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Abstract Sea ice and ice shelves can be described by a viscoelastic rheology that is approximately linear
elastic and brittle at high strain rates and viscously shear thinning at low strain rates. Brittle ice easily
fractures under compressive shear and forms shear bands as the material undergoes a transition to a
fragmented, granular state. This transition plays a central role in the mechanical behavior at large scales of
sea ice in the Arctic Ocean or Antarctic ice shelves. Here we demonstrate that the fragmentation transition is
characterized by an essentially discontinuous drop of three to five orders of magnitude in effective viscosity
and stress relaxation time. Beyond the fragmentation transition, grinding in shear zones further reduces
both effective viscosity and shear stiffness, but with an essentially constant relaxation time of ∼10 s. These
results are relevant for ice rheology implementation in large‐scale climate‐related models of sea ice and thin
ice shelves.

Plain Language Summary Models of ice dynamics adopt various parameterizations of the
material properties of ice. These parameterizations define a rheology for ice that may include viscous,
plastic, elastic, and/or brittle behavior. Using a combination of theory and a discrete element model which
by construction does not require a prescribed rheology, we find that an abrupt transition occurs as fracture
density increases, with sudden drops in shear strength and effective viscosity separating low and high
fracture states. The existence of this transition has important implications for, for example, understanding
the stability of ice shelves and their ability to “buttress” the flow of inland ice, and for the development of
continuum models for the dynamics of sea ice at the geophysical scale.

1. Introduction
In ice sheet and glacier models, ice is typically treated as a continuous medium with viscous rheology and
constant density. In several important glaciological contexts, however, the behavior of ice is dominated by
discontinuous processes, such as brittle fracture and granular flow. Calving from tidewater glaciers, ava-
lanching from hanging glaciers, and ice flow during surges are all dependent upon discontinuous processes
(Benn et al., 2017; Pralong & Funk, 2005; Riikilä et al., 2015). Additionally, the ability of floating ice shelves
to buttress inland ice is strongly influenced by accumulated fracture in lateral shear margins (e.g., Borstad
et al., 2016; Sun et al., 2017), and weakening and fragmentation of ice shelves are recognized as a key process
affecting the stability of the West Antarctic Ice Sheet (Pollard et al., 2015; Scambos et al., 2017). Methods for
calculating the strength and rheology of fragmented ice can therefore significantly enhance our ability to
predict the response of glaciers and ice sheets to oceanic and atmospheric warming.

Modeling efforts for sea ice have differed significantly from those for glacier ice. For the obvious reason that
sea ice tends to be highly fragmented, the early elastic‐plastic rheological model (Coon et al., 1974) was
intended to account for fragmented ice by modeling it as a plastic material beyond a critical stress state.
In order to extend modeling to sea ice drift and jamming at a critical thickness, Hibler introduced the
viscous‐plastic rheology (Hibler, 1979). To include brittle fracture, Girard et al. introduced the elastic‐brittle
rheology (Girard et al., 2009), which can account for the heterogeneous nature of brittle sea ice but lacks vis-
cous stress relaxation. Recently, this was added to the elastic‐brittle rheology in the Maxwell elastic‐brittle
model that includes elastic, brittle, and viscous components that can capture both intermittency and hetero-
geneity of sea ice fracture (Dansereau et al., 2016).

The rheology of fractured ice can, at least in principle, be determined from observations of surface ice
velocity data using inversion techniques (e.g., Borstad et al., 2012, 2016; Vieli et al., 2007). Because
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the degree of fracture evolves through time, snapshots derived from
inversions become increasingly unreliable in simulations where ice
configuration or dynamics deviate significantly from the initial state.
For prognostic simulations, therefore, a first‐principles approach with-
out a prescribed rheology would be useful. Here, we employ theoretical
arguments and the Helsinki Discrete Element Model (HiDEM) to find
an effective viscoelastic rheology of thin ice shelves and sea ice across
the transition from an intact viscoelastic solid to fragmented, granular
material.

2. An Effective Rheology for Ice Across the
Fragmentation Transition

Our objective is to construct an effective rheology for sea ice and thin ice
shelves as they under compressive stresses undergo a transition from
intact or mildly fractured to a highly fragmented granular state, like drift
ice. This type of rheology is in sharp contrast to the rheology needed to
model, for example, a single rift slowly propagating across an ice shelf.
In such a case, the transient stress relaxation via creep, flow, and elastic
deformations around the crack tip needs to be modeled in detail, as well
as the criterion for crack advancement (see, e.g., Lipovsky, 2018; Rist
et al., 1999; Sinha, 1988; Sunder & Wu, 1990). In contrast we view ice as
a material that can exist in states ranging from intact or mildly damaged

to highly fragmented with orders of magnitude variations in effective stiffness and viscosity.

To create such a rheology for geophysical scale ice models, it is important to mimic real fracture events on
realistic spatial and temporal scales. Effective rheology is size and time scale dependent, and we therefore
concentrate on a length scale relevant for discretization in continuum ice models (i.e., 1−10 km) and on a
time scale relevant for fracture. With these considerations in mind, we can formulate an effective viscoelastic
rheology for thin shelves and sea ice across the fragmentation transition. For simplicity and following pre-
vious progressive damage approaches (Kachanov, 1958), we describe in our model the degree of fragmenta-
tion of the ice at themicroscopic scale through amesoscopic scalar damage variable, d, the value of which we
set to 1 for an undamaged and 0 for ice so fragmented that it can flow freely without much further fracturing.
We consider a 2‐D ice body of size L. This ice body has large regions with little or diffuse damage (i.e., almost
intact ice) and regions of intense damage (i.e., cracks and shear bands). These are assumed to have width l
and typically extend over the entire domain L once the fragmentation transition is surpassed. A sketch of the
configuration can be found in Figure 1. If this ice body is strained across the shear band or crack, we can
write effective strain, ε, as εL = εd (L − l) + εbl, where εb is strain in the shear band/crack and εd is strain
in the diffuse damage regions. We further define db as the damage parameter in shear bands. Similarly, dd
is the diffuse damage parameter. If we then write a simple Hooke's law stress balance across the shear band
as Sbεb = Sdεd, where S is a stiffness modulus (i.e., S can be the Young's (E), shear (G), or bulk (K) modulus),
we get for an effective stiffness modulus of the ice:

S ¼ Sb=
l
L
þ Sb

Sd

� �
1−

l
L

� �� �
: (1)

Similarly, for effective viscosity, η, we get

η ¼ ηb=
l
L
þ ηb

ηd

� �
1−

l
L

� �� �
: (2)

We regain stiffness and viscosity Sd and ηd for l = 0 or db = dd (which imply that Sd = Sb and ηd = ηb) and Sb
and ηb for l = L, as we should. The damage parameter for the entire ice block can be written as

Figure 1. A schematic representation of the theoretical model: a fragmen-
ted zone of width l and larger areas of size L with, more or less, intact ice
with some diffuse fracture. The different parameters for stiffness (E), visc-
osity (η), and damage (d) with subscript d, in the areas with diffuse fracture,
and, in the fragmented zone with, subscript b are indicated.
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d ¼ dd
L−lð Þ
L

þ db
l
L
: (3)

To construct the rheology, we further need to know how S and η depend on dd and db. A straightforward
mean‐field approach, which should be valid for small damage (dd, db ∼ 1) would give Sd = S0dd, Sb =
S0db and ηd = S0dd, ηb = η0db, where S0 and η0 are constants (cf. Dansereau et al., 2016; Riikilä et al.,
2015). A typical fragmentation process proceeds as follows. Initially there is no shear band and l = 0.
Then, Sd and ηd both decrease linearly with decreasing dd, until eventually an instability is reached at dd
= dfrac and a shear band is formed. At this point, dd stagnates, and db vanishes rapidly. For a small l/L, there
will not be much change in dwhen this happens, and therefore almost discontinuous drops in both S(d), and
η(d) will be the result. It is interesting to notice that the appearance of the near discontinuous drop does not
even require a precise definition of stiffness and viscosity as function of the damage parameter.

In other words, this scenario defines a rheology that is not very sensitive to the exact form of S(d) and η(d)
but more sensitive to the localization of damage and deformation in a shear band or crack. The occurrence of
localization, however, sets limits on what S(d) and η(d) can be. Fracture appears in solids but not in fluids, so
for d ≈ 1 we must have a long viscous relaxation time defined by η/S. That is, η/S ≫ 1 s. When fractures
appear, stress should be relaxed rapidly and irreversibly to allow for crack propagation and thus localization.
This means that, for some d, η/S should be much smaller. Dansereau et al. (2016) realized this in the context
of sea ice, by prescribing E = E0d and η= η0d

α, with 1 < α < 7, with α = 4 as perhaps an optimal value. Some
additional distinctions must be made whether S = E, G, or K. For unidirectional tensile fracture, a single
spanning crack is enough to erase all possibility of elastic stress transfer. In equations (1)–(3), this is
described by l/L → 0 and Sb = 0, and ηb = 0, at the instant, a spanning tensile crack appears. This means,
without any change in d at the transition point, stiffness and viscosity drop discontinuously to zero. In con-
trast, compressive shear fracture leads to the formation of shear bands, which have a nonzero l. A fragmen-
ted shear band under compression will have a significant residual stiffness, E,G, or K, but a strongly reduced
viscosity compared to undamaged ice. We thus expect a significant drop in the relaxation time, but not such
a large reduction in E in this case. Once a shear band has formed, stress relaxes rapidly by irreversible flow,
and grinding of ice fragments continues, which further lowers both viscosity and stiffness. We can describe
this residual stiffness behavior using the simplest possible ansatz: ∂S/∂d ∝‐ S, leading to a postfragmentation
exponential decay of S (Riikilä et al., 2015). Postfragmentation, η, should behave in a roughly similar fashion
as a function of d.

At the fragmentation transition, we would expect a critical regime in which the viscosity is described by a
power law divergence η ∝ (dfrac − d)−γ, where γ is a critical exponent. The connectivity, that is, the average
number of unbroken beams/particle in the HiDEM simulations (Åström et al., 2013) in the shear bands,
decreases rapidly at the fragmentation transition and crosses the rigidity threshold, which is the same as
the percolation threshold for the current model (Thorpe & Duxbury, 2003). As rigidity is lost in shear bands,
it is lost for the entire structure. The exponent γ is not known, however. It should be vaguely related to, for
example, the exponent in the Krieger and Dougherty (1959) equation, which relates a divergent viscosity of a
liquid‐solid suspension to the solid volume fraction or the fraction of aggregated particles (Starov et al.,
2002). In our case, the process is the reverse of aggregation—it is the fragmentation of solid clusters into
smaller pieces.

3. HiDEM Simulations

In order to test the validity of the above rheology, we employed a discrete element numerical model for ice
fracture (HiDEM; Åström et al., 2013). The model is constructed of spherical elements connected by break-
able Euler‐Bernoulli beams with a square cross section of width 0.6 times the particle diameters. The damage
parameter in the DEM model thus becomes the fraction of unbroken beams. The elastic stress, and thereby
the fracture criterion, in HiDEM is a function of the tension/compression of a beam and the rotations of the
linked DEMs relative to the axis of the beam. As most yield or fracture criteria, the HiDEM criterion is a sum
of a tensile/volumetric term and a deviatoric term. The first term is proportional to the stretching of the
beam and the second includes shear, bending, and torsion of the beam defined by the rotations. For simpli-
city, the latter deformation modes are not separated but merged into a single term defined by the absolute
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value of the difference between rotation angles of the end points of a beam times a variable proportionality
constant. A value of 0.35 gave rise to shear bands and compression ridges often observed for sea ice (cf.
Figures. 2a and 2b). A smaller value caused the ice to buckle without breaking. The fracture criterion can
furthermore be defined either as an instantaneous fracture, which means that the particle‐particle
interaction mediated by a beam vanish in a single time step if the fracture criterion is fulfilled. HiDEM
also allows for more gradual fractures, for example, strain softening or plasticity. We only used the
instantaneous criteria.

We used DEM particle of sizes in the range 1–10 m and defined the model domain in terms of two horizontal
(x, y) and one vertical (z) axes. Boundary conditions were chosen such that in the y direction, compressive
stress on the boundary was gradually increased with time, σy = (S/L) (Δy − t_εL), where S is again a stiffness
constant,Δy is boundary displacement, _ε is strain rate, and t is time. In the x direction a constant pressure was
applied on all ice outside the original geometry. In the vertical (z) direction, ice floats at minimal potential
energy on the water surface constrained by buoyancy and gravity. With these boundary conditions, deforma-
tions remained close to reversible. That is, if t → −t, the ice would return roughly to its original shape,
although the formation of pressure ridges would be an exception. Effective shear stiffness, G, was measured
as G = (σy − σx)/(εy − εx) and effective viscosity as η = (σy − σx)/(_εy−_εx). These cannot be measured simulta-
neously: fast loading (i.e., compared to η/E) can be used to measure G and slow loading to measure η.
Measuring both separately is not a problem for intact ice, but to measure it across the fragmentation transi-
tion is problematic because neither effective viscosity nor stiffness is well defined for a fragmented material.
That is, effectively measured η and E would depend on, for instance, the mode and direction of loading, as
well the length and time scales that are employed. The most reasonable approach in such a case is to mimic
the type, size, and speed of deformations usually observed in nature for the particular case of interest and
simply use the definitions above to obtain a useful rheology.

Figure 2. (a) A perspective snapshot of the results of a HiDEM sea ice fragmentation simulation. Themodel discretization
of ice blocks is visible. (b) The same ice below sea surface. (c) A grayscale strain map. Large strain/fractures displayed in
black (strain ~0.01) and intact ice in white. (d) Corresponding strain map for a ~100‐m‐thick ice shelf. Strain scales and
size in km indicated on the axis.
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We compute effective η and G for square domains of size L2 ∼ 10–100 km2, which were broken by compres-
sive shear after roughly 1 hr of linearly increasing load to reach roughly∼10% effective strain. This particular
setup was chosen because it represents typical domain dimensions in large‐scale sea ice (Dansereau et al.,
2016) and ice shelf models (Sun et al., 2017). We tested two cases: ice that was 1‐ to 10‐m thick, which is a
good model for Arctic sea ice, and ice 100‐ to 200‐m thick, representative of thin Antarctic ice shelves.
Figure 2 shows the results of a HiDEM sea ice fragmentation simulation, viewed from the surface
(Figure 2a) and beneath (Figure 2b). Figure 2c shows the strain map for the same ∼20 km2 square of sea
ice, with narrow and straight vertical tension cracks and broad, uneven, and diagonal shear bands.
Figure 2d shows a similar map for an ice shelf. The much larger thickness of the shelf makes depth averaged
shear bands look more diffuse. Fragments are formed in two categories: small fragments that are created by
grinding in shear zones and large pieces of more or less unbroken ice between the shear zones and
tensile cracks.

For benchmarking HiDEM results in the sea ice case, fragment size distributions n(s), strain rate distribu-
tions n(_ε), fracture field power spectra P(k), and ridge height distribution n(h) are compared with observa-
tions. Fragment size distributions, n(s), should be dominated by fragments that form within shear bands
by grinding. We would then expect n(s) ∝ s−γ, with γ ∼ 1.7 to 3.5, depending on the amount of grinding
(Sulak et al., 2017). This is in agreement with observations (Matsushita, 1985; Rothrock & Thorndike,
1984; Weiss & Marsan, 2004). Strain rate distributions, n(_ε) ∝ ε−β, have been measured for sea ice at spatial
and temporal resolutions of 10 km and 3 days, respectively, with β ∼ 2.4 (Girard et al., 2009; Marsan et al.,
2004). The third benchmark, spatial power spectra of the fragmented ice, was extracted from satellite images
for which white ice and dark sea water were easily distinguishable. The power spectra were found to obey
approximately 1/f noise Weiss &Marsan, 2004), a result that seems to be fairly universal for brittle fragmen-
tation (Leary, 2002). Fragments within compressive shear zones in sea ice do not typically stay within the
plane of the ice, but ridges form both above and below the sea surface (Figures 2a and b). The height, h, dis-
tributions of these ridges and keels have been observed to follow exponentials, n(h) ∝ exp(−const * h)
(Rothrock & Thorndike, 1980; Tan et al., 2012; Wadhams, 1988). HiDEM results for glacier and shelf calving
can be found in Åström et al. (2014), Benn et al. (2017), and Cook et al. (2018).

In Figure 3, we display comparisons between the simulations and observations. Simulation results are for a
similar setup as in Figure 2, and, as additional benchmarking, we also display HiDEM results for a few

Figure 3. (a) A fragment size distribution n(s) for sea ice compared to a power law. (b) Keel‐depth distribution, n(h). (c)
Strain rate distribution s, n(δε). (d) Spatial power spectrum, P(k), for frequencies k measured in 1/m.
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glaciers (Benn & Åström, 2018). Figure 3a displays the fragment size dis-
tributions, n(s). The numerical results are fitted with a power law n(s) ∝ s
−2.2. Figure 3b shows the keel‐depth distribution n(h) ∝ exp(−h/2.25).
Figure 3c shows the strain distribution, n(Δε), in the fragmented phase,
where Δε is the local change strain over ∼30 s during numerical simula-
tions. The results are compared to the power law, n(Δε) ∝ Δε−2.4.
Figure 3d shows the spatial power spectrum of fracture patterns such as
those as displayed in Figure 2a. Results are displayed for sea ice and
Totten ice shelf (Cook et al., 2018). It is evident from these plots that the
HiDEM model can consistently reproduce observed behavior of sea ice
and ice shelves.

In Figure 4 we compare G(d) and η(d) to the theoretical estimates (equa-
tions (1)–(3)) for both sea ice and shelf ice. Figure 4a displays the results
of three separate sea ice runs. The prefragmentation effective stiffness
and viscosity are quite well described by G = G0d and η = η0d. As
expected, there is no significant discontinuous drop inG at the fragmenta-
tion transition, and a crossover to exponential decay, G ∝ exp (const·d), is
observed. In contrast, the fragmentation transition drop in η for sea ice is
about five orders of magnitude and is well described by equation (2) with
l/L ≈ 0.02, matching the shear band width shown in Figure 2a. The drop
in viscosity for the ice shelf case is about an order of magnitude smaller,
which also matches the wider shear bands observed on shelves. It should
also be noted that it takes a larger value of damage to trigger the fragmen-
tation transition for the thicker ice shelf. At the transition, there seems to
be, as expected, a critical regime in which the viscosity is described by a
power law divergence η ∝ (dfrac − d)−3.

4. Conclusions

Fragmentation transitions in ice are extremely efficient in relaxing stress.
This is true for both shear zones and tensile cracks. This phenomenon
manifests itself in an inherent temporal asymmetry in the mechanical
behavior of sea ice: Stress relaxation is very fast during fracture events,
which may be followed by slow refreezing and stress buildup. This frac-
ture behavior naturally leads to marginal stability and scale invariance,
consistent with observations (Marsan et al., 2004; Weiss, 2013).
Dansereau et al. (2016) discussed the same asymmetry. The effects of effi-

cient stress relaxation can also be seen in large velocity gradients across fractured shear margins in glaciers
and ice shelves. Fractured shear margins can support stress only in compression, with important implica-
tions for ice shelf buttressing.

From a modeling point of view, our results mean that viscoelastic ice rheology can be linked to a discretiza-
tion scale L via the parameter l/L, where l is the characteristic width of fragmented shear zones. Here it
should be pointed out that the typical width of a fragmented zone is far from a trivial parameter. For exam-
ple, a tensile fracture is formed as thin crack but may expand to become very wide. This is evident, for exam-
ple, in the scale invariant distribution of the widths of leads (Marcq & Weiss, 2012). In our model l
corresponds to the width of the initial crack. That is defined by the “volume” of the fragmented ice that cre-
ated the crack or shear band. It is still unclear, however, how a characteristic crack width l could be unam-
biguously obtained. A problematic case for our proposed rheology would be when drift ice becomes so
fragmented that separation of individual compression ridges becomes impossible. The parameter l should
be defined as the width of individual compression ridges and L as the separation between them. As l/L
approach unity, it would become difficult to determine.

It is useful to compare our results to those of Dansereau et al. (2016) and Sun et al. (2017). Dansereau et al.
developed a sea ice model based on the so‐called Maxwell viscoelastic model, which includes both fracture

Figure 4. (a) The viscoelastic rheology described by η(d) and G(d) for ~10‐
m‐thick sea ice. In the intact phase G ~ 109d [N/m2] and η ~ 1015d [Ns/
m2]. The fragmentation transition appears at d ≈ 0.74. The postfragmenta-
tion exponential behavior, power law decay of η at the transition, and
equations (1) and (2) are compared to simulation results for three separate
simulations. (b) Same as in (a) but for a ~100‐m‐thick ice shelf.
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and healing. Their model links damage to viscosity and elasticity, which both increase and decrease with
fracture and refreezing, respectively. The model is constructed so that elastic deformation dominates for
intact or almost intact ice, while viscous deformations dominate in the opposite limit. If the ratio of stiffness
and viscosity (i.e., the relaxation time) is chosen appropriately, the model can reproduce the main character-
istics of sea ice mechanics, such as strain localization, anisotropy, intermittency, and associated scaling laws.
This model is highly compatible with our model. Dansereau et al. used, as mentioned above, the functional
relations: E = E0d and η = η0d

α, with 1 < α, and η0/E0 >> 1 s. The motivation for these choices was to keep
the model simple and to induce a decreasing relaxation time with increasing damage d. Our model results
now suggest more detailed relations between stiffness, viscosity, and damage: When our damage parameter
takes the value dfrac, it corresponds reasonably well to the parameter used by Dansereau et al. at d = 0. A
proper parameter transformation allows for the implementation of additional dependence of G and η on d
in the postfragmentation regime. Our results also suggest a relation between α and l/L, so that α would
increase with increasing l/L. That is, the fragmentation transition approaches a discontinuity as l → 0.

Sun et al. implemented a continuum damage model in the prognostic ice sheet model BISICLES to account
for the effects of fracture. They parameterized damage from first principal stresses and then used a linear
relation between damage and viscosity to account for the effects of fracture. This approach corresponds to
our model with a constant stiffness in the regime above the fragmentation transition, with only limited
and diffuse damage and viscosity proportional to damage. Although the model by Sun et al. is far simpler
(and thereby easier to implement in large‐scale flow models), it is likely to capture much of the relevant
behavior of thicker ice shelves for which enhanced creep rather than fracture is likely to dominate deeper
layers. This would cause a tendency for the ice shelf to remain largely in the diffuse damage regime where
the model by Sun et al. generally coincides with ours.

Finally, we conclude that thinning of ice shelves, widely observed in Antarctica in recent decades, may have
the effect of driving ice shelves toward the fragmentation transition. This could be a key factor in ice shelf
collapse, which could act quite independently of climatically driven processes such as ponding of surface
water and hydrofracturing. Furthermore, fragmentation transitions in thinning ice shelves could have
devastating effects on ice shelf buttressing, even without a full collapse of the shelf. The results presented
here could provide some insight into these issues.

Data files for the plots are found online (https://doi.org/10.5285/76D7D3CA‐7B83‐4BB0‐AAE5‐
A8E92C7DA5B0) and in the Supporting Information S1.
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