

The Plant Journal (2020) doi: 10.1111/tpj.14910

Signatures of adaptation to a monocot host in the plantparasitic cyst nematode *Heterodera sacchari*

Somnath S. Pokhare^{1,2}, Peter Thorpe^{3,4}, Pete Hedley³, Jennifer Morris³, Samer S. Habash¹, Abdelnaser Elashry^{1,†} Sebastian Eves-van den Akker⁵, Florian M. W. Grundler¹ and John T. Jones^{3,6,*}

¹Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn 53115, Germany,

Received 18 January 2019; accepted 18 June 2020.

SUMMARY

Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUND-ING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.

Keywords: Peptide hormone mimics, effectors, Heterodera sacchari, transcriptomics.

INTRODUCTION

Plant-parasitic nematodes cause damage to world agriculture valued at approximately \$80 billion each year (Nicol et al., 2011; Jones et al., 2013). However, many growers (particularly in developing nations) are unaware of the damage caused by plant-parasitic nematodes because they are small and soil-dwelling and cause non-specific symptoms. The true extent of the damage caused by plant-parasitic nematodes is therefore likely to be considerably higher than this. The cyst-forming nematodes (Heterodera

and *Globodera* spp.) are among the most damaging plant-parasitic nematode groups. These sedentary endoparasitic pathogens are obligate biotrophs and induce the formation of a large multinucleate, metabolically active syncytium in the roots of their hosts (reviewed in Perry *et al.*, 2018). The syncytium is formed by progressive fusion of cells from an initial syncytial cell selected by the nematode after invasion of the host (Sobczak and Golinowski, 2011). Syncytium formation is associated with profound changes in host gene expression and modulation of the cell cycle (e.g. Siddique and Grundler, 2018).

²Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India,

³The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK,

⁴School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK,

Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK, and

⁶School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK

^{*}For correspondence (e-mail john.jones@hutton.ac.uk).

[†]Present address: Strube Research GmbH & Co., Neue Str. 11, Schlanstedt, 38838, Germany

The interactions between plants and their pathogens, including cyst nematodes, are mediated by effectors, i.e. secreted proteins that manipulate the host to the benefit of the pathogen. Effectors from cyst nematodes are primarily produced in the dorsal and subventral pharyngeal gland cells and are secreted into the host via the stylet. The availability of genome and/or transcriptome resources from a range of cyst nematodes (e.g. Gao et al., 2003; Cotton et al., 2014; Kumar et al., 2014; Zheng et al., 2015; Eves-van den Akker et al., 2016a,b) has facilitated identification of effectors from these species. Strategies for identifying effectors from genome and transcriptome resources include identifying secreted proteins that are upregulated at parasitic stages of the nematode (e.g. Thorpe et al., 2014; Espada et al., 2016) and direct sequencing of mRNA extracted from aspirated gland cells (Maier et al., 2013), followed in both cases by in situ hybridisation to confirm expression in the pharyngeal gland cells. More recently, it has been shown that promoters associated with genes expressed in the gland cells can be used to identify comprehensive lists of effectors from diverse plant-parasitic nematode species (Eves-van den Akker and Birch, 2016; Espada et al., 2018). As a result of these studies, effectors have been identified from a wide range of plant-parasitic nematodes with subsequent functional studies showing that they have roles in various stages of the plant-nematode interaction, including metabolism of the plant cell wall to facilitate invasion and migration, suppression of host defences and initiation of syncytium formation (reviewed in Gheysen and Mitchum, 2011; Jones and Mitchum, 2018).

The plant cell wall is the first significant barrier that any invading pathogen, including plant-parasitic nematodes, will need to overcome to infect a plant and plant-parasitic nematodes are well equipped with proteins that allow them to metabolise the plant cell wall. The first effector identified from any plant-parasitic nematode was a beta-1.4-endoglucanase (cellulase) from the potato (Solanum tuberosum) cyst nematode Globodera rostochiensis (Smant et al., 1998), and a range of cell wall-degrading and -modifying proteins have subsequently been identified as cyst nematode effectors, including pectate lyase (Popeijus et al., 2000), GHF43 Arabinase (Cotton et al., 2014), GH53 Arabinogalactan endo-1,4-beta-galactosidase (Vanholme et al., 2009), expansins (Qin et al., 2004) and proteins encoding carbohydrate-binding domains (Hewezi et al., 2008). All of these genes, as well as others encoding chorismate mutase (Jones et al., 2003) and proteins potentially involved in vitamin biosynthesis (Craig et al., 2008), have been acquired by horizontal gene transfer from bacteria (reviewed in Kikuchi et al., 2017). Cyst nematode effectors have also been identified that suppress host defence responses, most notably several members of the SPRYSEC family of effectors (Postma et al., 2012; Mei et al., 2015)

and a modified ubiquitin extension protein (Chronis et al., 2013). The details of how cyst nematodes induce the formation of their syncytium in the roots of their hosts are less clear, although effectors that are likely to be important in this process have been characterised. Another novel effector (19C07) has been identified from Heterodera glycines and Heterodera schachtii that interacts with the LAX3 auxin influx transporter (Lee et al., 2011). In addition, all cyst nematodes studied to date produce effectors that include variable numbers of C-terminal repeats encoding peptides similar to CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) peptides. Functional studies have shown that the nematode peptides can complement mutant Arabidopsis lacking these peptides (Wang et al., 2005). The CLE proteins are modified by plant cell machinery in a manner similar to that of the endogenous proteins and the CLE peptides themselves subsequently interact with the CLAVATA2 receptor protein, which is required for nematode parasitism (Replogle et al., 2011; Replogle et al., 2013). In plants, CLE peptides regulate cell differentiation and thus contribute to the control of meristem maintenance in shoots, roots and vascular tissues. The ability to produce endogenous CLE peptides is likely to be a key factor in the ability to induce a feeding structure in plants.

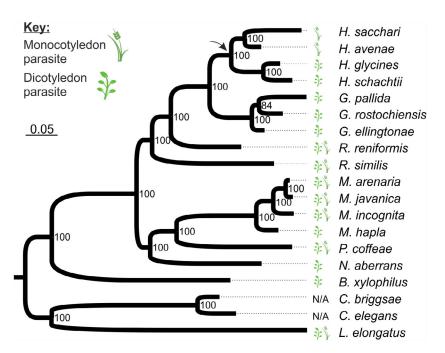
Many plant species are parasitised by cyst nematodes, including monocots and dicots. However, each individual species of cyst nematode tends to have a relatively narrow host range, with some exceptions. Although little is known about the molecular determinants of host range in plantparasitic nematodes, effectors have been shown to have a central role in this process in other pathogens (reviewed by Stam et al., 2014). A view has emerged that 'non-host resistance' of closely related species is most likely due to recognition of effectors by a resistance gene, while failure to infect a more distantly related species is most likely due to the incompatibility of effectors with their cognate targets (Schulze-Lefert and Panstruga, 2011). For example, comparisons of the genomes of Phytophthora infestans and a closely related species Phytophthora mirabilis, which infects Mirabilis jalapa, revealed that 82 of 345 genes which showed signs of positive selection could encode effector sequences (Raffaele et al., 2010). Subsequent work on orthologous effectors that encode protease inhibitors from the two species showed that the protease inhibitor effectors from each of these species interact specifically with protease targets from their respective host plants (Dong et al., 2014). Host-pathogen co-evolution is therefore reflected in adaptations of effectors for function in the host.

Heterodera sacchari is an increasingly economically important pathogen of several monocot species, including rice (Oryza sativa) and sugarcane (Saccharum officinarum). Crop losses due to H. sacchari can exceed 40%, with more severe damage reported under rain-fed upland conditions

(Kyndt et al., 2014). Compared to other characterised cyst nematodes, the biology of H. sacchari is unusual in that it is restricted to monocots and reproduces mainly by mitotic parthenogenesis (CABI, 2014). Here we sequenced and assembled the transcriptome of H. sacchari and used these data to reconstruct the evolutionary history of this and related species. These data suggest that H. sacchari and a related monocot parasite Heterodera avenae evolved to parasitise monocot plants secondarily, from a dicot-parasitic ancestor. To explore the genetic changes associated with the evolutionary transition from dicot to monocot parasite, we identified homologues of previously identified effectors in *H. sacchari*. We show that in general the effectors have diversified in sequence more than non-effectors when compared to their most similar homologue in a dicot parasite, and that while some effectors show conserved expression profiles and likely function, specific aspects of the effector repertoire of *H. sacchari* appear to be adapted to monocots.

RESULTS AND DISCUSSION

The transcriptome of H. sacchari


A total of 17 086 132 paired-end reads were obtained from the cDNA extracted from second stage juveniles (J2) and parasitic stage nematodes 15 days after infection. These sequence reads have been submitted to SRA (accession number PRJEB28025). The sequence reads were pooled and assembled into a single reference transcriptome of 44 230 transcripts after filtering with Transrate and removing contaminants. Assemblies are available at https://zenodo. org/deposit/1324265. CEGMA analysis showed that 88% of scripts, with a further 6% represented by partial-length transcripts. BUSCO analysis using the metazoan data set suggested that the assembly contains 76% complete BUSCO sequences and a further 6.0% fragmented sequences. Seventeen percent of the BUSCO genes were not identified. Comparisons with published gene models from cyst nematode genome sequences showed that 34 203 (77.3%) and 30 482 (68.9%) of the H. sacchari transcripts matched sequences in G. rostochiensis and Globodera pallida, respectively (e value, 1×10^{-10}). Taken together, these data suggest that the assembly produced represents a large proportion of the H. sacchari transcriptome of these life stages. H. sacchari evolved to parasitise monocots from a dicot-

the core eukaryotic genes were present as full-length tran-

parasitic ancestor

We used a subset of 96 core eukaryotic genes conserved in H. sacchari and 18 related species to reconstruct a multigene phylogeny (Figure 1). This phylogeny robustly positions H. sacchari and the related cereal cyst nematode H. avenae in a monophyletic subclade of monocot parasites, nested within a clade of related dicot parasites of the genera Heterodera and Globodera. The most parsimonious explanation for this is that (i) H. sacchari and H. avenae share a common, monocot-parasitic, ancestor and (ii) this last common monocot-parasitic ancestor evolved to parasitise a monocot host secondarily, from a dicot-parasitic ancestor. This provides the comparative framework to explore the genes conserved, and the genes diverged, during adaptation to monocot parasitism by nematodes.

Figure 1. Phylogenetic analysis of 96 CEGMA genes conserved in 19 species of nematode shows that H. sacchari and H. avenae share a common monocot-parasitic ancestor that most likely evolved from a parasite of dicots (indicated by the arrow). The scale bar indicates substitutions per base. Node labels indicate support values for 1000 bootstraps.

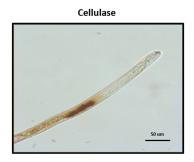
Genes encoding cell wall-modifying enzymes acquired via horizontal gene transfer in the *H. sacchari* transcriptome

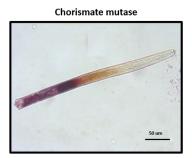
The plant cell wall is the first significant barrier to an invading pathogen, and while largely similar between dicots and monocots, there are notable differences in composition. Plant-parasitic nematodes in general are well equipped with proteins that allow them to modify and degrade specific components of the plant cell wall. Many of these genes were acquired via horizontal gene transfer from bacteria (Danchin *et al.*, 2010).

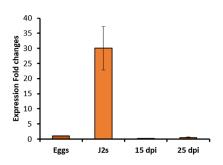
The transcriptome of *H. sacchari* contains representatives of most previously described cases of horizontal gene transfer in related plant-parasitic nematodes, including a wide range of cell wall-degrading enzymes (Table 1) and several other sequences putatively acquired by horizontal gene transfer (e.g. the GH32 invertases and chorismate mutase (Jones *et al.*, 2003; Danchin *et al.*, 2016)). Analysis of the expression profiles of one of the *H. sacchari* GHF5 cellulases and the chorismate mutase showed that, as in other cyst nematodes, expression was restricted to the subventral pharyngeal gland cells in J2s, and while the cellulase was upregulated at J2, the chorismate mutase was expressed throughout the life cycle (Figure 2). These sequences may therefore play a similar role in the biology of *H. sacchari* and other cyst nematodes.

Notably, however, both the *H. sacchari* and *H. avenae* transcriptomes lack sequences similar to GH53 Arabinogalactan endo-1,4-beta-galactosidase, in spite of the fact that all other cyst nematodes analysed to date which parasitise dicots have such proteins. While the absence of evidence in transcriptome data sets is not necessarily evidence of absence in the genome, it nevertheless reflects the host range of these species. Cell walls of commenlinoid monocots (which include the main hosts of *H. sacchari* and *H. avenae*) have a different composition compared to those of dicots and contain relatively low amounts of pectic polysaccharides, including the substrate of the GH53 enzymes (Vogel, 2008). Without genomic resources we cannot conclude whether the conspicuous absence in the

transcriptomes of the monocot parasites is because these genes have been lost entirely or they are not expressed under these conditions.


An overview of H. sacchari effector-like sequences


Effectors modulate plant processes to promote disease, and are often finely tuned to their host. To determine whether the effector repertoire of H. sacchari reflects its secondary adaptation to a monocot host, we first identified and characterised effectors in the H. sacchari transcriptome by building on a detailed genome-wide analysis of cyst nematode effectors performed for G. rostochiensis (Eves-van den Akker et al., 2016a). Using G. rostochiensis effectors as a starting point for comparative purposes, 185 of the 295 identified a similar sequence in the H. sacchari transcriptome (at e value $< 1 \times 10^{-10}$). We compared the similarity of H. sacchari effector-like sequences and non-effector-like sequences to their most similar homologues in the G. rostochiensis genome. This showed that, on average, putative effectors of H. sacchari are more different from their closest homologue in G. rostochiensis than non-effectors are to their corresponding closest homologue (Figure 3). Taken together, these data suggest that while most effectors are apparently conserved, they have nevertheless accumulated more mutations than non-effectors since these species diverged. Further analysis of the differences between the variation in effectors and non-effectors was undertaken. Twenty-one percent of the mutations were classed as nonsynonymous for the putative effectors, versus 22% for other transcripts; however, non-synonymous single nucleotide polymorphisms in the putative effectors were more often predicted to have a significant effect on the coding sequence compared to other transcripts: 0.93% versus 0.82% were classed as 'high impact' for putative effectors and other transcripts, respectively. All of the following high impact categories were more common in the putative effectors compared to other transcripts: gain of premature start codon, in-frame deletions, frameshift variants, start loss and stop gain. Moreover, the rate of variants (i.e. length of transcript/number of variants) was significantly higher for


Table 1 H. sacchari sequences similar to putative cell wall-degrading and -modifying proteins

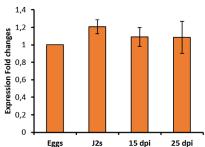

Substrate Family	Cellulose		V 1	A 1.	Pectin		A 1. 1 .		
	GH5 G	01145	Xylan GH30	Arabinan GH43	GH28 PL3		Arabinogalactan		00140 1
		GH45				GH53	Expansins	CBM2 domains	
H. sacchari	8	0	0	0	0	1	0	2	2
H. avenae	16	0	0	0	0	2	0	2	2
H. schachtii	9	0	0	1	0	9	3	4	2
G. rostochiensis	11	0	0	1	0	3	1	7	7
G. pallida	16	0	0	1	0	7	2	9	6
M. incognita	21	0	6	2	1	30	0	20	9
N. aberrans	2	0	3	1	2	8	3	2	2
Bursaphelenchus xylophilus	0	11	0	0	0	15	0	8	0

Figure 2. Analysis of spatiotemporal expression patterns of cellulase (left panels) and chorismate mutase (right panels) identified in the H. sacchari transcriptome. In situ hybridisation analysis showed that both genes are expressed in the subventral gland cells of second stage juveniles (J2s) of H. sacchari (purple staining; upper panels). qPCR analysis showed that the cellulase is expressed specifically at the J2 life stage, while the chorismate mutase is expressed at all life stages tested (lower panels). Error bars represent standard errors across the biological replicates.

Best match of G. rostochiensis genes in H. sacchari

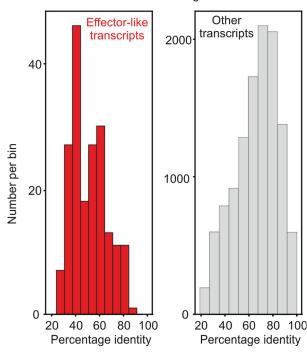


Figure 3. Histograms showing distributions of percentage identity between H. sacchari effectors (left panel) and non-effectors (right panel) with their homologues in G. rostochiensis. This analysis suggests that effector-like transcripts have accumulated more mutations than other transcripts since the divergence of these two species.

the putative effectors versus non-effectors (mean = 1754 versus 1243 for putative effectors versus other transcripts, respectively; Mann–Whitney U test P value: 1.98×10⁻⁴¹).

Consistent with this observation, analysis of effectors from a range of pathogens, including plant-parasitic nematodes, has shown that they are under strong diversifying selection pressure. For example, whole genome resequencing of five pathotypes of G. rostochiensis showed that effectors contain significantly more variants and more non-synonymous variants per gene than do randomly selected non-effector genes (Eves-van den Akker et al., 2016a). On a more detailed scale, the SPRYSEC effector RBP1 from G. pallida, which is recognised by the Gpa2 resistance gene of potato, has been subjected to positive selection at several different residues, including the residue that determines recognition or evasion by Gpa2 (Sacco et al., 2009).

The SPRY domain family is greatly expanded in cyst nematodes, with 295 sequences predicted in G. pallida, of which approximately 30 have a signal peptide (and thus encode SPRYSEC effectors) (Cotton et al., 2014), and 71 sequences in G. rostochiensis, of which 17 may be SPRY-SEC effectors (Eves-van den Akker et al., 2016a). While we found a similar proportion of SPRYs to SPRYSECs in H. sacchari (80 SPRY domain-encoding transcripts and 6 SPRYSECs), with similar spatial expression in the dorsal pharyngeal gland cell (Figure 4), the temporal expression is unusual. At least two H. sacchari SPRYSECs are upregulated in parasitic stage nematodes (Figure 4), and this contrasts with the G. pallida SPRYSECs, which tend to be upregulated in J2s (Mei et al., 2015). Several SPRYSECs have been shown to suppress host defence signalling (Postma et al., 2012; Mei et al., 2015; Mei et al., 2018). What role the H. sacchari SPRYSECs play in infection is yet to be determined.

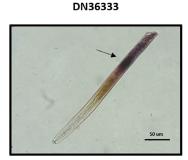
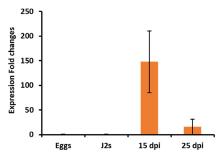
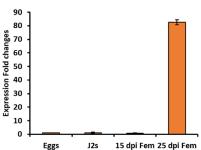
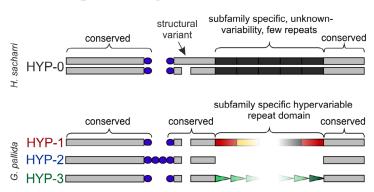




Figure 4. Analysis of spatiotemporal expression patterns of two putative SPRYSEC-encoding transcripts of *H. sacchari. In situ* hybridisation analysis showed that both genes are expressed in the dorsal gland cell of *H. sacchari* (purple staining, arrows; upper panels). qPCR analysis showed that both sequences are upregulated in later parasitic stage nematodes (lower panels). Error bars represent standard errors across the biological replicates.

Other notable peculiarities in the effector repertoire of H. sacchari are the HYP effectors. The HYP effectors, first identified in G. pallida and G. rostochiensis, are secreted from the gland cells surrounding the main anterior sense organs and show unprecedented variability between individuals (Eves-van den Akker et al., 2014a,b). The HYP effectors are strongly upregulated in parasitic stages of G. pallida and can be subdivided into three subfamilies based on the presence and type of subfamily-specific tandem repeats. The transcriptome of *H. sacchari* contains two full-length HYP-like transcripts (primarily represented in the 15 days post-infection library) with unusual characteristics. A phylogenetic analysis of the H. sacchari HYP-like sequences with all other known full-length HYP effectors (n = 65) shows that the *H. sacchari* HYP-like sequences group in a separate subfamily (named subfamily HYP-0, Figure 5). Comparison of the H. sacchari-predicted sequences with those from G. pallida shows that these sequences have both highly conserved regions that flank the variable domain, but they are the first to encode a major structural variant outside the hypervariable domain, and the region corresponding to the 'hypervariable domain' contains a novel sequence that has a very limited repeat structure (sequence features are summarised in Figure 5).

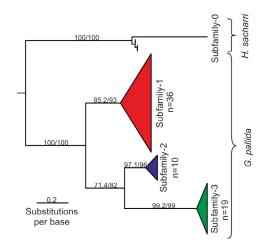

Specialisation of *H. sacchari* CLE-like effectors to parasitism of a monocot host

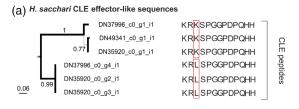
One class of *H. sacchari* effectors shows signs of adaptation to a monocot host. The CLE effectors mimic plant-

peptide hormones and have been characterised in a number of plant-parasitic nematodes. The transcriptome of H. sacchari contains several partial transcripts that encode proteins with similarity to CLE-like effectors from other plant-parasitic nematodes. Using a novel approach based on identifying reads that map to partial transcripts and carrying out a local assembly, we were able to computationally assemble six unique transcripts to recapitulate the full-length open reading frame, resulting in five unique polypeptide sequences from methionine to the stop codon. As for other cyst nematodes, the H. sacchari sequences each encoded a signal peptide at the N-terminus followed by an N-terminal domain (Figure S2), which in other cyst nematodes enables translocation into the apoplast after the protein is secreted into the plant cell (Wang et al., 2010a). All six of these H. sacchari transcripts encode a single canonical CLE domain at their C terminus. Another transcript (DN37996 c0 g2 i1) encodes a tandemly repeated motif with no clear homology to canonical CLE domains (despite the similarity of the rest of the protein sequence to CLE effectors of other cyst nematodes). The six H. sacchari CLE effector-like sequences can be divided into two groups based at least in part on their signal peptide and CLE domains. The CLE domains within each group are identical in protein and nucleic acid sequence (Figure 6(a)).

Given that CLE peptides vary between plant species in general, and monocots and dicots in particular, we hypothesised that the CLE domains of CLE-like effectors in *H. sac-chari* may have specialised prior to/concurrent with the

The HYP gene family




Figure 5. Overview of the HYP gene family in cyst nematodes. Left, a schematic representation of the H. sacchari HYP-like sequences shows the position of a novel structural variant outside the hypervariable domain. The faded region of the hypervariable domain of HYP-1 and -3 represents the region of variable sequence. Right, a midpoint re-rooted phylogenetic construction of HYP sequences from G. pallida and H. sacchari position those of H. sacchari as a distinct subfamily (named here subfamily HYP-0).

transition from dicot to monocot parasite. To test this hypothesis, we analysed a database of 391 CLE peptides from 20 plant species collated from Zhang et al. (2014) and Oelkers et al. (2008). We created an all-by-all matrix of similarity between plant CLE peptides and H. sacchari CLE peptides based on a normalized BLOSUM62 score. We then used this matrix to generate a CLE similarity network (Figure 6(b)), highlighting the host (rice, Oryza sativa) and the nematode (H. sacchari) CLEs. Three of the H. sacchari CLEs form part of a well-connected cluster containing 14 other CLEs, eight of which are from rice. On closer inspection, we found that three of these H. sacchari **CLEs** (Hsac_DN37996_c0_g4_i1, Hsac_DN35920_c0_g3_i1 Hsac_DN35920_c0_g2_i1) were sequence-identical mimics of eight rice CLEs (OS_GEN_Os01g55080_1, OSEST_NP8 90021__1, OSEST_TC269510__1, OS_TA_AK108976__1, OS_TA_CA758496__1 OS_GEN_Os01g48230_1, OS_GEN_-Os01g48260_1 and OSEST_TC271220__1) in the terminal 13 amino acids of its CLE domain. The six non-rice plant CLEs within this cluster are from Arabidopsis and Populus, but none have direct connections with H. sacchari CLEs. Three other H. sacchari CLEs (Hsac_DN37996_c0_g1_i1, Hsac_DN49341_c0_g1_i1 and Hsac_DN35920_c0_g1_i1) form a second small cluster with one other rice CLE (OS_GEN_-Os05g48730_1). H. sacchari CLEs are the only nematode CLEs with a connection to a rice CLE and the only connections between H. sacchari CLEs and plant CLEs are with rice. Interestingly, there are several other sequence-divergent CLE clusters in rice with no corresponding H. sacchari CLE, suggesting selective mimicry of a subset of this family. It is known that CLE family members in dicots have diverse roles (e.g. Mitchum et al., 2008) and mimicry of a subset of rice CLEs by H. sacchari may reflect the need to target the function of a subset of the full rice CLE complement.

The functional significance of the similarity between the H. sacchari CLE peptides and those from rice was experimentally investigated by taking advantage of the short root phenotype observed from overexpression or exogenous application of CLEs (e.g. Fiers et al., 2004 and Chen et al., 2015). We synthesised a synthetic version of the H. sacchari CLE peptide that had the highest connectivity with rice CLEs in the network (sequence identical to the rice CLEs in the 13 terminal amino acids). In order to confirm that this is indeed a true H. sacchari sequence we cloned the gene encoding this peptide from H. sacchari gDNA (Figure S3). We analysed the effect of the peptide when applied exogenously to rice seedlings on root growth when compared to a randomised version of this CLE, or a CLE from the dicot-parasitic H. glycines (Wang et al., 2005). This analysis showed that the peptide from H. sacchari induced a short root phenotype in rice whereas peptides from H. glycines and a shuffled peptide used as a control had no effect (n = 24 per condition, P < 0.001, Tukey's HSD, Figure 7).

Conclusions

We used whole transcriptome sequencing to show that H. sacchari and the related H. avenae evolved to parasitise a monocot host from a last common dicot-parasitic ancestor. We mined these data to identify and characterise the cell wall-degrading enzyme and effector complement of H. sacchari. Finally, we showed that while H. sacchari has a similar effector arsenal to the related cyst nematodes that parasitise dicots, the CLE effectors provide a paradigm of functional adaptation for parasitism of a monocot host. These data build a foundation on which to explore novel effectors involved in monocot parasitism.

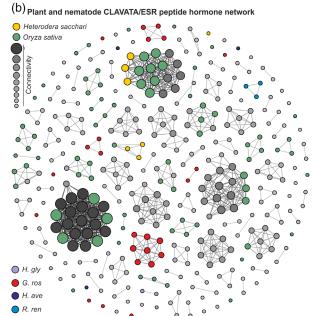


Figure 6. CLE-like effectors of *H. sacchari*. (a) A midpoint re-rooted phylogenetic construction of the six complete CLE-like sequences in the *H. sacchari* transcriptome. The CLE domain containing effectors form two groups, each of which has a distinct CLE domain (red box). (b) A similarity network of CLE domains from plants and *H. sacchari*. CLEs from selected species are highlighted: rice in green; *H. sacchari* in orange; *H. glycines* in purple; *G. rostochiensis* in red; *H. avenae* in dark blue; and *R. reniformis* in light blue. Nodes in the network are scaled by connectivity. *H. sacchari* CLEs are the only nematode CLEs with connections to rice CLEs.

EXPERIMENTAL PROCEDURES

Biological material

H. sacchari was cultured on rice cv. Nipponbare as described in Pokhare et al. (2019). Briefly, plants were grown in a potting mixture of sand, field soil and organic matter (70:29:1) and were infected with second stage juveniles. After 12 weeks, watering of the plants was stopped and the plants were allowed to dry for 2 weeks. Cysts were collected by Cobb's decanting and sieving method using standard protocols (Cobb, 1918). The cysts were surface-sterilised and placed in 3 mm ZnCl₂ to initiate hatching. The resulting J2s were collected every 5 days and either frozen in liquid nitrogen or used immediately for infection of new plants grown on pluronic gel (Pokhare et al., 2019). Parasitic stage female nematodes were collected by hand 15 days after infection and frozen in liquid nitrogen until use. The original population of H. sacchari was provided by Dr D. Coyne (International Institute for Tropical Agriculture). The population was originally derived from rice in Nigeria and was maintained at The International Institute for Tropical Agriculture on susceptible *Oryza sativa*. Although the original population was derived from a field population of cysts, this nematode reproduces by mitotic parthenogenesis, meaning that genetic diversity within the population is likely to be low, facilitating much of the bioinformatic analysis.

Transcriptome sequencing

RNA was extracted from second stage juvenile and parasitic stage female nematodes using a Nucleospin RNA XS kit (Macherey Nagel, Dueren DE, Germany) following the manufacturer's instructions. The quantity and integrity of RNA were assessed using a Bioanalyser. Library preparation for RNAseg was performed using the TruSeq RNA Library Prep Kit v2 (Illumina, Cambridge, UK) as recommended by the manufacturer (Illumina; Protocol # 15026495, revision F). Separate libraries were generated from the juvenile (1 µg) and female (500 ng) total RNA samples, using single-end TruSeq Index Adapters AR002 (CGATGT) and AR004 (TGACCA), respectively. Each library was quality checked using a Bioanalyzer 2100 (Agilent, Stockport, UK) and quantified using a Qubit fluorometer (Thermo Fisher). Equal molarities of each library were combined and run at 12 pm on a MiSeq (Illumina) generating paired-end 2 x 250 bp reads, as recommended. A fastq file was generated for each sample using MiSeq Control Software (version 2.6) for downstream quality control and analysis.

Transcriptome assembly, quality control and annotation

Scripts used to analyse the data are available at https://github.com/peterthorpe5/Hsac_transcriptome. Assemblies are available at https://zenodo.org/deposit/1324265. Raw reads are available under primary accession number PRJEB28025 and secondary accession number ERP110186.

The 17 725 370 read pairs (5 636 376 from juveniles and 11 329 919 from females, with 759 075 undetermined) were first quality control checked using FastQC (Andrews, 2010) and then quality-trimmed using Trimmomatic version 0.32 (Q15) (Bolger et al., 2014). The resulting 17 086 132 read pairs were assembled using Trinity version 2.1.1 (kmer length 25) (Haas et al., 2013). The resulting assembly was subjected to quality control filtering using Transrate version 1.0.1 (Smith-Unna et al., 2016). Low quality/scoring transcripts were removed (based on read mapping to the assembly). Coding sequences were predicted using TransDecoder (Using DIAMOND BLASTP versus Swiss prot and HMM search versus Pfam A domain guides). The predicted coding sequences were DIAMOND BLASTP version 0.7.9 (Buchfink et al., 2014) searched against the GenBank NR database (May, 2017). The results were interrogated for their alien index (AI) score using a lateral gene transfer prediction tool (https://github.com/peterthorpe5/public_sc ripts/tree/master/Lateral_gene_transfer_prediction_tool), predicts putative horizontal gene transfer events. Any sequence with an Al greater than 25 and that had a BLAST hit identity greater than 70% to a non-metazoan was flagged as putative contamination. Putative contaminant sequences were removed, and the corresponding transcripts were removed from the assembly. BUSCO version 1.1b (Simão et al., 2015) and CEGMA version 2.4 (Parra et al., 2007) were used to quantify the completeness of the assembly. The resulting coding sequences were annotated using Trinotate (Grabherr et al., 2011), HMMER (Finn et al., 2011), Pfam (Yang and Smith, 2013), SignalP 4.0 (Petersen et al., 2011), TMHMM (Krogh et al., 2001), BLAST (Altschul et al., 1990), gene ontology (Ashburner et al., 2000), eggNOG V3.0 (Powell et al., 2012) and RNAmmer (Lagesen et al., 2007). SPRY domain proteins were identified using HMMER, and Phobius (Käll et al., 2007) was used to identify SRPYSECs (containing a secretion signal) from these

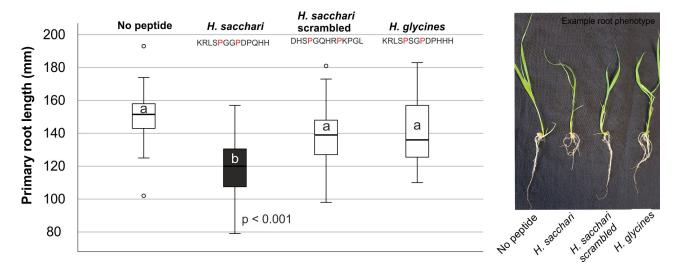


Figure 7. Functional adaptation of H. sacchari CLE effectors to monocot hosts. Exogenous application of synthetic H. sacchari CLE peptides causes a short root phenotype in rice when compared to a scrambled version of this peptide, a CLE peptide from the related dicot-parasitic H. glycines or no peptide control (n = 24 per condition, P < 0.001, Tukey's HSD).

proteins. CAZYme analysis was performed by the CAYZme analysis toolkit using both BLAST and PFAM analysis on the online server (Park et al., 2010). BLAST2GO was used to identify and analyse GO terms (Conesa et al., 2005). The H. sacchari transcripts were compared to all genes predicted in the G. pallida and G. rostochiensis genomes with matches identified using an e value cutoff of 10⁻¹⁰. Similarly, candidate *H. sacchari* effectors were identified by comparisons with effectors from other cyst nematode species (Gao et al., 2003; Thorpe et al., 2014; Eves-van den Akker et al., 2016a) using an e value cutoff of 10^{-10} .

Phylogenetics

Ninety-six CEGMA genes conserved in the genome and or transcriptome resources of 18 plant-parasitic nematode species were used for phylogenetic reconstruction. The species used were H. avenae (Kumar et al., 2014), H. glycines (Masonbrink et al., 2019), H. schachtii (S. Eves-van den Akker, pers. comm.), G. pallida (Cotton et al., 2014), G. rostochiensis (Eves-van den Akker et al., 2016a), Globodera ellingtonae (Phillips et al., 2017), Rotylenchulus reniformis (Eves-van den Akker et al., 2016b), Radopholus similis (Jacob et al., 2008), Meloidogyne arenaria (Blanc-Mathieu et al., 2017), Meloidogyne javanica (Blanc-Mathieu et al., 2017), Meloidogyne incognita (Blanc-Mathieu et al., 2017), Meloidogyne hapla (Opperman et al., 2008), Pratylenchus coffeae (Burke et al., 2015), Nacobbus aberrans (Eves-van den Akker et al., 2014a,b), Bursaphelenchus xylophilus (Kikuchi et al., 2011), Caenorhabditis elegans (C. elegans sequencing consortium, 1998), Caenorhabditis briggsae (Hillier et al., 2007) and Lepidiolamprologus elongatus (Danchin et al., 2017). The protein sequences of CEGMA genes were aligned and refined individually using MUS-CLE (Edgar, 2004). Individual alignments were concatenated and submitted to the IQtree online server with associated partition file. Model selection was carried out on each partition and a concatenated multi-gene phylogeny was generated using the ultra-fast mode and 1000 bootstraps (Trifinopoulos et al., 2016).

CLE effector identification and network analysis

Several partial transcripts encoding proteins with similarity to CLE effectors from various plant-parasitic nematodes were identified in the transcriptome assembly. Partial transcripts were computationally extended using an iterative approach of mapping and overlap assembly using the wrapper script provided with MITObim (Hahn et al., 2013). Only the deduced amino acid sequences of full-length CLEs were used for further analyses. The gene encoding the CLE peptide used for functional analyses was cloned and sequenced in order to ensure the validity of the computational approach. To compare H. sacchari CLE domains to those of plants, a database of CLE peptides was collated from Zhang et al. (2014) and Oelkers et al. (2008). All CLE domains were combined into a fasta file and filtered for those with missing information. Custom python script 1 was used to construct an all-versus-all similarity matrix based on the BLOSUM62 scores between amino acids. Custom python script 2 was used to parse the matrix and self-normalise similarity scores. Custom python script 3 was used to convert the matrix to gefx, which was loaded into Gephi to visualise the network (Bastian et al., 2009). Custom python scripts are available under github repository https://github.com/sebastianevda/.

Cloning and characterisation of candidate effector sequences

The complete open reading frames of selected genes were amplified from cDNA of pre-parasitic second stage juveniles, or complete genes from gDNA extracted from cysts. PCR products were purified using the Qiagen PCR Purification kit (Qiagen, Manchester, UK) and cloned into the pGEMT Easy or pCR8/TOPO/GW vectors following the manufacturer's guidelines.

Analysis of expression profiles of candidate effectors

The spatial expression patterns of candidate effectors from H. sacchari were investigated using in situ hybridisation of digoxigeninlabelled probes to juvenile nematodes as previously described (Thorpe et al., 2014). Negative controls for in situ hybridisations were carried out using sense probes and gave no signal (Figure S1). The expression of candidate effectors across the H. sacchari life cycle (eggs, pre-parasitic juveniles and 15 and 25 days post-infective females) was analysed using quantitative reverse transcriptase PCR with gene-specific primers. Around 3000 eggs and pre-parasitic juveniles were collected for each replicate. To

collect eggs, cysts were crushed under a binocular microscope and eggs were transferred into an Eppendorf tube in sterile water. Juveniles were harvested every 5 days as described above and flash frozen in liquid nitrogen. For the other life stages (15 and 25 days post-inoculation), approximately 150 parasitic stage nematodes were collected from rice grown in pluronic gel as described above. Nematodes were stored at -80°C and used subsequently for RNA extraction. Total RNA was extracted as above and were processed using an Agilent 2100 Bioanalyzer system to check the quality and quantity of extracted RNA. The RNA samples with RNA integrity number of more than 8 were used for cDNA synthesis using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and oligo-dT primer. The cDNA was tested for expression changes during the nematode life stages using the Stepone Plus Real-Time PCR System (Applied Biosystems) with cycling parameters of 95°C for 15 sec and 60°C for 30 sec (40 cycles) for amplification. Each sample well contained 10 μ l of Fast SYBR Green qPCR Master Mix (Invitrogen), 9 μ l of the gene-specific primer mixture with a final concentration of 1 μM for each primer and 1 μ l of cDNA. The data were analysed using the Stepone Plus Real-Time PCR software to create Ct values and relative expression was calculated following Pfaffl (2001). Elongation Factor 1 alpha was used as internal control for all experiments. Three biological replicates from each stage and three technical replicates for each biological replicate were used for qRT-PCR studies. Details of the primers used in this study are provided in Table S1.

Functional analysis of H. sacchari CLE sequences

To analyse the in vivo function of CLE peptides, we developed a protocol for exogenous application to rice seedlings, similar to that described for Arabidopsis thaliana (Wang et al., 2010). The terminal 13 amino acid CLE domain of nematode CLE-like sequences was synthesised with hydroxy prolines in positions 5 and 8 for H. sacchari (H-Lys-Arg-Leu-Ser-Hyp-Gly-Gly-Hyp-Asp-Pro-Gln-His-His-OH) and H. glycines (H-Lys-Arg-Leu-Ser-Hyp-Ser-Gly-Hyp-Asp-Pro-His-His-His-OH). As a control, a shuffled version of the H. sacchari CLE sequence was also synthesised (H-Asp-His-Ser-Hyp-Gly-Gln-His-Arg-Hyp-Lys-Pro-Gly-Leu-OH). Seeds of rice (cv. Nipponbare) were surface-sterilised and allowed to germinate on sterile, wet filter paper. After 7 days, plants of similar size were transferred to plates containing ½ MS supplemented with 10 µm of the relevant peptide or an equivalent volume of sterile distilled water and left for 10 days at 25°C in 16 h light/8 h dark. After this time, plants were removed from the plates and the roots were washed to remove any adhering medium. The length of the longest root was measured for 24 biological replicates of each condition.

ACKNOWLEDGEMENTS

Somnath Pokhare was supported by a fellowship provided by the Indian Council of Agricultural Research (ICAR), Government of India. This work was also supported by Royal Society International Exchanges (award number IE150670) and by the Rural and Environmental Science and Analytical Services Division of the Scottish Government. SEvdA is supported by the Biotechnology and Biological Sciences Research Council (grants BB/R011311/1 and BB/S006397/1). This work benefited from interactions funded through COST Action FA1208. The authors thank Dr Danny Coyne (IITA) for providing the starter culture of the *H. sacchari* population used for this work. Bioinformatics and Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit, which is funded by a Wellcome Trust ISSF award (grant 105621/Z/14/Z).

AUTHOR CONTRIBUTIONS

SP, PT and SH carried out the majority of the experimental work and contributed to the writing and revision of the manuscript. PH and JM undertook and assisted in analysis of the sequencing data. JJ, FMW, SEvdA and AE designed the study and contributed to data analysis and interpretation of the results. JJ, PT and SEvdA led the writing of the manuscript, with contributions from FMA and AE.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

DATA AVAILABILITY STATEMENT

All sequence data, including assemblies, raw sequence reads and scripts used for processing, are publicly available as described in the Experimental procedures section. All other materials described in this MS are available upon request.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Figure S1. Negative control *in situ* hybridisation reactions for chorismate mutase (left panel) and DN36333 (right panel). No staining is seen in these nematodes.

Figure S2. Alignment of CLE effector-like sequences assembled from the *H. sacchari* transcriptome. Highlighted are the position of the predicted signal peptide (green), the unknown repeat of DN37996_c0_g2_i1 (not a CLE-encoding peptide, purple) and the canonical CLE domain of the other six sequences (red). The arrow indicates polymorphism in the CLE domain.

Figure S3. Cloned genomic CLE from *H. sacchari*. (a) Alignment of the genomic clone and predicted transcript assembled from the transcriptome for the *H. sacchari* CLE-like gene Hsac_DN37996F. Primers used to clone the gene are highlighted with grey bars. CLE domain (spanning an intron) is highlighted in purple. (b) Mapping the RNAseq reads back to the genomic clone supports the deduced intron:exon structure and reveals two potential splice variants (a read through intron in exon 4). The shorter splice variant results in a frame shift and consequently no CLE-like domain. The longer splice variant encodes a canonical CLE domain.

Table S1. Primers used in this study.

REFERENCES

- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990)
 Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410.
- Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/ projects/fastqc. Accessed 8 September 2017.
- Ashburner, M., Ball, C.A., Blake, J.A. et al. (2000) Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29.
- Bastian, M., Heymann, S. and Jacomy, M. (2009) Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.
- Blanc-Mathieu, R., Perfus-Barbeoch, L., Aury, J.M. et al. (2017) Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genet. 13(6), 1–36.
- Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, **30**, 2114–2120.

- Buchfink, B., Xie, C. and Huson, D.H. (2014) Fast and sensitive protein alignment using DIAMOND. Nat. Methods, 12, 59-60.
- Burke, M., Scholl, E.H., Bird, D.M. et al. (2015) The plant parasite Pratyenchus coffeae carries a minimal nematode genome. Nematology, 17,
- C. elegans sequencing consortium. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 282, 2012-2018.
- CABI (2014) Heterodera sacchari. 139, 43-45.
- Chen, S., Lang, P., Chronis, D., Zhang, S., De Jong, W.S., Mitchum, M.G. and Wang, X. (2015) In planta processing and glycosylation of a nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-like effector and its interaction with a host CLAVATA2-like receptor to promote parasitism. Plant Physiol. 167, 262-272.
- Chronis, D., Chen, S., Lu, S., Hewezi, T., Carpenter, S.C.D., Loria, R., Baum, T.J. and Wang, X. (2013) A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J. 74, 185-196.
- Cotton, J.A., Lilley, C.J., Jones, L.M. et al. (2014) The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol. 15, R43.
- Cobb, N.A. (1918) Estimating the nema population of soil, with special reference to the sugar-beet and root-gall nemas, Heterodera schachtii Schmidt and Heterodera radicicola (Greef) Müller and with a description of Tylencholaimus aequalis n. sp. Washington, DC, USA: National Government Printing Office.
- Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M. and Robles, M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674-3676.
- Craig, J.P., Bekal, S., Hudson, M., Domier, L., Niblack, T. and Lambert, K.N. (2008) Analysis of a horizontally transferred pathway involved in vitamin B6 biosynthesis from the soybean cyst nematode Heterodera glycines. Mol. Biol. Evol. 25, 2085-2098.
- Danchin, E.G.J., Rosso, M.N., Vieira, P., de Almeida-Engler, J., Coutinho, P.M., Henrissat, B. and Abad, P. (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc. Natl Acad. Sci. USA, 107(41), 17651-17656.
- Danchin, E.G.J., Guzeeva, E., Mantelin, S., Berepiki, A. and Jones, J.T. (2016) Horizontal gene transfer from bacteria has enabled the plant-parasitic nematode Globodera pallida to feed on host-derived sucrose. Mol. Biol. Evol. 33, 1571-1579.
- Danchin, E.G.J., Perfus-Barbeoch, L., Rancurel, C. et al. (2017) The transcriptomes of Xiphinema index and Longidorus elongatus suggest independent acquisition of some plant parasitism genes by horizontal gene transfer in early-branching nematodes. Genes, 8(10), 287.
- Dong, A., Stam, R., Cano, L.M. et al. (2014) Effector specialization in a lineage of the Irish Potato Famine Pathogen. Science, 343, 552-555.
- Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113.
- Espada, M., Silva, A.C., Eves-van den Akker, S., Cock, P.J.A., Mota, M. and Jones, J.T. (2016) Identification and characterization of parasitism genes from the pine wilt nematode Bursaphelenchus xylophilus reveals a multi-layered detoxification strategy. Mol. Plant Pathol. 17, 286-295.
- Espada, M., Eves-van den Akker, S., Maier, T., Vijaypalani, P., Baum, T.J., Mota, M. and Jones, J.T. (2018) STATAWAARS: a promoter motif associated with the tissue-specific transcriptome of the major effector-producing glands of the plant-parasitic nematode Bursaphelenchus xylophilus. BMC Genom., 19, 553.
- Eves-van den Akker, S. and Birch, P.R.J. (2016) Opening the effector protein toolbox for plant-parasitic cyst nematode interactions. Mol. Plant, 9, 1451-1453.
- Eves-van den Akker, S., Laetsch, D.R., Thorpe, P. et al. (2016a) The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the bases of parasitism and virulence. Genome Biol. 17, 124.
- Eves-van den Akker, S., Lilley, C.J., Yusup, H.B., Jones, J.T. and Urwin, P.E. (2016b) Functional C-terminally encoded plant peptide (CEP) hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Mol. Plant Pathol. 17(8), 1265-1275.
- Eves-van den Akker, S., Lilley, C.J., Jones, J.T. and Urwin, P.E. (2014a) Identification and characterisation of a hyper variable apoplastic effector gene family of G. pallida. PLoS Pathog. 10(9), e1004391.

- Eves-van den Akker, S., Lilley, C.J., Danchin, E.G.J., Rancurel, C., Cock, P.J.A., Urwin, P.E. and Jones, J.T. (2014b) The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biol. Evol. 6(9), 2181-2194.
- Fiers, M.A., Hause, G., Boutilier, K.A., Casamitiana-Martinez, E., Weiiers, D., Offringa, R., van der Geest, L., van Lookeren Campagne, M. and Liu, C.-M. (2004) Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene. 327, 37-49.
- Finn, R.D., Clements, J. and Eddy, S.R. (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29-W37.
- Gao, B., Allen, R., Maier, T., Davis, E.L., Baum, T.J. and Hussey, R.S. (2003) The parasitome of the phytonematode Heterodera glycines. Mol. Plant Microbe Interact. 16, 720-726.
- Gheysen, G. and Mitchum, M.G. (2011) How nematodes manipulate plant development pathways for infection. Curr. Opin. Plant Biol. 14, 1-7.
- Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R. and Zeng, Q. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652.
- Haas, B.J., Papanicolaou, A., Yassour, M. et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494.
- Hahn, C., Bachmann, L. and Chevreux, B. (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing readsa baiting and iterative mapping approach. Nucleic Acids Res. 41(13), e129.
- Hewezi, T., Howe, P., Maier, T., Hussey, R.S., Mitchum, M.G., Davis, E.L. and Baum, T.J. (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell, 20, 3080-3093
- Jacob, J., Mitreva, M., Vanholme, B. and Gheysen, G. (2008) Exploring the transcriptome of the burrowing nematode Radopholus similis. Mol. Genet. Genomics, 280, 1-17.
- Hillier, L.W., Miller, R.D., Baird, S.E., Chinwalla, A., Fulton, L.A., Koboldt, D.C. and Waterston, R.H. (2007) Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol. 5(7), e167.
- Jones, J.T., Furlanetto, C., Bakker, E., Banks, B., Blok, V.C., Chen, Q. and Prior, A. (2003) Characterisation of a chorismate mutase from the potato cyst nematode Globodera pallida. Mol. Plant Pathol. 4, 43-50.
- Jones, J.T., Haegeman, A., Danchin, E.G.J. et al. (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14, 946-
- Jones, J.T. and Mitchum, M.G. (2018) Biology of effectors. In Cyst Nematodes (Perry, R.N., Moens, M. and Jones, J.T., eds). Wallingford: CABI, pp. 74–88.
- Käll, L., Krogh, A. and Sonnhammer, E.L. (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server, Nucleic Acids Res. 35(Suppl 2), W429-W432.
- Kikuchi, T., Cotton, J.A., Dalzell, J.J. et al. (2011) Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog. 7(9), e1002219.
- Kikuchi, T., Eves-van den Akker, S. and Jones, J.T. (2017) Genome evolution of plant-parasitic nematodes, Annu. Rev. Phytopathol. 55, 333-354.
- Krogh, A., Larsson, B., Von Heijne, G. and Sonnhammer, E.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580.
- Kumar, M., Gantasala, N.P., Roychowdhury, T. et al. (2014) De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One, 9, e96311.
- Kyndt, T., Fernandez, D. and Gheysen, G. (2014) Plant-parasitic nematode infections in rice: molecular and cellular insights. Annu. Rev. Phytopathol. 52, 135-153.
- Lagesen, K., Hallin, P., Rødland, E.A., Stærfeldt, H.H., Rognes, T. and Ussery, D.W. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-3108.
- Lee, C., Chronis, D., Kenning, C., Peret, B., Hewezi, T., Davis, E.L., Baum, T.J., Hussey, R.S., Bennet, M. and Mitchum, M.G. (2011) The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol. 155, 866-880.

- Maier, T.R., Hewezi, T., Peng, J.Q. and Baum, T.J. (2013) Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification. Mol. Plant-Microbe Interact. 26, 31-35.
- Mei, Y., Thorpe, P., Guzha, A., Haegeman, A., Blok, V.C., MacKenzie, K., Ghevsen, G., Jones, J.T. and Mantelin, S. (2015) Only a small subset of the SPRY domain gene family in Globodera pallida is likely to encode effectors, two of which suppress host defences induced by the potato resistance gene Gpa2. Nematology, 17, 409-424.
- Masonbrink, R., Maier, T.R., Muppirala, U., Seetharam, A.S., Lord, E., Juvale, P.S., Mimee, B. (2019) The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. BMC Genom., 20(1), 119.
- Mei, Y., Wright, K.M., Haegeman, A., Bauters, L., Diaz-Granados, A., Goverse, A., Gheysen, G., Jones, J.T. and Mantelin, S. (2018) The Globodera pallida SPRYSEC effector GpSPRY-414-2 that suppresses plant defenses targets a regulatory component of the dynamic microtubule network. Front. Plant Sci. 9, 1019.
- Mitchum, M.G., Wang, X. and Davis, E.L. (2008) Diverse and conserved roles of CLE peptides. Curr. Opin. Plant Biol. 11, 75-81.
- Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockland, S. and Maafi, Z.T. (2011) Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions (Jones, J.T., Gheysen, G. and Fenoll, C., eds). Heidleberg, Germany: Springer, pp. 21-44.
- Oelkers, K., Goffard, N., Weiller, G.F., Gresshoff, P.M., Mathesius, U. and Frickey, T. (2008) Bioinformatic analysis of the CLE signaling peptide family, BMC Plant Biol, 8(1), 1,
- Opperman, C.H., Bird, D.M., Williamson, V.M. et al. (2008) Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc. Natl Acad. Sci. USA, 105(39), 14802-14807.
- Park, B.H., Karpinets, T.V., Sved, M.H., Leuze, M.R. and Uberbacher, E.C. (2010) CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology, 20, 1574-1584.
- Parra, G., Bradnam, K. and Korf, I. (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics, 23, 1061-1067.
- Perry, R.N., Moens, M. and Jones, J.T. (2018) Cyst Nematodes. Wallingford: CABI.
- Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 https://doi.org/10.1093
- Pokhare, S.S., Habash, S.S., Jones, J.T., Elashry, A. and Grundler, F.M.W. (2019) In vitro life cycle of Heterodera sacchari on Pluronic gel. Nematology, 21, 573-579.
- Popeijus, H., Overmars, H., Jones, J., Blok, V., Goverse, A., Helder, J., Schots, A., Bakker, J. and Smant, G. (2000) Degradation of plant cell walls by a nematode. Nature, 406, 36-37.
- Petersen, T.N., Brunak, S., von Heijne, G. and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Meth-
- Phillips, W.S., Howe, D.K., Brown, A.M.V., Eves-van den Akker, S., Dettwyler, L., Denver, D.R. and Zasada, I.A. (2017) The draft genome of Globodera ellingtonae. J. Nematol. 49(2), 127-128.
- Postma, W.J., Slootweg, E.J., Rehman, S. et al. (2012) The effector SPRY-SEC-19 of Globodera rostochiensis suppresses CC-NB-LRR mediated disease resistance in plants. Plant Physiol. 16, 944-954.
- Powell, S., Szklarczyk, D., Trachana, K. et al. (2012) eggNOG v3. 0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 40(D1), D284-D289.
- Qin, L., Kudla, U., Roze, E. et al. (2004) Identification of a functional expansin, a non-enzymatic cell wall-loosening agent, from the plant parasitic nematode Globodera rostochiensis, Nature, 427, 30,
- Raffaele, S., Farrer, R.A., Cano, L.M. et al. (2010) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science, 330, 1540-1543.
- Replogle, A., Wang, J., Bleckmann, A., Hussey, R.S., Baum, T.J., Shinichiro, S., Davis, E.L., Wang, X., Simon, R. and Mitchum, M.G. (2011) Nematode

- CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant J. 65. 430-440.
- Replogle, A., Wang, J., Paolillo, V., Smeda, J., Kinoshita, A., Durbak, A., Tax, F.E., Wang, X., Sawa, S. and Mitchum, M.G. (2013) Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis. Mol. Plant Microbe Interact. 26, 87-96.
- Sacco, M.A., Koropacka, K., Grenier, E., Jaubert, M.J., Blanchard, A., Goverse, A., Smant, G. and Moffett, P. (2009) The cyst nematode SPRY-SEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLoS Pathog. 5, e1000564.
- Schulze-Lefert, P. and Panstruga, R. (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16, 117-125.
- Siddique, S. and Grundler, F.M.W. (2018) Parasitic nematodes manipulate plant development to establish feeding sites. Curr. Opin. Microbiol. 46, 102-108.
- Smant, G., Stokkermans, J.P., Yan, Y. et al. (1998) Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl Acad. Sci. USA, 95, 4906-4911.
- Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. and Zdobnov, E.M. (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31, 3210-3212.
- Sobczak, M. and Golinowski, W. (2011) Cyst nematodes and syncytia. In Genomics and Molecular Genetics of Plant-Nematode Interactions (Jones, J.T., Gheysen, G. and Fenoll, C., eds). Dordrecht, The Netherlands: Springer Academic Publishers, pp. 61–82.
- Stam, R., Mantelin, S., McLellan, H. and Thilliez, G. (2014) The role of effectors in nonhost resistance to filamentous plant pathogens. Front. Plant Sci. 5, 582.
- Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J.M. and Kelly, S. (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134-1144.
- Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. and Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44(W1), W232-W235.
- Thorpe, P., Mantelin, S., Cock, P.J.A. et al. (2014) Characterisation of the full effector complement of the potato cyst nematode Globodera pallida. BMC Genom., 15, 923.
- Vanholme, B., Haegeman, A., Jacob, J., Cannooot, B. and Gheysen, G. (2009) Arabinogalactan endo- 1,4- beta- galactosidase: a putative plant cell wall-degrading enzyme of plant parasitic nematodes. Nematology, **11**, 739–747.
- Vogel, J. (2008) Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11, 301–307.
- Wang, X., Mitchum, M.G., Gao, B., Li, C., Diab, H., Baum, T.J., Hussey, R.S. and Davis, E.L. (2005) A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol. Plant Pathol. 6, 187-191.
- Wang, J., Joshi, S., Korkin, D. and Mitchum, M.G. (2010) Variable domain I of nematode CLEs directs post-translational targeting of CLE peptides to the extracellular space. Plant Signal. Behav. 5(12), 1633-1635.
- Wang, J., Lee, C., Replogle, A., Joshi, S., Korkin, D., Hussey, R., Baum, T.J., Davis, E.L., Wang, X. and Mitchum, M.G. (2010a) Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytol. 187, 1003-1017.
- Yang, Y. and Smith, S.A. (2013) Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genom., 14, 328.
- Zhang, Y., Yang, S., Song, Y. and Wang, J. (2014) Genome-wide characterization, expression and functional analysis of CLV3/ESR gene family in tomato. BMC Genom., 15(1), 827.
- Zheng, M., Long, H., Zhao, Y. et al. (2015) RNA-Seq based identification of candidate parasitism genes of cereal cyst nematode (Heterodera avenae) during incompatible infection to Aegilops variabilis. PLoS One, 10, e0141095.