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Abstract. Cetaceans are iconic predators that serve as important indicators of marine ecosystem health. The Bremer
Sub-Basin, south-westernAustralia, supports a diverse cetacean community including the largest documented aggregation
of killer whales (Orcinus orca) in Australian waters. Knowledge of cetacean distributions is critical for managing the
area’s thriving ecotourism industry, yet is largely sporadic. Herewe combined aerial with opportunistic ship-borne surveys

during 2015–2017 to describe the occurrence of multiple cetacean species on a regional scale. We used generalised
estimating equations to model variation in killer whale relative density as a function of both static and dynamic covariates,
including seabed depth, slope, and chlorophyll a concentration, while accounting for autocorrelation. Encountered

cetacean groups included: killer (n ¼ 177), sperm (n ¼ 69), long-finned pilot (n ¼ 29), false killer (n ¼ 2), and strap-
toothed beaked (n¼ 1) whales, as well as bottlenose (n¼ 12) and common (n¼ 5) dolphins. Killer whale numbers peaked
in areas of low temperatures and high primary productivity, likely due to seasonal upwelling of nutrient-rich waters

supporting high prey biomass. The best predictive model highlighted potential killer whale ‘hotspots’ in the Henry, Hood,
Pallinup and Bremer Canyons. This study demonstrates the value of abundance data from platforms of opportunity for
marine planning and wildlife management in the open ocean.

Additional keywords: generalised estimating equations, habitat modelling, submarine canyons, temporal autocorrela-
tion, whale watching.
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Introduction

From swarms of microscopic plankton to seabird mega-

colonies, animal aggregations are commonplace in the marine
environment and represent some of the most striking biological
patterns observed in nature (Parrish and Edelstein-Keshet 1999).

In pelagic systems, reports of ‘super-groups’ sometimes
exceeding hundreds of baleen and toothed whales are not
uncommon (e.g. Butler et al. 2017; Findlay et al. 2017), andmay

act as useful indicators of oceanographically productive habitats
where dense and predictable patches of prey likely occur. As
such, identifying and understanding cetacean aggregations is

critical to supporting ecosystem-based management and spatial
conservation planning in the open ocean (McClellan et al. 2014).

Mapping wildlife at-sea distributions is a challenge, not least
because most air-breathing marine vertebrates are elusive,
highly mobile, and occur in remote habitats that prove difficult

to access or demand complex logistics for dedicated biological
data collection (Williams et al. 2006a). For instance, numerous
whale species concentrate in deep submarine canyons far away

from coasts, where complex seafloor topography and ocean
currents interact to promote suitable foraging conditions
(Rennie et al. 2009; Moors-Murphy 2014; Santora et al.
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2018). In this context, aerial surveys (e.g. visual counts con-

ducted by observers onboard an aircraft or helicopter) have
traditionally been a prominent tool in studies of offshore
megafauna (Laran et al. 2017), mostly due to their ability to

reach distant areas and cover broad stretches of ocean space
within short timeframes. However, manned aerial methods
present non-negligible risks to personnel safety and usually
incur significant costs associated with platform hire and staff-

ing, limiting their implementation.
With the growth of wilderness-based tourism globally, new

opportunities have opened to gather vast amounts of ecological

information at minimal costs by capitalising on existing marine
infrastructure such as passenger ferries, cruise ships or whale-
watching vessels (Kiszka et al. 2007b). Such ‘platforms of

opportunity’ (PoPs) can provide valuable means of monitoring
cetaceans in data-deficient regions, and have been successfully
used to assess the abundance and occurrence of common
dolphins (Delphinus delphis) and killer (Orcinus orca), hump-

back (Megaptera novaeangliae), Bryde’s (Balaenoptera edeni)
and minke (Balaenoptera acutorostrata) whales, among many
other species (see Appendix S1, available as Supplementary

Material to this paper for examples). In order to maximise
profits, commercial operators tend to go out to sea on a regular
basis (e.g. daily) throughout the tourism season and target areas

wherewildlife sightings are expected to bemade reliably, giving
PoPs an unprecedented level of temporal replication and reso-
lution. Although this behaviour is advantageous, it can also

introduce problems associated with patterns of spatial bias and
temporal autocorrelation thatmust be accounted for in statistical
inference. To our knowledge, limited efforts have been made to
address these issues in analyses of PoP data.

We combined sightings from both aerial and ship-borne PoP
surveys (Fig. 1) conducted over 3 years (2015–2017) to provide
one of the first descriptions of the cetacean assemblage of the

Bremer Sub-Basin, off the southern coast of Western Australia
(Fig. 2). The region encompasses an array of deep and biologi-
cally active submarine canyons (Huang et al. 2018) that attract

a diversity of cetaceans, including sperm whales (Physeter
macrocephalus) (Johnson et al. 2016), beaked whales
(Mesoplodon spp.) (Wellard et al. 2016; Pitman et al. 2019)

and killer whales (Wellard et al. 2015; Wellard and Erbe 2017).
It is also the focus of multiple human uses, including seismic
exploration, commercial fishing, and vessel traffic, with rates of
increase in the cumulative impacts of anthropogenic activities

among the highest on the globe (Halpern et al. 2019). There is
limited information on beaked whales in the Bremer Sub-Basin.
In contrast, sperm whales were a target for commercial whaling

during the last century, with long-lasting effort in offshore
waters near Albany providing support for the historic regional
significance for the species. Despite recent habitat suitability

modelling pointing to south-west canyons off the continental
shelf as suitable for sperm whales occupancy (Johnson et al.

2016), aerial surveys in 2009 did not provide evidence for sperm
whale population recovery since the ban on whaling (Carroll

et al. 2014). In recent years, however, the region has been
recognised as having the largest seasonal aggregation of killer
whales so far recorded in Australian waters (Wellard et al. 2015;

Wellard and Erbe 2017). Although killer whales now support a
thriving local ecotourism industry, they have been the focus of

surprisingly little dedicated research (Waples and Raudino
2018), and the ecological determinants of their abundance

patterns have yet to be explored. This is important as continued
interactions with human activities are likely to make killer
whales a species of rapidly increasing management interest in

the future (Waples and Raudino 2018).
Recently, Jones et al. (2019) mapped the expected distribu-

tion of suitable habitats for killer whales within the Bremer

Sub-Basin using the software package MaxEnt (Elith et al.

2011). MaxEnt has been extensively applied in terrestrial
systems and is now gaining traction in marine studies both in
Australia and elsewhere (e.g. Smith et al. 2012; Prieto et al.

2017). However, a growing body of literature indicates that
MaxEnt can be sensitive to input parameters and subject to
potentially substantial bias, especially when model calibration

is performed under default settings (e.g. Merow et al. 2013;
Yackulic et al. 2013; Fiedler et al. 2018). Further, MaxEnt
provides insights only into relative probabilities of presence

(Pearce and Ferrier 2001). In contrast, count data and estimates
of population trends over space and time relate more directly to
habitat quality, species threat status, and extinction risk,

leading to models with improved predictive performance that
can better support management actions (Howard et al. 2014;
Johnston et al. 2015). As abundance data are often prohibi-
tively expensive and laborious to collect, particularly for

(a)

(b)

Fig. 1. Aerial (a) and boat-based (b) photographs of a group of killer

whales (Orcinus orca) encountered during visual surveys within the Bremer

Sub-Basin. Photographs by Rebecca Wellard.
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highly mobile animals like cetaceans (Evans and Hammond
2004), there has been rising interest in comparing environmen-
tal suitability and abundancemodels to determinewhether their

outputs correlate and whether the former can be estimated
from, or act as a surrogate for, the latter (Yin and He 2014).
Although several studies found reasonable agreement between
the two approaches (Weber et al. 2017), evidence suggests that

this is highly species-specific, and varies with sampling con-
ditions, species prevalence, breeding strategies, and behaviour
(e.g. Nielsen et al. 2005).

With this in mind, the aims of our study were three-fold:
(i) provide a baseline assessment of the regional distribution
and diversity of cetaceans in the Bremer Sub-Basin; (ii) model

the influence of physical habitat features and ocean productiv-
ity on the occurrence of the most sighted species, the killer
whale; and (iii) explore the suitability–abundance relationship

for killer whales by comparing resulting model predictions to
those of Jones et al. (2019). Importantly, we build upon the
work of Jones et al. (2019) by analysing a larger dataset,
exploring a wider range of relevant ecological predictors, and

demonstrating how statistical techniques can be used to suc-
cessfully deal with the correlation patterns present in data
obtained incidentally aboard whale-watching ships. Our

approach allows us to map expected patterns in killer whale
density across adjacent canyon systems. This knowledge can
help identify similar environments around Australia that are
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Fig. 2. Aerial and ship-borne surveys of cetaceanswithin theBremer Sub-Basin illustrating: (a) cetacean groups, except for killerwhales, sighted during

ship-borne surveys; (b) killer whale groups sighted during ship-borne surveys; (c) cetacean groups, except for killer whales, sighted during aerial surveys;

and (d) killer whale groups sighted during aerial surveys.
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likely to be occupied by killer whales, as a basis for improving

management outcomes for the species.

Materials and methods

The Supplementary Material accompanying this paper provides
additional literature relevant to various aspects of the study.

Study region

The Bremer Sub-Basin (Fig. 2) lies within Australia’s South-
west Marine Bioregion between the cities of Albany and
Esperance. It extends over an area of ,15 000 km2 under the

outer continental slope, and encompasses an extensive network
of steep, shelf-incising submarine canyons that plunge to depths
in excess of 4500m across the nearby abyssal plain (Huang et al.

2014). Due to their topographic complexity and proximity to the
shelf break, most of these canyons are relatively productive
features that sustain periodic upwellings, an abundant oxygen

supply, and elevated particulate organic carbon concentrations
(Huang et al. 2018). Such conditions favour biological activity,
with both historical records and anecdotal evidence suggesting
that a range of pelagic species including marine mammals,

sharks, seabirds and fishes occur throughout the region (Johnson
et al. 2016; Bouchet et al. 2018). The centre of the Sub-Basin is
straddled by the Bremer Marine Park, a large regulated area that

covers 4472 km2 and combines an offshore no-take zone (IUCN
class II) and an inshore Special Purpose zone (IUCN class IV,
https://parksaustralia.gov.au/marine/parks/south-west/bremer/,

accessed 28 May 2020).

Ship-borne surveys

Data were collected aboard two ships of opportunity (i.e. com-
mercial ecotourism vessels Cetacean Explorer and chartered

fishing vessel Dhu Force) throughout an area of ,4000 km2

within the canyon system (centred at 34844.300S, 119835.550E)
between February and April 2015 and 2016 (Fig. 2). The

research vessel RV Big Dreams was chartered to carry out
opportunistic surveys from 25 March 2017 to 4 April 2017 (see
Supplementary Material, Appendix S2 for vessel details). Each

trip departed from Bremer Bay, and followed a non-systematic
design along pre-determined routes converging on the heads of
the Hood and Henry canyons, where groups of killer whales are

regularly sighted. Vessel speeds did not exceed 15 kn, and sur-
veys were conducted during daylight hours in Beaufort Sea
States of 5 or less. Two experienced observers were employed,
with the exception of research voyages in 2017 that employed

two to four observers (two of whom were dedicated to scanning
for cetaceans). Observers continuously scanned the surface of
the ocean with the naked eye and binoculars (7 � 50) in search

of cetaceans (during passingmode) from the time of departure of
the vessel. When animals were encountered, relevant sighting
details (i.e. date, time, global positioning system (GPS) position,

group size, group composition and behavioural state) were
immediately logged. Behavioural state was assigned to one of
four categories, which mirrored previous killer whale studies:

(1) travelling, (2) foraging, (3) socialising, (4)milling (Baird and
Dill 1995). ‘Closing mode’ was subsequently engaged, with
the vessel approaching each individual to within 50 m in order
to confirm group size estimations and take identification

photographs (Wellard and Erbe 2017). If there were no occur-

rences of killer whales within 30 min or more, the following
sighting was deemed a new sighting.

Aerial surveys

Aerial surveys were undertaken in March 2017 over a period of
6 days. Surveys were flown with a twin-engine high-wing Cessna
337 aircraft fitted with bubble windows, at an altitude of 300 m

and a speed of 120 kn, as per standard protocols (Salgado Kent
et al. 2012). Survey routes were generated in software Distance
v6.0 (Thomas et al. 2010) using two different designs. The first

(Route A) consisted of wide, equally-spaced saw-toothed trans-
ects (20-km apart) designed to enable adequate coverage ofwaters
inside and adjacent to the BremerMarine Park on a regional scale.
The second (Route B) comprised a series of denser parallel

transects (3-km apart) restricted to a small site where killer whales
are known to aggregate (Fig. 2). Both routes were travelled in
passing mode, although deviations from the flight path were

allowed to gather close-up information following detections of
killer whales. Search effort resumed when the aircraft re-joined
the initial transect line. Onboard personnel included one pilot and

two trained observers, who sat on either side of the aircraft and
logged wildlife sightings concurrently and independently.
Observers measured vertical and horizontal angles to each sight-
ing using Suunto PM-5/360PC clinometers and a compass board,

while the pilot recorded the angle of drift of the aircraft from the
flight path, as per SalgadoKent et al. (2012). All relevant sighting
information was recorded via headset onto an Olympus digital

voice recorder, including the time of encounter, species, confi-
dence in species identification (definite, probable, likely), group
size and composition (number of adults and calves), swim

direction (relative to the plane) and sighting cue.

Data processing

Several environmental variables were collated based on their
putative influence on killer whale distribution andmapped onto

a 1.1-km2 grid overlaid on the study region. High-quality, 9
arc-second (0.00258 or,250 m at the equator) depth data were
obtained from a digital bathymetric raster of Australian waters

curated by Geoscience Australia (http://www.ausseabed.gov.
au/, accessed 8 January 2019). Seabed slope (in degrees) was
derived for each cell from the depth raster by taking the arc-
tangent of the two-dimensional gradient calculated from the

nearest neighbours, one either side of the cell being calculated.
Distance to shore (in km) was computed as the distance to the
nearest 0 m contour. Sea surface temperature (SST) and chlo-

rophyll a concentration (Chl a) datasets were created by the
Integrated Marine Observing System (IMOS) Satellite Remote
Sensing Facility and obtained from the Australian Ocean Data

Network portal (http://imos.aodn.org.au/, accessed 8 January
2019). The SST dataset consisted of daily (night-time) mea-
surements and was derived from the Advanced Very High
Resolution Radiometer (AVHRR) with corrections made for

sensor-specific error statistics (SSES) bias; and only data of
quality level 5 were retained. The Chl a dataset was daily and
derived fromModerate Resolution Imaging Spectroradiometer

(MODIS) data using the OC3 model (Hu et al. 2012), and only
data of level 3 quality was used. Summary statistics were
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calculated for both SST and Chl a, and included: minimum,

maximum, mean, standard deviation, median, 25th quantile
and 75th quantile. Potential issues of multicollinearity among
explanatory variables were investigated using pairwise corre-

lation plots and variance inflation factors (VIF) (Pirotta et al.
2018). Variables associated with VIFs . 3 were taken to
indicate collinearity (Zuur et al. 2009) and were omitted from
further analysis. The centroid location of each grid cell was

used to extract values of all environmental layers. Grid cells
associated with little survey effort (,10 km) or extreme
environmental conditions relative to the rest of the region were

discarded.

Statistical analysis

The relative density of killer whale groups was modelled as a

function of environmental conditions using generalised esti-
mating equations (GEEs), a technique that permits correlated
residuals and therefore can account for the spatio-temporal bias
present in many forms of PoP data (Zorn 2001; Zuur et al. 2009;

Scott-Hayward et al. 2014). Data only from ship-borne plat-
forms were used, as survey effort and sightings from the 2017
aerial surveys were too limited towarrant inclusion. Due to zero-

inflation on both daily and seasonal scales, the total number of
groups sighted over the study period (all days and years
surveyed) was computed for each grid cell and used as the

response variable. Models were built with a log-link function
(for Poisson distributed counts) using the MRSea (Scott-
Hayward et al. 2013) and geepack (Yan and Fine 2004;

Johnson et al. 2016) packages in R ver. 3.5.1 (R Core Team
2013), with effort (in km) coded as an offset. Smoothing was
achieved using a complex region spatial smoother (CReSS)
framework (Scott-Hayward et al. 2013, 2014) to allow for robust

smoothing in areas of convoluted topography, following Scott-
Hayward et al. (2015). GEEs require the specification of
‘panels’ (or ‘blocks’) between which model residuals are

assumed to be independent (Scott-Hayward et al. 2015). Here, a
spatial blocking structure was applied as a vector of integers
numbered as sequential ,3 km2 blocks, using grid cell as the

identification (ID). An AR-1 correlation structure was initially
selected (Zuur et al. 2009), although independence, unstructured

and exchangeable correlation structures were also tested in

models, and the best fit was assessed using the quasi-likelihood
information criterion (QIC; Pan 2001).

Model selection began with a full model that contained the

maximum possible number of uncorrelated variables, as well as
their pairwise interactions. Several sets of uncorrelated variables
were tested for inclusion in turn. A backward stepwise selection
procedure was then applied, whereby non-significant explana-

tory terms were eliminated one by one, and the resulting
submodel refitted until all terms were significant. Residual
checks were performed for each model, and the one with the

fewest terms that reduced the penalised Quasi-likelihood infor-
mation criterion (QICu) by more than two units was selected as
the best, most parsimonious candidate (Cui 2007). Model

validation was undertaken using 10-fold cross-validation, and
predictions of killer whale group density from the final model
were generated across a 130-km longitudinal range along the
shelf edge and canyon systems of the region. Estimated relation-

ships were visualised with partial residuals plots, and uncer-
tainty in both model coefficients and predictions quantified via
bootstrapping, as per Scott-Hayward et al. (2013) (using

n ¼ 1000 iterations).

Results

A total of 2470 individuals in 305 cetacean groups was sighted

during 594 search hours across 77 days within a 3-year period
(Table 1). Species sighted included the killer whale, sperm
whale, long-finned pilot whale (Globicephala melas), bot-

tlenose dolphin (Tursiops spp.), common dolphin (Delphinus
delphis), false killer whale (Pseudorca crassidens) and strap-
toothed beaked whale (Mesoplodon layardii); (see Supple-
mentary Material, Appendix S3). Long-finned pilot, killer, and

sperm whales and bottlenose dolphins were sighted during all
three years of the study. Common dolphins were only seen
during 2 of the years (2015 and 2016), and false killer and strap-

toothed beaked whales were only sighted during 2016. Species
sighted during both aerial and ship-borne surveys include long-
finned pilot, killer and sperm whales and bottlenose dolphins.

Common dolphins and strap-toothed beaked and false killer
whales were seen only during ship-borne surveys.

Table 1. Summary of surveys conducted in the Bremer Sub-Basin between 2015 and 2017 using multiple platforms, with

associated cetacean sightings

Ship-borne Aerial Total

2015 2016 2017 2017

Survey effort

Search days 28 36 7 6 77

Search hours 237.8 259.2 72.8 24 593.8

Distance covered (km) 3692 4348 1069 5892 15 001

Start date (and first sighting) 9 February 9 February 25 March 16 March –

End date (and last sighting) 24 March 17 April 4 April 24 March –

Killer whales (Orcinus orca)

Number of groups 71 92 7 7 177

Average groups per km 0.019 0.021 0.007 0.001 0.012

Other cetaceans

Number of groups 11 33 31 53 128

Average groups per km 0.003 0.008 0.029 0.009 0.009
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Ship-borne surveys

Twenty-eight surveys were conducted aboard whale watching
and opportunistically on research vessels between 2015 and
2017, totalling 570 h of visual search effort over 71 days. During
these surveys, 1099 individuals in 170 groups of killer whales,

81 individuals in 37 groups of sperm whales (Physeter
macrocephalus), 601 individuals in 21 groups of long-finned
pilot whales (Globicephala melas), 55 individuals in 9 groups of

bottlenose dolphins (Tursiops spp.), 33 individuals in 5 groups
of common dolphins (Delphinus delphis), 40 individuals in 2
groups of false killer whales (Pseudorca crassidens) and 1 strap-

toothed beaked whales (Mesoplodon layardii) were observed
(Table 1; Supplementary Material, Appendix S3). Of the 170
killer whale groups observed, 158 were travelling and 12 were
foraging or socialising. All long-finned pilot whales were

observed travelling and sperm whales were either travelling or
milling. All species were observed in offshore waters, except for
Indo-Pacific bottlenose dolphins which were seen in inshore

waters within Bremer Bay (Fig. 2). Vessel tracks crossed a total
of 1130 grid cells over which effort varied. Most grid cells had
,1 h and 10 km of effort (Supplementary Material, Appendix

S4). The mean number of killer whale groups per grid cell
observed was 0.15 and ranged between 0 and 17.

Aerial surveys

Six surveys were flown in March 2017 (Table 1), representing

25 h of visual search effort. In addition to killer whales (n ¼ 7
groups, N ¼ 57 individuals), three other cetacean species could
be reliably identified from the air, namely long-finned pilot

whales (n ¼ 8, N ¼ 306), sperm whales (n ¼ 32, N ¼ 34) and
bottlenose dolphins (n ¼ 3, N ¼ 61) (Fig. 2). More than two-
thirds of sightings (68%, n ¼ 42) consisted of single animals or

pairs, although several larger groups of pilot whales and bot-
tlenose dolphins comprising between 10 and 60 individualswere
also detected (Fig. 2). The distribution of both pilot and sperm
whales was widespread throughout the region, with the latter

recorded on virtually every transect. In contrast, killer whales
were only encountered west of 119.758E in pod sizes up to
30 animals, and with most sightings (71%, n ¼ 5) being made

outside the boundaries of the BremerMarine Park. Young calves
were present in 11% (n¼ 7) of groups, and rarely exceeded two.

Killer whale density

The observed density of killer whale groups was greatest ca.
38 km from the coast, in depths ranging from 800 to 1000 m and

moderate to steep seabed slopes (5–128). Peak numbers of killer
whale groups occurred in grid cells showing average tempera-
ture conditions (across years) of 20.18C (ranging from 19.4 to

22.18C), and average Chl a concentrations of 0.15 mg m�3

(0.05–0.5 mg m�3). The final subset of data used for modelling

included 360 h of visual effort over 4284 km of tracklines during
both 2015 and 2016. The final best-fit model only included a

single term, maximum Chl a (Table 2), and indicated a prefer-
ence for areas of higher maximum primary productivity (Fig. 3).
The mean number of killer whale groups observed per grid cell

(1.1 km�2) in the survey area was 0.015 (s.e. ¼ 0.004), and is
comparable to predictions made across the broader Sub-Basin
(0.012; s.e. ¼ 0.0006). Areas of highest predicted killer whale

density (‘hotspots’) were identified over four canyon systems,
including the Bremer, Henry, Hood and Pallinup Canyons
(Fig. 4). Model prediction mean squared error was 0.728, and
remained consistent across multiple cross-validation runs.

Spatial bootstrap 95% confidence intervals were wide (Fig. 4).

Discussion

This study provides the first baseline assessment of regional
patterns in cetacean abundance and occurrence throughout the

Bremer Sub-Basin during the austral summer–autumn. As such,
it symbolises an important initial step towards the establishment
of an ecosystem monitoring framework in the pelagic waters of
Australia’s South-west Marine Bioregion (Fletcher et al. 2010).

Our observations indicate that a minimum of seven odontocetes
(i.e. bottlenose and common dolphins and killer, false killer,
strap-toothed beaked, long-finned pilot and sperm whales) fre-

quent the Bremer and adjacent submarine canyons, at least
seasonally, and that the assemblage appears to be dominated by
sperm, long-finned pilot, and killer whales, as well as bottlenose

dolphins. These findings corroborate the possible occupancy of
these species that past reported sightings, stranding records and
habitat suitabilitymodelling have alluded to (see Supplementary

Table 2. Summary of the best-fit generalised estimating equations (GEE) model of killer whale group density in the Bremer Sub-Basin

Values shown include parameter estimates, standard error (s.e.), Wald statistics (W), P-values (Pr (.W)) and significance level: ***, P# 0.001

Term Estimate s.e. W Pr (.W)

Intercept �4.220 0.276 234.4 ,2� 10�16***

Chlorophyll a – maximum 1.892 0.466 16.5 4.8� 10�5***
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Fig. 3. Partial residual plot from the best generalised estimating

equation model (parameters given in Table 2) of killer whale group density

in the Bremer Sub-Basin. The model contained a single term for maximum

chlorophyll a concentration. The grey shaded area represents the associated

95% confidence interval.
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Material, Appendix S5), all of which depend upon opportunistic
reports biased towards locations of prevalent human activity.

Although taxonomic diversity is lower here than in compa-

rable systems around the Australian continent (Gill et al. 2015),
and elsewhere (Kiszka et al. 2007a; Carrillo et al. 2010; Laran
et al. 2017), the species diversity recorded in this study can only
be taken as a minimum. This study has shown that the Bremer

Sub-Basin remains an important offshore habitat that supports
high biological activity and attracts a variety of pelagic organ-
isms, including sharks, fishes, cephalopods, and seabirds

(Bouchet et al. 2018). In particular, killer whales aggregate at
the heads of the Hood and Henry canyons in unprecedented
numbers.With over 140 individuals recognised to date (Wellard

and Erbe 2017), this constitutes the largest reported seasonal
aggregation of the species in Australian waters. Despite this,
current understanding of the spatial ecology of Australian killer
whales remains limited, both within the Bremer Sub-Basin and

throughout other parts of the country’s waters (Morrice 2004;
Pitman et al. 2015). For instance, only sporadic matches of
photo-identified individuals are available to describe the ani-

mals’ broad-scale movements and speculate about their habitat
usage and preferences in the Southern Ocean (de Bruyn et al.

2013), with no known killer whales catalogued in the Bremer

Sub-Basin matched across Australian regions to date (Totterdell
2015; Donnelly et al. 2016; Wellard and Erbe 2017). Previous
research shows that oceanic circulation (including tidal flows)

around complex canyon floor topographies forces critical ben-
thic–pelagic coupling by promoting the re-suspension of partic-
ulate organic matter, aiding carbon transport offshore and

funnelling deep nutrients to surface layers (Ryan et al. 2005).
This is particularly true of shelf-incising canyons, which provide
consistently higher ‘habitat potential’ for pelagic species than
slope-confined canyons (Huang et al. 2018). Because of this,

submarine canyons often act as predator foraging grounds
(Rennie et al. 2009; Moors-Murphy 2014; Fernandez-Arcaya
et al. 2017). Little is known of the bio-physical mechanisms

underlying productivity and prey biomass in the region, but the
presence of killer whales in the Bremer Sub-Basin is likely
attributable to foraging opportunities afforded by intermittent

upwelling of cold Antarctic water up the canyons’ edges (Akhir
2010). Indeed, the first published account of active killer whale
predation on beaked whales is from the Bremer Sub-Basin
(Wellard et al. 2016), with anecdotal reports suggesting that

the animals target a wide range of other prey (e.g. fish, squid;
R. Wellard, pers. obs.).

Our modelling of killer whale relative density indicated a

positive relationship with maximum Chl a concentration, con-
sistent with the known physiology of other members of the
Delphinidae family, which exhibit elevated energetic demands

and are thus dependent on productivity (Mannocci et al. 2014).
By contrast, seabed depth, slope, and SST were not significant
predictors in the final model, although sightings were largely

Observed Orca Group Densities (per 1.1 km)
0.00–0.02
0.03–0.04
0.05–0.07
0.08–0.14

(a)

(b)

(c)

(d)

Fig. 4. Spatial predictions of mean killer whale group density based on the best-fit generalised estimating equations model (a), lower (b) and upper

95% (c) confidence intervals of predictions (adjusted for km transited by the vessel) and observed group densities (d).
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made in intermediate depths (600–1200 m with a peak around

800 m), over steep bathymetric slopes (5–88), and in low
regional temperatures (between 19–228C) (Supplementary
Material, Appendix S6), in alignment with similar observations

made in the Pacific and Atlantic Oceans, and the Mediterranean
Sea (Ferguson et al. 2006; Esteban et al. 2014; Passadore et al.
2014). Contrary to this study, the presence-only models devel-
oped by Jones et al. (2019) identified depth as the most

important predictor of habitat suitability, resulting in model
predictions that largely (.70%) favoured flatter, more homoge-
neous areas between canyon heads, against the authors’ own

expectations. Such disparities between our results and those of
Jones et al. (2019) add to an ongoing debate around the nature
and consistency of abundance–suitability relationships formany

taxa (e.g. contrast Weber et al. 2017 with; Dallas and Hastings
2018), and offer a first line of evidence that occurrence proba-
bility may not correlate well with density in killer whales. In
general, density models ought to be more informative than their

presence-only counterparts (Howard et al. 2014), and best suited
for setting priorities in conservation planning (Johnston et al.

2015; Veloz et al. 2015). We therefore modelled counts, out of

the desire to provide outputs of maximum utility for decision-
making. Additionally, remotely-sensed Chl a is a more proximal
indicator of biological productivity than seabed depth, and is

thus expected to be a more ecologically meaningful predictor of
killer whale distribution within an area subject to seasonally
variable conditions, like the Bremer Sub-Basin. Significant

improvements in predictive capacity may be gained from
models that incorporate knowledge of prey patches (although
see Torres et al. 2008), but these will not be possible until
detailed information on the diet and feeding ecology of Austra-

lian killer whales becomes available.
This study was limited to surveys conducted during the

summer–autumn season over a period of 3 years. Because of

this, repeated visual surveys over multiple months and years will
be required to fully elucidate the fine scale environmental
associations of cetaceans across the Bremer Sub-Basin, and their

variability over time. In this context, the use of aircraft as
sampling platforms would be advantageous to cover more
ground in shorter timeframes, andwould provide ground truthing

of model predictions regionally. Indeed, few sightings of killer
whales were made outside the Hood and Henry canyons, despite
several hotspots of high density (e.g. within the Bremer Marine
Park) being identified through modelling. While robust abun-

dance estimates can often be obtained from aerial survey data
(Salgado Kent et al. 2012), ship-borne methods can usually
accommodate more observers, enable more sophisticated search

protocols, yield higher detection rates (provided good weather),
and ensure longer sighting times with better species identifica-
tion potential due to the moderate speed of the vessel relative to

the animals’ own movements (Laran et al. 2017). Importantly,
ship-borne data collection can be a cost-effective alternative to
dedicated effort when considered in tandem with wildlife tour-
ism operations. There is now considerable interest in, and rising

acceptance of, the value of PoPs as tools in studies of cetacean
distribution, abundance, and behaviour (Higby et al. 2012). In
some regions, PoP programmes have been in place for decades

(e.g. ORCA, https://www.orcaweb.org.uk/, accessed 28 May
2020), having been launched by scientists and implemented in

the field by trained personnel. As a result, many operators are

eager to accommodate scientific activities, as participation in
science is perceived to enhance company reputation, increase
attendance and revenues, promote public engagement, and foster

wildlife stewardship (Lück 2015). Robust inference from PoP
data is challenging, as limited temporal and geographic coverage
and non-randomised, unequal sampling effort generally compli-
cate analyses (Isojunno et al. 2012). However, when these biases

are accounted for using appropriate statistical modelling
machinery (as was done here), PoPs may provide meaningful
insights into target species’ ecology that could not be otherwise

obtained with other approaches (Isojunno et al. 2012; Scott-
Hayward et al. 2015). That said, model validation on indepen-
dent data remains critical to verifying the reliability of model

predictions and identifying conditions limiting model applica-
tions. Collecting the data necessary to perform such assessments
should be seen as an important avenue for future research on
killer whales in Australia.

Fisheries by-catch, pollution, and a variety of other anthro-
pogenic threats to marine megafauna are becoming increasingly
prominent in the Indian and Southern Oceans, with high propor-

tions of marine mammals currently at risk around Australia
(Davidson et al. 2012). The Bremer Sub-Basin is no exception,
with vessel activity present, numerous oil and gas exploration

campaigns, and rates of warming surpassing those observed in
many other marine habitats. Quantifying the population-level
consequences of lethal and non-lethal human impacts is difficult

yet necessary to implement optimal management strategies that
can successfully buffer against species declines. In this context,
an important next step in research on Bremer killer whales will
be the application of quantitative modelling approaches such as

the Population Consequences of Disturbance (PCoD) frame-
work (Pirotta et al. 2018), which has been developed specifically
to assess the effects of disturbance on marine mammal popula-

tions. Implementing this framework will allow novel insights
into the fitness costs associated with repeated exposure to
tourism vessels within the Bremer Sub-Basin, but will require

additional data on demographic rates and physiological status
(Pirotta et al. 2018), which are currently lacking. We recom-
mend that photo-identification surveys be continued in the

future as a means of informing exposure risk, residency patterns
(including seasonal), and individual health. These may be
usefully complemented by biotelemetry studies.

Contrary to other studies (e.g. Reisinger et al. 2015), model

results indicated that seasonal upwelling of nutrient-rich waters,
as captured in remote-sensed Chl a imagery, may be a strong
driver of killer whale presence within the Bremer Sub-Basin

during the austral summer–autumn. There have indeed been
multiple accounts of killer whale predation on squid, fish, and
cetaceans in the Bremer Sub-Basin (Wellard et al. 2016),

confirming the idea that the submarine canyons within the
Albany complex exhibit high habitat potential for pelagic
species (Huang et al. 2018). Killer whales have been shown to
respond to vessel-induced disturbance, and to be particularly

vulnerable to exposure when feeding, consistent with observed
risk avoidance strategies in long-lived mammals (Lusseau et al.
2009). In some cases, lost foraging opportunities have been

estimated to result in potentially substantial decreases in energy
intake for some individuals (Williams et al. 2006b), such that
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spatial planning strategies targeting critical foraging grounds are

expected to confer greater conservation benefits for this species
than those designed to protect habitats more generically (Ashe
et al. 2010). This underscores the importance of both (i) granting

the Albany canyon complex strong and immediate protection,
and (ii) having in place and enforcing an effective code of
conduct for mitigating disturbance caused by whale-watching
activities throughout the Bremer Sub-Basin (e.g. surrounding

vessel behaviour and proximity to animals).
Faced with limited budgets and lingering uncertainty about

which pressures to address as a priority, conservation agencies

often focus interventions on single (indicator) species, whose
status is deemed an ultimate measure of management efficacy
(Laran et al. 2017). Although this rationale has some merits,

broader assessments of communities as a whole also bear
relevance for management, especially when considered over
larger geographic areas. By combining multiple sampling plat-
forms, each operating on different scales, our work offers both

novel taxon-oriented (i.e. killer whale) and community-wide
knowledge about the cetaceans occupying the Bremer Sub-
Basin. Both approaches emphasise the importance of the

region’s outer continental shelf and slope to a diversity of
cetaceans, which should be seen as a strong candidate for
conservation attention.

Data availability

The aerial survey data are publicly available on theResearchData
Australia portal (https://researchdata.ands.org.au/aerial-visual-
survey-project-ep2/1098271) and can be visualised in an R Shiny
app (https://pjbouchet.shinyapps.io/bremer_ep2/). The SST and

Chl a data were sourced from Australia’s Integrated Marine
Observing System (IMOS; http://imos.org.au/facilities/aodn/),
and the bathymetry was downloaded from Geoscience Australia

(http://www.ausseabed.gov.au/). The ship-borne sightings data
are supporting ongoing projects. Please contact RebeccaWellard
(becwellard@gmail.com) regarding the ship-borne data.
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