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This article is an introduction for a special issue following a Scientific Discussion Meeting on The
next generation of analogue gravity experiments held at the Royal Society in December 2019. This special
issue comprises a collection of recent advances of the research programme, as well as their philosophical
implications, that were presented at the meeting.

Analogue gravity [1] summarises an effort to mimic physical processes that occur in the interplay
between general relativity and field theory in a controlled laboratory environment. The aim is to provide
insights in phenomena that would otherwise elude observation: when gravitational interactions are strong,
when quantum effects are important, and/or on length scales that stretch far beyond the observable Universe.
The most promising analogue gravity systems up-to-date are fluids, superfluids, superconducting circuits,
atomic BECs and optical systems. While deepening our understanding of the laboratory systems at hand,
the long term vision of analogue gravity studies is to advance fundamental physics through interdisciplinary
research, by establishing and nurturing a new culture of collaboration between the various communities
involved.

The common feature all analogue gravity systems share, is that small excitations within exhibit
dynamical equations that can be mapped to the equations one usually encounters in classical and quantum
field theory in curved spacetimes [2]. The excitations experience an effective spacetime geometry, that is
completely determined by the propagation speed of the excitations and their relative propagation speed
with respect to their medium. Control over these quantities enables the engineering of a variety of d+1 1

dimensional spacetime geometries [3].
While the overall idea of analogue gravity experiments has been around for 40 years, the first

experimental demonstrations and successes are fairly recent. The evolution of analogue gravity studies
can be divided into three phases: the ‘early years’ (between 1981-2008) when analogue gravity was mainly
a theoretical field of research, followed by an ’experimental age’ with an explosion of analogue gravity
studies focussing mainly on the observation of the Hawking effect in a variety of media between 2008-
2017 2. Over the last few years a new wave of experiments appeared, facing different challenges attempting
to extend the analogy beyond the observation of the Hawking effect in the laboratory. In this spirit, a new
’experimental age’ has started whose full potential has not yet been reached. A main focus of the Meeting
was to discuss and shape the future, or the next generation of analogue gravity experiments.

Let us briefly review the history of the field and flag up important results established over the last decade
to set the stage for this issue. The reader will also find a focused literature review at the beginning of each
article.

1. A brief history of analogue gravity
The beginning of analogue gravity dates back to Unruh’s seminal paper in 1981 [2], where he demonstrates
the mathematical analogy between the dynamics of sound waves in a supercritical fluid flow and fields at
the event horizon of gravitational black holes. By doing so, he was able to raise the possibility of studying
the black hole evaporation or Hawking effect in a controlled laboratory setting [6,7]. At the turn of the 21st
century, analogue gravity theory studies boomed, and it was shown that the gravitational analogy can be
extended to a broad range of physical systems [1,8–10].

Despite the early theoretical developments, it took until 2008 for experiments to follow. These pioneering
experiments involved the scattering of effective 1 dimensional horizons in two very different media:
surface waves in an open channel flow [11] and light propagation in an optical fibre [12]. Two years
later, experimental setups using bulk crystals [13] and Bose-Einstein condensates [14] were readily
available to set up effective 1+1 dimensional black hole geometries. In 2011, building up on [11], the
first excitation spectrum for surface waves in an open channel flow from an effective white whole horizon
was observed [15]. The observed spectrum was in agreement with the Hawking effect. Within this short
period of three years, through these experiments analogue gravity was transformed from a theory-driven to
an experiment-driven line of research.
1Analogue gravity uses the standard notation from general relativity to express the dimensionality of spacetime: d is the number of spatial
dimensions, and 1 denotes one temporal dimension.
2Two notable exceptions were studies of the dynamical Casimir effect in superconducting circuits [4] and in atomic Bose-Einstein
condensates [5].
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Over the course of the next decade, the experimental realisation of effective black hole horizons made
notable progress. The tunnelling of light waves across an optical horizon was observed in 2012 [16]. An
important ingredient of the Hawking effect is the generation of negative frequency waves, as for example
observed in the open-channel flow experiments [15]. A series of experiments between 2012 and 2018
demonstrated the generation of negative frequency waves in optical fibres and bulk systems [17–19].

In 2015 a new analogue gravity platform emerged: fluids of light realised with polaritons in
semiconductor microcavities, in which sonic horizons were demonstrated [20]. In the following year
the open channel-flow experiments made significant advances by extracting Hawking correlations from
classical noise on the air-water interface surrounding an effective white hole horizon [21]. In the same year,
a first study on the extraction of Hawking correlations from an effective black hole horizon in an atomic
Bose-Einstein condensate appeared [22]. Over the years, an increase in the sensitivity and control over the
setup enabled the extraction of the Hawking spectrum [23] and the exploration of the Hawking spectrum
from an evolving effective black hole horizon [24]. In the same period, the stimulated emission of Hawking
paired waves (including the negative frequency partner) was observed from an optical fibre system [25]. Last
but not least, in 2019, the first realisation of an effective white hole horizon for sound waves in superfulid
3He−B was achieved [26].

In parallel to the ongoing effort on observing the Hawking effect in the laboratory, a new line of
investigation is concerned with 2+1 dimensional analogue black holes. The additional spatial dimension
enables the investigation of scattering processes around rotating black holes. A study of surface-waves
scattering off a water vortex revealed black hole superradiance [27], and a subsequent study of the noise on
the free surface surrounding the vortex flow lead to the observation of black hole ringdown modes [28]. A
rotating black hole was also demonstrated in a fluid of light in a thermo-optical defocusing medium [29].
Rotational superradiance may also occur from rotating objects, as exemplified by the amplification of
twisted sound waves propagating through rapidly rotating disks [30]. An intriguing new direction of
research within rotating spacetime geometries is to employ topological defects (pairs of vortices and anti-
vortices) representing particles in an effective relativistic setting to extract energy from a central vortex in a
Bose-Einstein condensate by the Penrose effect [31], the particle equivalent of superradiant wave-scattering.

Alongside the above development on reproducing black hole physics, we have now started to mimic the
Universe as a whole. Effective black hole horizons are set up by means of a spatially varying background,
while cosmological scenarios are realised via a rapid temporal change in the background parameters.
The first analogue experiments of this kind were investigations of the dynamical Casimir effect in a
superconducting circuit [4] and in a parametrically excited Bose-Einstein condensate [5]. More recently,
two new experimental studies have appeared: in 2018 sound waves in a rapidly expanding ring-shaped
Bose-Einstein condensate were shown to exhibit cosmological redshift and Hubble friction [32]. The year
after, a controlled, rapid change in the trapping parameters of an ion-chain resulted in the creation of
phonon pairs akin to cosmological pair creation [33]. A promising direction of experimental analogue
gravity studies within cosmological scenarios was presented at the meeting: a coupled two-component
Bose-Einstein condensate can be used to mimic a first order relativistic phase-transition (also known as the
false vacuum decay) [34]. This is akin to an initially unstable state of the Universe.

This brief summary of experimental progress is far from being exhaustive. Our selection displays the
consistently growing number of communities getting involved in analogue gravity studies, as well as the
growing numbers of fundamental physics processes under investigation.

2. Summary of the issue
We now focus our attention on the content of this special issue on The next generation of analogue gravity
experiments. This comprises 11 articles, which touch on recent developments at the forefront of theoretical
and experimental analogue gravity studies in both effectively 1+1 or 2+1 dimensional spacetime geometries.
They also fairly represent the diversity of media in which one can study field theories on curved spacetimes.

The order of articles loosely follows that of the sessions of the Scientific Discussion Meeting. Each
article may be read independently from the others. However, we encourage readers who are not familiar
with analogue gravity to start with the first article, entitled “Hawking radiation in optics and beyond” by
David Bermudez and Raul Aguero-Santacruz, as this also provides an introduction to analogue gravity
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more generally. The authors review the fundamentals of the physics of the Hawking effect from black hole
horizons. They then use the analogue gravity setup to re-derive Hawking’s result and thus introduce the
essential mathematical tools of quantum field theory on curved spacetimes. Having shown how quantum
fluctuations at the horizon yield spontaneous emission in entangled pairs, they explain how this could be
observed in an optical setup. Finally, they show how seeding the Hawking effect with a classical input
state stimulates emission. In line with current philosophical debates, the authors conclude their article with
considerations touching the epistemology of analogue gravity and the naming of effects and observables.
Jack Petty and Friedrich König also use the optical platform to investigate the amplification of coherent,
classical fields. Specifically, they contrast amplification at the horizon with resonant radiation (also known
as optical Čerenkov radiation). They discuss the role dispersion plays in the kinematics and dynamics
of both processes and discover a regime of record efficiency of amplification of resonant radiation. This
highly tuneable laser source provides a novel application of analogue gravity physics. Yuval Rosenberg
revisits the landmark ideas and experiments for optical systems. Throughout his article, he demonstrates
how dispersion enables the physics at play: he shows how it is essential to the formation of horizons, the
generation of negative frequency waves and spontaneous as well as stimulated emission by the Hawking
effect. He also reviews explanations of the analogue gravity system specific to optics. He concludes his
paper by calling for analogue gravity optical experiments “beyond the horizon”. Ulf Leonhardt draws
inspiration from the use of transformation optics in analogue gravity to guide us through considerations on
cosmology. He presents the Lifschitz theory of the cosmological constant that he has recently developed,
and argues that future experiments of analogue gravity could test these predictions.

Tobias Schätz and collaborators look back upon their seminal observation of cosmological particle
pair-creation and show how machine-learning strategies can be used to increase experimental control
on the motion of a single ion, for example. This opens an avenue for the future generation of spatial
entanglement amongst pairs of ions, which they propose to characterise by a measure of squeezing. Such
experimental techniques could be used to investigate other effects, such as the Hawking effect, or even
go beyond analogue gravity to investigate for example the Sauter-Schwinger effect. In a similar spirit,
Elisabeth Giacobino and collaborators propose to characterise the output state in their experiments by
means of squeezing and entanglement. In their article, they look back on polariton flows in semiconductor
microcavities and demonstrate how various flow profiles in 1+1 and 2+1 dimensions may be optically
engineered. The versatility of their method is exemplified for non-rotating and rotating geometries.
Therefore, the authors argue that fluids of light, such as polaritons, are an ideal platform to measure e.g. the
Hawking effect. Miles Blencowe and Hui Wang are also interested in devising experiments to measure
quantum properties in analogue gravity experiments, here with focus on both, the Hawking and Unruh
effects. Notably, they bring superconducting circuits back to the foreground by re-deriving the Hawking
temperature in the light of new experimental possibilities offered by newly developed Josephson travelling-
wave parametric amplifiers. They also discuss an “oscillating” scheme to generate Unruh radiation and use
the logarithmic negativity as an entanglement measure to theoretically show that entangled pairs are indeed
emitted in their proposed setup.

Germain Rousseaux and Hamid Kellay share with us the “plumber’s expertise”: they summarise
the necessary tools to observe the Hawking effect in 1+1 water experiments and insist on the combined
influence of hydrodynamics and dispersion on the output spectrum. In a second part of their article, they
enrich the family of analogue gravity experiments with a new experimental platform, flowing films of soap,
and demonstrate the creation of flows with horizons.

Going from uni-dimensional motion to rotating geometries, Theo Torres calculates the spectrum of
superradiance in dispersive media. His careful analysis of the system reveals that some waves are partially
reflected by the drain that generates the vortex flow. This observation is in contrast with the behaviour
of waves on Kerr black holes. And yet, the interplay between vorticity and dispersion does not prevent
superradiant amplification of incoming waves at the ergosurface. He builds on this demonstration of the
robustness of the effect to encourage researchers to push their platforms beyond the strict “analogue regime”
in search of new effects of waves in media. Cisco Gooding also writes on superradiance: he considers
the case of acoustic superradiance — the amplification of sound waves on a rotating, absorbing cylinder.
He shows in which regimes sound waves with orbital angular momentum beam may be amplified, and
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demonstrates once more that dispersion must be included in all calculations aiming at providing realistic
predictions for experiments.

In the last article of this issue, Karim Thebault and Peter Evans look back on the analogue gravity
programme from a philosopher’s perspective. They ask again “what can be learnt” from analogue gravity
experiments and thus question notions of universality and validation, among others. They claim that neither
the accessibility nor the manipulability of astrophysical black holes (and their event horizons wherefrom
Hawking radiation originates) are necessary to obtain experimental knowledge about the Hawking effect.
This original claim rests on the use of inductive triangulation to set the limits of experimental knowledge.
Their work highlights the tension on when exactly reasonable doubt has been mitigated — a matter that
reaches far beyond analogue gravity.

On this note, we would like to conclude this introduction and line of thoughts as follows: the limits of
our experimental knowledge are only ever contextual, with time we may always push them further. This is
what the next generation of analogue gravity experiments shall aim at.
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