
On Normalish subgroups of the R. Thompson
groups⋆

Collin Bleak1[0000−0001−5790−1940]

University of St Andrews, St Andrews, Scotland, UK, KY16 9SS
cb211@st-andrews.ac.uk http://www-groups.mcs.st-and.ac.uk/∼collin/

Abstract. Results in C∗ algebras, of Matte Bon and Le Boudec, and
of Haagerup and Olesen, apply to the R. Thompson groups F ≤ T ≤ V .
These results together show that F is non-amenable if and only if T has
a simple reduced C∗-algebra.
In further investigations into the structure of C∗-algebras, Breuillard,
Kalantar, Kennedy, and Ozawa introduce the notion of a normalish sub-
group of a group G. They show that if a group G admits no non-trivial fi-
nite normal subgroups and no normalish amenable subgroups then it has
a simple reduced C∗-algebra. Our chief result concerns the R. Thompson
groups F < T < V ; we show that there is an elementary amenable group
E < F (where here, E ∼= . . .) ≀ Z) ≀ Z) ≀ Z) with E normalish in V .
The proof given uses a natural partial action of the group V on a regular
language determined by a synchronizing automaton in order to verify
a certain stability condition: once again highlighting the existence of
interesting intersections of the theory of V with various forms of formal
language theory.

Keywords: Thompson’s group · amenable · C∗-simplicity · regular
language · synchronizing automata · group actions · normalish sub-
groups · wreath product.

1 Introduction

In this note we show that for the R. Thompson groups F ≤ T ≤ V there is
an elementary amenable group E ≤ F so that E is normalish in each of the
groups F , T , and V .

1.1 General motivating background

Various weakenings of the notion of normal subgroup were introduced between
2014 and 2018 in order to obtain insight into the C∗-simplicity of the (reduced)
group algebra C∗

r (G) of a group G. This has had particular impact for infinite
simple groups such as the R. Thompson groups T and V . The concept of a nor-
malish subgroup of a group was introduced by in the seminal paper of Breuilliard,
⋆ The author wishes to gratefully acknowledge support from the EPSRC grant

EP/R032866/1.
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Kalantar, Kennedy, and Ozawa [5]. They show that a discrete group G with no
non-trivial finite normal subgroups and no amenable normalish subgroups is C∗-
simple. In that paper, they also obtain the just-previously-announced result of
Haagerup and Olesen [8] that if the reduced group C∗-algebra C∗

r (T ) is simple,
then F is non-amenable.

Meanwhile, Kennedy in [9] shows that a countable group G is C∗-simple (has
simple reduced C∗-algebra) if and only if G admits no non-trivial amenable URS
(uniformly recurrent subgroup). Using this, Le Boudec and Matte Bon in [10]
show the converse of the stated Haagerup-Olesen result, if F is non-amenable,
then the reduced C∗-algebra of T must be simple.

Indeed, for those interested in the question of the non-amenability of the
R. Thompson group F , the focus has passed through the exploration of the
uniformly recurrent subgroups of T to understanding the point stabilisers of the
action of T on its Furstenberg boundary. Here, there are two possible cases, and
F will be non-amenable precisely if these point stabilisers are trivial (see [10]).
Despite this shift, we find the concept of normalish subgroups of simple groups
like F and T to be of interest, and that is the focus of this note.

1.2 Core results

Let G ≤ H be groups. The group G is normalish in H if for any finite set of
elements {c1, c2, . . . , ck} the intersection

k⋂
i=1

Gci

is infinite.
Our chief result is the following:

Theorem 1 There is an embedding of the elementary amenable group

∞(Z o Z) = . . . o Z) o Z) o Z

into R. Thompson’s group F so that the image group E is normalish in V .

Observe the corollary that E is then an amenable normalish subgroup of
both F and of T as well.

1.3 Specific history of the core result

We should mention some other history related to this result. In [1] we showed the
existence of an infinite direct sum of copies of Z that could be found embedded
as a normalish amenable subgroup of F , and discussed our conjecture (disproven
here) that any normalish amenable subgroup of T should either contain an em-
bedded subgroup isomorphic to R. Thompson’s group F or to a non-abelian
free subgroup. Meanwhile, the paper [10] shows that V contains an amenable
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normalish torsion group Λ: the subgroup of V consisting of those elements which
are automorphisms of the infinite rooted binary tree T2. These automorphism
arise as finite compositions of the tree automorphisms that swap the two child
vertices of any particular vertex (copying the dependent trees identically). The
group Λ is normalish for reasons that are very similar to why our own group
E is normalish, and it is a limit of finite groups hence elementary amenable.
However, the group Λ is not a subgroup of F nor of T .

1.4 An unexpected visitor: a controlling synchronizing automaton

A note on the proof: for experts on R. Thompson groups, the embedded copy of
E that we find will clearly be normalish in V after short inspection. However,
the technical proof of this requires a bit of work in that the conjugation action
on our generators needs to not introduce too many breakpoints into our group
elements, and also in that we need to have enough group elements that the set is
essentially closed under translations by arbitrary elements in V . The second task
is the harder one if we are to avoid having further subgroups isomorphic to R.
Thompson’s group F . We approach this by introducing a partial action of V on
a regular language which is determined by a synchronizing automaton. We link
this to the action of V on an infinite specified subset of E. By considering our
partial action on the regular language, we can show there is an infinite subset
of E that is not moved off of itself too much under the action of finitely many
elements of V .

Thanks:
We would like to thank Adrienne Le Boudec for kind and informative conversa-
tions where he has helped the author of the present note to understand some of
the amazing events that have transpired in the field of C∗-algebras over the last
six years.

2 The interval and the circle as quotients of Cantor
space, and some related language

Let I := [0, 1] ⊂ R represent the unit interval in the real numbers. Let C :=
{0, 1}ω represent the Cantor space that arises as the infinite cartesian product
of the discrete space {0, 1} with itself, with the product indexed by the ordinal
ω. As we will act on our Cantor space from the right via prefix substitutions, we
will express elements of Cantor space as left infinite strings, so a typical element�
x of C will be written as �

x = . . . x2x1x0 where each xi is either a 0 or a 1. Note
that in this usage, and for such left-infinite strings, we will refer to any finite
rightmost contiguous substring as a prefix of the infinite string (and we will use
the word prefix in this way as well when comparing finite strings, which we will
formalise below). The monoid {0, 1}∗ of finite strings under the concatenation
operator “ˆ” (e.g., 00110ˆ1001 = 001101001) will be central to our analysis and
we might refer to an element of {0, 1}∗ as an address, for reasons which will
become clear.
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We give the monoid of finite words {0, 1}∗ the prefix-based partial or-
dering as follows: if p1, p2 ∈ {0, 1}∗ with p1 = xjxj−1 . . . x1x0 and p2 =
ykyk−1 . . . y1y0 (where each xi and yi is in the set {0, 1} for each valid index
i), we say p1 ≤ p2 if and only if j ≤ k and for all indices 0 ≤ i ≤ j we have
xi = yi. Recall that with this partial ordering, a complete antichain A of
{0, 1}∗ is a finite set {p1, p2, . . . , pk} so that for each pair of distinct indices i
and j we have that pi and pj are incomparable (written p1 ⊥ p2, and meaning
that both p1 6≤ p2 and p2 6≤ p1 are true) and for any w ∈ {0, 1}∗ we have some
index r so that either w ≤ pr or pr ≤ w.

The monoid {0, 1}∗ with the partial order above can be naturally drawn as
a rooted infinite binary tree, with its vertices being the elements of {0, 1}∗, and
where we draw an edge from vertices r to s if r ≤ s and the length of s (denoted
|s|) is one greater than the length of r. We will denote this tree as T2 and sketch
a small neighbourhood of its root in the figure below (the tree T2 is often drawn
so as to “open out” as one descends).

0

00 0110

011 111

11

1

Fig. 1. A neighbourhood of the root ε of the tree T2

For any finite word w = wkwk−1 . . . w1w0 ∈ {0, 1}∗ we obtain the basic open
set Cw for the topology of C. Specifically, Cw is the set of all points in Cantor
space with prefix w:

Cw = {�
xˆw :

�
x ∈ C}.

We will refer to such basic open sets as cones, and for a given finite word w ∈
{0, 1}∗ the set Cw will be called the cone at (address) w. It is a standard fact
that one can identify the Cantor space C with the boundary of T2, or with the set
of infinite descending paths in the tree (which correspond to infinite sequences
of edge lables, if one labels each edge of T2 with a 0 or a 1, depending on the
letter of the extension connecting the shorter address to the longer address.)

Recall there is a standard quotient map q : C � [0, 1], which we define fully
here in order to give some practice with our right-to-left indexing notation. Let

�
x = . . . x2x1x0 ∈ C.

We have
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(
�
x)q :=

∞∑
i=0

xi ·
1

2i+1
,

which we can think of as the ordinary map which interprets a real number in
[0, 1] from its binary expansion.

We further recall that given any prefix w = wkwk−1 . . . w1w0 the map q iden-
tifies the two points 10wkwk−1 . . . w1w0 and 01wkwk−1 . . . w1w0. The resulting
two-point equivalence classes map onto the dyadic rationals in Z[1/2]∩(0, 1) ⊂ R,
and further, the cone Cw at w maps to the closed interval Iw of radius (1/2)k+2

centered at the diadic point dw which is defined by the infinite sum

dw :=

∞∑
i=0

wi ·
1

2i+1
.

where we set wk+1 = 1 and wm = 0 for all m > k + 1. For example, if w = 01,
then k = 1 and we have w0 = 1, w1 = 0, w2 = 1 and wm = 0 for all m > 2.
Then, d01 is computed as

d01 =

(
w0 ·

1

21
+ w1 ·

1

22
+ w2 ·

1

23
+ 0

)
=

(
1 · 1

2
+ 0 · 1

4
+ 1 · 1

8

)
=

5

8

and the interval I01 is of radius 1/(21+2) = 1/8 centered at d01 = 5/8. In
particular, we have I01 = [1/2, 3/4] = [5/8− 1/8, 5/8 + 1/8].

For w ∈ {0, 1}∗, we call the interval Iw constructed as above the standard
dyadic interval at address w (or “the standard dyadic interval centered at
dw”), noting that these intervals are naturally in a one-one correspondence with
the words in the monoid {0, 1}∗ (we set k = −1 when w = ε, the empty word,
so that we produce the interval [0, 1], that is, the closed interval of radius 1/2
centred at 1/2).

To obtain the circle as a quotient of Cantor space we add one further identi-
fication, that is, we identify the point . . . 000 = 00 with the point . . . 111 = 11,
noting that this simply identifies the real numbers 0 and 1 from the interval I.

When working in the unit interval, we will mostly use the real number param-
eterisation of points, but sometimes it is convenient to name a point by one of its
names arising from the map q−1. Similarly, for points on the circle, we will use
either the parameterisation arising from the quotient map I → I/(0 ∼ 1) = R/Z
(this is equivalent to applying the map p : I → S1 given by t 7→ e2πit where we
consider S1 as the unit circle in the complex plane) or, we will use the param-
eterisation arising from the map q · p : C → S1, where a point on the circle is
referred to by one of its preimage left-infinite strings under the map q · p.

Our group elements will act on the right, and induce permutations of the
underlying sets of the spaces under consideration. We establish some notation
for our context. Let Y be a set. We will use the notation Sym(Y ) for the group of
bijections from Y to itself. For any element g ∈ Sym(Y ) we define the support
of g, written supt(g), as the set

supt(g) := {y ∈ Y : yg 6= y},
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that is, the set of points moved by g. In keeping with our right-actions notation,
if g, h ∈ Sym(Y ), then the conjugate of g by h, denoted gh, is the map h−1gh.
That is, we apply h−1, then g, and finally h again. We then obtain the following
standard lemma from the theory of permutation groups.

Lemma 2 Let Y be a set, and g, h ∈ Sym(Y ). We have

supt(gh) = supt(g)h.

In particular, the support of gh is the image of the support of g under the
function h.

3 The R. Thompson groups F < T < V

The Thompson groups F < T < V are groups of homeomorphisms which have
been well studied. In this note, we generally take F , T , and V as each being
groups of homeomorphisms of the Cantor space C.

3.1 Describing elements of F , T , and V

For two words w1, w2 ∈ {0, 1}∗ with |w1| > 0 and |w2| > 0 we define the cone
map ϕw1,w2 : Cw1 → Cw2 by the rule �

xw1 7→ �
xw2, for each point �

x of C. It is
immediate that this map is a homeomorphism from the Cantor space Cw1 to the
Cantor space Cw2. Note that the map ϕw1,w2

induces a map Iw1
→ Iw2

which is
a restriction of an affine map on the reals R, and for this reason we might refer to
ϕw1,w2

as an “affine map” between the two subspaces of our larger Cantor space
C. Note further that any such cone map ϕw1,w2 is not just a homeomorphism from
its domain to its range but also that it has many extensions to homeomorphisms
from C → C, and we can think of ϕw1,w2 as being a subset of a larger (if w1 6=
ε 6= w2) function from C to C (which we in turn consider as a subset of C× C).

We are now in a position to define the R. Thompson groups F < T < V .
An element g ∈ Homeo(C) is an element of V if and only if we can write g

as a prefix replacement map, as follows.
The element g is a prefix replacement map if and only if it admits some

natural number n > 1, two complete antichains D = {a1, a2, . . . , an} and R =
{r1, r2, . . . , rn} for {0, 1}∗, and a bijection σ : D → R, so that when restricted
to any cone Cai (for valid index i), the map g restricts and co-restricts to the
cone map ϕa1,a1·σ. In this context, we will write

g = ({a1, a2, . . . , an}, {r1, r2, . . . , rn}, σ) .

We observe in passing that any element of V admits infinitely many distinct pre-
fix replacement maps representing it, but it is a standard exercise in R. Thomp-
son theory that there is a unique, minimal prefix-map representation of v.

We observe that any complete antichain {a1, a2, . . . , an} for {0, 1}∗ admits a
natural left-to-right ordering ≺ induced from the arrangement of the addresses ai
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on the tree (this is simply the dictionary order, when we take 0 ≺ 1 and read our
strings from right to left). An element g ∈ V is in the subgroup F if and only
if, when expressed as a prefix replacement map, the permutation σ preserves
the ordering ≺. An element g ∈ V is in the subgroup T if and only if, when
expressed as a prefix replacement map, the permution σ preserves the ordering
≺ up to some cyclic rotation. It is then a standard exercise that elements of F
induce homeomorphisms of I through the quotient map q which are piecewise
affine, respect the dyadic rationals, and where all slopes are powers of two and
all breaks in slope occur over dyadic rationals. Similarly, it is a standard exercise
that elements of T induce homeomorphisms of S1 through the quotient q ·p which
are piecewise affine, respect the dyadic rationals, and where all slopes are powers
of two and all breaks in slope occur over dyadic rationals.

A standard introductory reference for the general theory of the R. Thompson
groups F , T , and V is the paper [6].

3.2 The element family X

We now single out a family

X := {xw : w ∈ {0, 1}∗}

of elements of V of specific interest to our discussion.
Given a word w ∈ {0, 1}∗, we specify the element xw as the element of V

which acts as the identity over the complement of the cone Cw, and on the cone
Cw, acts according to the prefix map specified below (we only express the actual
prefix substitutions here):

xw :=

 00ˆw 7→ 0ˆw
10ˆw 7→ 01ˆw
1ˆw 7→ 11ˆw

In particular, the element xw is the extension of the partial function

ϕ00ˆw,0ˆw t ϕ10ˆw,01ˆw t ϕ1ˆw,11ˆw

by the identity map away from the cone Cw.
Note that it is easy to extend the set {00 ˆw, 01 ˆw, 1 ˆw} to a complete

antichain {a1, a2, . . . , ak−1, 00 ˆw, 10 ˆw, 1 ˆw} for {0, 1}∗ where |w| = k, and
that in this case {a1, a2, . . . , ak−1, 0ˆw, 01ˆw, 11ˆw} is also a complete antichain
for {0, 1}∗ (the set of addresses {ai : 1 ≤ i ≤ k − 1} represents the minimal set
of addresses one can use so that {ai : i ∈ 1 ≤ i ≤ k − 1} ∪ {w} is a complete
antichain). Our map xw acts as cone maps on each of the cones at the set of
addresses {00ˆw, 01ˆw, 1ˆw}, and otherwise takes each cone Cai to itself with
the identity map.

It is easy to see that X ⊂ F so also X ⊂ T and X ⊂ V . The figure below
depicts the graphs of xε and x10 as homeomorphisms of I as examples.
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0 11/4 1/2 3/4

1/2

3/4
x
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0 11/4 1/2

1/2

5/16

3/8

3/8
7/16

1 1

ε

Fig. 2. The elements xε and x10.

3.3 The element family G

For each natural n ∈ N, set gn := x(10)n . The set G := {gi : i ∈ N} will be our
second family of elements of F of interest. Note that we use N to represent the
natural numbers, which we take to be the non-negative integers.

We observe that Figure 2 also depicts g0 and g1 since g0 = xε and g1 = x10.

4 Realising ∞(Z ≀ Z) in F

Set E := 〈G〉 ≤ F ≤ T ≤ V . For each index n, consider the group

Wn := 〈{gi : i ∈ N, i < n}〉,

where for clarity we specify W0 = {1V }. It is immediate that Wm ≤ Wn when
m < n. Direct calculation shows that supt(gn)∩ supt(ggmn ) = ∅ whenever m < n
(the content of the following lemma, which is not hard to prove). Specifically,
following the arguments of [2, 3] for natural index n we have Wn

∼= (. . . ((Z oZ) o
Z) . . . o Z) o Z (with n appearances of Z in this expression), which is a solvable
group of derived length n. We immediately obtain E ∼= ∞(Z oZ) = . . . oZ) oZ) oZ,
as described in detail in [4]. As E admits a decomposition as a direct union of
the solvable groups Wn, we obtain that E is elementary amenable (see Chou’s
paper [7] for details on the class of elementary amenable groups).

For what follows, set Gm,n := 〈gm, gn〉 for all natural numbers m < n.

Lemma 3 Let m < n be two natural numbers. We have

1. there is an isomorphism Gm,n
∼= G0,(n−m) which is induced by a restriction

map followed by a topological conjugacy,
2. supt(gn) ∩ supt(ggmn ) = ∅, and therefore
3. Gm,n

∼= Z o Z.

Proof. We first prove Point (1) that there is an isomorphism Gm,n := 〈gm, gn〉 ∼=
〈g0, gn−m〉 = G0,(n−m) which is induced by a restriction map followed by a
topological conjugacy.
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To see this point, first observe that both of the elements gn and gm are sup-
ported wholly in the cone C(10)m, so, the restriction of the maps gn and gm to the
cone C(10)m results in an isomorphism of groups between the homeomorphism
group Gm,n = 〈gm, gn〉, which acts on the Cantor space C, to a homeomorphism
group Ĝm,n = 〈ĝm, ĝn〉 (these generators being the restrictions of the generators
gm and gn respectively), so that the group Ĝm,n is a group of homeomorphisms of
the Cantor space C(10)m. Now, the homeomorphism θm : C(10)m → C which is
induced by deleting the prefix (10)m from all points in the Cantor space C(10)m

provides a topological conjugacy which induces an isomorphism from the group
Ĝm,n to the group G0,n−m = 〈g0, g(n−m)〉, as the reader can check that the
image of the ĝm is the element g0 and the image of ĝ(n) is the element g(n−m)

under this topological conjugacy.
For Point (2), we observe that the restrictions applied in the argument for

Point (1) only removed areas from the domain of the elements gm and gn where
these elements already acted as the identity. Therefore the support of gn and of
ggmn will be disjoint if and only if the supports of the elements g(n−m) and of
gg0(n−m) are disjoint. In particular, we have our result if we prove that for any
positive integer k, we have supt(gk) ∩ supt(gg0k ) = ∅.

However, g0 = xε, which acts over the cone C10 as a cone map, affinely taking
the cone C10 rightward to the cone C01 by the prefix substitution 10 7→ 01. Now,
the support of gk is contained in the cone C(10)k, a subset of the cone C(10).
Direct calculation now shows that the cone C(10)k is carried affinely to the cone
C(10)k−1(01) by g0, so Lemma 2 implies our result. We note in passing that we
have shown that gg0k = x(10)k−101, or more specifically, that xxε

(01)k
= x(10)k−101,

since our conjugator acted affinely.
For Point (3), recall Section 1.2.1 of [2], where an argument is given that

two elements α1 and α2 of F generate a group isomorphic to Z o Z, with the
element α1 generating the top group of the wreath product. It happens that the
element α1 of that paper is the element we call xε here, while the element α2

is the element we call x10 here. The proof of Section 1.2.1 essentially relies on
only three facts: 1) the support of α2 is contained in the support of α1, 2) every
point in the support of α1 is on an infinite orbit under the action of 〈α1〉, and 3)
the support of α2 is moved entirely off of itself by α1. In our case with gm and
gn, we again have these three conditions (with gm playing the role of α1), so we
have our claimed Point (3).

The discussion above indicates the following lemma.

Lemma 4 Let v ∈ V . There are {a1, a2, . . . , an} and {b1, b2, . . . , bn}, minimal
cardinality (finite) antichains, together with a bijection σ between them, so that
v can be described as the prefix replacement map

v = ({a1, a2, . . . , an}, {b1, b2, . . . , bn}, σ) .

If w, u ∈ {0, 1}∗ so that w = uˆai for some i, then xv
w = xuˆ(aiσ).
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Proof. By definition, we have xv
w = v−1xwv. By our assumptions w has ai as a

prefix, and we note that the initial map v−1 restricts to a cone map from C(aiσ)
to Cai, that is, an affine map with image containing the support of xw. The
action of xw off the cone Cai is as the identity, and in general is as described in
the definition of xw (it acts as a prefix replacement map, which modifies only the
prefixes which begin with w = uˆai, and these modifications appear in entries
at indices larger than the length |w|). Finally, v acts on the cone Cai by affinely
returning it to C(aiσ) as a cone map, (it simply transforms the prefix ai to the
prefix aiσ, and preserves all later entries (with index offset of size |aiσ|− |ai|) at
larger indices, for any point in the Cantor space C(ai)). Therefore, xv

w = xuˆ(aiσ).

5 On partial actions

The proof of Lemma 4 suggests the well-known fact that V has a natural partial
action on the addresses in {0, 1}∗. Let v ∈ V and suppose there is a minimal
natural number n and antichains A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}
with a bijection σ between them so that v can be described as the prefix replace-
ment map v = (A,B, σ). The partial action of v on {0, 1}∗ is defined precisely on
the set of words in {0, 1}∗ which admit one of the ai as a prefix. Let us suppose
w ∈ {0, 1}∗ and w = uˆai. We set w · v := uˆ(aiσ).

We can now re-express the result of Lemma 4 in terms of the partial action
of V on the set {0, 1}∗.

Corollary 5 Let v ∈ V and w1, w2 ∈ {0, 1}∗ so that w1 · v = w2 under the
partial action of V on {0, 1}∗. If u ∈ {0, 1}∗ then xv

uˆw1
= xuˆw2 .

That is, we see that the group V admits a partial action on the set X which
parallels its partial action on {0, 1}∗. We now work to understand the action of
V on elements of the group E.

Our first step in understanding this partial action is to analyse a formal
language.

5.1 A regular language and an action

Define the set T ⊂ {0, 1}∗ of tokens as follows:

T := {10k, 01k : k ∈ N, k 6= 0}.

We build a formal language W over the alphabet {0, 1} as follows. The lan-
guage W is the set of all words which decompose as w = wjˆwj−1ˆ . . . ˆw1 for
some natural j, where each wi is a token. The language W is actually a regular
language, which is recognised by the automaton A depicted in Figure 3. The
state q0 of A is both the start and accept state of A.
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A

q0a b

0

1

0

1

1

0

Fig. 3. The automaton A which accepts the language W

Recall that an automaton is a finite directed edge-labelled graph with a subset
of its set of states called the start states of the automaton, and another subset
of its set of states called the accept states of the automaton. Then, the language
accepted by the automaton is precisely the set of all finite-length words which
arise as the concatenated edge-labels of some finite path in the automaton from
a start state to an end state.

One can see that our formal language W is indeed the language accepted
by A; the paths which leave the state q0 and then eventually return (exactly
once) have labels of the form 10k or 01k, for some non-zero nautral number k. In
particular, the language accepted by A is precisely the language of words built
by concatenating tokens from T .

We now set some terminology describing the structure of elements of the
language W. Observe firstly that the decomposition of any word in W into a
concatenation of tokens is unique. Therefore, for each w ∈ W we can define
the token length of w as the number of tokens in its decomposition as a
concatenation of tokens. Note that we index these tokens from right to left:
w = wkˆwk−1ˆ . . . ˆw2ˆw1.

We now observe that the partial action of V on {0, 1}∗ restricts to an action
of 〈g0〉 on the set T . Below, the proofs of Lemmas 6 and 8 follow by simple
inductions on a basic calculation.

Lemma 6 For each integer k, the restriction of gk0 to the cone C10 produces a
cone map from the cone C10 to the cone Cwk, where wk is given by the formula
below:

wk = 10 · gk0 =

{
10|k−1| k ≤ 0
01k k > 0.

Proof. This proof is a simple induction. Recall that g0 = xε.
If k = 0 we observe that our formula works as g00 = 1V , which maps the cone

C10 to the cone C10 by the identity map, which is a cone map. If k = 1 then g0
takes C10 to C01 as a cone map, in accordance with the definiton of xε. For all
k ≥ 2, gk0 acts as xε · xk−1

ε , so first as a cone map from C10 to C01, and then
it will continue to act as xk−1

ε on this resulting cone. However, the cone C01 is
contained in the cone C1, and so the prefix replacement of xε here replaces the
initial prefix 1 with the prefix 11, and this process repeats so inductively we have
our desired result for all integers k ≥ 0. For negative integers k, the argument
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follows as x−1
ε replaces the prefix 0 with the prefix 00, and so inductively, the

cone at 10 is carried by a cone map to the cone at 10|k−1| by xk
ε .

A translation of the above result is as follows.

Corollary 7 The partial action of V on the set {0, 1}∗ restricts to a free, tran-
sitive action of 〈g0〉 on the set T of tokens.

The following lemma simply extends the result of Lemma 6.

Lemma 8 For each integer k and natural number i, the restriction of gki to the
cone C(10)i+1 produces a cone map from the cone C(10)i+1 to the cone Cwi,k,
where wi,k is given by the formula below:

wi,k = (10)i+1 · gki =

{
10|k−1|(10)i k ≤ 0
01k(10)i k > 0.

Proof. The proof is similar to the proof of Lemma 6; gi = x(10)i acts as the
identity off of the cone C(10)i, and acts on the cone C(10)i in the same way that
g0 acts on the cone Cε = C (this is essentially the content of the proof of Lemma
3(1). That is, the prefix (10)i is fixed by all powers of gi, but the word (10)i+1 is
changed by gi on the final token “10” (the “0” at index 2i and the “1” at index
2i+ 1).

Lemma 8 has the following related corollary.

Corollary 9 Let i be a natural number. The partial action of V on the set {0, 1}∗
restricts to a transitive and free action of 〈gi〉 on the set of words {tˆ(10)i : t ∈
T }.

6 Visiting the family X

We now discuss the intersection of the group E = 〈G〉 with the family X .

Lemma 10 Let w ∈ W, and k ∈ N so that w has token decomposition w =
wkˆwk−1ˆ . . . ˆw2ˆw1. For each token wi, let ji be the integer so that 10·xji

ε = wi

and also, recall that xε = g0. If we set θw to be the product

θw := gjkk−1g
jk−1

k−2 · · · gj21 gj10

then we have
xw = gθwk .

Proof. One constructs θ by modifying the prefix (10)k to the prefix w by acting
on one token at a time, starting with the leftmost token (the kth token), and
then working to the first token w1. Progressively, each term in the product
decompositon of θ acts on a cone containing the impact of the previous terms
which have acted, the actions stack to create the following sequence of prefixes
for the locations of the actions of the (partially) conjugated versions of x(10)k .
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(10)k 7→
wk(10)

k−1 7→
wkwk−1(10)

k−2 7→
. . .
wkwk−1 . . . w210 7→
wkwk−1 . . . w2w1.

We therefore have the following corollary.

Corollary 11 Let XW := {xw : w ∈ W}. Then XW ⊂ E.

We now consider a special subset of W. Set

S := {100ˆw, 011ˆw : w ∈ {0, 1}∗}.

Lemma 12 The set S is a subset of W.

Proof. The automaton A of Figure 3 has further properties not mentioned previ-
ously; it is highly connected and synchronizing. These properties together mean
that given any particular state (let us say q0), there is a non-empty set of syn-
chronizing words Wq0 associated with q0 so that, starting from any particular
state s of the automaton and following a path labelled by any word in Wq0 ,
perforce, one will be lead to the state q0.

Note that the words 100 and 011 are synchronizing words for the state q0;
no matter what state one starts in, after following the path labelled by the word
100 from that state, or the path labelled by the word 011 from that state, one
arrives in the state q0 (recall that we are reading these words from right-to-left!).

Thus, if we have some general word w and we append a suffix 011 or 100 to
produce either z = 011ˆw or z = 100ˆw (that is, a general word z in S), then
upon reading this resulting word on the automaton A starting from the start
state q0, we will return to q0; our word z is in the language W accepted by A.

Below, we will actually be interested in the subset of XW where the words
involved come from S. Set

XS := {xw : w ∈ S}.

Corollary 13 The set XS is a subset of the group E.

We now consider how V interacts with the set XS under conjugation. The fol-
lowing lemma follows quickly by an application of Corollary 5.

Lemma 14 Let v ∈ V . There is a natural number n so that for all w ∈ S with
|w| ≥ n there is z ∈ S so that xv

z = xw.

Proof. Let us assume that we can represent v by some prefix replacement map

v = ({a1, a2, . . . , am}, {b1, b2, . . . , bm}, σ)
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where we assume that n is at least three larger than the length of the largest
string in the range antichain {b1, b2, . . . , bm}. We then set b as the prefix of
w appearing in the set {b1, b2, . . . , bm}, and set a = bσ−1 ∈ {a1, a2, . . . , am}.
Then, w = c ˆ b where c is some string of length at least three, and we have
(cˆa) · v = (cˆb) = w, so that, in particular, if we take z := cˆa, then Corollary
5 assures us that xv

z = xcˆb = xw.
But now, as the word c has length at least three, we see that it must end

with the string 100 or the string 011 (since w has one of these two length three
suffixes), and in particular, z ∈ S.

Thus, we have found that all sufficiently long strings w in S have that xw is
the conjugate image of xz under v, for z another string in S.

Proof of Theorem 1:
Proof. The group E of this note is infinite and amenable. We can further see
that for any finite set C := {v1, v2, . . . , vk} ⊂ V , the elements xw, for w ∈ S
with w long enough (given by some particular integer dependent on the set C),
all appear in all of the groups Evi . In particular, the intersection⋂

vi∈C

Evi

is an infinite set, so that E is normalish in each of F , T , and V .
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