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Abstract A novel simulation grid is devised that is optimized for studying magnetohydrodynamic
(MHD) wave coupling and phase mixing in a dipole-like magnetic field. The model also includes flaring on
the dawn and dusk flanks. The location of the magnetopause is quite general. In particular, it does not have
to coincide with a coordinate surface. Simulations indicate the central role of global fast waveguide modes.
These switch from being azimuthally standing in nature at noon, to propagating antisunward on the
flanks. The field line resonances (FLRs) seen in the simulation results are three dimensional and not
strictly azimuthally polarized. When a plume is present, the FLRs cross a range of 2 in L shell, and have a
polarization that is midway between toroidal and poloidal.

1. Introduction

Simulating coupled magnetohydrodynamic (MHD) waves in a realistic magnetic geometry is fraught with
difficulties, and every simulation code to date has various advantages and disadvantages. Although the
motivation for global nonlinear simulation codes is not strongly biased toward studying the resonant cou-
pling of fast and Alfvén MHD waves (known as field line resonances, FLRs), they are clearly capable of
demonstrating this process as shown by Claudepierre et al. (2010) and Ellington et al. (2016).

Global simulations have the advantage of driving the magnetosphere with a self-consistent magnetosheath.
The drawback with these codes is normally the use of a Cartesian simulation grid, which is not optimal for
studying phase-mixed Alfvén waves: consider an FLR that has a width of 1 Ry in the equatorial plane at
L = 8, which is resolved by a uniform Cartesian grid of resolution 0.1 Rj. At the ionospheric end the width
of the FLR is 0.023 Ry, which is below the uniform grid scale. The issue can be mitigated to some extent
by having the inner boundary of the grid at a radius of 4 R;. However, the FLR width at this boundary is
0.22 Ry, which is still not quite adequately resolved.

Other simulations have opted to sacrifice a self-consistent magnetosheath to focus on resolving the wave
coupling process, and do this by using a field-aligned coordinate system. In a 3-D dipole the scalar potential,
flux function and azimuth/local time form the basis for an orthogonal set of coordinates, with the potential
playing the role of the coordinate along the magnetic field lines. Kageyama et al. (2006) and Proehl et al.
(2002) note that while these standard dipole coordinates are appropriate for analytical calculations, they are
not suited to numerical work: The main issue is that a grid based upon equal steps in potential would have
a disparity in the corresponding real space step size of order 1,000 between grid cells at the equator and the
ionosphere, which would render the code too inefficient to be of use.

There is always the option of defining a suitable field-aligned coordinate grid numerically, as has been done
in Lee and Lysak (1989) and Proehl et al. (2002). This approach requires the metric scale factors to be deter-
mined numerically, which is suitable for computational simulations but not analytical studies. In an effort
to retain analyticity Kageyama et al. (2006) show how a particular function of the potential can be used as
a suitable field-aligned coordinate. Our approach is similar in spirit to theirs, and we implement it in two
stages to provide extra flexibility: First, we determine a coordinate that is equal to path length along B on
a chosen field line (see Wright & Elsden, 2016 for a 2-D dipole). This essentially flattens the coordinate so
equal increments correspond to equal increments in real space. The second step is to define a function of
the flattened coordinate to provide enhanced resolution where it is needed. This allows us to tailor our grid
in great detail. Our method also has the advantage of providing analytical expressions for the scale factors.
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Many of the coordinates described above are based upon a dipole. They have the advantage of being orthog-
onal, but a drawback in that realistic ionospheric and magnetopause boundaries do not coincide with
coordinate surfaces. Proehl et al. (2002), Woodroffe and Lysak (2012), and Lysak et al. (2015) demonstrate
how these issues can be addressed, particularly at the ionospheric boundary, by the use of nonorthogo-
nal coordinates. However, the representation of a realistic-shaped magnetopause as a coordinate surface
in a simulation employing field-aligned coordinates remains elusive. Simulations in the above studies and
those of Degeling et al. (2010), Wright and Elsden (2016), and Elsden and Wright (2018) simply take the
magnetopause boundary to coincide with a coordinate surface, which has limited realism, but makes the
application of boundary conditions straightforward. In this paper we adopt an equatorial profile for the mag-
netopause based upon the model given by Shue et al. (1997). Whilst this can capture the flaring nature of
the magnetospheric flanks realistically, it comes at the cost of not coinciding with an orthogonal coordinate
surface. This makes the application of boundary conditions more difficult, and we show how this can be
accommodated using appropriate interpolation.

To date, a single simulation exploiting all the various advantages mentioned above has not been written and
may well be some time off. Nevertheless, by considering what each code does best, and treating this as a piece
of a jigsaw, a coherent picture of how FLRs are excited and their properties is emerging. Here we introduce
and demonstrate the application of two new refinements that may be incorporated in future simulations,
namely, optimizing the grid and generalizing the magnetopause boundary location. The paper is structured
as follows: Section 2 describes the simulation grid; section 3 describes the simulation details and boundary
conditions; section 4 presents simulation results, and section 5 gives some concluding remarks.

2. Model Description

Designing a simulation requires the construction of a suitable coordinate grid. We begin with a description
of our orthogonal coordinates, which are formulated by adapting standard 3-D dipole coordinates.

2.1. Standard 3-D Dipole Coordinates (y, j, ¢)
In terms of spherical coordinates (7, 0, ¢) the standard dipole coordinates are (e.g., Kageyama et al., 2006)
sin%@ cosd

X = r s H== %)

.o @

Here y and ¢ play the role of Euler potentials and are both constant on a given field line: ¢ labels the azimuth
of the meridional plane containing the field line, and y labels the L shell. In terms of these coordinates an
elemental change in position is given by

dr=e h,dy +e;h;di+eyh,do, 2)

where h,, h;, and h,, are scale factors which encompass the geometry of the magnetic field and have the
form

h,

r2 r3
T e h, -_—_—
X ’ H s
sin #V/1 + 3cos26 V1 + 3cos26

Figure 1a shows the grid associated with equally spaced increments in y and j in a meridian plane. It is
evident that the spacing of field lines (shown in black) in the equatorial plane is highly nonuniform. This
is to be expected as y = 1/r here. It is also apparent that equal steps in i provide poor resolution near the
equator, and excessive resolution at the ionospheric end.

h, =rsiné. 3)

2.2. Modified Dipole Coordinates (a, , u)

To address undesirable properties of the (y, ji, ¢) coordinates we define modified dipole coordinates (a, 8, u).
The first change is a trivial change in notation to replace the azimuthal coordinate ¢ by f. Next we note
that if the coordinate y is constant on a given field line, then any function of y will also have this property.
Exploiting this we define « = 1/y as a replacement coordinate. Similarly, we define a new field-aligned
coordinate to be y = —rs i (simply a rescaling), where rgisa reference radius we explain in section 2.2.1.

In terms of (7, 6, ¢), the modified coordinates (a, f, u) and their scale factors are

r3cosf
g

B =9, U= 4

r2
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Figure 1. Simulation grids for different coordinates. The grids all cover the same region in real space. To illustrate the
properties of different coordinates we take 100 equal steps in each coordinate and plot a contour every fifth step. The
panels show (a) dipole coordinates (y, j); (b) improved “radial” spacing (a, /1); (c) improved field-aligned spacing (a, s);
(d) refined resolution at high latitudes («, y). The red line represents the a = ry field line (rg = 11.5). The blue line
corresponds to y = 5; = 6.0 and denotes the boundary above which the high latitude field-aligned resolution begins to
increase.

in’ (r/ryy
hy=—309 _  p=rsing, b= —tt 5

V1 + 3cos26 V1+ 3cos29,

where we have used h, = h,|dy/de| and h, = h;|di/du|. Note in the equatorial plane « = r, so has units
of length and is similar to the L shell parameter. We have rescaled # so that y has units of length. The grid
based upon equal increments in @ and p is shown in Figure 1b, and the equal spacing of field lines in the
equatorial plane is evident.

To transform the scale factors above to be functions of (a, #, u) we need to identify relations r(a, ) and
O(a, ) to get h(a, u), hy(a, u) and b, (@, ). Kageyama et al. (2006) has done this for (y, ji) (see also Swisdak,
2006), and adapting their results for our («, u) gives the following procedure

ua ’
&= gy (6)
8
= (95 +V/3V/3e+ 44.§3>1/3 )

w=-—2L4 X (c, =27/33713, ¢, = 21/333) )
K ¢

Ve, [
2 25@

which gives the function Y(a, u), from which we can determine r and 6 via

r=aX(a, ), 6 = arcsin (\/Y(a, ;4)) . (10)

Y= —% )

Note that arcsin is defined over 0 to z. Substitution of r(«, 4) and 0(«, ) into (5), renders the formulation
solely in terms of (a, 8, u).
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2.2.1. Properties of the a = r, Field Line

We shall identify an analytical relation between the field-aligned coordinate x and path length on a reference
field line for which a = r,—that is, the field line that crosses the equatorial plane at a radial distance of r,,
and is given by (equation (4)) r = rgsinze. We begin by identifying the exact path length along this field line,
parameterized in terms of 6.

Onthea =r, field line u(r, 6) and h,(r, 8) vary with 6 according to (4) and (5)

ur= rgsinze, 0)=r, COS49, h,(r= rgsinze, 0) = sin®0//1 + 3cos26. (11)

sin"@

In the equatorial plane h,,(0 = 7 /2) = 1, so u corresponds to path length locally. However, as the poles are
approached (6 approaches 0 or z) h, becomes very small. As noted by Kageyama et al. (2006), this manifests
as a rapidly decreasing grid cell size in real space for equal steps in y and is evident at the high-latitude
section in Figure 1b. This grid also has inadequate field-aligned resolution near the equator.

On a = r,, the exact path length along the field line from the equator is

0

du
50)= [ h,—do, 12
50)= [, o 12)
/2
and can be integrated (using (11)) to give
59 _1 cos 0V 1 + 3cos26 + Lsinh‘l(\/gcos 0). (13)
rg 2 2\/5

The maximum path length is 3,,,,, = 5(0 = 0),

max 1+ Lsinh‘l(\/E) =14 In(2 + V/3) ~ 1.380173 (14)
Ty 2v/3 2v/3

2.3. The (a, p,s) Coordinates

In a 2-D dipole geometry Wright and Elsden (2016) exploited the fact that, on a chosen field line, the exact
path length could be expressed as a function of the scalar potential. They then used this path length as a
new field-aligned coordinate, which afforded a more computationally efficient grid. This approach is not
so straightforward with a 3-D dipole as the functional relation between potential and path length is not
invertible. (It is not possible to use (13) to provide an explicit expression for 6(5).) However, it is possible to
determine an approximation to this function explicitly, and this is a key step in our grid formulation. The
relation we derive below is a basic property of a 3-D dipole field, and may have relevance in a broad range
of studies which employ a 3-D dipole.

We begin by introducing a new coordinate, s(u). Here s corresponds closely to path length on the a = r, field
line, that is, it is an approximation to the exact path length 3 given in (13). The behavior of u(s) is radically
different at the equator and the poles, so we consider series expansions at § = 0, /2 and z of 5(9) and u(6)
using equations (11) and (13).

Smax _ g2 1 o), 050
Vg
@z £—9+(9((9—7r/2)3), O~n/2 (15)
Iy 2§
- L -0 +0O0(x -0, 01
T
1 _
7t O67?), 0—0
u® % —0+ 06 - /2%, 0~ )2 (16)
T,
g B 1 -2 .
oot Oz -0, 0-nx.
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Eliminating 6 between (15) and (16) allows series expansions for u(s) to be found at s = —5,,,,,, 0 and 5,

(=-z) oo
r, r) 0 0T tmax
g g

@ ~ < i, |S/rg|<<1 (17)
Vg rg 5
_(SmaX + i) s S — _§max
Vg Vg

After some experimentation the following empirical form for u(s) was settled on.

u(s) _ S/t +ars/ryy? 1 (5/r*

re L4+ (as/r)* 7~ Grmax/Tg F5/T)* a3+ (s/1p)

(18)

The upper signs are for s > 0, the lower for s < 0, and a,, a, and a; are parameters used to tune the fit. The
form of (18) was motivated by the fact that as s/r, — 0 the first term dominates and matches the expansion
in (17). Similarly, as s — #+5,,., and a; — 0 the second term dominates and produces the series solutions
in (17).

The parameters a, = 0.7, a, = 0.5, and a; = 2/3 were chosen to optimize the overall fit of the empirical
formula so that s ~ §to a high degree. This was achieved as follows: choose a value for s; use (18) to determine
u; find 6 on the a = Iy field using 6(a = Fgs 1) in (10); finally, the exact path length can then be found as
5(0) in ( 13) and compared with the initial value of s. Using the values of the coefficients quoted above the
discrepancy between s and 5 was 1% or less over —1.38 < s/r, < 1.38 (i.e., the entire length of the field line).
This is more than adequate for our purposes.

Figure 1c shows the grid for equally spaced increments of « and s. Notice that on the a = r, field line (shown
in red) the grid has equal steps in path length when advancing along the field line. The importance of the
parameter 7, can be appreciated by studying Figure 1c. It is evident that for field lines beyond the red field
line (@ > r,) the separation of the contours of s is always greater than that on the red field line. A close
inspection of these field lines (e.g., the one passing through (X, Z) = (20,0)) shows that the step size along
the field line is large at the equator and decreases on moving to higher latitudes. The opposite is true for
field lines with (@ < r,): Now the separation of the contours of s is always less than that on the red field line.
Moreover, on these field lines (e.g., the one passing through (X, Z) = (5,0)) the step size along the field line
is small at the equator and increases on moving to higher latitudes.

The distortion of the s coordinate from representing real path length when away from the a = r, field line is
unavoidable when using dipole-based coordinates. However, by placing the r, field line somewhere in the
middle of our domain, excessive distortions of grid spacing can be avoided when compared to having the
a = 1, field line on either the inner or outer boundary. This allows for more efficient computation.

For coordinates (a, #, s) the scale factor hy(a, s) can be found from

hy(a,s) = h,(a, u(s)) x

‘i—’;' 19)

and du/ds is found by differentiating equation (18). This shows the advantage of having an analytical defi-
nition of the relation between u and s, namely, that we can determine h, exactly by evaluating an analytical
function. If the analytical relation did not exist, we would have to estimate h; numerically by a separate
computation.

2.4. Simulation Coordinates (a, 8,7)

The main advantage of field-aligned coordinates when studying phase-mixed Alfvén waves is that the small
scales which develop perpendicular to B can be resolved using several hundreds of grid points in these
directions—in contrast to the field-aligned direction, which will not contain small scales and will need <100
grid points. The main factor relevant to optimizing the field-aligned coordinate is the fact that the there
is a scale length associated with the variation of the background field strength and scale factors, which
decreases with increasing latitude. This means that our optimal field-aligned coordinate will have a finer
spatial resolution at high latitudes compared to low latitudes.
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Now that we have a field-aligned coordinate (s) that is effectively uniform along our reference field line, it
is a simple matter to define a new field-aligned coordinate y(s) which we can tailor to provide a finer grid
where necessary. Depending upon the focus of the simulation, there are many options for the form of y(s),
and we choose a simple illustrative one here.

For the final coordinate change (a, 8, s) — (a, f, y(s)) we set

3
S+D<S Sl) 5 <8<S8
— T\ 1 u
Te 3 fg T,

N N

O =4 = RELEY (20)
T,

Ty g
s vof s S }
—+—<—+—>, =S5, <8< =S
¥y 3 L

The upper limit of the s domain is s,,, and we assume grid symmetry about the equator (s = 0). A lower value
of s, namely s;, is used to define a region around the equator (—s; < s < s;) where a finer grid is not needed,
so we let y = s here. The functional form (20) was chosen as y(s) and its first two derivatives are continuous

ats = +s;.

The difference in grid spacing between the s grid and the y grid (As and Ay) when at high latitudes can be
appreciated by noting Ay /As ~ dy /ds. Differentiating (20) to give

2
s S
l1+ol —-—, 5 <8<s,
r, T
dv(s g g
—7(;()2 , -5, <5< (21)
N 2
N M
1+o| —+—), =-s,<s<-5
Te Ty

shows the relative density of grid points in y to s (i.e., dy /ds) is evidently controlled by v. At the end of the
field line (s = s,,) the relative density of grid points in y compared to s has increased by a factor ¢ = dy /ds]; .

Inverting for v gives

2
N s,

0'=1+v(—“——l>. (22)
[

_ oc—1 (23)

S

_— .
< Su >
rg rg

If, for example, we required the density of grid points to increase by a factor of 4 at s = s, compared to that

ats = s§;, we set o = 4 in (23) to determine the required v, which then defines the y coordinate through
(20). Figure 1d illustrates this for ¢ = 4. The increase in field-aligned resolution is particularly evident when
comparing the grids at the high-latitude ends of the field lines passing through (X, Z) = (5, 0) in Figures 1c
and 1d. Theline s = s, is also highlighted and represents where the field-aligned grid refinement commences.

It will also be necessary to invert y(s) to give s(y). Inverting (20) gives

( MG 50 7 0) - 217 +5 s <y <y(s,)
T M5 b A
@ =2 r_v PR YA (24)
I g
g
My, =s;,1g.0) 21/3 L (c5.) <5< s
Qo)1 PPM(y, —syrp) 0T b
where
. 1/3
/ /
M(y.s',rg,0) = 3<l—s—>+ 9(l—s—) 4 (25)
rg rg rg rg 1)

and the dummy argument s’ can have the values —s; or +s,.
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2.5. Summary of Coordinates and Scale Factors

1. Choose the boundaries of the domain: begin with the upper and lower « limits. Azimuth runs over —z <
B < x. We also choose grid parameters r, and s,.. Next we choose the grid refinement lower bound (s;) and
grid point density enhancement factor (o), and determine » with equation (23). The limits of the y grid
are y(+s,) from equation (20). We can now set up uniform grids in @, # and y space.

2. Calculate h, (@, f,y) and hy(a, f, v) on the grid as follows: use (24) to convert y to corresponding s, and use
(18) to find the corresponding u value. Next use equation (10) to transform (a, u) to (r, 6) and finally use
(5) to find h, and hy at the required point.

3. Calculation of h, (, f,7): Follow the same steps as above for h, and h;, using (5) to find h, at the grid
point. h, may be found by noting

-1

ds du||ds du d_}’ (26)

dy ds||dy ds || ds
and du/ds is found from differentiating (18). The penultimate expression in (26) could be evaluated by
finding ds/dy from differentiating (24), but it is easier to evaluate the final expression in (26) and use
dy/ds as given in (21).

h,=h

Y N

u

"

3. Simulation Details

3.1. Governing Equations

Simulation variables U,, Uy, B,, By, and B, are related to plasma velocity u and magnetic field perturbation
b by U, = u,hsB (B is the background magnetic field strength), U; = u;h,B, B, = b,h,, B; = bsh,, and
B, = b,h,. The equations are normalized as follows: lengths by L, = 6,371 km, an Earth radius; speeds by
the Alfvén speed V,, = 757.427 kms™ at the inner boundary (X, Y, Z) = (5,0, 0); magnetic fields by the
background field at (5, 0, 0), B, = 300 nT; time is normalized by T, = L,/V,, = 8.411s

aUa 2 hﬂ aBa aB}’
= - -w 27
ot nh, [ay da |~ (@)
oU, h OB 0B
D et [P D) (28)
ot nsh, | oy~ 9p
0B, h, oU, h, [a {nhy (63,, 0Ba>}
ot hgh, oy  hgh, [0 | h,hy \ Oa ap (29)
0 nhﬁ 0B, 0B,
ay | hsh, \ oy a
By b 0y e [0 fah (0%
ot h,h, oy h.h, [dy \ hsh, \ 0f dy (30)
0 nhy 0B; 4B,
da | hyhy \ oa op
B, __ M [aUaJ,‘H]_ Ry [i{”hﬂ ("Ba_ﬁ»
ot hyhy | oa op hyhg |0a \ hyh, \ oy oa 31)

af \ hgh, \ 98 dy '
Here V is the Alfvén speed, v is a linear drag term and # the resistivity. The above equations are the com-
ponents of the momentum and induction equations written in our curvilinear coordinates (a, #,y) and

simulation variables. They are the same as in Elsden and Wright (2017), except that we now include a
nonzero # in Ohm's Law.

3.2. Grid and Boundary Conditions

We employ a staggered grid with constant spacing Aa, A, and Ay. If a unit cell of the lattice with sides Aq,
Ap, and Ay has B, defined at (0,0,0) and its corners, then U, is defined at (Aa/2,0,0), U, at (0, A$/2,0), B,
at (Aa/2,0,Ay/2),and Bj at (0, Ap/2, Ay /2). The equations are solved over the domain a,;, < @ < @,.(#),
- < f<mand0 <y <y(s,) ay,(p) is taken to be the radial distance to the equatorial magnetopause in
the model described by Shue et al. (1997), and produces the flaring on the flanks evident in Figure 3.
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-—0—@— o o o 3.2.1. Ionospheric Boundary
\\ The ionospheric boundary is located at y = y(s,), where nodes of velocity
and B, are enforced. Antinodes of B, and B, are also applied here. These
o ® ® ® 5 o boundary conditions are perfectly reflecting.
3.2.2. Inner Boundary
(a) (b) The inner boundary of the domain was taken to be the plasmapause,
P P P P P P beyond which would be the dense plasmasphere. For simplicity, we

(©

Figure 2. The outer edge of the (e, f) grid (at constant y) on which B,

assumed the large jump in density on crossing the plasmapause would
produce wave reflection which we model by imposing nodes of U, and
B, (and antinodes of Uy, B;, and B,) on the L shell a = ¢,
3.2.3. Magnetopause Boundary
The magnetopause boundary coincides with the surface a,,,,.(f), which
{ J (] o is taken to be the radial distance to the equatorial magnetopause in the
) model described by Shue et al. (1997). In our notation this gives

min*

Anax(B) =1y ( 1 4 cos(p) > (32)

Y o) Y where r, is the distance to the subsolar magnetopause, and the index &
(simply « in Shue et al., 1997) controls the degree of flaring on the flanks
evident in Figure 3. In the axisymmetric magnetic field employed in

values are calculated. The red line represents the magnetopause. The blue ~ Elsden and Wright (2017, 2018), the edge of the staggered grid coincided
dot is a grid point where we specify B, to drive the simulation. The yellow with a surface a,,, = const., and the only quantity needing to be defined

dot is a point on the magnetopause where a prescribed driver defines the
value of B,. Four configurations are considered. In (a) the magnetopause
coincides with the grid. In (b)-(d) the magnetopause does not coincide with

there was B, (a proxy for the magnetic pressure). This corresponds to the
situation in Figure 2a, where the red line shows the magnetopause in a

the grid, and interior points (green) are used with interpolation to define surface of constant y along with the grid points in a and g. The yellow dot

the value at the blue point.

represents a point on the magnetopause where driving condition gives

the value of B,, and the blue dot is a boundary grid point where we need
to specify B, . As the yellow and blue dots coincide we can simply assign the driven value (yellow) to the blue
dot at both the predictor and corrector steps of the Leap-frog Trapezoidal algorithm for all boundary points
to drive the simulation (Elsden & Wright, 2017).

In Figures 2b-2d the situation is not so simple as the magnetopause moves “radially” in « with azimuth g.
The driving condition still defines B, everywhere on the magnetopause (red line), but this does not coincide
with grid points. On moving to larger «, the first grid cell after crossing the magnetopause is designated as a
ghost cell (colored blue in panels b-d). If we are able to define a suitable value for B, on the ghost cells, then
the integration algorithm can update all the interior points. For the situation in Figure 2b, this is relatively
straightforward: We have a preexisting value at the first interior grid point (green), and the prescribed driver
defines the value on the magnetopause at the yellow dot. We can then use linear interpolation to infer a value
for the ghost cell (blue). If this is repeated for all ghost cells, then the entire interior grid can be updated.

If the orientation of the magnetopause is like that shown in Figure 2c, a similar procedure can be used to
that above, except that the first interior grid point (green) is found by moving in . Now interpolation in
S using the value on the magnetopause (yellow) and preexisting interior value (green) is used to calculate
the ghost cell (blue) value. There is one problem with this approach: If the yellow and green dots are very
close together (less than 1072 of the grid cell size), then interpolation to the blue dot will have large errors
and renders the method too inaccurate to be of use. After some experimentation a simple work-around was
found: When the green and yellow dots are too close, we simply assume they coincide and assign the value
of the yellow dot to the green dot (which is then treated as a boundary point, rather than in interior point),
which becomes similar to the situation in Figure 2a.

The final case we need to consider is shown in Figure 2d. Here, the ghost cell value could be determined
by interpolating in either a or g using the pairs of green and yellow dots shown. Performing both these
interpolations gives two possible values to be assigned to the ghost cell (blue), and these values will not be
identical. In this situation we take an average of the two possible values, and weight the average based upon
the (real space) distance from the blue to the yellow dots. For the situation in Figure 2d, the nearest yellow
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Figure 3. Variation of V4 in the equatorial plane used in Figures 4-10.

dot to the ghost cell lies in the alpha direction. Since we know B, at the yellow dots, it is sensible to give the
ghost cell value based upon the « interpolation of the higher weighting.

3.3. Nightside Boundary

The simulation is designed to study the propagation and coupling of MHD waves on the dayside and flanks.
In practice, antisunward propagating waves may travel into the tail, where they will be lost from the domain
of interest to us. Specifically, we simulate waves in the region x > —6 R;. We do not model the magnetotail
in detail, but simply treat it as a region we can lose wave energy to irreversibly. We mimic this property by
adding a buffer zone for -9 R; < x < —6 R where the drag coefficient v is nonzero. Tests showed that this
works well as negligible wave energy reached the end of our domain (at x = —9 Ry) nor was there evidence
of reflected waves propagating sunward from the buffer zone.

3.4. Numerical Details

The code is parallelized by introducing subgrids in the « and g directions to allow fine spatial resolution
in these directions to resolve phase-mixed Alfvén waves. The subgrids were only extended in a (“radi-
ally”) as far as is necessary to cover the magnetopause, hence local times where there is more flaring of the
magnetopause need more subgrids. The numerical integration algorithm we employ is the Leap-frog Trape-
zoidal scheme of Zalesak (1979), and the equations are driven by specifying the magnetic pressure on the
magnetopause at the predictor and corrector steps, as described in Elsden and Wright (2017).

Some form of dissipation is necessary to prevent Alfvén waves phase mixing below the grid scale (Mann
et al., 1995). The main dissipation of Alfvén wave energy is in the ionosphere through Joule heating of Ped-
ersen currents. Interestingly, the ionosphere is a much better reflector of the fast mode than the Alfvén
mode (Kivelson & Southwood, 1988). The use of resistivity allows us to mimic this bias: it will cause signifi-
cant dissipation of Alfvén waves since they have a relatively small transverse scale and large current density
compared to the fast mode. In contrast the drag term (—vu) acts equally on both waves and would cause
unwanted decay of the fast mode. (We reserve the use of drag for the buffer zone where we intentionally
want to dissipate both wave modes.) The use of resistivity in the domain of interest described in the previ-
ous subsection also has the advantage that most of the dissipation will occur at higher latitudes (where the
field-aligned current is stronger). Consequently, virtual satellites at lower latitudes will observe a Poynting
vector showing a poleward flow of energy similar to that found with ionospheric dissipation. However, vir-
tual low-altitude satellites will not have a realistic Poynting vector signature. The value of 7 is chosen to give
FLR widths of ~1 R, in the equatorial plane.

The size of the time step in our simulation is constrained by requiring it to resolve the propagation time
across a grid cell (~ 6/V, the CFL condition) and also the diffusion time across a grid cell (~ §%/1), where
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Figure 4. Variation of the compressional magnetic field in time at (a) noon and (c) dusk. FFTs show the same two
frequencies (at 3.9 and 11.8 mHz) present at noon (b) and dusk (d).

6 is approximately the smallest real space extent of a grid cell. The 6% scaling of the diffusion time means it
becomes impractical to resolve at high latitudes. We avoid this difficulty by having a uniform # throughout
the vast majority of our domain, but smoothly reduce it to zero as the ionospheric boundary is approached.
(Specifically, we let # have the following dependence on y: over |y| < 0.6y,,,, the value of # is held constant
at the value we quote below, whereas over |y| > 0.8y,,,, the resistivity is set to zero. Between these two
regions the resistivity varies in a continuous and differentiable fashion.) Thus, our time step is constrained
by the CFL condition At < §/V and is generally associated with the width of the grid in « at the high-latitude
boundary.

Test runs used to benchmark the accuracy of the code when the dissipative terms are present shows that
energy continuity is balanced to 1 part in 10*. The simulation results in the remainder of the paper use a
grid of 200 x 200 x 50 points, s; = 8.0, 5, = 12.0, 6 = 3.0, y,,,, = 14.667, 1 = 0.004, v = 8.0, Af = 2 x 1074,
and employ the axisymmetric equatorial Alfvén speed variation shown in Figure 3 (unless stated other-
wise). There is an additional variation of Alfvén speed along the field lines through the density dependence
N = Reg(@)(Feq /r)* (based upon the theoretical estimate shown in Figure 1 of Angerami & Carpenter, 1966).
The Alfvén speed profile is intended to represent a typical magnetosphere that is broadly consistent with
observations and theory: Figure 1 of Archer et al. (2015), Figures 2a and 2b of Moore et al. (1987), Takahashi
and Anderson (1992).

3.5. Magnetopause Driving

The magnetopause is driven by applying a magnetic pressure perturbation on the magnetopause that repre-
sents a jolt given to the system from an interplanetary shock. We employ drivers that are either symmetric
or antisymmetric about noon, but assume symmetry about the equatorial plane in this paper. The explicit
form of the symmetric driver is

b, (B.y.t) = cos’(k,p)cos’(k, y)sin*(xt /), (33)

WRIGHT AND ELSDEN

10 of 20



o~
AGU

100 Journal of Geophysical Research: Space Physics 10.1029/2019JA027589

VANCING EAR
AND SPACE SCI

(®)
Antisym
Ist ]

b,(nT)
b_(nT)

1 I | = L L L 1
0 20 40 60 80 0 20 40 60 80
Time (min) Time (min)

OF E OF
r Sym Antisym -
1.0 2nd | 2nd

b (nT)
b,(nT)

. . ] ~156 | | | | 3
0 10 20 30 40 0 10 20 30 40
Time (min) Time (min)

Figure 5. Time variation of the b, (f) when driven to excite the first and second radial harmonic symmetric wave guide
modes ((a) (X,Y) = (6.79,0) and (c) (X, Y) = (8.22,0)), and the first and second radial harmonic antisymmetric
waveguide modes ((b) (X,Y) = (5.06,4.53) and (d) (X,Y) = (7.77, 3.64)).

imposed over —1 < f < 1,0 < y < 6 and up until time ¢t = 7, = 10.0, after which the driver is set to 0. The
wave numbers are given by k; = z/2 and k, = 2z /A, = z/12. (All these quantities are given in normalized
simulation units—see section 3.1.) In dimensional units, the full width at half maximum (FWHM) in the
equatorial plane of the g profile is about 10 Ry, and the field-aligned FWHM is 6 Ry in the noon merid-
ian. The subsolar magnetopause is at (X,Y,Z) = (10,0,0) and there is no dipole tilt. The flaring of the
magnetopause is governed by the choice 7, = 10 R and & = 0.54 in equation (32).

4. Simulation Results

The natural fast waveguide frequencies of the equilibrium can be explored by looking at b, (t) at different
locations in the magnetosphere as this field will be a signature of the fast mode. Figure 4 shows b, () in the
equatorial plane at noon ((X,Y) = (8.14,0.0)) and at dusk ((X, Y) = (=1.55,12.44)). The longer propagation
time to dusk is evident by the time delay in Figure 4c.

4.1. Waveguide Modes

Figures 4b and 4d show the FFTs of the signals from noon and dusk. It is noteworthy that the FFTs show the
same two natural frequencies present. Elsden and Wright (2018) interpret this property as follows: Following
the driving phase the subsequent behavior of the magnetosphere can be described as a sum over the normal
modes of the system, with each oscillating freely at their natural frequencies. Since the modes are global, it
follows that a spacecraft at both noon and dusk will see the same frequencies following the driving phase - as
is clearly exhibited in Figure 4. It may be thought that these frequencies should be related, in some way, to
the driving time scale z,. Wright and Rickard (1995) show that the values of these frequencies are actually a
property of the medium, not of the driver. However, the amplitude of the FFT peaks does depend upon the
driver: it is necessary for the FFT of the driver to have significant power at the waveguide mode frequencies
if they are to be excited significantly.
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Figure 6. The variation of the compressional magnetic field perturbation in the equatorial plane on the dusk flank.
Panels (a) and (b) show the first (radial) harmonic that is symmetric about noon. Panels (c) and (d) show the first
(radial) harmonic that is antisymmetric about noon.

To study the structure of the symmetric (about noon) modes we apply the following steady oscillatory driver
b,(B.y.,t) = T(t)cos*(kyp)cos*(k,y), where noon is at § = 0 and

sin’(zt/7,), 0 <t < 74/2

sin(zt/zy), 14/2 <t<7ty/2+2t4n,
sin®(xwt/7y), 74/2 + 2140, < t < 74+ 2741,
0, t >ty +27yn,

T(t) = (34)

where n, is the number of periods which the simulation is driven for, k; = z/2 and k, = z/12. (Note the
different time dependence to the impulsive driver in equation (33).)

The period of the driver (27,) is based upon the frequency in the FFT in Figure 4. Figure 5a shows the
variation of the compressional magnetic field perturbation at noon ((X,Y)=(6.79,0)) when driven at the
frequency of the first symmetric harmonic. Since the mode is driven at its natural frequency, it responds by

WRIGHT AND ELSDEN

12 of 20



o~
AGU

100 Journal of Geophysical Research: Space Physics

VANCING EAR
AND SPACE SCI

10.1029/2019JA027589

b, (nT) b, (nT)
-1.57 -1.05 -0.52 -0.00 0.52 1.05 1.57 -1.57 -1.05 -0.52 -0.00 0.52 1.05 1.57

Antisym 2nd (c) Antisym 2nd (d)

155 24.72 | 15~ 25.16 |

10

YRE
YRE

4

-5 0 5 10
XRE XRE

10
Figure 7. The same as Figure 6, but for the second radial harmonic.

growing secularly in time initially. The growth saturates and a balance is reached between the rate at which
energy is supplied by the driver and the rate at which energy is lost through wave propagation into the tail
and coupling to FLRs. The driver in Figure 5a was turned off at ¢t = 69.75 min, and the rapid decay of the
mode over a few cycles is evident. Since the fundamental symmetric mode is the only mode present, an FFT
of the decay phase can be used to improve our estimate of the natural frequency. Indeed, Figure 5a is the
result of rerunning the simulation with the improved frequency estimate. Figure 5c shows the equivalent
results for the second symmetric harmonic.

For an antisymmetric driver (about noon) we employ
T(t)sin (k,p) cos?(k,y), 0 < |p| < 0.5

b,(B.7.t) = { T()sin’(kyp)cos’(k,y), 0.5<|p| <1.0 (35)
0, 18l > 1.0

with the same time dependence as the symmetric case given by equation (34) used. Following a simi-
lar procedure to the symmetric modes, the antisymmetric modes can be studied. The results are shown
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in Figures 5b and 5d. Note that these modes will have a node of b, at noon, so we show b,(¢) at (b)
(X, Y)=(5.06,4.53) and (d) (X, Y)=(7.77, 3.64)).

During the saturated phases evident in Figure 5 it is possible to study the structure of the waveguide modes
in the equatorial plane by taking a couple of appropriate snapshots of b,. Elsden and Wright (2018) explain
how two snapshots taken a quarter of a cycle apart can be thought of representing the real and imaginary
parts of a complex variable f(a, ,7) = b,(a, ,7,t,) —ib,(a, B, 7,4, + T, /4), where T,, is the period of the
mth mode, and ¢, is the time of the first snapshot. The structure of the mth mode may be described by

bym(@, B,y 0) = f(a, B,y)e e (36)

where w = w,+iw; is the complex frequency of the mode (based on the period and decay rate of the undriven
phases in Figure 5). The physical magnetic field that would be observed at any time may be taken as the real
partof b, (a, f,7, ). Thus, two simulation snapshots a quarter of a cycle apart can be used to construct the
full time dependent decay of a waveguide mode. Figure 6 shows two such snapshots of b, in the equatorial
plane for the symmetric and antisymmetric first radial harmonic.

By using plots like Figure 4 to estimate the frequencies of the second radial harmonics, a similar procedure
used to generate Figure 6 can be followed to show the spatial variation of b, in the equatorial plane. Figure 7
shows two snapshots for the second radial harmonics and allows the full time dependence, given by the
real part of b, ,,, to be constructed using equation (36). The upper panels in Figure 7 show the second radial
harmonic that is symmetric about noon, and the lower panels show the corresponding antisymmetric mode.

The values of the frequencies found in the FFTs for the symmetric driver which produced Figure 4 corre-
spond, of course, to the first and second radial harmonic symmetric waveguide modes. The frequencies of 3.9
and 11.8 mHz can be appreciated as follows. Consider a uniform medium in which the fast mode frequency
is given by @ = V,(k} + k? + k2)'/>. If the smallest dimension is the extent in x, suggesting k, > k,, k,, then
o~ V,k, (or f = V,/A,). Thus, we can estimate the fast frequency based upon the wavelength and V,, for a
uniform medium, as the ratio of these corresponds to the period—or travel time. As we have a nonuniform
medium we need to estimate the travel time based upon f dX/Vv,(X,0,0). This gives a travel time between
the subsolar point and the plasmapause (5,0,0) of 59.17 s (0.986 min). Note that in Figure 6a the variation of
b, along the X axis goes from being a maximum (X = 5) to a node (X = 10), which corresponds to a quarter
cycle. Hence, the radial fundamental period is expected to be around 4 x 0.986 min (equivalent to 4.2 mHz),
in good agreement with the observed value of 3.9 mHz (given the resolution of the FFT and approximations
in estimating the frequency). The frequency of the second harmonic is not double that of the first, but almost
triple it. This can be understood by studying the variation of b, for the second radial harmonic between
X = 5and X = 10 along the X axis in Figure 7: It goes from minimum, to node, to maximum, to node, that
is, 3/4 of a cycle compared to the 1/4 cycle of the first harmonic. Hence, the observed frequencies of 3.9 and
11.8 mHz differ by a factor of 3. This nodal structure is consistent with our boundary conditions of a node
of u, (antinode of b, ) at the plasmapause and a node of b, at the magnetopause.

In section 4.3 we show how Figures 6 and 7, along with equation 36, can be used to examine the standing
or propagating nature of the waveguide modes.

4.2. Field Line Resonances

The four waveguide modes in Figures 6 and 7 can couple to FLRs. Our ionospheric boundary conditions
mean FLRs will always have an antinode of j at the ionosphere independent of whether they are an odd or
even harmonic. To identify the location of Alfvén waves in the equatorial plane we plot j; at the ionosphere
mapped along the field line to the equatorial plane in Figure 8. Note how the waveguide modes that are
symmetric about noon (i.e., they have a node of azimuthal magnetic pressure gradient at noon) have a node
in the FLR amplitude at noon also (Figures 8a and 8c). In contrast the antisymmetric waveguide modes
have an antinode of the azimuthal magnetic pressure gradient at noon, and hence drive FLRs very strongly
at noon (Figures 8b and 8d).

The FLRs in our equilibrium will have a toroidal polarization, and their harmonic number can be identi-
fied by looking at the variation of bs(a, y) in a meridian plane. The dashed lines in Figure 8 show suitable
planes, and Figure 9 shows the variation of b, in these planes. In Figure 8a we see the first radial harmonic
symmetric waveguide mode couples to an FLR centered on L = 7.5, and Figure 9a indicates this is a funda-
mental FLR. Similarly, the second radial harmonic symmetric waveguide mode couples to an FLR at L = 8
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Figure 8. Location of Alfvén waves in the equatorial plane. The field-aligned current (jj) at the ionospheric mapped
along field lines to the equatorial plane. Panels (a) and (c) are for the first and second radial harmonics that are
symmetric about noon (and so have a node of j; at noon). Panels (b) and (d) are for the first and second radial
harmonics that are antisymmetric about noon (and so have an antinode node of j | at noon). The black dashed lines
indicate meridian planes used in Figure 9.
(Figure 8c), and Figure 9c indicates this is a third harmonic FLR. (Note that there is a fifth harmonic FLR
also excited by this waveguide mode at L = 11.)
The antisymmetric waveguide modes also couple to FLRs: The 1st radial harmonic mode drives an FLR at
L = 9 (Figure 8b), and Figure 9b shows this to be the fundamental mode FLR. Similarly the second radial
harmonic antisymmetric waveguide mode drives FLRs at L = 5.5 and L = 9 (Figure 8d), which Figure 9d
shows to be the fundamental mode and third harmonic, respectively. We note Figure 8 also shows evidence
of coupling to seventh and ninth harmonic FLRs on longer field lines. The results in Figure 9 are sensitive
to the value of resistivity we use. In particular, the width in L shell scales as /3, and we chose the value of
n to give a realistic FLR width of about 1 Ry in the equatorial plane. The field-aligned structure of the FLRs
was not found to vary noticeably with the value or spatial variation of #.
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Figure 9. The variation of b, (a signature of the Alfvén mode) in the meridional planes indicated by the dashed lines
in Figure 8. These correspond to the FLRs excited by the following waveguide modes: (a) First radial harmonic that is
symmetric about noon; (b) first radial harmonic that is antisymmetric about noon; (c) second radial harmonic that is

symmetric about noon; (d) second radial harmonic that is antisymmetric about noon.

4.3. Azimuthally Standing/Propagating Waveguide Mode Nature

In a 2-D dipole model Elsden and Wright (2018) showed how the waveguide modes could have an
azimuthally standing nature near noon and a tailward propagating nature on the flanks. In this subsec-
tion we study the phase relation between various simulation fields to see if this is true in the flaring flank
magnetosphere we adopt here.

An initial insight can be gained by considering Figures 7a and 7b. In particular, the blue minima at (1,11)
in panel (a) has moved a quarter of a cycle later to (—1,13) in panel (b), and another quarter of a cycle later
will be where the yellow maxima is at (—3,14) in panel (a). Evidently, the mode has a propagating character
on the flank. The antinode evident at noon does not propagate in azimuth, but is standing in nature.

The wave-like nature of the modes comes from the following dominant terms in equation (31)

o [aU" + %] (37)
ot hyhy | oa g |

In a uniform field the right-hand side of equation (37) reduces to —V - u. Moreover, in a Cartesian waveg-

uide (with azimuthal coordinate y) a 1-D standing wave would have the spatial variations of B, and -V - u

(with y) being in phase. In contrast, these would be in quadrature for a propagating wave. To see if this is a

useful diagnostic for interpreting the fast waveguide modes we show, in Figure 10, snapshots of B, and the

right-hand side of (37) along the dashed lines indicated in Figures 6 and 7.

In Figure 10, “Distance” corresponds to path length along the dashed lines measured from noon. The red
and black lines are in phase near noon indicating that all the modes have a standing nature here. Moving
away from noon the phase relation is ambiguous, as is to be expected in a nonuniform medium. However, as
we get to the more distant flank, the phase relation is closer to quadrature—indicative of a propagating wave.
This is particularly clear in panel (c), which corresponds to the second radial harmonic that is symmetric
about noon (Figures 7a and 7b) and was discussed at the start of this subsection. These results confirm
the mode structure reported by Elsden and Wright (2019) for a 2-D dipole (namely, that waveguide modes
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Figure 10. The variation of B, (black) and the right-hand side of equation (37) (red) along the dashed lines in Figure 6
for the first radial harmonic waveguide modes: (a) symmetric, and (b) antisymmetric about noon. Similar plots for the
second radial harmonics of Figure 7 are shown in (c) symmetric, and (d) antisymmetric. The distance on the horizontal
axis corresponds to path length along the dashed lines in Figures 6 and 7 measured from noon.

have a standing nature near noon, but propagating nature on the flanks) carries over to a 3-D dipole with
flared flanks.

4.4. 3-D FLRs in a Plume

To illustrate the efficacy of our simulation for studying wave coupling in 3-D we use the highly asymmetric
V, associated with an afternoon plume as shown in Figure 11a (Borovsky & Denton, 2008). Such a situation
has already been studied using a normal mode approach by Degeling et al. (2018), whose results showed the
ability of FLRs to cross L shells. Here we adopt a time-dependent approach to complement that of Degeling
et al. (2018). We drive the magnetopause with an impulsive symmetric magnetic pressure similar to that in
equation (33).

The density is set through the Alfvén speed profile shown in Figure 11a (given the background dipole mag-
netic field). At the heart of the plume the Alfvén speed is approximately a factor of 3 lower than outside (but
on the same L shell) and hence the density increases by a factor of 9. This is on the lower end of the density
increase used in the plume in Figure 1 of Degeling et al. (2018).

Figure 11b shows j; at the ionosphere plotted at the corresponding location in the equatorial plane. We use
Jy as a proxy for the Alfvén wave as the fast mode does not carry strong field-aligned currents. There are
some similarities with the Alfvén waves in Figures 8a and 8c which were also driven with a driver that was
symmetric about noon: in both Figures 8a, 8c, and 11b the symmetric driver excites Alfvén waves with a
node in the vicinity of noon.

The distribution and polarization of Alfvén waves is very different prenoon and postnoon. As shown in
Elsden and Wright (2017), the frequency of the Alfvén waves along a given ridge in Figure 11b are the same.
Thus, Alfvén waves near noon on the outer dashed circle (r = 8 R,) at (X,Y) = (8,2) lie on the blue ridge
that moves to the inner dashed circle (r = 6 R,) at later MLT. Moreover, Wright and Elsden (2016) show that
the Alfvén wave plasma displacement lies along (i.e., is tangential to) these ridges.
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Figure 11. (a)The variation of V, in the equatorial plane with a plume in the afternoon. There is an additional p o« r—*

variation along field lines. (b) j; at the ionosphere mapped along field lines to the equatorial plane. The dashed black
lines are for reference and areatr =6and 8 R,

It is not surprising that a toroidal Alfvén wave at (X,Y) ~ (8,2) and (X, Y) =~ (4,4), corresponding to L = 8
and L = 6, respectively, can have the same frequency: this is because the L = 6 field line is in a dense
plume, so its Alfvén frequencies are lowered. What is surprising is that for a well phase-mixed Alfvén wave,
the plasma displacement will be along the ridges in Figure 11 (see Figure 4 of Wright & Elsden, 2016). This
means that the Alfvén waves at (X,Y) = (8,2) and (X,Y) = (4,4) will both have toroidal polarization.
However, along the ridge joining these locations, the plasma displacement (i.e., polarization) is far from
toroidal. In fact the FLR crosses from L = 8 to L = 6, and when at L = 7 has a plasma displacement that is
at roughly 45° to the toroidal direction—that is, its polarization is neither poloidal or toroidal, but midway
between.

The frequencies of toroidal and poloidal fundamental Alfvén modes differ by around 30% in a 3-D dipole
field, and Wright and Elsden (2016) have shown how to calculate the frequency of an Alfvén wave of any
intermediate polarization (see their equation (23) and Figure 6). It is evident that the FLRs in Figure 11
cannot be interpreted with the usual 2-D toroidal FLR theory. The 3-D nature of the equilibrium requires
a theoretical description that is somewhat different to 2-D (Degeling et al., 2018; Wright & Elsden, 2016).
Recall that Elsden and Wright (2017) showed that the frequency of Alfvén waves on a given ridge is the
same everywhere along the ridge. Hence, when the FLR is crossing L shells it is adjusting its polarization
angle such that its frequency (which depends upon this angle, Wright & Elsden, 2016) exactly matches the
frequency found everywhere along that ridge.

Our results differ from those of Degeling et al. (2018) in that their solution was a normal mode, which excited
a narrow FLR at the frequency of the mode. In contrast our time-dependent simulation has an impulsive
broadband driver, which excites Alfvén waves over a wide range of field lines such that the range of the
Alfvén continuum excited corresponds to the upper and lower bounds of the spectrum of the impulsive
driver (Mann et al., 1995).
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5. Concluding Remarks

We have described a novel simulation model for studying the coupling of MHD waves in a nonuniform 3-D
magnetosphere with flared flanks. The model is well suited to studying the propagation of waves from the
dayside around the flanks and to the near-Earth nightside. A major consideration in our model is optimizing
the grid for computational efficiency. We also devise a suitable magnetopause boundary condition such that
this boundary need not coincide with a coordinate surface.

The waveguide modes of the system are central to understanding the response of the magnetosphere to a
variety of driving conditions, and we calculate the lowest order modes for a simple V, model. The modes
have a standing nature near noon, but switch to a propagating character on the flanks and into the tail. The
frequencies of the waveguide modes is of great importance as this identifies the frequencies that FLRs are
preferentially excited with (Wright, 1994).

Finally, we show results from an impulsively driven highly asymmetric equilibrium containing a plume in
the afternoon. Our results can be interpreted using 3-D Alfvén resonance theory, and show how FLRs can
cross L shells with a polarization that is neither toroidal or poloidal. In our model the FLRs cross 2 L shells
at an angle of around 45° over a local time of 1-2 hr. This sort of behavior cannot be understood with 2-D
FLR theory.
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