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Localisation

Progress in shortening the duration of tuberculosis (TB) treatment is hampered by the lack of a predictive
model that accurately reflects the diverse environment within the lung. This is important as TB has been
shown to produce distinct localisations to different areas of the lung during different disease stages, with
the environmental heterogeneity within the lung of factors such as air ventilation, blood perfusion and
oxygen tension believed to contribute to the apical localisation witnessed during the post-primary form
of the disease.

Building upon our previous model of environmental lung heterogeneity, we present a networked
metapopulation model that simulates TB across the whole lung, incorporating these notions of environ-
mental heterogeneity across the whole TB life-cycle to show how different stages of the disease are influ-
enced by different environmental and immunological factors. The alveolar tissue in the lung is divided
into distinct patches, with each patch representing a portion of the total tissue and containing environ-
mental attributes that reflect the internal conditions at that location. We include populations of bacteria
and immune cells in various states, and events are included which determine how the members of the
model interact with each other and the environment. By allowing some of these events to be dependent
on environmental attributes, we create a set of heterogeneous dynamics, whereby the location of the tis-
sue within the lung determines the disease pathological events that occur there.

Our results show that the environmental heterogeneity within the lung is a plausible driving force
behind the apical localisation during post-primary disease. After initial infection, bacterial levels will
grow in the initial infection location at the base of the lung until an adaptive immune response is initi-
ated. During this period, bacteria are able to disseminate and create new lesions throughout the lung.
During the latent stage, the lesions that are situated towards the apex are the largest in size, and once
a post-primary immune-suppressing event occurs, it is the uppermost lesions that reach the highest
levels of bacterial proliferation. Our sensitivity analysis also shows that it is the differential in blood per-
fusion, causing reduced immune activity towards the apex, which has the biggest influence of disease
outputs.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

2007). Non-adherence can have serious consequences, both for
the patient, as it increases the chances of relapse after treatment,

Tuberculosis (TB) accounts for over 1 million deaths each year
(World Health Organization, 2018), despite the fact that an effec-
tive treatment has existed for decades. The current standard regi-
men for drug-susceptible forms of TB requires six months of
multiple antibiotics, and a large number of factors can contribute
to a patient’s ability to adhere to the treatment (Munro et al,,
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and for the wider society, as an incomplete course of antibiotics
can lead to the remaining bacteria developing drug resistance
(Gillespie, 2002; Lipsitch and Levin, 1998). Therefore, creating
novel regimens of shorter duration is of great importance, as doing
so would improve overall patient adherence and reduce these risks
of relapse and drug resistance. Unfortunately, recent efforts to cre-
ate new regimens of four months have not been successful.
Experiments on mice using moxifloxacin showed promising
results with regard to bactericidal effects (Nuermberger et al.,
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2004) and it was predicted that the use of this drug could reduce
human treatment duration. However, clinical trials incorporating
the drug in novel regimens were unable to prove non-inferiority
(Gillespie et al., 2014; Gillespie, 2016), possibly due to the hetero-
geneity of distribution of drugs within the lesion during treatment
(Prideaux et al., 2015). This demonstrates a crucial hurdle in the
drug development process for TB: we lack the predictive power
at the preclinical stage to make effective decisions as to which of
the many possible new regimens to progress through to expensive
and costly clinical trials. Using in vitro experiments, it is not possi-
ble the create the full environment seen within patients and there
exists no single in vivo animal model which completely encapsu-
lates the pathophysiology seen within humans (Guirado and
Schlesinger, 2013). In silico models, of both mathematical and com-
putational form, could provide a compromise: allowing us to sim-
ulate the disease in a full (synthetic) environment at a fraction of
the time and cost required for in vitro and in vivo models. The abil-
ity to create a simulation model that reflects the full spectrum of
pathophysiology seen in humans with TB would reduce the use
of animal models and allow us to make predictions as to the effi-
cacy of novel regimens, and thus better inform our decisions with
regard to prioritisation of these new treatments. Furthermore, the
development of these models allows us to explore the dynamics of
TB infection and provides insight into the complex dynamics that
occur and which we do not fully understand yet.

TB infection begins with the inhalation of one or more
Mycobacterium tuberculosis (M. tuberculosis) bacteria, which land
at the alveolar tissue of the lungs, where infection begins (Milburn,
2001). There, a complex battle between the host immune response
and the pathogen occurs. Fig. 1 shows the possible outcomes of a
TB infection. In an unknown percentage of people, the immune
response is sufficient and the bacterial load is low enough that
the infection is cleared from the body (Verrall et al., 2014). In the
rest of those infected, the bacteria proliferate and the innate
immune response is insufficient to cope with the bacteria, and thus
an adaptive immune response is triggered. In patients whose
immune system is compromised in some manner, this adaptive
immune response is also insufficient and thus active disease is
formed, termed ‘primary TB’ as it originates from the initial bacte-
rial load. This occurs in approximately 10% of those infected
(Ahmad, 2011): for the majority of patients, the adaptive immune
response is strong enough to contain but not eradicate the bacteria,
and the infection remains in an asymptomatic ‘latent’ form
(Nuermberger et al., 2004). This latent form of disease represents
a reservoir for bacteria (Gomez and McKinney, 2004), as the infec-
tion may re-activate if the immune system later weakens (Ahmad,
2011) and the structures containing the bacteria suffer degrada-
tion, allowing the bacteria to replicate extracellularly. This is ter-
med ‘post-primary TB'.

Whilst both primary and post-primary stages are active, symp-
tomatic forms of TB which can lead to patient mortality, it is
important to recognise that these two forms of disease are distinct
in localisation and pathology (Elkington and Friedland, 2015). The
initial infection site for TB can be anywhere in the lungs
(Balasubramanian et al., 1994), but tends to occur in the lower
regions (Milburn, 2001), which are more ventilated than other lung
regions (West, 2005c). Post-primary disease involves cavitation,
whereby the alveolar tissue is eroded and access is permitted to
the bronchial tree, and this cavitation always occurs at the apices
of the lungs (Balasubramanian et al., 1994). Cavitation does not
occur during primary disease (Cardona, 2011; Elkington and
Friedland, 2015; Hunter, 2016). Thus, the bacteria that land in
the lower regions must somehow disseminate to the apical
regions, and the environment at the apex of the lungs must be pref-
erential for cavitation to occur (Murray, 2003; Elkington and
Friedland, 2015). It has been hypothesised that the environmental
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Fig. 1. Overview of the clinical outcomes of M. tuberculosis exposure. Adapted from
Ahmad (2011), values from World Health Organization (2018) and Ahmad (2011).
Red boxes indicate active, symptomatic disease.

conditions within the lung contribute to these differences in local-
isation (Balasubramanian et al., 1994; Goodwin and Des Prez,
1983; Murray, 2003; Hunter et al.,, 2014), with factors such as
the lower blood perfusion and higher oxygen tension at the apices
compared to the basal regions (West, 2005a,b) believed to con-
tribute to M. tuberculosis proliferation there. But exactly how each
of these factors influences the progression of the disease is not well
understood.

One way of incorporating environmental factors such as those
described above is through the use of in silico models, whereby
mechanistic models attempt to simulate the disease in a synthetic
environment in the hopes of gaining important insight into the
underlying dynamics that influence the containment or prolifera-
tion of bacteria, thus enabling us to guide treatment development
towards those factors. Recently, these types of models have seen
greater uptake for modelling TB (see Kirschner et al., 2017 for a
comprehensive review of in silico modelling applied to within-host
TB dynamics). Early models focused on the development of a single
lesion (Segovia-Juarez et al., 2004), later extending to incorporate
other factors such as T cell priming in lymph nodes (Marino
et al.,, 2011), the impact of cytokines (Cilfone et al., 2013) and
antibiotics (Pienaar et al., 2015). Furthermore, models have been
developed that incorporate spatial features, both within a single
lesion - understanding how oxygen and chemotherapeutic con-
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centrations within the lesion create differential regions of bacterial
growth (Bowness et al., 2018), and across the whole lung, investi-
gating the dissemination of bacteria between lesions in different
regions of the lung (Wessler et al., 2020). In Pitcher et al. (2018),
we presented the first in silico model of TB over the whole lung
to incorporate the environmental heterogeneity present within
the organ in order to understand how the differentials in factors
such as blood perfusion and oxygen tension impact disease. In this
paper, we build upon this model and present a new iteration of the
model which includes a more granular network as its base and
incorporates the full life-cycle of disease, to show how the environ-
ment within the lung impacts each stage of disease in a unique
manner.

2. Whole lung model of TB with environmental heterogeneity

The model, termed TBMetapopPy, simulates the interaction
between immune cells, bacteria, and the local environment both
within the lung and in the associated lymphatics. It takes the form
of a networked metapopulation: multiple patches exist within the
model, which are linked together with edges to form a network.
Patches contain sub-populations of various immune cells or bacte-
ria, which may interact with each other and the local environment
within the patch, or may translocate from one patch to another.

2.1. Environment

The spatial domain of the model consists of the alveolar tissue
within the lung and the lymph nodes draining the lungs. The lung
tissue is divided into multiple patches, each representing the total
alveolar tissue present in a branch of the bronchial tree. Each patch
within the lung contains environmental attributes that reflect the
initial conditions within the lung at that position. These are listed
in Table 1. As V and Q represent fractions of the total ventilation
and perfusion, respectively, supplied to the lung that reach a patch,
the sum of each of these values across all patches equals 1. The
lymphatic patch contains no environmental attributes.

All patches contain populations divided into compartments,
each of which represents the species and status of immune cells
or bacteria, as described in Table 2. We model 4 types of bacteria,
based on their location and/or replication rate. Bacteria that are
present in or on the tissue surface are ‘extracellular’. M. tuberculosis
has been shown to exhibit ‘dormancy’, associated with the accu-
mulation of lipid bodies, whereby it reduces its replication rate
but becomes more resistant to antibiotics (Hammond et al.,
2015; Lipworth et al., 2016). In order to incorporate this, we allow
bacteria to switch between a ‘replicating’ (Bg) and a ‘dormant’
(Bgp) state when extracellular. M. tuberculosis has evolved to sup-
press the destructive mechanism of immune cells by preventing
phagolysosome biogenesis, and thus is able to reside within the
intracellular matrix of host cells (Russell et al., 2002; Vergne
et al., 2004; Wolf et al., 2007). We define two types of intracellular

Table 1
Environmental attributes within the lung patches of TBMetapopPy.

Label Attribute Description

% Ventilation The fraction of inhaled air that is passed to that area of
the lung

Q Perfusion The fraction of all blood sent to the lung that reaches
the given patch

(o] Oxygen Oxygen tension remaining in the air of the lungs after

tension gas exchange has occurred. This is dependent on both

the amount of air received (V) and the amount of blood
received (Q).

G Drainage The rate at which cells are able to transfer from the lung

to the lymphatics system relative to the lung average.

Table 2
Population compartments within TBMetapopPy.
Label Compartment
Ber Bacterium extracellular - replicating
Bep Bacterium extracellular - dormant
Bip Bacterium intracellular — dendritic
B Bacterium intracellular - macrophage
D, Immature dendritic cell
Dy Mature dendritic cell
Mg Resting macrophage
Mg Infected macrophage
My Activated macrophage
Tn Naive T cell
Ta Activated T cell
C Caseum

bacteria - those within dendritic cells (Bjp) and those inside macro-
phages (B ), as both of these cells have been shown to become
infected by M. tuberculosis (Giacomini et al., 1950). We do not make
the distinction between replicating and dormant here: we assume
that dendritic cells are too small to permit internal bacterial repli-
cation, and that the internal environment within a macrophage is
hostile and thus forces the bacteria into a slower-replicating state
regardless of replication rate when ingested, as intracellular bacte-
rial replication rates (0.1-0.44 per day) (Raffetseder et al., 2014)
have been shown to be similar to dormancy replication rates
(0.25-0.5 per day) (Bowness et al.,, 2018; Hendon-Dunn et al.,
2016).

We model 3 types of immune cells: dendritic cells, macro-
phages and T cells. The primary role of dendritic cells in the model
is antigen-presentation: the immature dendritic cells (D) resident
in the lung encounter and ingest bacteria, causing them to convert
to a mature state (Dy). These mature cells can then trigger an
adaptive immune response by transferring to the lymphatics and
activating T cells there. Macrophages play a similar role, as they
can also encounter and ingest bacteria and transfer to the lymphat-
ics, but we assume that macrophages are less mobile than den-
dritic cells and have a greater internal capacity - they are more
likely to remain in the lung and attempt to eliminate bacteria
there. Thus, macrophages have a ‘resting’ (M) and ‘infected’ state
(MF). We also include an ‘activated’ state (M, ), whereby the macro-
phage’s bactericidal ability is improved during an adaptive
immune response (Flesch and Kaufmann, 1990).

Naive T cells (Ty) are present within the lymphatic system and
may be activated by antigen-presenting cells. Multiple varieties of
activated T cells exist within the lungs with varying different func-
tions (Flynn and Chan, 2001; Lin and Flynn, 2015). For simplicity,
we do not make a distinction between the different roles and
include just one type of activated T cell (T,) to serve as a represen-
tation for all real-world types.

2.2. Initial conditions

At the start of a simulation using TBMetapopPy, a network is
constructed, using the parameters in Table 3, which models the
bronchial tree as a simple space-filling tree. Firstly, a set of coordi-
nates which define the perimeter, P, are provided, creating a two-
dimensional shape, S. A point, a, on the perimeter is also chosen.
The following algorithm is then executed to build a space-filling
tree:

1. A point, b, on P is chosen such the line ab bisects the shape S
evenly.

2. A point, ¢, is created on the line ab, whereby the line ac is a frac-
tion, f, of the distance of the line ab.
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Table 3

Parameters for constructing the environment of TBMetapopPy. Where parameter
range is Normal(x,y), x denotes mean and y denotes standard deviation. Where range
is Uniform(x, y), x denotes minimum value and y denotes maximum value.

Symbol Description Value/ range

P A series of (x,y) coordinates composing the (50, 0), (0, 0), (0,
external perimeter of the model environment 100), (50, 100)

a An (x,y) point, on P, where the branching (50, 50)
process originates from

f The length of the new branch as a fraction of 2
the line dividing the perimeter in two

z The minimum area needed to stop the 0.05
branching process

Sy The skew of ventilation values from base to Normal(2, 0.1)
apex, i.e. how many times greater the V value
will be for a patch at the very base of the lung
compared to one at the very apex of the lung

So The skew of perfusion values from base to Normal(3, 0.1)
apex

Ne The skew of drainage values from base to apex Uniform(1, 5)

3. Steps 1 and 2 are repeated twice, this time using c as the start
point and perimeter series of c—-a-P;—-b-c and
c—b— P, —a— c respectively, where P; represents the points
between a and b on perimeter P, and P; is the points from b back
to a.

4. Each iteration creates two new shapes of half the size of the
parent shape. A threshold, z, is provided, and once the child
shape sizes drop below this threshold, the iteration at that
branch terminates.

5. The endpoints of the branch form the patches of the finished
network.

This process (an example of which is shown in Fig. 2) creates a
space-filling tree: the end points of the tree may be geometrically
close to one another but distant on the bronchial tree. A further
patch is added to represent the lymphatic system. In order to cre-
ate a network, edges are added to show translocation of members
across the system. An edge is added between every alveolar patch
and the lymph patch.

Once constructed, the environment is firstly seeded with values
for the environmental attributes of the lung patches. Ventilation
skew (Sy) and perfusion skew (Sq) parameters are defined such
that a patch at the very apex of the lung would have both V and
Q values set to 1, whilst a patch at the very base of the lung would
have a Vvalue of Sy and Q value of S,. Each patch, i, is then assigned
values V; and Q; according to these scales and based on their ver-
tical position, as shown in Egs. (1) and (2), where y; is the vertical
position of the patch, y,,,, is the y-coordinate of the highest vertical
point of the area and y,,;, is the y-coordinate of the lowest vertical
point. These equations create linear scales of perfusion and venti-
lation across the lung, as seen in the literature (West, 2005a).
- Sy —1

Vi=1+ — Vi) k— 1

i Yimax = i) Yo Y (1)
. So—1

0i=1+ L e N 2
l (max yl) Ymax = Ymin ( )

Once every patch in the lung has been assigned these values, they
are normalised based on the values of each patch in the lung, as
per Egs. (3) and (4), which ensures the sum of all values across
the lung comes to 1.

V= Z‘@/ 3)
Q- zQé (4

Oxygen tension, O;, at patch i is calculated automatically as per Eq.
(5).
Vi

0; Q (5)

All patches (lung and lymph) are then seeded with population
values. Lung patches are assumed to contain My and D; in the
absence of infection, with the lymph patch containing My and Ty.
We assume these populations in the lymph remain at an equilib-
rium level without infection calculated as per Egs. (6) and (7),
where Mg and Ty are the equilibrium values for the compartment
Mg and Ty respectively, and other parameters are listed in Table 4.

Omy
Mg =—. 6
f Hur ©)
or
Ty =—. 7
N Uy @)

Within the lung, the equilibrium value for a given compartment will
be scaled by the perfusion, Q, at the patch, resulting in Egs. (8) and
(9).

Qo
Mg = ) 8
! Mg ®)
Qup
Dy ===. 9
! Upy ®)

Finally, bacteria are seeded within the lung, with loads of Iz for Bg
and I for Bgp placed within a single patch in the lung.

2.3. Events

As the simulation runs, populations are able to interact with
each other and the local environment, with members switching
into different compartments as they change states or locations.
Here, we define the dynamics that occur within the TBMetapopPy
model. The event system of the model uses the Gillespie Algorithm
to model time - each interaction is coded as a separate event and
each must define how its rate of occurrence is calculated from the
event parameters (listed in Table 4 and explained in Appendix A)
and the current population counts of the network, and must also
define the outcome of the event being performed.

2.3.1. Innate immune response

Mk, cells are initially present in both the lung and lymphatic sys-
tem. These cells die naturally at a rate of yu,;, and are replaced
through recruitment which occurs at rate Qo in the lung and
oy in the lymph. As Q is the perfusion value at the patch, which
is itself a fraction of the perfusion to the whole lung, the parameter
oy represents the total number of cells recruited to the entire
lung, a portion of which will be sent to a specific patch.

D, cells also die (at rate pup), and are replaced in the lung
through recruitment (at rate Qop). In the lymphatics, naive T cells
die (at rate p;y) and are replaced through recruited cells (at rate
O(T).

The bacteria in the lung are initially extracellular and are able to
replicate freely, with Bg replicating at rate AzBgz and Bgp replicat-
ing at rate ApBgp. In order to model the effects of hypoxia on bacte-
rial replication, we include an event to switch bacteria to Bgp with
increased likelihood in an oxygen-poor environment, with rate
EBgr (ﬁ—) whereby o > 0. We also include the reverse event,
with Bgp converting to Bgz when presented with an oxygenated

area, with rate equal to ¢Bgp (ﬁ—)
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Fig. 2. Example of the branching algorithm used to generate the environment within the second TBMetapopPy model. a) A shape is specified along with a branching point, a*.
b) A second point on the perimeter is chosen, b, such that the line a*b” equally divides the shape into two equal sized shaped (coloured yellow and blue). ¢) A point, ¢* is
chosen at a distance of r along the lie a*b". d) A line is drawn from a* to c*. The process then continues, with two new shaped (yellow and blue), and a branching point, c*. e)
The branching process applied to a rectangular shaped lung. For visual clarity, we show only the first 9 levels of the branching tree. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

The phagocytes within the lung may encounter the bacteria and
ingest them. This occurs at rate VRMRBE?—E(L,R for Mr and rate

yDD,BEf—EM for D;, where Br = Bgg + Bep. When performed, an extra-

cellular bacteria is probabilistically chosen to be ingested based
on current levels. We model the ability of M. tuberculosis to avoid
destruction by assigning a probability to bacterial destruction
when My encounter bacteria, with # representing the probability
that a My, cell will become infected and the bacterium will become
intracellular, whilst (1 — #) represents the probability that the bac-
terium will be destroyed. We assume that D; are incapable of bac-
terial destruction and so always convert to Dy when ingesting
bacteria, and that the different replication phenotypes (Bg or
Brp) have the same chances of survival under phagocytosis.

If a bacteria survives the ingestion process, it converts to an
intracellular state (By, or Bjp for phagocytosis by My or D; respec-
tively) and the cell converts to an infected state (M convert to
Mg, D; convert to Dy). Mg and Dy both die naturally, at rates
MyeMr and pp,,,Dy respectively, and this may return some of the
internal bacteria back into extracellular compartment Bgp (we
assume that the internal conditions within a macrophage are
stressful to bacteria and thus they have been forced into a dormant
state, which they remain in once released). For Dy death, we
assume the single internal Bjp is always released, whilst for Mg
death, we assume a percentage of the bacteria inside the macro-
phage (y, 1) are destroyed with the remainder ((1—y,)5)
released.
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Event parameters (E = estimated, see Appendix A). All values are based on rates of event per day. Where parameter range is Normal(x, y), x denotes mean and y denotes standard
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deviation. Where range is Uniform(x,y), x denotes minimum value and y denotes maximum value.

Parameter Description Baseline  Range Ref

2R B replication rate 0.814 Normal(0.814, 0.03) Bowness et al. (2018)

p Bgp replication rate 0.26 Normal(0.26, 0.01) Bowness et al. (2018)

A By replication rate 0.26 Normal(0.26, 0.01) Raffetseder et al. (2014)

a; Sigmoid for Byy replication 2.0 Normal(2.0, 0.01) Marino and Kirschner (2004)
¢ Carrying capacity of macrophages 50 Normal(50, 10) Marino and Kirschner (2004)
¢ Rate of conversion between bacterial states 1 Uniform(0.01, 2.0) E

0: Half-saturation for conversion between bacterial states 1 Uniform(0.01, 2.0) E

[ Sigmoid for conversion between bacterial states 2 Uniform(1.0, 3.0) E

Tpy Rate bacteria move from lymphatics to lung 1e-3 Uniform(5e-4, 2e-3) E

0:py Half-sat of caseum stopping bacterial reseeding of lung 500 Uniform(250, 750) E

op Rate of standard recruitment of D; into the lung 599e4 Normal(599e4, 75e4) E

Bo Rate of enhanced recruitment of D; into the lung 5000.05 Uniform(le-1, 1e5) E

Opp Half-sat value for enhanced recruitment of D; in lung 5500 Uniform(1e3 - 1e4) E

Upy Death rate of D; 0.01 Normal(0.01, 4e-3) Marino and Kirschner (2004)
Hpy Death rate of Dy 0.3 Normal(0.3, 0.1) Marino and Kirschner (2004)
Y Rate at which D; encounters bacteria 0.3 Uniform(0.2, 0.4) E

Oyp Half-sat value for contact between D; and bacteria 5500 Uniform(1e3, 1e4) E

D Rate of translocation of Dy, from lung to lymphatics 0.55 Uniform(0.1, 0.6) Marino et al. (2010) and Roberts and Robinson (2014)
oML Rate of standard recruitment of My into the lung 599e5 Normal(599e5, 75e5) Stone et al. (1992)

B Rate of enhanced recruitment of My into the lung 50000.05 Uniform(1e-1, 1e5) Marino et al. (2010)

Opmr Half-sat value for enhanced recruitment of My in lung 5e3 Uniform(1, 1e4) Marino et al. (2010)

Olmy Rate of standard recruitment of My into the lymphatics 53.465 Normal(53.465, 3.0) Marino et al. (2010)

Buy Rate of enhanced recruitment of My into lymphatics 750 Uniform(600, 900) E

Opmy Enhanced recruitment of Mg in lymph half-sat 5500 Uniform(1e3, 1e4) E

0] Weighting value for chemokine release by My to M, 0.55 Uniform(1e-2, 1) E

g Death rate of Mg 0.005 Normal(0.005, 4e-3) Wessler et al. (2020)

Hia Death rate of My 0.17 Normal(0.17, 4e-3) Wessler et al. (2020)

e Death rate of Mg 0.0033 Normal(0.0033, 4e-3) Wessler et al. (2020)

{ Rate of bursting of Mg 0.25 Normal(0.25, 0.05) Marino and Kirschner (2004) and Wessler et al. (2020)
€EMB Rate of activation of Mg by extracellular bacteria 0.04 Normal(0.04, 5e-3) Wessler et al. (2020)

Oemp Half-sat for activation of My by extracellular bacteria 5500 Uniform(1e3, 1e4) E

Emr Rate of activation of Mg by T4 0.3 Uniform(0.1, 0.5) Marino and Kirschner (2004)
Ocrt Half-saturation for activation of Mg by T, 5500 Uniform(1e3, 1e4) E

Km Rate at which T4 destroy Mg 1.35 Uniform(0.7, 2) Marino and Kirschner (2004)
Oicm Half-saturation value for T, destruction of Mg 175030 Normal(175030, 23910) Wessler et al. (2020)

Viem % of bacteria destroyed when M is destroyed by T, 0.5 Uniform(0.5, 1) E

Y& Rate at which My ingest bacteria 0.3 Normal(0.3, 0.01) Marino and Kirschner (2004)
Oyr Half-sat for contact between My and bacteria 5500 Uniform(1e3, 1e4) E

n Probability Mg becomes infected during phagocytosis 0.9 Normal(0.9, 0.01) Fallahi-Sichani et al. (2012)
Va Rate at which M, ingest bacteria 0.8 Uniform(0.2, 1.4) E

0,a Half-sat for contact between M, and bacteria 5500 Uniform(1e3, 8e3) E

or Rate of standard recruitment of Ty into lymphatics 1000 Normal(1000, 3.0) Marino and Kirschner (2004)
Br Rate of enhanced recruitment of Ty into lymphatics 1000 Uniform(900, 4000) E

Opr Enhanced recruitment of Ty into lymphatics half-sat 1e3 Uniform(1, 2e3) E

€r Rate of activation of t-cells 0.4 Uniform(0.1, 0.7) Marino and Kirschner (2004)
Oct Half-sat value for activation of T cells 1e3 Uniform(1e1l, 2e3) E

Tr Rate of T cell migration from lymphatics into lung 0.625 Uniform(0.3, 0.95) Marino and Kirschner (2004)
or T cell migration sigmoid 0.25 Uniform(1e-3, 3.0) E

iy Rate of death for Ty 0.102 Normal(0.102, 1e-2) Marino and Kirschner (2004)
Hia Rate of death for T4 0.333 Normal(0.333, 1e-2) Marino and Kirschner (2004)
it Rate of replication for T, 0.15 Uniform(1e-3, 0.3) E

Once in the internal compartment of the immune cell, bacteria
can replicate, constrained by the internal capacity of the cell. We
assume D; cells are too small to permit replication and thus Bjp

do not replicate. By, may replicate at rate 4By, (1 — %)
Thus the rate of replication decreases as the levels of bacteria
approach the total carrying capacity of all infected macrophages
(¢ME). As macrophages start to fill with bacteria, they may ‘burst’,
rupturing their outer wall and releasing bacteria. The rate of occur-

rence for this is inverse to replication, i.e. it increases as the bacte-
i i i ¢ (Biw)%
rial level approaches capacity, with rate (M, ((B,M)“wwmr)“/i)' When

this occurs, a fraction of total By, (calculated as l//gﬁh—’f) are

destroyed, with the remainder, (1 — Wg)?v'fﬁ' returning to the com-
partment Bgp. The death of an infected macrophage releases a por-

tion of caseum, C, into the extracellular compartment.

Resting macrophages may overcome their inability to destroy
bacteria by activating - this converts the Mz member to M,. This
process is triggered by the presence of bacteria, at rate
GMBMRﬁ- Activated macrophages can ingest bacteria in the

same manner as Mg, with rate y,M, Brlii%%' but M, cannot become

infected and thus the bacteria ingested are always destroyed, sim-
ulating the increased bactericidal effects of macrophage activation.
M, cells die at rate p,,,Ma.

Infection is not just restricted to the initial location and the
lymphatics. We assume that there exists a period of time after bac-
teria become present in the lymphatics and before the establish-
ment of a structured lesion there, and that during this time
period bacteria are able to freely move from the lymph nodes into
the blood and thus be transferred back into the lung to seed new
lesions. In modelling terms, we assume that the presence of
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caseum indicates a stable lesion, and thus the rate of translocation

of bacteria from the lymphatics into the lung is 'L'ByBED(l — ﬁ)

2.3.2. Adaptive response

In response to infection, the body increases the supply of
immune cells to the lung to assist with containment. This is mod-
elled by separate events for each resident immune cell type at each
location. In the lung, enhanced macrophage recruitment occurs at
rate ﬁmQ%~ We assume that My and M, cells create the

necessary chemokines to trigger enhanced recruitment, and
include w as a weighting term to allow for these cells to produce
differing levels of chemokine. Similarly, dendritic cell recruitment
is enhanced at rate 8,Q % In the lymphatics, macrophage
recruitment is enhanced at rate fy m Enhanced T cell
recruitment is dependent on dendritic cells and is increased at rate
Br oy

Dendritic cells transfer to the lymphatics during infection in
order to present antigens and trigger an adaptive immune
response (Alvarez et al., 2008; Mihret, 2012). We model this trans-
fer to the lymphatics with an event that allows Dy to translocate
from the lung to the lymphatics at rate tp,GDy,, thereby creating
different rates of clearance at different regions, based on G. This
transfer, whilst necessary for establishing an adaptive immune
response through the presentation of antigen, also carries the risk
of spreading infection, as some immune cells may harbour inter-
nalised bacteria and these will also transferred to the lymphatics.
The initial activation and proliferation of M. tuberculosis-specific
T cells has been shown to be determined by the number of bacteria
present in the lymph nodes (Wolf et al., 2008), suggesting transfer
of bacteria to the lymph nodes may be important for establishing
an adaptive immune response. We assume that our model simu-
lates a severe form of infection whereby bacteria are disseminated
to the lungs in this manner, and thus transfer of a D); member also
transfers a single Byp.

Antigen-presenting cells (both Dy, and M) in the lymphatics
can cause activation of T cells from a naive to an activated state.
This occurs at rate e;Ty %, and results in Ty changing to
Ta. Once activated, these T cells migrate to the sources of infection
to enhance the immune response and contain the bacteria. We
allow the body to direct T cells to where they are needed by basing
the rate of translocation of these cells from the lymphatics to the
lung on the number of Dy, — the presence of these cells in the lym-
phatics gives an indication of the level of infection within the lung
as they only originate within the lung. Thus, increased numbers of
Dy, in the lymphatics indicates that more T cells need to migrate to
contain infection in the lung, rather than remaining in the lymph to
fight infection there. The rate of translocation is 77T, %,

Activated T cells perform two primary functions in the model:
the first is to cause activation of macrophages, converting My into
M, occurring at rate eyrMpg ﬁ The second function of T, is to
causes apoptosis — the controlled destruction of infected cells. This
is modelled by allowing T, members to destroy M members at
rate KyMg TAT(—;‘M Doing so also destroys some internal bacteria, cal-

culated as v, ﬁ/’,—”‘j, with (1 — l//xm)?/’,—”: converting from By to Bgp. Ta
members naturally die at rate g, Ta.

2.3.3. Weakening of the immune system

The events described previously constitute the primary and
latency stages of infection: an initial infection occurs within the
lungs and the bacteria levels are brought under control by an adap-
tive immune response. In order to model a post-primary infection
(more specifically, a reactivation scenario whereby the immune

system containing the bacteria during the latency phase is compro-
mised and thus allows for bacterial levels to rise again), we include
a series of events that gradually reduce the rate of T cell recruit-
ment (i.e. or is decreased). These follow Eq. (10), where

tanh (5420 — 5.0)>
4

or(t) = or(0) * <0.75 - (10)
Unlike the previous events, these events (occurring at time (t) = 0,
1,2,...,600 days) are not stochastic and instead are coded to occur
at their respective time-points. For our experiments, we chose this
function as it allows for a 50% reduction in T cell recruitment after
approximately 250 days, a time-point where it was determined
empirically that bacteria numbers in each lesion oscillate but never
the levels seen in the initial lesion during primary infection, as seen
in Fig. 3B. Figure S1 shows Eq. (10) applied to baseline value of 1000
for o (0). These events are not intended to mimic a specific disease
(such as human immunodeficiency virus (HIV)), but represent an
abstract weakening of the immune system, which might occur
through a variety of external triggers.

3. Results

We began by running simulations using the model with param-
eters set to the baseline values as defined in Tables 3 and 4. As the
model is stochastic, multiple repetitions were required - 50 repe-
titions were run in total.

3.1. Primary infection to latent infection - total bacteria and bacteria
per lesion

We first examined the total bacterial load of the system over
time. Fig. 3A shows the results of the total bacterial load for each
of the 50 repetitions over time. In the initial phase, a primary infec-
tion begins and reaches its peak between 25 and 45 days in all sim-
ulations. This is brought under control by the introduction of the
adaptive immune response with low bacterial levels in all simula-
tions by about day 55. This correlates with evidence that the adap-
tive immune response for TB occurs within humans within 5-
6 weeks (Roberts and Robinson, 2014).

Whilst all simulations are relatively consistent to the point
where the infection has been brought under control, with only
minor variations in the height and time of the peak of initial infec-
tion, the results vary much greater in the response after this point.
Whilst many simulations tend to keep bacteria numbers at a low
level, for those that do not, the total number present has a large
amount of variation. However, it is important to understand the
size of individual lesions: a large bacterial load in total may repre-
sent a single lesion with a high bacterial load or multiple lesions
with low loads. It is important to make the distinction between
these two scenarios: multiple small lesions can be interpreted as
being stable: the immune system is able to keep these lesions at
a low level and stop bacterial growth; whereas a large lesion can
be interpreted as a failure of the immune system to control bacte-
rial growth at that location: this may lead to tissue damage, and
then cavitation. Therefore, it is preferable for the host to keep the
number of bacteria in a single lesion small, and it is important
for us to understand the number of CFUs in each lesion. From here
onwards, we refer to the number of bacteria at a lesion as lesion
CFU.

We investigated the notion of bacteria distribution by tracking
the average lesion CFU for each simulation, with the results shown
in Fig. 3B. Here, we see that the average lesion CFU after day 60 is
much lower: indicating that while there are a high number of bac-
teria, they are being spread across multiple lesions resulting in a
small average lesion CFU. At the time of the T cell recruitment drop
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Fig. 3. A) Total numbers of CFU within the entire system over time for each simulation of the TBMetapopPy system B) Average CFU count per lesion over time within each

simulation. Both plots show counts for each of 50 repetitions.

(t = 250 days), the average lesion CFU increases again, in many
cases reaching levels similar to those seen at primary disease.
We determine these to be a post-primary form of disease. We also
note that not all replications reach this level: in some cases, where
the average CFU count was low during latency, the count after the
T cell recruitment drop increases but does not reach these high
levels.

3.2. Spatial distribution of average lesion CFU and number of lesions

We then explored which spatial areas of the lung were being
affected by the disease over the course of the infection, by looking
at the average lesion CFU for each of 15 evenly-sized horizontal
divisions of alveolar tissue (i.e. we group patches together that fall
within the same given position boundaries based on their height
within the lung). Fig. 4A shows the correlation of average lesion
size to vertical position in the lung during the various stages of
infection. The initial lesion (in the very lowest region) grows and
peaks at around 30 days. By day 50, the lesion has stabilised but
bacteria have spread to other regions of the lung. At this point,
these lesions are all at a very small average CFU count, despite
the differences in their life-cycles: the large, older lesion at the
base has almost completely healed, whilst the lesions at other
regions in the lung have just begun and thus have lower CFU.

Latency is visible in days 75 to 250. We witnessed that whilst
lesion CFU count starts homogeneous across the lung, by day 100
the numbers of bacteria at lesions in the apical region start to
expand at a greater rate than those towards the base. This is in
stark contrast to the lesions during the primary stage, which are
typically completely homogeneous in terms of bacterial load. The
CFU count of these lesions during latency fluctuates in a sinusoidal

manner (see Fig. 3A), but these average CFU counts never reach the
size seen during the primary infection.

In Fig. 4A we see how the spatial distribution of average lesion
CFU within the lung changes post T cell recruitment drop (see Sup-
plementary Materials A for a breakdown of lesion sizes by each
simulation). After the start of the T cell recruitment drop at
250 days, the average CFU count increases, with the largest, most
damaging lesions appearing towards the apex of the lung. The
lesions in the lower regions also increase in CFU but not to the
levels seen towards the apex.

Furthermore, we investigated the number of non-sterilised
lesions (lesions that have bacteria present) at different areas of
the lung (Fig. 4B). We note that at the base of the lung, the average
number of lesions starts at 1 and subsequently drops, implying
that the initial lesion is often sterilised. Throughout the rest of
the lung, the number of lesions was relatively even and not
affected by the recruitment drop - implying the weakened
immune system results in existing lesions increasing in bacterial
load rather than the formation of new lesions in the model.

Fig. 5 shows the bacterial counts of lesions within a single sim-
ulation. Lesions are labelled according to their vertical position in
the lung, either apical or basal. We note that during latency, apical
lesions maintain higher bacterial loads than those towards the
base. Following T cell recruitment drop, all lesions oscillate in bac-
terial numbers, with apical lesions experiencing greater amplitude
of oscillations. Within the lymph patch, bacteria levels remain
fairly constant, even after the reduction in T cell recruitment.

3.3. Lesion composition

Fig. 6 shows the composition of populations of lesions in differ-
ent regions at different points of time in a single simulation. At
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Fig. 5. The bacterial counts of individual lesions within a single run. Lesions are
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t = 240 days (i.e. during latency), the bacterial composition of both
lesions is predominantly intracellular, and within macrophages,
with the apical lesion having a higher bacterial load. After the T cell
recruitment drop, both lesions increase bacterial numbers. How-
ever, we note that the bacteria at the apex now contain a small
but significant sub-population of extracellular bacteria. For
immune cells, we note that the basal lesion contains greater bacte-
rial numbers in total (due to its increased perfusion compared to
the apical location). At the apical region, there is a greater popula-
tion of infected macrophages, and this difference increases after
the recruitment drop at t = 400 days. In both cases, the total num-
ber of immune cells in the lesions decreases.

4. Results

We began by running simulations using the model with param-
eters set to the baseline values as defined in Tables 3 and 4. As the
model is stochastic, multiple repetitions were required - 50 repe-
titions were run in total.

4.1. Primary infection to latent infection — total bacteria and bacteria
per lesion

We first examined the total bacterial load of the system over
time. Fig. 3A shows the results of the total bacterial load for each
of the 50 repetitions over time. In the initial phase, a primary infec-

tion begins and reaches its peak between 25 and 45 days in all sim-
ulations. This is brought under control by the introduction of the
adaptive immune response with low bacterial levels in all simula-
tions by about day 55. This correlates with evidence that the adap-
tive immune response for TB occurs within humans within 5-
6 weeks (Roberts and Robinson, 2014).

Whilst all simulations are relatively consistent to the point
where the infection has been brought under control, with only
minor variations in the height and time of the peak of initial infec-
tion, the results vary much greater in the response after this point.
Whilst many simulations tend to keep bacteria numbers at a low
level, for those that do not, the total number present has a large
amount of variation. However, it is important to understand the
size of individual lesions: a large bacterial load in total may repre-
sent a single lesion with a high bacterial load or multiple lesions
with low loads. It is important to make the distinction between
these two scenarios: multiple small lesions can be interpreted as
being stable: the immune system is able to keep these lesions at
a low level and stop bacterial growth; whereas a large lesion can
be interpreted as a failure of the immune system to control bacte-
rial growth at that location: this may lead to tissue damage, and
then cavitation. Therefore, it is preferable for the host to keep the
number of bacteria in a single lesion small, and it is important
for us to understand the number of CFU in each lesion. From here
onwards, we refer to the number of bacteria at a lesion as lesion
CFU.

We investigated the notion of bacteria distribution by tracking
the average lesion CFU for each simulation, with the results shown
in Fig. 3B. Here, we see that the average lesion CFU after day 60 is
much lower: indicating that while there are a high number of bac-
teria, they are being spread across multiple lesions resulting in a
small average lesion CFU. At the time of the T cell recruitment drop
(t = 250 days), the average lesion CFU increases again, in many
cases reaching levels similar to those seen at primary disease.
We determine these to be a post-primary form of disease. We also
note that not all replications reach this level: in some cases, where
the average CFU count was low during latency, the count after the
T cell recruitment drop increases but does not reach these high
levels.

4.2. Spatial distribution of average lesion CFU and number of lesions

We then explored which spatial areas of the lung were being
affected by the disease over the course of the infection, by looking
at the average lesion CFU for each of 15 evenly-sized horizontal
divisions of alveolar tissue (i.e. we group patches together that fall
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one towards the apex (“apical”) and one closer to the base (“basal”). Populations are separated into bacteria (first row) and immune cells (second row).

within the same given position boundaries based on their height
within the lung). Fig. 4A shows the correlation of average lesion
size to vertical position in the lung during the various stages of
infection. The initial lesion (in the very lowest region) grows and
peaks at around 30 days. By day 50, the lesion has stabilised but
bacteria have spread to other regions of the lung. At this point,
these lesions are all at a very small average CFU count, despite
the differences in their life-cycles: the large, older lesion at the
base has almost completely healed, whilst the lesions at other
regions in the lung have just begun and thus have lower CFU.

Latency is visible in days 75 to 250. We witnessed that whilst
lesion CFU count starts homogeneous across the lung, by day 100
the numbers of bacteria at lesions in the apical region start to
expand at a greater rate than those towards the base. This is in
stark contrast to the lesions during the primary stage, which are
typically completely homogeneous in terms of bacterial load. The
CFU count of these lesions during latency fluctuates in a sinusoidal
manner (see Fig. 3A), but these average CFU counts never reach the
size seen during the primary infection.

In Fig. 4A we see how the spatial distribution of average lesion
CFU within the lung changes post T cell recruitment drop (see Sup-
plementary Materials A for a breakdown of lesion sizes by each
simulation). After the start of the T cell recruitment drop at
250 days, the average CFU count increases, with the largest, most
damaging lesions appearing towards the apex of the lung. The
lesions in the lower regions also increase in CFU but not to the
levels seen towards the apex.

Furthermore, we investigated the number of non-sterilised
lesions (lesions that have bacteria present) at different areas of
the lung (Fig. 4B). We note that at the base of the lung, the average
number of lesions starts at 1 and subsequently drops, implying

that the initial lesion is often sterilised. Throughout the rest of
the lung, the number of lesions was relatively even and not
affected by the recruitment drop - implying the weakened
immune system results in existing lesions increasing in bacterial
load rather than the formation of new lesions in the model.

Fig. 5 shows the bacterial counts of lesions within a single sim-
ulation. Lesions are labelled according to their vertical position in
the lung, either apical or basal. We note that during latency, apical
lesions maintain higher bacterial loads than those towards the
base. Following T cell recruitment drop, all lesions oscillate in bac-
terial numbers, with apical lesions experiencing greater amplitude
of oscillations. Within the lymph patch, bacteria levels remain
fairly constant, even after the reduction in T cell recruitment.

4.3. Lesion composition

Fig. 6 shows the composition of populations of lesions in differ-
ent regions at different points of time in a single simulation. At
t = 240 days (i.e. during latency), the bacterial composition of both
lesions is predominantly intracellular, and within macrophages,
with the apical lesion having a higher bacterial load. After the T cell
recruitment drop, both lesions increase bacterial numbers. How-
ever, we note that the bacteria at the apex now contain a small
but significant sub-population of extracellular bacteria. For
immune cells, we note that the basal lesion contains greater bacte-
rial numbers in total (due to its increased perfusion compared to
the apical location). At the apical region, there is a greater popula-
tion of infected macrophages, and this difference increases after
the recruitment drop at t = 400 days. In both cases, the total num-
ber of immune cells in the lesions decreases.
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5. Sensitivity analysis

Having established that the environmental heterogeneity pre-
sent within the lung environment can plausibly contribute to the
differences in localisation seen during different stages of infection,
we then proceeded to run uncertainty and sensitivity analysis,
exploring the scale of uncertainty present within the results of
our model and apportioning this uncertainty to the uncertainty
within our input parameters. The reasons for doing this are two-
fold. Firstly, our model, like any model constructed to simulate
real-world biology, is built upon real-world data which is often
incomplete (Saltelli et al., 2018), possibly due to a lack of available
in vivo and in vitro models. As such, many of the parameters used in
the model have been estimated and therefore should be tested for
various values to determine how the uncertainty in these parame-
ters affects the model output. It is important to understand exactly
how uncertainty in the model input propagates to its outputs, as
this can highlight which uncertain parameters should be investi-
gated further (perhaps in a laboratory or clinical trial setting) in
order to reduce the parameter uncertainty and thus improve our
confidence in the model’s outputs. Secondly, by varying the values
of input parameters and tracking the variance of the model’s out-
puts, we are afforded insight into which of the model parameters
is most influential on the given output, and thus can deduce which
individual events within the system most influence disease out-
comes. Future treatments that can target these important func-
tions would be more likely to be successful.

Our model contains a large number of parameters based on bio-
logical processes which are uncertain, and this introduces a large
amount of uncertainty into our results. As these parameters drive
various events within the model that rely on the same elements
(such as the bacterial and immune cell compartments), it is reason-
able to assume that there will be interactions between parameters.
Furthermore, the complex host-pathogen interactions that occur
during TB disease mean that we can expect non-linearities to be
present in our model as well, as shown in our results in Fig. 4:
the reduced perfusion towards the apex improves the chances of
bacterial growth in that region, but the average lesion CFU does
not rise towards the apex in a linear fashion. These factors of inter-
actions and non-linearities mean that in order to perform a valid
sensitivity analysis, a global approach must be used, i.e. all param-
eters must be varied at the same time (Saltelli et al., 2018), and the
whole n-dimensional (where n is the number of parameters)
parameter space must be explored.

In order to do this, we chose to follow the methodology laid out
by Marino et al. in performing global uncertainty and sensitivity
analysis of systems biology models (Marino et al., 2008). For our
parameter value ranges, where parameters were derived from val-
ues from the literature, we assigned a range based on a normal dis-
tribution using the literature value as the mean and an appropriate
standard deviation value. For parameters which have been esti-
mated, a uniform distribution was chosen with a large range to
reflect the additional uncertainty.

There exists a large number of possible outputs from the model.
For the purposes of our analysis, we examined seven outputs, as
listed in Table 5. These values vary over time, as the system moves
between different stages of infection. Therefore, we track the sen-
sitivity values of each parameter and output combination over a
time period, chosen as being day 1 of infection to day 550. We
track three variables, Qy,Qp and Qy, measuring total bacteria
levels, lesion counts and average lesion CFU across the whole lung,
and a further six variables looking specifically at the apex of the
lung (which we define as being above the centre of the lung for this
analysis). These track total bacteria numbers (Qg5), as well as
extracellular bacteria (Q4¢) and replicating extracellular bacteria

Table 5
Outputs from TBMetapopPy used for sensitivity analysis.
Output  Description
Qp The total number of bacteria (of all states) present within the
system
Qn The total number of non-sterilised lesions present within the
system (i.e. patches where bacteria count > 0)
Qy The average lesion CFU of all non-sterilised lesions within the
system (i.e. the average number of bacteria per patch, where
number of bacteria > 0)
Qup The total number of bacteria at apical patches (i.e. patches above the
centre of the lung)
Qup The number of extracellular bacteria in apical patches
Qar The number of lesions in apical patches
Qay The average lesion CFU of apical patches

(Qar). We also measure number of lesions in the apex (4;), aver-
age lesion CFU in the apex (Q4y) and number of activated T cells
there (Qar).

5.1. Uncertainty analysis

We first plotted the results of our outputs in order to perform
our Uncertainty analysis and understand how uncertain each out-
put was. We chose to use 50 stratifications of the input parameter
ranges, and used the average results of 20 repetitions in order to
reduce the contribution of aleatory uncertainty. These are shown
in Fig. 7, which shows the plots of each of the 50 aggregations of
20 repetitions for each parameter sample generated by a Latin
Hypercube Sampling method.

From these plots, we note that there is a high degree of uncer-
tainty in our output variables, particularly in the later stages of
infection (as seen by the large errors present for all three outputs).
For the variables tracking the whole lung, we note that the total
number of bacteria and the average lesion CFU (and their uncer-
tainties) are affected by the immune cell recruitment drop, with
their numbers increasing within the post-primary phase. The num-
ber of lesions does not seem to be impacted by the drop.

Within the apex, we note that for bacterial numbers, particu-
larly for extracellular and replicating extracellular bacteria, there
is a marked increase after the T cell recruitment drop, and that
the uncertainty within these parameters also greatly increases
(this is especially the case for replicating extracellular bacteria).
Similarly to the whole lung, the number of lesions at the apex
remains constant throughout (slightly below 1)with the uncer-
tainty ranging up to approximately 2.5 and this also does not
change throughout the course of infection. The average lesion
CFU increases after the recruitment drop (similarly to previously
mentioned outputs).

5.2. PRCC

Having established the uncertainty within our model outcomes,
we then generated Partial Rank Correlation Coefficient (PRCC) val-
ues for each parameter and output combination over the time-
scale of the simulations. The full set of plots are presented in the
Supplementary Materials Figures S3-S7, and in this section we
overview some of these results.

5.2.1. The influence of environmental parameters

The three environmental parameters, Sy,Sq and Sg, all exhibit
differing sensitivities upon the outputs (see Fig. 8). The value of
each of these variables impacts the heterogeneity in the lung, with
larger values creating a greater differential between the apex and
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Fig. 7. Uncertainty analysis plots of each output (listed in Table 5) over time. Each plot shows the mean (solid line) and standard deviation (shading) of the output values from
each of the 50 parameter sample averages (each sample is an average of 20 repetitions).

the base for the given environmental factor; for example, a greater
Sy value results in more ventilation being directed towards the base
of the lung and less towards the apex, and similarly for S, and Sc.

Sy only has significance on the outputs during the primary stage
of infection, with a negative effect on Qg and Qy at the very start of
infection and a positive effect on Q4 and Qg4 shortly after the start.
Throughout the remainder of infection, the differential in ventila-
tion has little effect on our outputs. However, he differential in per-
fusion, Sg, has a more pronounced effect. This variable shows
positive significance for most of output variables across the whole
time-frame of infection, suggesting that the greater the differential
in blood supply between the apex and the base, the worse the out-
come of infection. This is particularly pronounced for Q4 - a higher
differential in perfusion leads to a larger number of non-sterilised
lesions being present at the apices in later stages on TB. S; follows
a similar pattern to So but often with less significance. We note
that Qy has a relatively high sensitivity to Sg at the initial stage
of infection, suggesting better drainage at the lower region of the
lung reduces the size of the initial lesion.

5.2.2. The importance of T cells

Figs. 9 and 10 show the sensitivities of parameters related to T
cells that exhibit significance at some point in the time-frame,
against the outputs of the model. We note that the model is highly
sensitive to many of these parameters, indicating that T cells play a
very important role in the course of infection (we do not measure

sensitivity to or since this parameter does not remain constant
throughout infection).

From Fig. 9, the rate of destruction of macrophages by T cells ky,
has a significant impact on all outputs for the majority of infection.
In the initial stages, this impact is positive for Qy, suggesting better
destruction of macrophages may be the cause of initial seedings of
secondary lesions, as it releases bacteria from the internal compart-
ment and allows them to disseminate (this is also seen in the posi-
tive sensitivity of Q¢ to k). However, as infection progresses, these
positive sensitivities become negative, suggesting that whilst
destruction of infected macrophages during the early stages may
help spread infection, in post-primary disease it is an effective con-
tainment measure. Interestingly, enhanced recruitment of T cells
due to infection () and the rate of T cell activation (€r) both posi-
tively impact bacteria numbers throughout the lung and at the apex.

From Fig. 10, the replication of activated T cells has a strong
negative impact on all variables for most of the life-cycle, with
greater values after the primary infection has been established.
Conversely, the death rate of activated T cells (uy,) typically has
a positive impact, implying faster death of T cells weakens the fight
against the bacteria, although this impact is negative during the
primary stage. These findings suggest that while a strong T cell
response is necessary during post-primary infection, too strong a
response in the primary stage could have a negative impact, possi-
bly by releasing bacteria into the extracellular compartment and
allowing them to disseminate before a solid lesion in the lymphat-
ics can be formed.
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Fig. 8. Sensitivity plots for environmental parameters within TBMetapopPy, plotting the PRCC value of each parameter against one of the model outputs over time. Grey

shaded area shows non-significance (p<0.01).

5.2.3. Bacterial replication

Our PRCC results show contrasting findings for the replication
of intracellular and extracellular bacteria on the outputs, as shown
in Fig. 11. Of the three bacterial phenotypes which replicate in the
model, it is Bgp whose replication has the greatest significance on
the model outputs. During primary infection, this is a significant
negative impact, implying replication of dormant bacteria may
be driving an immune response that quickly contains infection.
Thus, it is preferential for bacteria to build slowly, and thereby
avoid triggering too strong a response from the host before dissem-
ination of bacteria can occur. This replication then switches to pos-
itive during later stages of infection. At the apex, extracellular
replication of replicating bacteria (igz) has a negative impact on
extracellular bacteria numbers. This may be a cause of oscillations
seen in bacteria numbers: replication of extracellular bacteria
results in an increase of T cell migration to the area, which ulti-
mately brings bacteria numbers down. This continues in a cycle
with bacteria and T cell numbers both rising and falling.

6. Discussion

Computational models of the within-host dynamics of TB have
been used extensively to improve our understanding of how dis-
ease progresses within the body, particularly at the scale of a single
lesion (Bowness et al., 2018; Segovia-Juarez et al., 2004; Sershen
et al., 2016) and with some models looking at the disease over
the whole lung and the associated lymph nodes (Marino and
Kirschner, 2004; Marino et al., 2010; Wigginton and Kirschner,
2001; Magombedze et al., 2006). However, these models have
not included the notions of heterogeneity of environmental condi-
tions within the lung as shown in this paper, which are believed to
be critical to the apical localisation of TB during the crucial post-
primary stage (Elkington and Friedland, 2015). In our first model
(Pitcher et al., 2018), we presented the first in silico model of a pul-
monary TB infection that included environmental heterogeneity
and bacterial dissemination to show how the environmental condi-
tions at the apex of the lung can favour bacterial growth and lead
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Fig. 10. Further sensitivity plots for T cell related parameters within TBMetapopPy.
to larger bacterial loads at that location during latency. In this The results of our numerical simulations have shown the plau-
work, we have expanded on that initial model by including the sibility of environmental heterogeneity within the lung being the
whole life-cycle, from initial infection with bacteria to post- driving factor for an apical localisation in the organ of post-

primary disease. primary TB. Within our model, we have set the initial infection
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Fig. 11. Sensitivity plots for bacterial replication parameters within TBMetapopPy, plotting the PRCC value of each parameter against one of the three outputs over time. Grey

shaded area shows non-significance (p<0.01).

to begin in the lower regions of the lungs. As this progresses, the
bacteria proliferate until their numbers are brought under control
by the adaptive immune response. However, in order to trigger this
adaptive response, antigen-presenting cells (dendritic cells and
macrophages in our model) must traffic to the draining lymph
nodes. By doing so, these cells present a means of bacterial dissem-
ination, since any alive bacteria inside the cells are transferred
along with the cell. This establishes a secondary infection within
the lymphatic system. There is then a short window in our model
whereby bacteria are present in the lymph nodes but before a solid
granuloma has formed there, and it is during this period that the
free bacteria are able to access the blood stream and re-seed the
lung. Various smaller lesions form, but due to the adaptive immune
response already being established, these lesions do not reach the
CFU counts of the single lesion seen in the initial infection. These
lesions are heterogeneous, with lesions towards the apex reaching
a greater CFU count than those lower down. Once an external event
reduces the immune response (by knocking out some of the
recruitment of T cells), the numerous lesions present begin to
expand, and it is in this region that the lesions reach the dangerous
bacterial loads seen during primary infection. Our results also
show that the composition of the lesions at different regions is
heterogeneous, with apical lesions having a greater proportion of
extracellular bacteria, especially those of a replicating phenotype.
It would be interesting to make a comparison between the apical
location identified in this paper with radiological lesions, but such
a study was beyond the scope of this work.

Our sensitivity analysis shows that the skew of perfusion values
has a significant effect on the total number of bacteria and the
average lesion CFU during the all stages, whereas the skews of ven-
tilation and drainage have limited impact. Therefore, we can inter-
pret this as showing that the heterogeneity of perfusion may be the
main environmental factor that contributes to the apical localisa-
tion, probably due to the reduced immune response it causes there,
and this is shown by the strong sensitivity of Qay to S,. Differen-

tials in blood flow have long thought to contribute to this apical
localisation, with bed rest (which alters the scale and direction of
blood flow due to the change in the host’s posture (Galvin et al.,
2007)) previously being shown to have positive effects on TB
recovery (Murray, 2003) and this is the first modelling evidence
to support this idea.

The results of our sensitivity analysis also highlight other mech-
anisms that may contribute to disease outcome. We have demon-
strated the importance of T cells within the model, as the majority
of T cell related parameters had significant influence on all three of
our disease outputs. For our model, extracellular replication of dor-
mant has a greater impact on disease outputs during the latency
and post-primary stage than intracellular replication. Thus, it
may be more important to focus treatments on destroying these
extracellular bacteria than those in the intracellular niche to
improve treatment.

Our TBMetapopPy environment models a single individual, with
environmental attributes determined at the beginning of simula-
tion remaining constant throughout. In reality, whilst the environ-
ment of the lung affects the disease, the reverse is also true, with
the disease altering the anatomy of the lung, with tissue destruc-
tion and cavitation creating new routes of bacterial dissemination.
Furthermore, our model simulates a single individual, with one set
of environmental parameters being used for all simulations. How-
ever, no two human beings have the same lung, as lung morphol-
ogy and physiology are affected by a number of factors, including
height and body size (Cook et al., 1958), and sex (Cohen et al.,
2008; Townsend et al., 2012; Becklake and Kauffmann, 1999). Gen-
der may be of particular interest to TB researchers, as there has
been shown to be gender differences in responses to treatment:
an analysis of the REMoxXTB clinical trial revealed that men with
cavitation showed poorer response to treatment than women with
or without cavitation (Murphy et al., 2018). These differentials in
disease outcome between genders may be caused by biological
sex differences between male and female lung morphologies
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(Cohen et al., 2008; Neyrolles and Quintana-Murci, 2009), although
the causes may also be socio-economic or cultural (Hudelson,
1996). Further iterations of the model should also incorporate
dynamic environments: as the disease progresses, it necessarily
impacts the environment on which it occurs, through tissue dam-
age and cavitation. Thus, differences between regions of the lung
may become or less pronounced as the disease advances.

The topology utilised to model the lungs in TBMetapopPy is sim-
plistic and yet is sufficient to show how environmental hetero-
geneities between different regions impact TB. In order to
enhance the model and better reflect the real-world anatomy, dif-
ferent lung topologies could be used. The space-filling curve shown
here is capable of filling any 2-dimensional shape and would
extend to non-symmetrical shapes such as those found in the
human lung. Furthermore, the lymphatic architecture of the model
could be expanded, with a series of lymph nodes draining different
regions of the lungs allowing for more complex transmission
dynamics across the pulmonary environment.

During a TB infection, the interactions that occur between
immune cells and bacteria are various and complex. In order to
keep the model parsimonious, restrictions have been made on the
number and type of immune cells included. Neutrophils play a
major role in TB pathology, often being the first immune cells that
encounter bacteria (Lowe et al., 2012). Separating neutrophils out
into a separate compartment may allow for a more accurate repre-
sentation of the real world dynamics, and to better understand cell-
to-cell interactions and the impact the environment has on these, as
neutrophils have strong interactions with macrophages (Lowe
et al., 2012). Furthermore, the assumption of similar replication
rates for dormant extracellular bacteria and intracellular bacteria
may need further investigation, as intracellular bacteria have been
shown to impact antigen-presentation, suggesting the bacteria are
not entirely dormant (Wolf et al., 2007; Harding and Boom, 2010).

The focus of our model has been to simulate the disease in its
untreated form. However, it is reasonable to assume that environ-
mental heterogeneities also impact the pharmacokinetics of TB
treatment, as all drugs will enter the environment via the blood
and thus perfusion differentials may result in inadequate concen-
trations of chemotherapy reaching the areas with the greatest bac-
terial growth. The pharmacodynamics of the different drugs that
are currently used to fight TB are affected by different environ-
ments and so a variety of different drugs could be included in
the model that perform different actions dependent on their loca-
tion. The ability to combine a whole-organ model of various lung
morphologies with a range of possible treatment regimens would
confer the ability to create ‘virtual clinical trials’, where new regi-
mens could be trialled on synthetic patients first, allowing us to
make predictions on their likely efficacy and thus better prioritise
the regimens to be put into actual trials.
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Appendix A. Parameter estimation

The parameters used in the event dynamics, environment con-
struction and initial conditions have been derived from existing lit-
erature where possible or estimated. Each parameter is given a
baseline value for the purposes of running individual simulations
(see Section 3), as well as a range, representing the biological
uncertainty of the parameter, which is used for sensitivity analysis
(see Section 5). As there are not many experimental or clinical
studies focused on humans, many parameters are derived from
animal models or have been estimated. Where parameters have
been estimated, large ranges have been applied as well as a uni-
form distribution (Shaler et al., 2012). The uncertainty created by
these estimated parameters is explored in Section 5.

A.1. Environmental parameters

In the human body, blood flow to the base of the lungs is
approximately 3 times that at the apex of the lungs, whilst venti-
lation at the base is approximately twice that the apex (West,
2005a). We use these observations to determine ranges of values
for Sy and S, (see Table 3), and it is these values ultimately deter-
mine the amount of blood and air present in each section of the
lung.

A.2. Bacterial state changes

The oxygen values within each patch are relative values indicat-
ing the difference between ventilation and perfusion - thus, we
assume a value of 1 for oxygen implies a balance between oxygen
entering that area of the lung and oxygen being removed through
oxygen exchange. Values above 1 indicate a surplus of oxygen and
values below 1 indicate a deficit. We thus choose 1 as a half-sat
value for bacterial state changes from replicating to dormancy
and vice versa (0;).

A.3. Recruitment and death

Macrophage recruitment rates are based on known macrophage
numbers within the lung (Stone et al., 1992) and determined based
on these and the macrophage death rate taken from other experi-
mental models (Wessler et al., 2020). For dendritic cell recruit-
ment, op, we assume that the dendritic population is
approximately 10% of the macrophage population (Marino and
Kirschner, 2004), and thus choose scaled values based on the
macrophage recruitment rate derived from the literature. Simi-
larly, enhanced dendritic cell recruitment, 0y, is scaled based on
the corresponding value for macrophages, 0.

A.4. Cell-to-cell interactions

Little experimental data exists upon which to derive accurate
values for the rates of contacts and half-saturation values between
specific cells during infection. Where possible, values have been
derived from existing models. In cases where there is no data to
draw on, the values have been assigned wide parameter ranges
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for the Sensitivity Analysis (see Section 5). For T cell destruction of
bacteria, previous models have either destroyed all bacteria
(Bowness et al., 2018) or released a portion of them (Marino
et al., 2010). As such, we have chosen to use a baseline value of
0.5 for y,,, to signify half of all bacteria being destroyed, with a
range that varies up to 1 (signifying all bacteria being destroyed).

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/.jtbi.2020.110381.
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