗
+ represent the diffusion coefficients of the morphogens and the

functions P(uk
i , v

k
i ) and Q(uk

i , v
k
i ) are the rates of change of uk

i and vk
i due to local reactions.

The system of difference equations (2.2) is a standard discretisation of a generic reaction-diffusion
system of the type that is commonly used to describe morphogen dynamics—see [5,74] and references
therein. The specific forms of the functions P and Q depend on the reaction kinetics involved in the
biological problem at stake—we refer the interested reader to [4, 5, 13] and references therein. We
consider an activator-inhibitor system whereby uk

i models the concentration of the activator while vk
i

models the concentration of the inhibitor. Hence, we let the functions P and Q satisfy the following
standard assumptions for activator-inhibitor kinetics

∂P
∂v

< 0 and
∂Q
∂u

> 0. (2.4)

In particular, in this paper we will focus on Schnakenberg kinetics [77] and, therefore, the functions P
and Q are given via the definitions (2.19). Moreover, we will assume

0 < uk
i ≤ umax and 0 < vk

i ≤ vmax ∀ (k, i) ∈ N0 × [0, I]2 (2.5)

for some maximal concentrations umax ∈ R
∗
+ and vmax ∈ R

∗
+.

2.1.2. Dynamics of the cells

We consider a scenario where the cells proliferate (i.e., divide and die) and can change their position
according to a combination of undirected, random movement and chemotactic movement, which are
seen as independent processes. This results in the following rules for the dynamic of the cells.

Mathematical modelling of undirected, random cell movement We model undirected, random
cell movement as a random walk with movement probability θ ∈ R∗+, where 0 < θ ≤ 1. In particular,
for a cell on the lattice site i, we define the probability of moving to one of the four neighbouring

lattice sites in the von Neumann neighbourhood of i via undirected, random movement as
θ

4
(i.e., there

is an equal chance of moving to any of the four neighbouring sites). Therefore, the probability of
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not undergoing undirected, random movement is defined as 1 − θ (i.e., one minus the probability of
movement). Furthermore, the spatial domain is assumed to be closed and, therefore, cell moves that
require moving out of the spatial domain are not allowed. Under these assumptions, the probabilities
of moving to the left and right sites via undirected, random movement are defined as

T k
L(i, j) :=

θ

4
, T k

R(i, j) :=
θ

4
for (i, j) ∈ [1, I − 1] × [0, I],

(2.6)
T k

L(0, j) := 0, T k
R(I, j) := 0 for j ∈ [0, I],

while the probabilities of moving to the lower and upper sites via undirected, random movement are
defined as

T k
D(i, j) :=

θ

4
, T k

U(i, j) :=
θ

4
for (i, j) ∈ [0, I] × [1, I − 1],

(2.7)
T k

D(i,0) := 0, T k
U(i,I) := 0 for i ∈ [0, I].

Mathematical modelling of chemotactic cell movement In line with [15,16], we let cells move up
the concentration gradient of the activator via chemotaxis. Chemotactic cell movement is modelled
as a biased random walk whereby the movement probabilities depend on the difference between the
concentration of the activator at the site occupied by a cell and the concentration of the activator in the
von Neumann neighbourhood of the cell’s site. Moreover, as similarly done in the case of undirected,
random cell movement, cell moves that require moving out of the spatial domain are not allowed. In
particular, building on the modelling strategy presented in [44], for a cell on the lattice site i and at the
time-step k, we define the probability of moving to the left and right sites via chemotaxis as

Jk
L(i, j) := η

(
uk

(i−1, j) − uk
(i, j)

)
+

4umax
, Jk

R(i, j) := η

(
uk

(i+1, j) − uk
(i, j)

)
+

4umax
for (i, j) ∈ [1, I − 1] × [0, I],

(2.8)
Jk

L(0, j) := 0, Jk
R(I, j) := 0 for j ∈ [0, I],

while the probabilities of moving to the lower and upper sites via chemotaxis are defined as

Jk
D(i, j) := η

(
uk

(i, j−1) − uk
(i, j)

)
+

4umax
, Jk

U(i, j) := η

(
uk

(i, j+1) − uk
(i, j)

)
+

4umax
for (i, j) ∈ [0, I] × [1, I − 1],

(2.9)
Jk

D(i,0) := 0, Jk
U(i,I) := 0 for i ∈ [0, I].

Hence, the probability of not undergoing chemotactic movement is

1 −
(
Jk

Li +Jk
Ri +Jk

Di +Jk
Ui

)
for i ∈ [0, I]2. (2.10)

Here, (·)+ denotes the positive part of (·) and the parameter η ∈ R+ with 0 ≤ η ≤ 1, where R+

is the set of non-negative real numbers, is directly proportional to the chemotactic sensitivity of the
cells. Notice that since relations (2.5) hold the quantities given via the definitions (2.8)–(2.10) are all
between 0 and 1.
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Mathematical modelling of cell proliferation We consider a scenario in which the cell population
undergoes saturating growth. Hence, in line with [75], we allow every cell to divide or die with
probabilities that depend on a monotonically decreasing function of the local cell density. Moreover,
building on the ideas presented in [76], we model chemically-controlled cell proliferation by letting
the probabilities of cell division and death depend on the local concentrations of the activator and of
the inhibitor. In particular, building upon the modelling strategy used in [46], between time-steps k and
k + 1, we let a cell on the lattice site i divide (i.e., be replaced by two identical daughter cells that are
placed on the lattice site i) with probability

Pb

(
nk

i , u
k
i

)
:= τ αn

(
ψ(nk

i )
)
+
φu(uk

i ), (2.11)

die with probability
Pd

(
nk

i , u
k
i vk

i

)
:= τ

(
αn

(
ψ(nk

i )
)
−
φu(uk

i ) + βn φv(vk
i )
)
, (2.12)

or remain quiescent (i.e., do not divide nor die) with probability

Pq

(
nk

i , u
k
i , v

k
i

)
:= 1 − τ

(
αn

∣∣∣ψ(nk
i )
∣∣∣ φu(uk

i ) + βn φv(vk
i )
)
. (2.13)

Here, (·)+ and (·)− denote the positive part and the negative part of (·). The parameters αn ∈ R
∗
+ and

βn ∈ R
∗
+ are, respectively, the intrinsic rates of cell division and cell death. Moreover, the function ψ

model the effects of saturating growth and, therefore, it is assumed to be such that

ψ′(·) < 0 and ψ(nmax) = 0, (2.14)

where nmax ∈ R
∗
+ is the local carrying capacity of the cell population. Finally, the functions φu and φv

satisfy the following assumptions

φu(0) = 1, φ′u(·) > 0 and φv(0) = 1, φ′v(·) > 0. (2.15)

Notice that we are implicitly assuming that the time-step τ is sufficiently small that 0 < Ph < 1 for all
h ∈ {b, d, q}.

2.2. Corresponding continuum model

Letting the time-step τ → 0 and the spdescribed in the definitions (2.6) and (2.7)ace-step χ → 0 in
such a way that

θ χ2

2d τ
→ Dn and

η χ2

2d τ umax
→ Cn as τ→ 0, χ→ 0, (2.16)

using the formal method employed in [44, 46] it is possible to formally show (see Remark A.1 in
Appendix A) that the deterministic continuum counterpart of the stochastic IB model presented in
Section 2.1, which is described via the systems (2.6)–(2.15), is given by the following PDE for the cell
density n(t, x)

∂tn − ∇x · (Dn ∇xn −Cn n∇xu) =
(
αn ψ(n) φu(u) − βn φv(v)

)
n, (t, x) ∈ R∗+ × (0, `)d (2.17)

subject to zero-flux boundary conditions. Here, Dn ∈ R
∗
+ defined via conditions (2.16) is the diffusion

coefficient (i.e., the motility) of the cells, while Cn ∈ R+ defined via conditions (2.16) represents the
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chemotactic sensitivity of the cells to the activator. In Eq (2.17), the concentration of the activator
u(t, x) and the concentration of the inhibitor v(t, x) are governed by the continuum counterpart of the
system of difference equations (2.2) subject to zero-flux boundary conditions, that is, the following
system of PDEs complemented with zero-flux boundary conditions∂tu − Du ∆xu = P(u, v),

∂tv − Dv ∆xu = Q(u, v),
(t, x) ∈ R∗+ × (0, `)d, (2.18)

which can be formally obtained by letting τ→ 0 and χ→ 0 in system (2.2).

2.3. Numerical simulations

In this section, we carry out a systematic quantitative comparison between the results of numerical
simulations of the hybrid model presented in Section 2.1 and numerical solutions of the corresponding
continuum model given in Section 2.2, both in one and in two spatial dimensions. All simulations
are performed in Matlab and the final time of simulations is chosen such that the concentrations of
morphogens and the cell density are at numerical equilibrium at the end of simulations.

2.3.1. Summary of the set-up of numerical simulations

Dynamics of the morphogens We consider the case where the functions P and Q that model the rates
of change of the concentrations of the morphogens are defined according to Schnakenberg kinetics [77],
that is,

P(u, v) := αu − β u + γ u2 v, Q(u, v) := αv − γ u2 v (2.19)

where αu, αv, β, γ ∈ R
∗
+. The system of difference equations (2.2) and the system of PDEs (2.18)

complemented with definitions (2.19) and subject to zero-flux boundary conditions are known to
exhibit Turing pre-patterns. The conditions required for such patterns to emerge have been
extensively studied in previous works and, therefore, are omitted here—the interested reader is
referred to [5] and references therein. We choose parameter values such that Turing pre-patterns arise
from the perturbation of homogeneous initial distributions of the morphogens. A complete description
of the set-up of numerical simulations is given in Appendix B.

Dynamics of the cells We focus on the case where the cell population undergoes logistic growth and,
therefore, we define the function ψ in Eqs (2.11)–(2.13) and Eq (2.17) as

ψ(n) :=
(
1 −

n
nmax

)
. (2.20)

Moreover, we consider two scenarios corresponding to two alternative forms of chemically-dependent
cell action. In the first scenario, there is no chemotaxis—i.e., we assume η = 0 in
definitions (2.8) and (2.9), which implies that Cn = 0 in Eq (2.17)—and the cells interact with the
morphogens in their local area through chemically-controlled proliferation. In particular, we use the
following definitions of the functions φu and φv in Eqs (2.11)–(2.13) and Eq (2.17)

φu(u) := 1 +
u

umax
and φv(v) := 1 +

v
vmax

. (2.21)
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In the second scenario, chemotaxis up the concentration gradient of the activator occurs—i.e., we
assume η > 0, which implies that Cn > 0—but cell division and death are not regulated by the
morphogens—i.e., we assume

φu(u) ≡ 1 and φv(v) ≡ 1. (2.22)

In both scenarios, we let the initial cell distribution be homogeneous and, given the values of the
parameters chosen to carry out numerical simulations of the IB model, we use the following definitions

Dn :=
θ χ2

2 d τ
and Cn :=

η χ2

2 d τ umax
(2.23)

so that conditions (2.16) are met. A complete description of the set-up of numerical simulations is
given in Appendix B.

2.3.2. Main results of numerical simulations

Dynamics of the morphogens The plots in the top rows of Figures 1 and 2 and in the Supplementary
Figure D1 summarise the dynamics of the continuum concentrations of morphogens u(t, x) and v(t, x)
obtained by solving numerically the system of PDEs (2.18) subject to zero-flux boundary conditions.
Identical results hold for the discrete morphogen concentrations uk

i and vk
i obtained by solving the

system of difference equations (2.2) (results not shown). These plots demonstrate that in the case
where the reaction terms P and Q are described via the definitions (2.19), under the parameter setting
considered here, Turing pre-patterns arise from perturbation of homogeneous initial distributions of the
morphogens. Such pre-patterns consist of spots of activator and inhibitor, whereby maximum points
of the concentration of activator coincide with minimum points of the concentration of inhibitor, and
vice versa.

Dynamics of the cells in the presence of chemically-controlled cell proliferation The plots in the
bottom row of Figure 1 and the plots in Figure 3 summarise the dynamics of the cell density in the case
where there is no chemotaxis and chemically-controlled cell proliferation occurs—i.e., when η = 0,
Cn = 0, and the functions φu and φv are given via the definitions (2.21). Since a larger concentration
of the activator corresponds to a higher cell division rate and a smaller concentration of the inhibitor
corresponds to a lower cell death rate, we observe the formation of cellular patterns consisting of spots
of cells centred at the same points as the spots of activator. These plots demonstrate that there is an
excellent quantitative match between the discrete cell density nk

i given by Eq (2.1), with Nk
i obtained

through computational simulations of the IB model, and the continuum cell density n(t, x) obtained by
solving numerically the PDE (2.17) subject to zero-flux boundary conditions, both in one and in two
spatial dimensions.

Dynamics of the cells in the presence of chemotaxis The plots in the bottom row of Figure 2 and
the plots in Figure 4 summarise the dynamics of the cell density in the case where cell proliferation is
not regulated by the morphogens and chemotactic movement of the cells up the concentration gradient
of the activator occurs—i.e., when the functions φu and φv are given via the definitions (2.22), η > 0
and Cn > 0. Since the cells sense the concentration of the activator and move up its gradient, cellular
patterns consisting of spots of cells centred at the same points as the spots of the activator are formed.
Compared to the case of chemically-controlled cell proliferation, in this case the spots of cells are
smaller and characterised by a larger cell density (i.e., cells are more densely packed). There is again
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an excellent quantitative match between the discrete cell density nk
i given by Eq (2.1), with Nk

i obtained
through computational simulations of the IB model, and the continuum cell density n(t, x) obtained by
solving numerically the PDE (2.17) subject to zero-flux boundary conditions, both in one and in two
spatial dimensions.

Figure 1. Results of numerical simulations on a one-dimensional static domain in the
presence of chemically-controlled cell proliferation. (Top row) Plots of the concentrations
of morphogens at four consecutive time instants. The green lines highlight the concentration
of activator u(t, x) and the red lines highlight the concentration of inhibitor v(t, x) obtained
by solving numerically the system of PDEs (2.18) for d = 1 complemented with the
definitions (2.19) and subject to zero-flux boundary conditions. (Bottom row) Comparison
between the discrete cell density nk

i obtained by averaging the results of computational
simulations of the IB model (solid dark blue lines) and the continuum cell density n(t, x)
obtained by solving numerically the PDE (2.17) for d = 1 subject to zero-flux boundary
conditions (pink dashed lines), at four consecutive time instants. Here, η = 0, Cn = 0,
and the functions φu and φv are given by definitions (2.21). We additionally set the initial
cell density n0

i = 104 for all i. The results from the IB model correspond to the average
over five realisations of the underlying branching random walk, with the results from each
realisation plotted in pale blue to demonstrate the robustness of the results obtained. A
complete description of the set-up of numerical simulations is given in Appendix B.

Emergence of possible differences between cell patterns produced by the IB model and the
continuum model In all cases discussed so far we have observed excellent agreement between the
dynamics of the discrete cell density obtained through computational simulations of the stochastic IB
model and the continuum cell density obtained by solving numerically the corresponding
deterministic continuum model. However, we expect possible differences between the two models to
emerge in the presence of low cell numbers. In order to investigate this, we carried out numerical
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simulations of the IB model and the PDE model for the case where cells undergo
chemically-controlled cell proliferation, considering either lower initial cell densities along with
lower values of the local carrying capacity of the cell population nmax or higher rates of cell death βn,
which correspond to lower saturation values of the local cell density. The plots in the bottom row of
Figure 5 and in Figure 6 summarise the dynamics of the cell density for relatively small initial cell
numbers and local carrying capacities. These plots show that differences between the discrete cell
density nk

i given by Eq (2.1), with Nk
i obtained through computational simulations of the IB model,

and the continuum cell density n(t, x), obtained by solving numerically the PDE (2.17) subject to
zero-flux boundary conditions, can emerge both in one and in two spatial dimensions. Analogous
considerations hold for the case in which higher rates of cell death βn are considered (results not
shown).

Figure 2. Results of numerical simulations on a one-dimensional static domain in the
presence of chemotaxis. (Top row) Plots of the concentrations of morphogens at four
consecutive time instants. The green lines highlight the concentration of activator u(t, x) and
the red lines highlight the concentration of inhibitor v(t, x) obtained by solving numerically
the system of PDEs (2.18) for d = 1, complemented with the definitions (2.19) and subject to
zero-flux boundary conditions. (Bottom row) Comparison between the discrete cell density
nk

i obtained by averaging the results of computational simulations of the IB model (solid
dark blue lines) and the continuum cell density n(t, x) obtained by solving numerically the
PDE (2.17) for d = 1 subject to zero-flux boundary conditions (pink dashed lines), at four
consecutive time instants. Here, η > 0, Cn > 0, and the functions φu and φv are described
through the definitions (2.22). We additionally set the initial cell density n0

i = 104 for all
i. The results from the IB model correspond to the average over five realisations of the
underlying branching random walk, with the results from each realisation plotted in pale
blue to demonstrate the robustness of the results obtained. A complete description of the
set-up of numerical simulations is given in Appendix B.
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Figure 3. Results of numerical simulations on a two-dimensional static domain in the
presence of chemically-controlled cell proliferation. Comparison between the discrete
cell density nk

i obtained by averaging the results of computational simulations of the IB
model (top row) and the continuum cell density n(t, x) obtained by solving numerically the
PDE (2.17) for d = 2 subject to zero-flux boundary conditions (bottom row), at four
consecutive time instants. Here, η = 0, Cn = 0, and the functions φu and φv are given by
definitions (2.21). We additionally set the initial cell density n0

i = 4 × 105 for all i. The
results from the IB model correspond to the average over five realisations of the underlying
branching random walk. The plots of the corresponding morphogen concentrations are
displayed in the Supplementary Figure D1. A complete description of the set-up of numerical
simulations is given in Appendix B.

3. Mathematical modelling of cell pattern formation on growing domains

So far, we have considered the case of static spatial domains. However, in many biological problems
the formation of cellular patterns occurs on growing spatial domains, for example, in morphogenesis
and embryogenesis [10–13]. Therefore, in this section, we extend the hybrid model developed in the
previous section to the case of growing spatial domains (see Section 3.1). We consider both the case of
uniform domain growth and the case of apical growth (i.e., the case where domain growth is restricted
to a region located toward the boundary). Similarly to the previous section, the deterministic continuum
limit of the model is provided (see Section 3.2) and the results of numerical simulations demonstrating
a good match between the cellular patterns produced by the stochastic IB model and its deterministic
continuum counterpart are presented (see Section 3.3).
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Figure 4. Results of numerical simulations on a two-dimensional static domain in the
presence of chemically-controlled cell proliferation. Comparison between the discrete
cell density nk

i obtained by averaging the results of computational simulations of the IB
model (top row) and the continuum cell density n(t, x) obtained by solving numerically
the PDE (2.17) for d = 2 subject to zero-flux boundary conditions (bottom row), at four
consecutive time instants. Here, η > 0, Cn > 0, and the functions φu and φv are described
through the definitions (2.22). We additionally set the initial cell density n0

i = 4 × 105

for all i. The results from the IB model correspond to the average over five realisations
of the underlying branching random walk. The plots of the corresponding morphogen
concentrations are displayed in the Supplementary Figure D1. A complete description of
the set-up of numerical simulations is given in Appendix B.

3.1. A hybrid-discrete continuum model

Building upon the modelling framework presented in the previous section, we let cells and
morphogens be distributed across a d-dimensional growing domain represented by the interval
[0,L(t)] when d = 1 and the square [0,L(t)]2 when d = 2. The real, positive function L(t), with
L(·) ≥ 1, determines the growth of the right-hand and upper boundary of the spatial domain (i.e., we
consider the case where the domain grows equally in both the x and y directions). In analogy with the
previous section, we use the notation x ∈ [0,L(t)] and x = (x, y) ∈ [0,L(t)]2. Moreover, we make the
change of variables

x 7→ x̂ and x 7→ x̂ = (x̂, ŷ) with x̂ :=
x
L(t)

, ŷ :=
y
L(t)

(3.1)

which allows one to describe the spatial position of the cells and the molecules of morphogens by
means of the variable x̂ ∈ [0, 1] when d = 1 and the vector x̂ = (x̂, ŷ) ∈ [0, 1]2 when d = 2 [8, 78]. We
then discretise the time variable t and space variables x̂ and ŷ in a similar way to the static domain case,
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as described in Section 2.1. Throughout this section we use the notation i ≡ i and x̂i ≡ x̂i when d = 1,
and i ≡ (i, j) and x̂i ≡ (x̂i, ŷ j) when d = 2. We also use the notation Lk = L(tk). The concentrations
of the morphogens at position x̂i and at time tk are modelled by the discrete, non-negative functions uk

i
and vk

i , and we denote by nk
i the local cell density, which is defined via Eq (2.1). As in the case of static

domains, we present the model for d = 2 but analogous considerations hold for d = 1.

Figure 5. Emergence of possible differences between cell patterns produced by the IB model
and the continuum model for low cell numbers on a one-dimensional static domain. (Top
row) Plots of the concentrations of morphogens at four consecutive time instants. The
green lines highlight the concentration of activator u(t, x) and the red lines highlight the
concentration of inhibitor v(t, x) obtained by solving numerically the system of PDEs (2.18)
for d = 1, complemented with the definitions (2.19) and subject to zero-flux boundary
conditions. (Bottom row) Comparison between the discrete cell density nk

i obtained by
averaging the results of computational simulations of the IB model (solid dark blue lines)
and the continuum cell density n(t, x) obtained by solving numerically the PDE (2.17) for
d = 1 subject to zero-flux boundary conditions (pink dashed lines), at four consecutive time
instants. Here, η = 0, Cn = 0, and the functions φu and φv are given by definitions (2.21). We
additionally set the initial cell density n0

i = 4 × 103 for all i. The results from the IB model
correspond to the average over five realisations of the underlying branching random walk,
with the results from each realisation plotted in pale blue. The parameter setting is the same
as that of Figure 1 but with a smaller initial cell density and a smaller local carrying capacity
of the cell population nmax. A complete description of the set-up of numerical simulations is
given in Appendix B.
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Figure 6. Emergence of possible differences between cell patterns produced by the IB
model and the continuum model for low cell numbers on a two-dimensional static domain.
Comparison between the discrete cell density nk

i obtained by averaging the results of
computational simulations of the IB model (top row) and the continuum cell density n(t, x)
obtained by solving numerically the PDE (2.17) for d = 2 subject to zero-flux boundary
conditions (bottom row), at four consecutive time instants. Here, η = 0, Cn = 0, and
the functions φu and φv are given by definitions (2.21). We additionally set the initial cell
density n0

i = 4 × 105 for all i. The results from the IB model correspond to the average over
five realisations of the underlying branching random walk. The plots of the corresponding
morphogen concentrations are displayed in the Supplementary Figure D1. The parameter
setting is the same as that of Figure 3 but with a smaller initial cell density and a smaller
local carrying capacity of the cell population nmax. A complete description of the set-up of
numerical simulations is given in Appendix B.

3.1.1. Dynamics of the morphogens

The dynamics of uk
i and vk

i are governed by the following coupled system of difference equations
uk+1

i = uk
i +

τDu

L2
k χ

2

(
δ2

i uk
i + δ2

j uk
i

)
+ τ P(uk

i , v
k
i ) − gi(uk

i ,Lk),

vk+1
i = vk

i +
τDv

L2
k χ

2

(
δ2

i vk
i + δ2

j vk
i

)
+ τQ(uk

i , v
k
i ) − gi(vk

i ,Lk),

(k, i) ∈ N × (0, I)2, (3.2)

subject to zero-flux boundary conditions. Here, δ2
i is the second-order central difference operator on

the lattice {x̂i}i and δ2
j is the second-order central difference operator on the lattice {ŷ j} j, which are

provided in definitions (2.3). Moreover, Du ∈ R
∗
+ and Dv ∈ R

∗
+ represent the diffusion coefficients of
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the morphogens, which are rescaled by L2
k for consistency with the change of variables (3.1), and the

functions P(uk
i , v

k
i ) and Q(uk

i , v
k
i ) are the rates of change of uk

i and vk
i due to local reactions, which satisfy

conditions (2.4) and (2.5), as in the case of static domains. Finally, the last terms on the right-hand
sides of system (3.2) represent the rates of change of the concentrations of morphogens due to variation
in the size of the domain. In the case of uniform domain growth, the following definition holds [8, 9]

gi(wk
i ,Lk) ≡ g(wk

i ,Lk) := d wk
i
Lk+1 − Lk

Lk
. (3.3)

Equation (3.3) captures the effects of dilution of the concentrations of the morphogens due to local
volume changes of the spatial domain [8, 11]. On the other hand, when apical growth of the domain
occurs one has [9, 78]

gi(wk
i ,Lk) :=

[
i
(
wk

i+1, j − wk
i, j

)
+ j

(
wk

i, j+1 − wk
i, j

)] Lk+1 − Lk

Lk
. (3.4)

3.1.2. Dynamics of the cells

Under the change of variables (3.1), the dynamics of the cells in the IB model is governed by rules
analogous to those described in Section 2.1.2 for the case of static domains. In summary,
definitions (2.6) and (2.7) are modified as

T k
L(i, j) :=

θ

4L2
k

, T k
R(i, j) :=

θ

4L2
k

for (i, j) ∈ [1, I − 1] × [0, I],

(3.5)
T k

L(0, j) := 0, T k
R(I, j) := 0 for j ∈ [0, I],

T k
D(i, j) :=

θ

4L2
k

, T k
U(i, j) :=

θ

4L2
k

for (i, j) ∈ [0, I] × [1, I − 1],

(3.6)
T k

D(i,0) := 0, T k
U(i,I) := 0 for i ∈ [0, I].

Moreover, definitions (2.8) and (2.9) are modified as

Jk
L(i, j) := η

(
uk

(i−1, j) − uk
(i, j)

)
+

4umaxL
2
k

, Jk
R(i, j) := η

(
uk

(i+1, j) − uk
(i, j)

)
+

4umaxL
2
k

for (i, j) ∈ [1, I − 1] × [0, I],

(3.7)
Jk

L(0, j) := 0, Jk
R(I, j) := 0 for j ∈ [0, I],

Jk
D(i, j) := η

(
uk

(i, j−1) − uk
(i, j)

)
+

4umaxL
2
k

, Jk
U(i, j) := η

(
uk

(i, j+1) − uk
(i, j)

)
+

4umaxL
2
k

for (i, j) ∈ [0, I] × [1, I − 1],

(3.8)
Jk

D(i,0) := 0, Jk
U(i,I) := 0 for i ∈ [0, I].
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Finally, definitions (2.11)–(2.13) are modified as

Pb

(
nk

i , u
k
i ,Lk

)
:= τ αn

(
ψ(nk

i )
)
+
φu(uk

i ) +
(
gi(nk

i ,Lk)
)
−
, (3.9)

Pd

(
nk

i , u
k
i , v

k
i ,Lk

)
:= τ

(
αn

(
ψ(nk

i )
)
−
φu(uk

i ) + βn φv(vk
i )
)

+
(
gi(nk

i ,Lk)
)
+
, (3.10)

and
Pq

(
nk

i , u
k
i , v

k
i ,Lk

)
:= 1 − τ

(
αn

∣∣∣ψ(nk
i )
∣∣∣ φu(uk

i ) + βn φv(vk
i )
)
−

∣∣∣gi(nk
i ,Lk)

∣∣∣ . (3.11)

Here, the function gi(nk
i ,Lk) is defined via Eq (3.3) in the case of uniform domain growth and via

Eq (3.4) in the case of apical growth. The functions ψ, φu and φv satisfy assumptions (2.14) and (2.15),
and we assume τ and Lk to be such that that 0 < Ph < 1 for all h ∈ {b, d, q}.

3.2. Corresponding continuum model

Similarly to the case of static domains, letting the time-step τ → 0 and the space-step χ → 0 in
such a way that conditions (2.16) are met, it is possible to formally show (see Appendix A) that the
deterministic continuum counterpart of the stochastic IB model on growing domains is given by the
following PDE for the cell density n(t, x̂)

∂tn−∇x̂ ·

(Dn

L2 ∇x̂n −
Cn

L2 n∇x̂u
)

=
(
αn ψ(n) φu(u)−βn φv(v)

)
n+G(x̂, n,L), (t, x̂) ∈ R∗+×(0, 1)d (3.12)

subject to zero-flux boundary conditions, with either

G(x̂,w,L) ≡ G(w,L) := −d w
1
L

dL
dt
, (3.13)

in the case of uniform domain growth, or

G(x̂,w,L) := x̂ · ∇x̂w
1
L

dL
dt
, (3.14)

in the case of apical growth. Here, Dn ∈ R
∗
+ in definitions (2.16) is the rescaled diffusion coefficient

(i.e., the rescaled motility) of the cells, while Cn ∈ R+ in definitions (2.16) represents the chemotactic
sensitivity of cells to the activator. In Eq (3.12), the concentration of the activator u(t, x̂) and the
concentration of the inhibitor v(t, x̂) are governed by the continuum counterpart of the difference
equations (3.2) complemented with zero-flux boundary conditions, that is, the following system of
PDEs subject to zero-flux boundary conditions

∂tu −
Du

L2 ∆x̂u = P(u, v) + G(x̂, u,L),

∂tv −
Dv

L2 ∆x̂v = Q(u, v) + G(x̂, v,L),

(t, x̂) ∈ R∗+ × (0, 1)d (3.15)

which can be formally obtained by letting τ→ 0 and χ→ 0 in system (3.2).
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3.3. Numerical simulations

In this section, we carry out a systematic quantitative comparison between the results of numerical
simulations of the hybrid model presented in Section 3.1 and numerical solutions of the corresponding
continuum model given in Section 3.2, both in one and in two spatial dimensions. All simulations are
performed in Matlab and the final time of simulations is chosen such that the essential features of the
pattern formation process are evident.

3.3.1. Summary of the set-up of numerical simulations

We define the functions P, Q, ψ, φu and φv as in the case of static domains. In more detail, P and Q
are provided in definitions (2.19), ψ is defined via Eq (2.20), and φu and φv are given via either
definitions (2.21) or definitions (2.22).

In all simulations, we let the initial spatial distributions of morphogens and cells be the numerical
steady state distributions obtained in the case of static domains with ` := 1, and we assume the domain
to slowly grow linearly over time, that is,

L(t) := 1 + 0.01 t. (3.16)

Given the values of the parameters chosen to carry out numerical simulations of the IB model, we
describe Dn and Cn via the definitions (2.23) so that conditions (2.16) are met. A complete description
of the set-up of numerical simulations is given in Appendix C.

3.3.2. Main results of numerical simulations

Dynamics of the morphogens The plots in the top rows of Figures 7 and 8 and in the
Supplementary Figure D2 summarise the dynamics of the continuum concentrations of morphogens
u(t, x̂) and v(t, x̂) obtained by solving numerically the system of PDEs (3.15) subject to zero-flux
boundary conditions and with G(x̂, u,L) and G(x̂, v,L) defined via Eq (3.13), while the plots in the
top rows of Figures 9 and 10 and in the Supplementary Figure D3 refer to the case where G(x̂, u,L)
and G(x̂, v,L) are defined via Eq (3.14). Identical results hold for the discrete morphogen
concentrations uk

i and vk
i obtained by solving the system of difference equations (3.2) (results not

shown). These plots demonstrate that, when the spatial domain grows over time, a dynamical
rescaling and repetition of the Turing pre-patterns observed in the case of static domains occurs—i.e.,
spots of high concentration repeatedly split symmetrically. In the case of uniform domain growth,
such a self-similar process occurs throughout the whole domain, while in the case of apical growth the
process takes place toward the growing edge of the domain.
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Figure 7. Results of numerical simulations on a one-dimensional uniformly growing
domain in the presence of chemically-controlled cell proliferation. (Top row) Plots of
the concentrations of morphogens at four consecutive time instants. The green lines
highlight the concentration of activator u(t, x̂) and the red lines highlight the concentration
of inhibitor v(t, x̂) obtained by solving numerically the system of PDEs (3.15) for d = 1
subject to zero-flux boundary conditions, and complemented with the definitions (2.19),
Eqs (3.13) and (3.16). (Bottom row) Comparison between the discrete cell density nk

i
obtained by averaging the results of computational simulations of the IB model (solid
dark blue lines) and the continuum cell density n(t, x̂) obtained by solving numerically the
PDE (3.12) for d = 1 subject to zero-flux boundary conditions and complemented with
Eqs (3.13) and (3.16) (pink dashed lines), at four consecutive time instants. Here, η = 0,
Cn = 0, and the functions φu and φv are given by definitions (2.21). We additionally set
the initial cell density n0

i = 104 for all i. The results from the IB model correspond to the
average over five realisations of the underlying branching random walk, with the results from
each realisation plotted in pale blue to demonstrate the robustness of the results obtained. A
complete description of the set-up of numerical simulations is given in Appendix C.

Dynamics of the cells The plots in the bottom row of Figure 7 and the plots in Figure 11 summarise
the dynamics of the cell density in the case where there is no chemotaxis, chemically-controlled cell
proliferation occurs—i.e., when η = 0, Cn = 0, and the functions φu and φv are given by
definitions (2.21)—and the functions gi(nk

i ,Lk) and G(x̂, n,L) are defined via Eqs (3.3) and (3.13),
respectively. On the other hand, the plots in the bottom row of Figure 9 and the plots in Figure 12
refer to the case where the functions gi(nk

i ,Lk) and G(x̂, n,L) are defined via Eqs (3.4) and (3.14).
These plots indicate that, when the spatial domain grows over time, spots of high cell density stretch
either throughout the domain (uniform growth) or at the growing edge (apical growth) before
splitting. This process causes cell patterns to rescale and repeat across the domain at a smaller scale.
These plots demonstrate also that there is a good quantitative match between the discrete cell density
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nk
i given by Eq (2.1), with Nk

i obtained through computational simulations of the IB model, and the
continuum cell density n(t, x̂) obtained by solving numerically the PDE (3.12) subject to zero-flux
boundary conditions and complemented with either Eq (3.13) or Eq (3.14), both in one and in two
spatial dimensions.

Figure 8. Results of numerical simulations on a one-dimensional uniformly growing domain
in the presence of chemotaxis. (Top row) Plots of the concentrations of morphogens at four
consecutive time instants. The green lines highlight the concentration of activator u(t, x̂) and
the red lines highlight the concentration of inhibitor v(t, x̂) obtained by solving numerically
the system of PDEs (3.15) for d = 1 subject to zero-flux boundary conditions, and
complemented with the definitions (2.19), Eqs (3.13) and (3.16). (Bottom row) Comparison
between the discrete cell density nk

i obtained by averaging the results of computational
simulations of the IB model (solid dark blue lines) and the continuum cell density n(t, x̂)
obtained by solving numerically the PDE (3.12) for d = 1 subject to zero-flux boundary
conditions and complemented with Eqs (3.13) and (3.16) (pink dashed lines), at four
consecutive time instants. Here, η > 0, Cn > 0, and the functions φu and φv are described
through the definitions (2.22). We additionally set the initial cell density n0

i = 104 for all
i. The results from the IB model correspond to the average over five realisations of the
underlying branching random walk, with the results from each realisation plotted in pale
blue to demonstrate the robustness of the results obtained. A complete description of the
set-up of numerical simulations is given in Appendix C.

Analogous considerations apply to the case where cell proliferation is not regulated by the
morphogens and chemotactic movement of the cells up the concentration gradient of the activator
occurs—i.e., when the functions φu and φv are described through the definitions (2.22), η > 0 and
Cn > 0—see the plots in the bottom row of Figure 8 along with the plots in Figure 13 and the plots in
the bottom row of Figure 10 along with the plots in Figure 14.
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Figure 9. Results of numerical simulations on a one-dimensional apically growing domain in
the presence of chemically-controlled cell proliferation. (Top row) Plots of the concentrations
of morphogens at four consecutive time instants. The green lines highlight the concentration
of activator u(t, x̂) and the red lines highlight the concentration of inhibitor v(t, x̂) obtained
by solving numerically the system of PDEs (3.15) for d = 1 subject to zero-flux boundary
conditions, complemented with the definitions (2.19), Eqs (3.14) and (3.16). (Bottom
row) Comparison between the discrete cell density nk

i obtained by averaging the results of
computational simulations of the IB model (solid dark blue lines) and the continuum cell
density n(t, x̂) obtained by solving numerically the PDE (3.12) for d = 1 subject to zero-
flux boundary conditions and complemented with Eqs (3.14) and (3.16) (pink dashed lines),
at four consecutive time instants. Here, η = 0, Cn = 0, and the functions φu and φv are
given by definitions (2.21). We additionally set the initial cell density n0

i = 104 for all
i. The results from the IB model correspond to the average over five realisations of the
underlying branching random walk, with the results from each realisation plotted in pale
blue to demonstrate the robustness of the results obtained. A complete description of the
set-up of numerical simulations is given in Appendix C.
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Figure 10. Results of numerical simulations on a one-dimensional apically growing domain
in the presence of chemotaxis. (Top row) Plots of the concentrations of morphogens at four
consecutive time instants. The green lines highlight the concentration of activator u(t, x̂) and
the red lines highlight the concentration of inhibitor v(t, x̂) obtained by solving numerically
the system of PDEs (3.15) for d = 1 subject to zero-flux boundary conditions, complemented
with the definitions (2.19), Eqs (3.14) and (3.16). (Bottom row) Comparison between the
discrete cell density nk

i obtained by averaging the results of computational simulations of
the IB model (solid dark blue lines) and the continuum cell density n(t, x̂) obtained by
solving numerically the PDE (3.12) for d = 1 subject to zero-flux boundary conditions
and complemented with Eqs (3.14) and (3.16) (pink dashed lines), at four consecutive time
instants. Here, η > 0, Cn > 0, and the functions φu and φv are described through the
definitions (2.22). We additionally set the initial cell density n0

i = 104 for all i. The
results from the IB model correspond to the average over five realisations of the underlying
branching random walk, with the results from each realisation plotted in pale blue to
demonstrate the robustness of the results obtained. A complete description of the set-up
of numerical simulations is given in Appendix C.
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Figure 11. Results of numerical simulations on a two-dimensional uniformly growing
domain in the presence of chemically-controlled cell proliferation. Comparison between the
discrete cell density nk

i obtained by averaging the results of computational simulations of the
IB model (top row) and the continuum cell density n(t, x̂) obtained by solving numerically
the PDE (3.12) for d = 2 subject to zero-flux boundary conditions and complemented with
Eqs (3.13) and (3.16) (bottom row), at four consecutive time instants. Here, η = 0, Cn = 0,
and the functions φu and φv are given by definitions (2.21). We additionally set the initial
cell density n0

i = 4 × 105 for all i. The results from the IB model correspond to the
average over five realisations of the underlying branching random walk. The plots of the
corresponding morphogen concentrations are displayed in the Supplementary Figure D2. A
complete description of the set-up of numerical simulations is given in Appendix C.
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Figure 12. Results of numerical simulations on a two-dimensional apically growing domain
in the presence of chemically-controlled cell proliferation. Comparison between the discrete
cell density nk

i obtained by averaging the results of computational simulations of the IB
model (top row) and the continuum cell density n(t, x̂) obtained by solving numerically the
PDE (3.12) for d = 2 subject to zero-flux boundary conditions and complemented with
Eqs (3.14) and (3.16) (bottom row), at four consecutive time instants. Here, η = 0, Cn = 0,
and the functions φu and φv are given by definitions (2.21). We additionally set the initial
cell density n0

i = 4 × 105 for all i. The results from the IB model correspond to the
average over five realisations of the underlying branching random walk. The plots of the
corresponding morphogen concentrations are displayed in the Supplementary Figure D3. A
complete description of the set-up of numerical simulations is given in Appendix C.

4. Conclusions and research perspectives

4.1. Conclusions

We have developed a hybrid discrete-continuum modelling framework that can be used to describe
the formation of cellular patterns, specifically focusing on the Turing mechanism as the driving force
behind the patterns. We used reaction-diffusion systems to describe the evolution of morphogens,
which dictate the action of cells, while cell dynamics were described by stochastic IB models. We
formally derived the deterministic continuum counterparts of the IB models, which were formulated
as PDEs for the cell density, and compared the two modelling approaches through numerical
simulations both in the case of stationary spatial domains and in the case of two types of growing
domains, corresponding to uniform and apical growth. Numerical simulations demonstrated that in
the case of sufficiently large cell numbers there was an excellent quantitative match between the
spatial patterns produced by the stochastic IB model and its deterministic continuum counterpart.
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Figure 13. Results of numerical simulations on a two-dimensional uniformly growing
domain in the presence of chemically-controlled cell proliferation. Comparison between the
discrete cell density nk

i obtained by averaging the results of computational simulations of the
IB model (top row) and the continuum cell density n(t, x̂) obtained by solving numerically
the PDE (3.12) for d = 2 subject to zero-flux boundary conditions and complemented with
Eqs (3.13) and (3.16) (bottom row), at four consecutive time instants. Here, η > 0, Cn > 0,
and the functions φu and φv are described through the definitions (2.22). We additionally set
the initial cell density n0

i = 4 × 105 for all i. The results from the IB model correspond to
the average over five realisations of the underlying branching random walk. The plots of the
corresponding morphogen concentrations are displayed in the Supplementary Figure D2. A
complete description of the set-up of numerical simulations is given in Appendix C.

Moreover, in the case of static domains, we also presented the results of numerical simulations
showing that possible differences between the spatial patterns produced by the two modelling
approaches could emerge in the regime of sufficiently low cell numbers. In fact, lower cell numbers
correlated with both lower regularity of the cell density and demographic stochasticity, which may
cause a reduction in the quality of the approximations employed in the formal derivation of the
deterministic continuum model from the stochastic IB model. Hence, having both types of models
available allows one to use IB models in the regime of low cells numbers—i.e., when stochastic
effects associated with small cell population levels, which cannot be captured by PDE models, are
particularly relevant—and then turn to their less computationally expensive PDE counterparts when
large cell numbers need to be considered—i.e., when stochastic effects associated with small cell
population levels are negligible.
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Figure 14. Results of numerical simulations on a two-dimensional apically growing domain
in the presence of chemically-controlled cell proliferation. Comparison between the discrete
cell density nk

i obtained by averaging the results of computational simulations of the IB
model (top row) and the continuum cell density n(t, x̂) obtained by solving numerically the
PDE (3.12) for d = 2 subject to zero-flux boundary conditions and complemented with
Eqs (3.14) and (3.16) (bottom row), at four consecutive time instants. Here, η > 0, Cn > 0,
and the functions φu and φv are described through the definitions (2.22). We additionally set
the initial cell density n0

i = 4 × 105 for all i. The results from the IB model correspond to
the average over five realisations of the underlying branching random walk. The plots of the
corresponding morphogen concentrations are displayed in the Supplementary Figure D3. A
complete description of the set-up of numerical simulations is given in Appendix C.

4.2. Research perspectives

There are a number of additional elements that would be relevant to incorporate into the modelling
framework presented here in order to further broaden its spectrum of applications.

For instance, as was recognised by Turing himself, exogenous diffusing chemicals are not the only
vehicle of coordination between cells. In particular, it is known that long range cell-cell interactions
can be mediated by signal proteins produced by the cells themselves and also by mechanical forces
between cells and components of the cellular microenvironment. For example, vascular endothelial
growth factor signalling has been shown to control neural crest cell migration [79–81], and
mechanical interactions between cells and the extra cellular matrix can control cell aggregation [82].
Moreover, cellular patterning leading to the emergence of spatial structures often requires the
interplay between non-diffusible species, transcription factors and cell signalling—viz. the process
underlying digit formation in tetrapods [83]. In this regard, it would be interesting to extend the
modelling framework by allowing the cells to consume and/or produce chemicals required for
successful coordination of their actions [84], and by incorporating more complex cellular processes
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such as anoikis [85, 86] and cell deformation [87, 88]. In the situation where local production and/or
consumption of the chemicals by the cells occurs, for particular cases such as those considered
in [44], we would still expect it to be possible to derive an effective deterministic continuum limit of
the IB model for the dynamics of the cells through formal procedures analogous to the one used here.
However, there could also be cases in which PDE models derived using similar formal procedures
might not be able to faithfully reproduce the dynamics of the branching random walk underlying the
IB model, due to the interplay between stochastic effects and nonlinear dynamical interactions
between the cells and the chemicals.

To date, only few biological systems have been demonstrated to satisfy the necessary conditions
required for the formation of Turing pre-patterns via reaction-diffusion systems. Since mathematical
models formulated as scalar integro-differential equations, whereby the formation of Turing-like
patterns is governed by suitable integral kernels, have proven capable of faithfully reproduce a variety
of pigmentation patterns in fish [27, 89], it would also be interesting to explore possible ways of
integrating such alternative modelling strategies into our framework.
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Appendix

A. Formal derivation of the deterministic continuum model on growing domains

We carry out a formal derivation of the deterministic continuum model given by the PDE (2.16) for
d = 2. Similar methods can be used in the case where d = 1.

When cell dynamics are governed by the rules described in Section 2.1.2 and Section 3.1.2,
considering (i, j) ∈ [1, I − 1] × [1, I − 1], the mass balance principle gives

nk+1
(i, j) = nk

(i, j) +
θ

4L2
k

[
nk

(i+1, j) + nk
(i−1, j) + nk

(i, j+1) + nk
(i, j−1) − 4nk

(i, j)

]
+

η

4 umaxL
2
k

[(
uk

(i, j) − uk
(i−1, j)

)
+

nk
(i−1, j) +

(
uk

(i, j) − uk
(i+1, j)

)
+

nk
(i+1, j)

]
+

η

4 umaxL
2
k

[(
uk

(i, j) − uk
(i, j−1)

)
+

nk
(i, j−1) +

(
uk

(i, j) − uk
(i, j+1)

)
+

nk
(i, j+1)

]
−

η

4 umaxL
2
k

[(
uk

(i−1, j) − uk
(i, j)

)
+

+
(
uk

(i+1, j) − uk
(i, j)

)
+

]
nk

(i, j)

−
η

4 umaxL
2
k

[(
uk

(i, j−1) − uk
(i, j)

)
+

+
(
uk

(i, j+1) − uk
(i, j)

)
+

]
nk

(i, j)

+τ
(
αnψ(nk

(i, j))φu(uk
(i, j)) − βnφv(vk

(i, j))
)

nk
(i, j) − g(i, j)(nk

(i, j),Lk). (A.1)

Using the fact that the following relations hold for τ and χ sufficiently small

tk ≈ t, tk+1 ≈ t + τ, x̂i ≈ x̂, x̂i±1 ≈ x̂ ± χ, ŷ j ≈ ŷ, ŷ j±1 ≈ ŷ ± χ

nk
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Lk ≈ L(t), Lk+1 ≈ L(t + τ),
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the balance equation (A.1) can be formally rewritten in the approximate form
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n(t, x̂ + χ, ŷ) + n(t, x̂ − χ, ŷ) + n(t, x̂, ŷ + χ) + n(t, x̂, ŷ − χ) − 4n

]
+

η

4 umaxL
2

[(
u − u(t, x̂ − χ, ŷ)

)
+

n(t, x̂ − χ, ŷ) +
(
u − u(t, x̂ + χ, ŷ)

)
+

n(t, x̂ + χ, ŷ)
]

+
η

4 umaxL
2

[(
u − u(t, x̂, ŷ − χ)

)
+

n(t, x̂, ŷ − χ) +
(
u − u(t, x̂, ŷ + χ)

)
+

n(t, x̂, ŷ + χ)
]

−
η

4 umaxL
2

[(
u(t, x̂ − χ, ŷ) − u

)
+

+
(
u(t, x̂ + χ, ŷ) − u

)
+

]
n

−
η

4 umaxL
2

[(
u(t, x̂, ŷ − χ) − u

)
+

+
(
u(t, x̂, ŷ + χ) − u

)
+

]
n

+τ
(
αnψ(n)φu(u) − βnφv(v)

)
n − Γ (x̂, ŷ, n,L) , (A.2)

with

Γ (x̂, ŷ, n,L) :=


2 n
L(t + τ) − L(t)

L(t)
, if g(i, j)(nk

(i, j)) is defined via Eq (3.3),

[
x̂
χ

(
n(t, x̂ + χ, ŷ) − n

)
+

ŷ
χ

(
n(t, x̂, ŷ + χ) − n

)] L(t + τ) − L(t)
L(t)

, if g(i, j)(nk
(i, j)) is defined via Eq (3.4),

where n ≡ n(t, x̂, ŷ), u ≡ u(t, x̂, ŷ), v ≡ v(t, x̂, ŷ) and L ≡ L(t). Dividing both sides of Eq (A.2) by τ
gives

n(t + τ, x̂, ŷ) − n
τ

=
θ

4L2τ

[
n(t, x̂ + χ, ŷ) + n(t, x̂ − χ, ŷ) + n(t, x̂, ŷ + χ) + n(t, x̂, ŷ − χ) − 4n

]
+

η

4 umaxL
2τ

[(
u − u(t, x̂ − χ, ŷ)

)
+

n(t, x̂ − χ, ŷ) +
(
u − u(t, x̂ + χ, ŷ)

)
+

n(t, x̂ + χ, ŷ)
]

+
η

4 umaxL
2τ

[(
u − u(t, x̂, ŷ − χ)

)
+

n(t, x̂, ŷ − χ) +
(
u − u(t, x̂, ŷ + χ)

)
+

n(t, x̂, ŷ + χ)
]

−
η

4 umaxL
2τ

[(
u(t, x̂ − χ, ŷ) − u

)
+

+
(
u(t, x̂ + χ, ŷ) − u

)
+

]
n

−
η

4 umaxL
2τ

[(
u(t, x̂, ŷ − χ) − u

)
+

+
(
u(t, x̂, ŷ + χ) − u

)
+

]
n

+
(
αnψ(n)φu(u) − βnφv(v)

)
n −

1
τ

Γ (x̂, ŷ, n,L) . (A.3)

If n(t, x̂, ŷ) is a twice continuously differentiable function of x̂ and ŷ and a continuously differentiable
function of t, u(t, x̂, ŷ) is a twice continuously differentiable function of x̂ and ŷ, and the function L(t)
is continuously differentiable, for χ and τ sufficiently small we can use the Taylor expansions

n(t, x̂ ± χ, ŷ) = n ± χ
∂n
∂x̂

+
χ2

2
∂2n
∂x̂2 + O(χ3), n(t, x̂, ŷ ± χ) = n ± χ

∂n
∂ŷ

+
χ2

2
∂2n
∂ŷ2 + O(χ3),

n(t + τ, x̂, ŷ) = n + τ
∂n
∂t

+ O(τ2),

u(t, x̂ ± χ, ŷ) = u ± χ
∂u
∂x̂

+
χ2

2
∂2u
∂x̂2 + O(χ3), u(t, x̂, ŷ ± χ) = u ± χ

∂u
∂ŷ

+
χ2

2
∂2u
∂ŷ2 + O(χ3),
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L(t + τ) = L + τ
dL
dt

+ O(τ2).

Substituting into Eq (A.3), using the elementary property (a)+ − (−a)+ = a for a ∈ R and letting
τ → 0 and χ → 0 in such a way that conditions (2.16) are met, after a little algebra, as similarly done
in [44], we find

∂n
∂t

=
Dn

L2

(
∂2n
∂x̂2 +

∂2n
∂ŷ2

)
+

Cn

L2

[(
∂2u
∂x̂2 +

∂2u
∂ŷ2

)
n −

(
∂u
∂x̂
∂n
∂x̂

+
∂u
∂ŷ
∂n
∂ŷ

)]
+
(
αnψ(n)φu(u) − βnφv(v)

)
n −G(x̂, ŷ, n,L), (t, x̂, ŷ) ∈ R∗+ × (0, 1) × (0, 1), (A.4)

where G(x̂, ŷ, n,L) is given by Eq (3.13) in the case where g(i, j)(nk
(i, j)) is defined via Eq (3.3) and by

equation (3.14) in the case where g(i, j)(nk
(i, j)) is defined via Eq (3.4). The PDE (A.4) can be easily

rewritten in the form of Eq (3.12). Moreover, zero-flux boundary conditions easily follow from the fact
that [cf. definitions (3.5)–(3.8)]

T k
L(0, j) := 0, T k

R(I, j) := 0, Jk
L(0, j) := 0, Jk

R(I, j) := 0 for j ∈ [0, I]

and
T k

D(i,0) := 0, T k
U(i,I) := 0, Jk

D(i,0) := 0, Jk
U(i,I) := 0 for i ∈ [0, I].

Remark A.1. The derivation of the continuum limit for the static domain case can be carried out in a
similar way by assuming Lk to be constant, which implies that gi ≡ 0 and results in G ≡ 0.

B. Set-up of numerical simulations on static domains

We let x ∈ [0, 1], y ∈ [0, 1] and χ := 0.005 (i.e., I = 201). Moreover, we define τ := 1 × 10−3.

Dynamics of the morphogens For the dynamics of the morphogens, we consider the parameter
setting used in [13], that is,

Du := 1 × 10−4, Dv := 4 × 10−3, αu := 0.1, β := 1, γ := 1, αv := 0.9. (B.1)

Moreover, we assume the initial distributions to be small perturbations of the homogeneous steady
state (u∗, v∗) ≡ (1, 0.9), that is,

u0
i = u∗ − ρ + 2 ρR and v0

i = v∗ − ρ + 2 ρR

where ρ := 0.001 and R is either a vector for d = 1 or a matrix for d = 2 whose components are
random numbers drawn from the standard uniform distribution on the interval (0, 1), using the built-in
Matlab function rand. These choices of the initial distributions of morphogens are such that

u∗ − ρ ≤ u0
i ≤ u∗ + ρ and v∗ − ρ ≤ v0

i ≤ v∗ + ρ for all i,

that is, the parameter ρ determines the level of perturbation from the homogeneous steady state. Since
the difference equations (2.2) governing the dynamics of the morphogens are independent from the
dynamics of the cells, such equations are solved first for all time-steps and the solutions obtained are
then used to evaluate both the probabilities of cell movement [cf. definitions (2.6)–(2.9)] and the
probabilities of cell division and death [cf. definitions (2.11)–(2.13)]. The parameter umax in
definitions (2.8) and (2.9) is defined as max

k,i
uk

i .
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Computational implementation of the rules underlying the dynamics of the cells At each time-
step, each cell undergoes a three-phase process: Phase 1) undirected, random movement according
to the probabilities described in the definitions (2.6) and (2.7); Phase 2) chemotaxis according to the
probabilities described via the definitions (2.8) and (2.9); Phase 3) division and death according to
the probabilities defined via Eqs (2.11)–(2.13). For each cell, during each phase, a random number is
drawn from the standard uniform distribution on the interval (0, 1) using the built-in Matlab function
rand. It is then evaluated whether this number is lower than the probability of the event occurring and
if so the event occurs.

Dynamics of the cells Unless stated otherwise, we assume the initial cell distributions to be
homogeneous with

n0
i ≡ 104 when d = 1 and n0

i ≡ 4 × 105 when d = 2.

In the case where chemically-controlled cell proliferation occurs and there is no chemotaxis, unless
stated otherwise, we use the following parameter values when d = 1

θ := 0.05, η := 0, αn := 5, βn := 1, nmax := 2 × 104.

and the following ones when d = 2

θ := 0.005, η := 0, αn := 5, βn := 0.1, nmax := 8 × 105.

The results shown in Figures 5 and 6 refer to the same settings with the modification that when d = 1

n0
i ≡ 4 × 103 and nmax := 1.5 × 103

and when d = 2
n0

i ≡ 2 × 105 and nmax := 8 × 104.

In the case where cells undergo chemotaxis and cell proliferation is not chemically-controlled,
unless stated otherwise, we use the following parameter values when d = 1

θ := 0.05, η := 1, αn := 0.1, βn := 0.055, nmax := 2 × 104.

and the following ones when d = 2

θ := 0.005, η = 1, αn := 0.1, βn := 0.055, nmax := 8 × 105.

Numerical solutions of the corresponding continuum models Numerical solutions of the
PDE (2.17) and the system of PDEs (2.18) subject to zero-flux boundary conditions are computed
through standard finite-difference schemes using initial conditions and parameter values that are
compatible with those used for the IB model and the system of difference equations (2.2). In
particular, the values of the parameters Dn and Cn in the PDE (2.17) are described via the
definitions (2.23).
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C. Set-up of numerical simulations on growing domains

We let x ∈ [0, 1], y ∈ [0, 1] and χ := 0.005 (i.e., I = 201). Moreover, we assume τ := 1 × 10−3 and
we define L according to equation (3.16) (i.e., the domain grows linearly over time).

Dynamics of the morphogens For the dynamics of the morphogens, we use the parameter setting
given by the definitions (B.1). Moreover, we define the initial distributions as the numerical
equilibrium distributions obtained in the case of static domains. Similarly to the case of static
domains, since the difference equations (3.2) governing the dynamics of the morphogens are
independent from the dynamics of the cells, such equations are solved first for all time-steps and the
solutions obtained are then used to evaluate both the probabilities of cell movement given by
definitions (3.5)–(3.8) and the probabilities of cell division and death given by Eqs (3.9)–(3.11). The
parameter umax in the definitions (3.7) and (3.8) is defined as max

k,i
uk

i .

Computational implementation of the rules underlying the dynamics of the cells Similarly to
the case of static domains, at each time-step, each cell undergoes a three-phase process: Phase 1)
undirected, random movement according to the probabilities described through the definitions (3.5)
and (3.6); Phase 2) chemotaxis according to the probabilities described through the definitions (3.7)
and (3.8); Phase 3) division and death according to the probabilities defined via Eqs (3.9)–(3.11). For
each cell, during each phase, a random number is drawn from the standard uniform distribution on
the interval (0, 1) using the built-in Matlab function rand. It is then evaluated whether this number is
lower than the probability of the event occurring and if so the event occurs.

Dynamics of the cells We assume the initial cell distributions and all parameter values to be the same
as those used in the static domain case.

Numerical solutions of the corresponding continuum models Numerical solutions of the
PDE (3.12) and the system of PDEs (3.15) subject to zero-flux boundary conditions are computed
through standard finite-difference schemes using initial conditions and parameter values that are
compatible with those used for the IB model and the system of difference equations (3.2). In
particular, the values of the parameters Dn and Cn in the PDE (3.12) are described through the
definitions (2.23).
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D. Supplementary figures

Figure D1. Dynamics of the morphogens on a two-dimensional static domain. Plots of
the concentration of activator u(t, x) (top row) and the concentration of inhibitor v(t, x)
(bottom row) at four consecutive time instants, obtained by solving numerically the system
of PDEs (2.18) for d = 2 complemented with the definitions (2.19) and subject to zero-flux
boundary conditions. A complete description of the set-up of numerical simulations is given
in Appendix B.

Figure D2. Dynamics of the morphogens on a two-dimensional uniformly growing
domain. Plots of the concentration of activator u(t, x̂) (top row) and the concentration
of inhibitor v(t, x̂) (bottom row) at four consecutive time instants, obtained by solving
numerically the system of PDEs (3.15) for d = 2, subject to zero-flux boundary conditions,
complemented with the definitions (2.19), Eqs (3.13) and (3.16). A complete description of
the set-up of numerical simulations is given in Appendix B.
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Figure D3. Dynamics of the morphogens on a two-dimensional apically growing
domain. Plots of the concentration of activator u(t, x) (top row) and the concentration
of inhibitor v(t, x) (bottom row) at four consecutive time instants, obtained by solving
numerically the system of PDEs (3.15) for d = 2, subject to zero-flux boundary conditions,
complemented with the definitions (2.19), Eqs (3.14) and (3.16). A complete description of
the set-up of numerical simulations is given in Appendix B.
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