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Decision outcomes in unpredictable environments may not have exact
known probabilities. Yet the predictability level of outcomes matters in
decisions, and animals, including humans, generally avoid ambiguous
options. Managing ambiguity may be more challenging and requires stron-
ger cognitive skills than decision-making under risk, where decisions
involve known probabilities. Here we compare decision-making in capu-
chins, macaques, orangutans, gorillas, chimpanzees and bonobos in risky
and ambiguous contexts. Subjects were shown lotteries (a tray of potential
rewards, some large, some small) and could gamble a medium-sized food
item to obtain one of the displayed rewards. The odds of winning and
losing varied and were accessible in the risky context (all rewards were vis-
ible) or partially available in the ambiguous context (some rewards were
covered). In the latter case, the level of information varied from fully ambig-
uous (individuals could not guess what was under the covers) to predictable
(individuals could guess). None of the species avoided gambling in ambig-
uous lotteries and gambling rates were high if at least two large rewards
were visible. Capuchins and bonobos ignored the covered items and gorillas
and macaques took the presence of potential rewards into account, but only
chimpanzees and orangutans could consistently build correct expectations
about the size of the covered rewards. Chimpanzees and orangutans com-
bined decision rules according to the number of large visible rewards
and the level of predictability, a process resembling conditional probabilities
assessment in humans. Despite a low sample size, this is the first evidence
in non-human primates that a combination of several rules can underlie
choices made in an unpredictable environment. Our finding that
non-human primates can deal with the uncertainty of an outcome when
exchanging one food item for another is a key element to the understanding
of the evolutionary origins of economic behaviour.

This article is part of the theme issue ‘Existence and prevalence of
economic behaviours among non-human primates’.

Although making decisions is a usual aspect of our life, making the right
decision at the right time can sometimes be crucial for our future wellbeing,
career development or even survival [1]. Given the ever-changing character-
istics of their environment, animals including humans make most of their
decisions in a context that economists would consider ambiguous as opposed
to risky ([2,3], see also [4]). The most critical difference between these two
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contexts is how much an individual knows about the likeli-
hood of the outcomes of each possible choice. Indeed,
under ambiguity, people have little or no information about
these likelihoods. By contrast, people making decisions
under risk know the likelihood of each alternative (for
example, a one in six chance to win) before deciding.

Humans sometimes exhibit marked attitudes toward risk
(i.e. they can be either risk seekers for small risks like gam-
bling in a casino, or risk averse for high risks, leading most
people to take out insurance contracts). They also subjectively
evaluate outcomes, and are prone to errors of judgement
[5,6]. The hot hand effect, for example, consists of continuing
to take risks after a series of gains [7]. Humans are also gen-
erally more affected by losses than by equivalent gains (loss
aversion, [8]). Some of these characteristics are shared with
other species when choosing under risk, and especially our
closest living relatives (loss aversion, [9,10], hot hand effect,
[11]). This suggests that the determinants of our decisions
could be inherited from naturally selected features in our
ancestors [12-17].

The investigation of decision-making under ambiguity is
a recent field in non-human primates. It has been studied
less than decision-making under risk [14]. Ultimately, com-
paring decision-making under risk and under ambiguity in
several primate species may enable us to decipher the cogni-
tive, adaptive and/or ecological mechanisms that shape our
choices. Humans value options differently under risk than
they do in a context of ambiguity [3,4,18], and human atti-
tudes and choices in one context do not always help to
predict accurately choices in the other [19]. For example, a
risk seeker is not necessarily an ambiguity seeker (see [20]
for a review). There is a general consensus in the literature
that humans show ambiguity aversion [6,20-22]. This is
also true of non-human primates [23,24]. When given a
choice between an ambiguous option and an option that is
either risky or safe, bonobos (Pan paniscus), chimpanzees
(Pan troglodytes, [24]) and rhesus macaques (Macaca mulatta,
[23]) avoided the ambiguous option.

Given that most aspects of their environment have an
element of unpredictability, this widespread aversion to
ambiguity is quite intriguing [14]. It is unclear whether indi-
viduals reject ambiguity due to a lack of information or
because dealing with ambiguity may be cognitively more
challenging than dealing with risk. Indeed, in an ambiguous
context, individuals may have to compute a range of prob-
abilities to make the best possible decision, whereas under
risk individuals have all information needed to evaluate the
likelihood of options.

Earlier risk studies have revealed that several species of
great apes, macaques and capuchins take the predictability
of outcomes into account to maximize their benefits
[11,23,25-28]. Other studies have shown intuitive probabilis-
tic inferences in capuchins (Sapajus apella, [29]) and great
apes [30,31]. Thus, non-human primates are equipped with
the cognitive skills needed to process odds of outcome. How-
ever, there are some indications that the decision-making
process may shift from odds evaluation to simpler decision
rules when the cognitive load of a task increases. In a
recent study, we presented great apes and monkeys with
a risky food gambling task in which information about the
odds of winning was displayed in front of them before each
trial. To gamble in this game, subjects had to relinquish a
food item that was already in their possession to obtain the

contents of one out of six cups displayed in front of them. [ 2 |

The cups contained different amounts of food, with rewards
that were larger, smaller or the same size as the food item the
subject already possessed. In the first version of the task,
the chances of winning progressively decreased through-
out the study, and individuals successfully used the odds
associated with each outcome before gambling [11]. This gra-
dual decrease in the chances of winning probably facilitated
the extraction of information about odds. Odds were modi-
fied from one trial to the next in a second version of this
task [32], thus requiring individuals to pay close attention
to the odds displayed to them at each trial. Here, many indi-
viduals applied a Maximax heuristic, and were more likely to
gamble when there was at least one chance of winning (dis-
regarding potential losses). Heuristics are simplified
decision rules that help individuals to deal with situations
that require a high cognitive investment [33,34]. Thus, indi-
viduals apply heuristics when faced with an increased
difficulty in extracting information about the odds. Under
ambiguity, where information is partial, individuals may be
more likely to make use of simple decision rules rather than
attempting to evaluate the odds of winning or losing, but
this has not been investigated to date.

This study investigated the role played by information
about odds in decisions made under risk and ambiguity by
capuchin monkeys, Tonkean macaques (Macaca tonkeana),
orangutans (Pongo abelii), gorillas (Gorilla gorilla), chimpanzees
and bonobos. We used a modified version of the risky gam-
bling game mentioned above. In this task, subjects could bet
a food item in their possession in exchange for the contents
of one of the six cups displayed in front of them. Each cup con-
tained either a larger or smaller amount of food than the
amount possessed by the subject. The decision was made
under risk when the subjects could visually assess the odds
of winning and losing (for example, they had five chances
out of six to receive more food if five cups contained a larger
cracker and one cup contained a smaller cracker than the one
they already possessed). Ambiguity was implemented by cov-
ering some of the cups. By changing the presence and location
of the covers, we could vary the amount of information
available so that subjects made their decision under four con-
ditions: (i) risky lotteries, where subjects could see all the
potential outcomes; (ii) predictably advantageous lotteries,
where subjects could not see but could infer (according to
how the lotteries were set up, see Material and methods) that
the covered cups contained large rewards; (iii) predictably dis-
advantageous lotteries, where subjects could not see but could
infer that the covered cups contained small rewards; and (iv)
ambiguous lotteries, where subjects could not guess the exact
probabilities associated with potential outcomes. The safe
choice was therefore to keep the food they already possessed,
while the risky or ambiguous choice was to gamble. This exper-
imental set-up allowed us to investigate which elements
subjects used to make their decision. We anticipated three
decision-making scenarios. First, subjects may reject ambigu-
ous lotteries altogether by only gambling in lotteries without
covers (risky lotteries). Second, they may ignore ambiguity
and gamble based on visible information through simple heur-
istics such as counting the number of large visible rewards.
Third, subjects may consider the level of information about
odds, thus responding differently to contexts in which they
can predict their odds of gains and those where they cannot.
Unlike the two previous alternatives, this third alternative is



Figure 1. Example of two lotteries presented to the subjects. (a) A tray of six plastic cups containing pieces of crackers that are either larger or smaller than the food
item they have already been given. In this risky lottery (#16), three cups contain a large cracker (cups 1-3, left) and three cups contain a small cracker (cups 4-6,
right). There are no covers and individuals can see that there is a 50% chance of success. (b) In this ambiguous lottery (either lottery #10, #14 or #18), there are
two covers in the middle that can each hide small or large crackers. Individuals cannot precisely estimate their chances of winning. Large crackers: 4 X 4 < 0.5 cm.

Small crackers: 1 1 0.5 cm. (Online version in colour.)

more complex because it requires subjects to build correct
expectations about the content of the covered cups in predict-
able lotteries. Great apes, macaques and capuchin monkeys
can make inferences based on partial visual information
[35-37], and may therefore have the cognitive skills to build
correct expectations. However, we cannot exclude that the
great apes might be more skilled in doing so. We know more
about the inferential skills of great apes than those of other
species [38]. Evaluating the odds of outcome in risky lotteries
or the range of possible odds of outcome in the ambiguous
one may be less demanding for them than for monkeys. Each
species may also have its own decisional pathway,
and choices could reflect a species’ general sensitivity to risk
or ambiguity. For example, macaques [11] and capuchins
have sometimes been described as rather risk prone [39], and
chimpanzees have been described as more risk prone than
bonobos in some studies [27,40]. These species might be
more likely to gamble in higher risk lotteries than others, and
they may be less averse to the ambiguity of the task than the
other species.

2. Material and methods
(a) Subjects

Thirty subjects were involved in the study: four brown capuchin
monkeys, five Tonkean macaques, five orangutans, four gorillas,
seven chimpanzees and five bonobos (electronic supplementary
material, table S1). All subjects were socially housed in enclo-
sures with access to indoor and outdoor areas. Water was
available ad libitum and subjects were not food deprived. Pro-
cedures were non-invasive and subjects could choose to stop
participating at any time. All individuals had previous experi-
ence in a food gambling task and were familiar with
exchanging food items of different sizes with a human exper-
imenter (see electronic supplementary material and table S2 for
training and pre-analyses procedures).

(b) Apparatus and experimental procedure
The procedure was a food gambling task similar to that used by
Pelé et al. [11]. Six cups were presented aligned in front of the

subject. Each cup contained one piece of cracker that could be
large (4x4x0.5cm) or small (I1x1x0.5cm) (figure 1). We
manipulated the contents of the cups to offer lotteries with vary-
ing gain predictability (table 1). Crackers were always placed in
the cups according to their size and were aligned in decreasing
order of size from the left to the right. Lotteries were presented
under four conditions (table 1): (a) risky: no cups were covered,
thus all potential crackers were visible (figure 1a); (b) predictably
advantageous: two of the six cups were covered, but the ranking of
crackers by size enabled subjects to infer that two large crackers
were hidden under the covers (see for example lottery 6, table 1);
(c) predictably disadvantageous: two of the six cups were covered,
and the individual could infer from their position that they con-
tained small crackers (see for example lottery 22, table 1); and
(d) ambiguous: two of the six cups were covered and subjects
could not predict the size of the hidden crackers (figure 1b).
Note that all subjects had already experienced the ordering of
crackers by size in the lottery cups in a previous study on
decision-making under risk [32].

In each trial, the experimenter sat in front of the subject’s
compartment holding an initial food item (always a medium-
sized cracker measuring 2 x 2 x 0.5 cm) in one hand, and the lot-
tery in the other hand (i.e. the tray of six aligned plastic cups).
The experimenter ensured that the subject had seen the six-cup
tray, and then gave him or her the initial food item. The exper-
imenter held out her empty hand and offered the subject the
opportunity to gamble by giving the initial food item back. If
the subject chose to keep the initial allocation, the trial ended.
If the subject gambled, it received the contents of one of the six
cups, randomly determined prior to testing. While the subject
consumed the cracker (either the initial food item or the lottery
cracker), the experimenter refilled the cups out of the subject’s
sight before starting the next trial with the next lottery. In the
cases where the lottery contained covered cups, a subject
who decided to keep the initial allocation would be shown the
contents of the covered cups and the trial would end. If the
subject chose to return the initial allocation, the experimenter
removed the covers then gave the subject the contents of a ran-
domly assigned cup which could sometimes be one of the
covered cups. A total of 28 lotteries (table 1) were used, each pre-
sented once in a random order within a series of 28 trials (i.e. one
lottery after the other), and each series was repeated 18 times
(18 sessions). To prevent satiety, the great apes participated in
14 trials per day and the monkeys in seven trials per day.
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Table 1. The 28 lotteries. LRv, number of large rewards visible; large square, large reward; small square, small reward; blue rectangle, position of cup n
with cover. (Online version in colour.)
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(c) Data analysis

We sought to identify which of the following variables best
explained the responses of subjects: the species, the number of
visible large rewards (#LRyv, from 0 to 6), the level of information
(risky, predictably advantageous, predictably disadvantageous
or ambiguous), the point in the study duration (either during
the first nine sessions from S1 to S9 or the last nine sessions,
from S10 to 518), and the size of the outcome received at the pre-
vious trial (large-, medium- or small-sized rewards). We added
subjects, study site (as a proxy for housing conditions) and age
(juvenile or adult) as random factor (with the following nested
structure: 1/age/subjects and 1/study site/subjects). We first
ran a GLMM model (package Ime4, in R) with a model selection
procedure based on Akaike’s second-order information criterion
(function dredge in R, package MuMin, [41], AICc, [42]) in order
to identify the variables contributing to the best model, all
species included. Given that the best model was statistically
equivalent in terms of data fit to the full model (Delta <2), we
chose the model with the highest explanatory power, i.e. the
full model.

For each species, we then used the decision tree approach
with these variables (except the variable ‘species’) to analyse
the data because we (i) expected interactions between variables
and nonlinear effects and (ii) wanted to capture the hierarchical
decision pathway (order of variables, potential threshold of
these variables) for each species. The random factors study site
and age were not included in this analysis as each species had
only one study site, and some species had only adult individual.
Generalized linear mixed models (GLMMs) allow for the incor-
poration of within individual repetitions and the dependent
variable (gambling) was binomial. We therefore used model-
based recursive partitioning (a type of decision tree) based on
GLMMs called generalized linear mixed effects models trees
(GLMM trees). The algorithm identifies subgroups, i.e. the term-
inal nodes, which differ according to the gambling rate. To
identify these subgroups, the observations in the dataset are
partitioned with respect to defined splitting variables, like in
any tree algorithms. The main interest of tree-based algorithms
is that they can handle high-order interactions, which in our
case correspond to the decision pathway. Unlike other tree algor-
ithms, GLMM trees take into account the clustered structure of
datasets by including a cluster random effect, which allows us
to account for the pseudo replication of the same individual in
the dataset. Since we wanted to identify subgroups differing
from each other by their gambling rate, we specified the node-
specific model that included only one intercept (i.e. the gambling
rate mean per subgroup). Specifically, the tree algorithm pro-
ceeds via the following steps, all of which are adjusted for the
random effects: at each node, the algorithm assumes that there
is at least one splitting variable, which, at a certain threshold
(i.e. optimal split point) divides the observations in two subsets,
ultimately leading to more stable (i.e. with a lower variance)
intercept coefficients (i.e. gambling rate values) than at the begin-
ning. This stability is objectified via the parameter instability test.
The algorithm estimates an optimal split point for each splitting
variable and applies instability tests. If several instability tests
show significant results (p <0.05 for several splitting variables),
the node observations are partitioned into two subsets with respect
to the splitting variable associated with the highest instability
(lowest p-value). This process is repeated recursively until no
further significant instabilities are found (i.e. all p > 0.05) or the sub-
groups become too small. All tests are Bonferroni-adjusted to
account for multiple testing across all covariates.

We used the function glmertree of the package glmertree
[43]. For each species, we specified a model with only the inter-
cept in order to identify subgroups differing on their gambling
rate. To account for individual differences, we set individual
identity as a random intercept. Finally, we specified the splitting

node 2 node 4 node 6 node 8 node 9
5.27% 52.29% 80.97% 89.87% 96.33%
u=-2.89 || u=0.09 u=145 u=2.18 u=3.27

Figure 2. Decision tree for the capuchin monkeys showing the hierarchical
organization of the variables structuring the decision. Capuchins gamble
more than 50% of the time when at least one large reward is visible
(from node 4). For 3 LRv lotteries (nodes 8 and 9), they also gamble
more at the end of the study compared to the beginning. # LRv, number
of large rewards visible; session, point in the study duration (S1-9, from ses-
sion 1-9; $10-18, from session 10-18); p-value, node instability (unstable
with a p-value < 0.05 in all intermediary nodes); 1, the intercept coefficient
(i.e. the logit transformation of the gambling probability expressed in % and
given above).

variables ‘number of large visible rewards’, ‘level of information’,
‘point in the study duration’, and ‘previous outcome’ as potential
partitioning variables. Because the response variable is a binary
variable, we specified ‘binomial’ as the model family whose
link function is the function logit by default. Further details on
the R code are given in the electronic supplementary material.
Because of our initial specifications in the model (including
only the intercept), we only obtained the intercept coefficient
(1) corresponding to the logit transformation of the gambling
probability. These gambling probabilities were computed using
the inverse of the logit function (2.1) to extract the mean of
gambling rate per model.

logit_](p,) = (2.1)

In the decision trees, we report the value of (1) and the gambling
probabilities as percentages (figures 2-7). We also calculated the
intra-class correlation (ICC, see electronic supplementary
material procedure for the R code) for each species to evaluate
how much variance could be explained by inter-individual
variations.

In addition, we ran a second analysis to evaluate if the pre-
vious choice and its outcome could influence the next decision
(stay with or shift from the previous decision to exchange or
not). To do so, we looked at all the lotteries where subjects
received information that their choice had been right or wrong.
This analysis was based on a subset of data involving 9934
decisions. The dataset was restricted to the following four
cases: (1) trials where individuals exchanged and were right to
do so (when they subsequently won, whatever the lottery).
(2) Trials where they refrained from exchanging and were right
to do so. But note that this ‘rightness” could only be experienced
by subjects in lotteries 25, 26 and 27, where they could see that
they would have lost if they had exchanged, i.e. by seeing only
small rewards when the covers of the cups were removed.
In other lotteries, the subjects had no way to guess which cup
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node 3 node 4 node 7
4.20% 38.22% 67.67%
u=-3.13 || u=-0.48 u=0.74

node 8 node 10 node 11
81.27% 93.18% 97.78%
u=147 u=2.61 u=3.74

Figure 3. Decision tree for the bonobos. Bonobos gamble more than 50% of the time in lotteries with at least 2 LRv (from node 7). In lotteries with 2 LRv, they are
less likely to gamble if the previous reward was medium sized. # LRv, number of large rewards visible; outcome, previous outcome (M, medium; L, large; S, small);
p-value, node instability (unstable with a p-value < 0.05 in all intermediary nodes); , the intercept coefficient (i.e. the logit transformation of the gambling

probability expressed in % and given above).

node 3 node 4 node 7 node 8 node 10 node 12 node 13
19.14% 4.61% 66.70% 86.67% 88.84% 93.05% 98.44%
u=-144 u=-3.03 u=0.69 u=1287 u=2.07 u=2.59 u=4.15

Figure 4. Decision tree for the gorillas. Gorillas gamble more than 50% of the time for lotteries with at least 1 LRv (from node 7). The level of information plays a
role in 0 LRv lotteries: they are more likely to gamble in lotteries with covered cups (node 3) than in risky lotteries (node 4). Previous outcome can play a role for
lotteries with 1 LRv (nodes 7 and 8). # LRv, number of large rewards visible; info, level of information (pre+, advantageous; pre—, disadvantageous; Amb,
ambiguous, risky); outcome, previous outcome (M, medium; L, large; S, small); p-value, node instability (unstable with a p-value < 0.05 in all intermediary
nodes); 4, the intercept coefficient (i.e. the logit transformation of the gambling probability expressed in % and given above).

they would have received. We cannot therefore make a judge-
ment about whether or not individuals felt that their choice not
to exchange had been wise. (3) Trials where they exchanged
and were wrong to do so (when they subsequently lost, whatever
the lottery). (4) Trials where they did not exchange and were
wrong to do so. But note here also that this ‘wrongness’
could only be experienced by subjects in lotteries 2, 3 and 4,
where they could see that they would have won if they had
exchanged, i.e. seeing only large rewards when the covers of
the cups were removed. In other lotteries, the subject had no

way to guess which cup they would have received. Thus, we
could not evaluate whether individuals would have regretted
their decision to not exchange. For each of these four cases, we
then looked at whether they maintained the strategy in the fol-
lowing trial (right-keep, right-shift, wrong-keep, wrong-shift:
an example of right-keep would be to see the individual refus-
ing to exchange after having being right to not exchange in the
previous trial).

If individuals were influenced by the result of the previous
decision, we predicted that being right at a given trial should
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#LRv
p<0.001

#LRv
p <0.001

= =1 =2 >2
outcome session
p <0.001 p <0.001
LM S S1-9 S10-18
info outcome
p=0.044 p=0.001
pre+ Amb, M LS
pre-
risky #LRv
p=0.036
<5 >5
node 3 node 4 node 8 node 9 node 10 node 14 node 15 node 16 node 17
1.43% 29.31% 81.16% 65.69% 94.93% 74.65% 94.58% 91.11% 92.01%
u=-4.23 u=-0.88 u=1.46 u=0.65 u=2.93 u=1.08 u=2.86 u=2733 u=2.49

Figure 5. Decision tree for the Tonkean macaques. Tonkean macaques gamble more than 50% of the time for lotteries with at least 2 LRv (from node 8). Level of
information, point in the study duration, and previous outcomes are also splitting variables in various parts of the decision tree. They can distinguish between
predictably advantageous lotteries and the other ones, but only for 2 LRv lotteries and only if the previous outcome was a medium-sized or large reward. #
LRv, number of large reward visible; info, level of information (pre+, advantageous; pre—, disadvantageous; Amb, ambiguous, risky); outcome, previous outcome
(M, medium; L, large; S, small); session, point in the study duration (51-9, from session 1-9; S10-18, from session 10—18); p-value: node instability (unstable with
a p-value < 0.05 in all intermediary nodes); 4, the intercept coefficient (i.e. the logit transformation of the gambling probability expressed in % and given above).

make subjects adopt the same strategy in the following trial
(whatever the strategy, i.e. exchanging or not). We also predicted
that subjects should shift strategy if they had been wrong in the
previous trial (whatever the strategy). We conducted a GLMM
analysis with a logit link function and binomial distribution to
evaluate if the predictions were verified (1: prediction verified,
0: prediction unverified) according to the species and the type
of decision (right or wrong), with individuals as random
factor. We ran a model selection analysis to select the best model.

3. Results

(a) Identifying the main decisional variables and
building the decision tree

The results of the best model selection procedure indicate that
the full model including the five variables was the best model
(see electronic supplementary material, table S3). The results
of the decision tree analysis are shown for each species in
figures 2-6 and summarized in table 2. As expected, the
first splitting variable is the number of large visible rewards
(#LRv) for all species. The scenarios then differ according to
each species. Some trees remain ‘simple’ with five terminal
nodes in capuchins, six in bonobos and seven in gorillas,
while others are more complex with nine nodes in macaques,
11 nodes in chimpanzees and 13 nodes in orangutans. Species
results are presented in increasing order of terminal nodes in
the decision trees. For individual gambling rates, see elec-
tronic supplementary material, table S4 results section and

see table 2 for the proportion of total variance explained
by ICC.

The simplest tree, i.e. the one with the fewest nodes, is
that of capuchins (figure 2). They start gambling more than
50% of the time when at least one large reward is visible,
as indicated by the probability of gambling shown below
each terminal node of the figure (here, from node 4 in
figure 2). The first splitting variable is the number of large
visible rewards (LRv). They distinguish between lotteries
with 0, 1, 2 and 3-6 LRv, gambling more as the number of
LRv increases. For lotteries with at least 3 LRv, the probability
that capuchins will gamble is higher by the end of the study
(96.32%, node 9) compared to the beginning (89.87%, node 8).
Previous outcomes do not play any role and the level of infor-
mation is never a splitting variable, suggesting that capuchins
do not consider the level of information provided by the
different lotteries (i.e. the fact that the covers hide rewards).

For bonobos, the number of LRv is also the first splitting
variable (figure 3). They start gambling more than 50% of the
time in lotteries with at least 2 LRv (from node 7). They dis-
tinguish between 0, 1, 2, 3 and 4-6 LRv (gambling more as
the number of LRv increases). In lotteries with 2 LRv, they
are less likely to gamble at a given trial if the previous out-
come was a medium-sized reward (i.e. if they had not
exchanged; 67.67% of gambling, node 7) than a reward of
any other size (81.27% of gambling, node 8). Like for the
capuchins, the level of information is never a splitting vari-
able, suggesting that they do not consider the level of
information provided by the different lotteries.
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Figure 6. Decision tree for the chimpanzees. Chimpanzees gamble more than 50% of the time for lotteries with at least 1 LRv (from nodes 10 and 11). The level of
information plays a role at 0 LRv and 1 LRv lotteries and chimpanzees gamble more at lotteries that are indeed more likely to provide large rewards under the covers
(nodes 3 and 10). The point in the study duration and the size of the outcome can also play a role in the decision-making process (see the Results section). # LRv,
number of large rewards visible; info, level of information (pre+, advantageous; pre—, disadvantageous; Amb, ambiguous, risky); outcome, previous outcome (M,
medium; L, large; S, small); session, point in the study duration (S1-9, from session 1-9; S10—18, from session 10—18); p-value: node instability (unstable with a
p-value < 0.05 in all intermediary nodes); 4, the intercept coefficient (i.e. the logit transformation of the gambling probability expressed in % and given above).

#LRv
p <0.001
=0 >0
session #LRv
p <0.001 p<0.001

S1-9 S10-18 =1 >2
info session #LRv
p <0.001 p <0.001 p <0.001
Amb, pre- risky S1-9 S10-18 =2 >2
info info session #LRv
p<0.01 p <0.001 p=0.017 p <0.001
Amb pre— pre+ pre—, risky S1-9 f\ s10-18 =6
#LRv session
p <0.003 p <0.001
S1-9 S10-18
node 5 node 6 node 7 node 8 node 11 node 13 node 14 node 17 node 18 node 21 node 22 node 24 node 25
31.42% 14.31% 0% 4.96% 86.03% 83.33% 44.87% 94.63% 88.57% 96.67% 98.41% 100% 100%
u=-078|| u=-1.79 || u=-19.44{| u=-2.95 u=138 pu=161| u=-021f | ©u=2.87 ,u=2.05 u=337 u=4.12 | |u=17.75 =19.48

Figure 7. Decision tree for the orangutans. Orangutans gamble more than 50% of the time for lotteries with at least 1 LRv (from node 11, except for node 14). The
level of information plays a role at 0 LRv (especially at the beginning of the study), and 1 LRv lotteries (especially at the end). Like chimpanzees, orangutans gamble
more at lotteries that are more likely to provide large rewards under the covers (nodes 5 and 13). The point in the study duration can also play a role for 2LRv (see
Results’ section). # LRv, number of large rewards visible; info, level of information (pre-+, advantageous; pre—, disadvantageous; Amb, ambiguous, risky); outcome,
previous outcome (M, medium; L, large; S, small); session, point in the study duration (S1-9, from session 1-9; S10—18, from session 10—18); p-value, node
instability (unstable with a p-value < 0.05 in all intermediary nodes); 4, the intercept coefficient (i.e. the logit transformation of the gambling probability expressed
in % and given above).
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Table 2. Summary of the main results of the study. *, Based on the response at risky lottery 24, significant difference between choices of the risky versus safe  [JJEJ}

option; **, based on the analysis of the decision tree, when ambiguous lotteries are preferred to equivalent risky ones (for * and **, note that future studies
should run econometric evaluations to confirm these attitudes); ICC, intra-class correlation: percentage of total variance explained by individual variance.
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For gorillas, the first splitting variable is also the number of
LRv (figure 4). They gamble more than 50% of the time for lot-
teries with atleast 1 LRv (node 7) and they distinguish between
lotteries with 0, 1, 2, 3-5 and 6 LRv. For lotteries with 0 LRv, the
level of information is also a splitting variable. They are more
likely to gamble in lotteries with covered cups (19.14% of the
time, node 3) than in risky lotteries (4.61%, node 4). This evi-
dence strongly suggests that the subjects knew that some of
the covered cups can contain large rewards but do not make
any distinction between the different levels of information.
For lotteries with 1 LRv, the previous outcome can play a role
on the decision as gorillas are more likely to gamble (86.67%,
node 8) if they received a large or a small reward (i.e. if they
had exchanged) at the previous trial than if they had received
a medium-sized reward (66.70%, node 7), in other words, if
they had not exchanged.

For Tonkean macaques, the first splitting variable is also the
number of LRv (figure 5). They generally start gambling more
than 50% of the time for lotteries with at least 2 LRv (from node
8) but the level of information, point in the study duration, and
previous outcomes are also splitting variables. With 0 LRy,
they almost never gamble (1.43%, node 3) and gamble more
with 1 LRv (29.31%, node 4). With 2 LRv, they are more
likely to gamble if they received a small reward at the previous
trial (94.93%, node 10) than if they received any other size of
reward (equal to or less than 81.16%, node 8 and 9). With 2
LRy, if the previous reward was large or medium sized they
took into account the level of information, playing more in

made correct
expectations in

potential (**)
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predictably advantageous lotteries (81.16%, node 8) than in
the others (65.68%, node 9). For lotteries with 3 LRv or more,
they generally gamble more at the end of the study (92.01%,
node 17) than at the beginning (node 14-16, but not 15), and
at the beginning of the study, they can be influenced by both
previous outcomes and #LRv (nodes 14-16, see figure 5 for
more details).

The first splitting variable for chimpanzees is also the
number of LRv (figure 6). They gamble more than 50% of
the time for lotteries with at least 1 LRv (from node 10 and
11). For lotteries with 0 LRv, the level of information is also
a splitting variable. Chimpanzees rarely gamble, but they
are more likely to gamble for ambiguous lotteries (16.11%,
node 3) than predictably disadvantageous and risky lotteries
(below 7.02%, node 5 and 6). In the last two types of lotteries,
the point in the study duration is also a splitting variable, as
the probability to gamble is lower at the end of the study
(1.54%, node 6) compared to the beginning (7.02%, node 5).
For lotteries with 1 LRy, the level of information is, again, a
splitting variable. Chimpanzees gamble more at predictably
advantageous lotteries (75.38%, node 10) than at the others
(59.27%, node 11). For lotteries with 2 LRv, previous outcome
and point in the study duration play a role. They are less
likely to gamble after receiving a medium-sized reward at
the beginning of the study (node 14) compared to the end
(node 15). This outcome effect is also detected for 3-6 LRv
lotteries, but only occurs at the beginning of the study
(node 19).
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Orangutans distinguish between lotteries with 0, 1, 2, 3,
4-5 and 6 LRv (figure 7). They are more likely to gamble
more than 50% of the time for lotteries with at least 1 LRv
(node 11 and 13, but not 14). The level of information is a
splitting variable in two cases. The first case is lotteries
with 0 LRv. In the first nine sessions, the subjects never
gamble for risky lotteries (node 7) and are more likely to
gamble at ambiguous lotteries (node 5) compared to predic-
tably disadvantageous lotteries (node 6). After the first nine
sessions, they gamble from time to time but at very low
rates, whatever the level of information (node 8). The
second case concerns lotteries with 1 LRv. Here subjects are
more likely to gamble more for predictably advantageous lot-
teries compared to others, but they only do so in the second
half of the study (node 13 versus 14). They also gamble more
for 2 LRv lotteries at the beginning of the study than they do
at the end.

(b) Investigating the potential effects of previous

decisions

In general, subjects followed the prediction (keep the strategy
when right and shift when wrong) in 5142 trials (51.76%) and
did not follow the prediction (shift when right, or keep when
wrong) in 4792 trials (48.24%). However, the best model selec-
tion indicates that the variables species and type of decision
(right or wrong), and the interaction between them, influ-
enced the likelihood to follow the prediction (see electronic
supplementary material, table S5).

A pairwise comparison with a Bonferroni correction indi-
cated that capuchins, macaques and orangutans were more
likely to not follow the ‘right keep/wrong shift’ strategy
than to follow it (capuchins: estimates=-0.32+0.11, 95%
CI=-0.61 to —0.03; macaques: estimates =—0.36 = 0.09, 95%
CI=-0.59 to -0.13; orangutans: estimates=—0.27 +0.08,
95% CI=-0.5 to —0.05). This effect was not detected in
other species. The effect of the type of decision indicates
that correct predictions (right keep/wrong shift) were more
likely than incorrect predictions (right shift/wrong keep)
after a right decision (mean correct predictions: 63%;
GLMM: estimates=0.5+0.04, 95% CI=0.42-0.59), and that
incorrect predictions were more likely than correct predictions
after a wrong decision (mean incorrect prediction: 72.5%;
GLMM: estimates = —0.98 + 0.05, 95% CI = —1.09 to —0.87).

The pairwise comparisons of the interaction between the
variables ‘type of decision” and ‘species’ indicate that for the
right decisions, keeping the same strategy was more likely
than shifting in all species except in the Tonkean macaques
(macaques: estimates=0.13+0.09, 95% CI=-0.12 to 0.39;
capuchins: estimates = 0.42 + 0.09, 95% CI = 0.14-0.69; orangu-
tans: estimates = 0.75+0.09, 95% CI =0.5-0.99, chimpanzees:
estimates = 0.59 + 0.07, 95% CI =0.39-0.8, gorillas: estimates =
0.72+0.09, 95% CI=0.44-0.99; bonobos: estimates=0.42 +
0.09, 95% CI = 0.14-0.69). In the wrong decisions, all the species
were also more likely to maintain their decision than to shift
strategy (macaques: estimates =—-0.85+0.12, 95% CI=-1.19
to —0.5; capuchins: estimates = —1.05+0.15, 95% CI=—-1.49 to
—0.61; orangutans: estimates =—-1.29+0.11, 95% CI=-1.63 to
—0.96, chimpanzees: estimates =—0.88+0.09, 95% CI=-1.15
to —0.61, gorillas: estimates=-1.14+0.12, 95% CI=-1.5 to
—0.79; bonobos: estimates =—0.67 +0.12, 95% CI=-1.04 to
—0.31; see electronic supplementary material, figure S1). This
analysis also indicated that chimpanzees, gorillas and

orangutans were more likely to keep the same strategy after a [ 10 |

right decision than Tonkean macaques (comparison chimpan-
zee-macaque: estimates: 046+0.11, z=4.04, p<0.01;
comparison gorilla-macaque: estimates: 0.59 +0.13, z=4.50,
p <0.001; comparison macaque-orangutans: estimates: —0.61
+0.12, z=-4.97, p <0.001). Finally, bonobos were more likely
to shift strategy after a wrong decision than orangutans (esti-
mates: 0.62 +0.17, z=2.75, p=0.02). Thus, while making the
right decision may have slightly biased individuals’ next
decision, making the wrong decision did not affect the follow-
ing choice.

4. Discussion

The main goal of this study was to comparatively evaluate the
cognitive strategies involved in the resolution of an ambiguous
gambling decision in several species of non-human primates.
We summarized the results in table 2. Capuchins and bonobos
did not consider the level of information, ignoring the fact
that rewards could be hidden. Gorillas seemed to know that
covers could hide large rewards, but they did not discriminate
between predictable and ambiguous lotteries (figure 4, nodes 3
and 4). Tonkean macaques may have discriminated between
predictably advantageous and other lotteries, but it occurred
on a limited number of occasions (only for 2LRv lotteries,
and only after receiving a large or a medium-sized reward,
figure 5, node 8). Only orangutans and chimpanzees formed
correct expectations about the contents of the cups in more
than one instance in the decision tree. A potential ceiling
effect (high rates of gambling as soon as more than one or
two large rewards were visible) may have prevented the detec-
tion of marked attitudes towards ambiguity. Nonetheless, our
results stand out from previous studies reporting strong aver-
sion to ambiguity in most tested primate species [23,24]. Far
from being unsettled by the ambiguity of this particular con-
text, each species in this study resolved each trial with its
own strategy.

One of our hypotheses was that heuristics could be used
in this ambiguous context. Indeed, these simple decision
rules could alleviate the cognitive load of each decision.
Note that although humans can estimate probabilities, they
often rely on heuristics to increase the speed of the decision
or to avoid the cognitive cost/challenge [44]. In our study,
capuchins and bonobos clearly used a simple strategy
based solely on the number of large visible rewards. Capu-
chins gambled in 52% of the trials if at least one large
reward was visible. This is reminiscent of the Maximax heur-
istic reported in a previous study testing decision under risk
[32]. Similarly, bonobos used a simple decision rule and
mostly gambled in lotteries with at least two large visible
rewards. They may therefore have used the number of large
visible rewards as a proxy to evaluate the odds, which is a
heuristic in itself. We know that these species (like all the
non-human primate species tested so far) can easily discrimi-
nate between different food quantities [45-47]. Focusing on
the size and number of large crackers thus appears a good
way to make a rapid decision. A focus on reward magnitude
has also been shown to impact decision under risk in humans
and non-human primates [48]. In a recent study, Farashahi
et al. [49] showed that in an uncertain environment, decisions
were more likely to follow an additive model of choice rather
than a multiplicative one. When individuals have no exact
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information about odds, they first compare what they already
possess and what they may obtain, then evaluate reward
probabilities separately and make their choice based on a
combination of these two pieces of information. The heuristic
detected in capuchins and bonobos is mostly based on the
number of large visible rewards and could correspond to a
model of this type.

Other species seem to understand that some information
was missing and that the covers hid some rewards. Tonkean
macaques might belong to this category, although the effect
of the level of information was only detected in lotteries
with 2 LRv and only when the previous outcome had been
large or medium sized (figure 5, node 8), a result which we
cannot explain. If Tonkean macaques had indeed considered
that covers always hid large rewards in predictably advan-
tageous lotteries, we would not have expected an effect of
outcome. In addition, we would have expected to detect an
effect of covers in other lotteries (0 LRV and 1 LRv lotteries),
which was not observed. Thus, the evidence concerning the
expectations of Tonkean macaques is inconclusive. Gorillas
may also belong to the group of species understanding that
some information was missing. They generally were very
likely to gamble as soon as 1 LR was visible. We could there-
fore only detect an effect of the level of information in
lotteries with no LRv, where they gambled as if they expected
potential large rewards whatever the type of lotteries (ambig-
uous or predictably disadvantageous, figure 4, nodes 3
versus node 4). This response may be due to some attraction
to ambiguity, but given that we did not detect it elsewhere,
we cannot affirm this. Given that their expectations were
not necessarily correct (they gambled similarly in node 3 in
ambiguous lotteries, which could indeed yield a reward,
and in predictably disadvantageous ones, which could not),
they seem to have failed to grasp the ‘predictable’” component
of the task.

Chimpanzees and orangutans displayed a more complex
understanding than the other species that some information
was missing and that covers hid some rewards. One of our pre-
dictions was that individuals would be able to guess what was
underneath the covers in the predictable lotteries and would
gamble more if they expected large rewards and less if they
expected smaller rewards, or if they were faced with risky
lotteries. The response of chimpanzees and orangutans con-
firmed this prediction for lotteries with 1 LRv. The visible
odds of winning cannot explain this result. Note that this
effect was not detected in lotteries with 2 LRv or more, as
both species already gambled at high rates in these cases.
These two species also distinguished between the different
levels of information in lotteries with no LRv, seemingly form-
ing the correct expectations that ambiguous lotteries were
more likely to be advantageous than the others. Great apes
are generally capable of dealing with visible and invisible
information in tasks built around disjunctive syllogisms.
They can make inferences and deduce that if no reward is vis-
ible in box A and no information is available about box B, then
they are more likely to find food in box B than in box A [36].
Moreover, they can also make inferences about the location
of food in invisible displacements [50-52] and two-item
tasks [50,53]. There is also some evidence that great apes are
capable of diagnostic and predictive inference (see [38] for a
review). In economics, making inferences involves a compu-
tation of conditional probabilities using Bayes’ rule, a
cognitively demanding task. However, it is not clear what

kind of reasoning chimpanzees and orangutans used in our
task. A more detailed evaluation of their decisional steps
shows that individuals first used the number of LRv, which
is a visual and real cue, followed by their own expectations
about what was hidden by the covers. Here is an example of
how chimpanzees may have psychologically apprehended lot-
tery 15 compared to the other 1 LRv lotteries: ‘If I see 1 LRv
then I should not gamble, but I can guess that there are two
large rewards underneath the two covers. Therefore, I will
gamble’. In humans, such an attitude would be modelled as
follows: ‘If there is a 100% probability of having two large
rewards under the covers, conditional on there being one
large visible reward on the right of the cover, then one must
rationally gamble in 100% of cases’. To our knowledge, this
combination of factual and expected information has not
been reported in gambling and decision-making studies in pri-
mates, and is surprising insofar that expectation pushes the
individual into taking actions that are contrary to the facts
(i.e. gambling despite the fact that there is no interesting
reward visible).

Interestingly, the decisions made by orangutans changed
throughout the study with the parallel occurrence of a
simplification of the decision for 0 LRv lotteries and a com-
plexification of the process for 1 LRv. It seems that the
orangutans decided to invest less energy in the 0 LRv lotteries
by the end of the study and focus more on the 1 LRv lotteries.
This is a rather efficient strategy as they were highly likely to
lose in 0 LRv lotteries whatever the condition. Experience
with the set up and the different lotteries probably explain
these adjustments in the decisional process. Indeed, we gave
each subject the possibility to see what was underneath the
covered cups after each trial. We did so to ensure that individ-
uals received the correct information at each trial and would
not progressively build erroneous beliefs based solely on
their own outcomes. In a complementary analysis, we
evaluated how seeing underneath the covers could affect indi-
viduals of each species. Indeed, the notions of regret (for
example not gambling then realizing that large rewards had
been hidden, [54-57]) or confirmation (having gambled and
obtained a large reward, thus validating its choice, [58]) can
impact the next decision. Our results show that confirmation
about the rightness of a previous choice may have encouraged
subjects to select the same choice in the next trial (albeit in
about 60% of the cases, which is admittedly slightly more
than a 50% random choice, see also [59], for a lack of win-
stay /lose-shift strategy in rhesus macaques). However, regrets
about a wrong choice did not lead individuals to shift their
decisions in the next trial. We also showed that the size of
the reward received in the previous trial could influence the
decision for all species except capuchins and orangutans. In
most of these cases but one (in macaques), individuals were
less likely to gamble if they had just received a medium-
sized reward rather than a small or large one. In other
words, they were less likely to gamble if they had not gambled
at the previous trials (retaining a medium-sized reward) com-
pared to when they had gambled (and either lost or won).
Thus, it was not really the previous outcome that influenced
the decision, but rather the previous decision in itself. This
suggests that individuals could sometimes make a decision
that they would apply in at least two consecutive trials, what-
ever the lottery. This may indicate a decrease in their attention
level after a correct decision. Few existing risk studies have
considered how subjects are likely to change the way they



evaluate each option with time and experience, or explored the
motivational factors involved [10]. Further studies with more
in-depth econometrics measures are needed to investigate
these questions in our set up.

The current results raise the difficult question of interspe-
cies differences and whether the latter could be explained by
different cognitive toolboxes and/or different socioecology
[60]. The ability of chimpanzees and orangutans to combine
facts and abstractions in this study contrasts with the simpli-
city of the responses of bonobos and capuchins, which used
simpler decision rules. We expected the strategies of great
apes to be more complex than those of monkeys, using
more steps and more adjustments to various modalities of
the task. However, the responses of gorillas and macaques
are intermediate and not so clear-cut. The response of bono-
bos can also be considered surprising, i.e. a behaviour that is
very much like that of capuchins. One possibility is that
responses here are not connected to their cognitive abilities
but rather to the more general difficulty bonobos have deal-
ing with risk and ambiguity in comparison to chimpanzees,
which could be linked to the feeding ecology of each species
[24,40,60]. However, both species exhibited similar ambiguity
aversion when compared in an ambiguous gambling game
where they had no information about the odds [24]. This logi-
cally leads to the question of whether each species could be
influenced by a specific attitude towards risk and ambiguity.
The fact that capuchins, chimpanzees, orangutans and goril-
las gambled above 50% of the time for the risky 1 LRv lottery
may suggest risk-seeking behaviour (table 2). Several studies
using standard risky choice tasks have reported marked atti-
tudes towards risk in capuchins (risk seekers, [39]), macaques
(risk seekers [61]), bonobos (risk avoiders [40]) and chimpan-
zees (risk seekers, [40]). However, these attitudes strongly
depend on various parameters including the type of task
(in macaques [59]), or experience with the set up (in maca-
ques [62]). In a former study using a risky food gambling
task very similar to the current one, we showed that capu-
chins, macaques, chimpanzees, gorillas and bonobos were
mostly risk averse [10]. In the current study, we did not
have sulfficient statistical power to run an econometric analy-
sis on attitudes towards risk, but the possibility that these
attitudes could have influenced the responses of individuals
whatever their species cannot be entirely excluded.

Another key future improvement to this study would be
to test a larger number of subjects per species. Our sample
size remains comparable to or larger than what is usually
done in the field of primate cognition. However, our data
have shown that in some cases, individual variations
explained a large part of the variance, thus calling for a
larger sample size. Our limitation lies in the small number
of subjects available to take part in such studies. Although
the diversity in the housing facilities of individuals could
be considered another limitation, all individuals lived in a
captive group setting with indoor-outdoor access, enrichment
and frequent cognitive stimulations, which made their
environments very similar. We nevertheless took this factor
into account by implementing the study site as a random
factor in the main model. It is also important to highlight
that all the subjects here, except the chimpanzees, had
already had extensive experience of cognitive studies,
having been involved in dozens of them in the facilities in
which they were housed. The skills detected in our study
may therefore be potentially harder to detect in less trained

or wild individuals. Age can also impact decision-making [ 12 |

strategies under risk and ambiguity in young and adolescent
humans compared to adults [63-66], but this factor was taken
into account as it was implemented as a random factor in the
main model. Additional work is needed on the responses of
these species under ambiguity and how this may be linked to
both their socioecology and/or cognitive limitations.

Each species produced its own solution when faced with
ambiguity. Some are based on facts and ignore invisible cues,
while others are based on decision rules combining observa-
ble facts and expectations. More detailed analyses would be
required to evaluate decisions at the individual level. Here,
we used a new methodological approach that can detect
the diversity of strategies at the species level while taking
into account individual repetitions. All species successfully
applied one strategy that would minimize the potentially dis-
ruptive role of ambiguity. Given that ambiguous situations
are likely to be frequently met in the environment, this
response is unsurprising. Interestingly, we did not find any
evidence of strong ambiguity aversion (gambling solely for
risky lotteries, for example) as the individuals could gamble
regardless of the amount of information available. One possi-
bility is that our set up was not ambiguous enough to elicit
such a strong ambiguity aversion. Indeed, the lack of infor-
mation could be overcome by various strategies such as
guessing, ignoring or imagining the presence of a reward
hidden in the cups. Further studies with increased levels of
ambiguity may be needed to evaluate how these species
cope in this context. Making a decision based on the
amount of information (high under risk, low under ambigu-
ity) rather than a purely automatic rejection of ambiguity
appears to be less costly in terms of survival and was most
probably promoted through natural selection.

It is still unclear whether the strategies observed in this
study reflect those used by individuals in their everyday
lives when dealing with ecological and social challenges
in captivity, and whether these strategies reflect the
decision-making profile of their wild counterparts. None-
theless, showing that some great apes could use advanced
reasoning processes like conditional inferences to decide
whether to gamble and exchange food is a significant step
in our understanding of the evolution of economics in
humans.

Procedures are behavioural only, non-invasive and subjects
can choose to stop participating at any time. For all subjects,
animal husbandry and research complied with the guidelines set
out by the Association for the Study of Animal Behaviour
(ASAB). Our study is in full accordance with the ethical guidelines
of our institution and complies with the European legislation of
animal welfare (adhering to German, French and Italian legal
requirement for data collected before 2012). For individuals tested
in Gabon, this study was conducted with the approval of the
CIRMF scientific committee in Gabon via a research agreement
(nA°045/2011/CNRS).

The data are provided in the electronic supplementary
material datafile.
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