Fast and Correct Load-Link/Store-Conditional
Instruction Handling in DBT Systems

Martin Kristien, Tom Spink, Brian Campbell, Susmit Sarkar, Ian Stark, Bjorn Franke, Igor Bohm,
and Nigel Topham

Abstract—Dynamic Binary Translation (DBT) requires the
implementation of load-link/store-conditional (LL/SC) primitives
for guest systems that rely on this form of synchronization.
When targeting e.g. x86 host systems, LL/SC guest instructions
are typically emulated using atomic Compare-and-Swap (CAS)
instructions on the host. Whilst this direct mapping is efficient,
this approach is problematic due to subtle differences between
LL/SC and CAS semantics. In this paper, we demonstrate that
this is a real problem, and we provide code examples that fail to
execute correctly on QEMU and a commercial DBT system, which
both use the CAS approach to LL/SC emulation. We then develop
two novel and provably correct LL/SC emulation schemes: (1) A
purely software based scheme, which uses the DBT system’s page
translation cache for correctly selecting between fast, but unsyn-
chronized, and slow, but fully synchronized memory accesses,
and (2) a hardware accelerated scheme that leverages hardware
transactional memory (HTM) provided by the host. We have
implemented these two schemes in the Synopsys DesignWare®
ARC® nSIM DBT system, and we evaluate our implementations
against full applications, and targeted micro-benchmarks. We
demonstrate that our novel schemes are not only correct, but
also deliver competitive performance on-par or better than the
widely used, but broken CAS scheme.

I. INTRODUCTION

Dynamic Binary Translation (DBT) is a widely used tech-
nique for on-the-fly translation and execution of binary code
for a guest Instruction Set Architecture (ISA), on a host
machine with a different native ISA. DBT has many uses,
including cross-platform virtualisation for the migration of
legacy applications to different hardware platforms (e.g. Apple
Rosetta, and IBM PowerVM Lx86, both based on Transi-
tives’s QuickTransit, or HP Aries) and the provision of virtual
platforms for convenient software development for embedded
systems (e.g. OVPsim by Imperas). A popular open-source
DBT system is QEMU [lL], which has been ported to support
many different guest/host architecture pairs. QEMU is often
regarded as a de-facto standard DBT system, but there exist
many other proprietary systems such as Wabi, the Intel IA-32
Execution Layer, or the Transmeta Code Morphing software.

Atomic instructions are fundamental to multi-core exe-
cution, where shared memory is used for synchronization
purposes. Complex Instruction Set Computer (CISC) architec-
tures typically provide various read-modify-write instructions,

M. Kiristien, T. Spink, B. Campbell, I. Stark, B. Franke, and N. Topham
are with the School of Informatics, University of Edinburgh, UK. S. Sarkar
is with the University of St. Andrews, UK. I. Bohm is with Synopsys Inc.

Manuscript received April 18, 2020; revised June 12, 2020; accepted July 6,
2020. This article was presented in the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems 2020 and appears as part
of the ESWEEK-TCAD special issue.

Atomic
Operation

Read Memory

Equals
expected
value?

YES NO

Write new value
to memory

Exchanged = true
|

!

Fig. 1: The compare-and-swap instruction atomically reads
from a memory address, and compares the current value with
an expected value. If these values are equal, then a new
value is written to memory. The instruction indicates (usually
through a return register or flag) whether or not the value was
successfully written.

Exchanged = false

which perform multiple memory accesses (usually to the
same memory address) with atomic behavior. A prominent
example of these instructions is the Compare-and-Swap (CAS)
instruction. A CAS instruction atomically updates a memory
location only if the current value at the location is equal
to a particular expected value. The semantics of the CAS
instruction is shown in Figure 1. For example, Intel’s x86
processors provide the CMPXCHG instruction to implement
compare-and-swap semantics.

RISC architectures avoid complex atomic read-modify-write
instructions by dividing these operations into distinct read
and write instructions. In particular, load-link (LL) and store-
conditional (SC) instructions are used, and the operation of
these instructions is shown in Figure 2. LL and SC instructions
typically operate in pairs, and require some kind of loop to
retry the operation if a memory conflict is detected.

A load-link (LL) instruction performs a memory read, and
internally registers the memory location for exclusive access.
A store-conditional (SC) instruction performs a memory write
if, and only if, there has been no write to the memory location
since the previous load-link instruction. Among competing
store-conditional instructions only one can succeed, and un-
successful competitors are required to repeat the entire LL/SC
sequence.

For DBT systems, a key challenge is how to emulate
guest LL/SC instructions on hosts that only support CAS
instructions. Since LL/SC linkage should be broken by any

Load Link
|

Store Conditional

Regular Store
| |

¥
Read Memory

Mark address
for exclusive access

YES

Write new value

!
Return Value to memory
T !

Clear exclusive
access flag

Is address
still
exclusive?

Succeeded = true Succeeded = false

L1

Clear exclusive
access flag

T
'

'

Fig. 2: A load-link instruction reads memory, and internally marks that memory for exclusive access. A store-conditional
instruction checks to see if a write has occurred by observing if the memory is still marked for exclusive access. If the memory
has been written to, the store-conditional fails, otherwise the new value is written and the instruction succeeds. A regular store

instruction clears the exclusive access marker.

write to memory, the efficiency of detecting intervening
memory writes becomes crucial for the overall performance.
A naive approach would synchronize all store instructions,
using critical sections to enforce atomicity when executing
the instruction. However, such a naive scheme would incur a
high runtime performance penalty. A better approach to detect
intervening stores efficiently is to use a compare-and-swap
instruction. In this approach, the guest load-link instruction
reads memory, and stores the value of the memory location
in an internal data structure. Then, the guest store-conditional
instruction uses this value as the expected parameter of the
host CAS instruction. If the value of the memory location
has not changed, then the store-conditional can succeed.
Unfortunately, although fast, this approach does not preserve
the full semantics of LL/SC instructions, and it suffers from the
ABA problem: A memory location is changed from value A
to B and back to A [2]]. In this scenario, two interfering writes
to a single memory location have occurred, and the store-
conditional instruction should fail. However, since the same
value has been written back to memory, this goes unnoticed
by the instruction, and it incorrectly succeeds. We refer to this
broken approach as the CAS approximation, as this emulation
strategy only approximates correct LL/SC semantics.

A. Motivating Example

Figure 3 shows how the CAS approximation implements the
operation of the load-link and store-conditional instructions.
The load-link instruction records the value of memory (into
linked-value) at the given address, and returns it as usual.
The store-conditional instruction performs a compare-and-
swap on the guest memory, by comparing the current memory
value to 1inked-value (from the load-link instruction), and
swapping in the new value if the old values match. If the CAS
instruction performed the swap, then the store-conditional is
deemed to have been successful.

1) Trivial Broken Example: The following sequence of
events describes a possible interleaving of guest instructions,
which will cause LL/SC instructions implemented with the

Load Link Store Conditional
| |
Read Memory Read Memory Atomic
Operation
Store Value to
Linked-Value e

NO

YES
|

Return Value

Linked-Value?

Write new value
to memory

Succeeded = true

Succeeded = false

1

Fig. 3: An example of how compare-and-swap semantics can
be used to approximate load-link/store-conditional semantics.

CAS approximation to generate incorrect results. The sequence
of events are:

o t0: Core 1 performs a load-link instruction, marking
memory address 0x1000 for exclusive access. The value
returned from memory is #1.

o tl: Core 2 writes the value #2 to memory, using a regular
store instruction.

o t2: Core 2 writes the value #1 to memory, again using
a regular store instruction.

e t3: Core I performs a store-conditional instruction, and
since the value in memory is the same from when it
was read in t0, incorrectly performs the actual store, and
returns a SUCCESS result.

The CAS approximation approach violates the semantics of
the LL/SC pair at t3, as from the point-of-view of the store-
conditional instruction, the value in memory has not changed,
and so the instruction incorrectly assumes no changes were
made, and hence succeeds. However, this assumption is
wrong, since two interfering writes (at t1 and t2) have
been performed, and thus should cause the store-conditional
instruction to return a FAILED result.

We constructed a simple program to test this behavior on
both a real 64-bit Arm machine, and an emulation of a 64-
bit Arm machine using QEMU. Our analysis found that the

ElementType *pop(Stack =*stack) {

ElementType xoriginalTop, =*newTop;

do {
originalTop = LoadLink (stack->top);
newTop = originalTop—->next;

} while (StoreConditional (stack->top,

)y == FAILED) ;
return originalTop;

newTop

}

Fig. 4: Implementation of a lock-free stack pop operation.

test binary behaved as expected on the real Arm machine,
but incorrectly performed the store-conditional in QEMU. We
configured the commercial Synopsys DesignWare® ARC®
nSIM DBT to use the CAS approach and verified it too
exhibited the incorrect behavior.

2) ABA Problem in Lock-free Data Structures: In practice,
the trivial broken example described previously can lead to
the ABA problem appearing in multi-core data structures that
have collaborating operations [2], and that utilize LL/SC as
the synchronization primitives.

For example, a lock-free implementation of a linked-list
based stack loads its shared top pointer (the load-link),
prepares the desired modifications to that data structure, and
only updates the shared data provided there has been no
concurrent update to the shared data since the previous load
(the store-conditional). A typical implementation of the pop
operation, using LL/SC semantics is given in Figure 4.

Table I shows a possible interleaving of operations on a
lock-free stack, which leads to incorrect behavior when the
CAS approximation is used to emulate LL/SC instructions.
The sequence of events are as follows:

o t0: Core I starts executing a pop () operation.

o tl: Core 1 performs a load-link on the stack top pointer,
and stores the resulting element in originalTop. In
this case, object A.

o t2: Core 1 now resolves the next pointer, which points
to object B, and stores it in newTop.

o t3: Core 2 now pops object A from the stack.

o t4: Core 2 then pops object B from the stack.

o t5: Core 2 finally pushes object A back on the stack.

e t6: At this point, Core I attempts to update the top of
the stack pointer, using a store-conditional instruction to
write back newTop (which is object B).

Now, with correct LL/SC semantics, the store-conditional
instruction will return FATILED, to indicate that an intervening
write has occurred (even though the value in memory has
not changed). However, if the CAS approximation is used to
implement the store-conditional instruction, then it will not
detect that any writes to stack->top have occurred (since
the load-link in t1), and the top pointer will be incorrectly
updated to B, since the current value of the pointer matches the
expected value A (i.e. originalTop stack->top).
This can lead to undefined behavior, as the correct stack state
has been lost. For example, stack element B can now point to
reused, or invalid/freed memory.

Since the CAS approximation detects modifications to mem-
ory only through changes of values, other techniques must be
used to prevent the ABA problem and guarantee correctness
(3L 14, 5]

Similar to our QEMU experiment to detect incorrect behav-
ior, we also constructed a test program of an LL/SC based
implementation of a lock-free stack. We discovered that in
QEMU, interleaving stack accesses as depicted in Table I
results in stack corruption.

In this paper we contribute a novel, provably correct scheme
for implementing load-link/store-conditional instructions in a
DBT system and show that our correct implementation delivers
application performance levels comparable to the broken CAS
approximation scheme.

II. SCHEMES FOR LL/SC HANDLING

We introduce four schemes for handling LL/SC instructions
in DBT systems. These schemes range from a naive baseline
scheme, through to an implementation utilizing hardware
transactional memory (HTM).

1) Naive Scheme (Section II-A): This scheme inserts stan-
dard locks around every memory instruction for tracking
linked addresses, effectively turning memory instructions
into critical sections. The scheme is correct, but imprac-
tical due to the extensive performance penalty associated
with synchronizing on every memory access.

2) Broken: Compare-and-Swap-based Scheme (Sec-
tion II-B): This scheme is used in state-of-the-art DBT
systems such as QEMU. The scheme maps guest LL/SC
instructions onto the host system’s compare-and-swap
instructions, resulting in high performance. However, it
violates LL/SC semantics.

3) Correct: Software-based Scheme (Section II-C): This
scheme utilizes facilities available in the DBT system to
efficiently manage linked memory addresses, by taking
advantage of the page translation cache.

4) Correct: Hardware Transactional Memory (Sec-
tion II-D): This scheme exploits the hardware transac-
tional memory to efficiently detect conflicting memory
accesses in LL/SC pairs.

The handling of LL/SC instructions in DBT systems closely
follows the observed hardware implementation of these in-
structions. Each load-link instruction creates a CPU-local
record of the linked memory location (i.e. storing the memory
address in a hidden register). Then, the system monitors all
writes to the same memory location. If a write is detected, the
linkage of all CPUs is broken, to ensure that no future store-
conditional instruction targeting the same memory location
can succeed.

Emulating store-conditional instructions requires verifying
that the local linkage is still valid. If so, the store-conditional
can succeed, and invalidate the linkage of other CPUs for the
same memory location atomically.

Since emulating an SC instruction comprises several checks
and updates that must appear to be atomic, this emulation must
be properly synchronized with the emulation of other SC and
LL instructions. Furthermore, concurrent regular stores that

Time | Core 1

[Core 2 | Stack State

to Begin pop () operation

top->A->B->C

t1 originalTop = LoadLink (top) == A

to newTop = originalTop->next == B

t3 pop() == A top->B->C
ta pop() == B top->C

ts push () == A top->A->C
te StoreConditional (top, newTop) top->A->C

= Compare—-and-Swap (top, A, B)

X top—>B->?

TABLE I: An example thread interleaving of lock-free stack
approximation is used to implement LL/SC instructions.

interleave between the LL/SC pairs have to be detected so that
future SC instructions cannot succeed. Detecting interleaving
regular stores is the main challenge in the efficient emulation
of LL/SC instructions.

A. Naive: Lock Every Memory Access

A naive implementation of LL/SC instructions guards all
memory operations to the corresponding memory address with
the same lock. Conceptually, a global lock can be used to
guarantee mutual exclusion of all LL/SC and regular stores.
In practice, more fine-grained locking can be used to improve
performance, by allowing independent memory locations to be
accessed concurrently.

This emulation scheme is presented in Figure 5. A load-link
instruction enters a critical section, and creates a local linkage
under mutual exclusion with respect to store-conditional, and
regular stores to the same locations.

The store-conditional instruction checks the local linkage,
and if it matches, then it performs the actual write to the
memory address. The linkages of other CPUs corresponding
to the same memory address are also invalidated, so that
no future store-conditional can succeed. The emulation of a
regular store invalidates the linkage on all CPUs corresponding
to the same memory address. The actual write is performed
unconditionally.

Although simple, this scheme suffers a significant perfor-
mance penalty, due to the critical sections causing a slow-
down of all regular store instructions. Lock acquisition has to
be performed by every regular store, even those that do not
access memory locations currently in use by LL/SC pairs. For
typical applications, the majority of regular stores are slowed
down unnecessarily.

B. Broken: Using CAS Style Semantics

This scheme uses a compare-and-swap instruction to ap-
proximate the semantics of load-link/store-conditional pairs.
The LL/SC linkage comprises not only the address, but also
the memory value read by the LL instruction.

Emulating the load-link instructions saves the linked address
as well as the linked value (i.e. the result of the corresponding
read). Then, emulating the store-conditional instruction uses
the linked value for comparison with the current value of
the linked memory location using the CAS instruction. If
the current value of the memory at the previously stored
linked address does not match the linked value saved from

manipulation exhibiting the ABA problem, when the CAS

Load Link Store Conditional

| |

Record linked |

RITICAL SECTION

Matches?

c

Read Memory

—t—

Regular Store

Invalidate all
matching linked
addresses

Write Memory]
Invalidate all | i | o /
matching linked | |
addresses

Succeeded = true Succeeded = false

z!
°H
E!
*H
2
!
3!
E!
SH

Fig. 5: A naive scheme to emulate load-link and store-
conditional instructions. Critical sections are used to serialize
all (including regular) memory accesses.

Load Link Store Conditional
| |

Read Memory
Save Memory
Value

Regular Store

Saved Value
Seeena-" ’

. .
.

Succeeded = true Succeeded = false

| Write Memory | ¥

Fig. 6: CAS approximation of LL/SC.

the previous LL instruction, an interleaving memory access
has been detected. Since intervening writes to the memory
location are detected by changes in memory value, no linkage
invalidation of other CPUs is required. Similarly, regular
stores can proceed without any need of linkage invalidation
or synchronization.

This scheme offers great performance, since the emulation
of LL/SC and regular stores does not need to synchronize
at all. Furthermore, the compare-and-swap instruction is a
well established synchronization mechanism, and thus its
performance is optimized by the host hardware. However, as
we have demonstrated, the CAS scheme only approximates the
semantics of LL/SC instructions and in particular, utilizing the
CAS scheme for this purpose can cause the emulation of guest
programs to break.

C. Correct Software-Only Scheme

This scheme improves upon the approach taken by the naive
scheme. The key idea is to slow down only those regular stores

Time | Core 1 [Core 2

to Regular Store Load-link

t1 PTC lookup hits in cache

to Create linkage

ts Invalidate PTC

ta Read data from memory
ts Write data to memory

TABLE II: A particular interleaving of operations that leads
to a race-condition in the Software-only scheme.

that access memory locations that are currently being used
by LL/SC instructions. To achieve this, we take advantage of
a software Page Translation Cache (PTC), which is used in
the DBT system to speed up the translation of guest virtual
addresses to host virtual addresses. Emulated memory accesses
can query this cache to avoid a costly full memory address
translation, which may incur walking guest page tables, and
resolving guest physical pages to corresponding host virtual
pages.

Upon a hit in the cache, the emulation can use a fast-path
version of the instruction. For regular stores, fast-path version
involves no synchronization with LL/SC instructions. Note that
each core has its own private PTC, and that there exists a
number of separate per-core PTCs based on memory access
type (e.g. read, write, execute).

This scheme allows regular stores that are not conflicting
with LL/SC memory addresses to proceed without any slow-
down, by only synchronizing if the Write-PTC query misses in
its corresponding cache. To achieve this behavior, emulating a
load-link instruction involves invalidating the Write-PTC entry
for the corresponding memory address. Then, future regular
stores will be guaranteed to miss in the cache, and will be
forced to synchronize with concurrent LL/SC instructions. In
other words, no concurrent regular store can enter the fast-path
without invalidating all LL/SC linkages for the corresponding
memory address.

1) Page Translation Cache Race Condition: Implementing
the Software-only scheme without regard for the ordering of
operations between cores leaves room for a race condition to
appear. This particular scenario is depicted in Table II.

In this interleaving, on Core I, the emulation of a regular
store performs a successful PTC lookup, and enters the fast-
path at time t(. At this point, Core 2 performs the full emula-
tion of a load-link instruction, i.e. the linkage is established,
the corresponding PTC entry is invalidated, and the data is
read from memory (¢ through t4). Then, back on Core I,
the emulation of the regular store actually updates the data in
memory, at time %5.

After this execution, a store-conditional instruction on Core
2 can still succeed, as Core I did not invalidate the underlying
linkage. However, the data read by Core 2 at time ¢4 is now
out of date, since an interleaving write to the memory address
(Core 1 at ts) has been missed.

This race-condition manifests itself when PTC invalidations
performed by LL instructions happen after a successful PTC
lookup by a regular store, but before the actual data write by
the regular store instruction.

To prevent such behavior, we protect the PTC entry during

fast-path execution of regular stores by making a cache line tag
annotation. In particular, successful PTC lookups atomically
annotate the underlying tag value by setting a bit correspond-
ing to an ongoing fast-path execution. This tag bit can be
cleared only after the actual data update has happened. While
the tag bit is set, PTC invalidation during LL emulation is
blocked.

2) Optimizations: There are a number of optimizations that
can be applied to the software-only scheme, to make further
improvements.

Firstly, since the linkage comprises a single word, it can be
updated atomically. This means that mutual exclusion is not
required for LL. emulation. However, operations still have to
have a particular order to guarantee correctness. In the case
of LL emulation, the data read must happen after the PTC
invalidation, which must happen after the linkage is created.

The required ordering is depicted in Figure 7 using a red
dotted line to indicate a memory fence across which operations
cannot be reordered. We also provide a proof of correctness
of this scheme in Section IV.

Secondly, since the emulation of LL does not use locks for
mutual exclusion, the state of the underlying lock can be used
to infer if a concurrent write operation is in flight.

This can be used to immediately fail store-conditional
instructions without checking whether or not the linkage is
present. If the emulation of an SC instruction observes the lock
as being already held, then there is already a concurrent update
to the memory location in progress, so the SC instruction will
fail anyway. In this scenario, the SC instruction fails immedi-
ately. In other words, store-conditional emulation acquires the
underlying lock if and only if it has enough confidence that it
is still possible to succeed. Note that the emulation of regular
stores always acquires the lock, as this write is unconditional.

These optimizations reduce the amount of code that exe-
cutes within a critical section, and especially in many-core
applications, this results in less code having to serialize, thus
resulting in much better scalability.

D. Correct Scheme Using Hardware TM

Hardware Transactional Memory (HTM) has been used for
implementing memory consistency in cross-ISA emulation on
multicore systems before [6]. We take inspiration from this
approach, and develop a scheme for implementing LL/SC
handling using similar HTM constructs.

HTM allows the execution of a number of memory accesses
to be perceived as atomic. This can be exploited for the
handling of LL/SC instructions by encapsulating the whole
LL/SC sequence in a transaction. In particular, the emulation
of a load-link begins a transaction (e.g. the XBEGIN Intel TSX
instruction) and then reads the data. The emulation of a store-
conditional writes the new data, and then commits the ongoing
transaction (e.g. XCOMMIT).

Since all memory accesses between LL and SC instructions
(inclusive) are part of a transaction, any concurrent transac-
tions (i.e. another LL/SC pair) succeed only if there are no
conflicts between any memory accesses. Furthermore, even
memory accesses that are not part of a transaction will abort
ongoing transactions in the case of a conflict.

Load Link
|

Record linked
memory address
nvalidate PTCs
on all CPUs

Store Conditional

YES Linked

Memory Address
Matches?
Write Memory

......... ! E.”:‘lff_’l‘f.[..,....

MEM]FENCE
¥

Read Memory

CRITICAL SECTION
GLOBAL LOCK

Invalidate all
matching linked
addresses

Invalidate all
matching linked
addresses

Fig. 7: A software-only scheme emulation of LL/SC, utilizing
the DBT system’s page translation cache.

Regular Store

|
)

Load Link
|

Jransaction,
Run Fallback

vs /Tallback pati\ yo
executing

Abort Transaction

Run Fallback

Invalidate all
|matching fallback
linked addresses

Read Memory

T
i

Store Conditional

Run Fallback

On commit failure,
execution will be

rolled back to the
transaction start,

and enter the FAIL path.

Write Memory
Commit Transaction |-+

Succeeded = true

{
Fig. 8: Scheme employing Hardware TM.

This behavior is guaranteed by the strong transactional se-
mantics supported by many modern architectures. As a result,
this scheme can avoid any locking or linkage invalidation by
relying on transactional semantics to resolve conflicts between
concurrent LL/SC pairs, and to detect intervening regular
stores.

Using HTM always requires a fallback mechanism to be in
place, as HTM is not guaranteed to succeed. In our case, the
fallback mechanism is the Software-only scheme, described in
Section II-C.

The emulation of an SC instruction can check if it is exe-
cuting within a transaction by e.g. using the Intel TSX XTEST

instruction. For any core, both LL and SC instructions either
take the transactional path or the fallback path. However, it is
still possible for one core to execute a LL/SC sequence trans-
actionally, while another core concurrently executes LL/SC
using the fallback mechanism. Therefore, the transactional
path has to correctly interact with fallback path.

Since the transaction is perceived to be atomic, we analyze
the interaction from the perspective of the fallback execution,
assuming that transactional execution happens instantaneously.
The transaction can happen while inside a critical section,
during the emulation of a store-conditional in the fallback
path.

To guarantee correct execution, we use a lock elision
technique [[7]] that aborts (e.g. XABORT) the transaction if any
cores are currently executing in the fallback path (i.e. within
a critical section).

Another scenario is when the transaction happens while
the fallback execution emulates instructions between LL and
SC pairs. Here, the lock elision technique cannot be used,
since there is no lock to elide. Instead, the fallback linkage is
invalidated, causing the future fallback SC instruction to fail.
This approach allows the transactional execution to continue,
to reduce the number of transaction aborts.

III. EVALUATION

We compiled applications from EEMBC Multibench [8]
and PARSEC [9] benchmark suites for bare-metal parallel
execution by linking the binaries against a custom bare-
metal pthread library. The pthread library assigns each
application thread to a virtual core. In our evaluation, we use
10-core execution to support eight workload threads for each
benchmark. The two remaining cores are necessary to support
non-workload threads, e.g. the main application thread that
spawns the workload threads.

In addition to the application benchmarks, we constructed
our own suite of micro-benchmarks. These are designed to
stress the use of LL/SC instructions. The benchmarks vary
in the level of congestion in space and time. The micro-
benchmarks are described in Table III and the details of the
host machine used for experimentation are shown in Table IV.

A. Key Results: Application Benchmarks

In this section, we present results demonstrating that our
different schemes do not adversely affect normal application
performance. In these benchmarks, the number of LL/SC
sequences are low, but since the LL/SC mechanism interacts
with regular memory accesses, we show that our schemes do
not incur a significant performance overhead during normal
operation.

Figure 9 shows that the Multibench suite does not ex-
hibit much change in performance. For most benchmarks, all
schemes result in the runtime performance falling within 5%
relative to the Naive scheme. This is due to the infrequent
execution of the affected instructions (i.e. LL, SC, and reg-
ular store) by these benchmarks. For example, data-parallel
benchmarks synchronize using LL/SC instructions only at the
beginning and at the end of the execution. In this case, the

Benchmark SC % Description

space_<x> 3.84 atomically increment random counter in an array of size x

space_indep 16.67 atomically increment a thread-private counter

time_<x>_<y> variable | workload loop performs y instructions, x of which are inside LL/SC sequence
stack 2.32 alternate pushing and poping element in a lock-free stack

prgn 16.67 generate random numbers by a lock-free random number generator

TABLE III: Micro-benchmarks: Heavy use of LL/SC corresponds to a high percentage of executed SC instructions.

114

1.0 4

i
0.9+
0.8

£l
3 9
L7
]
o
wu
B Naive
I CAS (broken)
07 mmm HTM
H PTC
0.6 -
B SEPAL) A © R ed
OC"&.‘A'\“ ;e‘s Mm‘d@ﬁ a\‘m‘ ¥ .{_A‘Jw -_1?’ 9«‘”&‘:&\“ ‘,\56 i:;““'l \oF ‘h—g{h o A e“‘bq 'o‘eﬂa 1@1 ge“‘“dga‘eﬂ m‘* d\e’a
o W “@ @p© (ﬁ‘! 3&* G ‘d@‘e e A o t0 oof 5&9‘“* Mels e ke At v 24
(q m @@ @ ‘o B “"‘:‘m .d‘“’“ et

Fig. 9: Results for EEMBC Multibench suite with 10 cores.

System Dell® PowerEdge® R740xd

. Intel® Xeon®
Architecture x86-64 Model Gold 6154
Cores/Threads — 36/72 Frequency 3 GHz
L1 Cache 1$128kB/D$128kB | L2 Cache IMB
L3 Cache 10 MB Memory 512 GB

TABLE IV: DBT Host System

Naive
CAS (broken)

X X O AN}
@ e I gec«\ea
)
4’(e

e
\)‘\62‘“\“(6
A

Fig. 10: PARSEC suite with 10 cores.

workload kernel does not contain any synchronization, and
thus is not affected by the schemes.

Counter-intuitively, on average the CAS scheme performs
slightly worse than HTM and PTC, but the difference is
negligible, and we attribute this minor performance difference
to indirect effects, such as the dynamic memory layout of the
simulator.

Similar to the Multibench suite, Figure 10 shows that
PARSEC benchmarks do not heavily use LL/SC instructions.
However, the use of regular store instructions is much more
frequent. This results in the PARSEC suite showing a signif-
icant performance improvement by using any other scheme
compared to the Naive scheme. Since the Naive scheme
incurs a synchronization overhead for all regular stores, its
performance degrades compared to the other schemes that do
not synchronize independent regular stores. The performance
of the other schemes is comparable, with the PTC scheme

1.2

10
)
208
a
@
2
v

0.6 WEE Naive

[CAS (broken)
. HTM

H PTC

0.4

3 o1t ae® qob e et 50 b
e~ Ce, A0F (08T 00 462 a2 40
0% o0 e 28~ pacﬁ/ e ““\e, WO 0 “\e,“

CRge
o e o0
92

Fig. 11: Micro-benchmarks with 1 core.

achieving a speedup of 1.18x over Naive on average.

B. Drilling Down: Micro-Benchmarks

These benchmarks exhibit more frequent use of LL/SC
instructions and emphasise performance implications.

We evaluate the implementation overhead of each scheme
by running a single-core version of the benchmarks. There is
no congestion, as there are no concurrent cores. As a result, all
SC instructions succeed and no LL/SC sequence is repeated.
The single-core performance results are shown in Figure 11.

The CAS scheme results in the best performance with the
average speed-up of 1.04x over the naive scheme. This is
due to implementation simplicity and lack of explicit synchro-
nization. However, this scheme does not preserve the LL/SC
semantics. The performance of the PTC scheme is on par with
the naive scheme. This indicates that the additional cache
invalidation and lookup present in the PTC scheme incurs
negligible overhead. The HTM scheme shows performance
comparable to the other schemes only if the transactions are
small, i.e. there are few instructions between LL and SC. In
some benchmarks, there can be around 200 guest instructions
between LL and SC, and we typically execute around 300

mm Naive
CAS (broken)
= HTM
. PTC i

Speedup
N

N 0 B B 1Y
@ @30 At (e® g oh O ot 950
00 0% e e e - o M0 o 0 0. o)
R 0 o W g Qe e

CYRRCI
o e’t"’gecme

Fig. 12: Micro-benchmarks using 8 cores.

host instructions per guest instruction. This quickly leads to
large transaction sizes on the host machine (e.g. in the order
of 60,000 instructions), significantly increasing the chances of
an abort. This causes a significant drop in performance for
benchmarks that perform substantial work inside an LL/SC
sequence.

Next, we evaluate the performance of the proposed schemes
in a multi-core context with eight cores. Here, each core must
synchronize and communicate the LL/SC linkage, resulting
in different LL/SC success rates for different schemes. The
efficiency of linkage communication affects the overall perfor-
mance beyond the single-core overhead. The results are shown
in Figure 12.

In the case of high space congestion (space_1), PTC
outperforms the naive scheme by 2.6x. The broken CAS
scheme results in the best performance. Fast LL/SC handling
lowers the chances of interleaving concurrent LL/SC pairs,
resulting in lower SC failure rates. Using the CAS scheme,
each SC instruction fails three times on average before suc-
ceeding, while the PTC scheme results in six failures for each
successful SC instruction.

Without congestion and all LL/SC pairs updating indepen-
dent memory locations (space_indep), the naive scheme
outperforms both PTC and HTM. Since the benchmark has few
regular stores, the naive scheme does not suffer the overhead
of unnecessary synchronization of all regular stores. But the
naive scheme emulates LL instructions much more efficiently,
as it does not need to handle the PTC invalidation.

In the case of time congestion (time_64_64), large
frequent LL/SC sections result in low HTM performance.
The poor HTM performance in this case has also been
observed for single-core execution. If the LL/SC sections are
small (time_0_64), the HTM scheme outperforms the PTC
scheme with a speed-up over Naive of 1.36x for HTM and
1.19x for PTC. This is because HTM can rely on transactional
semantics to avoid data races and thus, if most transactions
succeed, it can avoid explicit synchronization with other cores.

C. Lock Granularity

To implement critical sections in the proposed schemes, we
use standard host-side locks. For correct LL/SC emulation,
it is necessary to use the same lock for matching target
memory addresses of concurrent LL/SC instructions. Utilising
multiple locks enables different LL/SC targets to proceed
independently.

To achieve this, we create a hash-map of host locks. By
masking the target of an LL/SC instruction, we obtain an index

N Naive
CAS (broken)
201 mmm HTM

= PTC

W ¥ o q\oba\

Host-side Lock Granularity

Fig. 13: Micro-benchmark space_1024 in 8-core configu-
ration with varying host-side lock granularity.

into the hash-map, which contains the lock to be used for
the critical section. Manipulating the size of the mask allows
us to control the granularity of the host-side lock. We have
experimented with several mask sizes using the space_1024
micro-benchmark (Figure 13), and the results are shown in
Figure 13.

The experimental data shows that using a single global
lock results in poor performance. Note, the CAS scheme
does not use host-side locking at all, and therefore is not
affected by the lock granularity. Although correct, using a
single lock to facilitate critical sections even for independent
LL/SC instructions is an obvious performance bottleneck. We
find that using even slightly finer-grained locking improves
performance, and results in the level of congestion being
predominantly controlled by the guest-side (as opposed to
host-side) lock granularity.

In practice, there can only be as many independent LL/SC
targets in flight at the same time as is the number of cores
being simulated. For example, in an 8-core configuration,
any lock granularity that allows for eight random LL/SC
targets to map to independent host locks can already achieve
optimal performance. Therefore, in all other experiments, we
use a word-sized mask, and a hash-map big enough to render
collisions for (e.g. eight) random targets insignificant.

D. Scalability

We evaluate the effect of varying the number of cores
on the performance of the schemes. We vary the number of
cores from one to eighteen in two core increments. The upper
number of cores is selected such that all simulation threads,
i.e. virtual cores, can be scheduled at the same time, on the
same processor. This configuration results in the greatest level
of parallelism without incurring any NUMA overhead caused
by inter-processor communication.

All micro-benchmarks perform a constant amount of work
overall. The benchmarks split the same workload evenly
between all available cores. We expect to see two types of
ideal scaling characteristics. First, data parallel benchmarks
with a low level of congestion (such as space_indep)
should exhibit runtimes inversely proportional to the num-
ber of cores. Second, high-congestion benchmarks (such as
space_1) need to sequentialize almost all execution. In this
case, adding more cores should result in only marginal runtime

improvements, i.e. the runtime is expected to remain constant
for all number of cores.

Without much congestion (space_indep), the schemes
scale almost ideally. For a greater number of cores, the
performance degrades most significantly for the HTM scheme.
However, CAS exhibits little performance degradation even for
high number of cores. This is because CAS is a long estab-
lished synchronization mechanism that has been highly opti-
mized by the hardware designers, whereas hardware transac-
tion technology is relatively new and implementations haven’t
been optimized to the same degree.

High space-congestion benchmarks (space_1) exhibit
near ideal scaling for CAS. HTM scales poorly and above
ten cores becomes the worst performing scheme. For this
many cores, very few transactions are able to complete without
conflicts, resulting in almost all LL/SC instructions taking
the fallback path. The PTC scheme scales significantly better
than the Naive scheme, especially at the medium number of
cores (up to ten). The Naive scheme shows no improvement
even when moving from one-core to two-core execution. We
attribute this scalability improvement to the optimizations
introduced by PTC, as discussed in Section II-C2. In particular,
using a lock to handle both LL and SC instructions forces the
execution (in the case of Naive) to sequentialize unnecessarily.

space_1
709 —— Naive
60 CAS (broken)
—+= HTM
50 —+ PTC
2 a0
[
E
= 30
20
10
0
1 2 4 6 8 10 12 14 16 18
cores
space_16
2 —— Naive
CAS (broken)
—= HTM
15 — PTC
2
o
£ 10
=
54

1 2 4 6 8 10 12 14 16 18
cores

space_indep

—— Naive

CAS (broken)
—+= HTM
— prc

Time (s)
®

o N &~ o

1 2] 3 8 10 12 14 16 18
cores

Fig. 14: Scalability of space micro-benchmarks.
congestion benchmark at the top.

High-

The time-congestion benchmarks show similar behavior to
the space-congestion benchmarks. CAS scales almost ideally
for all levels of congestion. The PTC scheme scales similarly
to CAS, and outperforms all other correct schemes. The HTM

time_64_64

Naive
CAS (broken)
HTM

bt

PTC

1 2 4 6 8 10 12 14 16 18
cores

time_16_64

—+— Naive

CAS (broken)
—— HTM
—+

PTC

Time (s)

1 2 4 6 8 10 12 14 16 18
cores

time_0_64

Naive
CAS (broken)
HTM

PTC

1 2 a4 6 8 10 12 14 16 18
cores

Fig. 15: Scalability of time micro-benchmarks.
congestion benchmark at the top

High-

scheme shows poor and unstable performance. For a low core
counts, the performance is sensitive to the hardware implemen-
tation, which affects the efficiency of conflict detection, and
transaction failures. For higher numbers of cores, few LL/SC
sequences succeed on the transactional path, resulting in most
executions taking the fallback path.

IV. PROOF OF CORRECTNESS

We prove that the naive and software-only schemes’ behav-
ior is allowed. We do not consider the HTM scheme here for
space reasons. We assume that the host has a Total-Store-Order
memory model like x86, where each core’s writes appear in
memory in program order. However, guest architectures with
LL/SC such as Arm will often have a weaker memory model,
so first we define our expectations for LL/SC in such a model.

a) Axiomatic Definition of Atomicity: In an axiomatic
memory consistency model such as ARMvS [L1], we assume
a coherence order relation (co) between all Writes to the same
address, and a reads-from relation (rf) between a Write and
a Read that reads its value. A from-reads relation (fr) can
be derived from these as between a Read and a Write that
is later (in co) than the Write the Read reads-from. We can
also consider parts of these relations that relate events from
different external threads, and call these coe, fre, rfe.

The atomicity condition for LL/SC is then that there is no
fre followed by coe between any LL and a successful SC.
Expanding this definition, since the LL incorporates a Read,
and there cannot be a Write from a different thread after (in

coherence order co) the one that reads-from and before the
Write from a successful SC. This captures ARMv8-like LL/SC
correctness. For architectures which allow no Writes (not even
same-thread Writes) between the LL and SC, the condition can
be stated as there is no fr followed by co between any LL and
a successful SC.

b) Axiomatic Definition of Properly Locked Executions:
For locks we have two events, lock acquire and lock release.
The definition of Properly Locked executions says that any
successful lock acquire is followed by the corresponding lock
release, and preceded by the previous release (or no lock events
for the initial acquire). This order must be common to all
threads. Further, same thread events (Writes, Reads) after the
lock acquire are globally ordered after the acquire, and same
thread events before the release are globally ordered before
the release.

¢) Naive Scheme from Section II-A: All LL, SC and
Writes are guarded by locks, and furthermore the same lock
is used for any particular address.

d) Proof: We have a global order for any properly locked
executions. Since all LL, SC and Write events are between
successful lock acquires and releases on the same thread, they
are globally ordered by the lock ordering. We can read off
coherence order co (and coe) as a subset of this global order,
and similarly for from-reads order fr (and fre). Note that the
place of a LL in this lock order corresponds to when its address
is saved, not when the read is done. This is safe because if any
write (SC or normal) from other threads intervenes in the lock
order between the LL and a SC, the lock address is guaranteed
to be invalidated and thus the SC must fail. The correctness
of the atomicity condition is thus ensured by the check done
for successful SC (within a locked region) that no other thread
has done a Write since the last LL.

e) Software-only Scheme from Section II-C: The SC and
slow path Writes are still guarded by locks, but Writes on the
fast path used when the page table cache lookup succeeds are
guarded by a different lock (tag bit) in the cache entry. An LL
invalidates the cache entries for the matching virtual address
on all other threads (within a locked region), spinning on the
lock in the old cache entry to avoid races with ongoing fast
path Writes, before invalidating all other locked addresses, and
then reading the value. Plain Writes then check whether the
virtual address is valid on that thread. If so, the Write action
is done immediately (fast path). If not (slow path), the thread
acquires the lock, performs the Write action, and then clears
matching locked addresses on all other threads (and releases
the lock). An SC checks whether the locked address is still
held, and if so then does the Write and succeeds, otherwise it
fails.

f) Proof: If all Writes go through the slow path then the
proof is analogous to the naive version. The only wrinkle is
that the LL is not locked and therefore does not participate in
the lock ordering. Consider however that the LL only does the
underlying read of the value after saving the locked address,
and the locked address is invalidated by any such write, after
the write. So either the LL reads the old value, and then the
write (and possible invalidation) occurs, or the LL reads the
new value, but if so the locked address will get invalidated

before the writing thread releases the lock. Both cases are
safe. Now let us consider the case that one or more Write goes
through the fast path. We show that no such Write can come
in between the LL and a successful SC (in the time order
implied by the ordering between the LL and SC’s acquire).
Indeed, using the fast path means the virtual address is valid on
the Write’s thread. Moreover, it must be valid when the Write
happens because it is protected by the cache tag entry lock.
Since the LL invalidates virtual addresses on all threads before
doing the Read, this means the Write must be ordered before
the invalidate which is part of the LL, or else the write cannot
go on the fast path until after the SC mutex release. In the first
case, since the LL does the invalidate while spinning on the
lock in the cache entry, the Write must have been done before
the invalidate completed, i.e. definitely before the underlying
read of the LL. In the second, such a fast-path Write is by
definition not between the LL and SC. Of course, when the
LL has invalidated the Writer’s page table entry, the write can
still go on the slow-path, but then we are back to the previous
case.

V. RELATED WORK

[12] highlights the issues in correct handling of LL/SC
instructions in QEMU, and a possible solution is provided.
While similar to our software-only scheme, it does not pro-
vide implementation details of how the PTC invalidation is
performed and how the concurrent fast-path is reintroduced
subsequently. These details are crucial for both performance
and correctness, and without them it is impossible to follow
their correctness argument. In addition, the slow-path imple-
mentation relies on expensive mutexes. In contrast, we exploit
lock-free optimizations for the emulation of both LL and SC
instructions. Prior solutions developed in PQEMU [13]] and
COREMU [14] are shown to suffer from the ABA problem,
i.e. they incorrectly implement the LL/SC semantics as demon-
strated in our motivating example. Pico [15]] introduces support
for hardware transactional memory for the emulation of LL/SC
synchronization, while an intermediate software approach uses
extensive locking. In contrast, our approaches employ sparse
locking and we deliver a formal proof-of-correctness. Qelt
[L6] is a recent development based on QEMU. While fast
thanks to its floating-point acceleration, the paper does not
offer any details on the implementation of their LL/SC em-
ulation approach. [17] employs a lock-free FIFO queue for
LL/SC emulation, but the paper is hard to follow and lacks
a convincing correctness argument. XEMU [18]] considers
guest architectures with native LL/SC support. [19] presents
a method to adapt algorithms using LL/SC to a pointer-
size CAS without the ABA problem by using additional
memory for each location, which would not be suitable for
an emulator. The implementation presented assumes sequential
consistency, but does include a formal proof mechanized in the
PVS proof assistant. A more theoretical approach to LL/SC
implementation without performance evaluation is taken in
[20]. A wait-free multi-word Compare-and-Swap operation is
the subject of [21].

VI. SUMMARY & CONCLUSIONS

We have shown that existing DBT systems implement an
approximate version of load-link/store-conditional instructions
that fails to fully capture their semantics. In particular, we
showed how these implementations can cause bugs in real
world applications, by causing the ABA problem to appear
in e.g. lock-free data structures. We presented software-only
and HTM assisted schemes that correctly implement LL/SC
semantics in the commercial Synopsys DesignWare® ARC®
nSIM DBT system. We evaluate our schemes and show that
we can maintain high simulation throughput for application
benchmarks for provably correct LL/SC implementations.

REFERENCES

[1] F. Bellard, “QEMU, a fast and portable dynamic
translator,” in Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ser. ATEC
’05. Berkeley, CA, USA: USENIX Association, 2005,
pp- 41-41. [Online]. Available: http://dl.acm.org/citation.
ctm?id=1247360.1247401

[2] D. Dechev, “The ABA problem in multicore data struc-
tures with collaborating operations,” in 7th International
Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), Oct
2011, pp. 158-167.

[3] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele Jr,
“Lock-free reference counting,” Distributed Computing,
vol. 15, no. 4, pp. 255-271, 2002.

[4] M. M. Michael, “Hazard pointers: Safe memory reclama-
tion for lock-free objects,” IEEE Transactions on Parallel
and Distributed Systems, vol. 15, no. 6, 2004.

[5] P. E. McKenney and J. D. Slingwine, “Read-copy update:
Using execution history to solve concurrency problems,”
in Parallel and Distributed Computing and Systems,
1998, pp. 509-518.

[6] R. Natarajan and A. Zhai, “Leveraging transactional
execution for memory consistency model emulation,”
ACM Trans. Archit. Code Optim., vol. 12, no. 3,
pp. 29:1-29:24, Aug. 2015. [Online]. Available: http:
//doi.acm.org/10.1145/2786980

[7] R. Rajwar and J. R. Goodman, “Speculative lock elision:
Enabling highly concurrent multithreaded execution,” in
Proceedings of the 34th annual ACM/IEEE international
symposium on Microarchitecture. 1EEE Computer So-
ciety, 2001, pp. 294-305.

[8] EEMBC, “1.0 multicore benchmark software,” 2016.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PAR-
SEC benchmark suite: Characterization and architectural
implications,” in Proceedings of the 17th international
conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 72-81.

[10] “Liblfds.” [Online]. Available: http://www.liblfds.org

[11] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and
P. Sewell, “Simplifying ARM concurrency: multicopy-
atomic axiomatic and operational models for ARMvS,”
PACMPL, vol. 2, no. POPL, pp. 19:1-19:29, 2018.
[Online]. Available: https://doi.org/10.1145/3158107

[12]

A. Rigo, A. Spyridakis, and D. Raho, “Atomic instruction
translation towards a multi-threaded QEMU.” in Pro-
ceedings 30th European Conference on Modelling and
Simulation. ~ United Kingdom: European Council for
Modeling and Simulation, 2016, pp. 587-595.

J. Ding, P. Chang, W. Hsu, and Y. Chung, “PQEMU:
A parallel system emulator based on QEMU,” in 2011
IEEE 17th International Conference on Parallel and
Distributed Systems, Dec 2011, pp. 276-283.

Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen, W. Zhang,
and B. Zang, “COREMU: A scalable and portable
parallel full-system emulator,” in Proceedings of the
16th ACM Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP *11. New York, NY,
USA: ACM, 2011, pp. 213-222. [Online]. Available:
http://doi.acm.org/10.1145/1941553.1941583

E. G. Cota, P. Bonzini, A. Bennée, and L. P.
Carloni, “Cross-ISA machine emulation for multicores,”
in Proceedings of the 2017 International Symposium
on Code Generation and Optimization, ser. CGO ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 210-
220. [Online]. Available: http://dl.acm.org/citation.cfm?
1d=3049832.3049855

E. G. Cota and L. P. Carloni, “Cross-ISA machine
instrumentation using fast and scalable dynamic
binary translation,” in Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ser. VEE 2019. New York,
NY, USA: ACM, 2019, pp. 74-87. [Online]. Available:
http://doi.acm.org/10.1145/3313808.3313811

X.-W. Jiang, X.-L. Chen, H. Wang, and H.-P. Chen, “A
parallel full-system emulator for RISC architure host,”
in Advances in Computer Science and its Applications,
H. Y. Jeong, M. S. Obaidat, N. Y. Yen, and J. J. J. H. Park,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 1045-1052.

H. Wang, C. Wang, and H. Chen, “XEMU: A
cross-ISA full-system emulator on multiple processor
architectures,” Int. J. High Perform. Syst. Archit., vol. 5,
no. 4, pp. 228-239, Nov. 2015. [Online]. Available:
http://dx.doi.org/10.1504/ITJHPSA.2015.072853

H. Gao, Y. Fu, and W. H. Hesselink, “Practical
lock-free implementation of LL/SC using only pointer-
size CAS,’” in Proceedings of the 2009 First IEEE
International Conference on Information Science and
Engineering, ser. ICISE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 320-323. [Online].
Available: http://dx.doi.org/10.1109/ICISE.2009.841

M. M. Michael, “Practical lock-free and wait-free
LL/SC/VL implementations using 64-bit CAS,” in Dis-
tributed Computing, R. Guerraoui, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004, pp. 144-158.
S. Feldman, P. Laborde, and D. Dechev, “A wait-
free multi-word compare-and-swap operation,” Int. J.
Parallel Program., vol. 43, no. 4, pp. 572-596,
Aug. 2015. [Online]. Available: |http://dx.doi.org/10.
1007/s10766-014-0308-7

http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/2786980
http://doi.acm.org/10.1145/2786980
http://www.liblfds.org
https://doi.org/10.1145/3158107
http://doi.acm.org/10.1145/1941553.1941583
http://dl.acm.org/citation.cfm?id=3049832.3049855
http://dl.acm.org/citation.cfm?id=3049832.3049855
http://doi.acm.org/10.1145/3313808.3313811
http://dx.doi.org/10.1504/IJHPSA.2015.072853
http://dx.doi.org/10.1109/ICISE.2009.841
http://dx.doi.org/10.1007/s10766-014-0308-7
http://dx.doi.org/10.1007/s10766-014-0308-7

