
MULTISITE ADAPTIVE COMPUTATION OFFLOADING FOR
MOBILE CLOUD APPLICATIONS

Dawand Jalil Sulaiman

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2020

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/20618

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/20618

Multisite Adaptive Computation
Offloading for Mobile Cloud Applications

Dawand Jalil Sulaiman

This thesis is submitted in partial fulfilment for the degree of
Doctor of Philosophy (PhD)

at the University of St Andrews

January 2020

Abstract

The sheer amount of mobile devices and their fast adaptability have contributed to
the proliferation of modern advanced mobile applications. These applications have
characteristics such as latency-critical and demand high availability. Also, these
kinds of applications often require intensive computation resources and excessive
energy consumption for processing, a mobile device has limited computation and
energy capacity because of the physical size constraints.

The heterogeneous mobile cloud environment consists of different computing
resources such as remote cloud servers in faraway data centres, cloudlets whose
goal is to bring the cloud closer to the users, and nearby mobile devices that
can be utilised to offload mobile tasks. Heterogeneity in mobile devices and the
different sites includes software, hardware, and technology variations. Resource-
constrained mobile devices can leverage the shared resource environment to offload
their intensive tasks to conserve battery life and improve the overall application
performance. However, with such a loosely coupled and mobile device dominating
network, new challenges and problems such as how to seamlessly leverage mobile
devices with all the offloading sites, how to simplify deploying runtime environment
for serving offloading requests from mobile devices, how to identify which parts of
the mobile application to offload and how to decide whether to offload them and
how to select the most optimal candidate offloading site among others.

To overcome the aforementioned challenges, this research work contributes
the design and implementation of MAMoC, a loosely coupled end-to-end mobile
computation offloading framework. Mobile applications can be adapted to the
client library of the framework while the server components are deployed to the
offloading sites for serving offloading requests. The evaluation of the offloading
decision engine demonstrates the viability of the proposed solution for managing
seamless and transparent offloading in distributed and dynamic mobile cloud
environments. All the implemented components of this work are publicly available
at the following URL: https://github.com/mamoc-repos

https://github.com/mamoc-repos

v

Declaration

Candidate's declaration

I, Dawand Jalil Sulaiman, do hereby certify that this thesis, submitted for the degree of PhD,
which is approximately 49,700 words in length, has been written by me, and that it is the
record of work carried out by me, or principally by myself in collaboration with others as
acknowledged, and that it has not been submitted in any previous application for any
degree.

I was admitted as a research student at the University of St Andrews in January 2016.

I received funding from an organisation or institution and have acknowledged the funder(s) in
the full text of my thesis.

Date Signature of candidate

Supervisor's declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of PhD in the University of St Andrews and that the
candidate is qualified to submit this thesis in application for that degree.

Date Signature of supervisor

211112020 A

vi

Permission for publication

In submitting this thesis to the University of St Andrews we understand that we are giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work not
being affected thereby. We also understand, unless exempt by an award of an embargo as
requested below, that the title and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research worker, that this thesis will be
electronically accessible for personal or research use and that the library has the right to
migrate this thesis into new electronic forms as required to ensure continued access to the
thesis.

I, Dawand Jalil Sulaiman, confirm that my thesis does not contain any third-party material
that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the publication of
this thesis:

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Date Signature of candidate

Date Signature of supervisor

211112020 A

vii

Underpinning Research Data or Digital Outputs

Candidate's declaration

I, Dawand Jalil Sulaiman, hereby certify that no requirements to deposit original research
data or digital outputs apply to this thesis and that, where appropriate, secondary data used
have been referenced in the full text of my thesis.

Date Signature of candidate

Acknowledgements

I would like to acknowledge my supervisor, Prof. Adam Barker, for his patience
and invaluable guidance in this journey. Thank you for treating me as a friend
and creating such a relaxed environment for our discussions.

My appreciation goes to the head of school, Prof. Simon Dobson, the school
manager, Alex Bain, and the systems and front desk office admin members for
their support. Also, the libraries of University of Abertay and University of
Dundee where I spent long hours to produce this thesis.

I deeply appreciate the help of my current and former PhD colleagues including
Dr. Simone Conte for his valuable and continuous feedback on my PhD work
and Dr. Ward Jaradat for his great insights and guidance during coffee breaks. I
would also like to thank Dr. Khawar Shahzad, Mohammad Ramadan, and Sheriffo
Ceesay for the great times and the fruitful discussions. Thanks to Xu Zhu, Xue
Guo, Wangjia Yu, and Teng Yu for their company and allowing me to practice
my spoken Chinese with them.

I am in forever debt to my parents who provided me with everything I needed
to grow and excel. The emotional support and endless love throughout this journey
and always believing in me.

I would also like to acknowledge my good friend and mentor, Dr. Graeme Bell
for his precious advice, inspiration, and support.

Finally, I want to thank my bonny wife, Simav. Her comfort and encouragement
have carried me on a long way through the difficulties in both my PhD candidature
and life. This work is for you.

Funding

This work was supported by the University of St Andrews (School of Computer
Science). I thank the University of St Andrews for the research training support
and facilities to let me pursue my PhD degree.

Table of Contents

List of Figures xv

List of Tables xvii

List of Algorithms xx

List of Codes xx

1 Introduction 1
1.1 Motivations and Challenges . 4
1.2 Research Hypotheses . 8
1.3 Contributions of This Research 10
1.4 Publications . 11
1.5 Organisation of The Thesis . 12

2 Background 13
2.1 Mobile Cloud Architectures . 13

2.1.1 Mobile Cloud Computing 14
2.1.2 Mobile Edge Computing 16
2.1.3 Mobile Fog Computing . 17
2.1.4 Comparison of Mobile Cloud Architectures 18
2.1.5 Discussion . 22

2.2 Mobile Computation Offloading 23
2.2.1 Adaptive Offloading . 25
2.2.2 Multisite Offloading . 26

2.3 Tools and Technologies . 28
2.3.1 Containers . 28
2.3.2 Android-x86 . 30
2.3.3 Zero Configuration Network 31
2.3.4 Wi-Fi P2P . 31

xii Table of Contents

2.3.5 Web Application Messaging Protocol 33
2.4 Summary . 34

3 Literature Review 35
3.1 Overview . 35
3.2 Survey Methodology . 36
3.3 Taxonomy . 38

3.3.1 Offloading Objectives . 38
3.3.2 Partitioning Granularity 40
3.3.3 Partitioning Model . 43
3.3.4 Task Scheduling & Allocation 45
3.3.5 Offloading Decision . 49
3.3.6 Offloading Sites . 50

3.4 Discussion . 51
3.4.1 Current Trends . 51
3.4.2 MAMoC and the gaps . 53

3.5 Summary . 54

4 System Analysis and Models 55
4.1 Overview . 55
4.2 Requirements Analysis . 55

4.2.1 Functional Requirements 56
4.2.2 Non-Functional Requirements 56

4.3 Task Models and Problem Formulation 57
4.3.1 Compute Nodes . 58
4.3.2 Problem Description . 60
4.3.3 Execution Time Analysis 60
4.3.4 Energy Consumption Analysis 62
4.3.5 Task Offloading Cost . 63

4.4 Offloading Policy . 64
4.4.1 Decision Making Algorithm 65
4.4.2 Offloading Score . 67

4.5 Multi-criteria Solver . 69
4.5.1 Criteria Evaluation . 70
4.5.2 AHP Group Decision Making 73
4.5.3 Site Ranking Calculation 76

4.6 Summary . 80

Table of Contents xiii

5 Design and Implementation 81
5.1 Overview . 81
5.2 Design Assumptions . 82

5.2.1 Task Specifications . 82
5.2.2 Communication Assumptions 83
5.2.3 Execution Assumptions . 83

5.3 Architecture Overview . 84
5.4 Service Discovery . 88

5.4.1 Device to Device . 88
5.4.2 Device to Server . 90
5.4.3 Request Validation . 92

5.5 Task Execution Workflow . 93
5.5.1 Preparation Phase . 93
5.5.2 Decision Making Phase . 96
5.5.3 Execution Phase . 97
5.5.4 Post-execution Phase . 99

5.6 MAMoC Client . 102
5.6.1 Service Discovery . 102
5.6.2 Code Decompiler . 107
5.6.3 Context Profilers . 109
5.6.4 Offloading Decision Engine 110
5.6.5 Deployment Controller . 112
5.6.6 Database Adapter . 115

5.7 MAMoC Server . 116
5.7.1 MAMoC Router . 116
5.7.2 Server Manager . 117
5.7.3 MAMoC Repository . 121

5.8 Integrating MAMoC Client to Existing Projects 122
5.9 Summary . 125

6 Experimental Evaluation 127
6.1 Overview . 127

6.1.1 Setup and Deployment . 128
6.2 Offloading Decision Algorithm Evaluation 130

6.2.1 Experimental Environment 130
6.2.2 Demo Application . 131
6.2.3 Results and Analysis . 132
6.2.4 Comparative Evaluation 135

xiv Table of Contents

6.3 Task Partitioning Evaluation . 139
6.3.1 Experimental Environment 139
6.3.2 Offloading Scenarios . 140
6.3.3 Results and Analysis . 143

6.4 MCDM Evaluations . 147
6.4.1 Single Decision Making . 147
6.4.2 Group Decision Making 150

6.5 Application Refactoring Evaluation 154
6.5.1 Experimental Environment 155
6.5.2 Results and Analysis . 155

6.6 Evaluation of Requirements . 157
6.7 Discussion and Limitations . 158
6.8 Summary . 161

7 Conclusion and Future Work 163
7.1 Summary of Thesis . 163
7.2 Review of Hypotheses . 164
7.3 Review of Contributions . 166
7.4 Future Works . 167

References 169

Appendix A Code Transformation Examples 185
A.1 Transforming Classes . 185
A.2 Transforming Methods . 187

Appendix B The Group Decision Making Results of Each Decision
Maker 189

Acronyms 195

Glossary 197

List of Figures

1.1 General architecture of multisite mobile cloud systems 3
1.2 The hardware advancements of Samsung galaxy smartphones . . . 4
1.3 Global Mobile Devices and Connections Growth [32] 6
1.4 Android-x86 VM and container image file sizes 7

2.1 Fog computing architecture [118] 18
2.2 Number of published papers by year for MCC, MEC, EC, and FC 23
2.3 Computation Offloading Process Overview [4] 24
2.4 A Proposed Multisite Offloading System Architecture [112] 27
2.5 Container vs. native benchmarking 29

3.1 A taxonomy of multisite offloading mechanisms 39

4.1 Standard AHP Comparison Scale 71
4.2 Fuzzy linguistic terms mapped to their numerical range values . . 77

5.1 High-level architecture and communication mechanisms of MAMoC 84
5.2 Zero Configuration Network communication diagram 89
5.3 Wi-Fi P2P communication diagram 90
5.4 RPC and Pub/Sub messages using WAMP 90
5.5 MAMoC task execution workflow 94
5.6 Service Discovery Android Activity 103
5.7 WiFi P2P Service Discovery Process 105
5.8 Dex decompiler Sequence Diagram 109
5.9 Decision Engine Sequence Diagram 111
5.10 Remote execution using RPC and PubSub sequence diagram . . . 113
5.11 Local execution on the host and nearby devices sequence diagram 114

6.1 Mobile Ad-hoc Cloud devices connected through WiFi-Direct . . . 128
6.2 The demo application task execution results in the offloading deci-

sion algorithm evaluation . 133

xvi List of Figures

6.3 Demo applications of both MAMoC and ULOOF for conducting
the comparative evaluation . 137

6.4 Comparative evaluation results for the demo applications in local,
MAMoC, and ULOOF executions 137

6.5 Incremental comparison between ULOOF and MAMoC completion
times for text search and sorting tasks 138

6.6 Full offloading: the whole computation and payload are offloaded
to the offloading site . 141

6.7 Partial Offloading (equal task distribution) - Local mobile device
executes 50% of the task while the remaining 50% is offloaded . . 142

6.8 Multisite partial offloading evaluation results 144
6.9 The task partitioning evaluation results 145
6.10 The reported results from [136] 146

List of Tables

1.1 iPhone and HTC hardware advancements in the last 10 years . . . 5

2.1 Comparison of mobile cloud related paradigms 21

3.1 Digital Library Database Search Results 36
3.2 A taxonomy of the multisite offloading works 42
3.3 Task scheduling and allocation algorithms used in our primary studies 46

4.1 Compute Node Notations . 59
4.2 Computed Variable Notations . 61
4.3 Task Offloading Decision Algorithm Symbols 66
4.4 Pairwise comparison matrix (A) for offloading criteria 72
4.5 The judgement matrices from the decision makers based on the

application requirements. B: Bandwidth, Sp: Speed, A: Availability,
Sc: Security, P: Price . 75

4.6 Decision maker weights under different battery context 75
4.7 The GCI and GCCI values of Ak(k = 1, 2, ..., 5) and AG 76
4.8 Fuzzy membership and Linguistic scale for TOPSIS 77

5.1 Node table and its fields with their description 100
5.2 ExecutionHistory table and its fields with their description 101
5.3 Annotation indexing library comparisons conducted in [9] 107

6.1 Device specifications for the offloading decision algorithm evaluation131
6.2 Experimental environment device specifications for the offloading

score evaluation . 139
6.3 Calculating offloading scores of the nodes for the task partitioning

evaluation . 143
6.4 Fuzzy value assignment based on criteria conditions of the offloading

sites . 147
6.5 Weighted fuzzy evaluation matrix for offloading sites 149

xviii List of Tables

6.6 Fuzzy TOPSIS results (sorted by C∗
i) for the single decision maker 149

6.7 Experimental environment device specifications for the MCDM
GDM evaluation . 150

6.8 The assigned fuzzy values for offloading sites: MCDM-GDM . . . 152
6.9 Weighted fuzzy evaluation for group judgement matrix of offloading

sites: MCDM-GDM . 153
6.10 Final ranking of the offloading sites: MCDM-GDM 153
6.11 Benchmarking applications used for application refactoring evaluation154
6.12 Application refactoring evaluation results 156

B.1 Weighted fuzzy evaluation of offloading sites according to DM1:
MCDM-GDM-DM1 . 190

B.2 Final ranking of the offloading sites according to DM1: MCDM-
GDM-DM1 . 190

B.3 Weighted fuzzy evaluation of offloading sites according to DM2:
MCDM-GDM-DM2 . 191

B.4 Final ranking of the offloading sites according to DM2: MCDM-
GDM-DM2 . 191

B.5 Weighted fuzzy evaluation of offloading sites according to DM3:
MCDM-GDM-DM3 . 192

B.6 Final ranking of the offloading sites according to DM3: MCDM-
GDM-DM3 . 192

B.7 Weighted fuzzy evaluation of offloading sites according to DM4:
MCDM-GDM-DM4 . 193

B.8 Final ranking of the offloading sites according to DM4: MCDM-
GDM-DM4 . 193

B.9 Weighted fuzzy evaluation of offloading sites according to DM5:
MCDM-GDM-DM5 . 194

B.10 Final ranking of the offloading sites according to DM5: MCDM-
GDM-DM5 . 194

List of Codes

5.1 Java @Offloadable annotation used for offlodable tasks on MAMoC 95
5.2 Java code for decompiling the annotated classes 96
5.3 WiFiP2P service initialization . 104
5.4 Registering local WiFiP2P service 106
5.5 The WebSocket interface for managing the edge and public node

connections . 106
5.6 decompileDex method that converts a .dex file to Java source code 108
5.7 getExecutions method in the client database adapter 115
5.8 Fetching local and remote task executions from the database in the

offloading decision engine module 115
5.9 Fetching and broadcasting server status 118
5.10 Application refactoring class in MAMoC server 119
5.11 Prime counter Java class example 122
5.12 @Offloadable interface to annotate the compute-intensive tasks . . 123
5.13 Initializing the MAMoC framework 123
5.14 Local broadcast registration for receiving the offloaded task execu-

tion result . 123
5.15 Executing the task by specifying the execution location 124
A.1 KMP on Android . 185
A.2 KMP on server side . 186
A.3 NQueens on Android . 187
A.4 NQueens on server . 187
A.5 Identifying class and method level offloading requests 188
A.6 Method example passed to the code transformer 188
A.7 Method code transformation on the MAMoC server 188

List of Algorithms

4.1 Task Offloading Decision Algorithm 67
4.2 Aggregating offloading scores of the nodes 69
4.3 Task partitioning algorithm using offloading scores 69
4.4 Multi-Criteria Solver Algorithm 79
5.1 Decompiled Android code transformation algorithm in the server . 118

Chapter 1

Introduction

The number of mobile users exceeded desktop users by the end of 2014 [92]. This
growth is expected to continue with the opportunity lying in mobile internet that
will add 1.75 billion new users over the next eight years, reaching a milestone
of 5 billion mobile internet users in 2025 [141]. From an economic perspective,
consumers downloaded over 30.3 billion mobile applications only in the second
quarter of 2019 with consumer spend hit nearly $22.6 billion in revenue, up to 20%
year over year [8]. Mobile devices have become an essential part of modern life in
this new era of mobile computing and Internet of Things. However, there exists a
contradiction between the inadequate processing capacity of mobile devices and
the users’ ever-growing need for better performance and longer battery life. A wide
range of applications is now executed on mobile devices, many of which demand
high computational power. The tremendous success of mobile technologies is
placing severe strains on the underlying resources needed to continue the growth
and deployment of new users, new applications, and new services.

Mobile devices are constrained by many limiting factors, including battery life,
storage space, and CPU speed. To overcome these limitations, many augmentation
approaches have been proposed by researchers, including offloading computation
to more powerful servers. Facilitating seamless integration of mobile computing
and cloud computing has led to the emergence of a research topic of Mobile Cloud
Computing (MCC). Modern mobile devices have become advanced in terms of
processing speed, sharper display screens and greater sensors that cause higher
energy consumption. Backed by the unbounded resources of cloud computing,
MCC can meet the demands of even the most computationally and resource-
intensive applications.

Mobile Computation Offloading (MCO) has become a promising method to
reduce execution time and save the battery life of mobile devices. The process

2 Introduction

involves augmenting execution through migrating heavy computation from mobile
devices to high-performance cloud servers and then receiving the results via
wireless networks. The constraints of the mobile devices in terms of execution
power and battery life make the idea of offloading attractive. Unfortunately, in
MCC, offloading to Remote Cloud infrastructure is not always guaranteed to be
time efficient and energy conserving [12]. When the network bandwidth is fairly
limited, it may be too slow to transmit data between Host Mobile Devices and
Remote Cloud servers; When the network status is highly unstable, maintaining a
connection to a server might consume more energy than local computation. With
continuous growth in the number of neighbourhood mobile and fixed devices,
we envision designing environment-aware mobile cloud applications that span
across multiple cloud resource levels.

The heterogeneous mobile cloud environment contains different types of com-
puting resources such as Remote Clouds, Cloudlets, and Nearby Mobile Devices in
the vicinity that can be utilised to offload mobile tasks. Heterogeneity in mobile
devices includes

• Software with multiple versions of phone/tablet OS such as Android & iOS,
laptop OS such as MacOS, Windows and Linux). For example, more than 7
different versions of Android are in popular use in 2019 [6].

• Hardware with diverse ARM-based and x86-based low power solutions for
phones, tablets, and laptops.

• And technology variations such as different WiFi chip-sets, supported WiFi
standards, and power-management approaches.

The current frameworks in the literature lack the automated transparency
feature so that the surrounding devices can be detected and the computation
offloading take place in a seamless manner [117]. Among other challenges, dynamic
environmental changes are one of the most significant facing offloading decision
making in mobile cloud applications. Mobile cloud frameworks need to adapt to
these changes for efficient task partitioning and high QoS of mobile applications
running on end-user devices.

Therefore, this thesis focuses on multisite adaptive mobile clouds that aims
to utilize the surrounding service providers and ensure adaptation to different
mobile cloud environments. Each mobile device within the shared environment
checks whether a task is worth offloading and where to offload its computation
among the available external platforms. MAMoC Client is a mobile client library
which allows an Android mobile device to offload its tasks (classes or methods) to

3

Fig. 1.1 General architecture of multisite mobile cloud systems

other offloading sites including Nearby Mobile Devices running Android OS, fixed
edge devices (also called Cloudlets [120]) such as laptops and desktops or Remote
Clouds instances such as Amazon Web Services (AWS), Google Cloud Platform
(GCP), and Microsoft Azure datacenter regional servers. MAMoC Server is a
set of lightweight containers including a runtime environment deployed to the
Cloudlet and Remote Cloud servers.

The general architecture of the framework is depicted in Figure 1.1. The
objectives of the proposed solution include performance enhancement in terms
of computational time by offloading resource-intensive computations to more
powerful external resources, energy efficiency by reducing the computational
overhead on the mobile device, context-awareness by making smart offloading
decisions considering the associated cost of computation and offloading delay,
code reusability by following a highly modular approach, and high adoptability by
keeping the adoption of the application model easy for the application providers.
The implementation of both the mobile client offloading library 1 and server

1https://github.com/mamoc-repos/MAMoC-Client

https://github.com/mamoc-repos/MAMoC-Client

4 Introduction

runtime environment solution 2 are open-sourced. The demonstration of the
framework and integration guidelines are also publicly available 3.

The remainder of this chapter describes motivations for studying the challenges
of dynamic mobile cloud environments in Section 1.1. Section 1.2 describes
the research hypotheses of this thesis. Section 1.3 presents an overview of the
contributions of this thesis. Section 1.4 lists the peer-reviewed papers that were
published during the course of conducting this work. Finally, Section 1.5 outlines
the structure of the rest of the chapters of this thesis.

1.1 Motivations and Challenges
This thesis is motivated by the notion that offloading parts of a mobile application
to multiple sites can improve the performance and reduce the overall energy
usage of the mobile device. The following motivations and challenges need to be
considered in designing an adaptive and multisite offloading system:

Fig. 1.2 The hardware advancements of Samsung galaxy smartphones

Extending battery life

A study established that the most commonly expressed criterion for choos-
ing a mobile phone in 2018 was the battery life, with over 46% of users
nominating it as their “most important aspect” [132]. Poor battery life
is among the many problems that confront mobile devices but the most

2https://github.com/mamoc-repos/MAMoC-Server
3https://github.com/mamoc-repos/MAMoC-Demo

https://github.com/mamoc-repos/MAMoC-Server
https://github.com/mamoc-repos/MAMoC-Demo

1.1 Motivations and Challenges 5

apparent one. The fact that the development of battery life is far behind
other hardware advancements has been a struggle for device manufacturers
in the last several years. As an example, it can be observed in Figure 1.2
for the Samsung galaxy family smartphones that the CPU performance has
improved about 23 fold, memory storage about 12 and 16 fold respectively
while the improvement in battery life is merely 2 to 3 fold.

This trend can be identified across all mobile devices in the market. As an
example, the hardware specifications of the first iPhone and HTC smart-
phones with the latest releases of them in 2018 are listed in Table 1.1. It is
evident that the battery capacity of iPhone smartphones has only doubled
while the HTC battery is at most tripled. This is incomparable with the
exponential growth of the other hardware parts of both smartphones.

Specification 2008 2018
iPhone 2 HTC Dream iPhone X HTC U12+

CPU 412Mhz 528 MHz 2.39GHz Hexa-core 2.45 GHz Octa-core
RAM 128MB 192MB 3GB 6GB
Storage 8GB 256MB 256GB 128GB
Battery 1400 mAh 1150 mAh 2716 mAh 3500 mAh

Table 1.1 iPhone and HTC hardware advancements in the last 10 years

It is benchmarked that most of the battery energy is consumed with heavy
computations, which causes overheating [160]. It is shown that the CPU
power consumption to total power consumption can be up to 40% in the
gaming applications [24]. Therefore, through offloading computation from
mobile devices to external servers, we can decrease the load on the device
and reduce the energy consumption of the heavy tasks which results in
extending the battery life.

Availability of multiple service providers

The last few years have witnessed unprecedented growth in the number of
mobile devices. People are becoming more reliant on their smartphones,
and the cost of purchasing these devices has reduced in emerging markets.
Globally, Cisco indicates that there will be 12.3 billion mobile-connected
devices accumulating for around 1.5 mobile devices per person by 2022 [32]
as shown in Figure 1.3. There are a vast amount of mobile cloud offloading
systems that have been developed by different researchers. As described in
Chapter 3, the majority of them use a single-site offloading, i.e., offloading

6 Introduction

application parts from the mobile device to a single server. Moreover, the
existing works do not provide a formal framework to include the overall
offloading process; Rather, they conduct numerical results of their reference
architectures through simulations. The vision of mobile computing among
heterogeneous converged networks and multiple computing devices can be
achieved by designing resource-efficient environment-aware mobile cloud
systems.

Fig. 1.3 Global Mobile Devices and Connections Growth [32]

Dynamic nature of mobile cloud systems

The connection between mobile users and external cloud resources is not
guaranteed. The non-persistent connection is a key factor distinguishing
mobile cloud with conventional cloud systems. The essence of random
unavailability of wireless connections in mobile cloud environments makes
consistently beneficial offloading difficult. The presence of intermittent
connections may fail the offloading request from the user, which causes
the user to execute it locally or re-transmit the job again. Mobile device
movement, jointly with unstable wireless networks, can lead to service
failures in mobile cloud systems regularly. The performance of a certain
type of cloud resources such as Mobile Ad-hoc Cloud (MAC) (i.e., mobile ad
hoc networks) depends on routing protocols that are affected by the mobile
device mobility. As a result, mobility management and fault-tolerance need
to be considered providing a reliable mobile cloud service. Other examples
of dynamic changes in the system include devices joining/leaving the cloud,
battery running low, temperature rising too high, OS throttling the CPU,
etc. Therefore, it is imperative to consider these changes before making
computation offloading decisions at all times to avoid undesirable application
performance.

1.1 Motivations and Challenges 7

(a) The file sizes of Android-x86 VM images
[104]

(b) The file sizes of Android-x86 con-
tainer images [155]

Fig. 1.4 Android-x86 VM and container image file sizes

Deployment complexity of runtime environments

To design a reliable mobile cloud system, provisioned offloading servers with
high availability need to be present to serve the offloading requests from
mobile devices. Unfortunately, these solutions have not been implemented
yet worldwide [51]. Many companies lack enough equity to cope with the
expense of deploying small clouds at multiple base stations or other locations
at the edge of the network. There is still an ongoing difficulty when trying
to set up an offloading runtime environment based on Android server-side
OS (Android x86) to serve offloading requests. Figure 1.4a shows the latest
Android x86 image files of which the 64-bit OSs are over 800 Megabytes in
size. Figure 1.4b shows an effort by researchers proposed in a paper [155]
to run a lightweight version of Android on containers rather than Virtual
Machine (VM)s. However, it is apparent that the size of the files is still too
large. An investigation of reducing the size and simplifying the deployment
of these solutions is required as well as the ease of managing the servers
remotely.

Platform heterogeneity and inter-operability

The diversity of hardware architectures and operating systems in mobile
devices makes it difficult to design a uniform mobile cloud system. In an
“always offload” strategy, transmitting a large amount of data for remote
execution may consume more time and energy than running it locally on
the device itself. It would be more beneficial to acquire the same processing
power in nearby mobile or fixed devices in the ad hoc network through
parallel execution and low latency network transmission. Therefore, it is
essential to develop intelligent decision-making strategies for selecting the
right candidates in different scenarios. Network heterogeneity also needs to
be taken care of in scenarios where mobile users switch to cellular networks
when there is no WiFi network available. The energy consumption and

8 Introduction

transmission speeds are different in these assorted types of wireless network
interfaces. There is a need for a framework that can provide an abstraction
of these heterogeneous, resource-constrained devices in order to allow for
seamless development, deployment, and management of mobile applications.

Transparency and automation mechanisms

Even after enabling offloading between different devices with various com-
putational capabilities; It is essential to hide these interactions from the
user. Transparency is the ability to implement software without the need for
manual program modification [83]. It is important for mobile phone users to
have transparency and choice [44]. In offload-enabled mobile applications,
invoking instrumentation transparently and selectively each time the appli-
cation executes is a challenging task. Automated refactoring processes are
needed to make application components follow an appropriate adaptation
strategy.

1.2 Research Hypotheses
This thesis investigates two central hypotheses regarding optimising mobile devices
through mobile computation offloading techniques. The first one is related to the
goal of improving the performance of mobile applications by offloading parts of
them while minimising the incurred energy consumption of the host mobile device.
The second is concerned with facilitating the deployment of offloading service
providers and automating the process of determining offloadable tasks. These two
hypotheses are considered throughout this thesis and examined in the evaluations.

H1 Mobile devices can be seamlessly leveraged with all the surround-
ing sites including nearby mobile devices and edge servers as well
as distant cloud resources. Moreover, the decision to offload a task
and identify the most optimal candidate for single-site offloading
and the most optimal ranking of the candidates for multisite of-
floading scenarios can be taken adaptively.

We are surrounded by a vast amount of both mobile and fixed devices.
The number of smart device candidates increases every day. It is depicted
that on average, a person would have two devices starting from lower-end
devices such as smartwatches, wristbands, and smartphones all the way
to higher specification computing devices including tablets and laptops
[32]. Discovering nearby devices and performing offload operations can be a

1.2 Research Hypotheses 9

simple task between two homogeneous devices but it is not a primitive task
with heterogeneous devices which have diverse hardware capabilities and
software programs. Accordingly, a lightweight service discovery technique
for seamless device integrations are needed to achieve that. The framework
should provide an environment for homogeneous application development in
such heterogeneous environments. The framework should further make it
simple to offload parts of an application either to Nearby Mobile Devices
or to Cloudlets and Remote Clouds to meet the application’s requirements.
The framework should also support simple development, configuration and
deployment tools to facilitate the life-cycle management of applications.

The design of algorithms for adaptive application deployment and configura-
tion are essential for seamless mobile offloading. To decide which deployment
and configuration are optimal given a certain context at runtime, the decision
engine with the help of the dynamic profilers should be capable of deciding
whether the task is better off being executed locally on the device or send
it to the external site(s) for remote execution. The solver then needs to
check the availability of the sites and output a ranking among them with
multiple criteria such as the execution speed, bandwidth, and availability
of the sites. Decision methods and fuzzy logic for solving this optimization
problem can be used when different optimisation goals are considered, such
as minimising execution time and energy usage.

H2 The process of deploying runtime environments for serving of-
floading requests from mobile devices can be simplified. It can
farther be utilised to automatically identify offloadable tasks in
unmodified mobile applications when manual task annotation is
infeasible.

One of the bottlenecks of computation offloading solutions is setting up
service provider runtime environments in the offloading sites. Previous
MCC studies have used VMs to host mobile operating system images in
the cloud. Hardware virtualization allows different guest operating systems
to coexist in the same physical server. The main drawbacks of using VMs
are the long startup time and high virtualization overhead. Heavyweight
VM solutions cannot meet these requirements. Though pre-starting the VM
can reduce its startup time, it would inevitably incur a high resource cost
due to numerous offloading requests. Moreover, it cannot work as a service
provider for different mobile devices with various architectures. Because
of the aforementioned heterogeneity in mobile devices, different runtime

10 Introduction

environments need to be deployed for handling service providers. Decreasing
the boot-up time and deploying a uniform and loosely coupled runtime
environment which accommodates to serving offloading requests from mobile
devices with different capabilities can greatly simplify this process.

During the evolution of a mobile application, the developer can manually
annotate the classes or methods that are compute-intensive to be executed
remotely. However, to support the existing mobile applications in app
stores, an automation process needs to be designed to enable the offloading
mechanism even without access to the original source code. Static analysis
and bytecode injection tools can be used to allow us to overcome the difficulty
of supporting arbitrary mobile applications where it is impractical to solicit
developers for manual annotation.

1.3 Contributions of This Research
1. A comprehensive review of the mobile cloud architectures and a derived

taxonomy of multisite MCO research works.

2. An adaptive task offloading algorithm for individual mobile devices to make
offloading decisions based on the context changes in dynamic mobile cloud
environments.

3. An offloading site ranking system based on Multi-Criteria Decision Methods
(MCDM) and fuzzy logic to select candidate offloadees and achieve different
optimization goals using group decision-making concept.

4. An overview and discussion of the design principles and challenges of imple-
menting MAMoC, a system framework to enable mobile task offloading for
heterogeneous mobile cloud systems that can be used as a simple program-
ming model to build mobile cloud applications.

5. A loosely coupled, router-based, containerized, and lightweight runtime
environment for serving the mobile offloading requests on the heterogeneous
offloading sites for providing a more scalable and reliable offloading service.

6. Seamless support for arbitrary mobile applications by determining the set
of tasks that can be offloaded without any constraints. An automated task
annotation methodology using static analysis and code instrumentation
techniques is proposed when the manual annotation is infeasible.

1.4 Publications 11

1.4 Publications
The work conducted in the course of my PhD resulted in publishing a number
of peer-reviewed papers in international conferences. The major works including
the framework design, implementation, and evaluations presented in ??, ??, and
Chapter 6 are extracted from the publications with necessary modifications. The
papers are listed as follows:

• Dawand Sulaiman and Adam Barker, "MAMoC-Android: Multisite Adaptive
Computation Offloading for Android Applications", 2019 7th IEEE Interna-
tional Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud), Newark, CA, USA, 2019, pp. 68-75. [137]

• Dawand Sulaiman and Adam Barker, "MAMoC: Multisite Adaptive Offload-
ing Framework for Mobile Cloud Applications" 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), Hong
Kong, 2017, pp. 17-24. [136]

• Dawand Sulaiman and Adam Barker, "Task Offloading Engine for Het-
erogeneous Mobile Clouds." In Proceedings of The 8th EAI International
Conference on Mobile Computing, Applications and Services. ACM, 8th EAI
International Conference on Mobile Computing, Applications and Services,
Cambridge, United Kingdom, 2016. [135]

Additionally, a survey paper will be extracted from the contents of Chapter 3
and will be published in a Journal.

12 Introduction

1.5 Organisation of The Thesis
The remainder of this thesis is structured as follows:

• Chapter 2 provides a detailed overview of mobile cloud architectures and
key techniques including computation offloading and related research area.

• Chapter 3 explains the multisite offloading in the area of MCO and collects
the literature work. Moreover, state-of-the-art on multisite MCO is provided
in the form of a systematic review.

• Chapter 4 defines the system requirements and models and formulates the
problem of offloading to multiple offloading sites in terms of execution time
and energy consumption. It also explains the offloading policy and decision
making algorithms that are core parts of the offloading decision engine.
Additionally, it describes MCDMs that are used to evaluate and rank the
candidate offloading sites.

• Chapter 5 discusses the design assumptions and the components of the mo-
bile offloading framework. It also describes the different phases of the task
execution workflow. Moreover, it provides an overview of the communication
mechanisms used in the service discovery module for handling communica-
tions between Host Mobile Device and offloading sites. The chapter also
highlights interesting aspects of the implementation of software components
within the framework in both Host Mobile Device and offloading sites.

• Chapter 6 evaluates the framework through four sets of real-world experi-
ments, evaluates the proposed design requirements, analyses and discusses
the results, and presents the evaluation limitations.

• Chapter 7 presents a summary of the thesis, revisits the hypotheses and the
contributions, and proposes future research directions.

Chapter 2

Background

This chapter presents the background and context of mobile cloud architectures
and setting the ground for next chapter to review the existing work in research and
development of multisite offloading approaches. It begins with the background
technologies of the different mobile cloud architectures and a comparison of the
different paradigms in Section 2.1. Then, it describes computation offloading with
a focus towards the two important aspects, including adaptability and multisite
offloading features in Section 2.2. Finally, Section 2.3 describes some of the main
technologies and communication mechanisms used in the field of MCC research.

2.1 Mobile Cloud Architectures
The global mobile data traffic handled by Cisco has grown 4,000 fold over the past
10 years and almost 400 million fold over the past 15 years. The data traffic grew
74 per cent in 2015 reaching 3.7 Exabytes per month at the end of 2015, up from
2.1 Exabytes per month at the end of 2014 [32]. This is mainly because of modern
data and computation-intensive mobile applications that are resource hungry and
cannot be run locally. To cater to ever-increasing requirements for storage and
network resources, efficient data distribution and optimization techniques need to
be adopted. The result of the vast growth in the number of mobile devices along
with transferring data and compute-intensive applications to the cloud has led
researchers to search for more effective and intelligent ways to create this two-way
relationship.

The current MCC trend has set the focus on the ubiquity of computation.
However, the main current cloud platforms still confine the servers into datacenters,
which are far from the users. Distance leads to increased energy consumption in
the network, higher utilization of the broadband Wide Area Network (WAN) and

14 Background

poor client experience, especially for latency-critical applications. As a solution,
distributed architectures try to locate computation among different sites. These
distributed cloud architectures that bring data closer to the client are emerging
as an alternative to centralised ones.

In this section, an overview of the most researched areas in mobile cloud
studies is discussed, starting with MCC and its three different models. The
more recently emerged post cloud computing studies which are Edge Computing
and Fog Computing and their approaches are explained regarding mobile device
augmentation. Finally, the similarities and differences between these paradigms
are demonstrated with real-world use cases and supporting statistics.

2.1.1 Mobile Cloud Computing
Advancements in mobile device technologies have led to the production of more
complicated and interactive applications such as face recognition, real-time video,
healthcare monitoring, Augmented Reality, and Virtual Reality mobile applica-
tions. The common feature between these applications is that they all need high
processing power and fast and near real-time response time. Due to these require-
ments, the concept of computation offloading from mobile devices to resourceful
cloud servers has been introduced as MCC. The complicated computation-intensive
modules of the mobile applications can be easily executed with a fast response time
on the powerful remote surrogates [77]. However, the performance of offloading is
highly affected by the available bandwidth and latency [129]. Mobile computation
offloading will be explained in detail in Section 2.2.

MCC is an emerging paradigm that encompasses mobile computing, cloud
computing, networking and virtualization. It is well studied in the literature.
There are many extensive MCC surveys in the literature [44] [128] [38] [76]. MCC
can support mobile devices through either computation augmentation which
is about leveraging powerful external resources to execute the heavy parts of
the application or storage augmentation for using the excessive data storage
capabilities of the cloud [163].

Because of high latency and low bandwidth issues of remote cloud servers in
traditional MCC studies, researchers have suggested using one-hop away powerful
surrogates to the mobile devices in the form of Cloudlets which is discussed in
Section 2.1.1.1. As smartphones and tablets gain more CPU power and longer
battery life, the meaning of MCC gradually changes. Instead of being fully hooked
to Remote Cloud, a number of Nearby Mobile Devices can be used to coordinate
and distribute content in a decentralized manner discussed in Section 2.1.1.2.

2.1 Mobile Cloud Architectures 15

2.1.1.1 Cloudlet

Cloudlet is viewed as a small-scaled cloud having a cluster of computers that is
well-connected to the Internet serving mobile devices in close proximity. In this
way, we manage to overcome the high latency problem faced in the traditional
MCC approaches, which depend on Remote Cloud servers only. The idea of using
cloudlets (surrogates) as near fixed devices was introduced in [120] in which the
mobile device offloads its workload to a local cloudlet comprised of several multi-
core computers with connectivity to the remote cloud servers. Satyanarayanan
[119] uses four futuristic scenarios as case studies for the facts on the architectural
evolution of mobile cloud computing from a 2-tier (mobile device - cloud) to
a 3-tier (mobile device - cloudlet - cloud). Several approaches to this design
are mentioned in this paper, such as VM synthesis and code offloading. Alongside
solving latency issues, he sheds light on other value propositions of cloudlets such
as the bandwidth, crowd-sourcing, privacy and security, and availability.

From an energy point of view, offloading to cloudlet saves energy because of
access to the short-range wireless connection [48]. Sending and receiving data
not only claims large shares of wireless bandwidth but also drains the battery of
mobile devices. It is shown that despite several new power-saving mechanisms of
4G/LTE cellular data; it requires 23 times more power than WiFi and it is less
power efficient than 3G [61]. In some works, the resource-intensive application
tasks are first offloaded to the cloudlet, and then later to nearby devices in the
LAN or remote cloud resources if needed [147]. In case the connection to cloudlet
service is interrupted, the offloaded tasks can be retrieved back and send them to
be executed on alternative avenues.

The main goal of using cloudlets is to be able to reduce the response time in
order to meet the needs of some latency-sensitive applications [49]. The advantage
of being close to the user allows us to achieve this goal but does not provide us
with the same computation and storage capabilities as those of the remote cloud.
Thus, its computing capacities are limited to certain services. In addition to its
proximity to the users, Cloudlet also has the advantage of being exploited by
mobile users who do not even have an Internet connection [120].

2.1.1.2 Mobile Ad-hoc Clouds

The concept of Ad-hoc Cloud Computing has been discussed in [91]. According
to [44], apart from offloading to central clouds, there are two other definitions
of MCC. The first is where some mobile devices act as cloud resource providers
forming a Peer-to-Peer (P2P) network. In this model, the mobile devices in the

16 Background

local vicinity and other stationary devices (if available) would create an ad-hoc
network which can be accessed by other mobile devices in order to run their
applications. Theoretically, this model allows offloading the tasks to the mobile
devices that form the virtual resource cloud. Besides, latency is also reduced,
since the mobile users only have to access the virtual cloud resource instead of
traversing lots of hops to get to the Remote Cloud.

MACs are about leveraging the computational capabilities of the surrounding
mobile devices by having them as resource nodes. It is also known as Mobile
Device Clouds (MDC) [95], Mobile Edge Clouds (MEC) [40] [14] [45], and Virtual
Computing Provider for Mobile Devices [62]. The most well-known works at
accomplishing resource sharing and data distribution among mobile devices in the
vicinity include Hyrax [90], Scavenger [75], Serendipity [124], and Cirrus [122].

2.1.2 Mobile Edge Computing
In order to reduce latency between end-users and service providers, without
dropping the main benefits of MCC, Mobile Edge Computing (MEC) has emerged
as a new paradigm where the functions that have been traditionally located in a
remote datacenter are called back to locations nearer to the user, e.g., networking
devices in the access network with spare or added computational capabilities.
MEC resources may offer more limited capacities or reliability guarantees than
core resources but are geographically spread closer to the end-users, providing
smaller network latencies [81].

MEC is the new evolution of mobile networking by providing computation
capabilities in base stations. Theoretically, data would only need to travel a few
miles between customers and the nearest cell tower or central office, instead of hun-
dreds of miles to reach a cloud datacenter. Mobile edge servers are co-placed with
the mobile network base station at the edge of the mobile network. Mobile edge
hosts in network operators are connected to the mobile core. User equipments are
connected to hosts that contain local VMs through API endpoints. The white
paper proposed by the European Telecommunications Standards Institute (ETSI)
[60] introduced the MEC concept with its reference architecture and application
scenarios. MEC is widely regarded as a promising paradigm to enable mobile
terminals to enjoy the abundant wireless resource and vast computation power
ubiquitously [86].

Cloudlet can be considered as an edge server for their common objectives
to bring computation closer to the end-user [59]. The authors at [81] explain
the several related computing paradigms to Edge Computing including Content

2.1 Mobile Cloud Architectures 17

Delivery Networks (CDN) [144] and P2P computing, among the others. There
are also attempts to combine the concept of Cloudlets and Edge Computing in
designing future mobile cloud systems [64]. Similar to cloudlets, the MEC system
has several advantages including low latency, content caching, traffic monitoring,
local aggregation of information, and local services. It should be noted that the
ultimate goal of MEC is to increase the bandwidth, reduce the latency and jitter,
and provide Quality of Service (QoS) for mobile apps. There are many use cases
of MEC, such as CDNs, smart grids, augmented reality, and traffic management
[1].

2.1.3 Mobile Fog Computing
Fog Computing was first proposed by Bonomi et al. [17] that describes it as
a scenario where a huge number of heterogeneous ubiquitous and decentralised
devices communicate and potentially cooperate among them and with the network
to perform storage and processing tasks. These tasks can be for supporting
basic network functions or new services and applications that run in a sandboxed
environment. The rise of the Internet of Things (IoT) popularity made Fog
Computing interesting to researchers and practitioners. In IoT, a huge amount
of sensors are deployed everywhere. For low-capacity sensors, the best place to
process data from these sensors should not be far away cloud servers [87]. Instead,
devices such as routers and switches are better choices.

Mobile Fog Computing (MFC) is considered as the complementary of Fog
Computing for providing low latency mobile services [58]. Mobile Fog proposed
by Hong et al. [56] is a high-level programming model for latency-sensitive and
large-scale future applications over heterogeneous devices. Applications can invoke
event handling and function calls by the model. The model is evaluated with a
simulated use case of a vehicle tracking application where the traffic cameras are
used to help police identify and track certain vehicles. The compute-intensive
functions of the application, such as license plate recognition, video streaming are
all performed on the intermediate fog nodes before the data are sent to Remote
Clouds.

Fog computing and Edge Computing have a number of similarities. Although,
Fog Computing mainly focuses on communication optimization at the infrastruc-
ture level, while Edge Computing manages the computing needs and network
demand of both end devices and infrastructure, including the collaboration among
end devices, edge servers, and remote cloud.

18 Background

Fig. 2.1 Fog computing architecture [118]

2.1.4 Comparison of Mobile Cloud Architectures
In this section, the different mobile cloud approaches are compared in Table 2.1.
The evaluation is based on the following properties, which have been chosen due
to their effects on the Quality of Service of mobile applications:

Latency: This property evaluates how fitting is the system for latency-critical
applications. In some mobile applications such as Augmented Reality, users
request low latencies to avoid having slow frame loading, which affects
the performance. As shown in Table 2.1, MCC solutions that offload to
Remote Cloud servers have a high latency which does not make them ideal
candidates for low latency applications. The delay-sensitive mobile tasks
are ideally offloaded to the cloudlets or nearby devices. On the other hand,
differences between Edge Computing and Fog Computing are dependent on
the location of the edge servers to the mobile user as they are confined to
the edge infrastructures.

Distance: This depicts the physical distance of the infrastructure providing the
service to the mobile device. This is closely related to the latency due to the

2.1 Mobile Cloud Architectures 19

number of network hops that are being introduced further the mobile device
gets to the servers. Nearby local devices are usually within 10-20 meters
away, while the Cloudlets and edge servers can be as far as a kilometre to
Host Mobile Device.

Deployment: The cloud service providers such as AWS and Azure are usu-
ally the sources of Remote Cloud servers. To resolve latency issues, fixed
surrogates can be deployed in the vicinity to be a one-hop away from the
mobile device in the form of Cloudlets. These can also be in the form of
macro-datacenters, small clouds, femtocells, etc. MEC servers are deployed
in Radio Access Networks which can provide fast services to mobile users.

Computation Power & Storage Capacity: The abundance of resources at
cloud data centers and the elasticity feature of Cloud Computing allow
for ample computation power and storage capacity. Even though cloudlets
and nearby devices solve the latency issues of far clouds, their computation
power is rather limited. Edge and Fog Computing use a distributed set of
powerful servers deployed in the network edges to provide powerful services
to mobile users.

Communication Medium: Mobile devices connect to different service providers
using different wireless technologies. Since the public cloud infrastructure
is accessed through the Internet, both Wi-Fi or cellular technologies can
be used to establish connections between them. Cloudlets are deployed
in Local Area Network (LAN) so they can be connected to devices in the
local network. Traditionally, Bluetooth has been the most popular choice
for Device-to-Device (D2D) communications. However, there are multiple
new approaches to achieving nearby peer connection establishments, such
as WiFi-Direct and ZigBee [19]. The Edge servers are mainly deployed in
network servers, so cellular technologies such as 3G/4G are the common
network interfaces to connect to them.

Architecture: The architecture tier is a physical structuring mechanism for
the system infrastructure in which the computation levels depend on the
existence of devices and communications. The most common architecture is
when the mobile device is only connected to a single Remote Cloud server
that forms a 2-tier mobile-cloud architecture. Cloudlets are used as middle
managers to form a 3-tier mobile-cloudlet-cloud architecture for enabling
the cloudlet to be closely connected to both the mobile device and the cloud.
The MAC devices are normally in the same architecture tier. Meanwhile,

20 Background

MEC and MFC do not have a standard architecture so devices in different
cloud resource levels can be included such as smart routers, nearby mobile
devices, forming a multi-tier architecture as shown in Figure 2.1.

Availability: Service availability is one of the most important factors affecting
responsiveness and energy consumption in mobile device augmentation
scenarios. Cloud providers guarantee high availability of services through a
Service Level Agreement. Although cloudlets are deployed close to mobile
users, in cases of service churns and multi-user requests, the limited server
might not be able to serve all the users in the same way as remote cloud
servers. As for MAC, because of the mobility feature of nearby mobile
devices, it makes them highly volatile and could become non-available on
the fly [93]. MEC and MFC solve the issue of mobility using horizontal and
vertical handoff strategies to avoid service disruptions for mobile users [86].

Use Cases: The applications running on Cloudlets and Nearby Mobile Devices
are typically time critical and require very low computing and communication
latency in an environment with limited bandwidth, and limited computing
power. For example, applications such as Linpack (computation-intensive),
3D Car Racing (interaction-intensive) and Chess (computation & interaction-
intensive) [147]. MEC is actively used in smart city planning and video
surveillance scenarios [86] while MFC conducted studies are mainly targeted
towards IoT applications [17].

Operators: Cloudlets are mostly deployed by an individual or a local business
such as a coffee shop owner [49]. Since MAC is developed in an ad-hoc fashion,
it can be performed locally by an individual or a number of individuals
within an organization. The network providers have added powerful edge
servers in their base stations to enable MEC [88]. Fog nodes can either use
the edge servers in base stations or cloud servers in cloud service providers
[158].

2.1
M

obile
C

loud
A

rchitectures
21

Table 2.1 Comparison of mobile cloud related paradigms

Property MCC MEC MFCCore Cloudlet MAC
Latency High Low Low Low Relatively low
Distance Far Close Very close Close Relatively close
Deployment Data centers Fixed surrogates Nearby devices Network edge

(RAN)
Fog nodes

Computational
power & Stor-
age capacity

Ample Limited Very limited Fair Ample

Communication
medium

WiFi/Cellular WiFi WiFi/Bluetooth Cellular WiFi/Cellular

Architecture 2-tier 2-tier or more 2-tier 2-tier or more 3-tier or more
Availability High Average Low Average High
Use cases Social networking,

health care
Immersive (AR &
VR) apps

Disaster re-
lief, privacy-
preserving local
processing

Video surveillance,
video caching, traf-
fic control, health
monitoring, AR

IoT, Connected ve-
hicles, smart city,
smart delivery

Operators Cloud service
providers

local businesses self-organized Network infras-
tructure providers
(RAN-based)

Cloud service
providers and net-
work infrastructure
providers

MCC: Mobile Cloud Computing, MAC: Mobile Ad-hoc Cloud, MEC: Mobile Edge Computing, MFC: Mobile Fog Computing

22 Background

2.1.5 Discussion
The centralised processing model uploads computation and data to the cloud
datacenter through the network and leverages its ample power to solve the com-
puting and storage problems of resource-constrained devices. However, traditional
cloud computing has several shortcomings, including high latency and insufficient
bandwidth, which leads to high energy consumption for limited devices.

While Cloudlets are mostly managed by individuals and can be deployed at
any appropriate location such as coffee shops and university campus buildings [49],
MEC servers are owned by mobile operators and need to be located near the base
stations in order to provide access to the mobile network users over Radio Access
Network (RAN). This helps operators to increase service quality through effective
mobility management besides the benefits of utilising cloud-like resources at the
edge [86] to perform computation offloading on edge [89]. Computation offloading
techniques formulated for cloud technologies are now common to edge and fog
computing paradigms. Many researchers have pursued the idea of offloading
computation to multi-site or heterogeneous resources at once [86].

A notable difference between Cloudlets and both MEC and MFC is in the
virtualization technology. Most of the cloudlet research work use VM technology
for virtualization [147], while Edge and Fog studies consider other types of virtual-
ization techniques [88]. Another difference is that MEC functions in a stand-alone
mode where the tasks are processed at the edge of the network. Cloudlets can
function in either stand-alone mode or connected to a cloud. Meanwhile, MFC is
designed as an extension to the cloud, so it is mainly in connected mode. More-
over, Cloudlets are mainly designed for mobile offloading solutions (e.g. wearable
cognitive apps [26]) while MEC aims at any application that is better provisioned
at the edge. Fog-enabled applications can span the public cloud and network edge.
This is demonstrated in the firefighting application use-case in [158].

To examine the popularity of these different paradigms, we use a tool [134]
to find the published academic papers for each of the aforementioned techniques.
As we can note from Figure 2.2, MCC has been well researched and kept the
pace from 2012 until recently where Edge Computing (EC) and Fog Computing
(FC) papers have gained more popularity. This could be due to the more modern
approaches of EC and FC to include a wider spectrum of devices (e.g. IoT
devices) instead of only focusing on smartphones which most of the MCC research
has been centralised around it. Since 2015, the number of papers related to
Edge/Fog Computing has grown tenfold. EC has entered the rapid growth period.
Researchers have also been investigating MEC which started around the same time

2.2 Mobile Computation Offloading 23

Fig. 2.2 Number of published papers by year for MCC, MEC, EC, and FC

the EC attracted the attention of academia and industry. The pace of it might
not keep up with EC and FC as the name was currently changed to Multi-access
Edge Computing (MEC) to include a wider variety of devices [138].

2.2 Mobile Computation Offloading
Offloading computation from a weaker device to a more powerful server is not a
new concept. The first attempt to conserve the energy consumption of laptops was
introduced by offloading larger tasks to fixed surrogates [114]. Then, the concept
of cyber-foraging was termed in [10] for offloading parts of applications from
mobile devices to nearby discovered servers. Computation offloading either fully
or partially migrate the resource-heavy parts of a mobile application to nearby
resource-rich surrogates such as computational clouds. Computation offloading
not only conserves the usage of local resources such as memory, battery, and
storage but also enables execution of computation-intensive applications in mobile
devices.

MCO is a mechanism to enable mobile devices to run mobile applications
that require extensive computation and communication [84]. It extends battery
life by moving the computation-intensive portions of the application to external
resources with greater computation power. In addition, it decreases latency and
communication costs by using single-hop proximity to nearby devices [49]. This
improves the user experience, especially in highly interactive applications that

24 Background

Fig. 2.3 Computation Offloading Process Overview [4]

require high bandwidth and low latency. Figure 2.3 illustrates the environment
that supports computation offloading. In this overview, the mobile device decides
to offload method B to a cloud server or a powerful machine. The cloud here
provides virtual computation resources to run the offloaded components. It can
be another device, a server or cluster in a nearby location or a virtual server in
the public cloud datacenters.

To enable computation offloading, an offloading client needs to be running
on the Host Mobile Device and an offloading server in the external resources.
They need to be able to communicate for coordinating the offloading operation.
After the application starts executing, the invoked task that has been identified as
offloadable will be passed to the offloading client. The offloading client can either
follow the "always offload" scenario where every invoked task will be offloaded,
or an offloading runtime decision is made (based on a comparison of local and
remote execution times or energy consumption) before transferring the task to the
offloading server. Any other metadata (invocation parameters, resource files, etc.)
will also be provided to the offloading server. The offloaded component starts
executing and communicates directly with the mobile app for sending back the
results of the remote execution.

Since offloading migrates computation to a more resourceful computer, it
involves deciding whether and what computation to migrate. A vast body of
research exists on offloading decisions for (1) improving performance and (2)
saving energy. The offloading decision making is the bottleneck and the most
prominent part of the mobile computation offloading process. This offloading
decision making process is being affected by more than a factor [76]. The four

2.2 Mobile Computation Offloading 25

aspects of offload decision making are studied in mobile cloud offloading scenarios
[152].

When to offload: an optimal offloading decision has to be made at the right time to
offload under different conditions of the device, such as available bandwidth,
amount of data to be transferred, and energy to execute.

What to offload: in dynamic mobile environments, full offloading is not always
beneficial, so choosing the right component to offload by splitting a specific
application into local and remote parts is also important.

Where to offload: since mobile devices are surrounded by multiple offloading
sites, it is essential to find the optimal site in which the computation to be
offloaded under different cloud resource conditions.

How to offload: Due to the heterogeneity of communication networks available
between the mobile device and cloud resources, the right path to offload
needs to be determined.

2.2.1 Adaptive Offloading
A system is considered being adaptive if it is designed to continuously monitor its
environment and then modify its behaviour in response to changing environmental
conditions [15]. Mobile computation offloading systems are affected by wireless
network characteristics and the capabilities of available external resources. The
workload also varies depending on the applications that are running on the mobile
device. For designing an effective offloading system, a range of environmental
variables such as bandwidth variation, intermittent connectivity and user expecta-
tions need to be considered [15]. User expectations need to be incorporated into
the architecture of the offloading system. The different parameters that are set by
user preferences need to be defined in the deployed mobile application.

In mobile computation adaptive offloading, the system needs to implement
sufficient and accurate change detection mechanisms to detect the changes in the
dynamic environment. It has to be responsive to the changes and ensure a fast,
accurate, user transparent, and low overhead techniques for change detection. The
quality-aware opportunistic response mechanism can be implemented by employing
adaptive techniques for using the available resources and by implementing high-
quality degradation of the execution when network connectivity is lost or another
failure occurs. The authors of [74] propose a lightweight application partitioning
mechanism to achieve seamless computational offloading. The partitioning decision

26 Background

is transformed into an optimization problem and solved by the optimization solver.
Various performance parameters are used to fix application-based partitioning of
Android applications. Android services use Inter-Process Communication channels
to perform Remote Procedure Call (RPC), the middleware intercepts the requests
sent to the services and decide whether the request will be sent to local or cloud
services. It reduces local execution time by considering multiple environment
variables in the cost function of the optimization problem including data transfer
cost, CPU cost, and memory cost of the mobile device. The constraints are related
to minimization of memory usage, energy usage, and execution time. A formal
description and modelling of these variables will be presented in Chapter 4.

2.2.2 Multisite Offloading
There are different ways to classify current mobile computation offloading frame-
works in the literature. Existing surveys and analysis studies are either based
on mobile cloud application models and offloading objectives [143], challenges in
designing future mobile cloud applications [150], application partitioning (how the
tasks are identified for offloading) [128] [85], or context-awareness [103]. We use
cloud resource types as our classification methodology by focusing on infrastruc-
ture destinations for offloading. More precisely, answering the question of "where
to offload" in mobile cloud offloading aspects [152].

There are numerous mobile computation offloading frameworks and mecha-
nisms in the literature that aspire offloading of mobile tasks to a single or multiple
servers in the same architecture tier. We consider this type of offloading to be
a “Single Site Offloading” mechanism. The offloading process could be between
the host mobile device and datacenter cloud servers over WAN communications
through the Internet. Other works introduced Cloudlets in the LAN of the mobile
device to solve the high latency issues associated with offloading to distant cloud
servers. Moreover, some researchers considered using mobile devices as both
service consumers and service providers in the formation of MACs.

The solutions that address offloading mobile applications to Remote Clouds use
an infrastructure-based approach which refers to public cloud services including
IaaS, PaaS, and SaaS. The mobile device offloads its computation to public
cloud services via WiFi or cellular networks. Some solutions use an image of the
mobile device operating system hosted in the cloud servers, forming a one-to-one
relationship, such as in CloneCloud [31]. Other approaches of remote cloud-based
offloading include MAUI [35], ThinkAir [73], Odessa [108], COSMOS [123], and
Cuckoo [69].

2.2 Mobile Computation Offloading 27

As per the description in Section 2.1.1.1, cloudlets are trusted and resourceful
computers deployed as middle layer servers between mobile devices and remote
cloud servers to reduce latency and improve the mobile application performance.
It was originally introduced by Satyanarayanan et al. [120] followed by enormous
works such as [147] [48] [26].

Nearby Mobile Devices can form an ad hoc cloud among themselves using
either Mobile Ad-hoc NETwork (MANET) through short-range wireless networks
such as WiFi-direct and Bluetooth in dynamic topologies, with no support of
networking infrastructure or infrastructural WiFi using Zero Configuration Net-
work technologies [30]. Nearby local mobile devices can provide an even lower
latency for computation offloading in case cloudlets or public cloud servers are
out of reach of the Host Mobile Device. The most notable works in this category
include Hyrax [90], Scavenger [75], Serendipity [124], and Cirrus [122].

Fig. 2.4 A Proposed Multisite Offloading System Architecture [112]

With the increase in the number of heterogeneous devices all around us, future
computation offloading architectures with multi-tiers will become relevant. As an
example, we can contemplate a smartwatch which is connected to a smartphone via
Bluetooth. The smartphone can be connected to a cloudlet in the vicinity via WiFi
or to an edge server in the mobile operator base stations using cellular networks.
The cloudlet or the edge server are also connected to a cloud datacenter via a fixed
network. In such an n-tier system, the heterogeneous devices differ significantly in
terms of energy, computation, and communication resources, increasing typically
from the very limited (tier 1: smartwatch) to the virtually unlimited (tier 4: cloud
servers).

28 Background

In the next chapter, existing papers, publications, and frameworks in multisite
offloading are presented and reviewed and a taxonomy of the primary studies is
constructed.

2.3 Tools and Technologies
This section describes some of the background technologies that are used through-
out this thesis and in the work of producing MAMoC. It starts with the two
important tools that are used for designing a lightweight runtime environment for
the components running on MAMoC Server. These choices differentiate MAMoC
from most of the works in the literature described in the previous chapter. Zero
Configuration Network and Wi-Fi P2P, which are discussed in Subsection 2.3.3
and Subsection 2.3.4 respectively, are important communication mechanisms used
in the offloading task transfer between the Nearby Mobile Devices. Web Appli-
cation Messaging Protocol discussed in Subsection 2.3.5 and its two subsequent
technologies are used for device to server communications in MAMoC. These
technologies will be revisited in Chapter 5 with their design and implementation
references.

2.3.1 Containers
Containers are utilised to host the server components of MAMoC. Linux Containers
(LXC) is a virtualization method for running multiple isolated Linux systems on a
single machine. Docker1 extends LXC to automate the deployment of applications
inside software containers.

For our published work in [136], we used an already developed Swift Docker
image to implement a server-side Swift application to accept incoming requests
from mobile devices. The developed container provides an environment ready
to be customised for other mobile applications. It provides a feature-rich yet
lightweight execution environment for offloaded tasks. In the subsequent works of
redesigning MAMoC Server into a new environment, the choice of using containers
persisted for the server-side modules.

1https://www.docker.com/

https://www.docker.com/

2.3 Tools and Technologies 29

Fig. 2.5 Container vs. native benchmarking

To test the performance of containers, we decided to run three types of
compute-intensive workloads to experiment with the speed of computation on
Docker containers and on native platforms. As the results show in 2.5, the
computation speed of containers is close to native platform performance within
1% region [43] [145]. To ease the creation of the container, we provide a Dockerfile
that can automate the process of creating a container for the server-side part of
MAMoC. The container is pre-configured with the necessary build environment
for handling the client requests.

Despite the ease of deployment and performance boosts, using Docker for
deploying offloading service providers has the following benefits:

• It provides the edge and cloud app developers with the choice of programming
languages and framework. The library that MAMoC uses in designing
the server components provides libraries for most popular programming
languages. MAMoC Server is written in Python. However, the server
logic can be rewritten by any developer wishing to use Javascript or other
languages.

• Enables efficient, secure, and automated distribution of application updates
to edge devices. The deployment configuration of ImageAlwaysPull allows
our containers to always host the newest images that are pushed to the
Docker hub registry.

30 Background

2.3.2 Android-x86
Android-x86 is an open source project that deploys an Android operating system
to an x86 or AMD hosts [7]. Many previous studies such as [22][31] have used it to
deploy a virtual mobile environment. This is not chosen as MAMoC’s server-side
solution for the following reasons:

1. It needs a VM with an updated Android-x86 image. The authors in [46]
discuss the extra overhead that comes with full virtualization of Android-x86
in the server which is shown to consume substantial CPU resources and to
slow down the performance of code execution [142].

2. As it was shown in Section 1.1, the size of the image is large even when it is
deployed on containers [155].

3. It is difficult to keep the x86 versions up to date with the new Android
versions. With new Android versions releasing every year, it is difficult for
Android x-86 to catch up with all the new updates.

4. The decompilation and reverse engineering tools for Android have advanced
in the last few years. There are many well-researched academic and powerful
industrial tools that aid with the process of decompiling Android PacKage
file (APK)s.

5. The modern mobile application development programming languages such as
Kotlin and Swift have server-side execution in mind. Both Kotlin 2 and Swift
3 support server-side executions. There are even some active open-source
server-side frameworks such as Kitura and Vapor. Vapor was used in one of
our previously published work [136].

Most of the computation offloading frameworks which are implemented for
Android applications utilise ThinkAir [73] offloading model which requires an
instance of Android x-86 in the server. In this scenario, the server unpacks the
offloaded code and uses Java Reflect 4 to create a new instance of the offloaded
class. It will then invoke the annotated method to execute it with the parameters
and return the results to Host Mobile Device.

2https://kotlinlang.org/docs/reference/server-overview.html
3https://swift.org/server/
4https://developer.android.com/reference/java/lang/reflect/

package-summary

https://kotlinlang.org/docs/reference/server-overview.html
https://swift.org/server/
https://developer.android.com/reference/java/lang/reflect/package-summary
https://developer.android.com/reference/java/lang/reflect/package-summary

2.3 Tools and Technologies 31

2.3.3 Zero Configuration Network
Service discovery lets devices spontaneously become aware of the availability and
capability of peers on the network, so clients can discover and consume services
without prior knowledge of them. The goal of the service discovery protocol is
to decrease or eliminate explicit administration [71]. The Zero Configuration
Network (ZeroConf) [30] is a service discovery mechanism which enables seamless
discovery and interaction of devices and services without prior configuration. It is
an unstructured and decentralised discovery protocol that offers service discovery
in local and ad-hoc networks. It supports the advertising and discovery of services
using link local addressing and multicast DNS (mDNS). Service publication is
performed by multicasting the service advertisement to all the network devices.
The devices do not need a pre-configured network to exchange data with each
other. There is no configuration needed because they can discover each other
via multicast DNS (mDNS) [28]. mDNS is a service that resolves hostnames
on a local network without the use of a central domain name server. After the
connection is established between two devices, data can be exchanged between
them in either reliable mode over TCP or unreliable mode over UDP. The reliable
mode guarantees the delivery and avoids out-of-order packages, so this mode is
used throughout framework data transfers. Instead, a resolving host simply sends
a DNS query to a local multicast address and the host with that name responds
with a multicast message with its IP address.

Multicast DNS is also used in combination with DNS based service discovery
(DNS-SD) [29] where a host that provides a network service can announce its
service to LAN. Those services can then be discovered using multicast messages.
Each mobile device can advertise services and discover what services are offered
by other devices in the proximity. A browser object in the Host Mobile Device
searches for peers that have an advertiser object. In this thesis, DNS-SD protocol
has been implemented to be aware of the availability of local machines. The
network resources are classified according to the DNS-SD naming structure. DNS
SRV and DNS TXT records are used to facilitate this protocol [29]. A DNS query
in a specific format is sent to a local network in order to find available services.
The format of a service type which is specified as “<Service>.<Domain>” make
all service instances available in that domain.

2.3.4 Wi-Fi P2P
Wi-Fi P2P is a direct communication technology between terminals with no in-
termediate devices such as routers and Access Point (AP)s. Wi-Fi module is

32 Background

basically mounted on most smart devices. The 1.7 version of the Wi-Fi P2P
technical specification [151] was released in 2016. Wi-Fi Direct enables devices to
discover each other and form a P2P group. In each P2P group, one elected node,
called Group Owner (GO), functions as an AP. This standard enables devices to
connect with each other without requiring a wireless AP (a.k.a router or Wi-Fi
hotspot). After a widespread of the Wi-Fi technology, the capability of P2P device
connections has been extended to it versus the conventional approach of using
APs. Specifically, the Wi-Fi Direct technology is developed by the Wi-Fi Alliance
to broaden the use cases of Wi-Fi technology for D2D communications [19] also
called WiFiP2P technology [37]. Other D2D connectivity technologies such as
Bluetooth has nominal ranges from 10 to 100 meters and transfer speed between
250 Kbps to 25 Mbps [79]. Wi-Fi Direct inherits all the capabilities from IEEE
802.11 standards and provides a nominal range up to 200 meters and transfer
speed up to 250Mbps. Power saving support and extended QoS capabilities; Wi-Fi
Direct can be considered one of the most promising candidates for a wide range
D2D communication and suitable for the goal of distribution across mobile devices.

Wi-Fi P2P uses mobile devices as AP for connecting with other devices without
the need for a network infrastructure. It essentially allows the creation of software
APs by extending the existing AP and Station (STA) client-server architecture
with introducing a GO and a Group Client (GC) that can connect in an ad hoc or
P2P mode. A GO is an “AP-like” entity that can set up multiple P2P links with
GCs. A device can be optionally configured to operate simultaneously as a AP
and as a legacy device in a Wi-Fi network for the need for concurrent connections.
A GC is a Wi-Fi P2P-compliant device that may connect to a GO. Besides the
Group Owner/Client functions, Wi-Fi P2P also specifies a power-saving feature
to make it suitable for battery-powered devices, and Wi-Fi Protected Access 2
(WPA2) has been implemented to provide security protection.

This group formation starts from scanning in the discovery phase. When an
existing P2P group is found, the device joins the ad hoc cloud. If no group is
encountered, the device can announce itself as GO and let other mobile devices
connect to it. When devices discover each other, they may enter a negotiation
phase to ascertain which device would be the GO and serve as a AP. Upon a
successful connection with the GO, the GO sends information about all the other
devices are in MAC. The new device can then connect to the other MNs in the
network as required. Using Wi-Fi direct can reduce the network level complexity,
such as discovering new devices in the network, connecting these devices and
even notifying the connected devices when any particular device drops from the
network.

2.3 Tools and Technologies 33

2.3.5 Web Application Messaging Protocol
As the demand for multisite mobile clouds rise, service providers, enterprises,
regional cloud providers will need to set up next-generation mini and micro servers
across multiple locations to satisfy modern mobile application requirements. The
operational complexity increases with this new architecture and there will be
a need for a counterbalance and a highly automated network communications
between the mobile devices and servers that can make multiple edge and public
cloud nodes appear as one logical entity to streamline the management of multiple
offloading sites.

Web Application Messaging Protocol (WAMP) is an attempt at developing
an open, text-based standard that combines Publish/Subscribe with Request/Re-
sponse patterns, complex routing and delivery strategies [101]. It is most commonly
used in conjunction with the Crossbar5 router and Autobahn6 client libraries.
There are a plethora of protocols that are adopted for message communications.
A comparison table with other protocols such as MQTT, AMQP, and XMPP. is
presented in their website 7

2.3.5.1 Remote Procedure Call

RPC systems provide a request-response model similar to local procedure calls. It
is a powerful technique for designing distributed, client-server based applications.
When an application performs a RPC, the system constructs a request message
that identifies the procedure to call and contains serialized representations of any
arguments. Calls are performed on static code so the environment for each call is
constructed at call-time from the passed arguments and any static data referenced
from the code. After the call is completed, a response message containing serialized
representations of the return values is sent back to the caller. Instead of accessing
remote services by sending and receiving messages, a client invokes services by
making a local procedure call. The local procedure hides the details of network
communication. RPC provides a different paradigm for accessing network services.

RPC messaging pattern involving peers of three roles: a caller that issues calls
to remote procedures by providing the procedure URI and any arguments for the
call. The callee will execute the procedure using the supplied arguments to the
call and return the result of the call to the caller. Callees register procedures
they provide with dealers. Callers initiate procedure calls first to dealers. Dealers

5https://crossbar.io
6https://crossbar.io/autobahn/
7https://wamp-proto.org/comparison.html

https://crossbar.io
https://crossbar.io/autobahn/
https://wamp-proto.org/comparison.html

34 Background

route calls incoming from callers to callees implementing the procedure called, and
route call results back from callees to callers. The caller and callee usually run
application code, while the dealer works as a generic router for remote procedure
calls decoupling callers and callees. In MAMoC, SNs are the callers while the ENs
and PNs are callees. MAMoC router component in MAMoC Server serves as the
dealer between the two sides.

2.3.5.2 Publish/Subscribe

Publish/Subscribe (Pub/Sub) is a messaging pattern involving nodes of three
aspects: publishers publish events to topics by presenting the topic URI and
any payload for the event. Subscribers of the topic will receive the event jointly
with the event payload. Subscribers subscribe to topics they are concerned in
with Brokers. Brokers route events incoming from publishers to subscribers that
are subscribed to various topics. The publisher and subscriber normally run
application code, while the Broker serves as a generic router for events decoupling
publishers from subscribers [139].

2.4 Summary
In this chapter, an analysis of the existing mobile cloud architectures is given
including the three models of MCC and the more current trend towards the
allocation of computation near the user in the form of Edge/Fog Computing
paradigms. It is also shown that while these paradigms share common grounds,
they also have many differences. The main difference between a more traditional
mobile cloud is in the distance to the final client. While MCC is focused on
enabling computation offloading capabilities to mobile devices, EC and FC focus
on providing a service closer to the client, thus reducing latency between the client
and the public cloud instances in the datacenter. A number of technical tools
including containers and Android-x86 and communication mechanisms were then
discussed to enable readers understand the design choices taken in the subsequent
chapters for designing MAMoC.

Chapter 3

Literature Review

3.1 Overview
This chapter aims to develop a survey and taxonomy of existing research in
multisite MCO studies in MCC research area. As described in Chapter 2, multisite
offloading approaches pick one or multiple surrogates from a set of candidate
sites (here we use "node” and “site” interchangeably), i.e., there could be multiple
offloading destinations, where both cloud VMs and mobile nodes can serve as
service providers. In some studies, this approach is also called Hybrid Offloading
[2], Heterogeneous Mobile Cloud Computing [164], Multi-tier MCC [153], or 2-tier
mobile cloud architectures [109] [110] [157]. Our study only focuses on offloading
schemes where multiple surrogates (i.e. servers, destinations, sites) are available
for service providers for Host Mobile Devices.

On one hand, the consideration of multiple surrogates results in a more flexible
offloading model for running mobile cloud applications. On the other hand, new
challenges arise when building a multisite computation offloading system because
of the dynamic nature of the environments they operate in. The connection to an
offloading site might not be available when needed or might become unavailable
during the offloading operation. Moreover, the offloading sites have different
processing capabilities, thus increasing the level of uncertainty in reaching the
desired qualities of the mobile cloud applications.

First, Section 3.2 discusses the search methodology in collecting the data for
conducting the review and constructing the taxonomy based on the methodology
guidelines proposed by Kitchenham et al. [18]. Section 3.3 presents a systematic
literature review where we derive a taxonomy of the current multisite computation
offloading solutions. Since the mobile cloud offloading topic involves many entities,
the best effort has been made to cover the significant works in the two aspects of

36 Literature Review

“adaptive” and “multisite” offloading and the corresponding techniques used in this
research area. Finally, Section 3.4 presents a classification based on these works
according to the supported properties to find the current trends and evaluate
them to suggest pertinent directions for future mobile cloud offloading systems
and how MAMoC fits within the discovered gaps.

3.2 Survey Methodology
The goal of this survey is to identify work in mobile cloud offloading systems with
a multisite computation offloading perspective. To achieve this goal, we define
the following research question:

Which solutions and frameworks in MCC studies identify multisite computation
offloading in the literature?

The three main keywords derived from the research question are: multisite,
offloading, and mobile cloud. Each of these keywords has a set of related synonyms
and alternative spellings. Based on these keywords and their related terms, the
following basic search string was defined:

("multisite" OR "multi-site" OR "three-tier" OR "multi-tier" OR "multiple
servers" OR "multiple surrogates" OR "multiple nodes") AND ("computation

offloading" OR "code offloading") AND ("mobile cloud" OR "mobile edge
cloud" OR "cloudlet")

We performed the wildcard search in the most known scientific databases includ-
ing ACM Digital Library, IEEE Explore, Scopus, Science Direct and SpringerLink.
The number of returned computing and research article results from each digital
library is shown in Table 3.1.

Table 3.1 Digital Library Database Search Results

Search database URL Results Included
ACM DL dl.acm.org 8 3

IEEE Xplore ieeexplore.ieee.org 10 4
Scopus www.scopus.com 28 2

ScienceDirect www.sciencedirect.com 44 3
Springer Link link.springer.com 54 5

3.2 Survey Methodology 37

There were multiple duplicate results from a total of 144 fetched items.
Through duplication-checking tool provided by Mendeley 1, the number of results
was reduced to 82 papers.

Besides this technique, a handful of papers that were discovered in the course
of my PhD are selected manually 2. We then started excluding the surveys and
analysis studies. 35 papers were found to be either survey studies addressing a
variety of issues, challenges, and opportunities of mobile cloud offloading systems
or studies that were a subset of a larger study by the same author(s). We then
started evaluating the remaining papers against the inclusion/exclusion criteria
based on the title, abstract, keywords, and an initial scan of the paper.

The following inclusion/exclusion criteria were reviewed during the process
to ensure that the results represented multisite computation offloading in mobile
cloud studies:

• Studies in which the Host Mobile Device is augmenting its computing power
by using multiple surrogates such as nearby devices or far cloud resources.
The offloading solutions where there are more than two tiers involved in the
offloading architecture are considered. Even though some studies such as
[109], [110], and [157] call it two-tier cloud architecture, the mobile device
is not considered as a tier. Therefore, those studies are still perceived as
mobile-cloudlet-cloud 3-tier architectures.

• The offloaded task execution must be performed by more than one service
provider. The more traditional single server offloading studies such as
CloneCloud [31] and MAUI [35] are not included in our survey.

• The single-tier offloading studies are also included. Even though studies that
investigate offloading to local mobile device clouds can offload computation
to multiple Nearby Mobile Devices, they are still in the same architecture
tier.

• The multi-user offloading studies are also excluded. An example of such
works is Cardellini et al. [20] which considers both nearby Cloudlets and
Remote Cloud servers in modelling the competition of mobile devices on
shared resources of the hybrid cloud as a game where each Host Mobile
Device decides which subtasks to be offloaded and to which local server or
the cloud. We only investigate the offloading studies where the focus is on a
single mobile user with multiple tasks and multiple offloading destinations.

1https://www.mendeley.com
2https://www.connectedpapers.com/

https://www.mendeley.com
https://www.connectedpapers.com/

38 Literature Review

• The studies where the servers are managed by the network operators in the
coordination of resource exchange between mobile users are not considered.
Many recent studies in the field of MEC have focused on this type of study
[1]. We limit our study to multisite offloading within MCC research area.

We further excluded 29 papers due to their irrelevance based on our employed
inclusion/exclusion criteria. The final number of considered papers are 20 (17
from the wildcard search results and 3 manually included by us) primary studies.

3.3 Taxonomy
This section identifies common themes, characteristics, requirements and challenges
based on the multisite offloading publications collected in the literature. The
taxonomy sections and their types are displayed in Figure 3.1. The Table 3.2 lists
all the collected works and categorises them using our proposed taxonomy.

3.3.1 Offloading Objectives
As described earlier in Section 2.2 that offloading is performed to achieve a
number of goals. The two most popular offloading objectives in the literature
are to improve the application performance by decreasing the execution time of
the tasks (makespan) and to reduce the overall energy consumption to prolong
the battery life of the constrained mobile devices. We found in the primary
studies that some works perform multisite offloading to also increase the service
availability for the mobile devices.

To decrease the overall response time of face detection and recognition ap-
plication, MOCHA [133] transfers the captured images from mobile devices to
nearby Cloudlets through a high bandwidth and low latency WiFi connection.
The cloudlet can dynamically partition and process the distributed tasks in a
parallel fashion to the Amazon EC2 instances on the cloud using the high-speed
Internet connection. Moreover, by minimizing the latency from the user to the
cloud, less mobile device energy is consumed.

Most of the works [140], [161], [125] build an energy optimization model that
takes into account the local processing energy consumption, the bandwidth rate
between the mobile device and offloading performance difference of k different
candidate sites. The goal is to partition the application under which the energy
consumption of the mobile device is minimized.

The existence of multiple service providers and the tight communication
between them is an important aspect of multisite offloading. This feature allows

3.3 Taxonomy 39

Fig. 3.1 A taxonomy of multisite offloading mechanisms

40 Literature Review

transferring services between the different devices to solve the mobility issues of
mobile users, which results in increasing service availability. Some researchers
have tried to increase the number of available service providers for mobile users.
Due to the mobility issue of mobile users, services can be interrupted before the
offloading process is over. To increase the reliability and availability of services,
authors in [112] use a handoff algorithm to migrate the computation to another
service provider when the mobile user is expected to move away from the current
surrogate. Meanwhile, Chen et al. [23] improves the availability of services by
selecting a standby service in order to ensure application performance is not
degraded when the original service cannot serve it any longer.

MuSIC [110] claims to provide fair use of Cloudlets and Remote Clouds servers.
However, the user access limitations on wireless APs are not considered in the
work. Therefore, Xia et al. [157] improve the concept of a fair share of external
servers by considering the user access limitations on APs which cannot be ignored
in real-world scenarios. Similarly, MAGA [125] considers the mobility of users
and multiple APs in their model when trying to increase the available services for
a mobile user.

3.3.2 Partitioning Granularity
Application partitioning is the process of decomposing the mobile application
into multiple dependency tasks for local and remote executions (to answer the
query of “what to offload”). It is a technique of splitting up the application into
fragments while retaining the semantics of the original application [85]. It has to
be performed before offloading. For example, a multimedia application such as
face recognition may contain several compute-intensive image analysis modules
with various resource requirements. It provides the task graph to a task scheduling
algorithm. The tasks will later be offloaded to their suitable resources according
to the scheduling and allocation results. Among studies conducted on MCC and
of different offloading middlewares that have been presented in this area, what to
offload is the principal issue that has attracted the most attention.

MCO overcome the resource limitations of lower-end devices by splitting
resource-intensive tasks and allocating subtasks to other resourceful devices.
According to [4], the computation offloading frameworks can be classified into
frameworks based on a virtual machine cloning and the systems based on code
offloading. Code offloading can be further classified according to their offloading
granularities ranging from tasks [108] and methods [73] to thread-level partitioning
[31].

3.3 Taxonomy 41

In our primary studies, several granularities are used ranging from coarse-
grained partitioning applications to components in [153] [140] [53] [125] [161],
to tasks in [133] [110] [126] [112], to finer-grained partitioning of methods in
[164] [13] [23] [96] and objects in [99]. Although fine-grained remote execution
increases flexibility despite having access to other offloading options, coarse-
grained is employed in most of the works because of the possibility of increasing
the efficiency with amortizing overhead over a larger unit of execution in a site.
As a result, coarser-grained partitioning is suitable for applications that seek to
reduce the transmission overhead between the different parts of the application,
and therefore, not appropriate for applications with shorter operations.

42
Literature

R
eview

Table 3.2 A taxonomy of the multisite offloading works

Year Work Objectives PG PM TSA OD OS EP
1 2011 Sinha et al.

[131]
RT Allocation-

site
LP/Graph Exact Offline Cloud Simulation

2 2012 MOCHA [133] RT Task - Heuristic Offline Cloudlet / Cloud Simulation
3 2013 MuSIC [110] RT/SA Task - Metaheuristic Online Cloudlet / Cloud Simulation
4 2013 ENDA [82] ES Application - Heuristic Online Cloudlet / Cloud Simulation
5 2013 EMSO [99] RT/ES Object LP/Graph Heuristic Online Cloud Simulation
6 2014 Xia et al. [157] ES/SA Task Graph Heuristic Online Cloudlet / Cloud Simulation
7 2014 MMRO [153] RT/ES Component Graph Metaheuristic Offline Cloud Simulation
8 2014 Shih et al. [126] RT Task OpenCL Heuristic Offline MAC/Cloudlet/Cloud Simulation
9 2015 Ravi et al. [112] ES/SA Task Annotation Exact Online MAC/Cloudlet/Cloud Testbed
10 2015 mCloud [164] RT/ES/SA Method Annotation Exact Online MAC/Cloudlet/Cloud Testbed
11 2015 Cheng et al.

[27]
RT Task Graph Metaheuristic Offline MAC / Cloud Simulation

12 2016 EMOP [140] ES Component Graph Metaheuristic Online Cloud Simulation
13 2016 Enzai et al. [41] RT/ES/CR Task Graph Heuristic Offline Cloud Simulation
14 2016 CoBOS [13] RT/ES Method Annotation Exact Online MAC/Cloudlet/Cloud Testbed
15 2017 FHMCO [53] RT/ES Component Graph Metaheuristic Offline Cloudlet / Cloud Simulation

/ Testbed
16 2017 Chen at al. [23] RT/SA Method - Exact Offline Cloudlet / Cloud Testbed
17 2017 Jin et al. [65] RT Component Graph Metaheuristic Cloud Simulation
18 2018 MAGA [125] ES/SA Component - Metaheuristic Online Cloudlet Simulation
19 2018 CRMGA [161] ES Component Graph Metaheuristic Offline Cloudlet / Cloud Simulation
20 2018 ULOOF [96] RT/ES Method Annotation Exact Online Cloudlet / Cloud Testbed

PG: Partitioning Granularity, PM: Partitioning Model, TSA: Task Scheduling & Allocation, OD: Offloading Decision,
OS: Offloading Sites, EP: Evaluation Platform
Objectives: RT: Response Time, ES: Energy Saving, SA: Service Availability, CR: Cost Reduction

3.3 Taxonomy 43

3.3.3 Partitioning Model
The partitioning model specifies how the mobile parts are represented in the
application. The application can be partitioned through a diversity of strategies.
A mobile application developer can explicitly select the parts of the application
that should be offloaded using special static annotations (e.g., @Offloadable [31],
@Remote [73], @Remotable [35], @OffloadingCandidate [96]). Thus, once the
application is installed in the device, the mechanism selects the annotated parts
to be offloaded. In contrast, automatic strategies need to estimate the offloadable
parts through the use of static analysis and dynamic profiling tools. Automated
mechanisms are preferable over manual approaches, as they can tailor the code
to be executed on different devices. Thus, automated mechanisms overcome the
problem of application development, which consists of adapting the application
every time it is installed in another device with different computational capabilities.

Graph-based and Linear Programming-based algorithms are common ap-
proaches for determining the application partitioning model [105]. The graph-
based partitioning algorithms work on an application graph consisting of vertices
and edges and the calling relationships [148]. The LP-based algorithm is applied
to profile the model of the present situation and the constraint formula.

In the graph-based partitioning, the vertices of the graph can represent the
states and computation costs of an application unit while the edges can represent
communication costs or dependencies between the different units. The number of
vertices and edges of the graph may differ depending on the granularity on which
the application is modelled as outlined in the preceding section. For multisite
partitioning, the graph is partitioned into two or several parts to be executed
on different resources. An appropriate graph can be effective in making optimal
decisions that affect the efficiency and quality of offloading. A range of approaches
to graph partitioning has been introduced and implemented in the literature [148].

Xia et al [157] use a weighted bipartite graph to represent the number of
location-aware mobile tasks and corresponding nodes that are computing facility
allocations. Similarly, in MMRO [153], an application is represented as a graph
G = (C, E) where a vertex is a component and an edge is an interaction between
the components. The objective is to discover a mapping from the application
graph to the network Gsur = (S, L) of offloading sites where S is a site and L

represents a network connection link between two sites. The objective function is
to achieve offloading some computation workload from an original mobile device
and distribute them onto candidate sites.

44 Literature Review

Cheng et al. [27] generate a weighted direct task graph of wearable device
applications. The task graph contains the time intervals between any two tasks
that are executed on a wearable device not to be greater than a specified threshold.
Similarly, EMOP [140] models mobile applications as weighted direct acyclic graphs
where the vertices denote a component and the edges denote the communication
channel between them. The primary focus of EMOP is in formulating multisite
partitioning model to minimise energy consumption. A Markov Decision Process
is used to estimate mobile wireless fading channels for offloading tasks to multiple
cloud servers.

Enzai et al. [41] also represent the application as a direct acyclic graph where
the vertices are 2-tuple computation tasks of data volume and the number of
instructions. The intention is to identify an optimised task allocation for a service
among a set of the available services.

FHMCO [53] models the applications as weighted relation graphs where
weighted vertices denote the application units and their execution time on a
particular site and the edges depict the invocations between them. The graph is
then adopted by the decision engine to find a near-optimal partition of components
to be offloaded to the offloading sites as we describe it in the next subsection.

Finally, CRMGA [161] uses a static analysis tool to generate the Object
Relation Graph (ORG) for the application. It then uses dynamic profiling to
construct Data Cost Graph based on the node and edge weights of the ORG.

Linear Programming-based partitioning is a mathematical approach used for
finding the best amount that can maximise or minimise an objective function
based on energy consumption or execution time. In this approach, the objective
function is formulated as an optimisation problem and is then calculated using the
technique of linear programming for the best options for achieving the objective.
LP-based approaches are appreciated for their ability to find an optimized solution
for a given objective function. However, solving such problems requires a long
computational time [53].

Sinha et al. [131] made use of Integer Linear Programming (ILP) to solve
optimization equations. Similarly, Niu et al. [99] models the application parti-
tioning as a 0-1 Integer Linear Programming problem. Both approaches solve
the optimization problem using a multi-way graph partitioning algorithm [148].
The objective of this partitioning approach is to get the best trade-off between
computation costs and communication costs of an application. However, Sinha
et al. [131] perform the partitioning in allocation-site-level but Niu et al. [99]
construct the application as a Weighted Object Relation Graph (WORG) so the
partitioning is performed at the object level to achieve more precise offloading.

3.3 Taxonomy 45

By annotation-based partitioning model, we refer to programmer-defined
partitioning which is performed during the development of the mobile application.
The annotations can be plugged at different granularity levels such as classes
and methods. Ravi et al. [112] use Java Reflection3 to identify the offloadable
methods using @offloadable annotation for offloading them to cloud and interactive
methods using @interactive to offload them to Nearby Mobile Devices. Similarly,
mCloud [164] uses @OFFLOAD annotation to annotate the methods that will
be processed at compile-time and inspected at run-time to be considered for
offloading according to the solver component. Finally, CoBOS [13] uses the
provided Offloadable, OffloadExecution, and OffloadIO annotations in the core
class library java.lang to distribute application parts from a mobile device to
participating Offload Execution Engines. Application developers can then extend
the abstract class OffloadExecution that possesses the abstract Java method
execute, which is annotated with Offloadable that marks it as a suitable candidate
for remote execution.

With the exception to other works, Shi et al. [126] uses Open Computing
Language (OpenCL)4 which is a parallel programming model. OpenCL abstracts
the hardware details from the developers by dispatching the workloads to hetero-
geneous cloud resources. Therefore, an application can be executed on different
processing elements when it is deployed on different hardware platforms. With
OpenCL, the application developers do not need to manually specify the offloaded
parts for the applications.

3.3.4 Task Scheduling & Allocation
The task scheduling algorithm is the process of allocating the tasks to the respective
available resources (to answer the question of “where to offload”). It calculates the
optimal resource orchestration strategies according to task requirement, resource
availability, and mobile device status from the monitoring and profiling modules.
The task graph from the partitioning module and profiling information are inputs
into the algorithm and translated into the solution space. Some multisite works
in the literature follow an exact algorithm to schedule the tasks to the respective
resources while others use a heuristic or a metaheuristic to find near-optimal
solutions. The employed algorithms in the multisite works are listed in Table 3.3.

MCDM algorithms are used in two of the primary studies for selecting offloading
destinations according to different criteria and user preferences. Ravi et al. [112]

3https://docs.oracle.com/javase/tutorial/reflect/index.html
4https://www.khronos.org/opencl/

https://docs.oracle.com/javase/tutorial/reflect/index.html
https://www.khronos.org/opencl/

46 Literature Review

Table 3.3 Task scheduling and allocation algorithms used in our primary studies

Work Exact Heuristic Metaheuristic
GS HC GA AC PSO SA SO

MOCHA [133] 4

MuSIC [110] 4

ENDA [82] 4

EMSO [99] 4

Xia et al. [157] 4

MMRO [153] 4

Shih et al. [126] 4

Ravi et al. [112] 4

mCloud [164] 4

Cheng et al. [27] 4

EMOP [140] 4

Enzai et al. [41] 4

FHMCO [53] 4 4

Chen et al. [23] 4

Jin et al. [65] 4

MAGA [125] 4

CRMGA [161] 4 4

GS: Greedy Search, HC: Hill Climbing, GA: Genetic Algorithm, AC: Ant Colony,
PSO: Particle Swarm Optimization, SA: Simulated Annealing, SO: Stochastic
Optimization

uses MCDM to choose the best possible resource to offload the computation
tasks while using a handoff strategy for offloading tasks to different resources.
Similarly, mCloud [164] uses multiple criteria of the wireless mediums such as the
energy cost of the channel, the link speed, etc. to select the best interface under
current context such as data rate, workload size to obtain the best data transfer
performance and minimise energy consumption. It is worth noting that mCloud
[164] also uses a Min-Min algorithm to select the resource with the minimum
response time and energy consumption for offloading the tasks to Nearby Mobile
Devices.

The scheduling problem to multiple providers is a typical constrained opti-
mization problem. Because of the NP-completeness nature of assigning multiple
tasks to multiple offloading sites, most of the studies consider a heuristic or a
meta-heuristic for finding a “good enough” solution instead of an optimal one for
the scheduling problem. Heuristics allow for solving scheduling problems faster
than traditional and more formal closed-form models. Heuristics can normally
lead to approximate solutions close to the optimal solution of a problem [110]. For

3.3 Taxonomy 47

searching algorithms, the heuristics rank the different alternatives and greedily
perform a fundamental element when defining the convergence of the search. This
is in contrast to the exhaustive searching [125] which is guaranteed to generate an
optimal solution but could take a very large computation time when the problem
size increases i.e., adding more application components and more candidates sites.

Xia et al. [157] use a greedy heuristic to determine whether the task be
executed on the Host Mobile Device, or offloaded to the cloudlet or the remote
cloud to minimize the residual energy ratio. The algorithm takes a set of wireless
access points, a local cloudlet, and a remote cloud as an input. Having the
weighted bipartite graph that we described in the previous subsection, it finds
the maximum matching in the graph such that the weighted sum of all edges is
minimized before offloading the tasks to different computing facilities. The time
complexity of the proposed algorithm is O((n + na)3) where n is the maximum
number of mobile users at any time slot, and na is the maximum number of
channels at each access point.

Similarly, Shih et al. [126] use a 2-step greedy algorithm called Cost-Performance
First (CPF) scheduling algorithm. The CP ratio is calculated according to the
mobility state of a device (connected or disconnected). The average time complex-
ity of the scheduling algorithm is O(NlogN) dominated by the second step. The
first step for finding the subtask with maximum CP according to the constraints
has a linear time complexity and the second step of recursively scheduling the
subtasks to the processors has a complexity of O(NlogN).

The greedy search algorithm is also used in ENDA [82] to select the most energy-
efficient network for offloading the application based on user track prediction,
server loads and the network quality of the WiFi connection between the Host
Mobile Device and Cloudlets or the cellular data connection with the Remote
Clouds. Additionally, the algorithm also filters out the WiFi APs that cannot
maintain connectivity along the predicted route of the user to avoid disconnection.

Enzai et al. [41] use a greedy Hill Climbing heuristic for solving a multi-
objective combinatorial optimization problem. The heuristic develops an initial
solution for the assignment of the tasks to the sites then greedily selects the
optimal solution with the maximum target function value. The quality of the
optimization results highly depends on the initial solution.

To tackle the issues of larger mobile application sizes and reduce the search
space, many research works propose a metaheuristic, which is a high-level algorithm
to select and guide a heuristic to generate near-optimal solutions. Metaheuristics
usually adapt randomization and stochastic processes in their evolutionary searches
to reduce the search space and generate solutions in a reasonable amount of time.

48 Literature Review

Cheng et al. [27] use a heuristic based on genetic algorithms. Given the
weighted direct application graph, the algorithm decides how to offload each graph
node among multiple services to approximate the optimal solution. MAGA [125]
uses an improved genetic algorithm based algorithm that predicts the mobility
of users for bringing resources closer to them. It enhances the efficiency of
genetic algorithm reproduction operations by using integer encoding to envisage
multiple mobile application components offloaded to multiple cloudlets scenarios.
The offloading failure rate is also reduced with the mobility prediction model,
resulting in higher service availability and lower energy consumption. Jin et al
[65] uses a memory-based immigrants adaptive genetic algorithm for decision
making of multisite computation offloading in dynamic mobile cloud environments,
considering environmental changes.

MMRO [153] uses an ant colony based algorithm to calculate the offloading
decision from application components to offloading sites according to a number of
benefits (execution time and energy consumption) and risks (privacy and trust).
The authors employ a fuzzy inference to aggregate the overall offloading benefits
and compromises based on the importance levels provided by user preferences.

Rahimi et al. [110] proposes a simulated annealing based heuristic called MuSIC
(Mobility-Aware Service AllocatIon on Cloud) by extending their preceding work
MAPCloud [109] to support user mobility. They incorporate the capabilities of
nearby local and remote cloud servers for offloading requests. The service with
minimum performance based on cost, power and delay is selected as the optimal
solution.

A multisite algorithm based on particle swarm optimization is proposed in
FHMCO [53] which evaluates the near-optimal partitioning solution for large-
scale applications. Before that, they present an optimal partitioning solution for
smaller-scale applications based on an optimized Branch-and-Bound algorithm.
The application cost is the sum of the cost of each application unit represented by
the weighted object relation graph. While the energy cost is computed from the
time cost of the energy consumption rate for the CPU and the network interface
of the mobile device.

Finally, EMOP [140] uses a stochastic optimization approach by modelling the
mobile wireless channels as Discrete Time Markov Chain (DTMC) and solving
them with Value Iteration Algorithm (VIA) to determine the optimal offloading
decision for energy-efficient multisite application execution. The algorithm finds
the efficient offloading decision with a computational complexity of O(SA), where
S is the state space and A is the action set.

3.3 Taxonomy 49

3.3.5 Offloading Decision
The decision of allocating the partitioning tasks to the sites can be performed
during development or at runtime. Offline allocation decision is specified in some
configuration files or in the form of annotations within the mobile application.
Conversely, online allocation decision is postponed to runtime according to the
load of sites and available network bandwidth among other dynamic variables. The
main difference between both offline and online offloading algorithms is that offline
algorithm assumes that the future predictions of the device load and network
bandwidth are given, while the online algorithm considers the current progress of
the application execution and the mobile device load and network bandwidth in
the form of context-aware and adaptive offloading.

Sinha et al. [131] claim that by performing static application partitioning and
making offloading decisions at compile-time, the overhead of dynamic profiling
can be reduced. However, without dynamic partitioning, the offloading decisions
cannot adapt to the dynamic changes such as connectivity failure and bandwidth
fluctuation and adjust to runtime conditions since it does not take into considera-
tion the runtime parameters such as latency and available bandwidth between
the mobile device and the offloading sites. This results in unrealistic solutions in
real-world mobile offloading scenarios.

Most of the works use dynamic partitioning and online offloading algorithms
to accommodate runtime changes in the mobile environment. Mobile applications
can be partitioned at runtime so that computationally intensive components can
be handled through adaptive offloading. Many approaches use dynamic profilers
to check the mobile contextual changes so that the offloading decision making is
taken accordingly.

Some adaptation techniques used by the multisite works handle network
variations. MOCHA [133] and EMSO [99] monitor the bandwidth changes at
runtime to dynamically partition the mobile application. Most offloading systems
do not explicitly select the network interface for offloading the tasks. Instead, the
interface with the strongest signal or highest bandwidth is selected by the mobile
operating system [15]. Although, mCloud [164] considers the different network
interfaces and selects the optimal interface using the MCDM algorithm.

The mobility of mobile users causes connection losses, which result in offloading
failures. Some multisite works involve predicting the user’s mobility patterns. This
can then be used to decide the offloading site to which the application parts should
be offloaded. MuSIC [110] showed that if the mobility pattern of mobile users is
known in advance, it is possible to optimally decide the best server platform. Ravi

50 Literature Review

et al. [112] use a handoff algorithm based on user mobility to migrate services
horizontally between the resources in the same tier and vertically between the
resources in different tiers. MAGA [125] uses an algorithm called the sequence
matching algorithm, which identifies a tail matching subsequence based on a user’s
historical access sequence. This prediction is used for the reliability estimation of
cloudlets, which is used as an important factor in the online offloading decision.

3.3.6 Offloading Sites
Once it is decided that a task or a subtask should be executed remotely, the
offloading sites are selected based on the output of the task allocation algorithm.
The tasks can either be sent to Remote Cloud servers, or to Cloudlets and
Remote Cloud servers or to all the available cloud resources including Nearby
Mobile Devices, Cloudlets, and Remote Cloud servers as we described earlier in
Subsection 2.2.2.

The multisite partitioning problem and scheduling algorithms take into consid-
eration the resource availability and computational power of the different offloading
sites. The studies that focus on reducing latency between the Host Mobile Device
and Remote Cloud servers such as MOCHA [133], MuSIC [110], and [125] include
cloudlet-based offloading in their model.

With the availability of all the cloud resource types, some studies such as
Ravi et al. [112], mCloud [164], and CoBOS [13] examine offloading to MAC
resources including nearby mobile devices and cloudlet servers as well as remote
cloud servers.

The proposed solutions can be evaluated using either real-world mobile applica-
tions in using physical devices in an evaluation testbed or simulation programs that
emulate the real-world scenario. Several mobile applications are being developed
by the studies for evaluation purposes. MOCHA [133] uses face detection and
recognition application to offload them to cloudlets and remote clouds. Ravi et al.
[112] use a number of different mobile applications ranging from compute-intensive,
interactive, and data-intensive applications which are NQueens, an interactive
game, and an image-to-text app, respectively. Similarly, CoBOS [13] uses a face
recognition and a text-to-voice app. While Chen et al. [23] use a chess game as a
compute-intensive app and FaceFinder as a data-intensive app to evaluate their
framework.

The rest of the studies use a simulation methodology to evaluate their proposed
algorithms. Even though the simulation technique is an efficient way to evalu-
ate several performance parameters, it does not guarantee that systems behave

3.4 Discussion 51

correctly in all possible situations especially when multiple service providers are
involved in the mobile dynamic environments.

3.4 Discussion
Realising the vision of multisite offloading approach in the MCC paradigm is
a challenging task because of the complexity in handling the multiple aspects
involved, especially those concerned with performance evaluation, application par-
titioning, and tasks scheduling and allocation. After presenting the above research
work from different perspectives and constructing a taxonomy for them, we present
some analysis and discussion on trends in designing future multisite computation
offloading systems in Subsection 3.4.1. Subsection 3.4.2 then investigates how the
work in this thesis fits within the gaps found in the literature.

3.4.1 Current Trends
The following trends are identified after studying the primary works in the field
of multisite MCO in particular and in the MCC research area in general.

Inter-operability & Transparency

The heterogeneity in software, hardware, and technology variations of the
devices and the distinctness of computing architectures between mobile
and static devices make it difficult for them to easily communicate with
each other. The offloading can be done between the different systems
with various computation capabilities. The Host Mobile Devices cannot
transparently translate the mobile-based task sets into runnable executions
directly for the static offloading resources. This lack of interpreter standard
in computation offloading necessitates the developers either to manually
partition the tasks into mobile execution tasks and offloading executions or to
deploy an intermediate task partitioner that can translate the code across the
platforms. On one hand, the manual approach requires a vast amount of work
when offloading traditional mobile tasks to the server runtime environment.
On the other hand, the automatic partitioning method inevitably introduces
runtime computing and energy overhead.

Service Discovery

Discovering the nearby and remote cloud resources are one of the many
challenges that face MCO solutions in general. None of the multisite

52 Literature Review

works that we collected propose solid discovery mechanisms to manage
the offloading to multiple offloading sites. The connection between the
Host Mobile Device and the k sites are assumed to be already established.
Even though most of the works concede the bandwidth changes and latency
issues in their partitioning and task scheduling algorithms, in real-world
applications the service discovery is an essential module to monitor those
dynamic changes.

Security & Privacy

The outsourcing of computation and data to external resources remains
a major security concern. With the enforcement of new policies such as
European General Data Protection Regulation (GDPR) [149], data security
and privacy issues have become more important for cloud providers. There
are risks of lacking control over data and potential data losses. Since
multisite offloading involves multiple service providers, the risks of adding
untrusted services and malicious nodes increase. Moreover, the orchestration
of resources in the service providers might be disturbed and the reliability
and dependability of the provided services can be compromised. In this case,
the initialization and delivering of offloading responses may not accurately
match application requirements. Standard authentication schemes and trust
establishments need to be studied between mobile devices and multiple
service providers.

Large-scale deployment and testing

The current multisite offloading works are either using simulation to test
their solutions or develop arbitrary mobile applications and test them on
a small scale in the laboratory. Given this situation, there is a need to
have a larger scale of testing for globally optimized multisite offloading
scenarios, considering possibly conflicting optimization parameters. This
also calls for more efforts for the research of lightweight but powerful decision
mechanisms to achieve this type of deployment. Specifically, supporting the
legacy applications where the source code is hard to obtain or not available.
Even if the code is available, understanding it can be a tedious task. Also,
due to the rapid advancements in the mobile device hardware, it is hard
to ask developers to update their manual annotations on the offloadable
components. Automating the process of rapidly identifying the relevant
parts of an unfamiliar code can greatly help future mobile applications in
remote execution frameworks.

3.4 Discussion 53

Adaptive and intelligent decision algorithms

Different computing services provide different privacy guarantees, I/O per-
formance, computational power, available memory, and network latency.
Besides, the parts of an application might have different privacy/security de-
mands, I/O needs, CPU requirements, or latency expectations. To the best
of our knowledge, there is no comprehensive treatment of these problems.
Since most of the multisite offloading optimization models attempt to solve
an NP-hard problem, the approximation solutions with higher performance
and lower complexity are designed and evaluated in many of the studies.
These heuristics can be further optimized with the use of machine learning
and the latest developments in the Artificial Intelligence field. Decision
making can also use interdisciplinary theories and approaches such as the
auction or game theory to break through the limitation of existing algorithms
and get better offloading performance.

3.4.2 MAMoC and the gaps
Unified standards for interacting with both Host Mobile Devices and offloading
service providers need to be studied. Currently, other approaches are developing
in-house closed frameworks for supporting computation offloading in a unique way
which does not satisfy inter-operability. There arises the requirement for unifying
these works including framework, communication protocol, and decision-making
process. Unification helps to adopt a standard way to promote the industrialization
of multisite computation offloading. MAMoC tries to define a standard framework
design which depend on inter-operable protocols for communication. These will
be discussed and demonstrated in Chapter 5. Moreover, the interaction between
different components of the system should be hidden from the users. Currently,
only little support is available to cross-platform execution. All the analysed
approaches in this chapter are mostly tied to one specific hardware. Supporting
different mobile architectures remains a key issue that has not been fully supported.
MAMoC is implemented on both Android and iOS mobile platforms.

MAMoC uses a modular service discovery module that can discover Nearby Mo-
bile Devices and Cloudlets in an IP-based networking environment such as WLAN.
The local service providers only need to be provisioned and discovered before send-
ing offloading requests to them once. Among other benefits, Zero Configuration
Networking protocol has superior API support and extensive documentation. It
supports a form of infrastructure-less Domain Name System (DNS) called mDNS,
which uses IP multicast [30]. As Bonjour is already a widely-deployed industry

54 Literature Review

standard, it is a natural choice for zero-configuration use of local context offloading
services. For longer-distance surrogates in Remote Clouds, the Host Mobile Device
can maintain a simple list of addresses that can be dynamically updated. This
unified configuration of surrogates allows the feature set of the surrogates to be
universally comparable so that profiling the surrogates can be simplified. This
leads to quality of service guarantees, which are important in determining the
benefit/cost balance of offloading decisions and adapting the other parts of the
software to the usable resources. Furthermore, MAMoC develops an automatic
annotation generator to identify offloadable tasks without the need for mobile
application developers to specify the offlodable tasks manually. The design and
reference implementation of these modules are thoroughly discussed in Chapter 5.

The offloading decision making process is the core of the papers surveyed in this
chapter. When researchers include more factors or constraints in their offloading
algorithms to meet specific performance requirements, the algorithms need to be
improved to be more flexible. MAMoC uses a combination of a heuristic based
on device and network profiling information and an offloading decision algorithm
based on MCDM to make online decisions. The details are provided in Chapter 4
and evaluated in Chapter 6.

3.5 Summary
This chapter collected the related works of the multisite MCO in the literature.
Through the survey methodology and using our inclusion/exclusion criteria, 20
primary studies were selected for further investigation to derive the taxonomy.
An in-depth study of the works in each taxonomy classification were shown. The
chapter ended with identifying current trends and research gaps in the literature
and how the detailed works of MAMoC fit with the aforementioned gaps.

Chapter 4

System Analysis and Models

4.1 Overview
The objective of this work is to propose the design of a generic mobile offloading
model that satisfies the hypotheses provided in Chapter 1. This chapter provides an
overview of the design requirements, the task offloading models and participating
nodes and formulates the problem of offloading to multiple offloading sites in
terms of execution time and energy consumption. It further explains the offloading
policy and decision making algorithms that are core parts of the offloading decision
engine. Additionally, it describes MCDMs that are used to evaluate and rank the
candidate offloading sites.

This chapter starts by outlining both functional and non-functional require-
ments in Section 4.2 to design the aforementioned model and build a prototype
of it. Section 4.3 introduces the types of offloading sites that are involved in
designing the multisite mobile cloud offloading system and formally defines them
to be later used in the design, implementation, and evaluation of the proposed
framework. The offloading algorithms are presented in Section 4.4 which decides
on the offloading destinations for each particular offloadable task. Section 4.5
describes the multi-criteria decision methods used to evaluate, select, and rank
the available offloading sites.

4.2 Requirements Analysis
Before designing the system, a number of functional and non-functional require-
ments need to be considered. This section uses the taxonomy presented in ?? to
furnish a set of requirements which delineate an idealised mobile cloud offloading
system. These requirements describe properties which were found to be beneficial

56 System Analysis and Models

throughout the survey and contemporary literature surveys [44][38][76]. These
requirements are used to guide the design and development of MAMoC, our mobile
cloud offloading system which is designed in ?? and implemented in ??.

4.2.1 Functional Requirements
• Offloading compute-intensive tasks: mobile applications that contain

heavy tasks need to be leveraged by cloud resources. The framework needs to
support the execution of mobile applications that have insufficient resources
for execution on the mobile device through computation offloading. The
computation-intensive tasks take a heavy toll on the device’s battery power
and computing resources and should therefore be offloaded to proximate
and more powerful offloading sites.

• Supporting local and remote executions: the mobile application should
remain fully functional in the absence of cloud computing support. This
can be achieved through partial task offloading and the awareness of the
offloading decision engine.

• Discovering offloading sites: due to the dynamic nature and potential
mobility of offloading sites in dynamic environments, mobile devices need to
be able to discover Nearby Mobile Device, Cloudlets, and Remote Clouds
cloud servers.

• Selecting the most optimal offloading site(s): if more than a resource
provider is available, the mobile device should offload computation to the site
that is likely to return a response in the shortest amount of time, and result
in consuming the least energy before the mobile device loses connectivity to
it.

• Managing the offloading sites: assuming that mobile code offloading
sites are always available is not realistic. Therefore, a user-friendly manage-
ment service should be provided to manage, configure, and deploy surrogates
at different levels of the cloud spectrum.

4.2.2 Non-Functional Requirements
• Performance enhancement: the offloaded tasks of the mobile application

should improve the overall performance and user experience compared to
when the application is executed locally.

4.3 Task Models and Problem Formulation 57

• Energy efficiency: the total energy consumption on the mobile device
when offloading compute-intensive operations (request, execution, and re-
sponse) should be less than the energy consumed by local execution.

• Framework reusability and extensibility: the development of the
framework needs to follow a modular approach to achieve code reusability
by other mobile cloud application developers. Adding or removing new
functionalities should also be made easy for other framework developers.

• Simplicity and ease of deployment: the client framework should be
made available as a library plugin to be used by application developers.
Incorporating MAMoC into existing Android projects should be quick and
easy. The server runtime environment should be automatically deployed to
new offloading sites through simple commands.

• Fault tolerance and reliability: mobile applications often face changes
in runtime environments so that the adaptation on offloading is needed. It
is decided at application runtime whether tasks need to be offloaded and
which parts should be executed remotely. For instance, if the remote site
becomes unavailable due to unstable network connection, the computation
executed on it should be brought back to the device or be sent to another
available site on the fly.

• Security and privacy: the mobile device needs to be secured from the
malicious cloud and nearby nodes. The data privacy issues of computation
offloading also need to be considered by allowing the users to select trusted
offloadees for private data.

4.3 Task Models and Problem Formulation
The system considers a heterogeneous mobile cloud environment, comprising
the Host Mobile Device, the other Nearby Mobile Device, the fixed edge servers
(Cloudlets) and Remote Cloud servers. In the user level, a mobile device that
runs applications seeking opportunities to offload tasks to the mobile cloud
infrastructure. Mobile applications have different QoS requirements [152]. For
instance, the speed of execution is more important for an application that contains
computation-intensive tasks. While energy saving can be of more importance to
users who are running out of the battery in their devices.

58 System Analysis and Models

4.3.1 Compute Nodes
The general design of the offloading system can be supported by a P2P model in
local mobile device offloading to Nearby Mobile Devices as well as a client-server
model in the offloading to Cloudlet and Remote Cloud servers [44]. The Nearby
Mobile Devices are managed as in an unstructured P2P network and all the Host
Mobile Devices send the offloading requests greedily [143].

4.3.1.1 Self Node

Self Node is the Host Mobile Device which initiates the task offloading requests
in the mobile applications which contain heavy tasks. These can be resource-
constrained mobile devices such as wearable devices or lower-end smartphones. It
is modelled as a 4-tuple:

SN = (CPsn, T, BLsn, BSsn)

where CPsn is the CPU speed (in MIPS) of the host mobile device, T is the
list of the offloadable tasks where Ti is the ith task for i = 0, 1, 2, ..., n , BLsn

is the battery level (1-100) and BSsn is the battery state (charging = 1 or not
charging = 0) of the self node.

4.3.1.2 Mobile Node

Mobile Node is a cellphone, tablet, phablet or any other portable Nearby Mobile
Device that can connect to the Internet and is able to process offloading requests
and send back results [95]. It is modelled as a 4-tuple:

MN = (CPmn, RTTmn, BLmn, BSmn)

where CPmn is the CPU speed (in MIPS) of a mobile device, RTTmn is the
round trip time in milliseconds from Self Node to Mobile Node (Network overhead),
and BLmn, BSmn are the battery level and state of the mobile node, respectively.

In some studies, these nodes are considered edge nodes for their closeness to
the Host Mobile Device [40]. We separate the edge nodes from nearby mobile
devices based on two reasons. First, we consider edge nodes to be more powerful
in both computation power and memory. Moreover, they do not suffer from having
a limited battery life as lower-end mobile devices. Second, we do not restrict edge
nodes to running on the same operating system as the host mobile device. The
server runtime environment can be deployed to the edge nodes but that would
not be the case for the Nearby Mobile Device which are assumed to be running
on the Android operating system similar to the Host Mobile Device.

4.3 Task Models and Problem Formulation 59

Table 4.1 Compute Node Notations

Symbol Description
SN Self Node (host mobile device)
MN Mobile Node (nearby mobile device)
EN Edge Node (edge server or cloudlet)
PN Public Node (remote cloud server)
CPsn Computation speed of Self Node
CPmn Computation speed of Mobile Node
CPen Computation speed of Edge Node
CPpn Computation speed of Public Node
RTTmn Network overhead to Mobile Node
RTTen Network overhead to Edge Node
RTTpn Network overhead to Public Node
BLsn Battery level of Self Node
BSsn Battery state of Self Node
BLmn Battery level of Mobile Node
BSmn Battery state of Mobile Node

4.3.1.3 Edge Node

These are the immobile proximate surrogates usually within a single network hop
proximity to Self Node. Proximate connected nodes [80] are also connected at
runtime to the Remote Clouds. A synchronous offload operation is performed
due to the availability of a high bandwidth connection to the surrogate. The
communication between this node and the Remote Cloud is a multi-hop over a
high bandwidth connection but communication between the two is unnecessary for
every offload operation (i.e., only needed for downloading application package files,
data synchronization, or to fetch missing resources for the resource-dependent
tasks). It is modelled as a 2-tuple:

EN = (CPen, RTTen)

where CPen is the CPU speed (in MIPS) of the edge node and RTTen is the
round trip time in milliseconds from the self node to the edge node.

4.3.1.4 Public Node

Public Node is a Remote Cloud server that represents a computing element in
the Internet that can execute services for mobile devices. Similar to an edge node,
it is modelled as a 2-tuple:

PN = (CPpn, RTTpn)

60 System Analysis and Models

where CPpn is the CPU speed (in MIPS) of the public node, and RTTpn is the
round trip time in milliseconds from the self node to the public node.

4.3.2 Problem Description
According to the different offloading granularities discussed in ??, parts of mobile
application can be offloaded to external surrogates. We model the offloadable
tasks in a mobile application based on their independence (whether they can be
partitioned into subtasks) and their resource dependence (whether they need an
input file data to be present in the offloading site).

A mobile application can contain multiple tasks Ti where i = 1, 2, ..., n. Each
task can be expressed as

Ti = (IDTi
, DTi

, WTi
, PRTi

, DTTi
)

where ID is the task identifier, DTi
is the data size of the task i in bits, WTi

is the number of CPU instructions that are required to execute the task, PRTi

is 1 if the task is parallelizable or 0 otherwise, and DTTi
indicates the deadline

threshold time for task execution.
It turns into a multi-objective optimization problem when simultaneous mini-

mization of overall makespan for completing the tasks and energy consumption of
the resources are taken into account [152].

When a task is offloaded, the mobile user has two main expectations, including
reducing the execution time of the task or saving the energy of the mobile device.
Next, we will analyse the two parts separately before considering them in the task
offloading cost.

4.3.3 Execution Time Analysis
The computational time of executing a task locally on a mobile device depends
on the number and type of instructions and processing speed (instructions per
second) of the mobile device. The processing power and computational task are
generalized in terms of Million Instructions Per Second (MIPS). For the mobile
device SN , the computational speed (in MIPS) is CPsn and WTi

is the number
of instructions of a computational task (in MI). The processing time of the task
locally on the mobile device is denoted in Eq. (4.1)

MSN
Ti

= WTi

CPsn

(4.1)

4.3 Task Models and Problem Formulation 61

Table 4.2 Computed Variable Notations

Variable Description
Ti ith task in Self Node
DTi

Data size of task i
WTi

Number of instructions needed to execute task i
DTTi

Deadline Threshold of executing ith task
ETTi

Deadline Threshold of energy consumed for ith task
OffTi Offloading indicator variable
MSN

Ti
Makespan of processing ith task locally

M
Sj

Ti
Makespan of processing ith task remotely on site j

M(X) Total makespan of all the offloadable tasks of a mobile application
ESN

Ti
Execution time of task i when running locally

E
Sj

Ti
Energy consumption of self node when running task i on site j

E(X) Total energy consumption of offloadable tasks of a mobile application
PGTi

Performance gain of task i
EGTi

Energy efficiency gain of task i
Cost(Ti) Weighted task offloading cost
Cost(X) Total application offloading cost

The execution time of an offloaded task depends on the size and the number of
instructions of the computational task (i.e., code size and its computational
intensity), size of any required data, and available network throughput, and the
computational speed of the offloading site [76]. The mobile device SN offloads
DTi

bits of data to the site Sj. Let CPSj
in CPU cycles per second denote the

computation capability of the site Sj.
Because of the proposed application model, it is necessary to consider the

amount of time spent on the preparation phase of the computational request for
offloading on the mobile device (when the task is offloaded for the first time)
and the code transformation phase on the offloading site. They are denoted as
Wpre and Wct to represent the number of instructions required for each of them,
respectively. Thus, the first part of Eq. (4.2) is the data transmission time and
the second part is the offloading request preparation time on Self Node. The last
two parts are the code transformation time and the task processing time on the
offloading site j.

M
Sj

Ti
= DTi

RTTSj

+ Wpre

CPsn

+ Wct

CPSj
+ WTi

CPSj

(4.2)

The time spent for sending back the result from the sites to the mobile devices
is not considered. This amount of time is often very short compared with the
request data transfer time and task execution time [96].

62 System Analysis and Models

For task i, let OffTi ∈ {0, 1} be an offloading indicator variable. Let OffTi = 1
if task i is executed locally or 0 otherwise. The total execution time for all the
offloadable tasks of a mobile application can be obtained by:

M(X) =
∑

Ti∈N

(OffTi ×MSN
Ti

+ (1−OffTi)M
Sj

Ti
) (4.3)

4.3.4 Energy Consumption Analysis
Ideally, a task should be offloaded only when the amount of energy consumed
to execute the task on the mobile device is greater than the amount of energy
consumed to execute it remotely. In other words, if executing a program locally
consumes more energy than remote execution, then the offloading technique is a
better solution. If a task is executed on the mobile device, only the device’s energy
is spent during execution. Therefore, the energy required to locally execute a task
includes the energy consumed by the mobile device during execution. However, if
the same task is executed on the offloading site, its code and all the data needed
during execution should first be sent to the site; this incurs the consumption
of energy during data transmission. Moreover, for task execution on the cloud,
a small amount of energy is consumed even though the mobile device is in an
idle waiting state. Therefore, the energy required to execute a task on the cloud
includes the energy consumed to transmit the code and its related data to the
cloud along with the energy consumed by the mobile device while in a waiting
state. The amount of energy consumed by the offloading site is not considered in
this analysis.

When the task is executed locally, the energy consumption of the device
depends on the computational time of the task and processor frequency of the
device. The local energy consumption denoted as ESN

Ti
results from multiplying

the respective energy coefficient value of the processor speed PCPsn by the task
execution time which was previously modelled in Eq. (4.1).

ESN
Ti

= PCPsn ×
WTi

CPsn

(4.4)

For the offloaded tasks, the mobile device energy is consumed in terms of
computational request preparation, the transmission of the data, radio idle mode
(while waiting for the offloaded task to be executed remotely), reception of result
and its integration into the application. When task i is offloaded, the energy
consumption denoted as E

Sj

Ti
which consists of three parts: the energy required

for the task marshalling time of the first instance of offloading denoted as Epre
Ti

,

4.3 Task Models and Problem Formulation 63

the energy consumption of waiting for remote execution Ewait
Ti

, and the energy
consumption of transferring the required data to offloading sites Etrans

DTi
, described

as

E
Sj

Ti
= Epre

Ti
+ Ewait

Ti
+ Etrans

DTi
= PCPsn ×

Wpre

CPsn

+ Pidle ×
WTi

CPSj

+ Ptr ×
DTi

RTTSj

(4.5)
Where Pidle indicates the waiting power of mobile devices when task i is

migrated to site j. Ptr denotes transfer power of mobile devices which is the
energy consumption rate of the wireless medium used to transfer the data.

It is clear that the transmission energy used to upload each task will depend on
the network transmission bandwidth. Therefore, changes in the wireless network
bandwidth will affect the offloading decision. For example, if we assume that
transmission time of each task is equal to the size of each task divided by the
network transmission rate, then any variation in the transmission rate will affect
the final decision of whether to offload this task.

Similar to calculating the total execution time of an application, the energy
consumption for all the offloadable tasks of the mobile device is defined as:

E(X) =
∑

Ti∈N

(OffTi × ESN
Ti

+ (1−OffTi)E
Sj

Ti
) (4.6)

4.3.5 Task Offloading Cost
The offloading cost can be used as a metric to measure whether to offload the
task or execute it locally. The performance gain PGTi

of a task is the difference
between executing it on the mobile device and offloading it.

PGTi
= MSN

Ti
−M

Sj

Ti
(4.7)

To reduce task execution time, it is only beneficial to offload the task if
PGTi

> 0.

Similarly, the energy efficiency gain EGTi
of a task is the difference of the

energy consumption of the mobile device when the task is executed locally or
remotely.

EGTi
= ESN

Ti
− E

Sj

Ti
(4.8)

64 System Analysis and Models

To reduce energy consumption, it is only beneficial to offload the task if
EGTi

> 0.

For a weighted task offloading cost Cost(Ti), λTi
m , λTi

e ∈ [0, 1] are scalar weights,
and λTi

m + λTi
e = 1. These weights can be adjusted by the preference related with

energy and delay deadline of mobile application tasks.

Cost(Ti) = λTi
m × PGTi

+ λTi
e × EGTi

(4.9)

Overall, the optimization problem formulated is how to select the offloading
site to offload for minimizing both the execution time and energy consumption of
the task. The optimization framework can be formulated as follows:

min
C,S

Cost(Ti) (4.10)

C = M
Sj

Ti
≤ DTTi

(4.11a)
S = E

Sj

Ti
≤ ETTi

(4.11b)

The constraint Eq. (4.11a) denotes the completion time constraint which
ensures that the total completion time of the task is bounded by the required
maximum finish time (i.e., delay deadline). Similarly, Eq. (4.11b) specifies that
energy consumption is less than or equal to the maximum energy consumption.

Finally, the overall application offloading cost Cost(X) can be defined by the
summation of the total weighted makespan M(X) and the total weighted energy
consumption E(X):

Cost(X) = λm ×M(X) + λe × E(X) (4.12)

4.4 Offloading Policy
Previous research efforts have been using the MCO approach such as CloneCloud
[31], MAUI [35], and ThinkAir [73] due to the capability of an application to
either run locally on a mobile device or to offload some of its computationally
expensive tasks to be executed outside the mobile device when a connection is
available. Since a mobile application can contain parts of the code which must be
executed locally (unoffloadable tasks) such as codes that access local sensors (e.g.
GPS, camera), it is not recommended to offload the entire application code [50].

4.4 Offloading Policy 65

Moreover, the task offloading cost (e.g. battery consumption, delay time) may
outweigh the offloading benefits. Thus, deciding whether to offload and where to
offload are continuous challenges in the task offloading policy.

In constructing a multisite task offloading policy, the single-site scenario
offloading where only a single candidate offloading site is available at the time
of offloading needs to be considered as well. Deciding whether the task is worth
offloading and where to offload the task can be computed under these different
circumstances.

For deciding whether the task has to be offloaded, one way is to compare
profiling results of the local and remote executions for identifying the offloading
cost. However, this creates an extra overhead before every offloading operation
[76]. Instead, benchmarking the sites and profiling the network status can be used
to calculate an offloading score as described in Subsection 4.4.2.

In an ideal multisite offloading scenario, the Host Mobile Device is connected to
more than a site at the time of running the application containing the offloadable
tasks. By checking the number of Sj connected candidate offloading sites, the
list of sites will be passed to the multi-criteria solver component explained in
Section 4.5.

4.4.1 Decision Making Algorithm
The context-aware decision algorithm needs to consider a set of contextual pa-
rameters including the network throughput and wireless properties, hardware
features of both the Host Mobile Device and connected nodes in the mobile cloud
infrastructure. The algorithm needs to decide whether it is beneficial to offload.

With a single offloading site, the node with the highest calculated offloading
score is passed to the deployment controller for remote execution. Otherwise, a
fuzzy multi-criteria mechanism to decide which resources to use as the offloading
locations are used. Finally, the algorithm returns a list of decision pairs containing
[Execution Location: Offloading Percentage]

The Algorithm 4.1 demonstrates the steps involved in offloading decision
making. The illustrated symbols in Table 4.3 are used in the algorithm. The
inputs include Self Node modelled earlier, the respective offloadable task Ti, and a
list of currently available offloading sites S. As described in the next chapter, the
offloading execution database contains all the past offloading records, including
both locally LR and remotely RR executed tasks. The checkpoint variables
MaxLE and MaxRE are used to ensure that the local and remote executions

66 System Analysis and Models

Symbol Meaning
LR Local Results
RR Remote Results
MaxLE Maximum Local Executions
MaxRE Maximum Remote Executions
ExecLoc Execution Location
OffPer Offloading Percentage

Table 4.3 Task Offloading Decision Algorithm Symbols

are still beneficial. Finally, the node scores that were collected and calculated
earlier are returned to the decision engine.

Every time an offloadable task is initiated, the engine determines if it is
beneficial to offload it. Because of the uncertainties inherent in the mobile
environment, the offloading decision takes risk into consideration. If a bad decision
has been made, it will also adjust its strategy with new information available.

4.4 Offloading Policy 67

Algorithm 4.1 Task Offloading Decision Algorithm
Input: SN , Ti, S . Self Node, the offloadable task, list of offloading sites

LR, RR . From past offloading execution database records
MaxLE, MaxRE . Execution checkpoint variables

Output: [ExecLoc: OffPer]
1: if Cost(Ti) < 0 then . According to Eq. (4.9)
2: return [SN : 100]
3: end if
4: if PRTi

AND λTi
m == 1 then . For parallizable tasks

5: return Score-Partitioner(S) . According to Algorithm 4.3
6: end if
7: for result in LR do
8: if result.taskID == IDTi

then
9: localExecutions.add(result)

10: else
11: remoteExecutions.add(result)
12: end if
13: end for
14: if localExecutions % maxLE == 0 then . Max local consecutive executions

reached, fall to remote execution
15: return MC-Solver(S) . According to Algorithm 4.4
16: end if
17: if remoteExecutions % maxRE== 0 then . Max remote consecutive

executions reached, fall to local execution
18: return [SN : 100]
19: end if

4.4.2 Offloading Score
In calculating the offloading score, we need to collect the device context information
in the pre-processing phase to model the offloading decision-making process
including the CPU power, round trip time, battery state and level of the connected
devices. The benchmark score is calculated after workloads are sent to the devices
and the execution results are received. The quicker the tasks are completed, the
higher the benchmark score. The workloads measure the instruction performance
of the device by performing processor-intensive tasks that make heavy use of
integer instructions. Initially, we create two types of workloads: compute-bound
and memory-bound. Mandelbrot set [45] of an 800x800 pixels sample is used for

68 System Analysis and Models

the first type. The Fast Fourier Transform (FFT) [68] is used as a memory heavy
workload. The score is calculated based on an average of both runtime scores in
GFlops as shown in Eq. (4.13).

B = (Bman + Bftt)/2 (4.13)

Since the collected values are on different scales, standardising variables are a
necessary process. Standardization (or Z-score normalization) refers to the process
of subtracting the mean from the value for each variable, resulting in a mean of
zero. Then, the difference between each score and the mean is divided by the
standard deviation [111].

The computation power and network overhead to Nearby Mobile Devices are
initially collected. If Mobile Node is not currently charging, then the offloading
score is deducted by the amount of the battery level of the device. The offloading
score is then calculated using the following equation:

OSMN = (BMN + CPMN)−RTTMN − (1−BSMN)× (100−BLMN) (4.14)

Similar to MAC model, edge and public node modelling is a summation of their
respective benchmark score, computation speed subtracted by the data transfer
cost.

OSEN = (BEN + CPEN)−RTTEN (4.15)

OSP N = (BP N + CPP N)−RTTP N (4.16)

MAMoC collects the offloading scores of the local device running the mobile
application and all the connected service providers. Algorithm 4.2 shows the
process of collecting individual offloading scores calculated and received earlier to
generate a dictionary of nodes and their corresponding offloading scores.

4.5 Multi-criteria Solver 69

Algorithm 4.2 Aggregating offloading scores of the nodes
Input: SN , S

Output: nodeScores
1: nodeScores = [:] . A dictionary of nodes and their respective offloading scores
2: localScore = getSelfNodeScore()
3: nodeScores.add(SN , localScore)
4: if S is not empty then
5: for Sj in S do
6: score = Sj.getScore() . According to Eq. (4.14), Eq. (4.15), Eq. (4.16)
7: nodeScores.add(Sj,score)
8: end for
9: end if

10: return nodeScores

The node scores will then be sent to the task partitioning algorithm shown
in Algorithm 4.3 to calculate the final task partitioning percentage (offloading
percentage) for any given task.

Algorithm 4.3 Task partitioning algorithm using offloading scores
Input: nodeScores . According to Algorithm 4.2
Output: partitioningResult ([ExecLoc: OffPer])

1: function Score-Partitioner(S)
2: partitioningResult = [:] . A dictionary of nodes and task allocation

percentages
3: for (node, score) in nodeScores do
4: partition = (score / totalScore) * 100
5: partitioningResult.add(node,partition)
6: end for
7: return partitioningResult
8: end function

4.5 Multi-criteria Solver
The solver is a component in the decision engine module that decides on the
offloading destinations for the tasks. It receives a list of available sites from the
Service Discovery component with all the necessary metadata from the Profilers
component. All these components and their interaction will be described in
detail in the next chapter. The solver uses the concept of MCDM for evaluating

70 System Analysis and Models

the offloading criteria and generating a site ordering from the most to the least
optimal under different mobile contexts. MCDM is a well-known approach in
mobile cloud offloading studies [11].

In this section, the selected offloading criteria are evaluated and validated using
one of the MCDM approaches in Subsection 4.5.1. To achieve multiple offloading
objectives, group decision making methodology is used which is demonstrated in
detail in Subsection 4.5.2. After evaluating the criteria, the pairwise comparison
matrix will be passed to the site ranking system to calculate the order of the
offloading sites, which is explained in Subsection 4.5.3.

4.5.1 Criteria Evaluation
The choice of selecting a candidate site for computation offloading is more straight-
forward when considering only one factor, such as decreasing execution time.
However, other Quality of Service (QoS)-based criteria such as current bandwidth
between Host Mobile Device and the site and the computation power of the
sites as well as availability, security, and the monetary costs of the sites need to
be considered when making offloading decisions. Five offloading impact factors
are presented to show the construction and operation of the offloading model.
This model can be easily extended to incorporate new factors to make offloading
decision making more comprehensive.

Bandwidth depends on the quality of the wireless connection between the
mobile device and the offloading sites. It is shown in previous work in the
literature [77] that offloading is not beneficial when the wireless connection is
poor due to high wastage of energy of the mobile devices. Speed is an important
criterion that compares the speed of the offloading site with that of the mobile
device. Failures may occur due to the mobility of mobile devices and unstable
connectivity of wireless communication; Thus, availability also affects the offloading
outcome. Security and privacy are important concerns for mobile users, especially
if the credibility of the offloading site is unknown. Security and privacy are
two crucial concepts that need to be maintained during the offloading process.
The financial cost is another factor that needs to be considered when comparing
different offers from multiple service providers. The operations of computation
offloading and data transfer between cloud resources incur additional costs on
end-users. Therefore, economic factors should be taken into consideration while
making offloading decisions.

4.5 Multi-criteria Solver 71

Fig. 4.1 Standard AHP Comparison Scale

4.5.1.1 AHP Pairwise Comparison

In this work, a popular MCDM approach called Analytic Hierarchy Process (AHP)
[116] is used for determining the relative importance of a set of alternatives in a
multi-criteria decision problem. It converts the evaluations to numerical values
that can be processed and compared and derives a numerical weight or priority for
each element of the hierarchy. The criteria will be compared as to how important
they are to the decision makers, with respect to the goal. This multi-criteria
technique incorporates the intangible aspects associated with the human factor
through the use of pairwise comparisons. The results of the pairwise comparison
on n criteria can be expressed in an evaluation matrix A illustrated below:

A = (aij)n×n =

a11 a12 · · · a1N

a21 a22 · · · a2n

...
an1 an2 · · · ann

 , aii = 1, aji = 1/aij (4.17)

Offloading decisions involve different qualitative and quantitative parameters
[11]. As described earlier, the five chosen decision criteria for selecting offloading
sites are bandwidth, speed, availability, security, and price denoted as C1, C2, C3,
C4, C5 respectively. The priory of importance depends on what we care about
most in the selection of an offloading site. Bandwidth is considered the most
significant since it decides the extra communication cost between mobile devices
and the sites [12]. Speed also has high importance because it saves execution
time which leads to better user experience and less local energy consumption. We
assume the priory of importance is ranked as: bandwidth > speed > availability
> security > price. However, the priority of these five criteria can be varied in
other situations as described in Subsection 4.5.2. The relative performance of each

72 System Analysis and Models

Table 4.4 Pairwise comparison matrix (A) for offloading criteria

Bandwidth Speed Availability Security Price
Bandwidth 1 1 5 7 9

Speed 1 1 5 6 8
Availability 1 / 5 1 / 5 1 3 3

Security 1 / 7 1 / 6 1 / 3 1 2
Price 1 / 9 1 / 8 1 / 3 1 / 2 1

criterion against another can be evaluated in a pair-wise manner according to the
rubric in Figure 4.1 with 1 being equal and 9 being much better. As a result, the
pairwise comparison matrix is generated as shown in Table 4.4.

Using Row Geometric Mean prioritization Method (RGMM) [34], the final
weighting results for each criteria w = (w1, w2, ..., wn) are: Bandwidth (C1):
0.4072, Speed (C2): 0.3885, Availability (C3): 0.1083, Security (C4): 0.0572, Price
(C5): 0.0384.

4.5.1.2 Consistency Check

The purpose of the consistency check is to test the coordination of the importance
degree between each criterion. This is used to avoid the contradiction situation,
i.e. for a user, A is more important than B, B is more important than C, and
C is more important than A. For example, it is inconsistent in the case where a
Decision Maker (DM) thinks availability is strongly more important than security,
and security is more important than price, however, the price is more significant
than availability in the same context.

A consistency index to measure individual matrix consistency, namely the
Geometric Consistency Index (GCI) is developed by [3]. Let A = aij be a
judgement matrix, and let w = (w1, w2, ..., wn) be the priority vector derived from
A using the RGMM. The Geometric Consistency Index (GCI) is given below:

GCI (A) = 2
(n− 1) (n− 2)

∑
i<j

(log (aij)− log (wi) + log (wj))2 (4.18)

If GCI(Ak) = 0, we have a fully consistent matrix. GCI is also provided by
[3] for GCI: GCI = 0.31 for n = 3; GCI = 0.35 for n = 4; GCI = 0.37 for n > 4.
When GCI (A) < GCI the matrix A is of acceptable individual consistency. Using
Eq. (4.18), the calculated GCI (A) for the pairwise matrix is 0.099 which is much
less than 0.37 for n = 5.

4.5 Multi-criteria Solver 73

4.5.2 AHP Group Decision Making
In order to enable more fine-grained offloading decision for mobile applications
with the different quality of services, the application developers can define the
criteria importance for their applications by giving relative weights or select
from pre-defined DMs. This work constructs 5 pre-defined DMs to represent
different weights for given circumstances of criteria importance using the concept
of AHP Group Decision Making (GDM) (AHP-GDM) [115]. The evaluation of
the proposed AHP-GDM is conducted using the methodologies suggested in [39]
where both the consensus measure and the consensus model are used with a row
geometric mean prioritization method.

In modelling the AHP-GDM, let DM = DM1, DM2, ..., DMn be the set of
DMs, and π = π1, π2, ..., πm be the weight vector of DMs, where πk > 0, k =
1, 2, ..., m. The judgement matrix is modelled as A(k) = a

(k)
ij provided by the

decision maker DMk(k = 1, 2, ..., m). The individual priority vector w(k) =
(w(k)

1 , ..., w
(k)
5) is then derived from judgment matrix A(k) using RGMM.

As illustrated in Table 4.5, these pre-defined five DMs are selected according
to the runtime requirements of a mobile application. The user can specify weights
for each one of them based on the application context. By default, the normal
execution which was described in the previous subsection is used if no weights are
specified. The following is a brief description of each DM:

1. Normal Execution (DM1): this is the default DM which is used for
the single decision maker as described in Subsection 4.5.1. Normally, the
weight of this DM is set to 1 while the weight of other DMs is set to 0.
However, we make some exceptions when the battery level is less than 20%
and the battery is currently not charging. We modify the weights according
to Table 4.6.

2. Reduce energy consumption (DM2): this DM can be given the highest
priority when the phone battery is in critical conditions, e.g., less than 20%
remaining. Prolonging battery life is one of the most important factors to
consider when offloading mobile tasks to external entities.

3. Reduce execution time (DM3): due to the resource constraints of mobile
devices, we want to increase the response time of the heavy tasks of the
mobile applications by offloading them to more powerful surrogates. This
DM gives the highest priority to reducing the execution time by giving the
highest value to the computational power of the surrogates.

74 System Analysis and Models

4. Increase security (DM4): this DM gives the utmost importance to the
security and privacy of the offloading sites. If there are some sensitive and
private data which can not be protected enough in a Remote Cloud server,
i.e. no authentication or encryption mechanism exist between the Host
Mobile Device and the connected server, then the likelihood of selecting
that particular site decreases. It is necessary to use certain encryption algo-
rithms to the data stored in the offloading sites in order to preserve privacy.
Moreover, it is advisable that the encryption algorithms be lightweight in
terms of computation.

5. Reduce the financial cost (DM5): Using cloud infrastructure resources
imposes financial charges on the end-users, who are required to pay according
to the Service Level Agreement (SLA) agreed on with the cloud vendor
serving them. The overall monetary cost of cloud resources can get expensive
as we get numerous requests from mobile users. Finding cheaper offloading
sites can benefit application providers for reducing the overall cost of running
mobile tasks remotely.

4.5.2.1 Group Consistency Check

For GDM using preference relations (pairwise comparisons), the consistency
measure includes two concerns including the individual consistency of a single
DM and of a whole group of DMs [39]. At the beginning of each GDM problem,
decision-makers’ opinions may differ from each other substantially. Consensus
models are decision aid tools to help DMs reach the consensus based on the
established consistency measure.

In the AHP GDM context, the two techniques traditionally used are (i)
Aggregation of Individual Judgements (AIJ) and (ii) Aggregation of Individual
Priorities (AIP) [47]. On one hand, AIJ uses the weighted geometric mean method
to aggregate individual judgement matrices to obtain a collective matrix. Then,
prioritization methods, such as the row geometric mean method, are used to
derive a priority vector to order a collective judgement matrix. On the other hand,
AIP uses the weighted geometric mean method to aggregate individual priorities
derived using prioritization methods to obtain the best alternative(s).

The group judgement matrix and group priority vectors can be produced in the
following: the priority vectors are first obtained for each individual, w(k) = w

(k)
i

and k = 1,...,r, using Weighted Geometric Mean Method (WGMM) and then
aggregated to obtain the priorities of the group using:

4.5 Multi-criteria Solver 75

B Sp A Sc P
B 1 1 5 7 9
Sp 1 1 5 6 8
A 1 / 5 1 / 5 1 3 3
Sc 1 / 7 1 / 6 1 / 3 1 2
P 1 / 9 1 / 8 1 / 3 1 / 2 1

(a) A1: Energy efficient and fast response (normal execution)

B Sp A Sc P
B 1 5 7 9 9
Sp 1 / 5 1 3 7 7
A 1 / 7 1 / 3 1 5 5
Sc 1 / 9 1 / 7 1 / 5 1 1
P 1 / 9 1 / 7 1 / 5 1 1
(b) A2: Reduce energy consumption

B Sp A Sc P
B 1 1 / 7 1 / 5 7 7
Sp 7 1 3 9 9
A 5 1 / 3 1 9 9
Sc 1 / 7 1 / 9 1 / 9 1 1
P 1 / 7 1 / 9 1 / 9 1 1

(c) A3: Reduce execution time

B Sp A Sc P
B 1 1 1 1 / 9 3
Sp 1 1 3 1 / 9 3
A 1 1 / 3 1 1 / 9 3
Sc 9 9 9 1 9
P 1 / 3 1 / 3 1 / 3 1 / 9 1

(d) A4: Increase security

B Sp A Sc P
B 1 1 3 3 1 / 9
Sp 1 1 3 3 1 / 9
A 1 / 3 1 / 3 1 3 1 / 9
Sc 1 / 3 1 / 3 1 / 3 1 1 / 9
P 9 9 9 9 1

(e) A5: Reduce the financial cost

Table 4.5 The judgement matrices from the decision makers based on the appli-
cation requirements. B: Bandwidth, Sp: Speed, A: Availability, Sc: Security, P:
Price

Table 4.6 Decision maker weights under different battery context

Battery DM Weight
BL > 80 or Charging (0,0,1,0,0)

80 > BL > 20 (1,0,0,0,0)
BL < 20 (0,1,0,0,0)

76 System Analysis and Models

Table 4.7 The GCI and GCCI values of Ak(k = 1, 2, ..., 5) and AG

A(1) A(2) A(3) A(4) A(5) A(G)

GCCI 0.099 0.3064 0.3451 0.3192 0.243 0.2837

w
(G)
i =

∏r

k=1

(
w

(k)
i

)πk

, i = 1, . . . , n (4.19)

The group judgement matrix AG = a
(G)
ij is then calculated by:

a
(G)
ij =

∏r

k=1

(
a

(k)
ij

)πk

, i, j = 1, . . . , n (4.20)

The Geometric Cardinal Consensus Index (GCCI) of Ak is determined through
the following:

GCCI
(
A(k)

)
= 2

(n− 1) (n− 2)
∑
i<j

(
log

(
a

(k)
ij

)
− log

(
w

(k)
i

)
+ log

(
w

(k)
j

))2

(4.21)
If GCCI(Ak) = 0, then the kth decision maker is of fully cardinal consensus

with the collective preference. Otherwise, the smaller the value of GCCI(Ak),
the more the cardinal consensus. According to the actual situation, the decision
makers establish the thresholds GCCI for GCCI(AG).

If GCCI
(
A(G)

)
≤ GCCI, we conclude that the acceptably cardinal consensus

are reached among the decision makers.
According to [39], GCCI for n = 5 is 0.35, as listed in Table 4.7 GCCI

(
A(k)

)
<

GCCI for (k = 1,2,...,5), so A(1),...,A(5) are of acceptably individual consistency
so as GCCI(AG) having an acceptable group consistency.

4.5.3 Site Ranking Calculation
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is
one of the most widely used techniques of MCDM [78]. This technique has been
chosen for its lightweight processing and faster execution time compared to other
MCDMs [146]. It is able to maintain the same number of steps regardless of the
number of attributes which makes it ideal for using it in resource-constrained
mobile devices. Alternatives are evaluated according to a set of criteria received
from AHP matrix in a TOPSIS technique.

This technique is based on the principle that the selected alternative, i.e.
offloading site Si, should have the least distance to the positive ideal and the
most distance to the negative ideal. For each criterion considered previously in

4.5 Multi-criteria Solver 77

Fig. 4.2 Fuzzy linguistic terms mapped to their numerical range values

AHP, a set of linguistic variables is used to define the importance weights of them.
These criteria weights need to be assigned for each alternative, i.e. offloading sites
(Nearby Mobile Devices, Cloudlets, and Remote Clouds) per the availability.

Initially, a subjective evaluation is set on a rating of alternatives and the
importance weight of criteria to produce the fuzzy decision matrix D. The
numerical range values are shown in Figure 4.2 for each fuzzy linguistic variable
[21].

D =

x̃11 x̃12 . . . x̃1j x̃1m

...
x̃n1 x̃n2 . . . x̃nj x̃nm

 (4.22)

Where x̃ij , j=1,2,..,m are linguistic variables. These variables are described by
triangular fuzzy numbers, x̃ij = (aij, bij, cij) as demonstrated in Table 4.8.

Table 4.8 Fuzzy membership and Linguistic scale for TOPSIS

Linguistic Values Fuzzy Ranges
Very low (VL) (0.0, 0.0, 0.25)

Low (L) (0.0, 0.25, 0.50)
Good (G) (0.25, 0.50, 0.75)
High (H) (0.50, 0.75, 1.0)

Very High (VH) (0.75, 1.0, 1.0)

Then, the normalized fuzzy decision matrix of the alternative ratings is con-
structed in (D) using the linear scale transformation to transform the various

78 System Analysis and Models

criteria scales into comparable scales [63]. The normalized fuzzy decision matrix
for both benefit and cost criteria is obtained by:

r̃ij ' (aij

c+
j

,
bij

c+
j

,
cij

c+
j

), c+
j = max

i
cij(Benefit criteria) (4.23a)

r̃ij = (
a−

j

aij

,
a−

j

bij

,
a−

j

cij

), a−
j = min

i
aij(Cost criteria) (4.23b)

The weighted normalized decision matrix, ṽij is calculated by multiplying the
weight of the criteria, w̃j, by the elements w̃j of the normalized fuzzy decision
matrix:

ṽij = r̃ij × w̃j (4.24)

Then, the Fuzzy Positive Ideal Solution (FPIS, S+) and Fuzzy Negative Ideal
Solution (FNIS, S−) are determined using:

S+ = {ṽ+
1 , ṽ+

j , ..., ṽ+
m} (4.25a)

S− = {ṽ−
1 , ṽ−

j , ..., ṽ−
m} (4.25b)

Where ṽ+
j = (0.75,1.0,1.0) and ṽ−

j = (0.0,0.0,0.25).
Finally, the distances d+

i and d−
i of each alternative Si(i = 1, 2, ..., m) from

FPIS and FNIS are calculated, respectively:

d+
i =

n∑
j=1

dv(ṽij, ṽ+
j) (4.26a)

d−
i =

n∑
j=1

dv(ṽij, ṽ−
j) (4.26b)

where dv(·, ·) represent the distance between two fuzzy numbers according
to the vertex method [21]. Let m̃ =, (m1, m2, m3) and ñ = (n1, n2, n3) be two
triangular fuzzy numbers. Distance calculation of triangular fuzzy numbers is
calculated by the following:

dv(m̃, ñ) =
√

1
3[(m1 − n1)2 + (m2 − n2)2 + (m3 − n3)2] (4.27)

Finally, the Closeness Coefficient CCi is calculated from both ideal d+
i and

anti-ideal d−
i distances:

CCi = d−
i

d−
i + d+

i

, 0 < CCi < 1, i = 1, 2, ..., n (4.28)

4.5 Multi-criteria Solver 79

The set of alternatives can now be preference ranked according to the descend-
ing order of CCi. A set of numerical examples will be given in Chapter 6 to
demonstrate the combination of these MCDM approaches in achieving an optimal
ranking of the offloading sites.

The Algorithm 4.4 demonstrates the steps involved in using AHP and fuzzy
TOPSIS for multisite offloading in both single and group decision making processes.
The algorithm takes as the input the number of DMs and their respective pairwise
comparison values. Then, the criteria evaluation is conducted based on the given
values to produce the matrix A. In the case of GDM, the judgment matrix needs to
be generated from all the DM matrices. Once the AHP produced the A, lines 9-12
of the algorithm generates the site ranking orders and their respective closeness
coefficient values which are used as offloading percentages of the offloading site.

The source code of the MCDM program is decoupled from the main decision
engine of MAMoC framework for demonstration clarity and reusability of the
program for different purposes 1.

Algorithm 4.4 Multi-Criteria Solver Algorithm
Input: DM (Decision Makers)

A = [n][n] . AHP pairwise comparison matrix Eq. (4.17)
PCVDMi

. Pairwise Comparison Values of the DMs
D = [Fuzzy] . Fuzzy linguistic values in Table 4.8

Output: [ExecLoc: OffPer]
1: function MC-Solver(S)
2: if count(DM) == 1 then
3: A = calculateAHP(PCV [0]) . According to Table 4.4
4: else . multi-objective optimisation using GDM
5: for dmi in DM do
6: GA[i] = calculateAHP(PCV[i]) . According to Table 4.5
7: end for

A = calculateJudgmentMatrix(GA) . According to Eq. (4.20)
8: end if
9: D = calculateFuzzyTopsis(S, A) . Eq. (4.22) - Eq. (4.24)

10: d+ = calculateIdealDistance(D) . Eq. (4.26a)
11: d− = calculateAntiIdealDistance(D) . Eq. (4.26b)
12: return [ExecLoc: OffPer] = calculateClosenessCoefficient(d+, d−) .

Eq. (4.28)
13: end function

1https://github.com/dawand/AHP_Fuzzy_TOPSIS

https://github.com/dawand/AHP_Fuzzy_TOPSIS

80 System Analysis and Models

4.6 Summary
In this chapter, the design requirements, modelling, and decision making algorithms
are investigated for offloadable tasks in a mobile application running on a resource-
constrained mobile device. The surrounding compute nodes are modelled and
considered in both the execution time and energy consumption analysis. The
overall task offloading cost needs to be minimised in the optimization problem.

The task offloading policy contains the question of whether a task should be
offloaded and where the best offloading destinations are under different mobile
contexts. The offloading score is calculated with the collected profiling information
and benchmarking mechanisms. The offloading destination decision making is
conducted using MCDMs of AHP and fuzzy TOPSIS. The GDM methodology is
also used for conducting multi-objective decision making according to different
DMs.

Chapter 5

Design and Implementation

5.1 Overview
This thesis proposes Multisite Adaptive Mobile Cloud (MAMoC), which is a MCO
framework that offloads Tasks in a mobile application to multiple offloading sites.
As shown in Chapter 4, each task offloading decision is made based on the energy
and completion time estimations. MAMoC is capable to adaptively recalculate
these estimations accordingly after multiple local and remote executions of the
task. One of the most important features of the system is that it does not require
changes in the operating system in which the mobile application is running [96].
Neither, it needs a specialised mobile operating system in the server-side (Android
x-86 [7]) described in Chapter 2. This allows developers to seamlessly adapt the
framework to their current Android applications.

The design assumptions of the framework are listed in Section 5.2 that specify
the attributes of the tasks that developers need to follow as well as the assumptions
for both the communication and execution component designs. Section 5.3 explains
the system architecture with a detailed look into both the mobile device and
offloading site modules. Section 5.4 discussed the communication services and
components used in managing the message flow between Host Mobile Device and
Nearby Mobile Devices in device-to-device communications and between Host
Mobile Device and ENs and PNs in device to server communications. Section 5.5
describes the task execution workflow starting from the task marshalling on the
mobile device up to the point of receiving the executed results back.

The proposed framework is capable of profiling, analysing, and executing
(locally or remotely) a task in the running mobile applications. This chapter also
discusses the implementation of the components. Each component in MAMoC
Client is implemented in a module that provides a standard interface that defines

82 Design and Implementation

a set of functionality that can be invoked. This chapter also provides a reference
implementation of the server runtime environment (MAMoC Server) deployed
to the offloading sites. This reference implementation is divided into two main
sections: Section 5.6 describes the concise implementation details of the client
framework running on SNs and MNs. While, Section 5.7 explains the server
runtime environment components running in ENs and PNs.

5.2 Design Assumptions
The research conducted in this thesis rests on the assumption that the mobile
cloud offloading infrastructure belongs to a single mobile user. This is a reasonable
assumption in designing a framework which can be used by many mobile applica-
tions in the same mobile device. Alternative approaches exist where multiple user
offloading requests are considered in the study [20].

The following assumptions are made about the offloadable tasks, the platform
execution and how the communication between different nodes in the framework
are performed.

5.2.1 Task Specifications
As shown in the works examined in Chapter 3, the partitioning granularity differs
from offloading the whole app to the offloading destinations or only a part of the
app in the forms of a component [153], a class [131], a method [73], or a thread
[31]. In MAMoC, the partitioning is performed in the task level which could
represent both a class or a method in a class.

The following assumptions are imposed by MAMoC for the classes that are
made offloadable by the application developer:

1. The class is annotated with @Offloadable with or without the optional
parameters (parallalizable or resource dependent).

2. The class contains a constructor that receives the required parameters from
the caller classes.

3. The class contains a run method of either a return or void type.

4. The run method does not depend on any native features of the mobile device
and does not call any Android system library methods.

5. Similarly, in the case of the method being annotated with @Offloadable, no
native feature must exist inside the body of the method.

5.2 Design Assumptions 83

5.2.2 Communication Assumptions
1. Device-to-Device communications

1.1. Self Node can establish a connection with Nearby Mobile Devices (MNs)
using either Wi-Fi P2P or infrastructural Wi-Fi. Most modern Android
devices have WiFi-Direct built in them, as described subsequently in ??.
However, the support for incompatible devices is further accomplished
by utilising the GO device as an AP [19].

1.2. The Nearby Mobile Devices (MNs) do not route requests to other
devices, i.e MAMoC only supports D2D offloading. The routing problem
is not addressed in our implementation, but it would not be difficult to
incorporate an existing P2P routing protocol to the framework [93].

1.3. The Nearby Mobile Devices (MNs) are willing to share a portion of their
computational capabilities as a stem of different incentives ranging from
their willingness to share resources as in volunteer computing scenarios
[91]. An incentive mechanism needs to be considered especially for
users with limited battery mobile devices [162].

2. Device-to-Server communications

2.1. Host Mobile Device (Self Node) can connect to Cloudlets (ENs) via
infrastructural Wi-Fi by scanning the LAN. The ENs should advertise
their local IP address through an Avahi daemon 1 by joining a particular
Multicast IP Address as a listener to help with the discovery mechanism.

2.2. Host Mobile Device (Self Node) can connect to Remote Clouds (PNs)
via Wi-Fi or mobile data networks such as 3G/4G. The IP addresses
of the PNs are already made available to the mobile device before
initiating the framework.

5.2.3 Execution Assumptions
1. MAMoC assumes that the Nearby Mobile Devices (MNs) are provisioned

with the same MAMoC-enabled mobile application library (MAMoC Client)
before receiving offloading requests.

2. MAMoC assumes that the Cloudlets (ENs) and Remote Clouds (PNs) are
provisioned with the MAMoC Server running environment before receiving
offloading requests.

1http://avahi.org/

http://avahi.org/

84 Design and Implementation

3. MAMoC initially assumes that offloaded computation already resides on the
offloading site by calling the RPC-based task ID (IDTi

). The task source
code and data resources are either stored on the site via static analysis and
bytecode refactoring tools at the deployment or obtained the source code
from the mobile device at runtime.

5.3 Architecture Overview
In this section, an insight into the architecture of MAMoC is given to address the
importance of having a multisite and adaptive task offloading in a heterogeneous
mobile cloud environment. The mobile device requesting the offloading service is
regarded as a client (Self Node or Host Mobile Device as used throughout this
thesis). The proposed system leverages three types of cloud resources: Nearby
Mobile Device (Mobile Node), nearby fixed edge nodes or Cloudlets (Edge Node),
and Remote Cloud instances (Public Node). These compute nodes were previously
described in Subsection 4.3.1. This section also provides a brief description
of each module in both MAMoC Client and MAMoC Server programs. The
implementation details of the modules are left for the next chapter.

Fig. 5.1 High-level architecture and communication mechanisms of MAMoC

5.3 Architecture Overview 85

1. MAMoC Client: the offloading library that runs on the Host Mobile
Device as a built-in library of the MAMoC-enabled mobile applications.

MAMoC Client contains the following modules:

1.1. Context profilers: profiling is the process of gathering contextual
information about devices and programs to help offloading making de-
cisions. This information can be the computation and communication
costs of application units (program profiler), the device-specific char-
acteristics such as battery state and level, computation and memory
capabilities (device profiler) and wireless and medium channels charac-
teristics (network profiler). Since profiling incurs additional overhead
and energy consumption, we adopt an on-demand monitoring strategy.
We only fetch context data when the offloadable methods are invoked.
All the collected data will be fed to the decision engine to be used in
the offloading decision making algorithms.

1.2. Service discovery: for the mobile device to leverage nearby and
remote resources, it needs to know where they are located by saving
their network address (IP addresses or URLs). MAMoC maintains a
list of all the potential resources with their network addresses once they
are discovered and a successful connection is established. The Host
Mobile Device sends periodic pings to the connected nodes to ensure
their availability to serve the offloading requests.
After the framework is initialized, service discovery is performed. The
hosting mobile device advertises itself in the LAN and searches for
available Nearby Mobile Devices. We will explore in detail the mech-
anisms that we use in Section 5.6.1.1. The Host Mobile Device also
scans the local network to detect the running containers on the local
Cloudlets (ENs). The Remote Cloud instances are discovered using
their IP addresses to open a TCP socket communication channel for
offloading requests.

1.3. Offloading decision engine: the offloading decision making is a
two-fold process: the engine first checks if it is worth offloading using
the decision making algorithm described in Subsection 4.5.1 and if
yes, where should the task be offloaded among the multiple available
offloading sites as explained in Subsection 4.5.3.

1.4. Deployment controller: after it is decided to offload a task, the
task ID and offloading sites information is passed to the deployment

86 Design and Implementation

controller to communicate with the router component in MAMoC
server. If the task ID does not exist in the server-side, the command is
passed to code decompiler which is described next.
It receives the task offloading information such as the class name,
method name, decompiled source code, offloading site, resource names,
and any extra parameters from the decision engine. It also collects node
information from the service discovery if the task is to be offloaded
otherwise a local execution will be performed.

1.5. Code decompiler: the bytecode of the mobile application binary is
decompiled into Java source code to be sent to the offloading site for
execution purposes. This is only performed once per task as the source
code will be cached in the server side for future executions of the same
task by the same or different mobile user requests.

1.6. Database adapter: this module records all the local and remote
executions on the self node and offloading sites. It contains informa-
tion about the offloadable task, execution time, energy consumption,
offloading site, etc. This information is vital in the offloading decision
making algorithm.

2. MAMoC Server: MAMoC server consists of three separate interconnected
modules running on three containers:

• MAMoC Router: this contains the communication manager com-
ponent that handles network communications with mobile devices. It
also validates the incoming requests from mobile applications.

• Server Manager: most of the server components are deployed on this
container. It receives incoming offloading requests from the routers.
After executing the task, the execution results will be published.

• MAMoC Repository: this contains the cached resources from pre-
vious executions including the source code and resource files. It also
contains the fetched Android application executables from Play Store.

The following are the server-side components:

2.1. Communication manager: this accepts the offloading requests from
the self nodes. The requests need to be validated through an authenti-
cation scheme, which is described at the end of this chapter.

5.3 Architecture Overview 87

2.2. Execution controller: this module is the core of the MAMoC server,
which contains a Java Virtual Machine (JVM) running environment.
It receives the task ID from the router. Then, it checks if an existing
Java source code already exists in the MAMoC repository. Otherwise,
it fetches the source code from the code transformer, which runs some
filtering and instrumentation on the decompiled Android code. Finally,
it passes the execution result to the communication manager component
and execution details to the execution analyser component.

2.3. Code transformer: this module uses filtering and instrumentation
techniques to transform an Android-based Java code to a Java code that
can be run on the JVM bundled in the execution controller component.

2.4. Application refactor: given an APK of an Android mobile appli-
cation, this component analyses it to generate a method call graph
and predict the methods which can be marked as offloadable. It also
identifies the unoffloadable parts of the application using the Android
packages and libraries to find mobile native features. If the mobile
application has not been annotated by the developer, the application
ID will be provided to the server. The MAMoC repository fetches the
APK from the Google Play Store 2 using the app ID. It then runs a
static analysis and bytecode refactoring to find the offloadable tasks.

2.5. Execution analyser: after the remote execution is complete or unsuc-
cessful, the execution details are given to this component to generate
an execution record. This record is then passed to the database adapter
in Self Node to aid with future offloading decision making.

2.6. Status broadcaster: this component is responsible for monitoring
the CPU and available memory of the site. It broadcasts the results to
the SNs that have already subscribed to listen to the hardware changes
of this particular site.

2https://play.google.com/store/apps

https://play.google.com/store/apps

88 Design and Implementation

5.4 Service Discovery
Service discovery module maintains a list of available services and handles the
connections between the Host Mobile Device and mobile cloud infrastructure
nodes including the available Nearby Mobile Devices, Cloudlets, all the way up to
Remote Cloud servers. The device profiling technique is triggered after a new
node is discovered to obtain new profiling information or update existing ones in
the Nodes table in the helper database. The register of accessible sites is passed
to offloading decision engine and later to deployment controller for dealing with
the data transfer such as publishing source code of the offloaded tasks, calling the
remote procedure calls, and transferring the input files essential for the resource-
dependent tasks. There might be a situation where the Nearby Mobile Device is
less powerful than the Host Mobile Device so it is not consistently beneficial to
offload computation assuming that the remote device is more computationally
capable than the local device.

The Nearby Mobile Devices can be leveraged for collaborative sharing of re-
sources to gain utilitaristic benefit. Designing energy-efficient and high bandwidth
direct D2D communications is a lasting challenge confronted by mobile platforms
[37]. Wi-Fi is still claimed to be the dominant future D2D solution for mobile
device connectivity and therefore supports wearable aggregation nodes [66]. One
approach is to form a MAC [159] over the LAN based on either zero configuration
network technology [30] or in a direct peer communications using Wi-Fi P2P
technology [37]. Nevertheless, the discovery via network interfaces can poten-
tially cause additional detection overhead and energy consumption. To avoid this
overhead, the module applies a periodic detection strategy, which asynchronously
searches for the available devices at certain intervals periodically. The detailed
implementation of the service discovery is described in Subsection 5.6.1.

Subsection 5.4.3 discusses the authentication mechanism for security concerns
in various mobile network architectures.

5.4.1 Device to Device
The two different communication mechanisms explained in Chapter 2 are employed
between the Host Mobile Device and other participated nodes in MAMoC. The zero
configuration network and multicast DNS which is used for discovering the locally
available resources (MNs and ENs). In the absence of an infrastructural network.
The Wi-Fi P2P for enabling ad hoc communications between the Host Mobile
Device and nearby mobile equipments are also explained.

5.4 Service Discovery 89

1. Zero Configuration Network

This mode of communication can be used for discovering both MNs and
ENs. As depicted in Figure 5.2, the Edge Node contains an Avahi daemon
which advertises the IP address of the Edge Node in the LAN.

Fig. 5.2 Zero Configuration Network communication diagram

2. Wi-Fi P2P Wi-Fi Direct is only available in selected modern Android
devices. In MAMoC, using APs in infrastructural Wi-Fi using Zero Con-
figuration Network technology for D2D communications is also utilised.
Section 5.6.1.1 provides the implementation details of both approaches with
similarities and differences between them. Subsection 5.6.1 describes the im-
plementation details of both approaches on the Android platform. A possible
nearby communication setup using Wi-Fi Direct is shown in Figure 5.3.

90 Design and Implementation

Fig. 5.3 Wi-Fi P2P communication diagram

5.4.2 Device to Server
This section describes how the protocol is applied for managing the communications
between Self Node and edge or public nodes in the form of the device to server
communications. MAMoC uses WAMP which is a subprotocol of WebSocket
for our message communications and we use both RPC and Publish/Subscribe
technologies. Next, both message patterns are explained and how MAMoC utilises
them.

Fig. 5.4 RPC and Pub/Sub messages using WAMP

5.4 Service Discovery 91

1. RPC MAMoC makes lightweight offloading decisions in the granularity
of a particular task. It determines whether to run each individual task
locally or on a remote site to optimise overall performance and energy
consumption. As described earlier, MAMoC assumes that remote execution
RPCs are segments of a program that were defined by the programmer to
serve as candidates for remote execution, and are functionally idempotent
and independent tasks. Similar to traditional asynchronous thread-safe
RPCs, routed RPCs do not employ any shared memory and synchronization
mechanisms and have no inter-thread dependencies. Each RPC event is
launched in MAMoC Client as a separate thread.

In MAMoC Client, the deployment controller constructs an RPC message
and sends it over to the router component. The registration of the procedure
in the server side is triggered in the first occurrence so that it can be called
for future RPC events from the same Self Node or other Host Mobile Devices.
The message flows between the Self Node and ENs and PNs are depicted in
Figure 5.4.

2. Publish/Subscribe

In MAMoC, SNs act as publishers for publishing the source code while they
serve as subscribers for status changes and execution results. Meanwhile,
ENs and PNs are subscribers for decompiled source code but publishers of
server status changes and task execution results. Similarly, MAMoC router
serves as the broker between the two sides.

The existence of the task ID T ID
i in MAMoC Server is a prerequisite for

a smooth task offloading experience. Self Node must make sure that it
can publish the source code to the server so that the code transformer
component in the server manager can use it for the transformation process
before being passed to the execution controller. The subscription to the
event from server-side happens when no existing source code is found as
depicted in Figure 5.1.

Before sending any requests, Self Node registers the server with a unique
ID in the service discovery process. To keep the status of the server up to
date, the CPU information and existing container information is periodically
published to the device profiler module. This information is updated in the
helper database for aiding the subsequent offloading decisions. Self Node is
also required to subscribe to the topic of the task execution after the RPC is

92 Design and Implementation

taken place. Since the execution is performed asynchronously, the execution
result will eventually be published by the server to the mobile device.

5.4.3 Request Validation
The vulnerable nature and heterogeneity of wireless links have complicated the
security and privacy needs in MCC [5]. Energy limitations in mobile devices
extend the demand for a lightweight security mechanism. A fundamental part of
such a security mechanism is authentication, which secures any system against
unauthorised access. The most important security challenge for MCC applications
is authentication. Authentication is bidirectional so the mobile device must
authenticate to the service provider and the service provider must authenticate to
the mobile device. Authentication should be lightweight to minimise computation
and communication costs. Authorised access is the primary issue when the Host
Mobile Device accesses the information stored on the cloud. Every access should
be authenticated so that the mobile user can access information related to them
only. No unauthorized access should be permitted, and this is accomplished by
several authentication techniques such as providing login IDs, passwords, or PINs
to the individual user to verify their identity which permits them to securely get
access to their data.

In MAMoC, before being able to send offloading requests to offloading sites,
Self Node needs to present credentials to the MAMoC router for authentica-
tion purposes. The ID and credentials of the router are previously set up between
MAMoC Client and MAMoC Server to ensure a trusted execution environment
and interaction. This approach is similar to the OpenID framework [113] which is
a popular lightweight HTTP-based URL authentication. MAMoC router works
as an identity provider and the server manager is the relying party for the mobile
device user.

In securing D2D communications, Wi-Fi Direct requires all P2P devices to
implement Wi-Fi Protected Setup (WPS) to secure the connection establishment
process and communication in the P2P group. In WPS scheme, the GO imple-
ments the internal registrar whereas GC implements enrollee. The WPS scheme
works in two phases [70]. First, the internal registrar generates and issues the
network credentials to enrollee. Then, the enrollee (GC) reconnects to the internal
registrar (GO) using the new credentials.

5.5 Task Execution Workflow 93

5.5 Task Execution Workflow
The four phases of MAMoC task execution workflow is illustrated in Figure 5.5.
Subsection 5.5.1 describes the preparation phase, which involves the task annota-
tion, code decompiling, and application refactoring processes. Subsection 5.5.2 is
about offloading decision making, which was formerly represented in Chapter 4.
The execution and post-execution phases in both Subsection 5.5.3 and Subsec-
tion 5.5.4 includes the steps of running the task either locally or remotely and
analysing the execution results to assist subsequent offloading decision makings.

5.5.1 Preparation Phase
In order to support mobile applications to perform as required with MAMoC
framework, some called for preparation steps need to be completed. Most of
these arrangement techniques simply need to be handled during the initial launch
of the mobile application. At this point, the application is reviewed whether it
is manually annotated by the developers or it requires to be forwarded to the
MAMoC Server to produce the annotations for the offloadable tasks. Another
consideration for code offloading is to actually acquire the source code of the
offloadable tasks from the application execution file for subsequently transferring
them to the ENs and PNs.

5.5.1.1 Annotations

Application developers can use Java Pluggable Annotation Processing API to
annotate the heavy tasks (in the level of classes or methods) with @Offloadable
annotation. This can be regarded as metadata added to the Android source code
and is attached to any class or method that can be offloaded to external candidate
nodes without depending on any native library components in the mobile OS. An
example class is the KMP [72] class, which solely depends on Java calls and can
be executed on any node with a JVM interpreter. If the computation of the text
search problem is given in a method that is invoked in an Android activity, then
the method is annotated instead. The @Offloadable annotation interface has two
boolean optionals:

• parallelizable: The tasks of the embarrassingly parallel programs can be
passed independently. There are no dependencies between the subtasks of
the task. An example is a text search task that can be split across a number
of computing nodes with no data exchanges between them. The offloading
node can partition the task (the text file in this instance) and send it over

94 Design and Implementation

Fig. 5.5 MAMoC task execution workflow

5.5 Task Execution Workflow 95

to external resources. After the results are returned, they are merged and
presented as a single result in the same sense as if the execution were to
take place locally.

• resourceDependent: The tasks dependent on resources need to be accessible
at the time of processing. Examples of resources needed in mobile apps
can be in the form of text files (word search and sorting workloads in word
processing apps), images (face detection and recognition apps), audio files
(translation apps). The resource files in Android apps are statically added
to the Assets folder or the assigned resources directory, which includes XML
files for layout design and global values. Any @Offloadable class or method,
which has set this optional element to true, requires the data to be present
at the remote site before being processed.

@IndexAnnotated
pub l i c @ in t e r f a c e Of f l oadab l e {

boolean p a r a l l e l i z a b l e () d e f a u l t f a l s e ;
boolean resourceDependent () d e f a u l t f a l s e ;

}

Listing 5.1 Java @Offloadable annotation used for offlodable tasks on MAMoC

5.5.1.2 Code Decompiling

Android developers upload an APK, which comprises the program bytecode,
resources and an XML manifest, to the Google Play Console 3. The submitted
applications are originally developed in Java or Kotlin, but compiled into Dalvik
bytecode and coalesced into a .dex file [102]. The Android devices incorporate
a Dalvik Virtual Machine (DVM) which is different from conventional JVM.
To retrieve the original Java source code composed by application developers,
researchers and practitioners have developed reverse engineering tools such as
Jadx4, Apktool5, and JEB6.

A source-level API is written on top of Jadx core files in the MAMoC Client
7 for decompiling the dex file into Java source code and gaining resource files if
desired. It functions by decompiling the classes.dex (sometimes classes2.dex too

3https://play.google.com/apps/publish/
4https://github.com/skylot/jadx
5https://ibotpeaches.github.io/Apktool/
6https://pnfsoftware.com/
7https://github.com/mamoc-repos/MAMoC-Client/tree/master/mamoc_

client/src/main/java/jadx

https://play.google.com/apps/publish/
https://github.com/skylot/jadx
https://ibotpeaches.github.io/Apktool/
https://pnfsoftware.com/
https://github.com/mamoc-repos/MAMoC-Client/tree/master/mamoc_client/src/main/java/jadx
https://github.com/mamoc-repos/MAMoC-Client/tree/master/mamoc_client/src/main/java/jadx

96 Design and Implementation

for bigger apps) to an intermediary language called SMALI8, which is akin to
ASM9 language, used to represent the Dalvik VM opcodes as a human-readable
language and then converting the SMALI back to Java code.
pr i va t e void decompi l eAnnotatedClassFi l e s () {

ArrayList<Str ing > classNames = new ArrayList <>() ;

f o r (S t r ing s : ClassIndex . getAnnotatedNames (Of f l oadab l e . c l a s s)) {
classNames . add (s) ;

}

DexDecompiler decompi ler = new DexDecompiler (mContext ,
classNames) ;

decompi ler . s t a r t () ;
}

Listing 5.2 Java code for decompiling the annotated classes

5.5.1.3 Application Refactoring

In the event of mobile applications on the Play Store that are not manually
annotated, the application execution file needs to be examined and partitioned
into offloadable and non-offloadable tasks. This procedure is performed in the
MAMoC Server by first loading the APK file of the application, decompiling
the file to SMALI code, running a static analysis to determine the heavy tasks,
adding needed annotations to the offloadable tasks, and eventually recompiling the
decompiled code into a signed APK to be installed on the mobile devices. A copy
of the decompiled Java source codes for the offloadable tasks are further stored to
the MAMoC Repository for future offloading request calls. Section 5.7.2.4 yields
the implementation details of this process.

5.5.2 Decision Making Phase
Chapter 4 provided an overview of the proposed modelling and algorithms for task
offloading. When the offloadable task is invoked, a decision needs to be carried
out at runtime, whether the task should be offloaded and where to be offloaded.
The offloading decision engine uses profiling and past execution records to deal
with those queries. The offloadable tasks might depend on resource files and can
be run independently in a parallel fashion. Both conditions need to be dealt with
in the decision-making phase.

8https://github.com/JesusFreke/smali/wiki
9https://asm.ow2.io/

https://github.com/JesusFreke/smali/wiki
https://asm.ow2.io/

5.5 Task Execution Workflow 97

5.5.2.1 Profiling

• Network profiler: network communication constitutes one of the largest
sources of energy consumption in a mobile application [107]. According
to an energy profiling study, network communication consumes between
10-50% of the overall energy budget of an ordinary mobile application [106].
A network profiler collects information about wireless connection status and
available bandwidth. This profiler runs asynchronously at runtime so it
can record any shifts in the network such as the state, signal strength, and
bandwidth of Wi-Fi or cellular connections. Because of the mobile nature,
network status may vary periodically (e.g. user moves to different locations).
It also calculates the Round Trip Time (RTT) to the nodes once a successful
connection is established. It measures the throughput by sending packets to
the connected nodes, which eventually estimates the device’s upload rate
[61]. The node then sends back packets that enable it to resolve the device’s
download rate. Updated information about a wireless link is vital for the
decision engine to produce correct offloading decisions [76].

• Device profiler: the hardware operating conditions of the mobile device are
gathered and analysed. This profiler monitors and collects hardware context
data asynchronously at runtime. From the Host Mobile Device, it picks up
the hardware values including the device’s total and available RAM, the
number of CPU cores, and the average and maximum clock of each core. It
also monitors the battery state (charging, not charging) and battery level
(0-100) of the Self Node and MNs.

5.5.3 Execution Phase
The outcome of the task offloading decision making is either local or remote
execution. In the event of local execution, the task is performed on the Host
Mobile Device but since the offloadable tasks still need to be moved to the
framework for decision-making purposes; The framework needs to supervise the
execution. Remote execution can appear in two divergent forms on either Nearby
Mobile Device or Cloudlets and Remote Clouds.

5.5.3.1 Local Execution

This form of execution comprises all the unoffloadable tasks that should be
unconditionally executed on the Host Mobile Device and the offloadable tasks.
The unoffloadable tasks have codes that access local device units such as the

98 Design and Implementation

camera, GPS, accelerometer, or other sensors. No offloading decisions must be
taken for these tasks. However, as for the offloadable entities, the decision engine
which was illustrated previously may execute the task locally if the Performance
Gain PG or Energy Gain EG are less than zero.

5.5.3.2 Remote Execution

According to the outcome of the task offloading engine, the task or its parallelized
subtasks can be executed on either mobile, edge or public nodes. The remote
execution mode is different for the mobile node than to the edge and public nodes
because of their architecture differences.

• Mobile Node it is assumed that the mobile application is already installed on
MNs which are also running on Android OS. MAMoC Client uses Java Reflect
API which allows inspection of classes, interfaces, fields and methods at
runtime without the need of knowing them at compile time. Since MAMoC
sends over the task (class or method) ID. The Mobile Node will execute it
by instantiating a new object and invocation of the class or invoking the
method.

• Edge Node and Public Node: traditional MCC frameworks deploy the
same mobile runtime environment in the form of VMs in the cloud to
support offloading [31] [69] [73]. This process makes it straightforward
to run mobile code on the cloud side. However, to use a VM instance,
the cloud has to install and boot a guest as in the VM, which incurs a
substantial delay. Heavyweight virtual machines deployment for mobile
cloud offloading requires additional resources on the computing host [127].
OS-level virtualization called containers usually imposes less overhead than
VMs, since they share the host with the kernel and do not suffer the overhead
of resource virtualization. MAMoC uses the concept of right-size containers
[80] which is a container that is created on the offloading site for the offloaded
code is of the smallest size possible to run the offloaded computation, based
on computation requirements metadata related to the offloaded code, in
order to optimise resource usage on the site.

After receiving the task ID (IDTi
) from Self Node, the site first checks if the

computation already exists. For the first time, the site cannot locate the
computation internally. Hence, Self Node sends the computation over to be
registered for future procedure calls. The Publish mechanism of Pub/Sub
is used to publish the decompiled source code of the task. After the task

5.5 Task Execution Workflow 99

is executed successfully, the execution result is sent back to Self Node and
the task ID will be registered in the server. For future executions, only the
invocation parameters need to be received from SNs.

The server components can be started once and left running to wait for
mobile client requests. This mechanism is used in [73] where a startup
process starts all the services. Another approach is to wait for the offloading
request to arrive before starting the offloading server as it is used in [123].
The running services get destroyed once the offloading request is served and
the mobile device terminates the connection. For the latter approach, the
waiting time of the offloading request increases and affects the user experience
of the mobile user because of the long server setup delay time. However,
it can be useful for scalability and elasticity by following the just-in-time
approach [54]. MAMoC Server keeps running as detached Docker containers
in the service providers.

5.5.4 Post-execution Phase
After the execution is completed locally or remotely, an analysis is planned and the
execution details are registered in a database for assisting in prospective decision
making of task offloading.

5.5.4.1 Execution Analysis

There is a demand to inspect and interpret execution results in the post-execution
analysis phase to classify data outputs (e.g. whether the execution result make
sense), examine execution traces and data dependencies (the results that were cor-
rupted by this input dataset), debug runs (The reason a step fails), or purely anal-
yse performance (Finding the steps that took the longest time). The execution
analysis entries are immensely dynamic, with the newest measured records receiv-
ing high priority, while the oldest ones are discarded after a while. During the
implementation phase, MAMoC performs comprehensive experiments to determine
the number of entries per task execution to hold in the database.

This analysis is primarily performed for updating the values of Maximum
Local Executions (MaxLE) and Maximum Remote Executions (MaxRE) which
are checkpoint variables in the task offloading decision algorithm as illustrated in
Algorithm 4.1. Initially, the values of checkpoint variables (MaxLE and MaxRE)
are statically set to five. It is necessary to introduce some learning mechanisms to
update those values dynamically. MAMoC uses a simple heuristic to increment
the value by one every time the other execution is less favourable than current

100 Design and Implementation

execution, e.g. incrementing MaxRE by one when remote execution is proven to
be more beneficial than local execution.

5.5.4.2 Helper Database

This is employed to keep a history of all the previous task executions for the decision
engine to utilise it as a supplementary element when the location of task offloading
is decided upon. The local datastore is managed via SQLite, an embedded
SQL database. The SQLite is chosen due to its popularity, light-weightiness
and versatility, which makes it the most widely deployed and widespread SQL
database for mobile development. Even though other database solutions such as
CoucheBase, MongoDB, and Cassandra have a more flexible schema and built-in
synchronisation [42], MAMoC does not require these extra features rather than the
past local and remote executions which are later adopted in the decision-making
process.

The database fields are presented in both Table 5.1 and Table 5.2 collectively
with a brief description. Once a task is executed, the costs consisting of the
execution location, processing time, and energy consumption are recorded in the
database. The stems of analysis are kept in the profile database for the offloading
policy manager to create a dynamic offloading decision on behalf of the user.

Field name Description
IpAddress The IP address of the node
CpuFreq The CPU frequency in MIPS
CpuNum Number of CPU cores
Memory Memory size in Bytes
JoinedDate The timestamp of establishing connection with the node
BatteryLevel Battery level between 1-100
BatteryState True if charging, False otherwise
OffloadingScore Calculated offloading score of the node

Table 5.1 Node table and its fields with their description

5.5 Task Execution Workflow 101

Field name Description
ExecutionID A unique ID of task execution
AppID The unique Android application ID that looks like a Java pack-

age name, such as com.example.myapp. It uniquely identifies
the app on the device and in Play Store.

TaskID It consists of the app ID, package name, and class or method
name, such as uk.ac.standrews.mamoc_demo.textsearch.kmp

ExecutionLocation It is where the task was executed. It can be LOCAL, MOBILE,
EDGE, or PUBLIC

NetworkType Can be one of the following types: MOBILE, WIFI, WIMAX,
ETHERNET, and BLUETOOTH. Obtained using the Android
Network Info API

ExecutionTime Time in nanoseconds (ns) it took to execute the task locally
or remotely. In case of offloading this covers the time spent on
data transmission and the time spent on collecting the result.

CommOverhead Time in nanoseconds (ns) it took to transmit source code or
resource files.

RttSpeed The RTT between the device and the offloading site. Measured
during the offloading process.

ExecutionDate The timestamp in milliseconds when the task was executed.
The entries of the database are sorted in decreasing order based
on this field, to give priority to the most recent executions.

Completed True if task was executed successfully, False otherwise.
Table 5.2 ExecutionHistory table and its fields with their description

102 Design and Implementation

5.6 MAMoC Client
MAMoC Client and programming APIs are built as an Android external library
using Java programming language for Android application developers. For the
sake of easy integration, the library is distributed10 to Bintray JCenter 11 which
is a popular public repository for open source libraries. Gradle12 provides built-in
shortcut methods for the most widely used repositories, including jcenter(). The
build file of Gradle plugin in Android Studio can then simply include the library as
a dependency. Appendix 5.8 provides a longer hands-on tutorial on the integration
of the framework to existing Android projects.

5.6.1 Service Discovery
The service discovery module is initiated by the MAMoC framework once the
application is opened on Self Node. It first connects to the router module in
MAMoC Server to access all the available server manager modules that can execute
the offloadable tasks. Meanwhile, it starts a new thread in the background, which
advertises the service to let the Nearby Mobile Devices of the service and also
discovers the available services as described earlier in Section 5.4.

Notably, the Edge Node can be accessed in two modes:

• Using the Avahi daemon installed on the ENs which advertises the local
service of the Edge Node to the mobile devices over the LAN. In this mode,
the ENs are treated as nearby devices but due to architectural differences
with the Nearby Mobile Device mobile devices, they are still treated as
MAMoC Server service providers.

• Using a pre-allocated IP address of a local router component that is deployed
in a nearby offloading site. This mode works the same way as connecting
with the PNs over the WAN as depicted in Figure 5.6.

A standard user interface is developed to be used by the applications for service
discovery and managing device connections, as shown in Figure 5.6.

10https://bintray.com/dawand/mamoc_client
11https://bintray.com/bintray/jcenter
12https://gradle.org/

https://bintray.com/dawand/mamoc_client
https://bintray.com/bintray/jcenter
https://gradle.org/

5.6 MAMoC Client 103

Fig. 5.6 Service Discovery Android Activity

5.6.1.1 Device to Device

Android provides helper libraries for managing D2D communications. As described
earlier in Section 5.4, the communication with Nearby Mobile Devices can be done
using infrastructural Wi-Fi, where the devices are connected to the same AP using
Network Service Discovery (NSD) or Wi-Fi P2P for direct D2D communications
without being connected to a network. These libraries handle different P2P
computing issues like peer naming, peer and resource discovery, resource-metadata
handling, message routing and resource delivery. It thus provides an infrastructure
to deploy mobile P2P applications over ad-hoc networks.

The implementation details of both techniques are described below:

• Network Service Discovery (NSD): This connection is used when the
devices are connected to the same wireless AP (a.k.a router or WiFi hot
spot). Android NSD allows the Host Mobile Device to identify devices in
the same network that offer the requested services. With NSD, it is possible
to register, discover and connect with the intended service (or other services)
over the network.

104 Design and Implementation

pub l i c c l a s s WiFiP2PSDActivity extends AppCompatActivity implements
WifiP2pManager . Connec t i on In foL i s t ene r {

p r i va t e s t a t i c f i n a l S t r ing SERVICE_INSTANCE = "MAMoC" ;
p r i va t e s t a t i c f i n a l S t r ing SERVICE_TYPE = " _http . _tcp " ;

p r i va t e MobileNode se l fNode ;

p r i va t e void i n i t i a l i z e () {
se l fNode = MamocFramework . g e t In s tance (t h i s) . getSe l fNode () ;
Se rv i c eD i s cove ry s e r v i c e D i s c o v e r y = Serv i c eDi s cove ry .

g e t In s tance (t h i s) ;
s e r v i c e D i s c o v e r y . s t a r tConnec t i onL i s t ene r () ;

wifiP2pManager = (WifiP2pManager) getSystemServ ice (
WIFI_P2P_SERVICE) ;

wif ip2pChannel = wifiP2pManager . i n i t i a l i z e (th i s ,
getMainLooper () , n u l l) ;

s ta r tReg i s t ra t i onAndDiscovery (U t i l s . getPort (t h i s)) ;
}

}

Listing 5.3 WiFiP2P service initialization

The iOS equivalent of Android’s NSD is called MultipeerConnectivity13

library. I used this library for the process of discovering nearby devices run-
ning MacOS (MacBook, iMac) and iOS (iPhone, iPad) which are connected
to the same local network [135]. Similarly, the library uses the concept of
zero configuration network technology [30] which enables devices to advertise
services and to discover what services other nearby devices on the local
network are offering.

• WiFi P2P (Wi-Fi service discovery): This mode does not need an
AP to be in the Wi-Fi range. If the Host Mobile Device is a GO, a list
IP addresses of the Nearby Mobile Device is fetched. Otherwise, the IP
addresses are resolved from GO. Every peer in the group should know the IP
address of GO. The remaining problem is sharing the port it is listening on.
We can prefix the port, then sharing the dynamic port data with clients, and
then clients can share their info and dynamic port. So first communication
happens over the fixed port and after that, the dynamic port data number
is transferred before the regular socket communication.

Wi-Fi Direct is a relatively newer technology which was introduced from the
Android 4.0 version. The Android Wi-Fi Direct interface (WifiP2pManager)

13urlhttps://developer.apple.com/documentation/multipeerconnectivity

5.6 MAMoC Client 105

14 allows developers to discover, request, and connect to peers and provides
listener methods that detect the success or failure of connected and dropped
connections as well as newly discovered peers. The WifiP2pManager API is
asynchronous and responses to requests from an application are on listener
callbacks provided by the application. The application needs to do an initial-
ization with initialize(Context, Looper, WifiP2pManager.ChannelListener)
before doing any P2P operation as depicted in Listing 5.3. Similar to NSD,
the service can be registered and discovered over Wi-Fi direct. For that, we
can use a method of WifiP2pmanager called addLocalService() as depicted
in Listing 5.4.

Fig. 5.7 WiFi P2P Service Discovery Process

The service calls need an ActionListener instance for receiving callbacks
ActionListener#onSuccess or ActionListener#onFailure for updating the
list of discovered MNs. Action callbacks indicate whether the initiation of
the action was a success or a failure. Upon failure, the reason of failure can
be one of ERROR, P2P_UNSUPPORTED or BUSY.

Notably, this type of communication does not use broadcasting techniques
as it works in P2P fashion. Using WifiP2pDnsSdServiceInfo, there is no
connection setup as compared to zero configuration and multicast broadcast
talk/listen. With a broadcast communication, the battery drains faster with
sending constant broadcast messages. With the WiFi P2P connection, once

14https://developer.android.com/guide/topics/connectivity/wifip2p

https://developer.android.com/guide/topics/connectivity/wifip2p

106 Design and Implementation

pr i va t e void s ta r tReg i s t ra t i onAndDiscovery (i n t port) {

Map<Str ing , Str ing > record = new HashMap<Str ing , Str ing >() ;
r ecord . put (" DeviceID " , s e l fNode . getDeviceID ()) ;
r ecord . put (" LocalIP " , s e l fNode . ge t Ip ()) ;
r ecord . put (" PortNumber " , S t r ing . valueOf (port)) ;
r ecord . put (" DeviceStatus " , " a v a i l a b l e ") ;

Wif iP2pDnsSdServiceInfo s e r v i c e = Wif iP2pDnsSdServiceInfo .
newInstance (SERVICE_INSTANCE, SERVICE_TYPE, record) ;

wifiP2pManager . addLoca lServ ice (wif ip2pChannel , s e r v i c e , new
WifiP2pManager . Act i onL i s t ene r () { . . . }) ;

d i s c o v e r S e r v i c e () ;
}

Listing 5.4 Registering local WiFiP2P service

the service is discovered, and the connection is established, it will work at a
similar speed/power-efficient as regular Wi-Fi connections.

5.6.1.2 Device to Server

The communication between the Host Mobile Devices and ENs and PNs service
providers is implemented using WebSocket over TCP. Listing 5.5 depicts the
interface that the Edge Node and Public Node implement in order to establish
the full-duplex WebSocket connections and send messages in both directions.
MAMoC Client hosts a client library that can communicate with the MAMoC
router module and send RPC and Pub/Sub event messages. This will be explained
in more detail in Subsection 5.7.1
pub l i c i n t e r f a c e IWebSocket {

void connect (S t r ing wsUri , IWebSocketConnectionHandler wsHandler
) throws WebSocketException ;

boolean isConnected () ;
void sendMessage (S t r ing payload) ;
void sendMessage (byte [] payload , boolean i sB inary) ;
void sendPing () ;
void sendPong () ;

}

Listing 5.5 The WebSocket interface for managing the edge and public node
connections

5.6 MAMoC Client 107

5.6.2 Code Decompiler
This section describes the process of annotating the heavy tasks to make them
accessible to MAMoC Client devices to perform the offloading process. Since the
offloading can be done in class and method levels, the annotation can be added
to the whole class or a particular method within a class. First, Section 5.6.2.1
investigates the process of annotation indexing and explains the features of
the ClassIndex library that is adopted in MAMoC. In the case of no manual
annotations, the offloadable snippets need to be identified from an app binary.

5.6.2.1 Annotation Indexing

As described in Section 5.5.1.1, the heavy tasks of MAMoC-enabled mobile
applications are annotated with @Offloadable annotation. The annotation has
two boolean optionals of whether the task needs any data to be present at the
remote site before being processed and whether the task is parallelizable.

Traditional classpath scanning is a slow process. Instead, MAMoC replaces it
with compile-time indexing that speeds Java applications bootstrap considerably.
ClassIndex uses annotation processing to generate the index of classes at compile-
time and put it with the rest of the compiled class files. The index is then available
at run-time using the getResource() method which must be implemented by all
classloaders. Section 5.6.2.2 explains the process of decompiling the bytecode
instructions to Java source code to be transferred to the MAMoC Server for
performing code transformation and executing it. Table 5.3 shows the results of
the benchmark comparing ClassIndex with various scanning solutions.

Table 5.3 Annotation indexing library comparisons conducted in [9]

Library Application startup time
Scannotation 15 0:05.11
Reflections 16 0:05.37
Reflections Maven Plugin 17 0:00.52
ClassIndex [9] 0:00.18

Complexity is reduced by annotating classes and methods for possible remote
execution instead of preparing separate versions of code for the mobile device
and the server. The @Offloadable annotation is marked with @IndexAnnotated
meta-annotation. This creates at compile-time an index file in

15https://mvnrepository.com/artifact/org.scannotation/scannotation/1.0.3
16https://github.com/ronmamo/reflections
17https://github.com/ronmamo/reflections-maven

https://mvnrepository.com/artifact/org.scannotation/scannotation/1.0.3
https://github.com/ronmamo/reflections
https://github.com/ronmamo/reflections-maven

108 Design and Implementation

pr i va t e void decompi leDexFi le (F i l e dexInputFi l e) {
JadxDecompiler jadx = new JadxDecompiler () ;
jadx . setOutputDir (getOutputDir (context)) ;
jadx . l o a d F i l e (dexInputFi l e) ;
jadx . saveAnnotatedClassSources (classNames) ;

}

Listing 5.6 decompileDex method that converts a .dex file to Java source code

META-INF/annotations/uk/ac/standrews/mamoc_client/Offloadable directory,
which contains all the annotated classes. The index file can then be accessed by
MAMoC Client at runtime to find the offloadable classes without the need to scan
the classpath.

5.6.2.2 Dex Decompiler

In a traditional Java application, all the Java source files are executed into .class
files, which consist of bytecode instructions to be executed on Java Virtual Machine
(JVM). Since mobile devices are severely constrained in the amount of memory,
processing power, and battery life available, the Android Runtime (ART) is used
which is a more lightweight runtime compared to JVM [33]. ART offers superior
performance to the JVM by performing both Ahead-of-Time and Just-in-Time
compilation. However, ART uses incompatible opcodes, so an additional step is
required, where .class files are converted into a single classes.dex file. The Dalvik
Executable format (DEX)18 file references all the classes or methods used within
an app. All the components of an Android application such as Object, Activity,
and Fragment will be transformed into bytes within a Dex file that can be run as
an Android app.

The DEX format has a limit to the number of classes that can be declared in
a single dex file, so it is essential to check for the existence of classes2.dex file as
well. At some point, Android apps became bigger so Google had to adapt this
format, supporting a secondary .dex file where other classes can be declared. The
implemented tools need to be able to detect the multi-dex files and append them
to the decompilation pipeline.

MAMoC uses Jadx 19 library to decompile the .dex file(s) to Java source code
in the Android application as shown in Listing 5.6. It provides a clean and easy-
to-use API file to be included in the framework for performing the decompilation
process as depicted in Figure 5.8.

18https://source.android.com/devices/tech/dalvik/dex-format.html
19https://github.com/skylot/jadx

https://source.android.com/devices/tech/dalvik/dex-format.html
https://github.com/skylot/jadx

5.6 MAMoC Client 109

Fig. 5.8 Dex decompiler Sequence Diagram

5.6.3 Context Profilers
The hardware figures gathered by the device profiler illustrate the running con-
ditions of the observed mobile device. The device profiler collected information
is supplied to the decision engine when required to aid the offloading decision
making. This profile consists of collecting the total CPU frequency, average CPU
frequency, the number of CPU cores, the total and available memory, and the
battery level and charging state. It reads native system files for getting capability
and usage from “/proc/stat” and “/sys/devices/system/cpu/. . . ” for each CPU
core. The battery profiler uses a combination of Android API and reading native
system files from Android’s BatteryManager API in “/sys/class/power_supply”.

The network profiler collects the network status of the mobile device asyn-
chronously at runtime so that it can report any changes in the background. The

110 Design and Implementation

following network conditions are monitored: cell connection state and its band-
width, WiFi connection state and its bandwidth, the Round Trip Time (RTT) to
the connected nodes (congestion level of each connection), and the signal strength
of cell and WiFi connection. WifiManager class is used for detecting the link
speed of the Wi-Fi connection while TelephonyManager is employed for detecting
the type and speed of the cellular connection (3G or 4G). ConnectivityManager20

Android library class interrogates the state of the network connectivity to alert
applications when network connectivity changes.

In order to avoid the overheads of polling, BroadcastReceiver class is used
which has an onReceive method that receives the Intent containing either the
battery level and state changes or the network state tracking Intent that contains
the active network information. This helps MAMoC monitor changing conditions
only when the network state or the battery level or state has actually changed.

5.6.4 Offloading Decision Engine
The decision engine is the most crucial component in MAMoC Client since an
imprecise decision will lead to extra resource expenditure and wasted battery
consumption. The decision making is highly dependent on the inputs of the other
components including service discovery, context profilers, and database adapter.

The offloading decision making process was modelled and explained in detail
in Chapter 4. As depicted in Figure 5.9 generated using an Android Studio
plugin [121], the decision engine first fetches the connected nodes from the service
discovery in a TreeSet to avoid fetching duplicates through rediscovering them
and keep the order of the nodes from highest to lowest according to their profiling
information. It then fetches the device and network profiling information of the
available nodes to calculate their offloading scores for deciding whether it is worth
offloading. The next step is to fetch the past local and remote execution records
for the invoked task and if more than a node is available for multisite offloading,
multi-criteria decision methods of AHP and fuzzy TOPSIS are employed for
evaluating and ranking the nodes.

20https://developer.android.com/reference/android/net/ConnectivityManager.
html

https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/android/net/ConnectivityManager.html

5.6 MAMoC Client 111

Fig. 5.9 Decision Engine Sequence Diagram

112 Design and Implementation

5.6.5 Deployment Controller
The deployment controller is responsible for communicating with the connected
nodes and manage the remote execution by calling the remote endpoints or
publishing the decompiled source codes and finally receiving the execution results
back. Decision engine either decides to run the task locally or passes the node
with the highest offloading score in the case of single-site offloading or passes the
list of offloading sites and their offloading percentages generated from the MCDM
evaluation in the case of multisite offloading.

Based on the decided execution location(s) from Algorithm 4.1, the following
scenarios occur in order to proceed with the local and remote task executions:

1. Remote execution (single-site offloading)

• If the node is a Mobile Node: as mentioned before in Section 5.2, it is
assumed that the Nearby Mobile Devices are already equipped with
the MAMoC-enabled mobile applications. When an offloadable task is
to be executed, the deployment controller in the Self Node utilises Java
Reflect to dynamically invoke the method run of the offloaded class
instance with the provided parameters. Since the resources are already
bundled with the installed application, there is no need to transfer them
in the pre-execution phase. However, if the task has a dependency on
a resource file, we need to access the appropriate constructor if there
are any necessary parameters passed to it.

• If the node is a Edge Node or a Public Node: the assumption is that the
task ID (IDTi

) of the offloadable task is registered in the offloading site
(by either publishing the source code in the preparation phase described
in ?? or during the application bytecode analysis in the server which
will be explained later in Section 5.7.2.4). The deployment controller
places an RPC call with the IDTi

and the necessary parameters of the
task as shown in Figure 5.10.

2. Remote execution (multisite offloading)

• As shown in Algorithm 4.4, the multi-criteria solver generates a dic-
tionary of execution locations and their offloading percentages. The
deployment controller uses this information to divide the task into a
number of subtasks equal to the number of nodes in the dictionary.

• If one of the nodes is a Mobile Node, the class and method name invo-
cations are similarly performed with Java Reflect but the constructor

5.6 MAMoC Client 113

parameters are going to be set according to the offloading percentage
of that particular Mobile Node.

• If one of the nodes is an Edge Node or a Public Node, the same number
of RPC calls as the subtasks will be fired in a parallel fashion and
subscribe to their results.

• The returned subtask executions need to be collected and merged into
a single execution result as it has happened as a single execution.

3. Local Execution

• Instead of returning the execution of the program to the calling point in
the mobile application, MAMoC performs the local execution through
Java Reflect similar to the remote execution on the MNs. The main
goal of doing this is to monitor the execution environment and store the
execution results in terms of execution time and energy consumption
of the mobile device. The local execution sequence diagram is shown
in Figure 5.11.

Fig. 5.10 Remote execution using RPC and PubSub sequence diagram

114 Design and Implementation

After the execution is performed successfully in the Self Node or the offloading
sites, LocalBroadcastManager21 which is a support package singleton class in
Android library tools is used. This class is an application-wide event bus that
embraces layer violations in the application to enable exchanging events from
different components. The activity which expects execution results and dura-
tion from the framework needs to implement a BroadcastReceiver and register
itself to the LocalBroadcastManager instance. The framework will then use the
sendBroadcast method to broadcast the results of the execution, makespan, and
communication overheads in the case of remote offloading.

Fig. 5.11 Local execution on the host and nearby devices sequence diagram
21https://developer.android.com/reference/android/support/v4/content/

LocalBroadcastManager

https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager

5.6 MAMoC Client 115

pub l i c ArrayList<TaskExecution> getExecut ions (S t r ing taskName ,
boolean Remote) {

ArrayList<TaskExecution> taskExecut ions = new ArrayList <>() ;
Cursor cur so r = db . rawQuery (" s e l e c t ∗ from " + TABLE_OFFLOAD,

n u l l) ;

i n t id = cur so r . getColumnIndex (TASK_ID) ;
i n t l o c a t i o n = cur so r . getColumnIndex (EXEC_LOCATION) ;
i n t networkType = cur so r . getColumnIndex (NETWORK_TYPE) ;
i n t execTime = cur so r . getColumnIndex (EXECUTION_TIME) ;
i n t comm = curso r . getColumnIndex (COMMUNICATION_OVERHEAD) ;
i n t r t t = cur so r . getColumnIndex (RTT_SPEED) ;
i n t o f fDate = cur so r . getColumnIndex (OFFLOAD_DATE) ;
i n t completed = cur so r . getColumnIndex (OFFLOAD_COMPLETE) ;

taskExecut ions . add (. . .) ; // add the f e t ched column indexes to
the a r r a y l i s t

r e turn taskExecut ions ;
}

Listing 5.7 getExecutions method in the client database adapter

ArrayList<TaskExecution> remoteTaskExecutions = framework . dbAdapter .
getExecut ions (taskName , t rue) ;

ArrayList<TaskExecution> loca lTaskExecut ions = framework . dbAdapter .
getExecut ions (taskName , f a l s e) ;

Listing 5.8 Fetching local and remote task executions from the database in the
offloading decision engine module

5.6.6 Database Adapter
The helper database contains a history of all the executed offloadable tasks
that were performed locally or remotely. The deployment controller updates the
statistics of the execution times and communication overhead of the local and
remote task executions to be updated in the database for ensuring accuracy in
the future task offloading events. Listing 5.7 presents the getExecutions helper
method in the database that returns past local and remote executions. All these
previous executions were added to the database in the post-execution phase, as
explained in Subsection 5.5.4.

The decision engine fetches a list of both local and remote executions to be
used in the decision making algorithm, as shown in Listing 5.8.

116 Design and Implementation

5.7 MAMoC Server
MAMoC Server runs on ENs and PNs. It is implemented using Python with Java
code execution support using a JVM interpreter. The three modules of the server
runtime environment include a router, a server manager, and a repository.

In MAMoC-enabled mobile applications, Each task is identified by a unique
ID which will be looked up in the remote server to check if it is previously been
offloaded. All the annotated (offloadable) tasks are indexed and saved in a metafile
during the launch of the application. This allows for easy retrieval of the source
code of the task when it is needed to be sent over to the remote server. This
procedure depends on the offloading service provider. If the offloading execution
location is a nearby mobile device, we will simply use Java Reflect to execute
the task in the connected mobile device. However, if the location selected by the
offloading decision engine is an edge device or a public cloud instance, we need to
retrieve and send over the Java source code of the offloaded task.

5.7.1 MAMoC Router
As the system architectures and the Internet of Things continue to push us towards
distributed logic, we need a mechanism to route the traffic between those various
components. The router works as a communication manager which is deployed on
the MAMoC Router that runs on a separate container than the server manager
as depicted in Figure 5.1.

There are multiple client library and router implementations22 for integrating
WAMP into the client-server applications. MAMoC router uses a custom version
of Crossbar 23 for routing the offloading requests from Host Mobile Devices.
This choice is made due to the fact that this router implementation is done
by the developers of the protocol. It has a well-supported community and
clear documentation for customising the router component. It is the original
implementation of the WAMP which combines RPC with Pub/Sub communication
patterns into a single communication layer. It supports event-based RPC in a
high-throughput and low-latency system. Autobahn 24 is the name of the client
library implementations that are written for multiple languages including Java,
Python, C++, and Javascript. AutobahnPython25 is used in the server manager
module for handling offloading execution events.

22https://wamp-proto.org/implementations.html
23https://crossbar.io
24https://crossbar.io/autobahn/
25https://github.com/crossbario/autobahn-python

https://wamp-proto.org/implementations.html
https://crossbar.io
https://crossbar.io/autobahn/
https://github.com/crossbario/autobahn-python

5.7 MAMoC Server 117

Routers are the core facilities of Crossbar, responsible for routing WAMP
RPC between callers and callees, and routing Pub/Sub events between publishers
and subscribers. This allows a computing node to seamlessly interact with the
local infrastructure available. This mechanism is implemented by establishing a
control channel for command streams and monitoring services based on WebSocket.
WAMP also supports asynchronous transport and delivery system for message-
encapsulated commands inheriting from WebSocket as a sub-protocol. Thus, it
provides a full-duplex TCP communication channel over a single HTTP-based
persistent connection.

5.7.2 Server Manager
This module holds the core components of MAMoC Server for handling the task
remote executions and application refactoring processes.

5.7.2.1 Execution Controller

The main objective of the MAMoC Server is to be able to successfully execute
the received tasks from mobile devices. After the request is validated in MAMoC
router, the request is passed to the execution controller in the server manager
module. As mentioned before, the server manager is bundled with a JVM to
compile and run the Java codes. The server caches the source codes and resources
files that are received from the mobile devices. Data caching is proven to improve
data efficiency and response times in MCC solutions [67]. Thus, the execution
controller first checks if the source code is already available in MAMoC repository
module. Otherwise, the received source code is passed to the code transformer
component described in Section 5.7.2.2.

This component is developed on top of AutobahnPython. Autobahn provides
support for two asynchronous Python libraries, including Twisted26 and Asyncio27.

5.7.2.2 Code Transformer

As described earlier in Subsection 5.6.2, the code decompiler component in MAMoC
Client is responsible for generating the Java source code from the Dalvik Executable
format (DEX) files in the application. Even though the received source code is in
Java format, it cannot be compiled with pure JVM yet. Therefore, this component
statically generates a JVM-compatible Java code for the execution controller.

26https://twistedmatrix.com
27https://docs.python.org/3/library/asyncio.html

https://twistedmatrix.com
https://docs.python.org/3/library/asyncio.html

118 Design and Implementation

Algorithm 5.1 shows the steps taken on the decompiled source code that is
received by the client. Some of the steps involve removing unnecessary code and
adding Java pure codes that are not present on Android. In case the task is
resource-dependent, a Java resource file reading code needs to be added as well.

Algorithm 5.1 Decompiled Android code transformation algorithm in the server
Input: sourceCode, resourceName, parameters
Output: result, duration

1: start ← startTimer()
2: code ← removePackageName(sourceCode)
3: code ← removeAnnotations(code)
4: className ← findClassName(code)
5: code ← addMainMethod(code)
6: if resourceName is not empty then
7: code ← addResourceCode(code)
8: end if
9:

10: result ← executeCode(className, code, parameters)
11: duration ← endTimer() - start
12: return result, duration

Examples of code transformation are provided in Appendix A

5.7.2.3 Status Broadcaster

It was shown previously in Eq. (4.15) and Eq. (4.16) that the computation power
of the ENs and PNs is an essential part of the task offloading decision making. A
lightweight tool called psutil (process and system utilities)28 is used for profiling the
remote servers for computation power, available memory and battery information
and publish it to the subscribed mobile devices.
import p s u t i l
c l a s s S t a t s C o l l e c t o r (ob j e c t) :

@classmethod
de f f e t c h s t a t s (c l s) :

cpu = p s u t i l . cpu_freq () . max ∗ p s u t i l . cpu_count ()
mem = round (p s u t i l . virtual_memory () . t o t a l / 1000000)
bat te ry = p s u t i l . s ensor s_batte ry () . percent

re turn cpu , mem, batte ry

28https://pypi.org/project/psutil/

https://pypi.org/project/psutil/

5.7 MAMoC Server 119

cpu , mem, batte ry = S t a t s C o l l e c t o r . f e t c h s t a t s ()
s e l f . pub l i sh (’ uk . ac . standrews . cs . mamoc . s t a t s ’ , cpu , mem, bat te ry)

Listing 5.9 Fetching and broadcasting server status

5.7.2.4 Application Refactor

An Android application is packaged as an APK (Android Package) file, which
is essentially a ZIP file containing the compiled code, the resources, signature,
manifest and every other file the software needs in order to run on the mobile
devices. One can simply run unzip command and extract the files in the APK file.
It contains three files, including a manifest file AndroidManifest.xml, a resources
index file resources.arsc, and classes.dex file that contains the Dalvik bytecode of
the app as described in Section 5.6.2.2. The APK also includes two assets and
res folders that contain documents, media files, layout XML files, and custom
fonts and styles.

To fetch detailed information about an app without running it, MAMoC uses
an open source tool called AndroGuard [36] to disassemble and decompile Android
apps. Similar to the DexDecompiler component in MAMoC Client, it uses Jadx
to obtain the Java source code from the Dalvik bytecode classes. It is also capable
of decompiling the AndroidManifest file to its original XML format.
apk_l i s t = [. . .]

c l a s s App l i ca t i onRe fac to r :

@classmethod
de f r e f a c t o r (c l s , app_id) :

t i c = time . time ()
download_apk (app_id)
a , d , dx = AnalyzeAPK(’ APK_files /{} . apk ’ . format (app_id))
o f f l o a d b a b l e s = IdentifyAPK . i d e n t i f y (a , dx)
IdentifyAPK . AnnotateOf f loadables (a , o f f l o a d b a b l e s)
sign_apk (a)
time_spent = time . time () − t i c

de f main () :
f o r apk in apk_l i s t :

App l i ca t i onRe fac to r . r e f a c t o r (apk)

Listing 5.10 Application refactoring class in MAMoC server

120 Design and Implementation

We first analyse the bytecode of the application for discovering the parts worth
offloading. The Listing 5.10 is used to iterate the classes and methods. We will
then rewrite the bytecode to implement a special program structure supporting
on-demand offloading, and finally generate two artefacts to be deployed onto
an Android phone and the server, respectively. As the result, two artefacts are
generated: a signed APK file which can be used for future mobile devices to install
the refactored app and the offloadable class files saved in the server and registered
as remote procedures so that the client does not need to publish it before calling
the procedure. Refactoring is transparent to app developers and supports legacy
apps without source code.

There are no official API endpoints for fetching the list of Android na-
tive classes. It is possible to scrape the official Android package web pages
to get a list of the Android native packages. Three three official package
pages are: Android platform packages 29, Android support packages 30, An-
droid wearable packages 31. The retrieved package names are then saved in
three files (android_platform_packages.txt, android_wearable_packages.txt, an-
droid_support_packages.txt) to be read by the classifier.

Decompiling to Java is lossy, meaning the code is probably good enough to get
the gist of what it is doing but not good enough to re-build the APK. An APK
decompiled to Smali with APKTool can be modified (change resources, inject
code, modify code) and then built into a working APK again.

In summary, the refactoring bytecode steps are the following:

1. Download the APK file: the server needs the app ID to download a copy
of the APK file of the mobile application.

2. Decompile the APK file: Using a third-party tool, the APK file can be
decompiled to source code and resource files.

3. Identify offloadables: Checking which classes or methods are offloadable
and which ones are unoffloadable. The unoffloadable classes use special
resources available only on the phone, such as the GUI (Graphic User
Interface) displaying, the camera, the acceleration sensor, and other sensors.
If being offloaded to the server, these native classes cannot work because
the required resources become unavailable.

29https://developer.android.com/reference/packages.html
30https://developer.android.com/reference/android/support/packages.html
31https://developer.android.com/reference/android/support/wearable/

packages.html

https://developer.android.com/reference/packages.html
https://developer.android.com/reference/android/support/packages.html
https://developer.android.com/reference/android/support/wearable/packages.html
https://developer.android.com/reference/android/support/wearable/packages.html

5.7 MAMoC Server 121

4. Annotate the offloadable classes and methods: when the class or the
method is identified as offloadable, an @Offloadable annotation needs to be
added to it.

5. Group and cache the offloadable classes: The Java source code and
bytecode files of the app and the reference resources files, e.g., images,
data files, and jar libs are cached in the MAMoC repository for future task
offloading requests.

6. Generate the new APK file: The refactored Android app will be com-
pressed into an .apk file. It will then be available to mobile phones to install.
A publish message will be sent back to the mobile phone with the link of
installation of the APK file.

5.7.3 MAMoC Repository
This module acts as a storage for the code and resource files that are processed in
the server manager or received from the mobile devices.

The repository caches the following types of files:

• APK Files

The downloaded APK files are cached in the repository in case a new
application refactor is needed in the future.

• Java Files

The Java source code files and bytcode classes are cached in the repository
after the task is registered in the server manager. The future RPC calls
to this task will result in fetching the cached files with the newly passed
parameters.

• Resource Files

The tasks that are resource-dependent need data to be present in the
offloading site. The task includes a hash of the resource file. The cached
file is used for executing the task if the hash is the same as the hash of
the cached file. Otherwise, the server manager asks for new resource files
to be fetched from the mobile device. MAMoC assumes that the resource
files are already present in the offloading sites, so this work is currently not
implemented in the system and left as a future work.

122 Design and Implementation

5.8 Integrating MAMoC Client to Existing Projects
The simplicity and ease of integration of the framework has been the priority in
designing and implementing MAMoC. The client offloading library is made public
to allow mobile application developers to include it in their Gradle file and make
their apps MAMoC ready to start discovering services and offloading tasks.

A simple example of counting prime numbers is used to demonstrate the
steps of integrating MAMoC into an existing Android application. The Android
class PrimeCounter.java, which is written in Java programming language, counts
the number of prime numbers between one and a given number n as shown in
Listing 5.11.
pub l i c c l a s s PrimeCounter {

long n ;

pub l i c PrimeCounter (long n) {
t h i s . n = n ;

}

pub l i c long run () {
i n t count = 0 ;
f o r (i n t number = 2 ; number < n ; number++){

i f (i sPr ime (number)) {
count++;

}
}
return count ;

}

p r i va t e boolean isPr ime (i n t number) {
f o r (i n t i =2; i < (number /2) ; i++){

i f (number % i == 0) {
return f a l s e ; // number i s d i v i s i b l e so i t i s not

prime
}

}
return true ; // number i s prime now

}
}

Listing 5.11 Prime counter Java class example

In order to make the above class compatible with MAMoC offloading library,
the developer needs to follow the steps below:

5.8 Integrating MAMoC Client to Existing Projects 123

1. Include the MAMoC client32 in the build.gradle file of the Android app
module:

dependencies implementation ’uk.ac.standrews.cs:mamoc_client:0.14’

2. Add the @offloadable annotation to the class. If the class needs input files,
set resourceDependent option to true. If the task can be independently
parallelized into subtasks, set parallelizable option to true.
import uk . ac . standrews . cs . mamoc_client . Annotation . O f f l oadab l e ;

@Off loadable (resourceDependent = f a l s e , p a r a l l e l i z a b l e = f a l s e)
pub l i c c l a s s PrimeCounter {
. . .

Listing 5.12 @Offloadable interface to annotate the compute-intensive tasks

3. In order to allow calls for the offloadable class, an Activity can be created
to contain the calling method of the class.

4. The framework needs to be initialized before calling the offloadable tasks.
Listing 5.13 create a singleton of the MamocFramework class which works as
a central manager for all the other components in the framework. This code
can be added to the Application.java class or in the onCreate method of the
Activity to get an instance of the framework and initialize its components.
mamocFramework = MamocFramework . g e t In s tance (t h i s) ;
mamocFramework . s t a r t () ;

Listing 5.13 Initializing the MAMoC framework

5. Since MAMoC broadcasts the results of the execution to the application,
the activity or the calling class of the offloadable task has to register the
local broadcast object to receive the results, duration, and communication
overheads of the task execution as shown in Listing 5.14.
St r ing OFFLOADING_RESULT_SUB = " uk . ac . standrews . cs . mamoc .

o f f l o a d i n g r e s u l t . " + PrimeCounter . c l a s s . getName () ;
LocalBroadcastManager . g e t In s tance (t h i s) . r e g i s t e r R e c e i v e r (

mMessageReceiver , new I n t e n t F i l t e r (OFFLOADING_RESULT_SUB)) ;

p ro tec ted BroadcastRece iver mMessageReceiver = new
BroadcastRece iver () {
@Override

32https://bintray.com/dawand/mamoc_client

124 Design and Implementation

pub l i c void onReceive (Context context , In tent i n t e n t) {
St r ing r e s u l t = i n t e n t . ge tSt r ingExtra (" r e s u l t ") ;
Double durat ion = i n t e n t . getDoubleExtra (" durat ion " ,

0 . 0) ;
Double overhead = i n t e n t . getDoubleExtra (" overhead " ,

0 . 0) ;
. . .

}
} ;

Listing 5.14 Local broadcast registration for receiving the offloaded task
execution result

6. Finally, the task name and any necessary parameters can be passed to the
framework with the option to specify the location of the execution (LOCAL:
Locally, NEARBY : on a nearby mobile device, EDGE: on an edge node,
PUBLIC_CLOUD: on a public cloud instance, or DYNAMIC : let MAMoC
decide the execution location). The default option is DYNAMIC.
St r ing taskName = PrimeCounter . c l a s s . getName () ;
long n = 100000;
mamocFramework . execute (Execut ionLocat ion .DYNAMIC, taskName , n) ;

Listing 5.15 Executing the task by specifying the execution location

In order to create a user facing activity with all the offloading scenario options,
an example of SearchActivity.java on MAMoC-Demo repository [/src/main/-
java/uk/ac/standrews/cs/mamoc_demo/SearchText/SearchActivity.java] can
be adapted. If there are more activities in the same application, a base
activity can be used to work as a parent class for all the activities similar to
DemoBaseActivity.java [src/main/java/uk/ac/standrews/cs/
mamoc_demo/DemoBaseActivity.java] which includes the common methods
used by the activities in performing the offloading operations and listening
to local and remote executions performed by MAMoC.

5.9 Summary 125

5.9 Summary
This chapter provided an overview of MAMoC system and its architectural
design. The proposed MCO system comprises MAMoC Client and MAMoC
Server with each of them involving many loosely coupled services that interact
with each other in order to perform supported features. Section 5.2 specified
the assumptions in terms of communication and execution prospects in order
for MAMoC to behave as expected. A concise summary of each module and its
corresponding components are presented in Section 5.3. The secured interaction
between components is achieved using the communication mechanisms depicted
in Section 5.4. To understand the execution life cycle of the offloadable tasks
on MAMoC-enabled mobile applications, Section 5.5 presented the four phases
starting from the preparation phase until the return of the result of the task
execution.

The overall implementation corresponds to the architectural design discussed
in the first part of this chapter for both the client and server components. The
implementation is intended to meet the requirements stated in the previous chapter.
MAMoC is unique in its loosely decoupling of the components in both the client
and server-side modules. Furthermore, MAMoC exposes a novel programming
model which allows data-rich and compute-intensive tasks in mobile devices to be
transparently offloaded. These strengths, amongst others, make MAMoC an ideal
candidate for mobile cloud offloading and a suitable replacement. The subsequent
chapter tests different components and analyses the execution results.

Chapter 6

Experimental Evaluation

6.1 Overview
The main goals of the proposed MAMoC framework are to allow mobile application
developers to achieve a transparent automated offloading to multiple destination
clouds and device dynamic changes over the life cycle of execution of an application.
MAMoC has been designed to improve the execution time of mobile apps through
better offload decision making. This results in reduced energy consumption of the
local device and improved responsiveness of its applications.

This chapter describes a series of experiments that were conducted to exercise
the proposed methodology and validate the measurements. Four different sets of
experiments are conducted to thoroughly evaluate the different components of the
framework. Subsection 6.1.1 describes the process of provisioning and deploying
the participating nodes in the evaluation testbeds.

Section 6.2 includes the first experiment to evaluate the performance of the
offloading decision algorithm used in MAMoC decision engine. The completion
time and energy consumption of the tasks are measured locally or remotely with
different offloading sites and an external offloading system. Then, Section 6.3
describes the task partitioning mechanism based on the site offloading scores used
for parallizable tasks that are both data and compute-intensive with different
offloading scenarios. Section 6.4 demonstrates the MCDM approach described in
Section 4.5 earlier that is used when multiple criteria rather than just execution
speed are considered including bandwidth, availability, security and price of
the offloading sites. Both single decision making and group decision making
approaches are evaluated with extra offloading sites. Finally, Section 6.5 evaluates
the application refactoring component in MAMoC Server for parsing and analysing
APKs to identify the offloadable tasks and transparently annotate them.

128 Experimental Evaluation

Fig. 6.1 Mobile Ad-hoc Cloud devices connected through WiFi-Direct

Each evaluation section contains results and analysis subsections to discuss the
results attained from running the tests. The experiments are used to empirically
evaluate the offloading model and methodology. In some cases, precise analytical
models are presented and explained, accompanied by numerical results showing
concrete figures of the achievable gains. Section 6.7 will summarise the overall
results and list some limitations with the framework and the evaluation outcomes.

6.1.1 Setup and Deployment
MAMoC-Demo1 Android mobile application is developed to contain the offloadable
tasks which are employed for the experiments. This application is supported by
the MAMoC Client offloading library, which includes the necessary client-side
components of the framework. The application is installed on both mobile devices
for working as both offloading host and service provider in the form of D2D
offloading.

For the edge server used as a Cloudlet, a VM is installed on the KVM hypervisor
on our school server with the following command:

1https://github.com/mamoc-repos/MAMoC-Demo

https://github.com/mamoc-repos/MAMoC-Demo

6.1 Overview 129

virt-install --connect qemu:///session --os-variant=ubuntu17.04 --network
default --network bridge=br0 --name EdgeServer --ram=16384 --vcpus=8
--cpu host-passthrough --disk pool=default,size=32 --rng /dev/random
--location "http://archive.ubuntu.com/ubuntu/dists/bionic/main/installer-
amd64/"

Since the servers cannot be accessed off-campus, a reverse proxy technique
is used to provide access to the server even if the mobile device is not currently
connected to CS network. The Websocket connection can be verified through the
following curl command:

curl --include --no-buffer --header "Connection: Upgrade" --header "Up-
grade: websocket" https://djs21.host.cs.st-andrews.ac.uk/offload/ws/

The public cloud node is an AWS c4.4xlarge instance type. We chose the
AWS region (London) with an average latency of 27ms from our school network to
deploy the instance2. The instance is launched with a pre-booting script (called
user data on AWS console) shown below:

#!/bin/bash
sudo yum update -y
sudo amazon-linux-extras install docker -y
sudo systemctl start docker
sudo usermod -aG docker ec2-user
docker pull dawan/mamoc_router
docker run -itd --name "mamoc-router" -p 8080:8080 dawan/mamoc_router
docker pull dawan/mamoc_server
docker run -itd --name "mamoc-server" --network="host" dawan/-
mamoc_server

The energy and power consumption data are derived from direct measurement
of the Android device (Nexus 7). More specifically, Qualcomm’s Android app,
Trepn profiler was used for profiling. All the benchmark experimental results
resented here are with Deltas enabled. When profiling with Deltas enabled the
app profiles (collects power data) for the entire system for a baselining interval and

2https://www.cloudping.info/

https://www.cloudping.info/

130 Experimental Evaluation

then subtracts the average value of power, so obtained, from all subsequent raw
values. All the experiments were conducted with a maximum possible baselining
period of 30 seconds with a wake lock for the entire period of profiling. The power
profiles of the application were saved as CSV files, which were then processed
offline to compute the energy consumed. Studies report that software tools such
as the Trepn Profiler [98] used here indicate they can be as accurate as methods
based on external hardware measurement devices such as the Monsoon power
meter [94] but at a much lower cost3.

6.2 Offloading Decision Algorithm Evaluation
This section evaluates the offloading decision algorithm listed in Algorithm 4.1 and
explained in detail in Chapter 4. The experiments have been carried out through
a real-world testbed deployment described in Subsection 6.2.1. The MAMoC-
enabled demo application, which includes all the offloadable tasks, is described
in Subsection 6.2.2. Then, Subsection 6.2.3 discusses the results of executing
the tasks in terms of the completion time of the tasks and energy consumption
of the host mobile device. An external offloading library called ULOOF [96] is
also used to compare the results of running the demo applications as shown in
Subsection 6.2.4.

This experiment was carried out as part of our published paper [137] in which
the same offloadable tasks in the demo application and experimental methodologies
were used.

6.2.1 Experimental Environment
This experiment considers a scenario where a mobile app running on the host
mobile device (Self Node) is associated with a nearby mobile device as Mobile
Node, an edge server as Edge Node deployed in LAN, and a public cloud instance
as Public Node to improve energy and performance on the users’ devices. This
test is performed on two stock Android mobile devices. For a slightly older and a
lower-end device, a Nexus 7 tablet released in 2013 with a Quad-core 1.5 GHz
CPU and 2GB of RAM as a Self Node; For a high-end mobile device, a Google
Pixel phone with a Quad-core 2.15 GHz CPU and 4GB of RAM is used as a
Mobile Node. The detailed specifications of the testbed devices are shown in
Table 6.1.

3https://mostly-tech.com/2015/05/28/

https://mostly-tech.com/2015/05/28/

6.2 Offloading Decision Algorithm Evaluation 131

Node CPU
(in GHz)

RAM
(in
GB)

OS Location

Nexus 7 1.3 (Dual) 1 Android 6.0
(Marshamallow)

St Andrews, UK

Pixel 2.15 (Quad) 2 Android 9.0 (Pie) St Andrews, UK
Macbook
Pro

2.5 (Quad) 16 Mac OS 10.13 St Andrews, UK

c5.4xlarge 3.0 (16-core) 64 Ubuntu Server 18.04 London, UK
Table 6.1 Device specifications for the offloading decision algorithm evaluation

6.2.2 Demo Application
The aforementioned application includes the following tasks:

• Text Search: It allows a user to enter a keyword and select a file size
from (small, medium, and large) to find the occurrences of the word in the
file. Knuth-Morris-Pratt string searching algorithm [72] is used. This is an
example of an embarrassingly parallel task, since it can be independently
run on multiple nodes; Hence, the parallelizable annotation optional value
is set to true. This was demonstrated in the previous experiment. The
external node that performs a full or partial search should have access to the
text file so the file needs to be transferred over hence the resourceDependent
is also set to true. The entered keyword in the mobile device by the user
also needs to be sent over as a parameter to the remote resource.

• Quick sort: Quicksort algorithm is used as the sorting algorithm to sort
the words of a text file. The mobile device or the service provider first needs
to fetch the content of the text file and apply the sorting algorithm to the
list of space-separated words. It does not require any extra parameters to
be sent from the host mobile device.

• N-Queens: The task is to enumerate the placements of all N valid queens
on an N x N chessboard such that no queen is in the range of another. 6
different N value tests from N = 8 to N = 13 are used for the lower and
higher computation intensity of the task. It does not depend on any external
resource, so only the N (number of queens) parameter needs to be sent over
in all the offloading scenarios.

Text search and sorting examples are data-dependent. Three common files
with different sizes are used. The large text file consists of 1,095,649 words, the

132 Experimental Evaluation

medium text file contains 316,323 words, and the small text file contains 39,799
words. However, the files are not partitioned in this evaluation since all the
executions are done in a non-parallel fashion. The files are stored in the mobile
application running on the Host Mobile Device and they are published to the
offloading sites with the first offloading request and cached in MAMoC repository
in the MAMoC Server for future requests assuming there will be no changes in
the content of the files.

These selected tasks are commonly used in real-world applications in the
literature [130] which surveys the benchmarking applications used in MCC research
works. GNU Grep 4 is a program that searches through a file for lines which
contains a given keyword. The I/O-bound module in Grep finds desired lines in
a file; the CPU-bound module in Grep transfers keywords and file names to the
I/O-bound module. Word Count in GNU Coreutils 5 counts the number of words
in a set of files. In the next evaluation set, our framework partitions the text file
similar to a word count application into an I/O-bound module that calculates
word occurrences in one file, and a CPU-bound module that sums the occurrences
up.

GNU core utilities also contains a sort application along with many other
programs. The sort application uses merge sort which sorts the lines of a text
file in alphabetical order. Similar to this, our sorting task treats the entire sort
application as an offloaded I/O bound module that receives a file name and stores
sorted text in a file.

More real-world applications are discussed in [130] that categorises them into
imaging tools such as face identification and recognition and OCR, mathematical
tools such as Linkpack, sorting algorithms, and Fibonacci, games such as chess,
and word processing applications . Similar to our approach, word count and sort
examples are used in [156] with different input sizes to evaluate their completion
time and energy consumption in local and remote execution scenarios. N-Queens
is a common CPU benchmarking tool used in multiple research works in the
literature including [73], [74], and [46].

6.2.3 Results and Analysis
The three example tasks in the demo application are executed 30 times each
and plotted an average for both the completion time in seconds and energy
consumption in Joules. The Maximum Local Executions (MaxLE) and Maximum

4http://www.gnu.org/software/grep/
5http://www.gnu.org/software/coreutils/

http://www.gnu.org/software/grep/
http://www.gnu.org/software/coreutils/

6.2 Offloading Decision Algorithm Evaluation 133

(a) Text search completion time (b) Text search energy consumption

(c) Quick sort completion time (d) Quick sort energy consumption

(e) N-Queens completion time (f) N-Queens energy consumption

Fig. 6.2 The demo application task execution results in the offloading decision
algorithm evaluation

134 Experimental Evaluation

Remote Executions (MaxRE) execution checkpoint variables are key points in
deciding to perform a remote execution or fall back to local execution as shown in
Algorithm 4.1. The gains in response time and energy obtained by using MAMoC
are shown in Figure 6.2. The proposed multi-criteria solver algorithm then selects
the offloading site after performing the AHP and fuzzy TOPSIS methods listed in
Algorithm 4.4. A detailed MCDM evaluation is left for the next set of evaluation
where both the single decision making that is used for this evaluation and group
decision making tests will be conducted.

6.2.3.1 Completion Time

Completion time of the offloading task to a remote node contains communication
time in the wireless network and computation time in the offloading site. As the
task data size (DTTi

) increases, the communication time and computation time are
increasing. From Figure 6.2a, it can be observed that in terms of total completion
time, the local execution is preferable for a small text file but not in the case of
medium or large text files. The minimum completion time for medium and large
text file scenarios was when the task was offloaded to the nearby mobile device
due to low transmission overhead and higher computation capabilities. As shown
earlier in Algorithm 4.1, MAMoC checks if the task has been executed previously
from the database entries of that task and its configurations. In this step, a simple
heuristic is applied to check if the task has been executed for 5 times in a row in
the same location (MaxLE%5 == 0), e.g. edge, then MAMoC decides to run it
on the other site, e.g. locally. By doing this, there is a mechanism to compare the
executions and figure out if the task performs better locally for small input values
and if for larger input values it is more convenient to offload its execution to the
remote site. Similarly, in the Quicksort example in Figure 6.2c, it can be noted
that the edge server and public cloud instance have shorter completion times. A
similar pattern can be concluded in the N-Queens example in Figure 6.2e.

6.2.3.2 Energy Consumption

This represents the energy consumed by the host mobile device when the task is
executed locally or remotely. Power estimation is dependent on the frequency and
the load of each CPU core, the Graphics Processing Unit, and the brightness of
the screen. Energy consumption for both computation and communication [16]
are recorded during the execution of the task.

The two methodologies for measuring the energy consumption of mobile
devices are hardware and software solutions [55]. Monsoon [94] is a well-known

6.2 Offloading Decision Algorithm Evaluation 135

power monitor used in many mobile computation offloading systems. There are
a good deal of software-based mobile device power modelling and analysis tools
[52][160][100] that are used in the mobile computation offloading literature. Trepn
Profiler [98] is an on-device standalone profiling tool that displays an overlay
UI with real-time graphs for CPU loads and battery data. App-specific power
consumption and utilization can be saved in a CSV file in the mobile device. The
file can then be exported to a desktop computer for offline analysis. The energy
consumption figures are generated using this approach. One of the concerns of
this profiler is that it only works on Snapdragon chipset-based Android devices
powered with special component-wise sense resistors and power management IC.
In a survey on software energy profilers [57], it is shown that Trepn profiler can
achieve up to 99% accuracy against the power measurement results with the
external devices.

Figure 6.2b, Figure 6.2d, and Figure 6.2f depict the energy consumption
variance with the task size. It is observed that the proposed scheme outperforms
local computing and full offloading to the public cloud server. In the meantime,
the offloading method gets a better result, especially when the task size becomes
larger. Therefore, for large computing tasks, the algorithm prefers to offload large
partial computation tasks to the more powerful sites to reduce mobile consumption.
The full offloading method is expected to have better performance than local
computing on energy consumption. Since the proposed approach considers the
trade-off between the advantages of local computing and full offloading methods, it
reduces energy consumption in total.

It can also be noted that in some scenario executions, MAMoC has a longer
average completion time and energy consumption than a particular offloading site.
Nonetheless, in the long run, it can adapt to the dynamic environment changes
and make better decision making than always selecting local execution or full
offloading to a single site.

6.2.4 Comparative Evaluation
In this section, the performance of MAMoC will be compared to an external mobile
computation offloading framework called ULOOF (User-Level Online Offloading
Framework) [96].

Similar to MAMoC, ULOOF uses an offloading decision engine to decide
whether a method should be offloaded or executed locally without modifying
the mobile device’s operating system. The networking and device profilers are
also monitoring changes in the Host Mobile Device battery status and network

136 Experimental Evaluation

connection. @OffloadCandidate annotation is used to identify the offloadable
tasks. The decision engine always offloads the first two executions of a task if the
offloading is enabled and the device is connected to an offloading server. It will
then fall back to local execution for the second two executions. The decision to
offload will then be taken according to the mean values of the local and remote
execution times. To accommodate message communications between the mobile
device and offloading server, it uses Kryo6 which is a popular binary serialization
library to transfer the offloaded method and their arguments.

The source code for the offloading library and offloading server (which is also
run on Nearby Mobile Devices) is available on Github7. The source code had some
issues and many segments of the code were commented out. I modified some of
the issues in the framework without changing the decision engine logic. In order
to setup the comparative evaluation testbed, I performed the following necessary
changes to ULOOF:

• The framework only worked when a server was already connected. It now
falls back to local execution when the connection to offloading server is not
available.

• The network profiler used to measure round trip times even when there is
no connected server. This is changed to only calling getRTT() if the server
is available.

• Adding three new tasks (explored in the previous subsection) along with
the original Fibonacci code. This also include updating the user interface
components to connect them to the list of input sizes for automating the
execution of the different benchmarking tasks.

ULOOF already contains a benchmarking test of calculating Fibonacci. This
method is tested with different arguments including sending the method a single
integer value or a list of integer values. I have added the three demo applications to
their testing application as shown in Figure 6.3a. The Fibonacci code is also added
to our testing application to compare results of all the four benchmarking results.
The main activity user interface is shown for the MAMoC demo application in
Figure 6.3b.

6https://github.com/EsotericSoftware/kryo
7https://github.com/ULOOF-Framework/ULOOF

https://github.com/EsotericSoftware/kryo
https://github.com/ULOOF-Framework/ULOOF

6.2 Offloading Decision Algorithm Evaluation 137

(a) ULOOF demo application main interface (b) MAMoC demo application main interface

Fig. 6.3 Demo applications of both MAMoC and ULOOF for conducting the
comparative evaluation

(a) Text search completion time (b) Quick sort completion time

(c) N-Queens completion time (d) Fibonacci completion time

Fig. 6.4 Comparative evaluation results for the demo applications in local, MAMoC,
and ULOOF executions

138 Experimental Evaluation

Fig. 6.5 Incremental comparison between ULOOF and MAMoC completion times
for text search and sorting tasks

ULOOF’s offloading decision engine always offloads the first two executions and
executes the second two executions locally. It will then compare the mean times of
local and remote execution times and make offloading decisions accordingly. The
experiments are run 10 times and an average of the completion times is calculated
for each scenario.

It can be noticed from the Figure 6.4a that the local execution only performs
well under approximately 25,000 words where a decision engine can outperform it.
This was also observed in the text search evaluation in the previous section. The
same hypothesis holds true for other tasks shown in Figure 6.4. The difference in
completion times between ULOOF and MAMoC starts to appear after the file
size gets larger where in the largest file size MAMoC performs 15% better than
ULOOF as shown in Figure 6.5.

6.3 Task Partitioning Evaluation 139

6.3 Task Partitioning Evaluation
As described in Chapter 3, partitioning applications to local and remote parts is
one of the most researched topics in multisite offloading studies. While some works
study the partitioning of the whole application to local and remote parts, some
perform the partitioning at the finer-grained level. In this section, the example
task of text search is employed as a parallizable and resource-dependent task for
evaluating it in both single-site and multisite scenarios.

6.3.1 Experimental Environment
The testbed for this experiment consists of two mobile devices (a Nexus 7 and a
Google Pixel phone), one edge server, and three public cloud instance types. The
hardware specifications are shown in Table 6.2. All the experiments are performed
in the Jack Cole building in the School of Computer Science at the University
of St Andrews. The mobile devices are connected to “CS” network. The edge
server is running as a VM in a server with dual quad-core Xeon processors (Intel
Xeon E5645 @2.40GHz). For the remote cloud instances, three different Amazon
Web Services instance types are used: small (t2.micro), medium (c4.xLarge), and
large (c4.2xlarge). The two phones will be running the mobile application built
on top of MAMoC Client while the edge server and public cloud instances will be
running the containers of the MAMoC Server modules.

Node CPU
(in GHz)

RAM
(in
GB)

OS Location

Nexus 7 1.3 (Dual) 1 Android 6.0
(Marshamallow)

St Andrews, UK

Pixel 2.15 (Quad) 2 Android 9.0 (Pie) St Andrews, UK
Cloudlet 2.4 (Quad) 16 Ubuntu Server

17.04 LTS
St Andrews, UK

Cloud (small) 2.4 (Single) 1 Amazon Linux 2 8 London, UK
Cloud (medium) 2.8 (Quad) 7.5 Amazon Linux 2 London, UK
Cloud (large) 2.8 (Octa) 15 Amazon Linux 2 London, UK
Table 6.2 Experimental environment device specifications for the offloading score
evaluation

8https://aws.amazon.com/amazon-linux-2/

https://aws.amazon.com/amazon-linux-2/

140 Experimental Evaluation

The mobile application which is used to test the performance of the framework
and showcase the different execution scenarios contains a Knuth-Morris-Pratt
searching algorithm [72] to be performed on three different size text files. This
task is considered both data-intensive and compute-intensive for lower-end mobile
devices. Three text file with different sizes and the number of words are used.
The large text file consists of 4,382,596 words, the medium text file contains
1,266,492 words, and the small text file contains 318,392 words. The files are
stored in the mobile application running on the Host Mobile Device and they are
transferred to the offloading sites as a payload with each offloading request. This
experiment measures the task completion time (MTi

) on both the host mobile
device in local execution and the offloading sites in remote execution modes. The
application is executed in four different modes: local execution on the Self Node,
on a nearby mobile device (Mobile Node), on a cloudlet server (Edge Node),
and on public cloud instances with three different server configurations (Public
Node). Four offloading scenarios are used: full offloading and two types of partial
offloading (workload sharing in a parallel manner) with different configurations.
Each execution was repeated 30 times, such that averages could be calculated for
more accurate results.

6.3.2 Offloading Scenarios
MAMoC enhances the offloading process by considering the parallel execution of
the application’s independent tasks in the local device and offloading sites. In all
the scenarios, the Nexus 7 device is the Self Node and the rest of the nodes are
service providers (offloading sites) with the Pixel being the Mobile Node, the edge
server acting as Edge Node and the public cloud instances as PNs. The offloading
scenarios are described in the following subsections.

6.3.2.1 Full offloading

In full offloading mode, the execution is performed at the offloading site and the
final result is returned to Host Mobile Device. Conversely, the partial offloading
mode only sends a part of the execution over to the site and performs the rest
of the execution itself as can be observed in the other two scenarios. After the
results are received, they are merged and stored in the mobile device.

6.3 Task Partitioning Evaluation 141

Fig. 6.6 Full offloading: the whole computation and payload are offloaded to the
offloading site

MAMoC is specifically designed to support partial offloading in a parallel
multisite fashion. Nonetheless, we wanted to observe the completion times of full
offloading executions and compare them to the decision engine results. The full
offloading scenario is performed on each offloading site separately using the three
text files. Figure 6.6 shows the total completion time of running the application
with different text file sizes. As it can be observed later, most of the completion
time is the communication overhead that occurs during the transmission of the
necessary data (the text file content) from the mobile device to the offloading
sites.

6.3.2.2 Partial offloading

The first set of partial offloading experiments are performed with no help from the
MAMoC decision engine. The tasks are equally distributed among the connected
nodes. In other words, if there is only one available offloading site, the workload
is divided into two equivalent halves and distributed to them for local and remote
executions. Both devices then execute the workload in a parallel fashion. The local
result and the result returned from the site are then merged and stored locally.
The results of running the same set of workloads as the previous experiment are
displayed in Figure 6.7.

142 Experimental Evaluation

Fig. 6.7 Partial Offloading (equal task distribution) - Local mobile device executes
50% of the task while the remaining 50% is offloaded

6.3.2.3 Partial offloading with the decision engine support

The decision engine uses the offloading scores calculated in the models presented
earlier to calculate the percentage of the task that should be offloaded to any
particular offloading site. The offloading scores of the local device and the
offloading sites are investigated by the decision engine for the task partitioning
process. In the case of offloading score being less than zero, no computation is
offloaded to that offloading site. The standardized and the process of calculating
offloading scores are demonstrated in Table 6.3.

6.3 Task Partitioning Evaluation 143

Mobile Cloudlet Cloud Local AVG STD
B 2.448 3.245 3.657 1.543 2.723 0.933
St. B -0.295 0.559 1.001 -1.265
CP 8.600 9.600 19.200 2.600 10.000 6.868
St. CP -0.204 -0.058 1.339 -1.077
RTT-small 0.605 0.703 0.949 - 0.752 0.177
St. RTT-small -0.831 -0.278 1.110 -
RTT-medium 2.860 3.040 5.490 - 2.848 2.246
St. RTT-medium 0.006 0.086 1.177 -
RTT-large 4.730 5.460 11.240 - 5.358 4.608
St. RTT-large -0.136 0.022 1.276 -
OS-small 0.333 0.779 1.230 -2.342
OS-medium -0.504 0.415 1.163 -2.342
OS-large -0.363 0.479 1.064 -2.342
OffPerc-small 14.19% 33.26% 52.53% 0%
OffPerc-medium 0% 26.29% 73.71% 0%
OffPerc-large 0% 31.03% 68.96% 0%

Table 6.3 Calculating offloading scores of the nodes for the task partitioning
evaluation

The task partitioning percentage and completion times of partitioned tasks
for multi-site offloading scenario are displayed in Figure 6.8a and Figure 6.8b
accordingly. It is worth noting that only the large instance type of the public
cloud node is used along with a cloudlet and a nearby mobile device as offloading
sites in the multisite offloading scenario.

6.3.3 Results and Analysis
It is already shown in the literature that offloading does not always benefit the
lower-end devices [77]. In the first execution scenario, the whole text file has to
be transferred to the offloading destination to perform the search operation in the
corresponding computation device. In the results shown in our work in [136] as
shown in Figure 6.10, despite few millisecond performance gains in the case of
the small text file, local execution was preferred to full offloading for medium and
large text files. However, in this new testbed, full offloading is preferred in all the
scenarios with offloading to the nearby mobile device being the best for small and
large text files while the cloudlet performs the best for the medium text file.

144 Experimental Evaluation

In the results of [136], the partial offloading with equal partitioning of tasks
among the local and external devices perform better in terms of reducing the
overall network overhead occurrence in the previous execution scenario. However,
because of the high local execution time of the host device in this testbed, the
equal partitioning approach only increases the total completion time in all the
scenarios. We also presented single-site partial offloading (where the task is meant
to be executed locally and a single offloading site) that produced better results
than equal task distribution scenario in all the offloading modes. In this evaluation,
that was not performed since the offloading score of the host device was below zero
so the results would be the same as full offloading to that particular offloading
site.

(a) Multisite partial offloading - Task parti-
tion percentage

(b) Multisite partial offloading - Total com-
pletion time

Fig. 6.8 Multisite partial offloading evaluation results

Finally, for the partial offloading with MAMoC decision engine support, it
can be observed that no partitions are allocated to the host device due to its
offloading score being below zero. For the small text file, the nearby mobile device,
cloudlet, and the cloud nodes have distributively executed the task. The total
completion time is not as good as some full offloading completion times but still
performs better than the equal partitioning scenario. For the medium text file,
the task is only partitioned to the cloudlet and cloud nodes, which similarly does
not produce a lower completion time than the full offloading scenarios. However,
for the large text file, the multisite approach performs better than all the full
offloading scenarios including the minimum completion time on the nearby mobile
device (6.616 vs 7.471).

6.3 Task Partitioning Evaluation 145

Fig. 6.9 The task partitioning evaluation results

For an overall reference of the results including the computation and commu-
nication breakdowns of the remote executions, a complete set of results of all the
experiments are shown in Figure 6.9. It should be noted that this evaluation set is
also demonstrated in our published paper [136] and presented in Figure 6.10. The
difference between them is in the mobile platform choice. While the framework in
the paper was implemented for iOS mobile devices9. Similar environments and the
same offloading scenarios are performed again on the new MAMoC implementation
for the Android platform. Because of the changes in the devices in the testbed,
different results are generated with the results shown in the paper.

9https://github.com/mamoc-repos/MAMoC-iOS

https://github.com/mamoc-repos/MAMoC-iOS

146 Experimental Evaluation

(a) Full offloading (b) Partial offloading with decision engine

(c) Multisite offloading completion times (d) Multisite task allocation percentage

(e) The task partitioning evaluation results

Fig. 6.10 The reported results from [136]

6.4 MCDM Evaluations 147

6.4 MCDM Evaluations
This section provides a detailed MCDM evaluation based on the models developed
in Section 4.5 in Chapter 4. As shown in the previous evaluation set of Section 6.2,
the offloading site selection is performed by the AHP and fuzzy TOPSIS method-
ologies. Subsection 6.4.1 demonstrates the results of the single decision maker,
which is used in the previous evaluation. Then, Subsection 6.4.2 demonstrates an
example of group decision making based on the five DMs that were presented in
Subsection 4.5.2.

Criteria Condition Fuzzy value

Bandwidth

RTT < 20 VH
20 < RTT < 50 H
50 < RTT < 100 G
100 < RTT < 200 L

RTT > 200 VL

Speed

CP > (CPSN * 3) VH
CP > (CPSN * 2) H

CP > CPSN G
CP == CPSN L
CP < CPSN VL

Availability

MN : BL == 100 VH
MN : 100 > BL > 80 H
MN : 80 > BL > 50 G
MN : 50 > BL > 20 L
MN : 20 > BL > 0 VL

EN H
PN VH

Security
MN H
EN H
PN L

Price
MN VL
EN L
PN VH

Table 6.4 Fuzzy value assignment based on criteria conditions of the offloading
sites

6.4.1 Single Decision Making
The process of multi-criteria solver decision making was illustrated earlier in
Section 4.5. It was also shown in Section 5.3, how the context profilers collect
device and network contextual information to be fed to the offloading decision

148 Experimental Evaluation

engine used in real-world mobile applications. The DM provides expert knowledge
for setting priorities among the different criteria affecting the offloading decision.

The fuzzy values for each criterion are assigned using the rules shown in
Table 6.4. The lower the RTT values between the Host Mobile Device and the
offloading site, the higher the fuzzy linguistic term would be for the site. The
computation power of the site is compared to the host’s computation power in
terms of being more powerful in n-fold terms. The availability of the mobile nodes
depends on the battery level (if the battery state is charging BL is set to 100
hence VH is assigned to the MN). The edge nodes are considered to be of high
availability with public nodes being the highest in availability, as described in
Subsection 2.1.4. Security and privacy can be interpreted differently according
to the authentication mechanisms and the nature of connection establishment
between the host node and the participating site. The security in MCO studies
is one of the major concerns. According to [5], data is more secure when it is
closer and more controllable when the source of computation is closer to the user.
Therefore, higher security is given to both MNs and ENs while PNs are considered
less secure as offloading destinations. The pricing and incentive models are active
areas in MCC research as well. As mentioned in the Section 5.2, the local devices
could belong to the same mobile user so the price is set to lowest for the devices
in LAN. Conversely, the PNs has high monetary costs, so the price criterion is set
to the highest for them.

The results of fuzzy TOPSIS analysis are summarized in Table 6.5. D+
i and

D−
i can be calculated using Eq. (4.26a) and Eq. (4.26b) respectively. Based on

C∗
i values calculated by Eq. (4.28), the ranking of the sites in descending order is

edge, mobile, and public as depicted in Table 6.6.

6.4
M

C
D

M
Evaluations

149

Bandwidth Speed Availability Security Price
Mobile VH H G H VL
Edge H VH H H L

Public G VH VH L VH
Mobile (0.75, 1.0, 1.0) (0.5, 0.75, 1.0) (0.25, 0.5, 0.75) (0.75, 1.0, 1.0) (0.0, 0.0, 0.25)
Edge (0.5, 0.75, 1.0) (0.75, 1.0, 1.0) (0.5, 0.75, 1.0) (0.50, 0.75, 1.0) (0.0, 0.25, 0.50)

Public (0.25, 0.5, 0.75) (0.75, 1.0, 1.0) (0.75, 1.0, 1.0) (0.0, 0.25, 0.5) (0.75, 1.0, 1.0)
Weights 0.4073 0.3886 0.1084 0.0573 0.0385
Mobile (0.305, 0.389, 0.389) (0.194, 0.291, 0.389) (0.097, 0.194, 0.291) (0.194, 0.291, 0.389) (0.0, 0.0, 0.097)
Edge (0.204, 0.291, 0.389) (0.291, 0.389, 0.389) (0.194, 0.291, 0.389) (0.194, 0.291, 0.389) (0.0, 0.097, 0.194)

Public (0.102, 0.194, 0.291) (0.291, 0.389, 0.389) (0.291, 0.389, 0.389) (0.0, 0.097, 0.194) (0.291, 0.389, 0.389)
S+ v+

1 = (0.75, 1.0, 1.0) v+
2 = (0.75, 1.0, 1.0) v+

3 = (0.75, 1.0, 1.0) v+
4 = (0.75, 1.0, 1.0) v+

5 = (0.0, 0.0, 0.25)
S− v−

1 = (0.0, 0.0, 0.25) v−
2 = (0.0, 0.0, 0.25) v−

3 = (0.0, 0.0, 0.25) v−
4 = (0.0, 0.0, 0.25) v−

5 = (0.75, 1.0, 1.0)
Table 6.5 Weighted fuzzy evaluation matrix for offloading sites

Offloading site D+
i D−

i C∗
i

Edge 2.5123 1.7688 0.4132
Mobile 2.6316 1.7492 0.3993
Public 2.9675 1.3418 0.3114

Table 6.6 Fuzzy TOPSIS results (sorted by C∗
i) for the single decision maker

150 Experimental Evaluation

6.4.2 Group Decision Making
To evaluate the scalability of the proposed multi-criteria solver algorithm, a
number of extra nodes are added to the experiment environment for the GDM
scenario. To simulate real-life situations, the computational power, bandwidth
rate, and battery level of the nodes will be varied. Similar to previous experiments,
the Host Mobile Device is still the Nexus 7 which is identified as (Nexus 7-1) to
extinguish it from the other two Nexus 7 devices in the testbed. Three nearby
devices (Pixel, Nexus 7-2, Nexus 7-3) are added to the nearby device group to
form MAC. Two new edge VMs are also spawned from the same school server
that was used for the previous experiments. However, these two additional servers
have a different number of CPUs and memory allocated to them. The same three
public cloud instances that were used in Section 6.2 are also used for this test.
Table 6.7 lists the hardware specifications and IDs of all the offloading sites.

Node CPU (in
GHz)

RAM
(in
GB)

OS ID Variations

Nexus 7-2 1.3 (Dual) 1 Android 6.0 Mobile-1 BL = 85
Nexus 7-3 1.3 (Dual) 1 Android 6.0 Mobile-2 BL = 31
Pixel 2.15

(Quad)
2 Android 9.0 Mobile-3 BL = 62

Edge (small) 2.4 (Dual) 4 Ubuntu 17.04 Edge-1 -
Edge (medium) 2.4 (Quad) 8 Ubuntu 17.04 Edge-2 -
Edge (large) 2.4 (Octa) 16 Ubuntu 17.04 Edge-3 -
Cloud (small) 2.4 (Single) 1 Amazon Linux 2 Public-1 eu-west-2

(London)
Cloud (medium) 2.8 (Quad) 7.5 Amazon Linux 2 Public-2 us-east-2

(Ohio)
Cloud (large) 2.8 (Octa) 15 Amazon Linux 2 Public-3 us-west-2

(Oregon)
Table 6.7 Experimental environment device specifications for the MCDM GDM
evaluation

In order to show how the different DMs work in practice, we consider the five
DMs proposed in Subsection 4.5.2 in Chapter 4. The criteria preference of all the
five decision makers were shown in Table 4.5. The result of these decisions generates
the following judgement matrices A(1),...,A(5) on a set of five criteria for evaluating
the 9 alternatives (offloading sites). Let w(k) = (w1(k),...,w5(k)) be the individual
priority vector derived from judgment matrix A(k) using RGMM [34]. A(k) and
w(k) (k = 1,2,...,5) are listed below.

6.4 MCDM Evaluations 151

A(1) =

1 1 5 7 9
1 1 5 6 8

1/5 1/5 1 3 3
1/7 1/6 1/3 1 2
1/9 1/8 1/3 1/2 1

, w(1) = {0.4072, 0.3885, 0.1083, 0.0572, 0.0384}T

A(2) =

1 5 7 9 9
1/5 1 3 7 7
1/5 1/5 1 3 3
1/9 1/7 1/5 1 1
1/9 1/7 1/5 1 1

, w(2) = {0.5888, 0.2219, 0.1177, 0.0357, 0.0357}T

A(3) =

1 1/7 1/5 7 7
7 1 3 9 9
5 1/3 1 9 9

1/7 1/9 1/9 1 1
1/7 1/9 1/9 1 1

, w(3) = {0.1248, 0.5146, 0.2988, 0.0307, 0.0307}T

A(4) =

1 1 1 1/9 3
1 1 3 1/9 3
1 1/3 1 1/9 3
9 9 9 1 9

1/3 1/3 1/3 1/9 1

, w(4) = {0.09, 0.1184, 0.0751, 0.6767, 0.0394}T

A(5) =

1 1 3 3 1/9
1 1 3 3 1/9

1/3 1/3 1 3 1/9
1/3 1/3 1/3 1 1/9
9 9 9 9 1

, w(5) = {0.1125, 0.1125, 0.0615, 0.0391, 0.6741}T

The group priority vector w(G) and group judgement matrix A(G) are calculated
according to Eq. (4.19) and Eq. (4.20) explained previously in Chapter 4.

A(G) =

1 0.934 1.838 2.713 2.852
1.069 1 3.322 2.63 2.786
0.544 0.31 1 2.141 2.141
0.368 0.38 0.467 1 1.148
0.35 0.358 0.467 0.87 1

, w(G) = {0.1979, 0.2261, 0.112, 0.0699, 0.0646}T

Equal weights (π = π1, π2, ..., π5) of 1.0/5.0 are assigned to each decision maker
for calculating the group priority vector and the group judgment matrix. In partic-
ular situations, the application developer might wish to assign different weights to
each DM according to application requirements, as described in Subsection 4.5.2.

152 Experimental Evaluation

Bandwidth Speed Availability Security Price
Mobile-1 VH L H H VL
Mobile-2 VH L L H VL
Mobile-3 VH G G H VL
Edge-1 H G H H L
Edge-2 H H H H G
Edge-3 H VH H H H

Public-1 G G VH L G
Public-2 L H VH L H
Public-3 VL VH VH L VH
Mobile-1 (0.75, 1, 1) (0, 0.25, 0.5) (0.5, 0.75, 1) (0.5, 0.75, 1) (0, 0, 0.25)
Mobile-2 (0.75, 1, 1) (0, 0.25, 0.5) (0, 0.25, 0.5) (0.5, 0.75, 1) (0, 0, 0.25)
Mobile-3 (0.75, 1, 1) (0.25, 0.5, 0.75) (0.25, 0.5, 0.75) (0.5, 0.75, 1) (0, 0, 0.25)
Edge-1 (0.5, 0.75, 1) (0.25, 0.5, 0.75) (0.5, 0.75, 1) (0.5, 0.75, 1) (0, 0.25, 0.5)
Edge-2 (0.5, 0.5, 1) (0.5, 0.75, 1) (0.5, 0.75, 1) (0.5, 0.75, 1) (0, 0.25, 0.5)
Edge-3 (0.5, 0.75, 1) (0.75, 1, 1) (0.5, 0.75, 1) (0.5, 0.75, 1) (0, 0.25, 0.5)

Public-1 (0.25, 0.5, 0.75) (0.25, 0.5, 0.75) (0.75, 1, 1) (0, 0.25, 0.5) (0.25, 0.5, 0.75)
Public-2 (0, 0.25, 0.5) (0.25, 0.5, 0.75) (0.75, 1, 1) (0, 0.25, 0.5) (0.5, 0.75, 1)
Public-3 (0, 0, 0.25) (0.75, 1, 1) (0.75, 1, 1) (0, 0.25, 0.5) (0.75, 1, 1)

Table 6.8 The assigned fuzzy values for offloading sites: MCDM-GDM

The results of the weighted normalised fuzzy values and final site rankings are
shown in Table 6.9 and Table 6.10 accordingly.

It can be observed from the site ranking results that the two nearby mobile
devices which are Mobile-3 (Pixel) and Mobile-1 (Nexus 7-2) are ranked highly
due to high speed and availability and low bandwidth between them and the Host
Mobile Device (Nexus 7-1). Mobile-2 is ranked after the edge nodes due to its low
battery level, which leads to lower availability than the other two mobile devices.
The price models for the edge nodes are not as important as their speeds, therefore,
the more computationally powerful edge nodes are ranked higher. However, this
does not apply to the public nodes since the bandwidth of the more powerful
public nodes is lower, resulting in lower rankings.

The results of each individual decision maker DM (1),...,DM (5) and final site
rankings will be listed in Appendix B.

6.4
M

C
D

M
Evaluations

153

Bandwidth Speed Availability Security Price
Weights 0.1979 0.2261 0.112 0.0699 0.0646
Mobile-1 (0.148, 0.226, 0.226) (0.0, 0.057, 0.113) (0.057, 0.113, 0.170) (0.113, 0.170, 0.226) (0.0, 0.0, 0.057)
Mobile-2 (0.148, 0.226, 0.226) (0.0, 0.057, 0.113) (0.0, 0.057, 0.113) (0.113, 0.170, 0.226) (0.0, 0.0, 0.057)
Mobile-3 (0.148, 0.226, 0.226) (0.113, 0.170, 0.226) (0.0, 0.057, 0.113) (0.113, 0.170, 0.226) (0.0, 0.0, 0.057)
Edge-1 (0.099, 0.170, 0.226) (0.057, 0.113, 0.170) (0.113, 0.170, 0.226) (0.113, 0.170, 0.226) (0.0, 0.057, 0.113)
Edge-2 (0.099, 0.170, 0.226) (0.113, 0.170, 0.226) (0.113, 0.170, 0.226) (0.113, 0.170, 0.226) (0.057, 0.113, 0.170)
Edge-3 (0.099, 0.170, 0.226) (0.170, 0.226, 0.226) (0.113, 0.170, 0.226) (0.113, 0.170, 0.226) (0.113, 0.170, 0.226)

Public-1 (0.099, 0.170, 0.226) (0.0, 0.057, 0.113) (0.170, 0.226, 0.226) (0.0, 0.057, 0.113) (0.057, 0.113, 0.170)
Public-2 (0.049, 0.113, 0.170) (0.113, 0.170, 0.226) (0.170, 0.226, 0.226) (0.0, 0.057, 0.113) (0.113, 0.170, 0.226)
Public-3 (0.0, 0.057, 0.113) (0.170, 0.226, 0.226) (0.170, 0.226, 0.226) (0.0, 0.057, 0.113) (0.170, 0.226, 0.226)

Table 6.9 Weighted fuzzy evaluation for group judgement matrix of offloading sites: MCDM-GDM

Offloading site D+
i D−

i C∗
i

Mobile-3 3.1995 1.3835 0.3019
Mobile-1 3.2557 1.3515 0.2933
Edge-3 3.1515 1.3017 0.2923
Edge-2 3.0963 1.2774 0.2921
Edge-1 3.0920 1.2665 0.2906

Mobile-2 3.3120 1.3505 0.2897
Public-1 3.2850 1.2567 0.2767
Public-2 3.2588 1.2043 0.2698
Public-3 3.3221 1.2138 0.2676

Table 6.10 Final ranking of the offloading sites: MCDM-GDM

154 Experimental Evaluation

6.5 Application Refactoring Evaluation
In this section, the server component, which is responsible for parsing, decompiling,
and recompiling APK files, is evaluated. A list of mobile applications and their
application identifiers are first collected to be used in this evaluation process. The
applications used for refactoring are the ones investigated by the researchers in
[130]. Due to the unavailability of some links of the applications provided in the
paper, alternative applications are used as shown in Table 6.11. The applications
are widely used in conducting MCC studies by researchers [130].

This main goals of conducting this experiment are to explore the computational
costs of refactoring mobile cloud applications and whether it is feasible in practice.
The limitations of the refactoring process can also be explored through retargeting
Android market applications, which will be discussed in Section 6.7. The answers
to these questions will determine the degree to which this is a useful tool for
extracting code for further analysis.

Application Name Application ID
Sudoku game org.moire.opensudoku
N-Queens game com.memmiolab.queens
Gobang game ric.ov.SimplyGomoku
Video downloader for Twitter com.billApps.VTLoader
OpenCV face detection com.ollieteam.facedetection
Photoshoot Game com.appsdgl.photoPuzzle
DealsPure app com.dealspure.wild
Opera Mini Browser com.opera.mini.native
Bing Image Search de.devmil.muzei.bingimage
Flickr Mobile pl.eprogmedia.flickrmobile
Linpack org.skynetsoftware.linpack
BBC News bbc.mobile.news.ww
Smart News jp.gocro.smartnews.android
Euro News com.euronews.express
Twitter Lite com.twitter.android.lite
Last.fm com.adriannieto.lastfmtops
Chess Game com.cnvcs.chess
Basic Physics com.zayaninfotech.physics
Antivirus com.antivirus.applock
Photoshop Viewer com.psd.viewer
Applock mobilesecurity.applockfree
Expense Manager com.mlab.expense.manager

Table 6.11 Benchmarking applications used for application refactoring evaluation

6.5 Application Refactoring Evaluation 155

6.5.1 Experimental Environment
The edge server identified as (Edge-3) in the previous experiment is used to
conduct this test. MAMoC Server uses a Python library called Androguard to aid
with the process of parsing and analysing APKs. Under the hoods, Androguard
uses Jadx tool which was described in Section 5.6.2.2 as a tool used in MAMoC
Client for decompiling the Java codes from the application bytecode in the Host
Mobile Device. The steps of application refactoring were explained earlier in
Section 5.7.2.4. The same steps are applied to each application in this experiment.
The following metrics are collected in the process:

• Total number of classes: this counts every class which are produced from
the decompilation process of the application.

• Total number of methods: each class contains a number of methods that
are all aggregated into this field.

• Filtered classes: the dx.get_classes() method provided by AndroGuard
returns a list of ClassAnalysis objects with some of them labelled as “EX-
TERNAL”. This label indicates that the source code of the class is not
defined within the DEX files that are loaded inside the analysis. For example,
java.io.FileNotFoundException is an API class, and it is not included in the
DEX files as it is available on the system.

• Classes with code: Some of the classes are resource or layout related
classes that do not contain any Java code. Only the classes with code are
filtered for further analysis.

• Offloadable classes: the filtered classes with codes are scanned for depen-
dency on any native device features and Android-specific library calls. The
classes that only contain pure Java code and can be executed on JVM are
marked and annotated as @Offloadable.

• Elapsed time: this is the time taken from the start of the analysis until
the offloadable classes are identified and annotated.

6.5.2 Results and Analysis
The application IDs are saved in a text file and passed to the application refactor
component in MAMoC Server to be read. The script starts by downloading
the APK and applying the steps described in Section 5.7.2.4 for each file. The

156 Experimental Evaluation

output is a text file that includes the metrics and a signed APK file to be
distributed and installed to the mobile devices.

It can be observed from the refactoring results, the smaller apps with fewer
classes and methods are processed in a shorter time. However, this pattern is not
standard among all the apps, for instance, the Sudoku app with a lower number of
classes took 16.95 seconds to be processed while the N-Queens app with a higher
number of classes took 11.31 seconds. Meanwhile, the GoBang game which has
less than half the number of classes compared with the Sudoku and N-Queens
takes about 5 times longer to be processed.

For the larger apps such as Opera browser and BBC apps with over 20,000
classes, it can take up to or more than 10 minutes to produce the results which
can be impractical in real-life scenarios.

Application ID Classes Methods Filtered
classes

Classes
with
code

Offload-

-ables

Time
(in
sec)

org.moire.opensudoku 1208 8795 401 394 100 16.95
com.memmiolab.queens 1486 11268 33 28 17 11.31
ric.ov.SimplyGomoku 620 3506 278 267 32 77.83
com.billApps.VTLoader 8238 51577 5894 5790 272 250.29
com.ollieteam.facedetection 5882 35010 4490 4453 18 197.16
com.appsdgl.photoPuzzle 3114 19977 1823 1789 30 130.08
com.dealspure.wild 2059 14502 548 535 52 21.89
com.opera.mini.native 20173 102465 18386 17972 5968 571.76
de.devmil.muzei.bingimage 3212 20574 1386 1302 34 58.03
pl.eprogmedia.flickrmobile 3419 26610 945 880 43 64.27
org.skynetsoftware.linpack 38 117 9 9 1 1.79
bbc.mobile.news.ww 23838 119000 20337 19983 4257 689.46
jp.gocro.smartnews.android 9947 62031 8213 7977 1130 302.01
com.euronews.express 9231 58811 7261 7038 1168 270.51
com.twitter.android.lite 2464 14169 1901 1859 303 85.91
com.adriannieto.lastfmtops 3670 22881 2021 1961 635 135.82
com.cnvcs.chess 2258 11163 1886 1853 3 125.1
com.zayaninfotech.physics 712 4352 217 206 13 11.56
com.antivirus.applock 11096 62213 8840 8641 804 341.17
com.psd.viewer 11149 65752 9735 9552 3215 375.04
mobilesecurity.applockfree 5207 28725 3424 3360 140 192.07
com.mlab.expense.manager 15564 101512 11788 11281 1163 537.27

Table 6.12 Application refactoring evaluation results

Table 6.12 shows the results of running the application refactor component in
MAMoC Server for the selected benchmarking applications.

6.6 Evaluation of Requirements 157

6.6 Evaluation of Requirements
This section briefly evaluates MAMoC design and reference implementation,
presented in the previous chapters, against the requirements reported in Chapter 4.
This is a descriptive evaluation and performed manually without any dynamic
environmental set-ups to check whether/how the defined requirements are met.

1. Functional Requirements

X Offloading compute-intensive tasks: MAMoC supports offloading
with the use of annotations from developers or automatically through
application refactoring steps as evaluated in the previous section.

X Supporting local and remote executions: Both local and remote
as well as local+remote executions were shown in the first two sets of
evaluations in this chapter.

X Discovering offloading sites: The device-to-device and device-to-
server communications are handled by the service discovery component
which keeps track of the changes in the nearby devices with the broad-
casting technique and in the servers with the Pub/Sub mechanisms.

X Selecting the most optimal offloading site(s): The choices of
selecting sites are performed using both offloading score and MCDM
methodologies. The evaluations in Section 6.3 and Section 6.2.

X/× Managing the offloading sites: The developers can manage the
offloading sites through the installed framework on the mobile devices
and Docker containers in the servers. However, no management tools
are available for normal users or system administrators to manage the
sites through a user-friendly Graphical User Interface.

2. Non-functional Requirements

X Performance enhancement: The performance of the running tasks
were improved in some of the offloading scenarios for both single-site
and multisite offloading evaluations.

X Energy efficiency: Less energy is consumed from Host Mobile Device
in some of the multisite offloading scenarios as shown in Section 6.2.

X Simplicity and ease of deployment Both MAMoC Client and
MAMoC Server are made available through Gradle library and docker
images respectively. The steps of integrating the client library to the

158 Experimental Evaluation

mobile applications are given in Section 5.8. Moreover, the installation
of the server-side containers are provided in the respective Github
repository.

X/× Framework reusability and extensibility: The modularity ap-
proach in developing the framework allows other developers to add
extra modules to the system. Nonetheless, there are no clear guidelines
and no instructions are provided for extending the framework with
extra features.

X/× Fault tolerance and reliability: As it will be later discussed in
Section 6.7, an offloading request timeout mechanism is used to recover
from failures. Even though the task execution is gradually performed,
a more robust failure recovery mechanism can improve the reliability
of the system.

X/× Security and privacy: Subsection 5.4.3 discussed the two approaches
used for securing both D2D and device-to-server communications. How-
ever, there are other security and privacy issues with MCO systems
which are discussed in detail in [5].

6.7 Discussion and Limitations
The evaluation results of the first two experiments showed that in particular
instances, multisite offloading can both reduce the overall completion time and
energy consumption of running the tasks. Despite its advantages, the following
limitations can be observed across both evaluations:

• The performed evaluation in a controlled and well-defined environment
while performing different offloading scenarios. In more realistic scenarios,
mobile users move around and the network signal strength changes, which
affect the changes in RTT values. Moreover, the use of a strong signal
Wi-Fi (CS network) for this evaluation clearly improves the results of the
offloading, especially to the cloudlet and cloud nodes. Figuratively, using
cellular networks would increase the RTT values of the offloading sites that
result in lower task partitions allocated to them. A more dynamic network
and updated RTT values can be used to showcase the differences in the
results for better testing the decision engine.

• One more concern in the evaluations is the occurrence of offloading failures.
With intermittent connectivities between the Self Node and offloading sites,

6.7 Discussion and Limitations 159

communication failures happen. This evaluation uses a timeout mechanism
of 5 seconds to fall back the execution to the local device. For a more robust
offloading system, a more intelligent failure recovery mechanism can be
adapted similar to the works discussed in [163].

• Despite its benefits, our approach is not applicable to all applications. Some
mobile applications are written in a monolithic style, in which functionality
cross-cuts through traditional modularization program constructs such as
classes and methods. Without clear offloading program points, our approach
would be inapplicable.

• MAMoC only considers a single mobile user environment without considering
other mobile users which increase the number of offloaded requests and adds
more request loads on the service providers. The application is running a
single-user environment so that the execution time for each offloading of the
same task on the same computation node is generally close to their average.
This cannot be guaranteed for a multi-user environment. Researchers in [20]
use game-theoretic approaches to model this scenario and handle the load
balancing in the sites. In addition, a few related studies can be introduced
to enhance MAMoC, such as supporting multi-user cases via game-theoretic
model [25] and supporting complex mobility models via other offloading
decision algorithms [125].

• The complex mobility model of mobile devices is a remaining challenge.
The network conditions between the mobile device and the same offloading
site in the same location are usually close to their average. In a real-world
environment, although the performance improvement may be marginally
different.

• Regarding the energy consumption readings, not all devices support the
Trepn profiler [98]. Alternative software or hardware power consumption
measurement tools need to be explored for the modern devices.

AHP is easy to use, scalable, and the hierarchy structure can easily adjust to fit
many sized problems. TOPSIS has a simple process, easy to use and program, and
scalable in how the number of steps remains the same regardless of the number of
alternatives (offloading sites).

The evaluation showed a simple and flexible method for generating the rankings
of the nodes. It also demonstrated how DMs can analyze the elasticity of the
final decision by applying the sensitivity weights to them. It is also possible to

160 Experimental Evaluation

measure the consistency of a decision maker’s judgements and refine their pairwise
comparisons to reach a consistency below the threshold. However, as any other
decision-making mechanisms, MCDM has its own limitations:

• Subjectivity is one of the major concerns of MCDM approaches. To reduce
subjectivity in decision making one can use hybrid approaches comprising
the method this work uses by introducing fuzzy range values as shown by
the work in [165].

• Generality: nearby mobile devices are generally considered more secure than
remote devices for processing and storing data [95]. However, there might
be situations where nearby mobile devices cannot be trusted or a fake edge
node are installed in the local network.

• Regarding the group decision making, a consensus needs to be reached
between all the DMs to generate an aggregated decision matrix for evaluating
and ranking the nodes. An application developer might not understand this
and assign unrealistic pairwise comparison values that violate the judgements
of other decision makers and disrupt the evaluation process.

The application refactoring evaluation demonstrated that the proposed utility
can successfully parse and decompile APKs, annotate the offloadable classes and
generate a signed copy of the APK file. It was also observed from the results
that the elapsed time of the process was non-deterministic. Even though the tool
was shown to generate results for the benchmarking apps, there are a number of
limitations explained below:

• This utility requires a sizable amount of memory in order to perform classi-
fication when operating in package mode. All the benchmarked applications
are of small size APKs (less than 10 MB in size). For the bigger applications,
multiple errors occurred which disrupted the decompilation process. For
instance, all the top 10 applications on the Play Store were not capable of
being used in the tool because of their large sizes.

• The Dex2Jar utility is considered being able to decompile the obfuscated
applications which are encrypted by the developers before releasing them
to the Play Store. In the evaluation, most of the classes were produced
correctly but not all of them are investigated due to some high number of
offloadable classes in some application refactoring results.

6.8 Summary 161

• Not all Android market applications are written in native Java. There are
many modern applications written in Kotlin, hybrid applications written in
Javascript with user interfaces built with HTML/CSS and games written
in Android native structure using C++ or Unity engine. This cannot be
easily discovered before starting the decompilation process and scanning the
source files.

6.8 Summary
In this chapter, the proposed MAMoC framework is evaluated in real-world
environments. Four sets of experiments are conducted to showcase the research
hypotheses of this thesis. The offloading decision algorithm evaluation used three
different tasks for the completion time and energy consumption and compared the
results of full single-site offloading and our proposed multisite offloading as well as
comparing it with an offloading framework in the literature. The task partitioning
evaluation demonstrated running a data-intensive task in different offloading
scenarios and the benefits of multisite offloading for the distributed subtasks. The
MCDM evaluation expanded on the multi-criteria solver component by testing
the group decision making concept. Finally, the application refactor evaluation
presented the benchmarked applications and results of the decompilation process.
The evaluation outcomes are then discussed with identifying the shortcomings
and limitation in conducting them.

Chapter 7

Conclusion and Future Work

7.1 Summary of Thesis
Above all, as a solution to the problem of the limited battery capacity of the
mobile device, computation offloading in mobile devices can be used to improve
performances and save the energy of mobile devices. In order to fully utilise
the computing and battery capacity of the idle or light load devices, an end-
to-end mobile computation offloading framework has been proposed to enhance
the performance and minimise the energy consumption in mobile devices while
guaranteeing the performance requirements of the offloaded tasks.

• Chapter 1 presented the challenges facing the lower end mobile devices and
motivations for conducting this study. It also listed the research hypotheses
that this work is investigating and the objectives of solving the relevant
research problems.

• Chapter 2 provided an overview of the most common mobile cloud archi-
tectures, including MCC, MEC, and MFC. It also described the research
interest in MCO and the two central aspects of it that derive the body of
this work.

• Chapter 3 surveyed the existing work in the multisite MCO works and
derived a taxonomy reflecting different aspects of the research in this area
and listed current trends and future directions.

• Chapter 4 modelled the tasks of a mobile application in the Host Mobile
Device and the heterogeneous computing nodes that act as offloading sites in
this work. The offloading cost in terms of execution and energy were analysed.
It then presented the offloading policy for partitioning parallalizable tasks

164 Conclusion and Future Work

using the offloading scores of the sites. It then presented the multi-criteria
solving algorithms based on AHP and fuzzy TOPSIS methods for evaluating
the different offloading criteria and ranking the multiple available offloading
sites.

• Chapter 5 presented the design and implementation of the framework which
incorporated all the research presented in the previous chapter. The frame-
work consisted of two main systems: MAMoC Client and MAMoC Server
with each containing different loosely coupled services that communicated
with each other.

Section 5.6, Section 5.7 presented the implementation details of both MAMoC
Client and MAMoC Server components accordingly. In MAMoC client, the
service discovery discussed both communications with the nearby mobile de-
vices in the form of D2D and other offloading sites with MAMoC router. The
process of code decompilation and context profiling were also presented for
preparing the offloading decision making. Finally, the deployment controller
discussed the different deployment scenarios for both local and remote exe-
cutions. In MAMoC server, the implementation details of the three modules
running on separate containers including MAMoC router, server manager,
and MAMoC repository were explained with diagrams and code listings.

• Chapter 6 presented a detailed evaluation of the research presented in this
thesis. Four sets of experiments were conducted in this chapter. The first
evaluated the performance of the task partitioning algorithm based on
offloading scores of the nodes. The second evaluated the performance of the
offloading decision algorithm based on the checkpoint variables and MCDM.
The third added the GDM method to the experiment and presented the
results of the aggregated decision makers. Finally, the fourth experiment
evaluated the application refactoring component performance in parsing and
decompiling unmodified APKs. The chapter also included a discussion of
the results and a set of limitations of the evaluations.

7.2 Review of Hypotheses
This thesis has argued that an adaptive with multiple destinations mobile offloading
workflow can be realised using offloading score approach for dividing the parallelised
tasks into subtasks. The other approach is by using MCDM that evaluates different
criteria to determine the most appropriate offloading sites that can execute these

7.2 Review of Hypotheses 165

tasks efficiently. An architectural system design and a reference implementation
have been proposed to enable these approaches. The hypotheses presented in
Chapter 1 can be evaluated by conducting experiments that attempt to confirm
it, and by analysing the experimental results with the predicted consequences of
the hypotheses.

H1 Mobile devices can be seamlessly leveraged with all the surround-
ing sites including nearby mobile devices and edge servers as well
as distant cloud resources. Moreover, the decision to offload a task
and identify the most optimal candidate for single-site offloading
and the most optimal ranking of the candidates for multisite of-
floading scenarios can be taken adaptively.

Leveraging mobile devices with multiple service providers is the central
theme of this work in the form of multisite offloading. This is achieved with
the help of a service discovery that can be connected to multiple external
resources simultaneously. Throughout Chapter 5, different components are
discussed to achieve this goal. Adaptively choosing the optimal candidates
has been discussed in Chapter 4. The adaptation to the dynamic changes in
the mobile environment can be observed in the results of both single decision
making and group decision making evaluations presented in Section 6.4.

H2 The process of deploying runtime environments for serving offload-
ing requests from mobile devices can be simplified. It can also be
utilised to automatically identify offloadable tasks in unmodified
mobile applications when manual task annotation is infeasible.

The deployment of runtime environments are discussed in Section 5.7 and
demonstrated in Subsection 6.1.1. The choice of lightweight containers has
simplified the process of deploying mobile service providers. Compared
to other deployment strategies in the literature [155] [154], the size of the
containers and boot-up times are greatly reduced. Identifying the heavy
parts of an application is considered one of the most challenging parts of
designing mobile offloading systems since manual annotation introduces
extra burden and work for developers [97]. In this work, a number of static
analysis and refactoring approaches are used to generate the desired tasks.
However, as it can be observed in the results of the evaluation in Section 6.5,
the elapsed time and number of produced tasks are non-deterministic and
further research needs to be performed to formalise this process.

166 Conclusion and Future Work

7.3 Review of Contributions
This section revisits the contributions presented in Chapter 1 and discusses how
they are achieved in this work with references to relevant chapters and sections
in this thesis. This thesis provides a set of contributions to the body of research
knowledge in the area of MCC generally, and multisite MCO specifically. These
contributions include the following:

1. Literature review: this thesis provided an overview of the different mobile
cloud architectures with a detailed comparison between them. It also
analysed the existing multisite MCO solutions in the literature in which a
taxonomy was derived for concluding the current trends and future directions.

2. An adaptive task partitioning algorithm: this algorithm was presented
in Subsection 4.4.2 that decided on the task allocation percentages and
execution locations for each subtask. The contextual changes in the dynamic
mobile environment are profiled and reflected in the task partitioning and
offloading decisions.

3. An offloading site ranking mechanism: the multi-criteria solver algo-
rithm used two methods of MCDM and fuzzy logic to evaluate the criteria
and rank the available offloading sites. Different optimization goals using
MCDM group decision-making concept is also used for application-specific
criteria priority requirements.

4. Design and implementation of MAMoC: this thesis defined a set of
requirements for designing a robust mobile cloud offloading system. Distinc-
tive design choices are made for making the components of the system both
lightweight and easy to adapt. With keeping mobile application developers
in mind, MAMoC Client is designed to work as a client library to be easily
integrated with Android applications. It allows developers to use it as a
simple programming model to build mobile cloud applications and abstract
complex underlying heterogeneous technologies. MAMoC Server is a set of
loosely coupled containers that work as a lightweight runtime environment
for serving the mobile offloading requests on the heterogeneous offloading
sites for providing a more scalable and reliable offloading service.

5. Automated annotation generation: this work also supports the arbi-
trary applications that are not specifically annotated by developers. It
was shown in the steps demonstrated in Section 5.7.2.4 and evaluated in

7.4 Future Works 167

Section 6.5 that it is possible to identify the offloadable classes and annotate
them for use with MAMoC framework.

7.4 Future Works
There are some practical and theoretical issues that need to be addressed in the
future to evolve MAMoC from a research tool to a platform for industrial and
general-purpose use. These are research goals that were not met because of either
time constraints or due to being out with the focus of this thesis.

• Multi-user mobile offloading: the proposed offloading decision algorithm
makes decisions from a single view of Host Mobile Device. Developing
algorithms to enable the framework to deal with user mobility and multi-
user competition, including reducing the impact on low-power users is an
interesting future direction to be considered. With the development of 5G,
Artificial Intelligence, and other technologies, it is inevitable to use multiple
mobile phones to enhance and change daily lifestyles. For example, a group
of mobile phones can be used to process and filter all kinds of data from
wearable devices for health data collection safely and efficiently.

• Offloading failure recovery: failures happen when the offloading request
is not successfully executed on the offloading site or the necessary data is
not wholly transmitted due to the intermittent wireless connection between
the mobile device and the site. In its current form, MAMoC uses a timeout
technique to fall back the execution to the local device. Future research
works can investigate methods to handle failures during execution and more
dynamic approaches to recover from these failures.

• Evaluating real-world applications: it would be valuable to test real-
world applications such as face recognition or car license plate recognition
apps on MAMoC framework. In evaluating the framework, we only used
primitive benchmark tasks. In order to test the applicability of the frame-
work, it needs to be tested on more complicated and real-world mobile
applications. The guidelines on how to integrate existing or new mobile
applications to the framework are provided in 5.8. It would also be beneficial
if the evaluations are performed in real networks rather than in a laboratory
network with real network conditions. The results can be compared and
relevant further research can be performed.

168 Conclusion and Future Work

• Scheduling offloading requests: MAMoC router forwards the offloading
requests in a round robin fashion to the available servers. A load balancing
consideration is needed to provide an overall better performance for the
task scheduling strategy in the server-side. A possible approach is to use
the recently popular Kubernetes technology stack for managing the server
modules where the master node can work as MAMoC router and the pods
on worker nodes to work as server managers.

• AI-driven code transformation: the code transformation component in
MAMoC Server is manually written to transform Android-based Java code
to pure Java code that can be compiled and executed on a general JVM.
An AI-driven approach can be used to automate some transformation rules
and adapt it for future transformations.

• Eviction policy: the offloading decision is dependent on the data stored
from past executions. The current implementation does not foresee any
eviction policy for the stored data. It means that the data may grow too
big for the device itself. An optimal eviction policy must be employed in
the database adapter to avoid reaching this point.

References

[1] Abbas, N., Zhang, Y., Taherkordi, A., and Skeie, T. (2018). Mobile edge
computing: A survey. IEEE Internet of Things Journal, 5(1):450–465.

[2] Abolfazli, S., Gani, A., and Chen, M. (2015). Hmcc: A hybrid mobile
cloud computing framework exploiting heterogeneous resources. In 2015 3rd
IEEE International Conference on Mobile Cloud Computing, Services, and
Engineering, pages 157–162.

[3] Aguaron, J. and Moreno Jimnez, J. M. (2003). The geometric consistency
index: Approximated thresholds. European journal of operational research,
147(1):137–145.

[4] Akherfi, K., Gerndt, M., and Harroud, H. (2018). Mobile cloud computing
for computation offloading: Issues and challenges. Applied Computing and
Informatics, 14(1):1–16.

[5] Al-Mutawa, M. and Mishra, S. (2014). Data partitioning: An approach to
preserving data privacy in computation offload in pervasive computing systems.
In Proceedings of the 10th ACM Symposium on QoS and Security for Wireless
and Mobile Networks, Q2SWinet ’14, pages 51–60.

[6] Android version markets (2019). Android version market
share distribution among smartphone owners as of septem-
ber 2019. [online] https://www.statista.com/statistics/271774/
share-of-android-platforms-on-mobile-devices-with-android-os/, last ac-
cessed on 18-10-2019.

[7] Android-x86 (2019). Android-x86 - porting android to x86. [online] https:
//www.android-x86.org/, last accessed on 23-09-2019.

[8] App downloads in Q2 of 2019 (2019). Q2 2019 was the biggest quarter for
mobile to date. [online] https://www.appannie.com/en/insights/market-data/
q2-2019-mobile-market-index/, last accessed on 06-09-2019.

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.android-x86.org/
https://www.android-x86.org/
https://www.appannie.com/en/insights/market-data/q2-2019-mobile-market-index/
https://www.appannie.com/en/insights/market-data/q2-2019-mobile-market-index/

170 References

[9] atteo/classindex (2019). Github. [Online] https://github.com/atteo/classindex,
last accessed on 13-10-2019.

[10] Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., and Yang, H.-I.
(2002). The case for cyber foraging. In Proceedings of the 10th workshop on
ACM SIGOPS European workshop, pages 87–92.

[11] Bangui, H., Ge, M., Buhnova, B., Rakrak, S., Raghay, S., and Pitner, T.
(2017). Multi-criteria decision analysis methods in the mobile cloud offloading
paradigm. Journal of Sensor and Actuator Networks, 6(4):25.

[12] Barbera, M. V., Kosta, S., Mei, A., and Stefa, J. (2013). To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing. In 2013
Proceedings IEEE INFOCOM, pages 1285–1293.

[13] Berg, F., Dürr, F., and Rothermel, K. (2016). Increasing the efficiency of
code offloading in n-tier environments with code bubbling. In Proceedings of the
13th International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, pages 170–179.

[14] Bhardwaj, K., Sreepathy, S., Gavrilovska, A., and Schwan, K. (2014). Ecc:
Edge cloud composites. In 2014 2nd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering, pages 38–47.

[15] Bhattacharya, A. and De, P. (2017). A survey of adaptation techniques
in computation offloading. Journal of Network and Computer Applications,
78:97–115.

[16] Biswas, A. and Fujimoto, R. (2016). Profiling energy consumption in dis-
tributed simulations. In Proceedings of the 2016 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, SIGSIM-PADS ’16, pages 201–209.

[17] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing
and its role in the internet of things. In Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16.

[18] Budgen, D. and Brereton, P. (2006). Performing systematic literature reviews
in software engineering. In Proceedings of the 28th international conference on
Software engineering, pages 1051–1052.

[19] Camps-Mur, D., Garcia-Saavedra, A., and Serrano, P. (2013). Device-to-
device communications with wi-fi direct: overview and experimentation. IEEE
wireless communications, 20(3):96–104.

https://github.com/atteo/classindex

References 171

[20] Cardellini, V., Personé, V. D. N., Di Valerio, V., Facchinei, F., Grassi,
V., Presti, F. L., and Piccialli, V. (2016). A game-theoretic approach to
computation offloading in mobile cloud computing. Mathematical Programming,
157(2):421–449.

[21] Chen, C.-T. (2000). Extensions of the topsis for group decision-making under
fuzzy environment. Fuzzy sets and systems, 114(1):1–9.

[22] Chen, E. Y. and Itoh, M. (2010). Virtual smartphone over ip. In 2010 IEEE
International Symposium on "A World of Wireless, Mobile and Multimedia
Networks" (WoWMoM), pages 1–6.

[23] Chen, X., Chen, S., Zeng, X., Zheng, X., Zhang, Y., and Rong, C. (2017).
Framework for context-aware computation offloading in mobile cloud computing.
Journal of Cloud Computing, 6(1):1.

[24] Chen, X., Chen, Y., Ma, Z., and Fernandes, F. C. (2013). How is energy
consumed in smartphone display applications? In Proceedings of the 14th
Workshop on Mobile Computing Systems and Applications, pages 1–6.

[25] Chen, X., Jiao, L., Li, W., and Fu, X. (2015a). Efficient multi-user computa-
tion offloading for mobile-edge cloud computing. IEEE/ACM Transactions on
Networking, 24(5):2795–2808.

[26] Chen, Z., Jiang, L., Hu, W., Ha, K., Amos, B., Pillai, P., Hauptmann, A., and
Satyanarayanan, M. (2015b). Early implementation experience with wearable
cognitive assistance applications. In Proceedings of the 2015 Workshop on
Wearable Systems and Applications, WearSys ’15, pages 33–38.

[27] Cheng, Z., Li, P., Wang, J., and Guo, S. (2015). Just-in-time code offloading
for wearable computing. IEEE Transactions on Emerging Topics in Computing,
3(1):74–83.

[28] Cheshire, S. and Krochmal, M. (2013a). Multicast dns. Technical report,
IETF.

[29] Cheshire, S. and Krochmal, M. (2013b). Rfc 6763: Dns-based service discovery.
Technical report, IETF.

[30] Cheshire, S. and Steinberg, D. (2006). Zero Configuration Networking: The
Definitive Guide. Definitive Guide Series. O’Reilly Media.

172 References

[31] Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011). Clonecloud:
elastic execution between mobile device and cloud. In Proceedings of the sixth
conference on Computer systems, pages 301–314.

[32] Cisco Visual Networking Index (2019). Cisco visual networking in-
dex: Forecast and trends, 2017–2022. [online] https://www.cisco.com/c/
en/us/solutions/collateral/service-provider/visual-networking-index-vni/
white-paper-c11-738429.html, last accessed on 17-08-2019.

[33] Costamagna, V. and Zheng, C. (2016). Artdroid: A virtual-method hooking
framework on android art runtime. In IMPS@ ESSoS, pages 20–28.

[34] Crawford, G. and Williams, C. (1985). A note on the analysis of subjective
judgment matrices. Journal of mathematical psychology, 29(4):387–405.

[35] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chan-
dra, R., and Bahl, P. (2010). Maui: making smartphones last longer with code
offload. In Proceedings of the 8th international conference on Mobile systems,
applications, and services, pages 49–62.

[36] Desnos, A. and Gueguen, G. (2011). Android: From reversing to decompila-
tion. Blackhat.

[37] Devos, M., Ometov, A., Mäkitalo, N., Aaltonen, T., Andreev, S., and Kouch-
eryavy, Y. (2016). D2d communications for mobile devices: Technology overview
and prototype implementation. In 2016 8th International Congress on Ultra
Modern Telecommunications and Control Systems and Workshops (ICUMT),
pages 124–129.

[38] Dinh, H. T., Lee, C., Niyato, D., and Wang, P. (2013). A survey of mo-
bile cloud computing: architecture, applications, and approaches. Wireless
communications and mobile computing, 13(18):1587–1611.

[39] Dong, Y., Zhang, G., Hong, W.-C., and Xu, Y. (2010). Consensus models for
ahp group decision making under row geometric mean prioritization method.
Decision Support Systems, 49(3):281 – 289.

[40] Drolia, U., Martins, R., Tan, J., Chheda, A., Sanghavi, M., Gandhi, R., and
Narasimhan, P. (2013). The case for mobile edge-clouds. In 2013 IEEE 10th
International Conference on Ubiquitous Intelligence and Computing and 2013
IEEE 10th International Conference on Autonomic and Trusted Computing,
pages 209–215.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html

References 173

[41] Enzai, N. I. M. and Tang, M. (2016). A heuristic algorithm for multi-site
computation offloading in mobile cloud computing. Procedia Computer Science,
80:1232–1241.

[42] Farrugia, S. (2016). Mobile cloud computing techniques for extending com-
putation and resources in mobile devices. In 2016 4th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering (Mobile-
Cloud), pages 1–10.

[43] Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015). An updated
performance comparison of virtual machines and linux containers. In 2015 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 171–172.

[44] Fernando, N., Loke, S. W., and Rahayu, W. (2013). Mobile cloud computing:
A survey. Future generation computer systems, 29(1):84–106.

[45] Fernando, N., Loke, S. W., and Rahayu, W. (2016). Computing with nearby
mobile devices: a work sharing algorithm for mobile edge-clouds. IEEE Trans-
actions on Cloud Computing.

[46] Flores, H., Hui, P., Nurmi, P., Lagerspetz, E., Tarkoma, S., Manner, J.,
Kostakos, V., Li, Y., and Su, X. (2018). Evidence-aware mobile computational
offloading. IEEE Transactions on Mobile Computing, 17(8):1834–1850.

[47] Forman, E. and Peniwati, K. (1998). Aggregating individual judgments and
priorities with the analytic hierarchy process. European journal of operational
research, 108(1):165–169.

[48] Gai, K., Qiu, M., Zhao, H., Tao, L., and Zong, Z. (2016). Dynamic energy-
aware cloudlet-based mobile cloud computing model for green computing. Jour-
nal of Network and Computer Applications, 59:46–54.

[49] Gao, Y., Hu, W., Ha, K., Amos, B., Pillai, P., and Satyanarayanan, M.
(2015). Are cloudlets necessary? School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-CS-15-139.

[50] Giurgiu, I., Riva, O., Juric, D., Krivulev, I., and Alonso, G. (2009). Calling the
cloud: Enabling mobile phones as interfaces to cloud applications. In Proceedings
of the ACM/IFIP/USENIX 10th International Conference on Middleware,
Middleware’09, pages 83–102.

174 References

[51] Global-Micro-Server-Market-Forecasts-2024-Edge (2019). Global
micro server market forecasts to 2024: Edge computing. [on-
line] https://www.businesswire.com/news/home/20190715005393/en/
Global-Micro-Server-Market-Forecasts-2024-Edge, last accessed on 22-07-2019.

[52] Google (2018). Profile battery usage with batterystats and battery histo-
rian. [online]https://developer.android.com/studio/profile/battery-historian,
last accessed on 21-07-2019.

[53] Goudarzi, M., Zamani, M., and Haghighat, A. T. (2017). A fast hybrid multi-
site computation offloading for mobile cloud computing. Journal of Network
and Computer Applications, 80:219–231.

[54] Ha, K., Pillai, P., Richter, W., Abe, Y., and Satyanarayanan, M. (2013).
Just-in-time provisioning for cyber foraging. In Proceeding of the 11th annual
international conference on Mobile systems, applications, and services, pages
153–166.

[55] Hao, S., Li, D., Halfond, W. G., and Govindan, R. (2013). Estimating mobile
application energy consumption using program analysis. In Proceedings of the
2013 International Conference on Software Engineering, pages 92–101.

[56] Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., and Koldehofe,
B. (2013). Mobile fog: A programming model for large-scale applications on
the internet of things. In Proceedings of the second ACM SIGCOMM workshop
on Mobile cloud computing, pages 15–20.

[57] Hoque, M. A., Siekkinen, M., Khan, K. N., Xiao, Y., and Tarkoma, S. (2016).
Modeling, profiling, and debugging the energy consumption of mobile devices.
ACM Computing Surveys (CSUR), 48(3):39.

[58] Hu, P., Dhelim, S., Ning, H., and Qiu, T. (2017). Survey on fog computing:
architecture, key technologies, applications and open issues. Journal of network
and computer applications, 98:27–42.

[59] Hu, W., Gao, Y., Ha, K., Wang, J., Amos, B., Chen, Z., Pillai, P., and
Satyanarayanan, M. (2016). Quantifying the impact of edge computing on
mobile applications. In Proceedings of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems, APSys ’16, pages 5:1–5:8.

[60] Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., and Young, V. (2015). Mobile
edge computing—a key technology towards 5g. ETSI white paper, 11(11):1–16.

https://www.businesswire.com/news/home/20190715005393/en/Global-Micro-Server-Market-Forecasts-2024-Edge
https://www.businesswire.com/news/home/20190715005393/en/Global-Micro-Server-Market-Forecasts-2024-Edge
https://developer.android.com/studio/profile/battery-historian

References 175

[61] Huang, J., Qian, F., Gerber, A., Mao, Z. M., Sen, S., and Spatscheck, O.
(2012). A close examination of performance and power characteristics of 4g
lte networks. In Proceedings of the 10th international conference on Mobile
systems, applications, and services, pages 225–238.

[62] Huerta-Canepa, G. and Lee, D. (2010). A virtual cloud computing provider
for mobile devices. In proceedings of the 1st ACM workshop on mobile cloud
computing & services: social networks and beyond, page 6.

[63] Jahanshahloo, G. R., Lotfi, F. H., and Izadikhah, M. (2006). Extension
of the topsis method for decision-making problems with fuzzy data. Applied
Mathematics and Computation, 181(2):1544–1551.

[64] Jararweh, Y., Doulat, A., AlQudah, O., Ahmed, E., Al-Ayyoub, M., and
Benkhelifa, E. (2016). The future of mobile cloud computing: Integrating
cloudlets and mobile edge computing. In 2016 23rd International conference on
telecommunications (ICT), pages 1–5.

[65] Jin, X., Liu, Y., Fan, W., Wu, F., and Tang, B. (2017). Multisite computation
offloading in dynamic mobile cloud environments. Science China Information
Sciences, 60(8):89301.

[66] Joh, H. and Ryoo, I. (2015). A hybrid wi-fi p2p with bluetooth low energy for
optimizing smart device’s communication property. Peer-to-Peer Networking
and Applications, 8(4):567–577.

[67] Joy, P. T. and Jacob, K. P. (2013). Cooperative caching framework for mobile
cloud computing. arXiv preprint arXiv:1307.7563.

[68] Katoh, K., Misawa, K., Kuma, K.-i., and Miyata, T. (2002). Mafft: a novel
method for rapid multiple sequence alignment based on fast fourier transform.
Nucleic acids research, 30(14):3059–3066.

[69] Kemp, R., Palmer, N., Kielmann, T., and Bal, H. (2010). Cuckoo: a
computation offloading framework for smartphones. In International Conference
on Mobile Computing, Applications, and Services, pages 59–79. Springer.

[70] Khan, M. A., Cherif, W., Filali, F., and Hamila, R. (2017). Wi-fi direct
research-current status and future perspectives. Journal of Network and Com-
puter Applications, 93:245–258.

176 References

[71] Klauck, R. and Kirsche, M. (2012). Bonjour contiki: A case study of a dns-
based discovery service for the internet of things. In International Conference
on Ad-Hoc Networks and Wireless, pages 316–329.

[72] Knuth, D. E., Morris, Jr, J. H., and Pratt, V. R. (1977). Fast pattern
matching in strings. SIAM journal on computing, 6(2):323–350.

[73] Kosta, S., Aucinas, A., Pan Hui, Mortier, R., and Xinwen Zhang (2012).
Thinkair: Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In 2012 Proceedings IEEE INFOCOM, pages 945–953.

[74] Kovachev, D., Yu, T., and Klamma, R. (2012). Adaptive computation
offloading from mobile devices into the cloud. In 2012 IEEE 10th International
Symposium on Parallel and Distributed Processing with Applications, pages
784–791.

[75] Kristensen, M. D. (2010). Scavenger: Transparent development of efficient cy-
ber foraging applications. In 2010 IEEE International Conference on Pervasive
Computing and Communications (PerCom), pages 217–226.

[76] Kumar, K., Liu, J., Lu, Y.-H., and Bhargava, B. (2013). A survey of
computation offloading for mobile systems. Mobile Networks and Applications,
18(1):129–140.

[77] Kumar, K. and Lu, Y. (2010). Cloud computing for mobile users: Can
offloading computation save energy? Computer, 43(4):51–56.

[78] Lai, Y.-J., Liu, T.-Y., and Hwang, C.-L. (1994). Topsis for modm. European
journal of operational research, 76(3):486–500.

[79] Lee, J.-S., Su, Y.-W., Shen, C.-C., et al. (2007). A comparative study of
wireless protocols: Bluetooth, uwb, zigbee, and wi-fi. Industrial electronics
society, 5:46–51.

[80] Lewis, G. A., Lago, P., and Procaccianti, G. (2014). Architecture strategies
for cyber-foraging: Preliminary results from a systematic literature review. In
European Conference on Software Architecture, pages 154–169. Springer.

[81] Li, C., Xue, Y., Wang, J., Zhang, W., and Li, T. (2018). Edge-oriented
computing paradigms: A survey on architecture design and system management.
ACM Computing Surveys (CSUR), 51(2):39.

References 177

[82] Li, J., Bu, K., Liu, X., and Xiao, B. (2013a). Enda: Embracing network
inconsistency for dynamic application offloading in mobile cloud computing. In
Proceedings of the second ACM SIGCOMM workshop on Mobile cloud computing,
pages 39–44. ACM.

[83] Li, S., Farooqui, N., and Yalamanchili, S. (2013b). Software reliability
enhancements for gpu applications. In Sixth Workshop on Programmability
Issues for Heterogeneous Multicores (MULTIPROG-2013).

[84] Li, Z., Wang, C., and Xu, R. (2001). Computation offloading to save energy on
handheld devices: a partition scheme. In Proceedings of the 2001 international
conference on Compilers, architecture, and synthesis for embedded systems,
pages 238–246.

[85] Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., and Qureshi, A. (2015).
Application partitioning algorithms in mobile cloud computing: Taxonomy,
review and future directions. Journal of Network and Computer Applications,
48:99–117.

[86] Mach, P. and Becvar, Z. (2017). Mobile edge computing: A survey on archi-
tecture and computation offloading. IEEE Communications Surveys Tutorials,
19(3):1628–1656.

[87] Mahmud, R., Kotagiri, R., and Buyya, R. (2018). Fog computing: A taxon-
omy, survey and future directions. In Internet of everything, pages 103–130.
Springer.

[88] Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). A
survey on mobile edge computing: The communication perspective. IEEE
Communications Surveys & Tutorials, 19(4):2322–2358.

[89] Mao, Y., Zhang, J., and Letaief, K. B. (2016). Dynamic computation
offloading for mobile-edge computing with energy harvesting devices. IEEE
Journal on Selected Areas in Communications, 34(12):3590–3605.

[90] Marinelli, E. E. (2009). Hyrax: cloud computing on mobile devices using
mapreduce. Technical report, Carnegie-mellon univ Pittsburgh PA school of
computer science.

[91] McGilvary, G. A., Barker, A., and Atkinson, M. (2015). Ad hoc cloud
computing. In 2015 IEEE 8th International Conference on Cloud Computing,
pages 1063–1068.

178 References

[92] Mobile Internet Usage (2015). Mobile internet usage skyrockets in past 4
years to overtake desktop as most used digital platform. [online] http://bit.ly/
mobilemarket2015, last accessed on 13-06-2019.

[93] Mohammad, A.-R., Elham, A.-S., and Jararweh, Y. (2015). Amcc: Ad-
hoc based mobile cloud computing modeling. Procedia Computer Science,
56:580–585.

[94] Monsoon (2018). High voltage power monitor. [online]https://www.msoon.
com/high-voltage-power-monitor, last accessed on 21-07-2019.

[95] Mtibaa, A., Fahim, A., Harras, K. A., and Ammar, M. H. (2013). Towards
resource sharing in mobile device clouds: Power balancing across mobile devices.
In ACM SIGCOMM Computer Communication Review, volume 43, pages 51–56.

[96] Neto, J. L. D., Yu, S.-Y., Macedo, D. F., Nogueira, J. M. S., Langar, R., and
Secci, S. (2018a). Uloof: a user level online offloading framework for mobile
edge computing. IEEE Transactions on Mobile Computing, 17(11):2660–2674.

[97] Neto, J. L. D., Yu, S.-Y., Macedo, D. F., Nogueira, J. M. S., Langar, R., and
Secci, S. (2018b). Uloof: a user level online offloading framework for mobile
edge computing. IEEE Transactions on Mobile Computing, 17(11):2660–2674.

[98] Network, Q. D. (2018). Trepn power profiler. [online]https://developer.
qualcomm.com/software/trepn-power-profiler, last accessed on 21-07-2019.

[99] Niu, R., Song, W., and Liu, Y. (2013). An energy-efficient multisite offloading
algorithm for mobile devices. International Journal of Distributed Sensor
Networks, 9(3):518518.

[100] Nucci, D. D., Palomba, F., Prota, A., Panichella, A., Zaidman, A., and
Lucia, A. D. (2017). Software-based energy profiling of android apps: Simple,
efficient and reliable? In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 103–114.

[101] Oberstein, T. and Goedde, A. (2015). The web application messaging
protocol. IETF working draft.

[102] Octeau, D., Jha, S., and McDaniel, P. (2012). Retargeting android applica-
tions to java bytecode. In Proceedings of the ACM SIGSOFT 20th international
symposium on the foundations of software engineering, page 6.

http://bit.ly/mobilemarket2015
http://bit.ly/mobilemarket2015
https://www.msoon.com/high-voltage-power-monitor
https://www.msoon.com/high-voltage-power-monitor
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler

References 179

[103] Orsini, G., Bade, D., and Lamersdorf, W. (2015). Context-aware computa-
tion offloading for mobile cloud computing: Requirements analysis, survey and
design guideline. Procedia Computer Science, 56:10–17.

[104] Osdn.net (2019). Android-x86 release 9.0. https://osdn.net/projects/
android-x86/releases/71931, last accessed on 09-12-2019.

[105] Ou, S., Yang, K., and Zhang, J. (2007). An effective offloading middleware
for pervasive services on mobile devices. Pervasive and Mobile Computing,
3(4):362–385.

[106] Pathak, A., Hu, Y. C., and Zhang, M. (2012). Where is the energy spent
inside my app?: Fine grained energy accounting on smartphones with eprof.
In Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 29–42.

[107] Qian, F., Wang, Z., Gerber, A., Mao, Z., Sen, S., and Spatscheck, O. (2011).
Profiling resource usage for mobile applications: A cross-layer approach. In
Proceedings of the 9th International Conference on Mobile Systems, Applications,
and Services, MobiSys ’11, pages 321–334.

[108] Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., and Govindan,
R. (2011). Odessa: enabling interactive perception applications on mobile
devices. In Proceedings of the 9th international conference on Mobile systems,
applications, and services, pages 43–56.

[109] Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., and Vasilakos,
A. V. (2012). Mapcloud: Mobile applications on an elastic and scalable 2-tier
cloud architecture. In Proceedings of the 2012 IEEE/ACM Fifth International
Conference on Utility and Cloud Computing, UCC ’12, pages 83–90, Washington,
DC, USA. IEEE Computer Society.

[110] Rahimi, M. R., Venkatasubramanian, N., and Vasilakos, A. V. (2013). Music:
Mobility-aware optimal service allocation in mobile cloud computing. In 2013
IEEE Sixth International Conference on Cloud Computing, pages 75–82. IEEE.

[111] Raschka, S. (2014). About feature scaling and normalization (and the effect
of standardization for machine learning algorithms). Polar Political & Legal
Anthropology Review, 30(1):67–89.

[112] Ravi, A. and Peddoju, S. K. (2015). Handoff strategy for improving energy
efficiency and cloud service availability for mobile devices. Wireless Personal
Communications, 81(1):101–132.

https://osdn.net/projects/android-x86/releases/71931
https://osdn.net/projects/android-x86/releases/71931

180 References

[113] Recordon, D. and Reed, D. (2006). Openid 2.0: a platform for user-centric
identity management. In Proceedings of the second ACM workshop on Digital
identity management, pages 11–16.

[114] Rudenko, A., Reiher, P., Popek, G. J., and Kuenning, G. H. (1998). Saving
portable computer battery power through remote process execution. ACM
SIGMOBILE Mobile Computing and Communications Review, 2(1):19–26.

[115] Saaty, T. L. (1989). Group decision making and the ahp. In The analytic
hierarchy process, pages 59–67. Springer.

[116] Saaty, T. L. (2005). Analytic hierarchy process. Encyclopedia of Biostatistics,
1.

[117] Sanaei, Z., Abolfazli, S., Gani, A., and Buyya, R. (2014). Heterogeneity in
mobile cloud computing: taxonomy and open challenges. IEEE Communications
Surveys & Tutorials, 16(1):369–392.

[118] Sarkar, S., Chatterjee, S., and Misra, S. (2015). Assessment of the suitability
of fog computing in the context of internet of things. IEEE Transactions on
Cloud Computing, 6(1):46–59.

[119] Satyanarayanan, M. (2010). Mobile computing: the next decade. In Pro-
ceedings of the 1st ACM workshop on mobile cloud computing & services: social
networks and beyond, page 5.

[120] Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The
case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23.

[121] Sequence Plugin (2019). Sequence diagram. [online] http://vanco.github.io/
SequencePlugin/, last accessed on 03-11-2019.

[122] Shi, C., Ammar, M. H., Zegura, E. W., and Naik, M. (2012a). Computing
in cirrus clouds: the challenge of intermittent connectivity. In Proceedings of
the first edition of the MCC workshop on Mobile cloud computing, pages 23–28.

[123] Shi, C., Habak, K., Pandurangan, P., Ammar, M., Naik, M., and Zegura,
E. (2014). Cosmos: computation offloading as a service for mobile devices.
In Proceedings of the 15th ACM international symposium on Mobile ad hoc
networking and computing, pages 287–296.

http://vanco.github.io/SequencePlugin/
http://vanco.github.io/SequencePlugin/

References 181

[124] Shi, C., Lakafosis, V., Ammar, M. H., and Zegura, E. W. (2012b). Serendip-
ity: Enabling remote computing among intermittently connected mobile devices.
In Proceedings of the thirteenth ACM international symposium on Mobile Ad
Hoc Networking and Computing, pages 145–154.

[125] Shi, Y., Chen, S., and Xu, X. (2017). Maga: A mobility-aware computation
offloading decision for distributed mobile cloud computing. IEEE Internet of
Things Journal, 5(1):164–174.

[126] Shih, C., Wang, Y., and Chang, N. (2015). Multi-tier elastic computation
framework for mobile cloud computing. In 2015 3rd IEEE International Con-
ference on Mobile Cloud Computing, Services, and Engineering, pages 223–232.

[127] Shiraz, M., Abolfazli, S., Sanaei, Z., and Gani, A. (2013). A study on virtual
machine deployment for application outsourcing in mobile cloud computing.
The Journal of Supercomputing, 63(3):946–964.

[128] Shiraz, M., Ahmed, E., Gani, A., and Han, Q. (2014). Investigation on
runtime partitioning of elastic mobile applications for mobile cloud computing.
The Journal of Supercomputing, 67(1):84–103.

[129] Shu, P., Liu, F., Jin, H., Chen, M., Wen, F., Qu, Y., and Li, B. (2013).
etime: Energy-efficient transmission between cloud and mobile devices. In
INFOCOM, 2013 Proceedings IEEE, pages 195–199.

[130] Silva, F. A., Zaicaner, G., Quesado, E., Dornelas, M., Silva, B., and Maciel,
P. (2016). Benchmark applications used in mobile cloud computing research: a
systematic mapping study. The Journal of Supercomputing, 72(4):1431–1452.

[131] Sinha, K. and Kulkarni, M. (2011). Techniques for fine-grained, multi-
site computation offloading. In Proceedings of the 2011 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages 184–
194.

[132] smartphone-users-still-want-longer-battery-life (2018). Smartphone users
still want long-lasting batteries more than shatterproof screens. [on-
line] https://today.yougov.com/topics/technology/articles-reports/2018/02/20/
smartphone-users-still-want-longer-battery-life, last accessed on 04-09-2019.

[133] Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., and Heinzelman,
W. (2012). Cloud-vision: Real-time face recognition using a mobile-cloudlet-
cloud acceleration architecture. In 2012 IEEE Symposium on Computers and
Communications (ISCC), pages 000059–000066.

https://today.yougov.com/topics/technology/articles-reports/2018/02/20/smartphone-users-still-want-longer-battery-life
https://today.yougov.com/topics/technology/articles-reports/2018/02/20/smartphone-users-still-want-longer-battery-life

182 References

[134] Strobel, V. (2018). Pold87/academic-keyword-occurrence: First release.
Zenodo.

[135] Sulaiman, D. and Barker, A. (2016). Task offloading engine for heterogeneous
mobile clouds. In Proceedings of the 8th EAI International Conference on Mobile
Computing, Applications and Services, pages 147–148.

[136] Sulaiman, D. and Barker, A. (2017). Mamoc: Multisite adaptive offloading
framework for mobile cloud applications. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pages 17–24.

[137] Sulaiman, D. and Barker, A. (2019). Mamoc-android: Multisite adaptive
computation offloading for android applications. In 2019 7th IEEE Inter-
national Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud), pages 68–75.

[138] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., and Sabella, D.
(2017). On multi-access edge computing: A survey of the emerging 5g network
edge cloud architecture and orchestration. IEEE Communications Surveys &
Tutorials, 19(3):1657–1681.

[139] Tarkoma, S. (2012). Publish/subscribe systems: design and principles. John
Wiley & Sons.

[140] Terefe, M. B., Lee, H., Heo, N., Fox, G. C., and Oh, S. (2016). Energy-
efficient multisite offloading policy using markov decision process for mobile
cloud computing. Pervasive and Mobile Computing, 27:75–89.

[141] The Mobile Economy (2018). The mobile economy 2018. [online] http:
//bit.ly/mobiledesktop2018, last accessed on 12-06-2019.

[142] Toyama, M., Kurumatani, S., Heo, J., Terada, K., and Chen, E. Y. (2011).
Android as a server platform. In 2011 IEEE Consumer Communications and
Networking Conference (CCNC), pages 1181–1185.

[143] u. R. Khan, A., Othman, M., Madani, S. A., and Khan, S. U. (2014). A
survey of mobile cloud computing application models. IEEE Communications
Surveys Tutorials, 16(1):393–413.

[144] Vakali, A. and Pallis, G. (2003). Content delivery networks: Status and
trends. IEEE Internet Computing, 7(6):68–74.

http://bit.ly/mobiledesktop2018
http://bit.ly/mobiledesktop2018

References 183

[145] Varghese, B., Subba, L. T., Thai, L., and Barker, A. (2016). Container-based
cloud virtual machine benchmarking. In 2016 IEEE International Conference
on Cloud Engineering (IC2E), pages 192–201.

[146] Velasquez, M. and Hester, P. T. (2013). An analysis of multi-criteria decision
making methods.

[147] Verbelen, T., Simoens, P., De Turck, F., and Dhoedt, B. (2014). Adaptive
deployment and configuration for mobile augmented reality in the cloudlet.
Journal of Network and Computer Applications, 41:206–216.

[148] Verbelen, T., Stevens, T., De Turck, F., and Dhoedt, B. (2013). Graph
partitioning algorithms for optimizing software deployment in mobile cloud
computing. Future Generation Computer Systems, 29(2):451–459.

[149] Voigt, P. and Von dem Bussche, A. (2017). The eu general data protection
regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International
Publishing.

[150] Wang, Y., Chen, R., and Wang, D.-C. (2015). A survey of mobile cloud
computing applications: Perspectives and challenges. Wireless Personal Com-
munications, 80(4):1607–1623.

[151] Wi-Fi Alliance (2016). Wi-fi peer-to-peer (p2p) technical
specification, version 1.7. [online] https://www.wi-fi.org/file/
wi-fi-peer-to-peer-p2p-technical-specification-v17, last accessed on 23-10-2019.

[152] Wu, H. (2018). Multi-objective decision-making for mobile cloud offloading:
A survey. IEEE Access, 6:3962–3976.

[153] Wu, H. and Huang, D. (2014). Modeling multi-factor multi-site risk-based
offloading for mobile cloud computing. In 10th International Conference on
Network and Service Management (CNSM) and Workshop, pages 230–235.

[154] Wu, S., Mei, C., Jin, H., and Wang, D. (2018). Android unikernel: Gearing
mobile code offloading towards edge computing. Future Generation Computer
Systems.

[155] Wu, S., Niu, C., Rao, J., Jin, H., and Dai, X. (2017). Container-based
cloud platform for mobile computation offloading. In Parallel and Distributed
Processing Symposium (IPDPS), 2017 IEEE International, pages 123–132.

https://www.wi-fi.org/file/wi-fi-peer-to-peer-p2p-technical-specification-v17
https://www.wi-fi.org/file/wi-fi-peer-to-peer-p2p-technical-specification-v17

184 References

[156] Xia, F., Ding, F., Li, J., Kong, X., Yang, L. T., and Ma, J. (2014a).
Phone2cloud: Exploiting computation offloading for energy saving on smart-
phones in mobile cloud computing. Information Systems Frontiers, 16(1):95–111.

[157] Xia, Q., Liang, W., Xu, Z., and Zhou, B. (2014b). Online algorithms for
location-aware task offloading in two-tiered mobile cloud environments. In
Proceedings of the 2014 IEEE/ACM 7th international conference on utility and
cloud computing, pages 109–116. IEEE Computer Society.

[158] Yangui, S., Ravindran, P., Bibani, O., Glitho, R. H., Ben Hadj-Alouane, N.,
Morrow, M. J., and Polakos, P. A. (2016). A platform as-a-service for hybrid
cloud/fog environments. In 2016 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), pages 1–7.

[159] Yaqoob, I., Ahmed, E., Gani, A., Mokhtar, S., Imran, M., and Guizani, S.
(2016). Mobile ad hoc cloud: A survey. Wireless Communications and Mobile
Computing, 16(16):2572–2589. WCM-16-0169.R1.

[160] Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao, Z. M., and
Yang, L. (2010). Accurate online power estimation and automatic battery
behavior based power model generation for smartphones. In Proceedings of
the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES/ISSS ’10, pages 105–114.

[161] Zhang, W.-L., Guo, B., Shen, Y., Li, D.-G., and Li, J.-K. (2018). An energy-
efficient algorithm for multi-site application partitioning in mcc. Sustainable
Computing: Informatics and Systems, 18:45–53.

[162] Zhang, X., Yang, Z., Sun, W., Liu, Y., Tang, S., Xing, K., and Mao, X.
(2015). Incentives for mobile crowd sensing: A survey. IEEE Communications
Surveys & Tutorials, 18(1):54–67.

[163] Zhou, B. and Buyya, R. (2018). Augmentation techniques for mobile cloud
computing: A taxonomy, survey, and future directions. ACM Computing
Surveys (CSUR), 51(1):13.

[164] Zhou, B., Dastjerdi, A. V., Calheiros, R. N., Srirama, S. N., and Buyya,
R. (2015). mcloud: A context-aware offloading framework for heterogeneous
mobile cloud. IEEE Transactions on Services Computing, 10(5):797–810.

[165] Zoraghi, N., Amiri, M., Talebi, G., and Zowghi, M. (2013). A fuzzy mcdm
model with objective and subjective weights for evaluating service quality in
hotel industries. Journal of Industrial Engineering International, 9(1):38.

Appendix A

Code Transformation Examples

The code transformer model was described in Section 5.7.2.2. This appendix
provides examples of the offloadable tasks in their transformations from the
Android application code to the server side Java code.

A.1 Transforming Classes
MAMoC client sends over an array of method parameters along with the name of
the class to the offloading site. The types are dynamically invoked to be called
in the main method of the generated class. As an example, let us demonstrate a
text searching task using the Knuth-Morris-Pratt algorithm [72] which is defined
in KMP class. Listing A.1 shows the original Android code.
package uk . ac . standrews . cs . mamoc . SearchText ;

@Off loadable (resourceDependent = true , p a r a l l e l i z a b l e = true)
pub l i c c l a s s KMP {

St r ing content , pattern ;

pub l i c KMP(St r ing content , S t r ing pattern) {
t h i s . content = content ;
t h i s . pattern = pattern ;

}

pub l i c i n t run () {
. . . .

}

Listing A.1 KMP on Android

When the task is executed on the Android application, it is first checked
whether the remote procedure is already registered by fetching the list of registered

186 Code Transformation Examples

procedures in the server by calling wamp.registration.list. If the procedure exists,
we only need to send the parameters and resource names (if any). Otherwise, the
following event will be published which the server is subscribed to:

publish("uk.ac.standrews.cs.mamoc.offloading", "Android",
"uk.ac.standrews.cs.mamoc.SearchText.KMP", Decompiled KMP SourceCode,
"large.txt", searchKeyword)

After the server receives it, the Java code in Listing A.2 will be generated
according to Algorithm 5.1 described earlier.
import java . n io . f i l e . F i l e s ;
import java . n io . f i l e . Paths ;
import java . i o . IOException ;

pub l i c c l a s s KMP {
pub l i c s t a t i c S t r ing readResourceContent (S t r ing f i l e P a t h) {

try {
return new St r ing (F i l e s . readAl lBytes (Paths . get (f i l e P a t h)

)) ;
} catch (IOException e) {

. . . .
}

}

pub l i c s t a t i c void main (St r ing [] a rgs) {
System . out . p r i n t (new KMP(readResourceContent (args [0]) , a rgs

[1]) . run ()) ;
}

S t r ing content , pattern ;

pub l i c KMP(St r ing content , S t r ing pattern) {
. . . .

}
}

Listing A.2 KMP on server side

The generated Java code is then compiled using javac KMP and executed with
java KMP large hello. The two passed arguments indicate the name of the text
file (large.txt) and the search keyword (“hello”) to be found in the text file. The
result of execution and duration in milliseconds are then published to the device
which have subscribed to uk.ac.standrews.cs.mamoc.offloadingresult.KMP topic.

Listing A.3 shows an Android code for another task example for solving N-
Queens problem. Since this task does not have a resource dependency, the server

A.2 Transforming Methods 187

generated code is more straightforward than the previous example, as shown in
Listing A.4.

package uk . ac . standrews . cs . mamoc . NQueens ;

@Off loadable
pub l i c c l a s s Queens {

i n t n ;

pub l i c Queens (i n t N) {
t h i s . n = N;

}

pub l i c void run () {
. . .

}

Listing A.3 NQueens on Android

pub l i c c l a s s Queens {
pub l i c s t a t i c void main (S t r ing [] a rgs) {

new Queens (In t eg e r . pa r s e In t (args [0])) . run () ;
}

i n t n ;

pub l i c Queens (i n t N) {
. . . .

}

Listing A.4 NQueens on server

A.2 Transforming Methods
MAMoC Server accepts task offloading requests in both class and method levels.
Therefore, the code transformer should be able to identify the type of the task
before transforming it. Listing A.5 shows how the type of the task is identified by
checking whether the derived code starts with the keyword package that indicates
it is a class-level offloading.

188 Code Transformation Examples

i f code . s t r i p () . s p l i t (’ ’ , 1) [0] == " package " :
code , s e l f . class_name = Transformer (code , resourcename , params) .

s t a r t ()
e l s e :

code , s e l f . class_name = Transformer (code , resourcename , params) .
s t a r t (type=" method ")

Listing A.5 Identifying class and method level offloading requests

In order to execute the method correctly, it is wrapped in a test runner class
with a main() method so that it can be compiled and executed by the execution
controller component as demonstrated in both Listing A.6 and Listing A.7 .
@Off loadable
pub l i c void testMethod () {

St r ing t e s t = " Test ing method o f f l o a d i n g " ;
System . out . p r i n t (t e s t) ;

}

Listing A.6 Method example passed to the code transformer

pub l i c c l a s s TestMethodRunner{

pub l i c void testMethod () {
St r ing t e s t = " Test ing method o f f l o a d i n g " ;
System . out . p r i n t (t e s t) ;

}

pub l i c s t a t i c void main (St r ing [] a rgs) {
new TestMethodRunner () . testMethod () ;

}
}

Listing A.7 Method code transformation on the MAMoC server

The complete source code of MAMoC and a short documentation for set-
ting up the different components in the framework is publicly available online at
https://github.com/dawand/MAMoC-Android. The repository includes further ex-
amples including N-Queens and Fibonacci tasks. The server component which can
also be pulled from Docker hub is also available at https://github.com/dawand/MAMoC-
Server.

Appendix B

The Group Decision Making
Results of Each Decision Maker

This appendix presents the steps of fuzzification and site rankings using AHP and
fuzzy TOPSIS methods in the GDM scenario that were presented in Chapter 4
and evaluated in Chapter 6. The evaluation of the GDM presented in Section 6.4
aggregated the decision matrices from all the DMs into the group judgment matrix
A(G) that were used for evaluating the criteria and then ranking the alternatives.

This appendix utilises the same set of offloading sites presented in Table 6.7
for running the MCDM GDM program for each decision maker individually and
presents the individual DM results.

190
T

he
G

roup
D

ecision
M

aking
R

esults
ofEach

D
ecision

M
aker

Bandwidth Speed Availability Security Price
Weights 0.4073 0.3886 0.1084 0.0573 0.0385
Mobile-1 (0.305, 0.389, 0.389) (0.0, 0.097, 0.194) (0.097, 0.194, 0.291) (0.194, 0.291, 0.389) (0.0, 0.0, 0.097)
Mobile-2 (0.305, 0.389, 0.389) (0.0, 0.097, 0.194) (0.0, 0.097, 0.194) (0.194, 0.291, 0.389) (0.0, 0.0, 0.097)
Mobile-3 (0.305, 0.389, 0.389) (0.194, 0.291, 0.389) (0.0, 0.097, 0.194) (0.194, 0.291, 0.389) (0.0, 0.0, 0.097)
Edge-1 (0.204, 0.291, 0.389) (0.097, 0.194, 0.291) (0.194, 0.291, 0.389) (0.194, 0.291, 0.389) (0.0, 0.097, 0.194)
Edge-2 (0.204, 0.291, 0.389) (0.194, 0.291, 0.389) (0.194, 0.291, 0.389) (0.194, 0.291, 0.389) (0.097, 0.194, 0.291)
Edge-3 (0.204, 0.291, 0.389) (0.291, 0.389, 0.389) (0.194, 0.291, 0.389) (0.194, 0.291, 0.389) (0.194, 0.291, 0.389)

Public-1 (0.204, 0.291, 0.389) (0.0, 0.097, 0.194) (0.291, 0.389, 0.389) (0.0, 0.097, 0.194) (0.097, 0.194, 0.291)
Public-2 (0.102, 0.194, 0.291) (0.194, 0.291, 0.389) (0.291, 0.389, 0.389) (0.0, 0.097, 0.194) (0.194, 0.291, 0.389)
Public-3 (0.0, 0.097, 0.1943) (0.291, 0.389, 0.389) (0.291, 0.389, 0.389) (0.0, 0.097, 0.194) (0.291, 0.389, 0.389)

Table B.1 Weighted fuzzy evaluation of offloading sites according to DM1: MCDM-GDM-DM1

Offloading site D+
i D−

i C∗
i

Mobile-3 2.7284 1.6862 0.3820
Edge-2 2.6386 1.5978 0.3772
Edge-1 2.6723 1.6048 0.3752
Edge-3 2.6651 1.5753 0.3715

Mobile-1 2.8251 1.5964 0.3611
Mobile-2 2.9219 1.5334 0.3442
Public-1 2.9624 1.3664 0.3156
Public-2 2.9567 1.3310 0.3104
Public-3 3.0657 1.2776 0.2942

Table B.2 Final ranking of the offloading sites according to DM1: MCDM-GDM-DM1

191

Bandwidth Speed Availability Security Price
Weights 0.5888 0.2219 0.1178 0.0357 0.0357
Mobile-1 (0.442, 0.222, 0.222) (0.0, 0.055, 0.111) (0.055, 0.111, 0.166) (0.111, 0.166, 0.222) (0.0, 0.0, 0.055)
Mobile-2 (0.442, 0.222, 0.222) (0.0, 0.055, 0.111) (0.0, 0.055, 0.111) (0.111, 0.166, 0.222) (0.0, 0.0, 0.055)
Mobile-3 (0.442, 0.222, 0.222) (0.111, 0.166, 0.222) (0.0, 0.055, 0.111) (0.111, 0.166, 0.222) (0.0, 0.0, 0.055)
Edge-1 (0.294, 0.166, 0.222) (0.055, 0.111, 0.166) (0.111, 0.166, 0.222) (0.111, 0.166, 0.222) (0.0, 0.055, 0.111)
Edge-2 (0.294, 0.166, 0.222) (0.111, 0.166, 0.222) (0.111, 0.166, 0.222) (0.111, 0.166, 0.222) (0.055, 0.111, 0.166)
Edge-3 (0.294, 0.166, 0.222) (0.166, 0.222, 0.222) (0.111, 0.166, 0.222) (0.111, 0.166, 0.222) (0.111, 0.166, 0.222)

Public-1 (0.294, 0.166, 0.222) (0.0, 0.055, 0.111) (0.166, 0.222, 0.222) (0.0, 0.055, 0.111) (0.055, 0.111, 0.166)
Public-2 (0.147, 0.111, 0.166) (0.111, 0.166, 0.222) (0.166, 0.222, 0.222) (0.0, 0.055, 0.111) (0.111, 0.166, 0.222)
Public-3 (0.0, 0.055, 0.111) (0.166, 0.222, 0.222) (0.166, 0.222, 0.222) (0.0, 0.055, 0.111) (0.166, 0.222, 0.222)

Table B.3 Weighted fuzzy evaluation of offloading sites according to DM2: MCDM-GDM-DM2

Offloading site D+
i D−

i C∗
i

Mobile-3 3.1465 1.5100 0.3243
Mobile-1 3.2016 1.4798 0.3161
Mobile-2 3.2569 1.4798 0.3124
Edge-1 3.1145 1.3806 0.3073
Edge-2 3.0593 1.3557 0.3071
Edge-3 3.0540 1.3448 0.3057

Public-1 3.2445 1.3396 0.2922
Public-2 3.2404 1.2356 0.2760
Public-3 3.3293 1.2139 0.2672

Table B.4 Final ranking of the offloading sites according to DM2: MCDM-GDM-DM2

192
T

he
G

roup
D

ecision
M

aking
R

esults
ofEach

D
ecision

M
aker

Bandwidth Speed Availability Security Price
Weights 0.1082 0.5213 0.3030 0.0337 0.0337
Mobile-1 (0.081, 0.521, 0.521) (0.0, 0.130, 0.261) (0.130, 0.261, 0.391) (0.261, 0.391, 0.521) (0.0, 0.0, 0.130)
Mobile-2 (0.081, 0.521, 0.521) (0.0, 0.130, 0.261) (0.0, 0.130, 0.261) (0.261, 0.391, 0.521) (0.0, 0.0, 0.130)
Mobile-3 (0.081, 0.521, 0.521) (0.261, 0.391, 0.521) (0.0, 0.130, 0.261) (0.261, 0.391, 0.521) (0.0, 0.0, 0.130)
Edge-1 (0.054, 0.391, 0.521) (0.130, 0.261, 0.391) (0.261, 0.391, 0.521) (0.261, 0.391, 0.521) (0.0, 0.130, 0.261)
Edge-2 (0.054, 0.391, 0.521) (0.261, 0.391, 0.521) (0.261, 0.391, 0.521) (0.261, 0.391, 0.521) (0.130, 0.261, 0.391)
Edge-3 (0.054, 0.391, 0.521) (0.391, 0.521, 0.521) (0.261, 0.391, 0.521) (0.261, 0.391, 0.521) (0.261, 0.391, 0.521)

Public-1 (0.054, 0.391, 0.521) (0.0, 0.130, 0.261) (0.391, 0.521, 0.521) (0.0, 0.130, 0.261) (0.130, 0.261, 0.391)
Public-2 (0.027, 0.261, 0.391) (0.261, 0.391, 0.521) (0.391, 0.521, 0.521) (0.0, 0.130, 0.261) (0.261, 0.391, 0.521)
Public-3 (0.0, 0.130, 0.261) (0.391, 0.521, 0.521) (0.391, 0.521, 0.521) (0.0, 0.130, 0.261) (0.391, 0.521, 0.521)

Table B.5 Weighted fuzzy evaluation of offloading sites according to DM3: MCDM-GDM-DM3

Offloading site D+
i D−

i C∗
i

Edge-2 2.3751 1.8750 0.4412
Edge-1 2.3751 1.8786 0.4397

Mobile-3 2.4650 1.9238 0.4383
Edge-3 2.4148 1.8396 0.4324

Mobile-1 2.5947 1.7974 0.4092
Mobile-2 2.7246 1.6860 0.3823
Public-2 2.7661 1.4971 0.3512
Public-1 2.8076 1.4937 0.3473
Public-3 2.8695 1.4085 0.3292

Table B.6 Final ranking of the offloading sites according to DM3: MCDM-GDM-DM3

193

Bandwidth Speed Availability Security Price
Weights 0.0901 0.1185 0.0752 0.6767 0.0395
Mobile-1 (0.068, 0.118, 0.118) (0.0, 0.030, 0.059) (0.030, 0.059, 0.089) (0.059, 0.089, 0.118) (0.0, 0.0, 0.030)
Mobile-2 (0.068, 0.118, 0.118) (0.0, 0.030, 0.059) (0.0, 0.030, 0.059) (0.059, 0.089, 0.118) (0.0, 0.0, 0.030)
Mobile-3 (0.068, 0.118, 0.118) (0.059, 0.089, 0.118) (0.0, 0.030, 0.059) (0.059, 0.089, 0.118) (0.0, 0.0, 0.030)
Edge-1 (0.045, 0.089, 0.118) (0.030, 0.059, 0.089) (0.059, 0.089, 0.118) (0.059, 0.089, 0.118) (0.0, 0.030, 0.059)
Edge-2 (0.045, 0.089, 0.118) (0.059, 0.089, 0.118) (0.059, 0.089, 0.118) (0.059, 0.089, 0.118) (0.030, 0.059, 0.089)
Edge-3 (0.045, 0.089, 0.118) (0.089, 0.118, 0.118) (0.059, 0.089, 0.118) (0.059, 0.089, 0.118) (0.059, 0.089, 0.118)

Public-1 (0.045, 0.089, 0.118) (0.0, 0.030, 0.059) (0.089, 0.118, 0.118) (0.0, 0.030, 0.059) (0.030, 0.059, 0.089)
Public-2 (0.023, 0.059, 0.089) (0.059, 0.089, 0.118) (0.089, 0.118, 0.118) (0.0, 0.030, 0.059) (0.059, 0.089, 0.118)
Public-3 (0.0, 0.030, 0.059) (0.089, 0.118, 0.118) (0.089, 0.118, 0.118) (0.0, 0.030, 0.059) (0.089, 0.118, 0.118)

Table B.7 Weighted fuzzy evaluation of offloading sites according to DM4: MCDM-GDM-DM4

Offloading site D+
i D−

i C∗
i

Mobile-3 3.5073 1.3301 0.2750
Mobile-1 3.5367 1.3329 0.2737
Mobile-2 3.5661 1.3437 0.2737
Edge-1 3.4790 1.2839 0.2696

Public-1 3.5376 1.2955 0.2680
Edge-2 3.4387 1.2517 0.2669
Edge-3 3.4171 1.2388 0.2661

Public-3 3.5286 1.2663 0.2641
Public-2 3.5034 1.2571 0.2641

Table B.8 Final ranking of the offloading sites according to DM4: MCDM-GDM-DM4

194
T

he
G

roup
D

ecision
M

aking
R

esults
ofEach

D
ecision

M
aker

Bandwidth Speed Availability Security Price
Weights 0.1126 0.1126 0.0615 0.0392 0.6742
Mobile-1 (0.084, 0.113, 0.113) (0.0, 0.028, 0.056) (0.028, 0.056, 0.084) (0.056, 0.084, 0.113) (0.0, 0.0, 0.028)
Mobile-2 (0.084, 0.113, 0.113) (0.0, 0.028, 0.056) (0.0, 0.028, 0.056) (0.056, 0.084, 0.113) (0.0, 0.0, 0.028)
Mobile-3 (0.084, 0.113, 0.113) (0.056, 0.084, 0.113) (0.0, 0.028, 0.056) (0.056, 0.084, 0.113) (0.0, 0.0, 0.028)
Edge-1 (0.056, 0.084, 0.113) (0.028, 0.056, 0.084) (0.056, 0.084, 0.113) (0.056, 0.084, 0.113) (0.0, 0.028, 0.056)
Edge-2 (0.056, 0.084, 0.113) (0.056, 0.084, 0.113) (0.056, 0.084, 0.113) (0.056, 0.084, 0.113) (0.028, 0.056, 0.084)
Edge-3 (0.056, 0.084, 0.113) (0.084, 0.113, 0.113) (0.056, 0.084, 0.113) (0.056, 0.084, 0.113) (0.056, 0.084, 0.113)

Public-1 (0.056, 0.084, 0.113) (0.0, 0.028, 0.056) (0.084, 0.113, 0.113) (0.0, 0.028, 0.056) (0.028, 0.056, 0.084)
Public-2 (0.028, 0.056, 0.084) (0.056, 0.084, 0.113) (0.084, 0.113, 0.113) (0.0, 0.028, 0.056) (0.056, 0.084, 0.113)
Public-3 (0.0, 0.028, 0.056) (0.084, 0.113, 0.113) (0.084, 0.113, 0.113) (0.0, 0.028, 0.056) (0.084, 0.113, 0.113)

Table B.9 Weighted fuzzy evaluation of offloading sites according to DM5: MCDM-GDM-DM5

Offloading site D+
i D−

i C∗
i

Mobile-3 3.5184 1.3380 0.2755
Mobile-1 3.5464 1.3416 0.2745
Mobile-2 3.5743 1.3524 0.2745
Edge-1 3.4933 1.2921 0.2700

Public-1 3.5485 1.3042 0.2688
Edge-2 3.4546 1.2605 0.2673
Edge-3 3.4330 1.2475 0.2665

Public-2 3.5169 1.2655 0.2646
Public-3 3.5419 1.2733 0.2644

Table B.10 Final ranking of the offloading sites according to DM5: MCDM-GDM-DM5

Acronyms

AHP Analytic Hierarchy Process.

AP Access Point.

APK Android PacKage file.

D2D Device-to-Device.

DEX Dalvik Executable format.

DM Decision Maker.

DVM Dalvik Virtual Machine.

GC Group Client.

GDM Group Decision Making.

GO Group Owner.

JVM Java Virtual Machine.

LAN Local Area Network.

MAC Mobile Ad-hoc Cloud. Glossary:Mobile Ad-hoc Cloud.

MCC Mobile Cloud Computing. Glossary:Mobile Cloud Computing.

MCDM Multi-Criteria Decision Methods. Glossary:Multi-Criteria Decision
Methods.

MCO Mobile Computation Offloading. Glossary:Mobile Computation Offload-
ing.

MEC Mobile Edge Computing.

196 Acronyms

MFC Mobile Fog Computing.

P2P Peer-to-peer.

Pub/Sub Publish/Subscribe messaging pattern.

RPC Remote Procedure Call.

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution.

VM Virtual Machine.

WAMP Web Application Messaging Protocol.

WAN Wide Area Network.

Glossary

Cloudlet A powerful nearby fixed surrogate to empower the low-powered mobile
devices. Also see: Edge Node.

Edge Node The edge server or cloudlet which currently participates in the
MAMoC framework as a service provider for Self Nodes.

Host Mobile Device The mobile client which initiaties the offloading request.
Also see: Self Node.

MAMoC Client The mobile client library to support Android applications to
be MAMoC-enabled for task offloading.

MAMoC Server The server runtime environment deployed to the service providers.

Mobile Ad-hoc Cloud An ad-hoc formation of multiple nearby mobile devices
to support local offloading for Self Nodes.

Mobile Cloud Computing An amalgamation of mobile computing and cloud
computing for leveraging mobile devices with the compute powers of the
vast cloud resouces.

Mobile Computation Offloading The process of moving parts of a mobile
application to an external entity for remote execution.

Mobile Node The nearby mobile device which currently participates in the
MAMoC framework as a service provider for Self Nodes.

Multi-Criteria Decision Methods A set of decision making techniques that
use multiple criteria for finding optimal selection and ranking of the altrna-
tives.

Nearby Mobile Device The local mobile devices which can form Mobile Ad-hoc
Cloud. Also see: Mobile Node.

198 Glossary

Public Node The remote cloud instance which currently participates in the
MAMoC framework as a service provider for Self Nodes.

Remote Cloud The datacenter regional servers such as AWS, GCP, and Azure.
Also see: Public Node.

Self Node The MAMoC-enabled mobile client which can use the MAMoC of-
floading decision engine.

Task The offloadable class or method that is MAMoC-enabled according to the
task specifications discussed in Subsection 5.2.1.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Codes
	1 Introduction
	1.1 Motivations and Challenges
	1.2 Research Hypotheses
	1.3 Contributions of This Research
	1.4 Publications
	1.5 Organisation of The Thesis

	2 Background
	2.1 Mobile Cloud Architectures
	2.1.1 Mobile Cloud Computing
	2.1.2 Mobile Edge Computing
	2.1.3 Mobile Fog Computing
	2.1.4 Comparison of Mobile Cloud Architectures
	2.1.5 Discussion

	2.2 Mobile Computation Offloading
	2.2.1 Adaptive Offloading
	2.2.2 Multisite Offloading

	2.3 Tools and Technologies
	2.3.1 Containers
	2.3.2 Android-x86
	2.3.3 Zero Configuration Network
	2.3.4 Wi-Fi P2P
	2.3.5 Web Application Messaging Protocol

	2.4 Summary

	3 Literature Review
	3.1 Overview
	3.2 Survey Methodology
	3.3 Taxonomy
	3.3.1 Offloading Objectives
	3.3.2 Partitioning Granularity
	3.3.3 Partitioning Model
	3.3.4 Task Scheduling & Allocation
	3.3.5 Offloading Decision
	3.3.6 Offloading Sites

	3.4 Discussion
	3.4.1 Current Trends
	3.4.2 MAMoC and the gaps

	3.5 Summary

	4 System Analysis and Models
	4.1 Overview
	4.2 Requirements Analysis
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements

	4.3 Task Models and Problem Formulation
	4.3.1 Compute Nodes
	4.3.2 Problem Description
	4.3.3 Execution Time Analysis
	4.3.4 Energy Consumption Analysis
	4.3.5 Task Offloading Cost

	4.4 Offloading Policy
	4.4.1 Decision Making Algorithm
	4.4.2 Offloading Score

	4.5 Multi-criteria Solver
	4.5.1 Criteria Evaluation
	4.5.2 AHP Group Decision Making
	4.5.3 Site Ranking Calculation

	4.6 Summary

	5 Design and Implementation
	5.1 Overview
	5.2 Design Assumptions
	5.2.1 Task Specifications
	5.2.2 Communication Assumptions
	5.2.3 Execution Assumptions

	5.3 Architecture Overview
	5.4 Service Discovery
	5.4.1 Device to Device
	5.4.2 Device to Server
	5.4.3 Request Validation

	5.5 Task Execution Workflow
	5.5.1 Preparation Phase
	5.5.2 Decision Making Phase
	5.5.3 Execution Phase
	5.5.4 Post-execution Phase

	5.6 MAMoC Client
	5.6.1 Service Discovery
	5.6.2 Code Decompiler
	5.6.3 Context Profilers
	5.6.4 Offloading Decision Engine
	5.6.5 Deployment Controller
	5.6.6 Database Adapter

	5.7 MAMoC Server
	5.7.1 MAMoC Router
	5.7.2 Server Manager
	5.7.3 MAMoC Repository

	5.8 Integrating MAMoC Client to Existing Projects
	5.9 Summary

	6 Experimental Evaluation
	6.1 Overview
	6.1.1 Setup and Deployment

	6.2 Offloading Decision Algorithm Evaluation
	6.2.1 Experimental Environment
	6.2.2 Demo Application
	6.2.3 Results and Analysis
	6.2.4 Comparative Evaluation

	6.3 Task Partitioning Evaluation
	6.3.1 Experimental Environment
	6.3.2 Offloading Scenarios
	6.3.3 Results and Analysis

	6.4 MCDM Evaluations
	6.4.1 Single Decision Making
	6.4.2 Group Decision Making

	6.5 Application Refactoring Evaluation
	6.5.1 Experimental Environment
	6.5.2 Results and Analysis

	6.6 Evaluation of Requirements
	6.7 Discussion and Limitations
	6.8 Summary

	7 Conclusion and Future Work
	7.1 Summary of Thesis
	7.2 Review of Hypotheses
	7.3 Review of Contributions
	7.4 Future Works

	References
	Appendix A Code Transformation Examples
	A.1 Transforming Classes
	A.2 Transforming Methods

	Appendix B The Group Decision Making Results of Each Decision Maker
	Acronyms
	Glossary

