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1. Introduction
The fast ignition approach to inertial confinement fusion (ICF) was first proposed as an
alternative to conventional schemes where ignition in the deuterium–tritium pellet is achieved
via hydrodynamic compression [1]. The underlying idea of fast ignition is to separate the
compression phase from the ignition. At first, the pellet core gets compressed to very high
density via a suitable driver. Subsequently, when the maximum compression is achieved, the
compressed fuel is then ignited using a powerful external source. This allows for increasing the
energy gain and reducing the driver energy, while minimizing the impact of asymmetries and
hydrodynamic instabilities [2]. Fast ignition by relativistic electrons was the first scheme proposed
and explored [2]. In this case, an ignitor pulse is used to generate hot electrons in the plasma
corona surrounding the fuel pellet. The electron heat flux is then transported and deposited into
a small volume of the dense core. More recently ignition with fast ions has been proposed with
ions produced by radiation from a separate target [3–8]. With respect to electrons, ions can deposit
their energy in a more localized area at the end of their range in what is called the Bragg peak.
Furthermore, ions offer an improved beam focusing and their transport is stiffer, with particles
maintaining an almost straight line trajectory while travelling through the corona plasma and
compressed target.

Hydrodynamic simulations indicate that to reach ignition the energy deposited in the core
must be greater than or equal to 140(ρ/100 [g cm−3])−1.85 kJ, with ρ the mass density of the
compressed deuterium–tritium core [9]. For densities in the range 300–500 g cm−3, the energy
necessary to reach ignition varies between 7 and 20 kJ. This energy must be delivered in a time
shorter than the hot spot expansion time R0/cs, where R0 is the radius of the compressed pellet,
cs � 3.5 × 107

√
T0 [keV] cm s−1 the sound speed and T0 the electron temperature. For electron

temperature and hot spot radius of the order of few kiloelectronvolt and tens of micrometres,
respectively, this means that energy must be transferred in less than 20 ps.

To deposit the required energy, ions must be stopped in the core. Protons with a range between
0.3 and 1.2 g cm−2 satisfy this requirement. For a core density ρ = 400 g cm−3 and electron
temperature T0 = 5 keV, this is achieved by ions with energy between 3 and 30 MeV [6,8].

The minimum energy required for ignition increases up to four times in the case of non-
monoenergetic ions and ion source far from the core [6]. This would be the scenario for ions
accelerated via standard Target Normal Sheath Acceleration (TNSA) outside the hohlraum as
proposed in [3]. However, proton distributions with temperature of some MeVs have been
shown to compensate for the stopping power drop when the plasma temperature increases.
More energetic ions reach the core earlier and start to deposit their energy increasing the core
temperature. By the time less energetic ions reach the core, their range is larger. In this way, the
energy gets deposited within the same small volume [5,7]. Maxwellian protons with temperature
between 3 and 5 MeV seem to minimize the ignition energy [5,8].

It has been recently suggested that ignition could be achieved with ions generated via
collisionless shocks excited directly in the plasma corona surrounding the compressed pellet
[10–17]. Indeed laser-driven shock waves provide an efficient mechanism to accelerate high-
quality ions with average energies of some MeVs [18–26]. Furthermore, compared to TNSA the
scheme seems advantageous, not only because of the lower energy spread and divergence of the
ions [25], but also because exciting the shock in the corona plasma would eliminate the need for
an external target, thus reducing the distance between the ion source and the core. In this work,
we are going to discuss the feasibility of the idea. By using numerical simulations based on the
particle-in-cell (PIC) method, we investigate the interaction of an intense pulse with the plasma
corona. The intense laser pushes the plasma surface inward around the critical density. Similarly
to what is shown in [27], the electron pile-up caused by the laser drives an electrostatic shock,
which moves ahead of the hole-boring and soon detaches from it. The shock propagates upstream
accelerating ions to energies suitable for fast ignition. Hence, our simulations reveal a physics
slightly different from the one-dimensional simulations shown in [10,11,13], where no shock is
observed in front of the hole-boring. In order for the ions to deposit the right amount of energy
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necessary to produce the ignition spark, the use of multiple laser beams could be envisaged. The
latter will lead to multiple shocks in the corona, thus reducing the energy requirements of a single
laser to provide sufficient ion flux to ignite the fuel.

2. Shock generation and ion acceleration in the corona
To illustrate the generation of shocks and the resulting ion acceleration, we have carried out two-
dimensional simulations using the PIC code OSIRIS [28–30]. We have modelled the interaction
of a p-polarized laser with intensity I = 1020 W cm−2, wavelength λ0 = 800 nm, normalized

vector potential a0 ≡ 8.55 × 10−10λ0[µm]
√

I[W cm−2] � 6.8 and infinite spot size with a pre-
formed plasma. The temporal envelope of the intense pulse follows a fifth-order Gaussian-like
polynomial profile with a rise and fall time of 1 ps and a flat duration of 2 ps at the maximum
intensity. The pulse enters the simulation box from the left boundary at t = 0 and propagates
towards the right. The pre-formed plasma is composed of a mixture of hydrogen and carbon
ions with proportion 4/5 and 1/5, respectively. We assumed carbon ions ionized four times.
The initial density profile was given by hydrodynamic simulations modelling the implosion. We
performed a detailed simulation campaign examining different delays between the compression
and the short pulse responsible for triggering shock formation. In practice, this translates into
initiating the PIC simulations with different density profiles. Here, we are going to report results
obtained when a delay of 21 ns was taken into account. At this time, the long compression pulse
has already heated the corona initiating the rocket effect to compress the core. The main pulse
thus interacts with a plasma whose density increases exponentially until a peak of ne = 146 nc,
where nc is the critical density where the laser frequency ω0 ≡ 2πc/λ0 equals the electron plasma
frequency ωp =

√
4π e2nc/me (see figure 1, which shows the electron density as a function of

distance in logarithmic and linear scale respectively). Here, c is the speed of light in vacuum,
e the elementary charge and me the electron mass. The initial plasma temperature is set to
0.1 MeV. We note that the selected plasma temperature is slightly higher than that predicted by
hydrodynamic simulations (see for instance fig. 2 in [12]). However, this choice does not have any
impact on the results. In fact, as will be clear later, the intense laser pulse heats up the electrons
to temperatures which are a couple of orders of magnitude higher than our initial choice. It is
thus this temperature that influences the shock formation and propagation. In order to explore
the interaction and the subsequent plasma dynamics, a simulation box 925 µm long and 18 µm
wide was adopted. The system is numerically resolved with two cells per electron Debye length
λD ≡

√
kBTe/4π e2nc, where kB is the Boltzmann constant and Te the electron temperature. The

temporal step is chosen to satisfy the Courant condition. In order to model the plasma dynamics
correctly 36 particles per cell and quartic interpolation were employed. A parameter scan has
been performed to check that the resolution and the number of particles per cell do not affect
the simulation results. Periodic boundary conditions were imposed for the transverse direction,
while absorbing boundary conditions were used for particles and fields along the longitudinal
direction. Our PIC simulations do not include collisional effects. We are modelling the interaction
of an intense laser with the corona plasma, which is collisionless. The mean free path values for
electron–electron collisions and ion–electron collisions are indeed larger than the system in our
case. Coulomb collisions become important to determine the energy deposition of the accelerated
ions into the dense core. The deuterium–tritium core beyond the plasma corona is not collisionless
and therefore in that case Coulomb collisions must be taken into account. However, this is out of
the scope of the present work.

The laser pulse travels through the under dense plasma, where ne < nc. Once it reaches nc,
it can further penetrate the plasma until x1 � 700 µm, where the plasma reaches the relativistic

critical density n′
c ≡ γ nc, γ �

√
1 + a2

0/2 being the correction due to the relativistic electrons.
Electrons from this region get strongly heated up and propagate through the target. Figure 2a,
which displays the longitudinal electron phase space, shows an early stage of the heating process.
It also suggests that the hot electrons are most probably produced via the J × B mechanism [32,33]
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Figure 1. Initial electron density in linear (a) and logarithmic scale (b) obtained fitting the results of a hydrodynamic simulation
performed with the code Hyades [31] modelling NIF indirect drive implosion and considering a plastic ablator. The dashed lines
represent a guide for the eyes to indicate the critical density nc and the relativistic critical density γ nc . The inset in (a) is the
electron density at shock formation time (t = 3.79 ps).
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Figure 2. Longitudinal electron phase space at t = 2.45 (a) and 3.79 (b) ps; longitudinal phase space of the hydrogen (c) and
carbon (d) ions at t = 3.79 ps. The arrows in (c,d) indicate the shock position. (Online version in colour.)
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Figure 3. Longitudinal phase space of the H+ (a) and C4+ (b) ions at t = 6.86 ps. Energy spectrum of the upstream H+ (c)
and C4+ (d) ions at the same time. The grey shaded regions in (c,d) distinguish the contribution to the spectra of the particles
reflected by the shock. The inset in (c) displays the angular distribution of protons. (Online version in colour.)

or the mechanism described in [34], both responsible for generating electron bunches separated by
a distance equivalent to λ0/2. However, before the target gets uniformly heated through electron
recirculation, a shock is launched at t = 3.79 ps. Figure 2b–d displays the electron, hydrogen ion
and carbon ion longitudinal phase spaces at the shock formation time. The first plot proves that
the electron temperature is quite uneven along the target at this time. A shock wave in its early
stage is clearly visible at x1 � 660 µm in figure 2c,d. The shock is generated following an electron
density pile-up in the region where nc < ne < n′

c, (inset in figure 1a). In fact, as noticed in [27], due
to fluctuations in γ in this region, the target is not completely transparent to the laser and, thus,
the laser is able to push electrons at its front, launching the collisionless shock. The nonlinear
wave travels through the up-ramp plasma and reflects both ion species, as shown in figure 3a,b,
where the longitudinal phase space for hydrogen and carbon ions at later times is displayed.
At this point, hydrogen and carbon ions are accelerated to different velocities. This is because
ions have not yet outrun the shock. If this was the case, they would be expected to move at
twice the shock velocity and their phase space would appear flatter. Indeed, while figure 3a,b
clearly shows reflection, it is clear from the continuing upward slope of the reflected ion phase
space that neither species has exited the shock. The C4+ ions, having a lower charge-to-mass
ratio than the protons, penetrate further into the shock and take longer to be reflected, hence
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the shorter tail and lower velocity. Over the length scale of our system the ions are accelerated to
comparable energies rather than comparable velocities. A much longer propagation length would
be needed for them to reach comparable velocities. Figure 3c,d reports the energy spectrum for
the upstream hydrogen and carbon ions, respectively. The shock reflected ions are approximately
those contained between the local minimum of the spectra and the cutoff energy (shaded areas in
figure 3c,d). Hydrogen and carbon ions have an average energy of 8 and 6 MeV, respectively, with
their distributions presenting a peak at around 6 MeV and 4.6 MeV. The H+ and C4+ spectra
extend up to 35 and 20 MeV, respectively. The energy spread σε/〈ε〉, where σε is the energy
standard deviation and 〈ε〉 the average energy, is measured to be around 46% for hydrogen ions
and 40% for carbon ions. We notice that the energy spread is much larger than that expected from
collisionless shock acceleration (CSA). The plasma density profile is far from the optimal profile
that favours CSA. The latter is usually characterized by a sharp linear rise until the relativistic
critical density followed by an exponential decay on the rear-side [21–23]. It was previously
shown that this type of profile allows for optimizing the electron heating and achieving a uniform
electron temperature, which aids the formation of a strong shock with uniform velocity and thus
the production of quasi-monoenergetic ions. The large energy spread in our case is the result
of the shock velocity not being constant (see figure 4, where the green line, which follows the
evolution of the shock, slowly changes its slope over time), which is due partially to the non-
uniform electron temperature and partially to the continuous energy transfer from the wave to the
particles, which in turns slows down the shock wave [23,35,36]. The energy spread of the reflected
ions is further broadened by the complex upstream field structure ahead of the shock, which
show oscillations. The latter oscillations, which could be due to fast electrons, cause modulations
in the ion spectrum. In fact, the thermal spread of about 4 MeV of the hydrogen beam produced
via shock acceleration minimizes the ignition energy. Hydrodynamic simulations have indeed
shown that the minimum energy for ignition is a function not only of the average energy of the
beam, but also of its temperature and it presents a minimum for thermal spreads of the order of
3–5 MeV [5,8]. From our simulations, we estimate that about 0.3% of the total hydrogen ions and
0.23% of the total carbon ions get reflected by the shock. Protons with energy between 〈ε〉 − σε

and 〈ε〉 + σε display a rms divergence of 19◦ (see inset in figure 3c). The H+ beam has an average
density of about 0.3 nc and extends over 153 µm. If cylindrical symmetry is assumed, the total
number of accelerated H+ ions can then be estimated as NH+ � 2 × 1011(W0[µm])2/(λ0[µm]),
where W0 is the laser spot size. For large enough spot size values, the number of reflected
protons will be sufficient to create the ‘hot spot’ leading to ignition. Alternatively, since there
are no geometry constraints, more than one laser pulse could be used to generate the necessary
number of protons. This would allow for focusing the lasers to spot sizes of the order of the
desired ‘hot spot’ radius producing beams with smaller transverse radii. Given the number of
H+ ions reflected by the shock and considering an average energy of 8 MeV, a laser-to-fast-ion
conversion efficiency of 6.4% is obtained. As a consequence, the overall ignition energy becomes
of the order of a few hundred kilojoules. This is one order of magnitude higher with respect to
the conventional fast ignition scheme using hot electrons [2]. However, the energy requirements
are very similar to the approach presented in [12], which differs from the scheme discussed here
and proposes to use a laser to generate a channel through the plasma corona and then employ a
short circularly polarized pulse to accelerate ions via hole-boring. A compensation for the higher
energy requirements can be found in the absence of requirements concerning target design and
laser contrast (indeed CSA was shown to work perfectly even in far from ideal target and laser
conditions [25]).

To test the robustness of the mechanism, we performed a simulation with an initial plasma
temperature of 10 keV, 10 times smaller than in the previous case. Electrons are rapidly heated up
by the laser at the critical density surface. At shock formation time (t � 3.79 ps), their longitudinal
phase space, shown in figure 5a, closely resembles figure 3. As before, a shock is formed due to
the electron pile up caused by the laser around the critical density. The shock accelerates protons
to 7 MeV with an energy spread of 56% (figure 5b). The fraction of reflected H+ ions is comparable
with the previous case.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 J

un
e 

20
21

 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200039

................................................................

x 1 
(m

m
)

900

800

700

600

500

400

300

time (ps)
86420

n 
(n

c)

102

10

1

10–1

Figure 4. Evolution of the electron density averaged along the transverse box direction. The red (lower) and green (upper)
dashed lines follow the position of the hole boring and the shock in time, respectively. (Online version in colour.)

p 1 
(m

e 
c)

250

125

0

–125

–250

x1 (mm)
800600400200

no
. p

ar
tic

le
s 

(a
rb

. u
ni

ts
)

104

103

102

10

1

10–1

10–2

no
. p

ar
tic

le
s 

(a
rb

. u
ni

ts
)

106

105

104

103

102

10

1

e (MeV)
403020100

(a) (b)

Figure 5. Longitudinal electron phase space at t = 3.79 ps, corresponding to shock formation time (a) and energy spectrum
of the upstream H+ ions at t = 6.31 ps (b) for the simulation initialized with a colder plasma. The grey shaded area in (b) has
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We explored the role of the laser duration. In particular, we performed simulations varying
τflat, when the laser holds its peak value. Figure 6 shows the H+ energy spectrum for different
values of τflat. A great difference both in terms of average energy and fraction of reflected ions
is noticeable between τflat = 0 (Gaussian pulse with no constant intensity region) and the results
obtained for finite values of τflat. The number of ions contained in the beam increases up to three
times for τflat ≥ 1 ps. However, simulations seem to indicate that using longer pulses with τflat >

1 ps results in a limited gain. The shock is shaped by the leading part of the laser pulse, thus the
trailing part becomes irrelevant once the shock starts travelling inside the plasma. Once the laser
reaches the critical surface, it pushes electrons inward. The electron pile-up contributes to launch
the electrostatic shock, which moves at a speed higher than the hole boring speed (figure 4). At
this point, the shock is completely decoupled from the laser pulse and so is the ion acceleration
process. That is why using longer pulses does not affect the results.

The impact of the laser intensity on the ion energy has also been investigated. A series
of simulations with progressively increasing laser amplitude a0 has been carried out. In these
simulations τflat = 1 ps. The obtained energy spectra for the upstream hydrogen ions are reported
in figure 7a. The average energy of the protons reflected by the shock increases linearly with
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a0 (figure 7b). We compared the energy obtained in our simulations with the values predicted
from hole boring (HB) [37] and CSA [38] models. According to the first, the HB velocity is
obtained balancing the radiation pressure exerted by the laser with the momentum flow: vHB =
cΠ1/2/(1 + Π1/2) with Π = ncmea2

0/(2nemp) and mp proton mass [37,39]. Ions accelerated by the
static field associated with the HB attain an energy of 2mpc2Π/(1 + 2Π1/2) [39]. When the HB
velocity exceeds the sound speed, then a collisionless shock is generated. The latter moves with
a velocity vs = c[menca2

0/(8mpne)]1/2(1 + κad), where κad = 5/3 is the adiabatic coefficient [40]. Ions
are reflected by the moving potential associated with the shock to a velocity v2s � 2vs and reach
an energy of mpc2(γ2s − 1), with γ2s = (1 − v2

2s/c2)−1/2. Figure 7b reports these scaling laws for
ne � n′

c. Data from our simulations are observed to fall between these predictions. In particular,
we note that the accelerated proton beams exhibit higher energies than classical hole boring,
compatible with CSA. However, the H+ energy in our simulations does not appear to scale as
the CSA model. This is probably due to the fact that ions have not yet outrun the shock field, as
previously discussed. The variation of the shock speed during the acceleration process, as shown
in figure 4, may also play a role. Besides the average energy, also the H+ cutoff energy and the
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number of ions reflected by the shock increase with the laser intensity. If a beam with higher
charge is desirable, protons with energies 	 30 MeV will not be stopped in the core and therefore
their energy will not contribute to the ignition. For the highest a0 considered here, despite losing
some charge, we estimate that the number of ions with energy between 9 and 30 MeV will be
sufficient to create the ‘hot spot’. The ion maximum energy is always higher than predicted by
the CSA model. The latter is derived considering cold ions with no thermal spread. At shock
formation time, our simulations show that the upstream ions have a certain thermal distribution,
which will be maintained after reflection. An ion with velocity v0, different from 0, will thus
acquire a velocity 2vs + v0 upon reflection. This will result in the fact that a few ions have higher
energies with respect to the theoretical model.

3. Summary
We presented two-dimensional PIC simulations modelling the interaction of a near-infrared
intense laser pulse with the ICF corona plasma. A hole-boring driven shock is generated around
the critical density. The collisionless shock travels through the exponentially increasing plasma
gradient and reflects both hydrogen and carbon ions. As a result, a hydrogen ion beam with
average energy of 8 MeV and energy spread of 46% is generated. Ions with such energies will be
able to penetrate the dense core and deposit their energy there. The approach could thus represent
a valid alternative to achieve ion fast ignition. Indeed our simulations indicate that an adequate
amount of protons could be accelerated by the shock, depending on the laser waist size. Since
the scheme is not constrained by any geometrical requirements, in order to reduce the particle
beam transverse diameter and allow focusing the beam into a small target region, we suggest
employing more than one laser pulse. With a laser-to-fast-ion conversion efficiency of 6.4%, the
energy requirements of the proposed scheme are slightly higher with respect to conventional fast
ignition. However, no additional target preparation is needed, which represents an advantage in
comparison to both conventional fast ignition and TNSA-driven fast ignition.
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