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1 Abstract: 

2 1. Predictive species distribution models (SDMs) have become powerful tools to 

3 determine habitat use patterns of mobile marine predators and their spatial overlap 

4 with potentially impacting anthropogenic activities. 

5 2. This study used SDMs to investigate fine-scale habitat use patterns of two poorly 

6 known and broadly sympatric coastal delphinids, Chilean dolphins (Cephalorhynchus 

7 eutropia) and Peale’s dolphins (Lagenorhynchus australis), and their spatial 

8 interactions with intense aquaculture farming activities in the Chiloé archipelago, 

9 southern Chile. 

10 3. A long-term dataset (2002-2012) of boat-based dolphin sightings and concurrently in 

11 situ collected environmental and anthropogenic variables was analysed using binomial 

12 GAMs to investigate ecological drivers of each species’ fine-scale distribution and to 

13 predict dolphin occurrence spatially. 

14 4. Chilean dolphins preferred shallow (<30 m deep), turbid waters, close to shore (<500 

15 m) and river mouths which often placed them in sheltered bays and channels used 

16 intensively by shellfish farms. Peale’s dolphins were also found in shallow waters but 

17 occurred over a wider range of conditions along more open or exposed coastlines. 

18 Both species had to navigate extensive salmon and shellfish farming sites to transit 

19 between areas of important habitat.

20 5. Sightings and predicted occurrence maps showed a clear pattern of spatial habitat 

21 partitioning between species, which remained stable across the 11-year study period. 

22 The identification of important habitat for Chilean dolphins warrants the consideration 

23 of spatially explicit conservation measures to limit the potential effects of overlapping 

24 salmon and shellfish farming.

25 6. The observed differences in ecological plasticity of the two sympatric species should 

26 be considered when evaluating and mitigating the effects of environmental change 

27 and ongoing anthropogenic pressures on their nearshore habitat. The estimated 

28 species-environment relationships could also be used to predict where dolphin habitat 

29 and anthropogenic activities are most likely to overlap in other parts of the species’ 

30 ranges.

31
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32 Keywords: predictive species distribution models, habitat use pattern, niche partitioning, 

33 Cephalorhynchus eutropia, Lagenorhynchus australis, aquaculture 

34

35 INTRODUCTION

36 Where animals occur, what drives their distribution and how they use their habitat are some 

37 of the fundamental questions in ecology. Understanding how these patterns relate to the 

38 spatial distribution and extent of human activities, and how they might be affected by 

39 environmental change, is essential to conservation. Sympatric species may respond differently 

40 to environmental change and anthropogenic pressures, making the identification of species-

41 specific habitat use patterns a key requirement for effective conservation (Schaefer, Jetz, & 

42 Böhning-Gaese, 2008; Silber et al., 2017).

43 Predictive species distribution models (Guisan & Zimmermann, 2000), SDMs, have 

44 emerged as powerful tools to identify important habitats for species and for use in biodiversity 

45 conservation (Gregr, Baumgartner, Laidre, & Palacios, 2013; Guisan et al., 2013; Lecours, 

46 2017). SDMs can provide important ecological insights into species-environment relationships 

47 (Bräger, Harraway, & Manly, 2003; Redfern et al., 2006) enable comparisons among species 

48 (Ingram, Walshe, Johnston, & Rogan, 2007; Mannocci et al., 2014; Redfern et al., 2013), 

49 identify key areas and habitats (Esteban et al., 2014; Pérez-Jorge et al., 2015), and help predict 

50 where species might be most at risk from anthropogenic activities (Ashe, Noren, & Williams, 

51 2010; Redfern et al., 2013). They can also inform conservation and management by guiding 

52 spatially explicit mitigation actions such as the designation and management of marine 

53 protected areas (Bailey & Thompson, 2009; Cañadas, Sagarminaga, De Stephanis, Urquiola, & 

54 Hammond, 2005; IUCN-MMPATF, 2016).

Page 3 of 38

http://mc.manuscriptcentral.com/aqc

Aquatic Conservation: Marine and Freshwater Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

55 This study uses SDMs to investigate the habitat use patterns of two poorly known 

56 coastal delphinids, which occur in sympatry in southern Chile, one of the most intensively used 

57 marine aquaculture farming regions in the world (Bostock et al., 2010). The study species, 

58 Chilean dolphin (Cephalorhynchus eutropia, Gray 1846) and Peale’s dolphin (Lagenorhynchus 

59 australis, Peale 1848), inhabit the nearshore waters of southern Chile, with Peale’s dolphins 

60 also occurring over the continental shelf waters of the southern South Atlantic where they are 

61 sympatric with another Cephalorhynchus species (C. commersonnii, Lacépède 1804) (Heinrich, 

62 Elwen, & Bräger, 2010).

63 Cephalorhynchus dolphins and Peale’s dolphins are unusual amongst the delphinids in 

64 that their acoustic repertoire seems to consist only of narrow-band high frequency clicks 

65 which may be an adaptation to life in acoustically cluttered inshore waters (Götz, Antunes, & 

66 Heinrich, 2010; Kyhn et al., 2010) and/or facilitates acoustic crypsis from their main potential 

67 predator, killer whales (Orcinus orca, Linnaeus 1758) (Morisaka & Connor, 2007). Peale’s 

68 dolphins are bigger than Chilean dolphins, and seem to show more ecological plasticity 

69 inhabiting a wider geographic and habitat range (Cipriano, 2018). Detailed information on diet 

70 is lacking for both species, but they are thought to forage on a variety of schooling and 

71 demersal fish and cephalopod species (Goodall, Norris, Galeazzi, Oporto, & Cameron, 1988; 

72 Schiavini, Goodall, Lescrauwaet, & Alonso, 1997). Both Chilean and Peale’s dolphins seem to 

73 prefer nearshore shallow waters (Heinrich, 2006; Viddi, Hucke-Gaete, Torres-Florez, & Ribeiro, 

74 2010), but differ substantially in their encounter rates in southern Chile. Peale’s dolphins are 

75 usually the most frequently sighted delphinid, whereas Chilean dolphins are rarely seen and 

76 appear to have a more patchy distribution concentrated in sheltered bays and channels 

77 (Aguayo-Lobo, Torres Navarro, & Acevedo Ramírez, 1998; Viddi et al., 2010; Zamorano-

78 Abramson, Gibbons, & Capella, 2010). Both species are regularly sighted in the Chiloé 

Page 4 of 38

http://mc.manuscriptcentral.com/aqc

Aquatic Conservation: Marine and Freshwater Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

79 archipelago where Peale’s dolphins appear to outnumber small localized populations of 

80 Chilean dolphins (Heinrich, 2006). 

81 Since the early 1990s the Chiloé region has become the centre of Chile’s lucrative 

82 salmonid and shellfish farming enterprises, leading to substantial increases in human 

83 population and infrastructure, and affecting the health of the coastal marine ecosystem 

84 (Buschmann et al., 2009; Buschmann, López, & Medina, 1996; Sepúlveda, Arismendi, Soto, 

85 Jara, & Farias, 2013). Potential direct effects of aquaculture farming on cetaceans include 

86 increased mortality due to entanglement in cage netting and ropes (Díaz López & Bernal Shirai, 

87 2007; Kemper & Gibbs, 2001). However, most effects likely operate via multiple indirect and 

88 possibly synergistic pathways such as exclusion from important habitat, habitat degradation, 

89 food web alterations, noise pollution, contamination and spread of disease (Buschmann et al., 

90 2009, 2012; Kemper et al., 2003; Markowitz, Harlin, Würsig, & McFadden, 2004; Pearson, 

91 Vaughn-Hirshorn, Srinivasan, & Würsig, 2012; Ribeiro, Viddi, Cordeiro, & Freitas, 2007; 

92 Watson-Capps & Mann, 2005). Fish farms can also affect dolphin habitat use patterns 

93 (Bonizzoni et al., 2014), because farmed fish or cage-associated wild fish can act as attractive 

94 food sources (Piroddi, Bearzi, & Christensen, 2011). 

95 This study uses a long-term dataset to model fine-scale habitat use of sympatric 

96 Chilean and Peale’s dolphins in relation to environmental and anthropogenic variables in the 

97 Chiloé archipelago. It explores differences in habitat use patterns between the two species, 

98 identifies their key habitats using spatial predictions, and provides evidence of decadal 

99 stability in habitat use, supporting spatially explicit management measures as a suitable tool 

100 to protect dolphin key habitats.

101
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102 MATERIAL AND METHODS

103 Study Area

104 This study took place in the Chiloé archipelago in southern Chile (41.8°–43.4°S, 73.2°–73.9°W) 

105 and comprised two survey areas (northern and southern, Figure 1) separated by about 70 km 

106 and covering a range of coastal habitats including islands, channels, bays and estuaries. This 

107 region is characterized by considerable freshwater input and variations in sea surface 

108 temperature (SST) and salinity (Dávila, Figueria, & Müller, 2002; Iriarte, González, Liu, Rivas, & 

109 Valenzuela, 2007; this study). The northern study area (near Castro) spanned roughly 260 km2, 

110 with water depths up to 130 m and average depth of about 50 m. The southern area (near 

111 Quellón) spanned roughly 275 km2, with water depths rarely exceeding 50 m and average 

112 depth of about 25 m. 

113 Sampling Design and Data Collection

114 Systematic boat-based habitat and sighting surveys for small cetaceans were carried out 

115 annually from January to April of 2002–2012, using 4.2 m inflatable boats with outboard 

116 engines. Surveys were conducted at 20 km/h in favourable conditions, defined as Beaufort ≤3, 

117 good visibility and little or no precipitation. Surveys were designed to ensure full coverage of 

118 the available habitat in the chosen study areas. Transects had variable start and end points 

119 and were placed in regularly spaced randomized zigzag patterns crossing bays and channels 

120 from shore to shore and extending up to 3,000 m offshore. 

121 Two to four observers scanned the sea surface ahead and out to 90° of the transect line 

122 for visual cues of dolphins. When dolphins were sighted, the observers recorded the position 

123 of the vessel on the transect line using Global Positioning System (GPS), the distance 

124 (estimated by eye in m) and angle (estimated in degrees using a small angle board) to the 
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125 sighting before approaching the dolphins to record more detailed information. This included 

126 species identification, group size, presence of offspring, dolphin behaviour and a suite of in 

127 situ environmental measurements (Table 1) made as close as possible to the original location 

128 where dolphins were first seen prior to approach (position also marked by GPS). This position 

129 constituted a presence point. Any further dolphin groups seen while working with the initial 

130 sighting were not included in the analyses presented here. 

131 Environmental measurements (Table 1) included biologically relevant physiographic and 

132 oceanographic variables that served to characterize dolphin habitat (depth, distance to shore, 

133 distance to rivers, SST, water clarity, salinity) and anthropogenic variables (distances to 

134 nearest salmon and nearest shellfish farms). Distance variables were measured in situ using a 

135 Bushnell laser range finder for distances of <1000 m (i.e. maximum range of equipment). 

136 Distances to coastline and rivers of ≥1000 m were derived in a GIS (Geographic Information 

137 System; Manifold System vers 8.0, using coordinate system WGS 1984 UTM Zone 18S and 

138 GSHHS high resolution coastline data). It was not possible to use GIS to calculate post-hoc 

139 distances to salmon and shellfish farms because the farms regularly changed location, extent 

140 and activity status. Mapping these frequent changes in situ was not feasible given the number 

141 of farms involved. However, the maximum distance between any given point in the study area 

142 and the nearest aquaculture farm was 7000 m. Therefore, distances of ≥1000 m which could 

143 not be measured in situ (or when no farms were in visual range), were assigned random values 

144 from 1000 to 7000 m to facilitate the inclusion of distance to farms as continuous variables in 

145 the models. Thus, direct effects of aquaculture sites on dolphin distributions were only 

146 interpreted for distances within the measured range of <1000 m, and greater distances were 

147 considered uninformative for the modelled relationships.
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148 After all measurements had been taken during a sighting, survey effort resumed at the 

149 initial point of departure from the transect line and continued along the original trajectory. If 

150 no dolphins were sighted while moving along the transects, the vessel was stopped at regular 

151 15-min intervals to collect the same in situ environmental data as recorded during dolphin 

152 presence (Table 1). These 15-min stops for sampling without dolphins constituted the absence 

153 points of the analysis, and were considered true absences because sighting conditions and 

154 survey protocol would have allowed any dolphins present at that location to be detected. The 

155 randomized transect design and regular 15-min sampling at absence points along the 

156 transects ensured that the habitat types available to the dolphins in each study area were 

157 sampled representatively.

158

159 Modelling

160 All absence and presence points with their associated in situ measurements constituted the 

161 sample data for analyses. Dolphin probability of occurrence was modelled using binomial 

162 Generalized Additive Models (GAMs) (Hastie & Tibshirani, 1990) with a logit link function. 

163 Analyses were carried out in software R 3.4.2 (R Core Team, 2017), using the mgcv library 

164 (Wood, 2006). Pairplots and variance inflation factors (Brauner & Shacham, 1998) were used 

165 to inspect potential collinearity among covariates, but none was detected. The choice of 

166 variables (Table 1) was guided by their potential biological relevance as well as availability of 

167 reliable data measured at appropriate spatial and temporal resolutions, which ruled out using 

168 remotely sensed data (e.g. SST, chlorophyll concentration) or tidal predictions for the study 

169 areas. 
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170 Each predictor variable entered the model as a smooth term (except Year, which was 

171 included as factor, see below), where the degree of smoothness was determined as part of 

172 the model fitting process (Wood, 2006). Thin plate regression splines were used, because they 

173 allow smoothing with respect to any number of covariates and do not require ‘knot’ locations 

174 to be specified (Wood, 2006). GAMs have a tendency to over-fit (Wood, 2006), so the degrees 

175 of freedom of each smooth was limited to 4.

176 Two types of models were fitted: the ‘environmental (or explanatory) model’ and the 

177 ‘spatial model’. In the environmental model, all variables except latitude and longitude were 

178 included. Beaufort scale was included to take account of variation in detection probability as 

179 a function of sea conditions (Evans & Hammond, 2004). Year was added as a factor, to explore 

180 differences among survey years. In the spatial model, additional spatial information (latitude 

181 and longitude) was included as an isotropic smooth (Wood, 2006), as a proxy for potentially 

182 spatially structured habitat characteristics that were not accounted for with the available 

183 environmental data. The best models were used to visualize the predictions of dolphin 

184 occurrence on the maps. 

185 Two model selection methods were used. Shrinkage smoothers (Wood, 2006) were used 

186 on the full model (all candidate covariates) as an automated model selection. Shrinkage 

187 smoothers introduce an additional penalty that enables smooth terms to be penalized 

188 (‘shrunk’ away) when the term makes no contribution to the model (Wood, 2006). Forward 

189 stepwise selection was used as a complementary method to assess the contribution of each 

190 covariate to the explained deviance, and to choose among models with or without factor 

191 variables. Here, each covariate was added to the null model (intercept only), one at a time. 

192 The covariate that made the greatest model improvement was retained. All remaining 

193 covariates were then individually tested again for potential inclusion in this new model. This 
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194 continued until the inclusion of new covariates no longer improved the model, as judged by 

195 the UBRE score and the approximate Akaike’s Information Criterion (AIC) for GAMs (Wood, 

196 2006). Covariates were retained if they reduced the AIC by at least 2 (Burnham & Anderson, 

197 2002). 

198 The best models were used to visualize the predictions of dolphin occurrence in the 

199 study areas. The 95% confidence intervals (CI) for predictions were calculated through non-

200 parametric bootstrap of the sample data, with replacement, using 500 replications and the 

201 percentile method (Borchers, Buckland, & Zucchini, 2002). The mean probability of occurrence 

202 and the lower and upper CI bounds were then plotted on maps to visualize the probability of 

203 occurrence as a measure of importance of different areas. All point-based predictions were 

204 exported into Manifold GIS and kriging was used to generate smooth colour-coded surfaces 

205 for the habitat use maps. Information on the location and extent of registered aquaculture 

206 concessions for the year 2015, obtained from the Chilean Fisheries Service 

207 (wwww.subpesca.cl), was then overlaid on the combined predicted habitat use surfaces for 

208 both species to illustrate their recent spatial overlap in both study areas.

209 RESULTS

210 Field surveys covered a distance of 30,736 km during 489 days spread over 11 years. A total 

211 of 531 Chilean dolphin sightings (32–80 annually) and 353 Peale’s dolphin sightings (22–70 

212 annually) were used for modelling, together with 2,461 absence points (178–408 annually, 

213 Figure 1). Both species were encountered in all years and in both study areas, yet with 

214 different encounter rates. Chilean dolphins were uncommon in the northern compared to the 

215 southern study area (0.3 dolphin compared to 2 dolphins per 10 km surveyed), whereas 
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216 Peale’s dolphins were sighted more frequently in the northern than the southern study areas 

217 (1 dolphin compared to 0.5 dolphin per 10 km surveyed). 

218 Detection probabilities were not calculated because distance and angle estimates lacked 

219 precision, were not available for all sightings and were affected by the low position of the 

220 observers (<2m). However, average radial distances of detection were almost identical for 

221 both species (Chilean dolphins: 249 m, SD = 188 m, Peale’s dolphins: 256 m, SD = 204 m), thus 

222 differences in detection probability are unlikely to affect comparison of model results 

223 between species. For both species, the different model selection methods resulted in the 

224 same covariates retained in the final environmental and spatial models. Table 2 shows the 

225 results of the forward stepwise selection for the environmental models, including the relative 

226 contribution of covariates to the explained deviance.

227 Chilean dolphins

228 The final environmental model for Chilean dolphins retained all candidate covariates except 

229 Year, and explained 33.2% of the deviance (Table 2). The model fitted the data well (adjusted 

230 R2 for binary data = 0.43). Fitted smooth functions are shown in Figure 2. Distance to shore 

231 was the most important predictor, explaining 17.8% of the deviance (Table 2). Probability of 

232 occurrence decreased with increasing distance to shore, and 95% of all sightings of Chilean 

233 dolphins occurred within 500 m from shore. Depth was also an important predictor, with 

234 probability of occurrence decreasing with increasing depth, and 95% of all sightings were 

235 made in waters with depths shallower than 30 m. Probability of occurrence decreased with 

236 increasing distance to shellfish farms, but increased with increasing distance to salmon farms. 

237 It was higher closer to rivers, in more turbid, somewhat less saline and relatively warmer 

238 waters. As expected, it decreased with increasing Beaufort scale. Year was not retained in the 

239 model, suggesting no significant inter-annual differences.
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240 The final spatial model included distance to shore, depth, SST, water clarity, distance to 

241 nearest river, distance to nearest shellfish farm, distance to nearest salmon farm and Beaufort 

242 scale, plus the interaction of latitude and longitude, explained 42.1% of the deviance (adjusted 

243 R2 = 0.52), and was used to generate prediction maps. Visual comparison of prediction maps 

244 with the observed sightings indicated that the model correctly predicted areas of high 

245 occurrence probability where sightings were concentrated (Figures 1, 3 and 4). 

246 Key areas for Chilean dolphins, based on high predicted probability of occurrence, were 

247 situated mostly in the southern study area: in Yaldad Bay, along the western shore of Isla 

248 Coldita, and in the channels around Isla San Pedro (Figure 3). These areas were predicted as 

249 important even when uncertainty (lower 95% CI bound) was taken into account (Figure 3c). 

250 Areas with few or no sightings were also correctly predicted as areas with low probability of 

251 occurrence, regardless of uncertainty. Mean model predictions appeared to under-predict 

252 occurrence at Isla Cailín; however, the upper 95% CI did predict this area to be important, 

253 while still predicting low probability of occurrence in adjacent waters (Figure 3b). The model 

254 predicted low overall probability of occurrence in the northern study area (Figure 4), with the 

255 exception of a few sheltered bays where the upper 95% CI indicated potentially higher 

256 probability of occurrence (Figure 4b). 

257 Peale’s dolphin

258 The final environmental model for Peale’s dolphins retained depth, distance to nearest 

259 shellfish farm, distance to shore, distance to nearest river, salinity, SST and Beaufort scale, 

260 explaining 16.1% of the deviance (Table 2) with an adjusted R2 = 0.21. Fitted smooth functions 

261 are shown in Figure 5. Depth was the most important predictor, explaining 8.5% of the 

262 deviance. Probability of occurrence decreased with increasing water depth, and dolphins 

263 appeared to prefer waters shallower than 20 m. The second most important predictor was 
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264 distance to nearest shellfish farm, with probability of occurrence increasing with increasing 

265 distance from shellfish farms. Predictions suggested Peale’s dolphins were more likely to be 

266 found within 400 m from shore, in SST 12.5–15°C, further from river mouths, and in somewhat 

267 more saline waters.  

268 The final spatial model retained fewer environmental variables than identified in the 

269 environmental model, and included depth, distance to shore, SST and distance to nearest 

270 river, plus the interaction of latitude and longitude. The model explained 32.3% of the 

271 deviance (adjusted R2 = 0.40), double the deviance explained by the environmental model, 

272 and was used to generate prediction maps. The mean predictions highlighted areas of highest 

273 occurrence in Canal Dalcahue and the channel of Castro in the northern study area (Figure 4), 

274 and off the southern shores of Islas Laitec and Cailín in the southern study area, but seemed 

275 to under-predict occurrence on the eastern side of Isla Coldita (Figure 3). As with Chilean 

276 dolphins, Year was not retained in any of the models for Peale’s dolphins, indicating no 

277 significant inter-annual differences.

278

279 Habitat predictions and aquaculture overlap

280 Predictions of occurrence for both species were overlaid with officially registered 

281 concessions for salmon and shellfish farms in 2015 (Figure 6). Aquaculture concessions, in 

282 particular for shellfish farms, were widespread along the coasts and in sheltered bays of both 

283 study areas, and overlapped with or occurred close to predicted habitat, particularly for 

284 Chilean dolphins. Salmon farms were generally located a bit further away from predicted 

285 Chilean dolphin habitat, except for the channels around Isla San Pedro in the southern study 

286 area where farms occurred near or within core habitat of Chilean dolphins. Peale’s dolphins 

287 showed less overlap with aquaculture sites than Chilean dolphins in the southern study area, 
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288 but some of their predicted core habitat in the northern study area (particularly near 

289 Dalcahue) abutted or overlapped with both salmon and shellfish concessions.

290 DISCUSSION

291 This study provides the first quantitative assessment of how sympatric Chilean and 

292 Peale’s dolphins rely on different environmental characteristics of nearshore habitat, which 

293 appears to lead to fine-scale habitat partitioning in the Chiloé archipelago. Habitat use 

294 patterns for both species showed decadal stability with persistent key areas of occurrence. 

295 Aquaculture farming and associated activities were intense in both study areas and abutted 

296 or overlapped with areas identified as key dolphin habitats. Investigating habitat use patterns 

297 across fine spatial but large temporal scales using in situ data on environmental variables is a 

298 unique feature of this study, resulting in spatially explicit conservation and management 

299 implications for the species and region of study. 

300 Species-habitat relationships

301 Habitat use patterns of Chilean dolphins in the Chiloé archipelago appeared to be 

302 strongly influenced by certain environmental conditions. Chilean dolphins occurred almost 

303 exclusively in waters shallower than 30 m, and within 500 m from shore. Probability of 

304 occurrence was higher closer to river mouths and in bays with estuarine characteristics (e.g. 

305 lower water visibility, lower salinity). The presence of deep waters within channels and bays 

306 in the northern area might explain why Chilean dolphin occurrence was lower there compared 

307 to the southern area. 

308 Shallow, nearshore waters influenced by rivers seem to be defining habitat 

309 characteristics for Chilean dolphins. These findings echo the few other habitat studies off the 

310 open coast north (Pérez-Álvarez, Alvarez, Aguayo-Lobo, & Olavarría, 2007) and in channels 
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311 south of Chiloé (Viddi, Harcourt, & Hucke-Gaete, 2015), as well as most of the incidental 

312 sighting locations reported for this species (Aguayo-Lobo et al., 1998; Capella, Gibbons, & 

313 Vilina, 1999; Goodall et al., 1988; Morgenthaler, Fernández, Moraga, & Olavarría, 2014; 

314 Zamorano-Abramson et al., 2010). The four dolphins of the genus Cephalorhynchus, to which 

315 the Chilean dolphin belongs, are all characterized as coastal shallow-water species (Dawson, 

316 2018), with Commerson’s dolphins (C. commersonnii) and Hector’s dolphins (C. hectori, Van 

317 Beneden 1881) also commonly sighted in turbid waters or near river mouths (Bräger et al., 

318 2003; Goodall, 1994).

319 River mouths and estuaries are known areas of enhanced productivity, often 

320 aggregating fish and serving as fish nurseries, in turn attracting piscivorous predators such as 

321 dolphins (Arso Civil et al., 2019; Parra, Schick & Corkeron, 2006). Intense seasonal 

322 phytoplankton blooms occur in the inshore waters off Chiloé (Iriarte et al., 2007) and in 

323 estuaries such as Yaldad Bay (Navarro & Jaramillo, 1994) identified as key Chilean dolphin 

324 habitat in this study. Systematic information on Chilean dolphin diet is lacking, but field 

325 observations (this study, Viddi et al., 2015) suggest that they might feed on schooling sardines 

326 (Strangomera spp.), Patagonian blenny (Eleginops maclovinus, Cuvier 1830) and silversides 

327 (Odontesthes spp.), which are known to spawn in and inhabit estuaries as juveniles (Dyer, 

328 2000). Chilean dolphins at Chiloé spent a large proportion of their time foraging (Heinrich, 

329 2006; Ribeiro et al., 2007), which is typical for small bodied cetaceans with high energetic 

330 demands requiring high rates of energy intake (Wisniewska et al., 2016). Thus, Chilean dolphin 

331 habitat use appeared to be driven by environmental features that may serve to aggregate and 

332 maintain sufficiently abundant and reliable prey resources. Mark-recapture studies of 

333 identifiable individuals at southern Chiloé indicate that the local population of Chilean 

334 dolphins is small (~ 60 adults) with individuals showing high site fidelity and limited along-
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335 shore movements (Heinrich, 2006). The availability of suitable habitat and resulting effects on 

336 dolphin carrying capacity could be important factors in determining overall distribution, 

337 abundance and population structure. 

338 Genetic studies have shown clear population differences between Chilean dolphins 

339 along the open coast north of Chiloé and to the south in the deep fjords (Pérez-Alvarez et al., 

340 2015). Similar, and even more fine-scale, genetic differences and strong population 

341 structuring have also been found in congeneric Commerson’s dolphins (Cipriano, Hevia, & 

342 Iñíguez, 2011) and Hector’s dolphins (Hamner, Pichler, Heimeier, Constantine, & Baker, 2012; 

343 Pichler, Dawson, Slooten, & Baker, 1998), and might be a feature of Cephalorhynchus dolphins, 

344 generally. Unfortunately, Chilean dolphins in the intermediate Chiloé region have not been 

345 sampled (Pérez-Álvarez et al., 2015), so finer-scale population structure remains unknown, 

346 but obtaining such information should be a priority given the distinct and stable habitat use 

347 patterns described here. 

348 Sheltered, shallow nearshore waters might also confer a lower risk of predation. Killer 

349 whales are rarely seen in the Chiloé archipelago and have not been observed in Chilean 

350 dolphin habitat, but they are known to predate marine mammals in the Chilean fjords 

351 (Häussermann, Acevedo, Försterra, Bailey, & Aguayo-Lobo, 2013). Fear and predator 

352 avoidance are powerful sub-lethal forces that shape behaviour and habitat use patterns of 

353 prey even when predation events appear rare (Wirsing, Heithjaus, Frid, & Dill, 2008).

354 Depth, distance to shore and distance to rivers were also important predictor variables 

355 for the occurrence of Peale’s dolphins. They also used shallow waters (<20 m) close to shore 

356 (<400 m) but also occurred further offshore (>1,000 m) over shallow sandbanks and shoals. In 

357 contrast to Chilean dolphins, Peale’s dolphins were found further from rivers, and along more 

358 open or exposed shorelines and along the shores of wider and deeper channels in the northern 
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359 study area. The diet of Peale’s dolphins in the Chiloé archipelago is not known, but they were 

360 never observed feeding on small schooling fish as Chilean dolphins were (S. Heinrich, pers. 

361 obs.). In other parts of their range, Peale’s dolphins seem to have a generalist diet based on 

362 demersal and shallow water prey (e.g. fish, octopus, shrimp; Iñíguez & de Haro, 1994; Schiavini 

363 et al., 1997). Therefore, Peale’s dolphin habitat use might reflect different foraging strategies 

364 involving transit between more patchily distributed or less productive prey patches, and is 

365 likely also influenced by other ecological needs. The only other distribution modelling studies 

366 of Peale’s dolphins, both on spatial scales an order of magnitude greater than this study, 

367 seemed to support broader habitat use patterns. Peale’s dolphins in the Chilean fjords and 

368 southern Argentina were seen 10s of km from shore but always in the neritic zone (usually in 

369 <100 m water depth) (Dellabianca et al., 2016; Viddi et al., 2010). Compared to Chilean 

370 dolphins, greater ecological plasticity in Peale’s dolphins is to be expected given their much 

371 wider distributional range spanning both southern South Pacific and South Atlantic 

372 continental shelf waters (Cipriano, 2018).

373

374 Identifying key habitat and habitat partitioning

375 For both species, including spatial components improved the predictive ability of the 

376 models, but particularly so for Peale’s dolphins. While spatial covariates do not elucidate 

377 ecological relationships, they helped to improve predictions by capturing spatially linked 

378 differences in habitat characteristics that were or could not be measured. The predictive 

379 habitat use maps closely matched the distribution of the actual sighting locations. Core areas 

380 for Chilean dolphins remained consistent even when model uncertainty was mapped as lower 

381 and upper 95% confidence intervals (CIs). Spatial occurrence patterns of Peale’s dolphins were 
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382 more ambiguous across lower and upper CIs, reflecting greater variability in the sighting data 

383 and less strong relationships with the available environmental covariates.

384 There was very little fine-scale spatial overlap between the two species, particularly in 

385 southern Chiloé, where Peale’s dolphins were never seen in core Chilean dolphin habitat. 

386 Short-term associations or direct interactions between the two species were rarely observed, 

387 even where their selected habitats seemed to overlap (Heinrich et al., 2010). This differs 

388 markedly from the regular co-occurrence and frequent, at least short-term mixed group 

389 associations reported for Peale’s dolphins and Commerson’s dolphins in Argentina (de Haro & 

390 Iñíguez, 1997; Goodall et al., 1997). 

391 Sympatric co-existence of similar species is shaped by resource availability (e.g. 

392 abundance of prey), predation pressure and habitat complexity. Within their physiological and 

393 ecological constraints, different strategies enable sympatric species to co-exist, including 

394 spatial or temporal differences in habitat use, dietary divergence and specialization, as well as 

395 differences in activity patterns and socially mediated behaviours (Bearzi, 2005; Parra, 2006). 

396 In some sympatric cetaceans, aggressive interactions act to maintain patterns of fine-scale 

397 habitat partitioning, with usually the smaller species avoiding the larger, more dominant one 

398 (Parra, 2006; Thompson, White, & Dickson, 2004). Aggressive interactions between Chilean 

399 and Peale’s dolphins have not been documented, and the observed fine-scale habitat 

400 partitioning at Chiloé likely reflects the more specialist habitat preferences of Chilean 

401 dolphins, and the greater ecological plasticity of Peale’s dolphins enabling them to exploit a 

402 wider range of habitats and resources. 

403

404 Dolphins and aquaculture
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405 Aquaculture activities were intense and wide-spread throughout the study areas. For 

406 both species, distances to farm sites were retained as predictor variables in the environmental 

407 habitat models. There was a strong positive relationship between Chilean dolphin occurrence 

408 and proximity to shellfish farms, but the opposite pattern for salmon farms. In contrast, 

409 Peale’s dolphin occurrence increased with increasing distance to shellfish farms, with no 

410 apparent relationship with distance to salmon farms. These relationships should not be 

411 interpreted as Chilean dolphins being attracted to shellfish farms, or Peale’s and Chilean 

412 dolphins actively avoiding shellfish and salmon farms, respectively. A more plausible 

413 explanation is that the location of the two types of aquaculture overlapped more or less with 

414 the dolphins’ preferred habitat, and thus acted as a proxy for a set of habitat characteristics. 

415 Shellfish, in particular mussels (Mytilidae), are cultivated on vertical lines suspended 

416 from horizontal surface longlines buoyed by floats. These farms require a minimum water 

417 depth of around 8-10 m and high primary productivity and nutrient flow, conditions often 

418 encountered in or near estuaries (e.g. Yaldad Bay). These characteristics match those selected 

419 by Chilean dolphins, but not so much those of Peale’s dolphins. Where shellfish farms and 

420 Chilean dolphins co-occurred, the dolphins were observed to move in the corridors between 

421 the shore and the outer shoreward longlines of the farms (Heinrich & Fuentes, pers. obs.). 

422 Although they occasionally were observed inside the perimeter of shellfish farms, Chilean 

423 dolphins appeared to avoid areas with more than 30% coverage of surface longlines in Yaldad 

424 Bay (Ribeiro et al., 2007). Thus, large shellfish farms might reduce the availability of habitat 

425 important to Chilean dolphins. Similar exclusion effects and potentially lost foraging 

426 opportunities have been reported for shellfish farms and dusky dolphins (L. obscurus, Gray 

427 1828) in New Zealand (Markowitz et al., 2004; Pearson et al., 2012) and Indo-Pacific 

428 bottlenose dolphins (Tursiops aduncus, Ehrenberg 1833 ) in Australia (Watson-Capps & Mann, 
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429 2005). In contrast, shellfish farms in Spain that used floating rafts instead of longlines were 

430 found to attract common bottlenose dolphins (T. truncatus, Montagu 1821); these structures 

431 might provide predictable and enhanced foraging opportunities for the dolphins by attracting 

432 and harbouring wild fish (Díaz López & Methion, 2017). A recent review found that the 

433 responses of mobile organisms associated with farming structures differed substantially in 

434 nature (from attraction to repulsion) and across spatial and temporal scales (Callier et al., 

435 2017). Thus, scale and species-specific responses should be carefully considered in studies and 

436 management of aquaculture effects on wild fauna. 

437 Predicted occurrence of Chilean dolphins increased with distance to salmon farms 

438 (within 1000 m), but neither Chilean nor Peale’s dolphin habitat selection seemed to be 

439 directly influenced by the distribution of salmon farms. These farms were more abundant in 

440 the northern study area and tended to be located in deeper waters (>20 m) which limited their 

441 spatial proximity to preferred Chilean dolphin habitat. Acoustic harassment devices aimed at 

442 deterring predatory attacks of pinnipeds on caged farm fish can induce area avoidance in small 

443 cetaceans (Olesiuk, Nichol, Sowden, & Ford, 2002), but such devices were not used by fish 

444 farms in the Chiloé archipelago during the study period (Sepúlveda & Oliva, 2005; Heinrich, 

445 pers. obs.). 

446 Even though the modelling results show limited direct spatial overlap between dolphins 

447 and salmon farms, the expansion and intensification of fish farming in the coastal marine 

448 environment might still affect both species through cascading ecosystem effects. The Chilean 

449 salmon farming industry has faced substantial criticism for their inadequate handling of 

450 disease outbreaks, misuse of antibiotics, and regular accidental (and intentional) releases of 

451 millions of farmed salmon into the coastal waters off Chiloé, all of which threaten the health 

452 and function of the coastal marine ecosystem (Asche, Hansen, Tveteras, & Tveterås, 2009; 
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453 Buschmann et al., 2012; Gomez-Uchida et al., 2018; Niklitschek, Soto, Lafon, Molinet, & 

454 Toledo, 2013; Sepúlveda et al., 2013). Managing and adapting aquaculture practices to reduce 

455 negative effects might be a more promising mitigation strategy than excluding anthropogenic 

456 activities outright. If this approach was adopted, monitoring and enforcement of appropriate 

457 aquaculture practices in general, and close to key dolphin habitat in particular, should be a 

458 priority. Supporting measures that should be put in place include a requirement for proper 

459 maintenance of existing aquaculture farms and removal of structures no longer in use (e.g. 

460 shellfish long-lines and floats) to reduce potential habitat exclusion effects, particularly for 

461 Chilean dolphins. Under the precautionary principle restrictions on new farming concessions 

462 should be introduced until better information about the risks and magnitude of impacts of the 

463 farming activities on the coastal marine ecosystem and its dependent species is obtained 

464 (Niklitschek et al., 2013). 

465 The identified differences in the responses of the two dolphin species to aquaculture 

466 farms also highlights important methodological considerations. Species distribution models 

467 should include anthropogenic variables in areas of intense human activities, as the latter might 

468 be interacting with or even altering the natural habitat use patterns of the species of interest. 

469 Species interactions with aquaculture should be investigated on a species- and context-

470 specific basis.

471

472 Conservation implications

473 A distinguishing feature of this study was the use of long-term (11 years), 

474 systematically in situ collected data to investigate fine-scale habitat use patterns of two 

475 sympatric cetacean species in a coastal environment under pressure from human activities. 

476 The observed species-environment relationships and resulting habitat use patterns for both 
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477 species remained stable over a decade. Such long-term stability in habitat use is important 

478 when considering spatially explicit conservation measures, such as marine protected areas 

479 (Hartel, Constantine & Torres, 2015; Wilson, Reid, Grellier, Thompson, & Hammond, 2004). 

480 The channels around Isla San Pedro, Coldita and Yaldad Bay in southern Chiloé constitute key 

481 habitat for a small, resident population of Chilean dolphins (this study; Heinrich, 2006), and 

482 should be considered as the first priority conservation area for Chile’s only endemic cetacean 

483 in regional marine spatial planning and coastal zoning.

484 Our study was limited to austral summers and autumns. Winter field activities in 

485 southern Chile are hampered by challenging logistics, poor light and inclement weather 

486 conditions (Darwin, 1860). Observations from short sighting surveys during winter (2004, 

487 2010) and year-round static passive acoustic monitoring (PAM) (2013-14) indicated that 

488 Chilean dolphins continued to use the same key areas in Yaldad Bay and around Isla San Pedro 

489 throughout the year (Heinrich, unpublished data). Static PAM appears to be a particularly 

490 useful tool to monitor patterns of seasonal habitat use in the identified core habitat or dolphin 

491 occurrence around aquaculture farms given the method’s independence of weather and light 

492 conditions (Mellinger, Stafford, Moore, Dziak, & Matsumoto, 2007). 

493 Although our study identified several high-occurrence areas for Peale’s dolphins (e.g. 

494 Canal Dalcahue, shoals south of Islas Laitec and Cailín), fine-scale spatial conservation 

495 measures might be less suitable due to this species’ wider ranging habits. While their more 

496 generalist nature might make Peale’s dolphins less susceptible to localized habitat impacts, it 

497 might also expose them to a wider range of anthropogenic pressures regionally. Therefore, 

498 Peale’s dolphins and other highly mobile marine predators would likely benefit most from an 

499 integrated, region-wide ecosystem approach to managing ongoing and intensifying 
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500 anthropogenic activities, such as the continued expansion of aquaculture into more remote 

501 and less impacted southern fjords (Fernández & Castilla, 2005).

502 The identified important habitats for Chilean and Peale’s dolphins are highly relevant 

503 for coastal and marine spatial planning in the Chiloé archipelago. The results also have 

504 implications beyond the boundaries of our study areas. The established species-environment 

505 relationships could be used to predict potentially important habitats for each species in the 

506 southern fjords. This region is the focus for major planned expansions of the Chilean salmon 

507 farming industry (Niklitschek et al., 2013), yet conducting systematic marine surveys in this 

508 vast fjordic region is logistically challenging and prohibitively expensive. Range-wide 

509 abundance estimates are lacking for both species, but have been deemed a conservation 

510 priority for Chilean dolphins given concerns about the species’ past exploitation, suspected 

511 low abundance, and potentially declining populations (Heinrich & Reeves, 2017). While 

512 extrapolated habitat predictions should be treated with caution, they could serve to identify 

513 potentially important areas where dedicated studies of dolphin abundance should be 

514 conducted or where dolphin habitat use and anthropogenic activities are most likely to 

515 overlap (Elith & Leathwick, 2009; Mannocci, Roberts, Miller, & Halpin, 2017). Spatial 

516 predictions of important dolphin habitat could also be included in region-wide marine spatial 

517 planning and conservation zoning initiatives (Guisan et al., 2013; Vila et al., 2016). 
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TABLES 

Table 1. Environmental, spatial and temporal variables measured during boat surveys and 
considered as candidate predictors in the modelling.

Variable Working name Description Measurement 
method

Unit

Depth Depth Water depth Hand-held depth 
sounder

m

Distance to 
shore

ShoreDist Linear distance to 
nearest shore

Laser range finder 
(< 1,000 m) & GIS 
(≥1,000 m)

m

Distance to 
river

RiverDist Distance (linear or 
alongshore) to nearest 
permanent river 
mouth

GIS m

Water clarity WaterClar Water clarity Secchi disk depth m
Sea surface 
temperature

SST Sea surface 
temperature at 1 m 
depth

Digital 
conductivity-
temperature 
meter

° C

Salinity Salinity Salinity at 1 m depth Digital 
conductivity-
temperature 
meter

‰

Distance to 
shellfish farm

ShellfishFarm Linear distance to 
nearest shellfish farm

Laser range finder 
(< 1,000 m) & GIS 
(>1,000 m)

m

Distance to 
salmon farm

SalmonFarm Linear distance to 
nearest salmon farm

Laser range finder 
(<1,000m), 
random value 
from 1000 m to 
7000 m 

m

Beaufort scale SeaCond Sea conditions Field observation -
Latitude / 
Longitude

LatLon Geographic position 
expressed in decimal 
degrees (-N, -E)

Hand-held Garmin 
GPS receiver

°

Year Year Year in which research 
was carried out

-
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Table 2. Environmental models based on forward stepwise selection. Covariates are shown in 
order of importance and sequential entry into the model. Effective degrees of freedom for 
each smooth are given in the ‘edf’ column. The % Dev shows the contribution of each term to 
the explained deviance. Δ AIC is the reduction of AIC when the covariate was added to the 
model. 

Chilean dolphin
Smooth edf % Dev Δ AIC
s(ShoreDist) 1.9 17.8
s(ShellfishFarm) 2.0 +4.8 –89.7
s(Depth) 2.4 +2.6 –49.5
s(WaterClar) 3.5 +2.5 –42.5
s(RiverDist) 3.8 +1.9 –32.1
s(SST) 3.9 +1.3 –18.0
s(SeaCond) 1.7 +1.0 –17.4
s(SalmonFarm) 3.2 +0.9 –10.3
s(Salinity) 1.0 +0.4 –7.7
Total 33.2

Peale’s dolphin
Smooth edf % Dev Δ AIC
s(Depth) 3.6 8.5
s(ShellfishFarm) 3.0 +2.2 –29.2
s(ShoreDist) 2.8 +1.4 –16.9
s(RiverDist) 3.7 +1.6 –16.8
s(Salinity) 2.1 +1.1 –14.1
s(SST) 2.1 +0.7 –6.8
s(SeaCond) 2.1 +0.6 –5.4
Total 16.1
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FIGURES (legends)

Figure 1. Distribution of sightings and absence sampling points in the northern and southern 
study areas in the Chiloé archipelago, southern Chile. Red points: Chilean dolphins; 
Yellow points: Peale’s dolphins. Small blue points: sampling locations without dolphins 
(absences). Light blue area: extent of the coastal survey areas. Inset: Location of Chiloé 
archipelago in South America.

Figure 2. Occurrence of Chilean dolphins as a smooth function of covariates: distance to 
shore, distance to nearest river, depth, water clarity, salinity, SST, distance to nearest 
shellfish farm and distance to nearest salmon farm. Shaded areas represent 95% CI. 
Data points are represented as rug plots on the horizontal axes.

Figure 3. Predicted mean occurrence of Chilean dolphins (a) and Peale’s Dolphins (d) in the 
the southern study area, together with upper (b, e) and lower (c, f) 95% CI.

Figure 4. Predicted mean occurrence of Chilean dolphins (a) and Peale’s Dolphins (d) in the 
northern study area, together with upper (b, e) and lower (c, f) 95% CI.

Figure 5. Occurrence of Peale’s dolphins as a smooth function of different covariates: depth, 
distance to shore, salinity, SST, distance to nearest river and distance to nearest 
shellfish farm. Shaded areas represent 95% CI. Data points are represented as rug plots 
on the horizontal axes.

Figure 6. Predicted mean dolphin occurrence of Chilean and Peale’s dolphins overlaid with 
concessions for salmon and shellfish farms in 2015 in the southern (a) and northern (b) 
study areas. For details on the colour scheme for predicted occurrence see Figures 3 
and 4.
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