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Abstract 

The Neoproterozoic Jiangnan Orogen in South China records a succession of 

arc-trench-basin assemblages culminating in accretion of the bounding Yangtze and 

Cathaysia blocks to form the stabilized South China Craton. The orogen can be traced 

over some 1500 km and extends up to 100 km across strike. It is divisible into three 

domains: the northeast domain (also referred to as the Huaiyu or Shuangxiwu Terrane), 

the central domain (Jiuling Terrane), and an undifferentiated southwest domain. The 

northeast domain contains arc type volcanic suites and I-type granitoids dated at ca. 

970–850 Ma. It is interpreted as an intra–oceanic terrane based on the juvenile 

radiogenic isotopic signature of the igneous rocks, the absence of older detritus and 

inherited xenocrysts, and the presence of ophiolites along its southwestern and 

western margins. The central and southwest domains contain trench-arc-basin 

assemblages of clastic sedimentary units, mappable magmatic arc suites and ophiolitic 

mélanges (Sibao and equivalent groups) that range in age from ca. 880 to 820–815 Ma. 

The presence of old zircon grains within these two domains, both as detritus within 

sedimentary units and as inherited zircon in arc basalt, suggest they formed at 

convergent continental margins. S-type granites dated at 845–815 Ma are a distinctive 

element of the central and southwest domains. The ages of these granites overlap with 

convergent plate magmatism in the two domains, arguing against previous models for 

plume-rift and post-collisional geodynamic settings. Instead, these bodies likely formed 

in an accretionary orogenic margin setting in which granitic magmatism occurred in an 

extensional regime triggered by slab rollback. The slab-rollback process triggered 

mantle-sourced thermal input and partial melting of the older and buried arc-bounding 

basin sediments. Early Paleozoic S-type granites in the Lachlan and New England belts 

in eastern Australia and Jurassic ones in the Cordillera belt of the western US provide 

analogous geodynamic environments. Isotopic data indicate that the central Jiangnan 

domain experienced significant crustal growth, whereas in the southwest domain there 

was a greater degree of crustal reworking. The character and distribution of the early 
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Neoproterozoic sedimentary and igneous succession in the orogen suggests it 

represents a ca. 970–820 Ma accretionary orogen. Upper age limits on the Jiangnan 

Orogen are provided by a regional angular unconformity in the central and southwest 

domains at ca. 810–805 Ma, and in the northeast domain at ca. 825 Ma, along with the 

overlying bimodal volcanic and clastic sedimentary successions mostly dated at ca. 

810–730 Ma. Thus, timing of final assembly of South China displays variations across 

the Jiangnan Orogen, from ca. 825 Ma in the northeast to ca. 820–805 Ma in the central 

and southwest of the orogen. Post-assembly successions are parts of the Nanhua Basin 

and are interpreted to have formed during regional lithospheric extension across the 

eastern and central South China Craton. 

The age patterns across the South China Craton are indicative of northwest directed 

accretion of fragments and suggest an external rather than an internal position of the 

craton within the assembled Rodinia supercontinent. Paleomagnetic data, regional 

correlations and sedimentary records are consistent with a position along the northern 

margin of Rodinia, adjacent to India and Australia. The Jiangnan Orogen recorded the 

accretion of trench-arc assemblages and ultimately the Yangtze Block to the Cathaysia 

Block that was already located on the margin of Rodinia. The Panxi-Hanan belt, which 

lies along the western and northwestern margin of the Yangtze Block, formed on the 

upper plate to a subduction system that both overlaps with, and is younger than, the 

Jiangnan Orogen. The belt provides a record of ongoing accretion on the Rodinia 

margin until the mid-Neoproterozoic. 

 

Keywords: Neoproterozoic Jiangnan Orogen; South China; Rodinia; accretionary 

orogeny; juvenile arc; convergent continental margin; S-type granites 
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1. Introduction 

Orogenic belts are divisible into collisional (Alpine-Himalayan) and accretionary 

(non-collisional or Andean) types and provide the long-term geological archive of 

crustal growth and continental assembly (Windley, 1992; Collins, 2002; Cawood et al., 

2009, 2016). Typical examples for the accretionary type include the Phanerozoic Terra 

Australis Orogen, the Central Asian Orogen, and the Cordilleran Orogen (Xiao et al., 

2003, 2015; Cawood, 2005, 2011; Collins and Richards, 2008;). Determination of 

orogenic types, largely based on patterns of sedimentation, igneous activity, ophiolites, 

metamorphism and deformation, are crucial in understanding the drivers involved in 

continental generation and preservation (e.g. Cawood et al. 2013a).  

The South China Craton has been variously linked with the Precambrian 

supercontinents of Columbia/Nuna, Rodinia and Gondwana (Zhao et al., 2002, 2018a; 

Li et al., 2008b; Cawood et al., 2013, 2018; Merdith et al., 2017). It is divisible into 

three Precambrian tectonic units, the Yangtze and Cathaysia blocks and the intervening 

Neoproterozoic Jiangnan Orogen (also referred to as the Jinning or Sibao Orogen) (Guo 

et al., 1989; Shu and Charvet, 1996; Zhao and Cawood, 1999, 2012; Wang et al., 2006, 

2012a, 2014b; Li et al., 2008a, 2009; Cawood et al., 2013, 2018; Yao et al., 2014a, 

2016a; Zhao, 2015) (Fig. 1). The Jiangnan Orogen includes a number of convergent 

plate margin successions that ultimately resulted in assembly of the Cathaysia and 

Yangtze blocks (e.g. Guo et al., 1996; Li et al., 2009; Zhao et al., 2011; Shu, 2012; 

Charvet, 2013; Wang et al., 2014b; Yao et al., 2015; Zhang and Wang, 2016). Shortly 

after assembly, the Jiangnan Orogen and Cathaysia Block underwent regional extension, 

resulting in development of the Nanhua rift basin (Wang and Li, 2003; Li et al., 2005; 

Shu, 2012; Wang et al., 2012c; Zhao and Cawood, 2012 and references therein; Yao et 

al., 2014b; Qi et al., 2019). The overall tectonic evolution of the Jiangnan Orogen, 

including timing and nature of arc-trench successions and related subduction polarity, 

age of final assembly, geodynamics of S-type granites, and the role of the orogen within 

the supercontinent cycles, are disputed (Li et al., 1999, 2003a, 2003b, 2008b; Shu et al., 
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2006, 2019; Greentree et al., 2006; Wang et al., 2006, 2013e, 2019; Wu et al., 2006; 

Zheng et al., 2007, 2008a; Zhao et al., 2011; Zhang et al., 2012b, 2013b; Yao et al., 

2013, 2014a, 2016b; Zhao, 2015; Cawood et al., 2018). Two end-member tectonic 

models have been proposed for South China involving ‘plume rifting’ and 

‘subduction-collision’ settings and reflect uncertainty in age and affinities of the rock 

units within South China. The former model argues for assembly of South China by ca. 

880 Ma associated with Rodinia assembly (Li et al., 2002, 2007, 2009), followed by the 

initiation of extension related to breakup of the supercontinent at around 860 Ma (Li et 

al., 2003b, 2008a, 2008b; Yang et al., 2015). The subduction-collision model suggests 

final collisional assembly of the Yangtze and Cathaysia continental blocks at ca. 830 

Ma, resulting in deformation and metamorphism of older successions in the Jiangnan 

Orogen, and the generation of ca. 835-815 Ma S-type granites in the belt (e.g. Wang et 

al., 2006, 2014c, 2018; Zhao et al., 2013). A few researchers have suggested magmatic 

arc activity in the Jiangnan Orogen continued to ca. 750 Ma, with final continental 

assembly not occurring until after this time (e.g. Lin et al., 2016). However, available 

data and observations, especially those published in recent years, including convergent 

plate margin successions with an upper age limit at least as young as ca. 820 Ma (e.g. 

Zhou et al., 2009; Wang et al., 2014b, 2015a, 2016b; Zhang et al., 2012c, 2015), and a 

regional unconformity at ca. 815–805 Ma in the southwest and central Jiangnan 

domains and at ca. 825 Ma in the northeast Jiangnan domain (Gao et al., 2008, 2011, 

2014; Yao et al., 2013, 2015), along with ophiolitic mélange and arc magmatism as 

young as ca. 830–825 Ma (Zhang et al., 2012b, 2012c; Chen et al., 2014; Wang et al., 

2014a, 2015a), partially disagree with age relationships outlined in all three models. 

The aim of this paper is to document the tectonostratigraphic evolution of the 

Jiangnan Orogen, including litho-stratigraphic sequences, magmatic suites, 

metamorphic and structural events, and the geochemical and isotopic character of units. 

We concentrate on relations and data patterns across the orogen and South China. From 

these results, we address the inconsistency of previous models and provide constraints 
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on the overall geodynamic evolution of the orogen, along with position of the South 

China Craton with respect to the Rodinia supercontinent. 

 

2. Geological setting 

The South China Craton is composed of the Yangtze Block to the northwest and the 

Cathaysia Block to the southeast, separated by the Jiangnan Orogen (Guo et al., 1989; 

Shu and Charvet, 1996; Wang et al., 2013e; Zhang et al., 2013b; Cawood et al., 2018). 

In this study, the boundary of the Jiangnan Orogen and the Cathaysia Block is 

considered to be the Shaoxing-Jiangshan-Pingxiang-Longsheng fault zone, which is 

interpreted as a Neoproterozoic structure (Fig. 1; Shu et al., 2015; Yao et al., 2016a). In 

detail, the position of this boundary fault is disputed due to poor exposure of 

Precambrian lithologies (Wang et al., 2013f; Shu et al., 2014; Guo and Gao, 2016). The 

boundary between the Jiangnan Orogen and the Yangtze Block is also poorly defined, 

and is herein taken as the Shitai-Jiujiang fault zone based on the distribution of exposed 

early to middle Neoproterozoic successions (Fig. 1). 

The Yangtze Block includes minor exposures of metamorphosed Archean- early 

Paleoproterozoic TTG suites, and igneous and sedimentary successions that extend 

sporadically along the northern and western margins of the block, including the 

Kongling Complex, Yudongzi Group, Houhe complex and Huangtuling granulites (Fig. 

2; Gao and Zhang, 1990; Qiu et al., 2000; Zheng et al., 2006; Wu et al., 2009; Sun et al., 

2008; Zhao & Cawood, 2012 and references therein). These basement rocks are 

enveloped by Paleoproterozoic or younger successions within the Panxi-Hannan Belt 

along the northern and western southern margins of the block, as well as those of the 

Jiangnan Orogen in the southeast margin (Dong et al., 2011, 2012; Cawood et al., 2018; 

Zhao et al., 2018;). In the southwestern Yangtze Block, metamorphosed volcanic and 

sedimentary units formed at 1740–1503 Ma and are referred to the Dahongshan and 

Dongchuan groups (Fig. 2; Greentree and Li, 2008; Zhao et al., 2010), which are in 

fault contact with the ca. 1.23–1.0 Ga Kunyang and Huili groups (Sun et al., 2009; Zhao 
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et al., 2010). Younger units in the Panxi–Hannan Belt are mostly composed of mafic to 

intermediate volcanic rocks, volcaniclastic sedimentary rocks and intrusives with 

subduction related chemical signatures, mostly within the age range of ca. 1.0–0.75 Ga 

(Zhou et al., 2002, 2006; Sun et al., 2009; Dong et al., 2012, 2017; Cai et al., 2014, 2015; 

Wang et al., 2016c; Zhao et al., 2018a, 2018b; Sun et al., 2019). All these successions 

are overlain by the upper Nanhua System (ca. 720 Ma to 630 Ma) and Sinian Group (ca. 

630-542 Ma). 

Archean rocks are not exposed in the Cathaysia Block but may be present at depth 

on the basis of Archean xenocrysts in mafic rocks and granites intruding the block (Yu 

et al., 2009; Zheng et al., 2011; Li et al., 2018), as well as detrital zircon grains of this 

age in the Neoproterozoic to Phanerozoic metasedimentary units (Zhao and Cawood et 

al., 1999; Yao et al., 2011). The oldest exposed lithologies in the block are minor 

1.93–1.7 Ga igneous suites in east Cathaysia that are referred to as the Badu Complex 

and are enveloped by variably metamorphosed middle Neoproterozoic assemblages 

(Fig. 2; Zhao and Cawood, 1999; Shu et al., 2008; Yu et al., 2009; Yao et al., 2017). 

Earlier geological investigations suggested exposures of widespread Mesoproterozoic 

sequences in east Cathaysia, but new zircon U-Pb data established them as 

Neoproterozoic (Wan et al., 2007; Yang and Jiang, 2018). Mesoproterozoic 

sedimentary and intrusive rocks only occur on Hainan island (ca. 1.4–1.2 Ga; Li et al., 

2008c; Wang et al., 2015b; Zhang et al., 2019), and were metamorphosed at ca. 1.3–1.0 

Ga (Yao et al., 2017). Early Neoproterozoic rock suites, including meta–rhyolite, 

amphibolite and meta–basaltic rocks, sporadically occur in the Yunkai and Wuyi 

domains of the Cathaysia Block and display consistent subduction affinity, with their 

ages concentrated at ca. 1.0–0.9 Ga along with minor activity at ca. 840 Ma (Shu et al., 

2008; Wang et al., 2013e and references therein; Xia et al., 2017 and references therein; 

Wang et al., 2018). Peraluminous gneissic granites dated at ca. 980–910 Ma have also 

been reported from localities within the block (Wang et al., 2014 and refences therein). 

Investigations on Middle Neoproterozoic magmatic suits (0.82–0.72 Ga) are limited to 
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east Cathaysia, which display extension related geochemical signatures (Li et al., 2005; 

Shu et al., 2011; Xia et al., 2017 and references therein; Qi et al., 2019). Nanhua 

systems are also well preserved in the middle and western Cathaysia Block (referred to 

as the Shenshan and equivalent groups), and consist of schist, gneiss and minor 

quartzite, meta-sedimentary rocks and meta-basaltic rocks, along with marble and 

amphibolite, but with poorly constrained ages (Li et al. 2009; Shu et al., 2011; Zhang et 

al., 2013). These litho-stratigraphic sequences are unconformably covered by the 

Nanhua System and Sinian Group, along with early Paleozoic successions (Fig. 2; Shu 

et al., 2014; Qi et al., 2018). 

The Jiangnan Orogen is here defined as a suite of deformed and metamorphosed 

early to earliest middle Neoproterozoic igneous and sedimentary suites, along with 

sheared I- and S-type granitic intrusions (Figs. 2, 3, 4; Guo et al., 1989; Shu et al., 1995, 

2019; Shu and Charvet, 1996; Wang and Li, 2003; Charvet, 2013). Latest 

Mesoproterozoic volcanic rocks, referred to as the Tieshajie Group, have also been 

locally reported from areas within the Shaoxing - Jiangshan fault zone (Li et al. 2011, 

2013). But the group are comparable to the protolith of the Zhoutan Group that 

constitutes the Cathaysia Block. Therefore, the tectonic affinity of the Tieshajie Group 

is unclear. Variations in ages of lithologies and relations across the Jiangnan Orogen, 

along with distribution of ophiolitic mélanges, suggest division into three domains: a 

northeast domain (Huaiyu Terrane), a central domain (Jiuling Terrane) and a 

southwestern domain (Fig. 1; Shu et al., 1995; Yao et al., 2013, 2016a). The boundary 

fault between the northeast and central domains is the early Neoproterozoic Northeast 

Jiangxi ophiolitic suture zone (Fig. 1; Shu, 2012; Yao et al., 2015), whereas that 

between the central and southwest domains is the inferred Miluo-Xiangtan fault (Fig. 1; 

Shu et al., 1995). The southwestern and northeastern extensions of the belt are covered 

by Phanerozoic strata (Fig. 1). 
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3. Lithostratigraphic sequences 

Primary rock units exposed in the Jiangnan Orogen are from northeast to southwest 

referred to as the Shuangxiwu, Shuangqiaoshan, Shangxi, Lengjiaxi, Fanjingshan and 

Sibao groups, which record the evolution of the orogen (Figs. 2, 3, 4; BGMRJX, 1984; 

BGMRGX, 1985; BGMRGZ, 1987; BGMRHN, 1988; BGMRZJ, 1989; Zhou et al., 

2014). Rock units within the orogen consist mainly of deformed clastic sedimentary 

rocks, volcanic rocks and their intrusive equivalents. In addition, minor ophiolitic 

mafic-ultramafic assemblages, limestone and deep-sea chert occur within the 

Shaoxing-Jiangshan and Northeast Jiangxi suture zones (Shu et al., 1994, 1995; Zhao et 

al., 2011; Zhao and Cawood, 2012 and references therein; Yao et al., 2015, 2016a). I- 

and S- type granitic intrusions also occur within the orogen (Li et al., 2003a; Wang et al., 

2006; Ye et al., 2007; Yao et al., 2014a, 2016b). In detail, the lithostratigraphic 

character of the domains varies: the northeast domain (Huaiyu Terrane) is composed 

largely of deformed volcanic rocks, whereas the central and southwest domains are 

dominated by deformed clastic sedimentary rocks (Figs. 2, 3, 4). All the units have 

experienced regional greenschist facies metamorphism. The overall age range of 

lithologies within the orogen is from ca. 970 to 820 Ma, based on ages of volcanic 

horizons, igneous intrusions, and deposition of sedimentary successions constrained 

by maximum depositional ages of detrital zircons and subsequent overprinting 

relationships (Wang et al., 2003, 2007, 2010, 2013a, 2014a, 2014b, 2016b; Zheng et al., 

2008b; Zhou et al., 2009, 2014; Li et al., 2009, 2016b, 2016c; Zhou et al., 2009, 2014; 

Gao et al., 2010, 2011; Zhang et al., 2012b, 2012c, 2018; Yao et al., 2013, 2015; Yin et 

al., 2013; Ma et al., 2016; Zhang and Wang, 2016; Xin et al., 2017; Su et al., 2018a, 

2018b; Shu et al., 2019). 

The Jiangnan Orogen is unconformably overlain by a succession of clastic 

sedimentary rocks along with some bimodal igneous rocks, which together constitute 

the Nanhua Basin (referred to as the lower Nanhua System in Chinese literature). In the 

Jiangnan region, these include from east to west the Heshangzhen, Dengshan, Likou, 
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Banxi, Xiajiang and Danzhou groups (Figs. 2, 3, 4; BGMRJX, 1984; BGMRGX, 1985; 

BGMRHN, 1988; BGMRZJ, 1989; Shu et al., 1995; Wang and Li, 2003). This 

succession accumulated between ~825-805 Ma to 730 Ma (Wang et al., 2012b, 2013a, 

2015, 2017; Gao et al., 2011; Shu, 2012; Xu et al., 2014b; Zhou et al., 2014; Yao et al., 

2015; Yan et al., 2015; Ma et al., 2016; Su et al., 2018a), with the upper age limits 

ranging from ca. 760 Ma in the northeast to ca. 730 Ma in the southwest (Fig. 2). 

Bimodal igneous suites, containing two end members of basalt and rhyolite and their 

intrusive equivalents, yield ages in the range of ca. 800–760 Ma (Li et al., 2003b, 2008a; 

Wang et al., 2012c; Yao et al., 2014b; Zhang et al., 2018). These bimodal igneous suites 

occur within the Heshangzhen and equivalent groups in east Jiangnan and are thus 

assigned to the Nanhua rift basin succession. Elsewhere in the Jiangnan and Cathaysia 

regions, coeval rifting type diabase and basalt have been reported, but are not 

associated with felsic end members (Li et al., 2005; Wang et al., 2008; Shu et al., 2011). 

The units of the Nanhua Basin are essentially undeformed and unmetamorphosed (Fig. 

4). The basin succession is overlain by platform strata of Sinian (corresponding to the 

Ediacaran) age, and extending from ca. 650–542 Ma (Fig. 2, 4). The units of the 

Nanhua Basin are distributed across the Cathaysia Block and Jiangnan Orogen, 

whereas those of Sinian age extend across South China (Fig. 2). 

 

3.1 Northeast domain (‘Huaiyu’ or ‘Shuangxiwu’ Terrane), Jiangnan Orogen 

The northeast domain of the Jiangnan Orogen contains the Shuangxiwu Group 

(Figs. 2, 3, 4), which is composed of a series of mafic to felsic volcanic rocks. Minor 

ophiolitic mafic-ultramafic suites and deep-sea chert occur along the 

Shaoxing-Jiangshan and Northeast Jiangxi fault zones that define the southeast and 

western margins of the domain, respectively (Fig. 3; Shu 1995; Li et al., 2009; Yao et 

al., 2016b). An undated thin layer of clastic rocks also occurs at the top of the group 

(BGMRZJ, 1989). LA-ICP-MS zircon U-Pb ages of 952 ± 5 Ma and 954 ± 8 Ma, 904 

± 8 Ma and 906 ± 10 Ma have been obtained from mafic-intermediate volcanic suites 
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in the lower Shuangxiwu Group (Chen et al., 1991, 2016), as well as a whole rock 

Sm-Nd isochron age of 978 ± 44 Ma (Zhang et al., 1990). Andesitic rocks and 

hornblende schist from the middle to upper part of the Shuangxiwu Group yielded 

zircon ages of 926 ± 15 Ma and 891 ± 12 Ma (Li et al., 2009), 879 ± 10 Ma (Yao et 

al., 2014c), and 871 ± 7 Ma and 864 ± 14 Ma (zircon U-Pb, Yao et al. 2015). 

Tonalite-granodiorite plutons and quartz diorite dated at ca. 907 Ma and ca. 854 Ma 

are also present within the group (Ye et al., 2007; Yao et al., 2016b). 

The Shuangxiwu Group has experienced extensive deformation and is 

unconformably overlain by the Heshangzhen Group (Pt3h) (Figs. 3, 4; BGMRZJ, 

1989), the basal unit of the Nanhua Basin. Volcanic layers from the lower 

Heshangzhen Group are dated at 824 ± 5 Ma (SHRIMP zircon U-Pb, Zhang et al., 

2015), whereas those in the middle and upper parts of the group are dated at ca. 802 

Ma, ca. 790 Ma and ca. 767 Ma (Figs. 3, 4; Gao et al., 2008, Li et al., 2008a), 

consistent with detrital zircon ages obtained from clastic rocks within the group (Yao 

et al., 2013; Wang et al., 2013a). 

 

3.2 Central domain (Jiuling Terrane), Jiangnan Orogen 

The main litho-stratigraphic units in the central domain of the orogen are the 

Shangxi, Shuangqiaoshan and Lengjiaxi groups (BGMRJX, 1984; BGMRHN, 1988). 

These units comprise a similar succession of clastic meta-sandstone, meta-siltstone and 

slate, as well as various meta-tuffaceous layers that yield zircon U-Pb ages of 822 Ma 

± 10 Ma (SHRIMP zircon U-Pb; Gao et al., 2011) and 825 ± 7 Ma (LA-ICP-MS 

zircon U-Pb; Yin et al., 2013). Minor mappable layers of basalt, diabase and high Mg 

andesite in the Shuangqiaoshan and Lengjiaxi groups from the southern margin of the 

domain yield ages in the range 870–825 Ma (Figs. 1, 3, 5; e.g., Shu et al., 1995; Zhang 

et al., 2012c, 2013c; Sun et al., 2017). A gabbro-diorite complex from the eastern 

margin of the domain is dated at ca. 870–860 Ma (Cui et al., 2017). Rocks of the 

domain are extensively folded and unconformably overlain by the undeformed Likou, 
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Dengshan and Banxi groups of the Nanhua Basin (Figs. 2, 3, 4) (BGMRJX, 1984; Zhou 

et al., 2015; Yao et al., 2019). In the central Hunan area, a layer of volcanoclastic rocks, 

mainly composed of volcanic conglomerate, slate and meta–siltstone, occurs in the 

lowest Banxi Group and was deposited at some time after ca. 822 Ma (BGMRHN, 1988; 

Zhang et al., 2012c). Some studies refer to this layer as an independent unit, the 

Cangshuipu Group, which is related to final collisional assembly of South China (Pan et 

al., 1988; Zhang et al., 2012). These overlying successions have maximum depositional 

ages of ca. 810–800 Ma, based on the youngest detrital zircons (Wang et al., 2013b, 

2015a, 2017; Yan et al., 2015; Sun et al., 2018) and tuffaceous layers (803 ± 8 SHRIMP 

Zircon U-Pb, Gao et al., 2011). 

 

3.3 Southwest domain, Jiangnan Orogen 

The southwest domain of the Jiangnan Orogen contains the Sibao and Fanjinshan 

groups (BGMRGX, 1985; BGMRGZ, 1987; Figs. 2, 3, 4), which display a similar 

litho-stratigraphic succession of sandy-argillaceous metasedimentary rocks, along with 

volcaniclastic rocks, siliceous marble, red jasper and some mafic–ultramafic rocks 

(BGMRGX, 1985; BGMRGZ, 1987). Tuff layers within these groups yield zircon U-Pb 

ages of 842 ± 6 Ma, 832 ± 2 Ma and 840 ± 5 Ma (SHRIMP, Gao et al., 2010; 

LA-ICP-MS, Su et al., 2018a). Mafic-ultramafic assemblages in the southwest domain 

contain pillow basalt, gabbro, tholeiite, pyroxenite and peridotite, unlike equivalent 

sequences in the northeast and central domains of the Jiangnan Orogen that are 

dominated by ultramafic rocks. These assemblages have yielded ages in the range of 

855–825 Ma (SHRIMP zircon U-Pb, 828 ± 7 Ma, Li et al. 1999; LA-ICP-MS zircon 

U-Pb, 841 ± 22 Ma, Zhou et al., 2007; LA-ICP-MS zircon U-Pb, 831 ± 6Ma and 827 ± 

24Ma, Zhou et al., 2009; LA-ICP-MS zircon U-Pb, 829 ± 11 Ma, Zhao and Zhou, 2013; 

LA-ICP-MS zircon U–Pb, 855 ± 5 Ma, Yao et al., 2014a; LA-ICP-MS zircon U–Pb, 

836 ± 44 Ma, Chen et al., 2017). Some high Mg diorites within the Sibao Group are 

dated at 837 ± 7 Ma (Chen et al., 2014; Wang et al., 2014b). 
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The Sibao and Fanjinshan groups are folded and sheared, and are unconformably 

overlain by the Danzhou and Xiajiang groups, respectively (BGMRGX, 1985; 

BGMRGZ, 1987; Figs. 2, 3, 4). The Danzhou group consists of mudstones and 

siltstones with lesser conglomerate, carbonate, basalt and volcaniclastic rocks, with 

depositional ages constrained at around 805 Ma to 730 Ma on the basis of tuff layers 

and youngest detrital zircons (Gao et al., 2014; Zhou et al., 2014 and references therein; 

Yang et al., 2015; Su et al., 2018a). For instance, zircon U-Pb ages of 803 ± 4 Ma and 

764 ± 5 Ma have been determined for tuff layers in the Danzhou Group (Su et al., 

2018a). The Xiajiang group display a lithostratigraphic composition of meta-sandstone, 

siltstone and slate, along with thin layers of carbonate, tuff and volcanics. The timing of 

deposition of the Xiajiang Group is constrained at around 815-810 Ma to 750 Ma 

according to age data of tuff layers and detrital zircons within the group (Gao et al., 

2014; Wang et al., 2010). The Danzhou and Xiajiang groups are overlain by rocks of the 

upper Nanhua Basin (Fig. 2). 

  

3.4 Ophiolitic mélanges 

 Two disrupted ophiolitic sequences occur within the Jiangnan Orogen along the 

Northeast Jiangxi and Shaoxing–Jiangshan fault zones (Fig. 3; Zhou et al., 1989; Shu et 

al., 2006; Yao et al., 2016b; Charvet, 2013). The former contains an older ophiolite 

(northeastern Jiangxi) dated at ca. 1000–960 Ma and a younger one (referred to as 

‘south Anhui’ or ‘Fuchuan’) dated at ca. 830 Ma (whole rock Sm-Nd, SIMS and 

LA-ICP-MS Zircon U-Pb, Zhou et al., 1989; Chen et al., 1991; Li et al., 1994, 1997; 

Zhang et al., 2012b; 2013a; Wang et al., 2015a; Sun et al., 2018b). Ophiolite 

components of the Northeast Jiangxi and Fuchuan ophiolitic zones, including 

ultramafic suites, gabbro, pillow basalts and deep–sea sedimentary rocks, are well 

preserved and occur as structural blocks within a serpentinite matrix (Shu, 2012 and 

references there in; Zhang et al., 2012b, 2013a; Wang et al., 2015a;). Adakitic granite 

and mafic enclave-bearing plagiogranite occur within the Northeast Jiangxi ophiolite 
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mélange, with the latter dated at 970 ± 21 Ma (SHRIMP zircon U-Pb) and has isotopic 

and chemical signatures indicative of derivation from a depleted mantle source (Li and 

Li, 2003; Gao et al., 2009). Both ophiolitic fragments along the Northeast Jiangxi and 

Fuchuan ophiolite zones are inferred to be supra-subduction zone type, possibly formed 

in a back-arc marginal sea (Shu et al., 1995, 2019; Zhang et al., 2012a; Sun et al., 

2018b). Ophiolite components of the Shaoxing-Jiangshan ophiolitic fault zone are not 

well preserved, and include minor ultramafic-mafic suites (dunite, lherzolite, gabbro, 

pyroxinite and pillow basalt) dated at around 870–855 Ma sporadically occur within the 

eastern segment of the Shaoxing–Jiangshan fault zone, along with some deep-sea 

turbidities (Zhou and Zhu, 1992; Shu et al., 2006; Yao et al., 2016b). 

A ca. 870–860 Ma ophiolitic mélange, consisting of mafic–ultramafic igneous 

rocks, chert, siliceous marble and ophicalcite within a matrix of phyllite, occurs along 

the east margin of the southwest domain (Yao et al., 2016a). The mélange contains 

oceanic exotic block and arc autochthonous block in a matrix of sandy and tuffaceous 

phyllite. The ophiolite is inferred to have been emplaced in a fore-arc setting (Yao et al., 

2016a). In addition, N-MORB type meta-basalt dated at 860 ± 20 Ma and 838 ± 12 Ma 

have also been reported from localities within the Shuangqiaoshan and Lengjiaxi 

groups in the central domain and is interpreted as relic of back-arc or fore-arc oceanic 

crust (Zhang et al., 2013b; Yao et al., 2014b). High Mg pillow basalt occurs in the 

Fanjinshan Group of the southwest domain (Zhao and Zhou, 2013). 

3.5 Age, character and distribution of granites 

Neoproterozoic granitoids, including I- and S-types, occur within the Jiangnan 

Orogen (e.g. Guo et al., 1989, 1996; Li et al., 2003a; Wang et al., 2006; Zhao et al., 

2013; Yao et al., 2014a, 2014b; Xin et al., 2017; Chen et al., 2018). 

I-type granites dated at ca. 910–850 Ma have been identified in the southeast 

margin of the northeast domain (Ye et al., 2007; Yao et al., 2016b). A small I-type 

granite pluton, the Lantian pluton, dated at 821 ± 6 Ma occurs in the western central 

domain (Liu and Zhao, 2017). I-type granites have not yet been reported from other 
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regions of the Jiangnan Orogen. Tourmaline-bearing leuco-granite, dated at 904  ± 5 

Ma, also occur as enclaves within serpentinite in the Northeast Jiangxi suture zone 

(Wang et al., 2019). 

Voluminous S-type granites, exposed over approximately 7000 km
2
, outcrop in the 

central (Xucun, Xiuning, Jiuling and Meixian plutons) and southwest (Fanjingshan, 

Yuanbaoshan, Bendong and Sanfang plutons) domains of the Jiangnan Orogen, and 

yield emplacement ages of ca. 845–815 Ma and ca. 835–820 Ma, respectively (Li et al., 

1999, 2003; Wang et al., 2006; Xue et al., 2010; Zhao et al., 2013; Deng et al., 2018; 

Wei et al., 2018). The granites intruded into the lower part of the Shuangqiaoshan, 

Sibao and their equivalent groups (Fig. 3; Shu, 2012; Yao et al., 2014a; Sun et al., 2017). 

The granites all contain peraluminous minerals such as muscovite, and display high 

ACNK values (e.g. Li et al., 2003a; Zhao et al., 2013; Yao et al., 2014a; Chen et al., 

2018). The granites in the southwest domain contain higher SiO2 compositions, as well 

as a higher proportion of older inherited grains (Fig. 6) (Li et al., 2003a; Wang et al., 

2006; Yao et al., 2014a) than those in the central domain. Likewise, the granites in the 

central domain show a transitional character between S-type and I-type affinities (Fig. 7; 

Wu et al., 2006; Xin et al., 2017). Amphibole and dioritic enclaves occur in the granites 

in the central domain as well, but are absent from those of the southwest domain (Sun et 

al., 2017). Moreover, the majority of zircons from S-type granites in the central 

Jiangnan Orogen show positive Hf values and low δ
18

O variations as compared to those 

than those from the southwest domain (Figs. 6, 8; Zhao et al., 2011; Wang et al., 

2013d). 

 

3.6 Deformation and structural features 

The Northeast Jiangxi and Shaoxing-Jiangshan fault zones constitute ductile shear 

zones (Charvet et al., 1996; Shu and Charvet, 1996). Microscopic shear indicators in 

the Northeast Jiangxi fault zone include pyrite pressure shadows, mica-fish tails, and 

dynamically recrystallized quartz aggregates (Shu and Charvet, 1996). Kinematic 
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analysis indicates that the shear zone experienced polyphase ductile deformation, 

including southeastward thrusting at around 950–900 Ma and later sinistral strike-slip 

ductile shearing (Shu and Charvet, 1996; Xu et al., 2015). Whereas shear structures are 

less developed in the Shaoxing-Jiangshan fault zone. They have only been observed 

from the Sibao Group in the southwest domain of the Jiangnan Orogen and are 

characterized by top to east thrusting and strike slip motion as inferred from 

asymmetric folds and crenulations, asymmetric σ-type porphyroclasts, asymmetric 

fabrics of feldspar and quartz porphyroclast, as well as blocks of shared basalts (Fig. 4). 

The timing of deformation has not yet been directly dated, but field relations and a 

regional unconformity suggest a varied timing of shearing across the orogen, at some 

time between 820-815 to 805 Ma. Extensive deformation observed in the Shuangxiwu 

and Shangxi groups within the Shaoxing-Jiangshan and Northeast Jiangxi fault zone is 

dated as early Paleozoic (Xu et al., 2015; Li et al., 2016, 2017), which likely 

overprinted and was possibly co-axial with an earlier Neoproterozoic fabric. S-type 

granitic plutons in the central and southwest domains also display gneissic textures. 

Elsewhere within the orogen, Precambrian ductile deformation structures are rarely 

observed and ill-defined. 

3.7 Metamorphism 

 Lithostratigraphic sequences and ophiolitic mélanges of the Jiangnan Orogen are 

primarily metamorphosed to lower greenschist facies. Timing of this metamorphic 

event has not been directly dated. But given the field relations that cleavage planes 

developed within greenschist facies metamorphic rocks stop at regional unconformity 

(Fig. 3), it must occurred before regional unconformity and after formation of the 

stratigraphic units, likely at ca. 820-815 Ma, which is coeval to the deformation of the 

Jiangnan Orogen. High-pressure blueschists (0.9~1.3 GPa, 250–450 ℃) also occur as a 

lens in ophiolitic blocks at Xiwan within the northeast Jiangxi suture zone and are dated 

at around 866 Ma (K-Ar on glaucophane) (Shu et al., 1994; Gao et al, 1996), but the 

precise metamorphic process (P-T-t paths) and settings remains unknown. Notably, in 
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areas within the Shaoxing-Jiangshan fault zone and the Cathaysia Block, amphibolite to 

lower granulite facies metamorphism at ca. 446 ± 5 have been reported and are 

correlated with Phanerozoic orogenic movements (Shu, 2012; Wang et al., 2017). 

These events overprint and hinder recognition of Neoproterozoic metamorphic events 

in the Jiangnan Orogen. 

4. Age and nature of convergent margin successions and implications 

for crustal growth patterns 

Field relations, along with petrological, geochronological, isotopic and chemical 

data from igneous and sedimentary units (Shuangxiwu, Lengjiaxi, Sibao and their 

equivalents) across the Jiangnan Orogen, are consistent with formation along one or 

more convergent plate margins between ca. 970 Ma to 820 Ma (Figs. 9, 10, 11, 12; e.g. 

Zhou et al., 2004, 2014; Li et al., 2009, 2016b; Wang et al., 2014b, 2016b; Zhang and 

Wang, 2016; Yao et al., 2016a; Cui et al., 2017; Zhang et al., 2012c; 2017). This marks 

an overall period of crustal growth within the orogen (Figs. 5, 6, 10, 13; e.g. Wang et al., 

2013d, 2014b; Yao et al., 2013; 2015). Subduction polarity is inferred as northwest or 

west directed beneath the northeast-central and southwest Jiangnan Orogen, 

respectively, based on the ductile southeast-directed and east-directed compressional 

structures in the orogen (Figs. 3, 4; Shu and Charvet, 1996; Xu et al., 2015; Yao et al., et 

al., 2016a). 

 

4.1 The juvenile Huaiyu arc, northeast domain of the Jiangnan Orogen 

The volcanic rocks and their intrusive equivalents within the Shuangxiwu Group 

display consistent intra–oceanic magmatic arc geochemical features with enrichment in 

LILEs and depletion of HFSEs (Nb–Ta, Zr–Hf) and plot in the island arc field (Fig. 9; 

Ye et al., 2007; Chen et al., 2009; Li et al., 2009; Yao et al., 2014c, 2016b). Similar 

chemical signatures have been observed in the I-type intrusions within the group (Ye et 

al., 2007; Yao et al., 2016b). Whole rock Nd (3 < εNd(t) < 10) and Sr ((87Sr/86Sr)i < 
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0.704) isotopic data for the volcanic suites of the Shuangxiwu Group indicate they were 

derived from a depleted mantle source with no obvious crustal contamination (Fig. 10), 

whereas whole rock O isotopes reveal traces of minor sea water alteration (Shen et al., 

1992). Furthermore, zircon grains from the I-type bodies, along with the Shuangxiwu 

volcanic rocks, all yield positive εHf(t) values with model ages at 1.1–0.95 Ga (Fig. 5), 

and thus are indicative of a young juvenile source with no older crustal component. 

Whole rock Nd analyses yield similar results with model ages of 1.1–0.9 Ga (Li et al., 

2009). Overall age data from the Shuangxiwu Group and intrusions display a single 

early Neoproterozoic age population at ca. 970–850 Ma and lack older xenocrysts (Fig. 

5). Therefore, we conclude that the northeast domain consists of Neoproterozoic 

juvenile arc lithologies (Shuangxiwu Group), termed the Huaiyu arc. This is also 

consistent with the presence of ophiolites along boundaries of the domain (Li et al., 

1999; Shu et al., 2006). 

4.2 Convergent continental margin successions in the central and southwest 

Jiangnan domains 

Field relations, age patterns, isotopic and chemical features across the central and 

southwest domains of the Jiangnan Orogen indicate a convergent continental margin 

setting extending from around 890–880 Ma to 820 Ma with a westward decrease in age 

(Figs. 5, 9, 10, 11, 12, 13). 

Ca. 870–820 Ma igneous suites in both domains, mostly tholeiitic mafic-ultramafic 

rocks concentrated at ca. 830 Ma, along with minor intermediate–felsic lithologies and 

I-type granite concentrated at ca. 845 Ma, yield subduction related geochemical 

signatures with typical depletions in HFSEs, such as Nb, Ta and Ti (Fig. 5, 9; e.g., 

Zhou et al., 2004; Zhao and Zhou, 2013; Chen et al., 2014; Wang et al., 2014a; Yao et 

al., 2014a; Zhang and Wang, 2016). These lithologies mostly display higher initial 

87
Sr/

86
Sr values and variable but lower and mostly negative εNd(t) values (Fig. 10 and 

references therein), than the northeast domain, indicating input of older crustal 

components or subduction fluid and trench sediments in the arc magma source. 
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Crustal contamination is also inferred from relatively lower and varied zircon εHf(t) 

values (0 < εHf(t) < 10) of grains with ages close to timing of crystallization of the rock 

suites (Fig. 5; e.g. Zhang and Wang, 2016; Chen et al., 2017; Sun et al., 2017), as well 

as their varied model ages of 1.5–0.9 Ga (Fig. 5 and references therein). In addition, 

older inherited zircon grains within the rock suites from the two domains display 

varied Hf isotopes and a wide range of model ages from Archean to earliest 

Neoproterozoic (Fig. 5). These data indicate the presence of evolved older crustal 

components in these arc magmatic suites and are consistent with age patterns of the 

S-type granites in both domains (Fig. 6). A few basaltic layers, or boudins within the 

Lengjiaxi Group, display LREE depleted patterns and depleted Nd isotopes (5 < εHf(t) 

< 10) that are comparable to N-MORB type basalt (Fig. 9; Zhang et al., 2013b; Yao et 

al., 2014b), which possibly reflect relics of sea mounts from subducting oceanic crust. 

Zhang et al. (2013) also inferred a back-arc basin setting for the N-MORB type basalts. 

In addition, E-MORB type basaltic layers have also been observed within the 

Shuangqiaoshan Group in the southeast margin of the central domain and are suggested 

as related to formation of retro-arc basins (Sun et al., 2017). 

Detrital zircon grains from sediments of the Shuangqiaoshan Group and its 

equivalents in the central domain are dominated by ages in the range 880–820 Ma, 

which are close to the age of sedimentation (Figs. 11, 12). Archean and 

Mesoproterozoic detritus only constitute some 15% of dated grains. In contrast, zircons 

from the Sibao and Fanjinshan groups in the southwest domain contain 45% Archean to 

Mesoproterozoic aged detritus and other 50% in the range ca. 880–820 Ma (Fig. 11). 

All sedimentary successions in the two domains plot in the convergent margin field 

(Fig. 12; Cawood et al., 2012), consistent with their reported arc related geochemical 

data (Wang et al., 2012a). However, the Sibao Group and its equivalent units, exposed 

in the central and southwest Jiangnan domains, have also been interpreted to have 

formed in a within plate setting based on similarity of age patterns between this unit and 

the overlying Danzhou groups (Yang et al., 2015), with the arc related geochemical 
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signatures interpreted as inherited from earlier arc systems (Li et al., 2003a, 2008b). 

Locally in the southwest Jiangnan domain, age patterns of the Sibao and Danzhou 

groups are comparable, perhaps due to less developed retro-continental arc basins and 

arc systems, but overall data and relations of units above and below the unconformity 

across the orogen display variably distinctive characters (Figs. 11, 14; Wang et al., 

2012a, 2014b; Yao et al., 2019). More importantly, the interpretation is also 

inconsistent with the regional unconformity between Jiangnan Orogen and overlying 

Nanhua Basin succession at around 815–805 Ma (Fig. 11, 14), deformation and 

metamorphism between ca. 820 to ca. 815–805 Ma, the associated switch in 

geochemical signatures from convergent margin to within-plate (Fig. 9; Shu, 2012; Yao 

et al., 2014b; Wang et al., 2012c), and the transition from juvenile to crustal isotopic 

signatures (Figs. 5, 13, 15). 

The presence of Archean to Mesoproterozoic zircons, both as detritus in 

convergent margin sedimentary rocks and as xenocrysts within arc type mafic igneous 

suites in the central and southwest domains of the Jiangnan Orogen (Fig. 5, 11), 

suggest the two domains include an older crustal basement, consistent with the 

Archean and Paleoproterozoic Hf and Nd model ages (Figs. 5, 13). Moreover, 

significant older crustal derived detritus in the southwest domain suggests a possible 

less developed retro-continental arc basin as compared to the central domain, as is 

reflected in the discrimination diagram of depositional settings (Fig. 12). Thus, the 

central and southwest domains resemble a Cordilleran (Andean) type convergent 

continental margin, rather than the intra-oceanic setting of the northeast domain. The 

related sedimentation occurred at approximately 890–820 Ma in a retro-arc and/or 

fore-arc continental margin basin. The retro-arc and fore-arc sediments, along with 

continental arc igneous suites, ophiolitic mélanges, sea mounts and turbidite, were 

accreted during continental assembly and formed the Sibao, Shuanqiaoshan and their 

equivalent groups. 

More than 75% detrital zircons within the ca. 880-820 Ma populations obtained 
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from the Shuangqiaoshan and equivalents units in the central domain are juvenile (0 < 

εHf(t)) and are suggestive of significant crustal growth at this age range (Fig. 13), 

whereas the equivalent sedimentary units in the southwest domain (Sibao and 

Fanjingshan groups) contain a greater proportion of older grains, with only 55% of 

grains yielding ages close to the depositional age (Fig. 11). Consequently, crustal 

reworking at around 880–820 Ma was less important in the central domain, but 

significant in the southwest domain (Fig. 13 and references therein). 

 

5. Geodynamic significance of S-type granites in the Jiangnan 

Orogen: product of accretionary orogenic belt 

Neoproterozoic S-type granites occur in the central and southwest domains of the 

Jiangnan Orogen, but are absent in the northeast domain (Huaiyu Terrane) (Fig. 1). The 

voluminous S-type granitoids have been considered to be generated by partial melting 

of crust related to a mantle plume and associated regional extensional event (Li et al., 

2003a, 2003b), or to have formed in a post-collisional setting following continental 

assembly of South China (Wang et al., 2006; Zhao and Cawood, 2012 and references 

therein; Zhao et al., 2013). Any model for genesis of S-type granites in the Jiangnan 

Orogen must account for the following: 1) they yield similar ages of ca. 835–815 Ma 

(Fig. 6), or possibly as early as 845 Ma (Deng et al., 2018); 2) zircon Hf and O isotopes 

indicate a juvenile crust source for the S-type granites in the central domain but a source 

involving more reworked crustal compositions for those in the southwest domain (Fig. 

6, 8); 3) ages of S-type granites overlap with arc magmatic suites and ophiolites, as well 

as convergent margin sedimentation as young as ca. 820–815 Ma (Figs. 5, 6, 11; e.g. 

Zhang et al., 2012b, 2012c, 2015; Chen et al., 2014; Wang et al., 2014b, 2015a, 2016b); 

4) whole rock Sr and Nd isotopes of the granites and arc igneous suites in the central 

domain are comparable, as are those in the southwest domain (Fig. 10). 

The prerequisite of S-type granite generation is to have a metasedimentary source 

or at least a high enough proportion of sedimentary rocks to produce peraluminous 
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compositions (e.g., Chappell and White, 1974; Ague and Brimhall, 1987; Collins, 

1996), and to be buried to middle or lower crust depths prior to anataxis. Many studies 

prefer burial and anataxis of the sedimentary rocks to occur in a post-collisional setting 

after continent-continent collision such as the Miocene granites in the Himalayas 

(Barbarin, 1998). Li et al. (2003a) also suggested a plume rifting model to achieve 

anataxis of sediments that produced the S-type granites in the Jiangnan Orogen. 

However, S-type granites also occur in accretionary orogens and indeed were originally 

defined on the basis of their occurrence in the Terra Australis accretionary orogen in 

eastern Australia (Chappell and White, 1974; Chappell, 1994). In accretionary settings, 

their formation has been related to extension generated re-melting of back-arc and 

arc-trench detritus during kinematic readjustments along the convergent plate margin 

(Collins and Richards, 2008; Kemp et al., 2010; Cawood et al., 2011). 

S-type granites and subduction zone magmatism in both the central and southwest 

domains are temporally and spatially coincident (Fig. 5, 6; e.g. Wang et al., 2006, 2014a; 

Zhou et al., 2004; Yao et al., 2014a; Chen et al., 2014, 2017), as well as with sediment 

accumulation in back-arc or fore-arc basin settings (e.g., Wang et al., 2012a, 2014b; 

Zhang et al., 2017; Su et al., 2018a; Yao et al., 2019). S-type granites in the central 

Jiangnan domain display some subduction related geochemical features similar to arc 

igneous suites and plot in the field of volcanic arc granite (Fig. 7; e.g. Wu et al., 2006; 

Sun et al., 2017; Xin et al., 2017). In contrast, those in the southwest domain display 

positive Rb, Cs anomalies and negative Sr, Ba, Zr, Hf anomalies that are similar to 

highly evolved granites (Fig. 7; Yao et al., 2014a). The majority of the granite samples 

in the central domain display low whole rock initial 
87

Sr/
86

Sr ratios (< 0.7085) and high 

εNd(t) values in the range of -0.2 ~ -3 (Fig. 10), which are comparable to arc igneous 

suites in the domain, similar to S-type granites reported from the New England region 

in east Australia (cf., Flood and Shaw, 1977; Shaw and Flood, 1981). The results also 

coincide with the mostly positive εHf(t) values and low δ
18

O values (6 ~ 10) of zircon 

grains from these granites, suggesting partial melting of juvenile lithologies and 
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addition of juvenile input to form these granites (Fig. 8; Kemp et al., 2009; Shaw and 

Flood, 2009; Shaw et al., 2011), consistent with their younger latest Mesoproterozoic 

average model ages (Fig. 6). The majority of the granite samples in the southwest 

domain display higher whole rock initial 
87

Sr/
86

Sr ratios (>0.707) and lower εNd(t) 

values (< –3) (Fig. 10), with peak Nd model ages constrained at ca. 1.85 Ga, and 

coincide with zircon Hf-O isotopes showing consistent crustal signatures, along with 

zircon Hf model ages concentrated at ca. 1.9 Ga (Fig. 6). The overall isotopic data of 

S-type granites in the southwest Jiangnan domain indicate partial melting of crustal 

components of various ages, but with an average age of Paleoproterozoic, and are 

comparable to isotopic signatures of those of the Terra Australis Orogen (Kemp et al., 

2009). 

Considering overall field and age relations, as well as chemical and isotopic data, 

we infer an accretionary orogenic setting for emplacement of S-type granites in the 

Jiangnan Orogen. Heat necessary for crustal melting to form the S-type granites within 

the two domains may reflect lithospheric extension within the upper plate of a 

subduction zone associated with slab roll back, in a similar scenario to that invoked in 

other accretionary orogens (Collins and Richards, 2008; Cawood et al., 2009, 2011). 

The S-type granites in the central domain were likely emplaced in a subduction zone, 

formed by partial melting of arc sedimentary rocks and fore-arc complexes, along with 

some magma mixing of mantle and crust derived magmas as indicated by dioritic 

enclaves within the granites (Fig. 4), similar to the Paleozoic New England accretionary 

belt (Cawood et al., 2011; Shaw et al., 2011). The melting in the southwest domain 

involved a more evolved metasedimentary source, perhaps similar to the Lachlan 

segment of the Terra Australis Orogen (Keay et al., 1997; Kemp et al., 2009), where 

the S-type granites formed in a back arc setting through melting of both continental and 

arc derived metasedimentary rocks. 
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6. An accretionary geodynamic model for the Jiangnan Orogen and 

constraints on final continental assembly 

6.1 Accretionary history of the Jiangnan Orogen 

Data and field relations outlined above indicate that the Jiangnan Orogen consists 

of three distinct tectonostratigraphic assemblages: the northeast domain (Huaiyu 

Terrane), the central domain, and the southwest domain, with each constituting part of 

an accretionary orogenic belt (Figs. 16 and 17). Based on these data, the following 

geodynamic model is proposed. Subduction in an intra-ocean setting of the Ancient 

South China Ocean between ca. 1000-820 Ma resulted in the 970–850 Ma island arc 

magmatism and related sedimentation forming the northeast domain (Fig. 16A), along 

with the ca. 1000– 825 Ma ophiolitic remnants that are preserved along the southeast 

and west margins of the domain. For the central and southwest domains, subduction of 

oceanic crust had commenced by 880–870 Ma, resulting in continental margin arc 

magmatism and sedimentation (Figs. 16B, 17). Ophiolitic mélanges occur along the 

northeastern and eastern margins of the central and southwest domains. The magmatic 

and sedimentary records indicate subduction continued within the two domains until 

around 820–815 Ma. Widespread S-type and minor I type granites were emplaced 

during the latter part of this history (i.e., mostly 835–815 Ma) (Fig. 16C–1, –2). Starting 

at 845 Ma, slab retreat triggered mantle wedge upwelling, providing thermal input for 

partial melting of convergent continental margin sedimentary rocks and/or fore-arc 

assemblages and led to S-type granite emplacement (Fig. 16C–1). Slab rollback also 

contributed to rapid continental growth in the central Jiangnan domain as inferred from 

isotopic signatures of various lithologies. The slab rollback process was immediately 

followed by the assembly of Yangtze and Cathaysia blocks with the domains of the 

intervening Jiangnan Orogen. 

6.2 Constraints on timing of assembly of South China 

 Estimates for the timing of final assembly of the Yangtze and Cathaysia blocks 
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along the Jiangnan Orogen vary from ca. 880 Ma to ca. 830 Ma (e.g. Li et al., 1999; 

2007; Wang et al., 2006, 2014c; Shu, 2012 and references therein; Yao et al., 2014a; 

Zhao, 2015; Cui et a., 2017; Xia et al., 2017; Wang et al., 2019). But the overall 

character of, and relationship between, the rock units within the Jiangnan Orogen, 

indicate that convergent margin sedimentation and arc-trench assemblages range in age 

from 970 Ma to 820 Ma (Fig. 5; Fig. 11). In addition, accretion of arc-basin and 

continental terranes within Cathaysia to form a unified block occurred at around ca. 900 

Ma (Wang et al., 2014c), but arc magmatism along the margin of the block continued 

from ca. 1.0 Ga to ca. 860 Ma, or even ca. 825 Ma (Shu et al., 2008; Zhao, 2015; Xia et 

al., 2017; Wang et al., 2018). Thus, age and duration of subduction system in the 

Jiangnan Orogen and Cathaysia Block are comparable and suggest that final 

continental assembly did not take place until at least ca. 820–815 Ma. The upper age 

limit on assembly of the South China Craton is provided by the regional unconformity 

at the base of the overlying Nanhua Basin, which occurred at ca. 825 Ma in the 

northeast domain and at ca. 815–805 Ma in the central and south domains (Gao et al., 

2010, 2011; Yao et al., 2013, 2015). Furthermore, the ages of regional deformation and 

associated greenschist facies metamorphism in the central and southwest domains are 

constrained between ca. 820–815 Ma and ca. 810-805 Ma, and at some time before ca. 

825 Ma in the northeast domain. Therefore, we suggest the final assembly of 

continental blocks of South China, including the domains within the Jiangnan Orogen, 

occurred between ca. 825–805 Ma. Notably, the assembly processes display variations 

across the Jiangnan Orogen, and those in the northeast (ca. 825 Ma) occurred  before 

those in the central and southwest domains (ca. 820 Ma to 810-805 Ma), consistent with 

age and distribution of trench-arc-basin assemblages across the orogen. The final 

continental assembly of South China occurred in a short timing interval, unlike most 

collisional orogen (Dewey, 2005), and favors an accretionary model for the Jiangnan 

Orogen and a double-sided subduction model for South China, which resulted in ‘soft 

collision’ of arc and continental blocks (Zhao, 2015). 
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7. Neoproterozoic paleogeography of South China 

Paleogeographic models for the position of South China in Rodinia include internal 

(Li et al., 2008b), external (e.g. Cawood et al., 2013, 2018; Yu et al., 2008; Wang et al., 

2013e; Zhao et al., 2018a), and separate plate settings (Merdith et al., 2017). 

Differences between these models are largely based on the ages and characters of rock 

units in South China and India, to which South China is inferred to be joined in some of 

these models. There is a paucity of paleomagnetic data to adequately constrain the 

position of these blocks within Rodinia in the early Neoproterozoic. 

Late Mesoproterozoic to middle Neoproterozoic belts in South China display an 

apparent overall northwestward decrease in age. Field relations and data indicate that 

the Jiangnan accretionary orogenic belt was active from around 970 Ma to 820–815 

Ma. Isotopic and geochemical data from the Panxi-Hannan belt along western and 

northwest margins of the Yangtze Block provide evidence for subduction-related 

accretionary orogenic activity continuing to ca. 750 Ma and possibly ca. 700 Ma (e.g. 

Zhou et al., 2002; Dong et al., 2012, 2017; Wang et al., 2016c; Zhao et al., 2018b; Sun 

et al., 2019). Although some works, favor an extension, rather than a convergent setting 

for the belt during this time (e.g. Li et al., 2003b). Recent data also suggest that 

subduction and accretion in the Wuyi-Yunkai domain of the Cathaysia Block was active 

at ca. 1000–900 Ma, and those in the northern margin of Cathaysia continued to ca. 825 

Ma (Shu et al., 2008; Zhang et al, 2012a; Wang et al., 2013e, 2014c; Xia et al., 2017). 

Fingerprints of Mesoproterozoic activity, including amphibolite facies metamorphism 

at ca. 1.3–1.0 Ga, have been reported from Hainan Island, southern Cathaysia (Wang et 

al., 2015b; Yao et al., 2017; Zhang et al., 2019). But the relationship of Hainan Island to 

the rest of South China at this time in unconstrained. 

Polar wonder paths of South China and India at ca. 820–802 Ma are comparable 

(Niu JW et al., 2016), indicating the two blocks were connected at this time. A possible 

coeval paleopole for Australia has been reported, but with poorly constrained ages 
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(Niu JW et al., 2016 and references therein). It is not until the Ediacaran period that a 

close link between the South China Craton and Australia can be established, with 

comparable apparent polar wander paths (Yang et al., 2004; Jing et al., 2015). Thus, in 

terms of paleomagnetic data, both the external model and separate plate model are 

permissible. On the other hand, convergent margin deposition and magmatism ceased 

at ca. 820 Ma in the Jiangnan Orogen and as young as 750–700 Ma in the Panxi-Hannan 

belt, arguing against an internal position of South China within Rodinia. This 

conclusion is consistent with the general absence of late Mesoproterozoic detritus in 

units of the Jiangnan Orogen and Nanhua Basin (Fig. 11, 14). The overall detrital age 

patterns of the sedimentary rocks from South China, India and west Australia are 

similar (Cawood et al., 2018; Wen et al., 2018), and indicative of close spatial affinities 

of these blocks. The Panxi-Hannan belt on the margin of South China is coeval with the 

Seychelles belt in west India (e.g. Ashwal et al., 2013), indicative a close link between 

India and South China. Therefore, overall paleomagnetic and geological data favor a 

position for South China adjacent to northern Australia and India, as shown in Figure 

18. 

Mesoproterozoic metamorphism in Hainan Island can be correlated with the 

Rayner-Eastern Ghats and Albany-Fraser belts (Cawood et al., 2008; Dasgupta et al., 

2013), suggesting the region was situated somewhere near eastern India and southwest 

Australia. Hainan is separated from mainland China and may not have become part of 

Cathaysia until the early Paleozoic (Xu et al., 2014b; Cawood et al., 2018). On the other 

hand, the Jiangnan Orogen and Yangtze Block were accreted to Cathaysia on the 

northern Rodinia margin at around ca. 820-805 Ma. Active plate boundaries continued 

to ca. 750 Ma along the Panxi-Hannan belt on the northern and western margins of 

South China. 

 

8. Conclusion 

1. The Jiangnan Orogen can be divided into three domains: the northeast (Huaiyu 
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terrane), central and southwest domains. The Shuangxiwu Group in the northeast 

domain formed in an intra-oceanic arc. The Shuangqiaoshan, Sibao and their equivalent 

groups in the central and southwest domains are metasedimentary dominated and were 

mainly sourced from a ca. 880–820 Ma continental magmatic arc system, with strata 

accumulating in arc related basins.  

2. The S-type granites in the central and southwest domains of the Jiangnan Orogen, 

range from ca. 845–815 Ma. They were, emplaced in an accretionary convergent plate 

margin setting, prior to the final assembly of the South China Craton, rather than during 

plume rifting or post-continent collisional extension. The granites were triggered by 

slab roll back, which enabled melting the fore-arc and/or back-arc basin assemblages. 

3. The Jiangnan Orogen is an accretionary orogenic belt. Assembly of the Yangtze 

and Cathaysia blocks was completed by ca. 815–805 Ma, followed by development of a 

continental extensional basin, namely the Nanhua Basin. 

4. Limited paleomagnetic data and sedimentation records, along with rock relations 

and patterns across South China, suggest it occupied an external position on the 

periphery of Rodinia, between India and west Australia. 
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Table Captions 

 

Supplementary Table 1. Zircon age distributions for arc type igneous suites in the 

Jiangnan Orogen. 

 

Supplementary Table 2. Zircon Hf distributions for arc type igneous suites in the 

Jiangnan Orogen. 

 

Supplementary Table 3. Zircon age distributions for S-type granites in the central and 

southwest domains of the Jiangnan Orogen. 

 

Supplementary Table 4. Zircon Hf and O isotope distributions for S-type granites in the 

central and southwest domains of the Jiangnan Orogen.  

 

Supplementary Table 5. Whole rock geochemical data for S-type granites in the central 

and southwest domains of the Jiangnan Orogen. 

 

Supplementary Table 6. Whole rock geochemical data for volcanic and intrusive 

assemblages within the Sibao and equivalent groups of the Jiangnan Orogen. 

 

Supplementary Table 7. Whole rock Sr and Nd isotopes for S-type granites and igneous 

assemblages within the Sibao and equivalent groups of the Jiangnan Orogen. 

 

Supplementary Table 8. Zircon age distributions for the Shuangxiwu/ Shuangqiaoshan/ 

Sibao and equivalent groups in the Jiangnan Orogen. 
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Supplementary Table 9. Zircon Hf isotope distributions for the Shuangxiwu/ 

Shuangqiaoshan/ Sibao and equivalent groups in the Jiangnan Orogen. 

 

Supplementary Table 10. Zircon age distributions for the Heshangzhen/ Dengshan 

/Danzhou and equivalent groups in the Jiangnan Orogen. 

 

Supplementary Table 11. Zircon Hf distributions for the Heshangzhen/ Dengshan 

/Danzhou and equivalent groups in the Jiangnan Orogen. 

 

Figure Captions 

Fig. 1. Geological sketch map of the Jiangnan orogenic belt, South China Craton (1: 

Shaoxing - Jiangshan - Pingxiang - Shuangpai fault; 2: Zhenghe - Dapu fault; 3: 

Northeast Jiangxi fault; 4: Jiujiang - Shitai fault; 5: Xiangtan-Miluo fault; 6: Tanlu fault; 

7: Longmenshan - Ailaoshan - Songma fault; SECCLMVZ: Southeast China costal late 

Mesozoic volcanic zone). 

 

Fig. 2. Time space plot showing age range of principal rock units and tectono-thermal 

events within the Jiangnan orogenic belt.  

 

Fig. 3. Regional cross-sections for the Jiangnan Orogen, locations of cross-sections can 

be found in Fig. 1. Abbreviations: Pt3shx – Shuangxiwu Group; Pt3hsz – 

Heshangzhen Group; Pt3z – Sinian System; Pt3shs – Shuangqiaoshan Group; Pt3ds – 

Dengshan Group; Pt3sx – Shangxi Group; Pt3lk – Likou Group; Pt3l – Lengjiaxi 

Group; Pt3b – Banxi Group; Pt3sb – Sibao Group; Pt3dz – Danzhou Group. 

 

Fig. 4. Representative field photos from the Jiangnan orogenic belt, (A) unconformity 
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between the Shuangxiwu and Heshangzhen groups, northeast Jiangnan; (B) 

unconformity between the Shangxi and Likou groups; (C) unconformity between the 

Shuangqiaoshan and Dengshan groups; (D) unconformity between the Lengjiaxi and 

Banxi groups; (E) tight folds developed in the Lengjiaxi Group; (F) unconformity 

between the Sibao and Danzhou groups; (G) sheared quarts porphyroblasts indicating 

dip–slip motion in the Sibao Group; (H) folded structures within the Sibao Group; (I) 

eastward shearing structures of jasper blocks developed within ophiolitic mélange 

within the Sibao Group; (J) pillow basalt in the Sibao Group; (K) diorite enclave within 

the Jiuling granitic pluton in the central Jiangnan domain; (L) sheared Sanfang S-type 

granitic pluton in the southwest domain. See Fig. 3 for abbreviations. 

 

Fig. 5. A comparison of Zircon age spectra and zircon Hf isotopes of convergent plate 

margin igneous suites from various domains of the Jiangnan Orogen. Sources of data, 

(a) zircon age data from the  northeast Jiangnan domain (Huaiyu Terrane) (Ye et al. 

2007; Li et al., 2008a; Chen et al. 2009, 2016; Yao et al. 2016a); (b) zircon age data 

from the central and southwestern domains of the Jiangnan Orogen (Zhou et al. 2009; 

Zhang et al. 2012c, 2013a, 2013b; Zhao and Zhou 2013; Wang et al. 2014b; Zhang and 

Wang 2016; Yao et al. 2014a, 2015; 2016b; Cui et al., 2017; Chen et al., 2017; Xia et al. 

2017; Sun et al. 2017); (c) zircon εHf(t) versus crystallization age diagram for the 

northeast domain (Huaiyu Terrane) (Li et al., 2009; Yao et al., 2016b); (d) zircon εHf(t) 

versus crystallization age diagram for the central and southwest domains (Zhang et al., 

2013a; Yao et al., 2014a, 2015, 2016a; Cui et al., 2017; Sun et al., 2017); (e) zircon Hf 

model age histogram for the northeast domain; (f) zircon Hf model age histogram for 

central and southwest domains (Zhang et al., 2013a; Yao et al., 2014a, 2015, 2016a; Cui 

et al., 2017; Sun et al., 2017); Data used in plots given in Supplementary Table 1 and 2. 

 

Fig. 6. (a) and (b) zircon age spectra (data sources: Li et al., 2003a; Wang et al., 2006; 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Wu et al., 2006; Xue et al., 2010; Zhao et al., 2013; Sun et al., 2017; Xin et al., 2017; 

Deng et al., 2018; Yao et al., 2014a; Zhao et al., 2013; Ma et al., 2016); (c) and (d) 

zircon εHf(t) versus crystallization ages; (e) and (f) Hf models ages; (data sources: Li et 

al., 2003a; Wang et al., 2006; Wu et al., 2006; Zhao et al., 2013; Sun et al., 2017; Deng 

et al., 2018; Yao et al., 2014a; Zhao et al., 2013; Ma et al., 2016; Xin et al., 2017) for 

S-type granite intrusions in the central and southwest domains of the Jiangnan orogenic 

belt, respectively. Data used in plots given in Supplementary Tables 3 and 4. 

 

Fig. 7. Primitive mantle-normalized incompatible element distribution spidergrams 

for (a) S-granite in the central Jiangnan domain (b) S-granite in the southwest 

Jiangnan domain, (the normalization values are from Sun and McDonough, 1989;  

McDonough and Sun, 1995); (Y + Nb)-Rb plot for (c) S-granite in the central 

Jiangnan domain (d) S-type granite in the southwest Jiangnan domain (after Pearce et 

al., 1984); Sources of data, central Jiangnan domain, Li et al., 2003a; Xin et al., 2017; 

Sun et al., 2017; Deng et al., 2018; Southwest domain, Li et al., 2003a; Wang et al., 

2006; Yao et al., 2014a; Wei et al., 2018. Data used in plots given in Supplementary 

Tables 5. 

 

Fig. 8. Plots of εHf(t) versus δ
18

O for the magmatic zircons with concordant ages in the 

S–type granites from the central and southwest domains of the Jiangnan orogenic belt. 

(Wang et al., 2013d; Zhao, et al. 2013). Data used in plots given in Supplementary 

Table 4. 

 

Fig. 9. (a) and (b), Hf–Th–Ta diagram (after Wood, 1980); (c), Ta/Yb–Th/Yb diagram 

(after Pearce, 1982), for Neoproterozoic igneous rocks from the Jiangnan orogenic belt. 

Data used in plots given in Supplementary Table 6. Sources of data: Chen et al., 

2014b, 2017; Zhou et al., 2009; Li et al., 2008a, 2009; Wang et al., 2004, 2008b, 
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2014a, 2015; Yao et al., 2016a, 2016b, 2014a, 2015, 2014b; Ye et al., 2007; Zhang et 

al., 2013a, 2012b, 2012c, 2013b, 2015b, 2018; Zhang and Wang, 2016; Zhao and 

Zhou, 2013; Sun et al., 2017; Cui et al., 2017. 

 

Fig. 10. (a) whole rock initial 
87

Sr/
86

Sr (t) versus crystallization ages and (b) whole rock 

εNd(t) isotopes for various igneous rocks from the Jiangnan orogenic belt. Data used in 

plots given in Supplementary Table 7. Sources of data: Chen and Jahn, 1998; Shen et 

al., 1992; Li et al., 2003a, 2009; Wang et al., 2006; Wu et al., 2006; Zhang et al., 

2012c, 2013b; Zhang and Wang, 2016; Chen et al., 2014, 2017; Wei et al., 2018; Deng 

et al., 2018.  

 

Fig. 11. A comparison of age spectra from pre-Nanhua succession in various locations 

of the Jiangnan Orogen. Sources of data, (a) Shangxi Group in the east segment of the 

central domain (Yin et al. 2013; Cui et al. 2015; Xu et al., 2014a; Wang et al., 2013c, 

2014b); (b) Shuangqiaoshan Group in the central domain (Wang et al., 2013c, 2014b; 

Li et al., 2016b); (c) Lengjiaxi group in the west segment of the central domain (Wang 

et al. 2014b, 2016a; Li et al. 2016b; Yao et al., 2018); (d) Fanjinshan Group in 

southwest Jiangnan Orogen (Zhou et al. 2009; Wang et al., 2010, 2014b; Ma et al., 

2016); (f) Sibao Group in southwest Jiangnan Orogen (Wang et al., 2012a; Yang et al., 

2015; Su et al., 2018a). Data used in plots given in Supplementary Table 8. 

 

Fig. 12. Depositional setting of the Lengjiaxi, Sibao and equivalent groups as inferred 

by discrimination plot of cumulative proportions vs. CA–DA of analyzed detrital 

zircons (after Cawood et al. 2012). (CA–DA: zircon crystallization ages minus 

deposition ages, which is also the lag time between zircon ages of crystallization and 

deposition. Field A: red field, convergent setting; Field B: blue field, collisional 

setting; Field C: green field, extensional setting). See text for discussion. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

Fig. 13. A comparison of zircon Hf isotopes from pre-Nanhua succession in various 

locations of the Jiangnan Orogen. Sources of data, (a) Shangxi Group in the central 

Jiangnan Orogen (Yin et al. 2013; Cui et al. 2015; Xu et al., 2014a; Wang et al., 2013c, 

2014b); (b) Shuangqiaoshan Group in the central Jiangnan Orogen (Wang et al., 2013c, 

2014b; Li et al., 2016b; Yao et al., 2018); (c) Lengjiaxi Group in the central Jiangnan 

Orogen (Wang et al. 2014b, 2016a; Yan et al., 2015; Yao et al., 2018); (d) Fanjinshan 

Group in the southwest Jiangnan Orogen (Zhou et al. 2009; Wang et al., 2010, 2014b; 

Ma et al., 2016); (e) Sibao Group in the southwest Jiangnan Orogen (Wang et al., 2012a; 

Yang et al., 2015; Su et al., 2018a). Data used in plots given in Supplementary Table 9. 

 

Fig. 14. A comparison of age spectra from the Nanhua successions in various locations 

of the Jiangnan Orogen. Sources of data, (a) Heshangzhen Group in the northeast 

domain (Yao et al. 2013; Wang et al., 2013a; Xu et al., 2014a); (b) Likou Group in the 

northeast segment of the central domain (Yin et al. 2013; Cui et al. 2015); (c) Dengshan 

Group in the central domain (Zhao and Zhou 2013; Zhang and Wang 2016; Yao et al. 

2016; Wang et al. 2014b); (d) Banxi Group in the west segment of the central domain 

(Yan et al., 2015; Wang et al., 2017); (e) Xiajiang Group in the southwest domain 

(Wang et al., 2010, 2012b; Ma et al., 2016); (f) Danzhou Group in the southwest 

domain (Wang et al., 2013a; Yang et al., 2015; Su et al., 2018a). Data used in plots 

given in Supplementary Table 10. 

 

Fig. 15. A comparison of zircon Hf isotopes from the Nanhua successions in various 

locations of the Jiangnan Orogen. (a) Heshangzhen Group in the northeast Jiangnan 

Orogen (Yao et al. 2013; Wang et al., 2013a; Xu et al., 2014a); (b) Likou Group in the 

central Jiangnan Orogen (Yin et al. 2013; Cui et al. 2015); (c) Dengshan Group in the 

central Jiangnan Orogen (Zhao and Zhou 2013; Zhang and Wang 2016; Yao et al. 2016; 
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Wang et al. 2014b); (d) Banxi Group in the central Jiangnan Orogen (Yan et al., 2015); 

(e) Xiajiang Group in the southwest Jiangnan Orogen (Wang et al., 2010, 2012b; Ma et 

al., 2016); (f) Danzhou Group in the southwest Jiangnan Orogen (Wang et al., 2013a; 

Yang et al., 2015; Su et al., 2018a). Data used in plots given in Supplementary Table 

11. 

 

Fig. 16. Tectonic model for the Jiangnan Orogen. See text for discussion.  

 

Fig. 17. Distribution of Neoproterozoic trench-arc-basin systems and orogenic belts in 

South China. 

 

Fig. 18. Schematic paleogeographic reconstructions showing position of the Cathaysia 

and Yangtze blocks in inferred super-continental reconstructions at Rodinia assembly 

at ca. 820 Ma (adapted from Torsvik, 2003 and Cawood et al., 2018). Abbreviations: 

CA – Cathaysia. 
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