
HETEROGENEITY-AWARE SCHEDULING AND DATA PARTITIONING
FOR SYSTEM PERFORMANCE ACCELERATION

Teng Yu

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2020

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/19797

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/19797

Heterogeneity-Aware Scheduling and Data Partitioning
for System Performance Acceleration

Teng Yu

This thesis is submitted in partial fulfilment for the degree of

Doctor of Philosophy (PhD)

at the University of St Andrews

October 2019

Abstract

Over the past decade, heterogeneous processors and accelerators have
become increasingly prevalent in modern computing systems. Compared
with previous homogeneous parallel machines, the hardware hetero-
geneity in modern systems provides new opportunities and challenges
for performance acceleration. Classic operating systems optimisation
problems such as task scheduling, and application-specific optimisation
techniques such as the adaptive data partitioning of parallel algorithms,
are both required to work together to address hardware heterogeneity.

Significant effort has been invested in this problem, but either focuses
on a specific type of heterogeneous systems or algorithm, or a high-
level framework without insight into the difference in heterogeneity
between different types of system. A general software framework is
required, which can not only be adapted to multiple types of systems
and workloads, but is also equipped with the techniques to address a
variety of hardware heterogeneity.

This thesis presents approaches to design general heterogeneity-aware
software frameworks for system performance acceleration. It covers a
wide variety of systems, including an OS scheduler targeting on-chip
asymmetric multi-core processors (AMPs) on mobile devices, a hier-
archical many-core supercomputer and multi-FPGA systems for high
performance computing (HPC) centers. Considering heterogeneity from
on-chip AMPs, such as thread criticality, core sensitivity, and relative
fairness, it suggests a collaborative based approach to co-design the task
selector and core allocator on OS scheduler. Considering the typical
sources of heterogeneity in HPC systems, such as the memory hierarchy,
bandwidth limitations and asymmetric physical connection, it proposes
an application-specific automatic data partitioning method for a modern
supercomputer, and a topological-ranking heuristic based schedule for a
multi-FPGA based reconfigurable cluster.

Experiments on both a full system simulator (GEM5) and real sys-
tems (Sunway Taihulight Supercomputer and Xilinx Multi-FPGA based
clusters) demonstrate the significant advantages of the suggested ap-
proaches compared against the state-of-the-art on variety of workloads.

Acknowledgements

Sincere thanks to Dr. John D. Thomson for his supervision and countless
help during my PhD period in St Andrews. It is my pleasure to work with
such an excellent supervisor and friend like John. Under his supervision,
I can fully enjoy the truly beauty with freedom by conducting original
research and keep on the right track. When I get problems, he will come
to help in time; When I deep in troubles, he never give me up; Whenever
I need backup, he tells me: I’m here. I will never forget the moment before
a conference deadline - I got wrong of the exact submission time and just
told him one hour before the deadline at 11:30 pm. John replied me on
Skype within 5 minutes and told me: I’m working on it now. During the
myriad days of risky PhD research, He carries me and stays with me. To
be honest, all my family, friends and our research collaborators in China
name him as Da Zhuang - (the Chinese pronunciation of The Great John).

Warm thanks to Prof. Hugh Leather and Dr. Pavlos Petoumenos
in University of Edinburgh. Their efficient advises and technical hints
support me to finally get here - appreciate for all their helps and thanks
to never give me up. Special thanks to Dr. Wenlai Zhao, Bo Feng, Prof.
Haohuan Fu, Prof. Yuchun Ma, Dr. Liandeng Li, Dr. Weijie Zheng and
Pan Liu - the wonderful collaborators from Tsinghua University and
National Supercomputer Centre in Wuxi, China. The discussion and
collaborated work with their group motivates me a lot and leads me to
the novel research areas on high performance computing and work on
the world-leading Sunway Taihulight supercomputer.

My thanks to the following friends for their helps and suggestions dur-
ing my PhD period: Dr. Vladimir Janjic (University of St Andrews), Xia
Zhao (Ghent University), Min Li (Chinese Academy of Science), Mingcan

vii

Zhu (University of Edinburgh), Xiaohan Yan (University of California,
Berkeley), Dr. Shicai Wang (Imperial College London), Dr. Yuhui Lin
(University of St Andrews), Peng Sun (University of Cambridge), Bozhao
Li (Google), Dr. Mark Stillwell (Apple), Prof. Michel Schellekens (Uni-
versity College Cork), Bojia Ma (City University of Hong Kong), Yanbei
Chen (University of London), Dr. Oleksandr Murashko (University of St
Andrews), Nicolas Zurbuchen (University of St Andrews) and Xue Guo
(University of St Andrews).

Finally, appreciate to my parents and my little faery, Chenyu. During
the myriad silence days, you stay with me. Whenever I feel tired, disap-
pointed or dispirited, you hold me tight. Loneliness and hopelessness
leave me away with you hand in hand by my side - With a faery, hand in
hand. For the world’s more full of weeping than we can understand (W.B. Yeats).

This work is supported by St Leonards 7th Century Scholarship and
Computer Science PhD funding from University of St Andrews; by UK
EPSRC grant Discovery: Pattern Discovery and Program Shaping for Manycore
Systems (EP/P020631/1).

Teng Yu
St Andrews

Scotland, UK
March 9, 2020

viii

To My Parents Yun Zhou & Wenbin Yu
To My Lover Chenyu Wang

To My Son Zichen Yu

12

Contents

1 Introduction 23
1.1 Motivation . 23
1.2 Problem Models . 24

1.2.1 Problem Representation of Scheduling 24
1.2.2 Problem Representation of Hierarchical Data Parti-

tioning . 26
1.3 Research Questions . 27

1.3.1 General Research Problems 28
1.3.2 Scheduler for Asymmetric Multi-core Processors 28
1.3.3 Scheduler for Hierarchical Many-core Supercomputers . 29
1.3.4 Scheduler for FPGA-based Multi-accelerator Clusters . 29

1.4 Research Methods . 30
1.4.1 COLAB: A Collaborative Multi-factor Scheduler for

Asymmetric Multi-core Processors 30
1.4.2 SupCOLAB: A Collaborative Scheduler with Data Par-

titioning for Many-core Supercomputers 30
1.4.3 AccCOLAB: A Collaborative Scheduler using topolog-

ical model for Multi-FPGA Clusters 31
1.5 Publications: . 31
1.6 Thesis Outline . 32

2 Technical Background 33
2.1 Heterogeneous Hardware . 33

2.1.1 Asymmetric multi-core processor: ARM big.LITTLE . 33
2.1.2 Hierarchical many-core supercomputer: Sunway Tai-

hulight . 34
2.1.3 FPGA-based multi-accelerator systems for data cen-

tres: Maxeler MPC-X 36

14 Contents

2.2 System Software . 37
2.2.1 Linux Kernel Scheduler 37
2.2.2 Data Centre Resource Manager 38
2.2.3 Simulation . 38

2.3 Performance Evaluation . 39
2.3.1 Metrics . 39
2.3.2 Benchmarks . 41
2.3.3 Real Applications . 43

3 Related Work 47
3.1 Schedulers for asymmetric multicore processors 47

3.1.1 J. Joao et al. (2012) 49
3.1.2 K. Craeynest et al. (2013) 50
3.1.3 ARM (2013) . 51
3.1.4 I. Jibaja et al. (2016) 52

3.2 Schedulers and data partitioning for hierarchical many-core
supercomputers . 53
3.2.1 C. Boneti et al. (2008) 57
3.2.2 Y. Fan et al. (2019) . 57
3.2.3 J. Kumar, et al. (2011) 58
3.2.4 M. Bender et al. (2015) 59

3.3 Schedulers for multi-accelerators systems 60
3.3.1 J. Suh et al. (2000) . 61
3.3.2 H. Topcuoglu et al. (2002) 62
3.3.3 M. Handa et al. (2004) 62
3.3.4 F. Redaelli et al (2010) 63

4 COLAB: A Heterogeneity-Aware Scheduler for Asymmetric
Chip Multi-core Processors 65
4.1 Introduction . 65

4.1.1 Motivating Example 68
4.2 Runtime Factor Analysis . 69

4.2.1 Core Allocator . 69
4.2.2 Thread Selector . 71

4.3 Multi-factor Runtime Collaboration 72
4.3.1 Labels for Core Allocation 72
4.3.2 Labels for Thread Selection 73
4.3.3 Relative Equal Progress 73

Contents 15

4.3.4 Multi-bottleneck Co-acceleration 73
4.4 Scheduling Algorithm Design and Implementation 74

4.4.1 Runtime Factors Implementations 74
4.4.2 Scheduling Algorithm Implementation 76

4.5 Experimental Setup . 79
4.5.1 Experimental Environment 79
4.5.2 Workloads Composition 79
4.5.3 Schedulers . 82

4.6 Results . 82
4.6.1 Single-programmed Workloads 82
4.6.2 Multi-programmed Workloads 84
4.6.3 Summary of Experiments 93

4.7 Conclusion . 94

5 SupCOLAB: A Heterogeneity- aware Data Partitioner and
Scheduler for Supercomputers 95
5.1 Introduction . 95
5.2 A Case Study: K-Means . 96

5.2.1 Parallel K-Means . 97
5.3 Large-scale Data Partitioning on K-Means 98

5.3.1 Hierarchical Multi-level Partitioning 98
5.3.2 Hyper-Parameter Determination 107

5.4 SupCOLAB Scheduling Algorithm 110
5.5 Experimental Setup . 112
5.6 Results . 113

5.6.1 Results of Multi-level Data Partitioning 115
5.6.2 Results of Real Applications 122

5.7 Conclusion . 125

6 AccCOLAB: A Heterogeneity- aware Scheduler for Multi-
accelerator Systems 127
6.1 Introduction . 127
6.2 Ranking Irregular Tasks . 129

6.2.1 Modeling Irregular Tasks 130
6.2.2 Representing and Ranking Irregular tasks 131

6.3 AccCOLAB Scheduling Algorithm 137
6.3.1 Problem Formulation 137
6.3.2 Abbreviations and Initialisation 137

16 Contents

6.3.3 Ranking-based Scheduling 139
6.3.4 Analysis . 142

6.4 Software Architecture . 142
6.4.1 Components . 144
6.4.2 Analysis . 145

6.5 Experimental Setup . 146
6.5.1 Static Analysis . 146

6.6 Experimental Results . 150
6.6.1 Results for Multi-task Cases 151
6.6.2 Results for Single-task Cases 152
6.6.3 Results for varying workload numbers in High Irregu-

larity Scenarios . 152
6.7 Conclusion . 153

7 Conclusion and Future Work 155
7.1 Conclusion . 155

7.1.1 Contributions . 156
7.1.2 Heterogeneity Analysis 156
7.1.3 Scheduler Design and Implementation 157
7.1.4 Data Partitioner Design and Implementation 158
7.1.5 Impact on Benchmark Workloads and Scientific Appli-

cations . 158
7.2 Future Work . 159

List of Figures

2.1 The general architecture of the SW26010 many-core processor 35

2.2 FPGA-based multi-accelerator system (MPC-X2000) and RTM
kernel design . 36

4.1 Motivating Example: Multi-threaded multiprogrammed work-
load on asymmetric multicore processors with one big core Pb

and one little core Pl. The mixed model in the left hand side
shows WASH decision and the collaborated model in the right
hand side shows the proposed COLAB decision. Controlling
only core affinity results in suboptimal scheduling decisions. . 67

4.2 A diagram of how runtime performance factors are influenced
by functions in the scheduling algorithm. Left hand side are
the list of runtime factors and right hand side shows how the
scheduling algorithm can do with them. The solid arrows rep-
resent how scheduling functions can benefit those runtime fac-
tor while the dotted arrows represent the possible negative
influence from the scheduling functions to these runtime factors. 70

4.3 Flowchart of the scheduling process with a runtime feedback
loop . 72

4.4 Heterogeneous Normalized Turnaround Time (H NTT) of sin-
gle program workloads on a 2-big 2-little system. Lower is better 83

4.5 Heterogeneous Average Normalized Turnaround Time (H ANTT)
and Heterogeneous System Throughput (H STP) of Synchronization-
Intensive and Non-Synchronization-Intensive Workloads. All
results are normalized to the Linux CFS ones. Lower is better
for H ANTT and higher is better for H STP. 86

18 List of Figures

4.6 Heterogeneous Average Normalized Turnaround Time (H ANTT)
and Heterogeneous System Throughput (H STP) of Communication-
Intensive and Computation-Intensive Workloads. All results
are normalized to the Linux CFS ones. Lower is better for
H ANTT and higher is better for H STP. 88

4.7 Heterogeneous Average Normalized Turnaround Time (H ANTT)
and Heterogeneous System Throughput (H STP) of 2-programmed
and 4-programmed Workloads. All results are normalized to
the Linux CFS ones. Lower is better for H ANTT and higher
is better for H STP. 89

4.8 Heterogeneous Average Normalized Turnaround Time (H ANTT)
and Heterogeneous System Throughput (H STP) of low num-
ber of application threads and high number of application
threads Workloads. All results are normalized to the Linux
CFS ones. Lower is better for H ANTT and higher is better
for H STP. 91

4.9 Heterogeneous Average Normalized Turnaround Time (H ANTT)
and Heterogeneous System Throughput (H STP) of 2-programmed
and 4-programmed Workloads. All results are normalized to
the Linux CFS ones. Lower is better for H ANTT and higher
is better for H STP. 92

5.1 Three-level k-means design for data partition on parallel ar-
chitectures . 99

5.2 The roofline model for automatic data partitioning. SupCO-
LAB changes its partitioning levels based on the complexity of
the input. X-axis represents the complexity of input indicated
by the number of targeting centroids and the value of Y-axis
corresponds to the 3 different partitioning levels 108

5.3 Level 1 - dataflow partition using UCI datasets 113
5.4 Level 2 - dataflow and centroids partition using UCI datasets . 114
5.5 Level 3 - dataflow, centroids and data-sample partition using

a subset of ImgNet datasets (ILSVRC2012) 116
5.6 Level 3 - large-scale on centroids and nodes using a subset of

ImgNet datasets (ILSVRC2012) 118
5.7 Comparison: varying d with 2,000 centroids and 1,265,723

data samples tested on 128 nodes using a subset of ImgNet
datasets (ILSVRC2012) . 119

List of Figures 19

5.8 Comparison test: varying k with 4,096 Euclidean dimensions
and 1,265,723 data samples tested on 128 nodes using a subset
of ImgNet datasets (ILSVRC2012) 120

5.9 Comparison test: varying number of nodes used with a fixed
4,096 Euclidean dimension, 2,000 centroids and 1,265,723 data
samples using a subset of ImgNet datasets (ILSVRC2012) . . 121

5.10 Remote Sensing Image Classification. Left: the result from
baseline approach provided by [33]. Middle: the correspond-
ing original image. Right: the proposed classification result.
Different colors are applied to identify different region classes
as used in [33]. 122

5.11 One iteration execution time for gene expression dataset ON-
COLOGY and LEukemia. 124

5.12 Total execution time for gene expression dataset ONCOLOGY
and LEukemia. 124

5.13 The evaluation function r′(k) to determine the optimal k value.125

6.1 Abstract case of multi-task runtime scheduling on multi-FPGA
systems. The left hand side is 3 coming tasks. The right hand
side is the system states at the time of tasks arrival. FIFO
approach can allocate task 1 to the first device and allocate
task 2 to the first or second device, but cannot allocate task 3
to any device. 128

6.2 The partial ordered model of multi-FPGA tasks targeting a
8-FPGA system. The 8 FPGAs in this example is connected
by a ring topology where the first FPGA and the final FPGA
are directly connected. In this figure, Ii denotes a task asking
for i independent FPGAs and Ci denotes a task asking for i
directly connected FPGAs. 132

20 List of Figures

6.3 Lattice representation. The left hand side is a subset of the
partial ordered model from figure 6.2, where a represents I2
asking for two independent FPGAs, b represents I3 asking
for three independent FPGAs, c represents I4 asking for four
independent FPGAs, d represents C2 asking for two directly
connected FPGAs and e represents I5 asking for five indepen-
dent FPGAs. Recall that in this example, the system com-
posed by 8 FPGAs connected in a ring topology. So if a task
asking for 5 independent FPGAs, there must be at least 2
FPGAs are directly connected, which leads to d(C2) � e(I5).
The right hand side is the resulting modular downset lattice
model. a t b means a task asking for c and d simultaneously. . 135

6.4 Abstract Model of multi-accelerator Synchronisation 141
6.5 Scheduling Architecture . 143
6.6 Experimental results on different workload scenarios 153
6.7 Experimental results on high irregularity scenarios 154

List of Tables

2.1 Benchmarks from UCI and ImgNet 43

3.1 Qualitative Analysis on Heterogeneity-Aware Schedulers Tar-
geting Asymmetric Multicore Processors 49

3.2 Qualitative Analysis on Heterogeneity-Aware Schedulers Tar-
geting Hierarchical Manycore Supercomputers 55

3.3 Qualitative Analysis on Heterogeneity-Aware K-Means Data
Partitioning Targeting Hierarchical Manycore Supercomputers 56

3.4 Qualitative Analysis on Heterogeneity-Aware Schedulers Tar-
geting FPGA based Multi-Accelerator Systems 61

4.1 Selected performance counters and Speedup Model 75
4.2 Benchmarks categorization [12, 106, 92] 80
4.3 Multi-programmed Workloads Compositions 81

6.1 Abbreviations in Scheduling Algorithm and Initialization of
Parameters . 138

6.2 Static Analysis . 149

22 List of Tables

Chapter 1

Introduction

Efficient task scheduling is central to improving system performance on mod-
ern heterogeneous architectures.

Heterogeneity-aware techniques have been widely researched and applied
to modern computer systems, from high performance computing (HPC) and
supercomputers to embedded mobile devices. High quality schedulers are
designed to consider multiple objectives in their optimisation, with hetero-
geneity coming from both the hardware design and the workload composition.
However, such schedulers are still limited in their scope, either to particular
configurations of hardware heterogeneity or to particular software asymme-
tries.

This thesis presents a general design principle to address the system het-
erogeneity issues and leads to a set of collaborative approaches to sched-
ule programs and partition data. These include the COLAB scheduler for
asymmetric chip multi-core processors, the SupCOLAB scheduler for large-
scale hierarchical many-core processors and the AccCOLAB for FPGA-based
multi-accelerator clusters.

1.1 Motivation

In embedded mobile devices, such as smartphones and IoT sensors, energy
and power constraints are central in designing new processors. The power
wall limits how much switching activity can occur on each chip. Heteroge-
neous systems are necessary under such constraints, providing energy-efficient
processing for different types of workloads [89].

24 Chapter 1. Introduction

Single Instruction Set Architecture (ISA) based asymmetric multicore
processors (AMP) introduce new opportunities and challenges [74]. Since all
processors share the same ISA, OS schedulers do not have to prematurely tie
a program’s implementation to a specific type of processor. Instead they can
make decisions at runtime, based not only on which processor is appropriate
for the workload but also on which processors are under-utilized. This intro-
duces an extra degree of freedom to the already complex scheduling decision
space, making an already challenging problem much harder.

In addition, the hierarchical multi-core CPUs used in HPC need to be
scheduled carefully to fit application-specific requirements. Large-scale HPC-
oriented algorithms are often custom-designed to fit the unique advantages
and idiosyncrasies of the particular hierarchical memory architecture on a
parallel machine. Consequently, mapping the software asymmetry smartly
to the hardware heterogeneity opens a new door for further performance
gain when solving scientific problems on large-scale supercomputers. This
includes not only scheduling of parallel workflows to match hardware het-
erogeneity [40, 82, 18], but also efficient self-aware partitioning [65, 9] of
dataflow to fit the hierarchical hardware composition.

Beyond the general purpose CPUs, accelerators are becoming increasingly
prevalent in heterogeneous systems [29, 26]. FPGAs have been shown to be
fast and power efficient for particular tasks, yet scheduling on FPGA-based
multi-accelerator systems is challenging and relatively poorly researched prob-
lem, where workloads can vary significantly in granularity in terms of task size
and/or number of computational units required. Schedulers need to dynam-
ically make decisions on networked multi-FPGA systems while maintaining
high performance, even in the presence of irregular workloads.

1.2 Problem Models

This section presents the underlying problem models and representations for
scheduling and hierarchical data partitioning, targeting modern heteroge-
neous systems.

1.2.1 Problem Representation of Scheduling

The general underlying problem of scheduling can be represented as a bin-
packing problem, where there are a set of bins (hardware resources) and a

1.2. Problem Models 25

collection of balls (software programs). The target is always to allocate all
balls to bins satisfying specific goals. Formalized, given n task samples:

T = {ti | i ∈ {1, ..., n}}

and m hardware resources:

R = {rj | j ∈ {j, ...,m}}

the goal is to find a map f from T to R:

f : T → R

which can achieve either a specific or multi-objective goal, such as high per-
formance (maximum throughput, minimum turnaround time) or a tradeoff
between performance and energy. This underlying theoretical bin-packing
problem has been fully studied in the literature and demonstrated to be NP-
hard for obtaining the optimal solution [107]. Heuristic-based approaches
have also been widely studied to provide efficient O(n) solutions of bin-
packing [78]. While targeting the real task scheduling problem extended
from the theoretical model, the main difficulties comes from the difference
between each task ti and each resource rj together with the complex rela-
tionships between them.

In detail, the traditional difficulties of task scheduling on homogeneous
computing systems come mainly from the complexity of the set of tasks T .
Each task can be different in size and load. For instance, different paral-
lel processes from the same pipelined pthread program will need to execute
different code segments in the same time. While even for a simple data-
parallel OpenMP program, different thread might need to address different
portion of the input dataflow, which leads to load imbalance between parallel
processors. Tasks can additionally have different arrival times and user re-
quirements. Further, parallel tasks can have data dependences, which gives
them additional constraints on order of execution.

Modern heterogeneous systems bring new challenges and difficulties to
task scheduling based on the heterogeneities from hardware resources R.
Even on a fully CPU based system without any specialised hardware accel-
erators, multiple on chip cores can differ in computing ability, including in-
struction execution model (in order or out of order), frequency and the energy
consumption ratio. Threads to be scheduled on these asymmetric cores will

26 Chapter 1. Introduction

thus have different behaviour. Further, programs with multiple co-executed
threads suffer more difficulty in achieving fairness between parallel execution
on asymmetric cores. The multi-core or manycore processors also bring het-
erogeneities from architectural hierarchy. For instance, there is a huge gap in
communication speed between on-chip multicore processors and networked
computing nodes, together with the storage limitation between each core’s
associated cache and the shared memory. Finally, tasks will be executed un-
der different models on heterogeneous hardware resources, including the go
in once way such as how typical programming models (OpenCL, CUDA) for
GPUs and FPGAs operate, and the time-slice based equal progress model
which mainly operate on modern multitasking operating systems (Linux) for
CPUs.

1.2.2 Problem Representation of Hierarchical Data Par-
titioning

Hierarchical data partitioning is a common approach to achieve parallel com-
puting and improve performance. It is important for executing scientific
workloads on high performance computing systems (HPC), for which the
specific parallel algorithm can be co-designed to fit the hardware hierarchy.
Basic data partitioning aims to partition the original dataflow into multiple
symmetric portions to execute in parallel on multiple cores.

Formalized, given n data samples:

D = {di | i ∈ {1, ..., n}}

and m parallel computing resources:

R = {rj | j ∈ {j, ...,m}}

the goal is to find a partitioning P in D, for which D is divided into m
portions and then be allocated to each element of R. In this case, each
hardware resource only needs to address n

m
of the original dataflow.

Further, hierarchical partitioning is designed to address large-scale dataflows.
It groups the hardware resources into resource groups {R} first, either based
on physical architecture or virtual machine:

{R}j′ = {rj | j ∈ (1 + (j′ − 1) ∗m′, j′ ∗m′)}

1.3. Research Questions 27

where j′ is the index of each resource group and m′ denotes the amount of
resources in each group. In this case, each group needs to address n

m
∗m′ of

the original dataflow. Further, consider that each data sample di is composed
by k dimensions:

di = {dil | l ∈ {1, ..., k}}
These dimensions can then be further partitioned into multiple resources
inside each group, so each resource only needs to handle partial dimensions
(k
m′) of each data sample d.

The priciple difficulty in achieving efficient hierarchical data partition-
ing is that, given the same amount of hardware resources m, hierarchical
data partitioning can not directly reduce the load of each thread, but might
generate additional synchronous overhead:

(
n

m
∗m′) ∗ k

m′
==

n

m
∗ k

Note that the right hand side of the formula above is the load of each thread
under basic partitioning, as it needs to address the whole data sample with
k dimensions.

Heterogeneous hardware provides the opportunity for efficient hierarchi-
cal data partitioning. For instance, if the given resources, m, are organised
hierarchically with different physical connections, then hierarchical partition-
ing can provide the mapping between the asymmetric synchronisation needs
from parallel threads onto the different communication speeds from hierar-
chical resources. Further, under hierarchical data partitioning, each resource
only needs to read and address partial data samples during runtime, which
reduces the need of storage space. Hierarchical partitioning provides the op-
portunity to handle large-scale workloads where each data sample is too large
to be stored in cache without further partitioning.

1.3 Research Questions

This section presents the underlying research questions discussed in this the-
sis. It first describes the general research questions based on the problem
representations above. It then describes the design of efficient heterogeneity-
aware schedulers across different scales of heterogeneous systems – from
asymmetric chip multi-core processors to hierarchical many-core processors
and FPGA-based multi-accelerator clusters.

28 Chapter 1. Introduction

1.3.1 General Research Problems

The general research question for scheduling, following from the problem
representation above is: how to map the software asymmetry to hardware
heterogeneity efficiently. In detail, we must take into consideration multiple
factors, such as core sensitivity, bottlenecks and fairness, which all influence
the decision. In order to answer this question, the scheduler is expected to
address all these factors in a collaborative way.

The general question for hierarchical data partitioning can be stated as:
how to use the asymmetry of parallel tasks from given workloads to fit the
hardware heterogeneity. The HPC-oriented workloads are expected to be
customised to exploit the specific hardware advantages of a system.

1.3.2 Scheduler for Asymmetric Multi-core Processors

Considering asymmetric chip multi-core processors for mobile devices, the
three research problems influencing the decisions of a general purpose multi-
core scheduler are:

• Each core type is designed to optimally handle different kinds of work-
loads. For example, in ARM big.LITTLE systems, big cores are de-
signed to serve latency-critical workloads or workloads with Instruction
Level Parallelism (ILP). Running other kinds of workloads on them
would not improve performance significantly while consuming more en-
ergy. Predicting which threads would benefit the most from running
on each kind of core is critical to build an efficient AMP scheduler.

• Executing a particular thread faster does not necessarily translate into
improved performance overall. If the threads of the application are
unbalanced or are executed at different speeds, e.g. because an AMP
is used and different threads run on different types of cores, the appli-
cation will be only as fast as the most critical thread. Based on the
well-known Amdahl’s Law, the best schedule would likely prefer the
most critical thread as much as possible, regardless of core sensitivity.

• In multi-programmed environments, making decisions to accelerate each
application in isolation is not enough. Decisions should not only im-
prove the utilization of the system as whole, but should not penalize any
application disproportionately. Ideally, resource sharing equally across

1.3. Research Questions 29

all applications results in negative impact while fairness is the real
target. For traditional schedulers this was relatively straightforward:
give applications CPU slots of equal time in a round robin manner or
by red-black tree. AMPs make this simple solution unworkable. The
same amount of CPU time results in completely different and varying
amounts of work on different heterogeneous processing elements.

1.3.3 Scheduler for Hierarchical Many-core Supercom-
puters

Considering hierarchical many-core supercomputers, the scheduler and data
partitioner should consider both the hierarchical hardware architecture and
customized parallel algorithms when optimising. Issues include:

• The data dependency and communication-to-computation ratio be-
tween each parallel thread of the given algorithm.

• The trade-off between partitioning the data structure and the processed
size and number of dimensions for the datasets.

• The hierarchical heterogeneity from the hardware resources, including
the ability of each computational unit, the accessible storage size and
the bandwidth/ communication speed between different units.

1.3.4 Scheduler for FPGA-based Multi-accelerator Clus-
ters

Dynamically scheduling irregular workloads in a FPGA-based multi-accelerator
system is a complex task. An adequate solution should not only efficiently
schedule multiple irregular tasks, but also assigns corresponding resources to
hardware accelerators during runtime. This is difficult to achieve in practice:

• Multiple tasks should be executed quickly and simultaneously to achieve
a short total execution time and high throughput.

• Tasks can be instantiated on different system configurations with differ-
ing numbers of accelerators, so an ideal configuration cannot be easily
determined a priory.

• Tasks require different topologies between hardware accelerators based
on what communication is needed during runtime.

30 Chapter 1. Introduction

1.4 Research Methods

This section briefly illustrates the heterogeneity-aware collaborative methods
proposed in this thesis to tackle the above research problems:

1.4.1 COLAB: A Collaborative Multi-factor Scheduler
for Asymmetric Multi-core Processors

A novel collaborative approach is suggested to consider all three main schedul-
ing factors (core sensitivity, thread criticality and fairness) simultaneously.

This approach involves using an off-line trained machine learning model to
assign each thread to heterogeneous CPU cores based on predicated speedup.
It achieves multiple bottleneck co-acceleration on both big and little cores by
dynamic task reordering and preemption, which handles the influence from
massive multi-threaded multi-programmed workloads. It also scales time
slicing for each thread on big cores to achieve fairness, represented by equal-
progress. These three techniques work together to produce an improved
scheduler for handling mixed multi-programmed workloads.

The proposed collaborative scheduler [111, 112] has been evaluated on
a well-known simulator with a variety of hardware configurations targeting
mixed multi-threaded multi-programmed workloads. It outperforms the de-
fault Linux scheduler and the state-of-the-art heterogeneity-aware scheduler,
both in terms of turnaround time and system throughput.

1.4.2 SupCOLAB: A Collaborative Scheduler with Data
Partitioning for Many-core Supercomputers

The heterogeneity and customized large-scale workload on a modern super-
computer is addressed by developing a collaborative scheduler, equipped with
an automatic data partitioner, targeting the given hierarchical hardware re-
sources with many-core processors.

Using this approach, the large-scale workflow will first be auto-partitioned
into different parallel tasks based on the input data structure – size, depen-
dency and communication frequency. Then the scheduler will allocate suffi-
cient hardware resources to execute those tasks guided by a cost function in
a greedy manner.

Experiments on a top supercomputer have shown great benefit from the

1.5. Publications: 31

smart HPC scheduler when targeting large-scale workloads [67, 113]. It out-
performs other state-of-the-art methods on both performance and scalability.

1.4.3 AccCOLAB: A Collaborative Scheduler using topo-
logical model for Multi-FPGA Clusters

A novel topological ranking heuristic based on lattice and representation the-
ory is designed to model the heterogeneity of FPGA-based multi-accelerator
clusters.

The applied representation is general enough to be used across different
types of SoC topology (linear, ring, crossbar and etc.) for Multi-FPGA
clusters, and is capable of representing the required resource and connectivity
requirements for irregular workloads.

Equipped with the resulting heuristic, the runtime scheduler provides the
collaborative ranking to order tasks on Multi-FPGA clusters with incom-
parable resource need and unpredictable execution time efficiently and then
assigns sufficient re-configurable hardware resource in a dynamic manner.

Following this design, the topological ranking-based scheduler [110] has
demonstrated a significant advantage over both the commonly used commer-
cial FIFO scheduler, and other heuristic-based research schedulers on real
world applications.

1.5 Publications:

Some of the material used in this thesis has been published in the following
papers:

• [CGO 20] T.Yu, P.Petoumenos, V.Janjic, H.Leather, J.D. Thomson,
COLAB: A Collaborative Multi-factor Scheduler for Asymmetric Mul-
ticore Processors. in Proceedings of the International Symposium on
Code Generation and Optimization. ACM, 2020.

• [TPDS 19] T.Yu, W.Zhao, P.Liu, V.Janjic, X.Yan, S.Wang, H.Fu,
G.Yang, J.D. Thomson. Large-scale automatic k-means clustering for
heterogeneous many-core supercomputers. to appear in IEEE Trans-
actions on Parallel and Distributed Systems. IEEE Press, 2019.

32 Chapter 1. Introduction

• [PACT 19] T.Yu, P.Petoumenos, V.Janjic, M.Zhu, H.Leather, J.D.
Thomson, POSTER: A Collaborative Multi-factor Scheduler for Asym-
metric Multicore Processors. in Proceedings of the 28th International
Conference on Parallel Architectures and Compilation Techniques. IEEE
Press, 2019.

• [SC 18] L.Li, T.Yu, W.Zhao, H.Fu, C.Wang, L.Tan, G.Yang and
J.D.Thomson. Large-scale hierarchical k-means for heterogeneous many-
core supercomputers. in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis.
IEEE Press, 2018.

• [FPT 18] T.Yu, B.Feng, M.Stillwell, L.Guo, Y.Ma and J.D.Thomson.
Lattice-based scheduling for multi-FPGA systems. in Proceedings of
the International Conference on Field-Programmable Technology 2018.
IEEE Press, 2018.

1.6 Thesis Outline

The remainder of the thesis is organized as follows:
Chapter 2 presents all technical background of this thesis.
Chapter 3 discusses the related work and state-of-the-art targeting differ-

ent heterogeneous architectures.
Chapter 4 shows the work on scheduler targeting asymmetric multi-core

processors.
Chapter 5 shows the work on data partitioning and scheduler targeting

hierarchical many-core supercomputers.
Chapter 6 shows the work on scheduler targeting FPGA-based multi-

accelerator clusters.
Chapter 7 concludes the thesis and presents the future work.

Chapter 2

Technical Background

This chapter presents the technical background. It first describes the hard-
ware background in the corresponding order to how the experimental chap-
ters use these hardware platforms. It then presents the supporting system
software, upon which the proposed software framework is built on. Finally, it
describes the evaluation related issues – including metrics, benchmarks and
real applications, which are applied to test the framework.

2.1 Heterogeneous Hardware

Heterogeneous architectures have been widely applied for modern computing
systems, from distributed data centres and high performance supercomputers
down to embedded multi-core processors. This section discusses three types
of heterogeneous architectures used in this thesis.

2.1.1 Asymmetric multi-core processor: ARM big.LITTLE

Energy and power constraints are central in designing processors targeting
small mobile devices, such as smartphones and IoT sensors. Single instruc-
tion set architecture (ISA) asymmetric multicore processors (AMP) are nec-
essary for extracting a good energy and performance balance, and becoming
increasingly popular in the era of limited power budget CPU design and dark
silicon. AMPs introduce new opportunities and challenges, consisting of high
performance out-of-order big cores and energy saving in-order little cores on
the same chip.

34 Chapter 2. Technical Background

This thesis targets the most prevalent commercial architecture, ARM
big.LITTLE, to demonstrate the performance on asymmetric multi-core pro-
cessors schedulers. ARM big.LITTLE has been widely applied in major
smartphones chip providers, including Samsung Exynos, Qualcomm Snap-
dragon and Huawei HiSilicon.

This thesis targets a typical big.LITTLE architecture with 4 big and 4
little cores in ARM Cortex-A series processor. The big cores are out-of-order
2 GHz Cortex-A57 cores, with a 48 KB L1 instruction cache, a 32 KB L1
data cache, and a 2 MB L2 cache. The little cores are in-order 1.2GHz
Cortex-A53, with a 32 KB L1 instruction cache, a 32KB L1 data cache, and
a 512 KB L2 cache.

2.1.2 Hierarchical many-core supercomputer: Sunway
Taihulight

More sophisticated than standard AMPs, many-core processors in modern
supercomputers have been designed hierarchically. High performance multi-
core processors used in supercomputers are usually grouped together to make
core groups on a chip, and then multiple chips grouped into nodes with
shared memory. Hierarchical multi-core processors in supercomputers work
together on specific large-scale workflows in an intelligent way to achieve
high system performance, measured by peta floating-point operations per
second (PFLOPS). The recent announced top machine, Summit in Oak Ridge
National Laboratory, equipped with IBM Power9 processors and Nvidia Tesla
V100 GPGPUs has achieved 143.5 PFLOPS on LINPACK benchmarks.

This work targets one of the world’s leading supercomputers (the top
machine in the Top500 list during this project) – Sunway Taihulight super-
computer, equipped with SW26010 many-core processor – to demonstrate
the proposed large-scale workflow oriented scheduler design. The basic ar-
chitecture of SW26010 is shown in Figure 2.1. Each processor contains four
core groups (CGs), which are connected by network on chip (NoC). There
are 65 cores in each CG, 64 computing processing elements (CPEs) which
are organized in a 8 by 8 mesh and a managing processing element (MPE).
The MPE and CPE are both complete 64-bit RISC cores, but are assigned
different tasks while computing. The MPE is designed for management, task
schedule, and data communications. The CPE is assigned to maximize the
aggregated computing throughput while minimising the complexity of the

2.1. Heterogeneous Hardware 35

Figure 2.1: The general architecture of the SW26010 many-core processor

micro-architecture.

The SW26010 design differs significantly from the other multi-core and
many-core processors: (i) for the memory hierarchy, while the MPE applies
a traditional cache hierarchy (32-KB L1 instruction cache, 32-KB L1 data
cache, and a 256-KB L2 cache for both instruction and data), each CPE
only supplies a 16-KB L1 instruction cache, and depends on a 64 KB Lo-
cal directive Memory (LDM) (also known as Scratch Pad Memory (SPM))
as a user-controlled fast buffer. The user-controlled ’cache’ leads to some
increased programming difficulty in for using fast buffer efficiently, and at
the same time, providing the opportunity to implement a defined buffer-
ing scheme which is beneficial whole system performance in certain cases.
(ii) Concerning the internal information of each CPE mesh, it has a control
network, a data transfer network (connecting the CPEs to the memory inter-
face), 8 column communication buses, and 8 row communication buses. The
8 column and row communication buses provide possibility for fast register
communication channels to across the 8 by 8 CPE mesh, so users can attain
a significant data sharing capability at the CPE level.

36 Chapter 2. Technical Background

Figure 2.2: FPGA-based multi-accelerator system (MPC-X2000) and RTM
kernel design

2.1.3 FPGA-based multi-accelerator systems for data
centres: Maxeler MPC-X

Beyond general-purpose processors, accelerators like Field Programmable
Gate Array (FPGA) have been shown to perform exceptionally well in terms
of parallel performance and energy efficiency in modern commercial data
centres and next generation cloud platforms [118]. For example, Microsoft
claims that all its Azure cloud servers are now equipped with Altera Stratix
FPGA [52] and Amazon AWS has begun to provide service from its EC2
server with FPGAs [79]. Intel acquired one of the leading FPGA technology
providers, Altera for $167 billion in 2015 and is working on the next genera-
tion SoC with heterogeneous CPU+FPGA architectures. Intel predicts that
more than 30% of cloud servers in the world will be equipped with FPGAs
in 2020.

A typical FPGA-based multi-accelerator platform, MPC-X 2000 by Max-
eler Technologies [7] is used to demonstrate the proposed FPGA-oriented
scheduling work. This commercial device has been widely applied in oil &
gas industry and financial analysis [29]. The MPC-X 2000 architecture is
shown in the left-hand side of Fig. 2.2. It is comprised of eight DataFlow
Engines (DFE) in which each of the DFEs is physically interconnected via a
ring topology. All DFEs are the same specialized computation resources, each
employing a Xilinx Virtex-6 SX475T FPGA to support reconfigurable designs
and 48GB (or more) RAM for bulk storage. Under this setup, programs can
dispatch computationally intensive tasks to single or multiple DFEs across

2.2. System Software 37

an Infiniband network. Each DFE cannot be separated to multiple applica-
tions simultaneously which means each DFE can only be assigned to single
task during runtime scheduling.

2.2 System Software

System software has the duty to manage hardware resources and execute ap-
plication programs. The proposed heterogeneity-aware scheduling and data
partitioning framework is designed work across multiple systems levels, in-
cluding the operating system scheduler and the middleware-level resource
manager. This section presents the the system software background together
with the GEM5 simulator, which is used across experiments.

2.2.1 Linux Kernel Scheduler

Resource management and multi-task scheduling are core functions for mod-
ern operating systems (OS). Most scientific high performance computing sys-
tems and commercial mobile devices use Linux-based OS, including the Red
Hat Enterprise Linux (RHEL) for the Summit supercomputer and Google
Android for smartphones.

The default Linux CFS scheduler was implemented by Ingo Molnar and
merged in Linux v2.6.23 to replace the previous Linux vanilla scheduler. All
scheduling related functions in Linux Kernel are grouped in the linux/ kernel
/sched. The main scheduling interfaces with other OS components are listed
and implemented in sched.h and core.c, and the default scheduling algorithm
- Completely Fairness Scheduler (CFS) is implemented in fair.c

It is designed to model and support efficient multi-tasking co-execution
on CPUs. It uses virtual runtime (actual runtime normalised to the total
number of co-executed tasks) to track the execution of each thread without
a pre-defined time slice and orders the runqueue (timeline of tasks) using a
red-black tree data structure. Under this structure, the scheduler can pick
the next task with smallest virtual runtime in the leaf nodes without further
searching and comparing operations to achieve an O(logn) time complexity.
Since the length of each CPU time slice are limited by the smallest virtual
runtime of co-executed tasks, CPU time will then be split up as fairly as
possible on the multi-tasking.

38 Chapter 2. Technical Background

2.2.2 Data Centre Resource Manager

Distributed cloud data centres and high performance supercomputers often
have additional customised resource managers as middleware which target
large-scale workflow and scientific applications, such as web services and
geographical simulations.

For example, Facebook designed and implemented Bistro [44], as a high-
performance flexible distributed scheduling framework for its data centres
and Google has its scalable scheduler, named Omega [88] for large-scale com-
puting clusters. Maxeler implemented its Maxeler Orchestrator [73] sched-
uler on the Xilinx FPGA-based devices. It works in a round-robin manner
to ensure fairness. The Sunway Supercomputer equipped Linux-based OS
requires programmer assistance to schedule specific programs on suitable
hardware resources.

2.2.3 Simulation

Simulators provide the flexibility to test a variety of configurations and hard-
ware setups. Some of the work presented in this thesis is evaluated on the
well-known full system simulator – GEM5.

Gem5 simulator [14] is an open-source cycle-accurate simulator built
by many academic and industrial institutions, including AMD, ARM, HP,
MIPS, Princeton, MIT, and the Universities of Michigan, Texas, and Wis-
consin. It is the product of a project merge between the M5 and GEMS
projects, and uses a liberal BSD-like licence. It combines high levels of con-
figuration, including multi-ISA and CPU model support from M5 (ARM,
ALPHA, and x86), and a detailed flexible memory system including multi-
ple cache coherence protocols and interconnect models from GEMs. Gem5
provides a full system mode (FS mode) to simulate a complete system with
devices and an operating system and the flexibility to run experiments from
check points. Its detailed CPU mode provides sufficient performance coun-
ters, working similar with the Performance Monitor Units (PMU) in real
hardware, to track runtime performance. The main drawback of GEM5 is
that it that the simulation time is significantly larger than running on real
hardware. It requires around one hour to simulate one second real execution,
which limits the test sizes and the number of evaluations possible.

Since original released, GEM5 has been downloaded tens of thousands of
times and is widely used in computer architecture research.

2.3. Performance Evaluation 39

2.3 Performance Evaluation

This section presents the metrics and benchmarks/applications applied to
test and evaluate the system performance.

2.3.1 Metrics

Heterogeneous Average Normalized Turnaround Time (H ANTT)

A commonly used system-level performance metric is Average Normalized
Turnaround Time (ANTT), as introduced in [39]. This user-oriented perfor-
mance metric uses as the baseline execution time of each application when
executed on its own, i.e. when there is no resource sharing and the execution
is never interrupted or preempted, so scheduling decisions have little effect.
It is the average slowdown of all applications in the mix relative to their
isolated baseline runtime. It is defined as follows:

ANTT =
1

n

n∑
i=1

TM
i

T S
i

Where TM
i denotes the turnaround time of program i under the multi-

program mode and depends on its co-executing programs. The T S
i denotes

the turnaround time of program i under the single-program mode. While
this original metric fails to work as intended for AMPs. The baseline execu-
tion time T S

i when executed alone is still affected by scheduling decisions if
processor cores are difference. For example, under the default Linux fairness
scheduling policy on AMPs, the first application thread might be allocated to
either a high-frequency out-of-order big core or a low-frequency in-order little
core, which will leads to different future scheduling space and then results in
different performance. So T S

i fails to work as a stable baseline.

In this thesis, a modified metric Heterogeneous Average Normalized Turnaround
Time (H ANTT) is designed to quantify scheduling efficiency on AMPs and
overcome the above problem. It updates the baseline performance by using
the execution time of each application in single-program mode on a cor-
responding symmetric configuration - where all configured processor cores
are big cores. T SB

i is used to denote this updated baseline performance of
program i in single-program mode with full big cores configuration. The
modified metric is defined as follows:

40 Chapter 2. Technical Background

H ANTT =
1

n

n∑
i=1

TM
i

T SB
i

When evaluating on a single benchmark on its own, this work uses the
Heterogeneous Normalized Turnaround Time (H NTT):

H NTT =
TM

T SB

H ANTT and H NTT are better when lower.

Heterogeneous System Throughput (H STP)

Another well-know system-level performance metric concerned is System
Throughput (STP). This system-oriented metric is also described in [39]. STP
is the sum of the throughputs of all co-executed applications in the multi-
program mode, relative to their isolated throughput in the single-program
mode as following:

STP =
n∑

i=1

T S
i

TM
i

Similar with the issue on ANTT, modification is needed before applying
STP on asymmetric processors because the baseline performance from solo
execution is affected by the scheduler. Thus, a modified metric Heterogeneous
System Throughput (H STP) is proposed. It uses the same updated baseline
case as H ANTT. Applying the terms above, H STP is defined as:

H STP =
n∑

i=1

T SB
i

TM
i

H STP is better when higher.

Workload Completion Time (WCT)

The core metric of performance targeting large-scale workload oriented HPC
and customized FPGA-based multi-accelerator system is the workload com-
pletion timeWCT , also known as makespan [62] for each given multi-workload

2.3. Performance Evaluation 41

scenario. Note that the mapping P is determined by the given workloads sce-
nario S and the applied approach z, then there is:

WCT (P) = WCT (S,z) = max. wTimek(z),Wk ∈ S

WCT is the time when the final co-executed workload is finished by the
system including scheduling and system overhead [62].

One Iteration Completion Time (OICT)

When evaluating the system performance targeting a single non-deterministic
algorithm based workload, a specialized workload completion time, the one
iteration completion time (OICT) is used. This is because the number of
iterations needed for the program to complete is related to the initial dis-
tribution of randomised start points. The total workload completion time
cannot directly represent the real system-level performance. OICT is widely
applied in the research community to avoid the performance influence from
random initialization issues [83].

Percentage of Upper-Bound

This metric shows the percentage between the solution of the tested ap-
proaches and the theoretical performance upper-bound. It is designed to
normalize the original results and then easily present them:

PUB(S,z) = WCTupper(S)/WCT (S,z)

2.3.2 Benchmarks

This thesis tests some well-known benchmarks including PARSEC3.0 [13],
SPLASH-2 [106], k -Means [67] and F11 [28] to evaluate the system perfor-
mance of targeted heterogeneous systems.

PARSEC3.0

PARSEC3.0 is a multi-threaded benchmark suits developed by researchers
from Princeton. PARSEC is widely applied by the research community and
has many plus points, including inclusion of modern, emerging workloads
and the diversity of underlying applications with both computing-intensive

42 Chapter 2. Technical Background

and memory-intensive programs. It provides parallel editions of benchmarks
using both pthreads and OpenMP and the flexibility on the size of dataset
from simsmall, simlarge to native. A representative selection of subsets is
applied which can run within a reasonable amount of time on Gem5 simu-
lated ARM architecture, including: blackscholes, bodytrack, dedup, ferret,
freqmine, swaptions and fluidanmate.

SPLASH-2

SPLASH-2 is a multi-threaded benchmark set mainly targeting HPC applica-
tions, which has been integrated into PARSEC3.0 environment. A selection
of benchmarks from this set is used to enrich the test set.

K-Means

k -means is a well-known clustering benchmark, used widely in many AI and
data mining applications, such as bio-informatics, image segmentation, infor-
mation retrieval and remote sensing image analysis. This thesis uses parallel
k -Means algorithm as the benchmark to evaluate it supercomputer-oriented
scheduling and data partitioning framework. The input dataset of K-means
comes from both UCI Machine Learning Repository and ImageNet Large
Scale Visual Recognition Challenge (ILSVRC2012) [84] to test the system
performance on different scales.

UCI Machine Learning Repository UCI Machine Learning Repository is
a collection of datasets and benchmarks that are widely used by the machine
learning community for the empirical analysis of algorithms. A represen-
tative selection from this repository is used including Kegg Network, Road
Network and US Census 1990. Characteristic of these benchmarks are briefly
presented in the upper half of Table 2.1, where n is the number of data sam-
ples, k is the number of targeting clusters and d is the dimension of data
samples.

ILSVRC2012 The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC2012) [84] is a dataset in the field of large-scale image classification
and object detection. Originally released in 2010, it runs annually and has
attracted world-wide participation. A high-dimensional dataset from this
source is tested to demonstrate efficiency of the proposed supercomputing-
oriented large-scale data partitioning framework, which briefly presents in
the lower half of table 2.1.

2.3. Performance Evaluation 43

Table 2.1: Benchmarks from UCI and ImgNet
Data Set n k d
Kegg Network 6.5E4 256 28
Road Network 4.3E5 10,000 4
US Census 1990 2.5E6 10,000 68
ILSVRC2012 1.3E6 160,000 196,608

F11 Benchmark

Genetic Algorithms (GAs) are commonly used in the field of optimisation
research to find good solutions by efficiently using time when targeting large-
scale data scenarios. Additionally, parallel GAs implemented in multi-FPGA
systems usually result in higher quality solutions due to its parallel feature to
search on the solution space. Function 11 (F11) is a well-known benchmark
[28] to test the performance of GA, which aims to find the optimisation
solution to maximise the following:

f(x) = 1 +
N∑

n=1

x2n/4000−
N∏

n=1

cos(Xn)

Where the domain of xn and value of N define the size of the input and the
solution space.The parallel GA kernel design is similar with the RTM kernel
but the computation component is SCM (select, crossover and mutation).

The inputs of parallel GA have different sizes including small, medium
and large. A mixed domain, named mix-L, is considered to increase the
complexity and heterogeneity of the input with corresponding solution space,
where the object is to find the optimal solution in two different domains
simultaneously. In the experimental setup, the user can submit multiple
GA workloads. For each workload, the user asks to find the optimization
solutions of F11 in different input scenarios, which contains different input
sizes and irregularity levels.

2.3.3 Real Applications

An representative selection of scientific applications are used to validate the
high performance of the proposed approach on real systems, which includes
the Reverse Time Migration (RTM) from oil and gas industry, Gene Expres-
sion Classification, VHR Remote Sensing and Land Cover Classification.

44 Chapter 2. Technical Background

Reverse Time Migration

Reverse Time Migration (RTM) is a practical method commonly used in
the Oil and Gas industry to model the bottom of salt bodies in the Earth’s
subsurface. It is based on the computation of the isotropic acoustic wave
equation through two propagations: a forward propagation which takes input
velocity model and initial traces to compute the forward wavefield and a
backward propagation which uses the same velocity model and the forward
wavefield to compute the targeting image of subsurface. This process is
named as a shot or RTM kernel. 3D stencil-based computation is usually
applied to process each shot. Normally 105 to 107 number of shots [2] should
be computed simultaneously to analyse certain area of the subsurface due
to the different size of area which definitely leads to a computation-intensive
workload. It is an ideal HPC application which has been widely used to test
the performance of accelerator-based heterogeneous systems [42, 29, 2].

This original trace is based on the Sandia/SEG Salt Model 45 shot subset
which is open source.1 A high level dataflow-oriented RTM design is shown in
the right-hand side of Fig. 2.2. The RTM kernel design on FPGA is applied
from [42].

The user can submit multiple RTM workloads which contain irregular
RTM tasks (shots) in different sizes. One shot is referred to one task in this
thesis to make the presentation consistent.

Gene Expression Classification

Genomic information from gene expression data has been widely used on im-
proving clinical decision and molecular profiling based patient stratification.
Clustering methods, as well as their corresponding HPC-based solutions[103],
are adopted to classify the high-dimensional gene expression sequences into
known patterns, which indicates that the number of targeted clustering cen-
troids are determined in advance. As it is well known that there are still large
numbers of gene expression sequences among which the patterns are not yet
discovered. Therefore, the proposed auto-clustering method can potentially
help find new patterns from high-dimensional gene expression datasets.

In this work, the proposed supercomputing-oriented approach is tested
on the ONCOLOGY & Leukaemia gene expression datasets[41]. There are
4254 subjects and each subject has 54675 probesets, which means the dataset

1http://wiki.seg.org/wiki/SEG C3 45 shot.

2.3. Performance Evaluation 45

contains 4254 data elements in total and each data element has 54675 dimen-
sions.

Land Cover Classification

This is a popular remote sensing problem, requiring unsupervised methods
to handle high numbers of unlabelled remote sensing images [70]. In recent
years, high-resolution remote sensing images have become more common in
land cover classification problems. The problem definition on high-resolution
images is more complex as the classification sample can be a block of pixels
instead of one pixel, which means the dimensions of high-resolution data
samples can be even larger than normal remote sensing images.

This thesis tests on a public dataset called Deep Globe 2018 [33], and
classifies the images into seven classes, representing the urban, the agricul-
ture, the rangeland, the forest, the water, the barren and unknown. There
are 803 images in the Deep Globe 2018 dataset, and each image has about
2k × 2k pixels. The resolution of the image is 50cm/pixel. In this problem
definition, one image needs to be clustered, where n is 5838480, k is 7 and d
is 4096.

46 Chapter 2. Technical Background

Chapter 3

Related Work

This chapter presents the related work and state-of-the-art research for this
thesis. It first presents the work related to heterogeneity-aware schedulers
targeting asymmetric multicore processors, and then targeting hierarchical
many-core processors with data partitioning, and finally targeting FPGA-
based multi-accelerator systems. In each section, it first describes the general
issues and developments of the related work with a qualitative analysis, and
then presents the most representative state-of-the-art work on each issues in
detail in subsections. The research in this thesis is built on these foundations.

3.1 Schedulers for asymmetric multicore pro-

cessors

Efficient, heterogeneity-aware scheduling for asymmetric multicore processors
has attracted attention during the recent decade.

The first issue concerned in the literature is how to accelerate bottlenecks
in the multi-threaded programs using the high performance big cores. A bot-
tleneck can be defined as any code segment which blocks the execution of
other threads during runtime. Dealing with this issue is critical for perfor-
mance of multicore systems on parallel executions – for instance, a barrier
where multiple threads need to reach a synchronisation point before others
can make the next progress. Other bottlenecks can be critical sections of
multi-thread programs and pipeline stages. Failure to accelerate bottlenecks
can lead to reduction or even cessation of parallel performance scaling, which
is usually expected from parallel execution on multicores. The first effort was

48 Chapter 3. Related Work

made by Suleman et al [96], which can efficiently detect and accelerate one
bottleneck at a time on single big core systems. The state-of-the-art bottle-
neck detection and acceleration technique was presented by Joao et al [60].
The BIS approach designed in this paper can efficiently and accurately iden-
tify which bottlenecks are most critical at any given time and accelerate them
accordingly on big cores.

The second issue is about fairness. Fairness, or requiring that all threads
make similar progress, is a critical goal for scheduling on heterogeneous
multicores, especially when targeting multi-threaded workloads with barrier-
synchronisation and multi-program workloads with quality-of-service (QoS)
constraints. The default Linux CFS scheduler follows a complete fairness
way on homogeneous processors. Further, researchers have began to con-
sider achieving fairness on heterogeneous multicore processors. Craeynet et
al. made the first effort on using a performance impact estimation (PIE)
model [100] to predict the runtime behaviours and then they designed the
most representative work [99] named as equal-progress scheduling. Kim, et
al [64] proposed a more recent fairness guaranteed scheduler targeting asym-
metric cores, but their formulations only suited for single-threaded program
with deterministic load of each thread.

Followed by the two concerns above, researchers have began to consider
the core sensitivity between different threads and tried to map the most
suited threads on big cores by their predicted speedup. Cao et al. ini-
tially proposed a speedup-aware scheduler named yin and yang [21] which
binds threads on asymmetric cores based on static classification. ARM [56]
designed its GTS scheduler by intelligent runtime migration between asym-
metric cores based on threads runtime behaviours. Further, Jibaja et al.
proposed the state-of-the-art WASH algorithm [58] by dynamically and pe-
riodically predicating threads speedup using machine learning based models
with performance counters support.

Subsequently, research schedulers have been designed to address all above
issues simultaneously to result in better performance on variant environ-
ments. The table 3.1 presents a qualitative analysis on related work, where
COLAB is the proposed approach in this thesis. In this section, the most rep-
resentative works for the three issues - bottleneck acceleration [60], fairness
[99] and core sensitivity [56, 58] are described in detail below. The pro-
posed COLAB scheduler in this thesis is motivated by the techniques from
all these approaches. The WASH scheduler by Jibaja et al [58] represents
the most state-of-the-art approach which is compared against the COLAB

3.1. Schedulers for asymmetric multicore processors 49

in the corresponding experiment chapter.

Table 3.1: Qualitative Analysis on Heterogeneity-Aware Schedulers Target-
ing Asymmetric Multicore Processors

Approaches Core Sens. Fairness Bottle-
neck

Collaborative

Suleman, et al.
[96]

X

Craeynest, et al.
[100]

X X

Craeynest, et al.
[99]

X X

Cao, et al. [21] X
Joao, et al [60] X X
ARM [56] X X
Kim, et al [64] X X
Jibaja, et al [58] X X X
COLAB X X X X

3.1.1 J. Joao et al. (2012)

The state-of-the-art Bottleneck Identification and Scheduling (BIS) approach
on asymmetric multi-processor was presented by Joao et al. in [60]. The key
idea is to measure the number of cycles spent by each thread when waiting for
bottlenecks and then rank and accelerate those bottlenecks based on those
values. There are two main elements:

1. Bottleneck Identification: A bottleneck table (BA) is implemented in
which each entry corresponds to a bottleneck and includes a thread
waiting cycles field (WCT) to track this information. WCT value is
computed by aggregating the number of threads which are waiting on
this bottleneck. The critical bottlenecks are then identified by BA with
N highest WCT values where N is based on the number of big cores
in the system.

50 Chapter 3. Related Work

2. Bottleneck Acceleration: An acceleration index table (AIT) is created
associated with each small core to decide whether a bottleneck should
be accelerated by big cores. The small cores send bottleneck execution
requests based on the information from AIT and those requests are
then enqueued in a scheduling buffer (SB) in big cores. SB is actu-
ally a priority queue which run the oldest instance with highest WCT
value. The SB also implements an request-abort function to avoid false
serialisation and resource starvation, which will let the big core send
back a bottleneck to small cores if this bottleneck does not have the
highest WCT value and is ready to run on small cores.

3.1.2 K. Craeynest et al. (2013)

Two fairness-aware scheduling methods are presented by Craeynet et al.
in [99].

1. The first is called equal-time scheduling. It trivially keeps each thread
running on each type of core in the same amount of time slices, and is
implemented by round-robin or random selection of the thread which
currently is on the small core to schedule on big core next. However, it
cannot guarantee true fairness if threads experience different slowdown
or speedup from different cores.

2. A more advanced approach to handle this issue considered in their pa-
per is called equal-progress scheduling, which guarantees each thread
achieves equal progress on heterogeneous cores. The key challenge of
this approach is to estimate a big-versus-small-core scaling factor for all
threads, and this can be used to compute the slowdown between run-
ning on heterogeneous cores and big cores in isolation. There are three
methods provided to obtain this factor: (1) sampling-based method
which compute this factor during a sample phase as the ratio between
CPI (clock cycles per instruction) on different cores and then apply
on symbiosis phase; (2) history-based method which is similar with
the sampling way but records historical CPI values and continuously
adjust the ratio; (3) model-based method which use a performance im-
pact estimation (PIE) [100] analytical model to estimate this factor
with hardware support.

3.1. Schedulers for asymmetric multicore processors 51

Also presented is a guaranteed-fairness approach, designed for when system
throughput needs to be of concern. A threshold of fairness can be setup
and the scheduler will defer to a throughput-optimisation policy after this
threshold has been reached.

Overall, the fairness-aware scheduler achieves a 14% performance gain
on homogeneous multi-thread workloads and a 32% performance gain on
heterogeneous multi-thread workloads on average against other schedulers.

3.1.3 ARM (2013)

ARM has designed a Global Task Scheduling (GTS) technique [56] through
the development of asymmetric multicore processors, called big.LITTLE
Multiprocessing (MP). In this technique, the differences in compute capacity
between big and little cores are given to the OS. The OS scheduler tracks
the performance requirement for all software threads, including both appli-
cation threads and the system calls, and then uses that information to decide
whether the big or the little core to use for each.

When implementing the ARM big.LITTLE MP, the OS scheduler needs
to decide when a software thread can run on a big core or a little core. This
is achieved by comparing the tracked load of software threads against pre-
defined load thresholds, which include an up migration threshold and a down
migration threshold. In more detail, a little core thread will be considered
to migrate to a big core if the tracked load average of this thread exceeds
the up migration threshold. Similarly, a big core thread will be considered
to migrate to a little core if the load average of it drops below the down
migration threshold. To keep fairness across cores in both big and little
clusters, the standard Linux CFS scheduler applies within clusters. There
are five migration mechanisms to determine when to migrate a task between
different type of cores:

1. Fork migration: When the fork system call is used to create a new
software thread, this mechanism is invoked to migrate the new thread
to a big core.

2. Wake migration: When a previously idle thread becomes ready to run,
this mechanism is invoked to decide which type of cores executes the
thread. ARM big.LITTLE MP uses the tracked information and the
general assumption is that this thread resumes on the same cluster as
before.

52 Chapter 3. Related Work

3. Forced migration: When a long running thread on a little core do not
sleep or do not sleep very often and the tracked load of it exceeds the
up migration threshold, this mechanism will be applied to migrate this
thread to a big core.

4. Idle pull migration: When a big core has no thread to run, this mecha-
nism will be invoked to check all little cores and then migrate the most
suited running thread to this big core.

5. Offload migration: This mechanism works to periodically migrate big
core threads downwards to little cores to make use of unused compute
capacity if the Linux CFS load balancing is disabled.

The main advantages of this technique can be summarised as follows:
it supports flexible hardware configurations; the targeting architecture can
have different numbers of different types of cores and any number of cores can
be active at any time to increase peak performance; it supports flexible mul-
tiple threads co-execution between heterogeneous cores; computing-intensive
application threads can be isolated on the big core cluster while light-weight
system calls are bound on the little core cluster. This enables application
tasks to complete faster without disturbed by additional background system
calls. Further, interrupts can be targeted individually either to big or little
cores.

3.1.4 I. Jibaja et al. (2016)

WASH presented by Jibaja et al. in [58] is the state-of-the-art scheduler
which provides an Asymmetric Multicore Processors (AMP) aware runtime
environment and which uses dynamic analysis to classify applications, iden-
tify bottlenecks and prioritise threads based on single-ISA. It is the first
work which can optimise critical path, core sensitivity, priorities and load
balancing simultaneously. This scheduler starts with scheduling application
threads on big cores and VM threads on small cores, then dynamically clas-
sifies (scalable or not), and prioritises and migrates threads guided by the
runtime information.

They implement two models to record and provide this information.

1. Dynamic bottleneck analysis. The core function is to accelerate threads
which hold contended locks by computing a ratio between the time this

3.2. Schedulers and data partitioning for hierarchical many-core
supercomputers

53

thread waits for another thread to release a lock and the total execution
time so far. It selects the one which requires others wait the longest to
be executed on big cores sets priority for these threads.

2. Core sensitive predictor. This method uses linear regression and Princi-
pal Component Analysis to learn most significant performance counters
and the corresponding weights. The selected counters include such as
INSTRUCTIONS RETIRED and L1D ALL REF:ANY for Intel pro-
cessors and RETIRED UOPS and CPU CLK UNHALTED for AMD
cores. Those counters can then be used to compute the speedup if the
scheduler were to assign a thread to a big core rather than a small core.
It uses two relative ranking functions to achieve this. The ExecRank
is an adjusted priority which shows how much performance gain can
be achieved if the thread is on big cores by accumulating on retired
instructions. The LockRank is to show the bottleneck level based on
the amount of time other threads have been waiting for it.

Overall, WASH reports a 20% performance gain and a 9% energy saving
against prior work on heterogeneous multicore AMD cores in different config-
urations. This thesis views WASH as the overall state-of-the-art heterogeneity-
aware scheduler on asymmetric multicore processors,

3.2 Schedulers and data partitioning for hi-

erarchical many-core supercomputers

Scheduling on general-purpose processors and HPC requires different schedul-
ing decisions. The design of schedulers targeting hierarchical many-core su-
percomputers needs to address additional heterogeneities. These additional
heterogeneities mainly result from the large-scale distributed processors, the
hierarchical memory architectures and specialised hardware resources inte-
grated into the supercomputers. The resulting runtime issues need to be
tackled, including the distributed load imbalance and the specialised resource
management.

Load Balancing: Large-scale parallel algorithms running HPC applica-
tions usually follow a Single Instruction Multiple Data (SIMD) model, which
means parallel threads executing the same code segment on different dataflow.

54 Chapter 3. Related Work

However, unfairness between parallel threads can still happen on such data-
parallel pattern when there are imbalanced input data distributions, asym-
metric network topology and differing task execution times before reaching
the syncretisation point. Multiple efforts have been made to balance the load
of a supercomputer during runtime scheduling. Schloegel et al [87] proposed
a scheduler to analyse the parallel dataflow and then compute the balanced
data distribution. Duran et al [37] tried to automatic balance the load by
assigning more processors to the parallel processes which need longer com-
puting time. The most representative balancing scheduler is designed by
Boneti et al [18] by automatic load re-balance.

Specialised Resources: State-of-the-art HPC schedulers have begun to
consider specialised resources on supercomputers in additional to classical
CPUs, named as multi-resource schedulers. Instead of previous CPU-centric
HPC schedulers, multi-resource schedulers make decisions not only based
on the computing/CPU requirements of the tasks, but also on the differ-
ence between storage and communication needs. These kind of decisions are
much more suited to targeting massive data-intensive workloads in the com-
ing Big Data era, where there are high demands on runtime storage. Yoo
et al, present the Slurm [108] scheduler, which provides a simple approach
by sequentially allocating waiting jobs to fill the CPU and buffer following
a First-Come-First-Serve (FCFS) policy – this allocator suffers a low re-
source utilisation and will be interrupted when either the CPU or buffer is
full. Wallace et al. [102] design a dynamic power-aware approach to han-
dle the multi-resource scheduling more efficiently. It applies a window-based
scheduling policy to sort the data and then used a constraint model with run-
time power estimation to achieve the multi-resource optimisation. Hung et
al [53] consider the multi-resource scheduling problem as linear programming
(LP) model with heterogeneous-aware conditions. Their Tetrium scheduler
equipped with joint heterogeneous-aware task placement and job scheduling
policy, represents the multi-resource scheduling as a single-objective optimi-
sation problem under their LP model and provides a collaborative solution.
The most current multi-resource scheduler is designed by Fan et al [40] using
a multi-objective optimisation (MOO) model.

The table 3.2 presents a qualitative analysis on related work, where the
proposed SupCOLAB scheduler in this thesis is listed at the end. The Sup-
COLAB scheduler is the first supercomputer-oriented scheduler addressing
both load balance and specialised resources, targetting multi-objectives. In
the remainder of this section, the most relevant work for the two supercomputer-

3.2. Schedulers and data partitioning for hierarchical many-core
supercomputers

55

Table 3.2: Qualitative Analysis on Heterogeneity-Aware Schedulers Target-
ing Hierarchical Manycore Supercomputers

Approaches Large-scale Load
Balance

Specialized
Resources

Multi-Objective
Optimization

Schloegel et al [87] X
Duran et al [37] X
Boneti et al [18] X
Yoo et al [108] X
Wallace et al [102] X
Hung et al [53] X
Fan et al [40] X X
SupCOLAB X X X

specific issues - large-scale load balancing [18] and specialized resources [40]
are described.

Data partitioning for hierarchical many-core supercomputers Be-
yond the schedulers, large-scale parallel algorithms running on specific su-
percomputers can be easily custom-designed and partitioned to fit given
hardware. For example, the programmer can generate parallel threads corre-
sponding to the number of assigned cores and partition the dataflow to fit the
distributed storage. This thesis demonstrates the efficiency of the proposed
SupCOLAB approach on supercomputers by a concrete study on k -means
based large-scale workloads. This section presents the background work on
heterogeneity-aware data partitioning methods to run k -means algorithms
on modern supercomputers.

Kumar, et al [65] made the most relevant contribution in implementing
the basic dataflow-partition based parallel k-means on the Jaguar (the pre-
vious version of Titan), a Cray XT5 supercomputer at Oak Ridge National
Laboratory evaluated by real-world geographical datasets. Their implemen-
tation applies MPI protocols for broadcasting and reduction, and allows the
scaling the value of k to more than 1,000 by using sufficient many-core pro-
cessors in the supercomputer. Cai, et al [20] designed a similar parallel

56 Chapter 3. Related Work

Table 3.3: Qualitative Analysis on Heterogeneity-Aware K-Means Data Par-
titioning Targeting Hierarchical Manycore Supercomputers

Approaches Samples n Clusters k Dimensions d
Kumar, et al [65] 1010 1000 30
Rossbach, et al[83] 109 120 40
Bhimani, et al[10] 106 240 5
Cai, et al [20] 106 8 8
Ding, et al[35] 106 10,000 68
Bender, et al [9] 370 18 140,256
SupCOLAB 106 160,000 196,608

approach on Gordon, an Intel XEON E5 supercomputer at San Diego Su-
percomputer Center for grouping game players. They applied a parallel R
function, mclapply, to achieve shared-memory parallelism and test different
degree of parallelism by partitioning the original data-flow into different num-
bers of sets. They did not focus on testing the scalability of their approach
but evaluated on the quality of the clustering.

Rossbach, et al[83] concentrate their efforts on implementing parallel
k -means on heterogeneous architectures using GPU clusters to accelerate
computing-intensive processes. They evaluated on 10 heterogeneous nodes –
each node consisting of an NVIDIA Tesla K20M GPU with two Intel Xeon
E5-2620 CPUs. The clustered a large-scale dataset with 109 data elements
successfully. Bhimani, et al[10] further developed the GPU based data par-
titioning approach to cluster large datasets with more than 200 targeting
centroids efficiently.

Ding, et al[35] reduce the unnecessary computation using triangle in-
equality. This design resulted in a significant advantage in performance and
program scalability. This led to the first parallel k-means approach which
can efficiently cluster the high-dimensional datasets with more than 10,000
dimensions for each data element on commodity Intel i7-3770K processors
without additional support from accelerators. The most current approach on
large-scale k -means is made by Bender, et al [9] through a 2-level hierarchi-
cal data partitioning, which can handle large-scale complicated dataset with
more than 140,000 data dimensions.

3.2. Schedulers and data partitioning for hierarchical many-core
supercomputers

57

The most relevant dataflow partitioning work [65] and the state-of-the-art
effort on 2-level partitioning [9] are illustrated in subsections below.

3.2.1 C. Boneti et al. (2008)

Boneti et al. designed a static self-balancing resource allocator [17] and a
dynamic scheduler [18] by letting the OS kernel automatically apply the
specialised hardware priorities from IBM Power5 processor to the parallel
processes without the programmer/user hints.

It is implemented as a new scheduling class in Linux kernel, named
HPCSched, containing two scheduling policies (FIFO and round-robin), a
load imbalance detector by learning from execution history with two heuris-
tics (uniform and adaptive prioritization) and some architecture-dependent
mechanism.

Experiments on different micro-benchmarks and a real application - the
SIESTA simulation, demonstrate that their dynamic balancing scheduler
does better than both previous static allocator and the default Linux kernel
with more than 10% performance gain.

3.2.2 Y. Fan et al. (2019)

Fan et al [40] consider and model the multi-resource scheduling as a multi-
objective optimization (MOO) problem and design a state-of-the-art multi-
resource scheduler, named BBSched.

A representative specialised resource which BBSched can address effi-
ciently is the burst buffer. It is designed to efficiently handle data-intensive
workloads in modern supercomputer, which is an intermediate storage layer
between processors and the main parallel file systems in shared memory.
Composed by SSD, burst buffer can be either associated to single node or
shared between nodes and enjoy a higher bandwidth and lower latency than
main memory it is accessing.

Contrary to the previous single-objective model [53], BBSched equipped
with genetic search algorithm in MOO space, provides an approach to opti-
mize the utilization of multiple resources including both the processors and
buffers, simultaneously and then return a Pareto set of solutions.

It gives the flexibility to the system managers to finally select the so-
lution targeting site-specific metrics. BBSched also follows a window-based

58 Chapter 3. Related Work

scheduling policy, but it provide an upper-bound on number of iterations to
prevent job starvation.

3.2.3 J. Kumar, et al. (2011)

The work of Kumar, et al [65] on designing a massively parallel k-means clus-
tering algorithm targeting the Jaguar supercomputer is the most relevent
to this thesis. Their work is motivated a use case of identification of geo-
graphic ecoregions. Without an efficient large-scale clustering method, this
could only be done by human experts before, which are neither transparent
nor repeatable.

Their work focuses on development of a clustering method for analysis of
very large datasets using tens of thousands processors on a supercomputer.
The parallel code in their implementation is written in the C language using
the Message Passing Interface (MPI). The initial input file and seed centroids
are read by the first process, and then are broadcast to all the processes.
Every MPI process operates on a partial section of the initial dataflow, com-
putes the distance calculation of points from the centroids and assigns it
to the closest centroid. Each MPI process then calculates the partial sum
along the points in each cluster for the next centroid calculation. At the
end of each iteration, a global reduction operation, MPI Allreduce is carried
out, after each parallel process finishes its own calculation, to compute the
new cluster centroids. Iterations are carried out until fewer than 0.05% data
points change their cluster assignment from the previous iteration.

Two optimisation techniques are applied in their approach to accelerate
the parallel computation:

• The first concerns triangle inequality. It established an upper limit
on distances between data points and centroids to reduce the number
of Euclidean distance calculations. Under this technique, unnecessary
point-to-centroid distance calculations and comparisons can be elim-
inated based on the previous assignment and the new inter-centroid
distances. In more detail, if the distance between a centroid assign-
ment and a new candidate centroid is greater than or equal to the
distance between this centroid and the next point, then calculation of
distance between the next point and the new candidate centroid is not
required.

• The second concerns empty clusters and centroid warping. A global

3.2. Schedulers and data partitioning for hierarchical many-core
supercomputers

59

MPI reduction operation is carried out to identify a cluster with the
highest average distance whenever there is an empty cluster. Once this
cluster is chosen, the farthest point in that cluster is identified and is
assigned to the empty cluster.

They use real-world datasets to evaluate their approach on the Jaguar
supercomputer. By applying their massively parallel dataflow partitioning
and the acceleration techniques, they can cluster a 84 GB dataset with
1,024,767,667 into 1000 centroids within 1000s.

3.2.4 M. Bender et al. (2015)

Bender, et al [9] investigated a novel parallel implementation proposed for
Trinity, the latest National Nuclear Security Administration supercomputer
with Intel Knight’s Landing processors and their scratchpad two-level mem-
ory model. Their approach is the most current comparable work against
the proposed SupCOLAB method which can not only partition dataflow,
but also partition the number of target clusters k by their hierarchical two-
level memory support – cache associated with each core and scratchpad for
sharing.

Adapted originally from [45], their partitioning algorithm partitioned the
input dataset into nd

M
sets, where M is the size of the scratchpad, n is the size

of the dataflow and d is the number of dimensions of each data element, and
then reduced k nd

M
centroids recursively if needed. Based on this partition,

their approach scaled d into the 140,000s.
However each centroid, k, is a d-dimensional vector. The maximum value

of k ∗ d is limited by the shared scratchpad. There are two main drawbacks
to this approach:

• Firstly, only one of k or d can be scaled to a large number, as shown in
Table 3.3. This fundamental bottleneck in their approach is because of
the two-level memory. It is still impossible to partition and then scale
all n, k and d independently through a 2 levels hierarchical architecture.
This leads to the interaction constraint between k and d as discussed
in their paper:

Z < kd < M

where Z is the size of cache. This partition-based method is not efficient
if all k centroids can fit into one cache.

60 Chapter 3. Related Work

• Secondly, the performance scaling of 2-level data partitioning is shown
to be poor as k or d grows towards the high end of possibility for this
approach. Therefore even if the memory limits were somehow solved
in some other way, the performance scaling would limit the growth of
k or d.

These difficulties show the need for a new approach if larger values of k
and d are to be reasonably handled. The three-level hierarchical SupCOLAB
approach proposed in this thesis, addresses both issues of independent growth
of k and d, and of scalability.

3.3 Schedulers for multi-accelerators systems

In addition to scheduling the special heterogeneities from hierarchical many-
core supercomputers, more complex heterogeneities need to be considered
when designing schedulers for FPGA-based multi-accelerator systems, in-
cluding optimising data communication, configuration detection and address-
ing topology of FPGAs.

Based on the hardware parallelism from FPGAs, the first critical prob-
lem is how to optimise the schedule of runtime data communication cased
by data dependence between parallel executions. J. Shu et al [95] and H.
Topcuoglu et al. [97] proposed graph representations and modelling to ad-
dress the communication issues.

The second additional heterogeneity is brought about by the reconfigura-
bility of FPGAs. This results in a more difficult scheduling space as tasks can
have different shapes (number of required and their topologies) and then are
more suited to different hardware configurations. For example, based on the
increasing size of input data, a code segment might get better performance
by being allocated and running on more co-executed FPGAs. The scheduler
should address this heterogeneity by determining the best configuration of
a given tasks and then schedule it to sufficient resources. Multiple dynamic
FPGA schedulers have considered this problem, which will be described in
detail later.

The third issue concerning the multi-FPGA architecture is the topology
of FPGAs. Given a multi-FPGA architecture, FPGAs might be directly
connected or not. This asymmetry leads to a further complicated schedul-
ing space for multi-FPGA tasks. For example, even if a task is allocated

3.3. Schedulers for multi-accelerators systems 61

to a deterministic number of FPGAs with same configuration, the comput-
ing ability of those FPGAs might differ. Unfortunately, no state-of-the-art
FPGA scheduler has an efficient solution to address this problem. The Ta-
ble 3.4 provides a qualitative analysis on the related FPGA schedulers and
claims that only the proposed AccCOLAB scheduler can address all the het-
erogeneities efficiently.

Table 3.4: Qualitative Analysis on Heterogeneity-Aware Schedulers Target-
ing FPGA based Multi-Accelerator Systems

Approaches Optimizing
Communi-
cation

Configuration
Detection

Multi FPGA Topology

Shu et al [95] X X
Topcuoglu et
al. [97]

X X

Handa et al [49] X X
Redaelli et al [80] X X X
Jing et al. [59] X X X
AccCOLAB X X X X

3.3.1 J. Suh et al. (2000)

J. Shu et al [95] proposed a heuristic-based scheduler on multi-FPGA sys-
tems targeting a specialised task – optimising the runtime communication.
Motivated by the I/O limitation, efficiently executing the communication
task is critical for the overall system performance on multi-FPGA.

They apply a graph representation to model the tasks, in which each task
is a node with weight value on computation time and each edge from two
nodes denote the directed communication need. They design and implement
a heuristic algorithm, based on breadth-first search on the tasks graph, and
then assign tasks in a bottom-up fashion. This simple algorithm achieves an
O((M+ N log N) time complexity to provide a high performance solution for
the NP-hard scheduling problem, where M is the number of tasks and N is
the number of edges – the number of communications.

62 Chapter 3. Related Work

As detailed in their reported results on a SUN workstation with 100
random workloads, their approach can achieve around 20% speedup (reducing
latency) over others.

3.3.2 H. Topcuoglu et al. (2002)

A more sophisticated approach has been proposed to address data depen-
dence issues by H. Topcuoglu et al.

The Heterogeneous Earliest Finish Time (HEFT) algorithm [97] is a list
scheduling algorithm for multi-accelerator systems that aims to improve per-
formance by analysis on directed acyclic graphs (DAG). It consists of two
major phases: a task partitioning phase for determining the order of tasks
based on mean computation and mean communication cost and a proces-
sor selection phase for assigning each task into an optimal processor with an
insertion-based policy. HEFT shows satisfactory performance in both quality
and cost of schedules in DAG-based task scheduling.

However, it does not consider the irregularity of tasks. If there is no data
dependency between incoming tasks, which means the communication cost
is zero, the HEFT algorithm will assign the highest priority to the task that
has the minimum execution time. Like ranking-based scheduling methods,
the basic idea of HEFT is to determine the order of tasks based on a specific
heuristic and then schedule these tasks according to their order.

3.3.3 M. Handa et al. (2004)

M. Handa et al [49] proposed a dynamic scheduler with runtime resource
allocation and task placement targeting multi-task co-execution on single
FPGA-based reconfigurable platforms. They use a rectangle-based model
to represent the fragmentation of the reconfigurable hardware resources on
FPGAs as well as the tasks. Concerning determining the shape and size of
each task model, three time-related factors are applied including the task
arrival time, start time and execution time. Tasks are also labelled with
priority, which is the preference of execution orders against others. Based on
their modelling, they proposed a novel integrated method to schedule tasks.
Instead of following the FIFO order to allocate resources then place tasks
in priority queue for execution, they defer the scheduling decision of each
task until it is necessary – right before it will be executed. In this approach,
the priority of each tasks in the runqueue will influence both the resource

3.3. Schedulers for multi-accelerators systems 63

allocation and task placement simultaneously in an integrated way without
the need to re-order the in-queue tasks further before execution.

Based on whether there are data dependences between tasks, they han-
dle in-order processes and out-of-order processes by two separate scheduling
policies when implementing the scheduler. When their scheduler addresses
in-order processes, an additional runtime queue - delete queue is applied to
record the task deletion events. This queue has the duty to release – the fol-
lowing tasks dependent on the current tasks will be released once the current
task finish as shown in the delete queue.

Concerning the handling of out-of-order processes, there is no need to
use such a queue to record whether a certain task is finished and no lock is
needed. The ready task will be executed whenever there is sufficient hardware
resources. This is determined by matching of rectangle-based task model to
resource model. It is clear that handling such out-of-order tasks can result
in much higher resource utilization than in order tasks.

They apply the empty area of resource per time metric, which represents
the ratio of resource idle to measure the quality of scheduling decisions and
then use the ratio of delay time in total execution time to measure the overall
performance. On average, their approach achieves 10%-14% performance
gain over the previous non-integrated FPGA multi-task scheduler.

3.3.4 F. Redaelli et al (2010)

F. Redaelli et al [80] propose a multi-FPGA scheduler by investigating the
partially reconfigurable and the dynamically reconfigurable features of these
systems.

In addition of previous work on multi-task scheduler targeting single
FPGA systems, this work provides an efficient design framework to deter-
mine the best hardware configuration for workloads on multi-FPGA systems,
including the number of FPGAs for each workload. The goal of the underly-
ing method of this framework is to minimise the total execution time of each
task by parallelising the tasks on multiple co-executed FPGAs, but still tak-
ing into account the trade off with the additional communication overhead.
The best configuration in terms of number of FPGAs will be reached when
multi-FPGA communication delay begin to dominate the execution time at
some point.

Their scheduler follows a heuristic-based approach to make decisions and
select tasks in an just-in-time manner. When there are multiple possible

64 Chapter 3. Related Work

resources to execute a ready task, the heuristic instead uses the farthest
placement principle and uses an anti-fragmentation technique. It aims at pro-
viding a better solution space for future placements, as it is has been demon-
strated that it is easier to place large tasks in the center of the FPGA [5].
The scheduler also considers the latency from data migration between multi-
FPGA to determine whether to reuse resources. Other runtime techniques,
including configuration prefetching and limited reconfiguration, are also ap-
plied to optimal the scheduling decision.

Chapter 4

COLAB: A
Heterogeneity-Aware Scheduler
for Asymmetric Chip
Multi-core Processors

4.1 Introduction

Most processor chips are incorporated into embedded devices, such as smart-
phones and IoT sensors, which are by nature, energy limited. Therefore,
energy efficiency is a crucial consideration for the design of new processor
chips. Heterogeneous systems combine processors of different types to pro-
vide energy-efficient processing for different types of workloads. In central
processors, single-ISA asymmetric multicore processors (AMPs) are becom-
ing increasingly popular, allowing extra flexibility in terms of runtime assign-
ment of threads to cores, based on which core is the most appropriate for
the workload, as well as on the current utilisation of cores. As a result of
this, efficient scheduling for AMP processors has attracted a lot of attention
in the literature [74]. The three main factors that influence the decisions of
a general purpose AMP scheduler are:

• Core sensitivity. Cores of different types are designed for different
workloads. For example, in ARM big.LITTLE systems, big cores are
designed to serve latency-critical workloads or workloads with Instruc-
tion Level Parallelism (ILP). Running other kinds of workloads on them

66
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

would not improve performance significantly while consuming more en-
ergy. Therefore, it is critical to predict which threads would benefit the
most from running on which kind of core.

• Thread criticality. Executing a thread faster does not necessarily
translate into improved performance. An application might contain
critical threads, the progress of which determines the progress of the
whole application and it is these threads that the scheduler needs to pay
special attention to. Therefore, it is essential to identify critical threads
of an application and accelerate them as much as possible, regardless
of core sensitivity.

• Fairness. In multiprogrammed environments, scheduling decisions
should not only improve the utilisation of the system as whole, but
should also ensure that no application is penalised disproportionately.
Achieving fairness in the AMP setting is non-trivial, as allocating equal
time slices in round robin manner to each application does not imply the
same amount work done for each application. Therefore, it is critical
to ensure that each application is able to make progress in a fair way.

The research community has put considerable effort into tackling these
problems. Prior research [48, 25, 60, 96, 36] has explored bottleneck and
critical section acceleration, others have examined fairness [114, 104, 100, 68,
69], or core sensitivity [21, 66, 6]. More recent studies [64, 63, 85, 99, 61]
have improved on previous work by optimizing for multiple factors. Such
schedulers tuned for specific kinds of workloads – either single multi-threaded
program or multiple single-threaded programs. Only one previous work,
WASH [58], can handle general workloads composed of multiple programs,
each one single- or multi-threaded, with potentially unbalanced threads, and
with a total number of threads that may be higher than the number of cores.
While a significant step forward, WASH only controls core affinity and does
so through a fuzzy heuristic. Coarse-grain core affinity control means that
it cannot handle core allocation and thread dispatching holistically to speed
up the most critical threads. The latter means that WASH has only limited
control over which threads run where, leaving much of the actual decision
making to the underlying Linux CFS scheduler.

4.1. Introduction 67

{ }

Pl:

Pb:

α2 β2

Core

 Allocation:

Thread

Selection:

Pl:

Pb:

α2 β2

Multi-factor

mixed Model

Multi-factor

Coordinated Model

Pl

Pb

α2 β2

{
{ }

?
? Pl

Pb

α2 β2{ }

Runtime Scheduling

γ

α (α1,α2) a 2-thread program where thread α1 has
high speedup and blocks thread α2

 β (β1, β2) a 2-thread program where thread β1
blocks thread β2

a single-thread program with
high speedup

Speedup priority

Block priority

Speedup & Block
 priority

γ

γ γ

γ

α1 α1

α1 α1

 β1

 β1

 β1

 β1

All high priorities

threads only on

big cores

High priorities

threads distributed

on both cores

No guideline from

the mixed model

 and VM

Detailed guidelines

from the

coordinated model

Figure 4.1: Motivating Example: Multi-threaded multiprogrammed work-
load on asymmetric multicore processors with one big core Pb and one little
core Pl. The mixed model in the left hand side shows WASH decision and
the collaborated model in the right hand side shows the proposed COLAB
decision. Controlling only core affinity results in suboptimal scheduling de-
cisions.

68
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

4.1.1 Motivating Example

Consider the motivating example shown in Figure 4.1 to demonstrate the
problem. This AMP system has a high performance big core, Pb, and a low
performance little core, Pl. Three applications, α, β, γ, are being executed.
α and β have two threads. The first thread of each application, α1 and β1,
blocks the second thread of their application, α2 and β2 respectively. γ is a
single-threaded application. α1 and γ enjoy a high speedup when executed
on the big core, Pb. WASH [58], the existing state-of-the-art multi-factor
heuristic, would be inclined to assign the high speedup thread and the two
blocking threads to the big core. The thread selector of Pb has no information
about the criticality of the threads assigned to it, so the order of execution
depends on the underlying Linux scheduler.

A much better solution is possible if the scheduler could control both
core allocation and thread selection in a coordinated, AMP-aware way. In
this case, it maps the two threads that benefit the most from the big core,
γ and α1, to Pb, while it maps the other bottleneck thread, β1, to Pl. This
will not impact the overall performance of β. The thread selector knows β1
is a bottleneck thread and executes it immediately. So, what the approach
loses in execution speed for β1, it gains in not having to wait for CPU time.
Similarly, this coordinated policy guarantees that α1 will be given priority
over γ.

In this chapter, a novel OS scheduling policy, COLAB, is introduced for
asymmetric multicore processors that can make such coordinated decisions.
The proposed scheduler uses three collaborating heuristics to drive decisions
about core allocation, thread selection, and thread preemption. Each heuris-
tic optimizes primarily one of the factors affecting scheduling quality: core
sensitivity, thread criticality, and fairness respectively. Working together,
these multi-factor heuristics result in much better scheduling decisions.

COLAB is integrated inside the Linux scheduler module, replacing the
default CFS policy for all application threads. It is evaluated on multi-
ple big.LITTLE-like simulated systems running 36 distinct workloads, each
workload being a random selection of PARSEC3.0 and SPLASH2 bench-
marks. In almost all cases, COLAB was able to improve both turnaround
time and throughput compared to the state-of-the-art and the Linux default.
In the best case, where the workloads are mainly composed by synchronous-
intensive workloads, turnaround time was 25% less under the proposed policy
than under WASH and CFS.

4.2. Runtime Factor Analysis 69

The main contributions of this work are:

• The first AMP-aware OS scheduler targeting general multi-threaded
multiprogrammed workloads.

• A set of collaborative heuristics for prioritizing thread based on core
sensitivity, thread criticality, and fairness.

• Up to 25% and 21% lower turnaround time, 11% and 5% on average,
compared to the Linux CFS and WASH scheduler.

The remainder of this chapter is presented as follows: Section 4.2 analyses
the multiple runtime factors. The multi-factor collaboration is presented in
Section 4.3. Section 4.4 shows the scheduling design and implementation.
The experimental setup and results are presented in Section 4.5 and 4.6.
Section 4.7 provides a summary of this chapter.

4.2 Runtime Factor Analysis

This section analyses the performance impact of multiple runtime perfor-
mance factors and their relationships with different functional units in the
scheduler. The heterogeneity-aware runtime scheduler is designed to address
these performance problems in a coordinated way.

The high-level relationships between runtime performance factors and the
functions which address them is shown in Figure 4.2. In order to achieve run-
time collaboration, both core allocator and thread selector share information
and account for all measured performance factors, including core sensitivity,
bottleneck acceleration and fairness carefully as illustrated below:

4.2.1 Core Allocator

AMP-aware core allocators are mainly directed by the core sensitivity factor.
Migrating a high speedup thread (with a large differential between big and
little core execution time) from a little core to execute on a big core will
generally provide more benefit than migrating a low speedup thread.

However, this heuristic is overly simplistic. Issues are revealed when the
bottleneck factor is considered simultaneously on multiprogrammed work-
loads. Previous approaches [58] simply combine the calculation from bot-
tleneck acceleration and predicted speedup together, but this can result in

70
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

Figure 4.2: A diagram of how runtime performance factors are influenced
by functions in the scheduling algorithm. Left hand side are the list of
runtime factors and right hand side shows how the scheduling algorithm
can do with them. The solid arrows represent how scheduling functions can
benefit those runtime factor while the dotted arrows represent the possible
negative influence from the scheduling functions to these runtime factors.

4.2. Runtime Factor Analysis 71

suboptimal scheduling decisions – both locking threads and high speedup
threads may be accumulating in the runqueue of big cores as is illustrated
in the motivating example in the Introduction. More intelligent core alloca-
tion decisions can be made by avoiding a simple combination of bottleneck
acceleration and speedup – the overall schedule can benefit from a more
collaborative execution environment where big cores focus on high speedup
bottleneck threads, and little cores handle other low speedup bottlenecked
threads without additional migration.

Furthermore, core allocators are designed to achieving relative fairness
on AMPs by efficiently sharing heterogeneous hardware and avoiding idle
resource as much as possible. Simply mapping ready threads uniformly be-
tween different type of cores can not achieve true load-balancing – the number
of ready threads prioritized on different type of core is different and thus, a
hierarchical allocation should be applied to guarantee the overall fairness,
which avoids the need to frequently migrate threads to empty runqueues.

4.2.2 Thread Selector

The thread selector makes the final decisions on which thread will be executed
during runtime. It is usually the responsibility of the thread selector to
avoid bottlenecking by thread blocking. In a multi-thread multiprogrammed
environment, multiple bottleneck threads from different programs may need
to be accelerated simultaneously with constraint hardware resources. Instead
of simply detecting the bottleneck threads and throwing all of them to big
cores as previous bottleneck acceleration schedulers [58, 61, 60], the thread
selector needs to make collaborative decisions – ideally, both big cores and
little cores select bottlenecks to run simultaneously.

Core sensitivity is usually unrelated to the thread selector – whether a
thread can enjoy a high speedup from a big core compared with a little core
is unrelated to which runqueue it is on, or came from. Therefore the thread
selector should separate thread priority caused by core sensitivity and solely
base decisions on bottleneck acceleration. One exception is that when the
runqueue of a big core is empty and the thread selector is invoked – the
speedup factors from core sensitivity of ready threads should be considered
only in this case. Big cores may even preempt the execution of little cores
when necessary.

The final concern of thread selector is about fairness. Scaling the time
slice of threads by updating the time interval of thread selector has been

72
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

Figure 4.3: Flowchart of the scheduling process with a runtime feedback loop

shown to efficiently guarantee the equal progress [99] in multi-threaded single-
program workloads and achieve fairness. In single-threaded multiprogrammed
scenarios, complicated fairness formulation [64] has been proposed to guide
the thread selector for precise decisions. Problems occur when targeting
multi-threaded multi-programmed workloads. Simply keeping a thread-level
equal progress is not enough to guarantee the multi-application level fairness
– the thread selector should ensure the whole workload is in equal progress
without penalizing any individual application. In fact, multi-bottleneck ac-
celeration by both big and little cores does provide an opportunity for this -
the thread selector makes the best attempt to keep fairness on all applications
by accelerating bottlenecks from all of them and as soon as possible.

4.3 Multi-factor Runtime Collaboration

A coordinated multi-factor runtime collaboration is designed to address the
problems detailed above, in which the core allocator and the thread selec-
tor collaborate to achieve high performance and high fairness, when com-
pared to the state-of-the-art mixed multi-factor evaluator in WASH [58].
The flowchart of the proposed model is shown in Figure 4.3. Collaboration is
facilitated by periodically labeling ready threads in two different categories,
based on runtime models of speedup prediction and bottleneck identification:

4.3.1 Labels for Core Allocation

Threads with high predicted speedup between big and little cores will be
labelled as high priority on big cores. Threads with both low predicted

4.3. Multi-factor Runtime Collaboration 73

speedup and blocking levels – non-critical threads – will obtain high priority
on little cores (and low priority on big cores). Remaining threads obtain equal
priority on either big or little cores – these threads can then be allocated freely
to balance the load of cores.

4.3.2 Labels for Thread Selection

Threads with high blocking level will be labelled as high priority on local
thread selection. The same priority will be given on these blocking threads
whether the issuing cores are big or little, so the labels of thread selection
do not distinguish the type of cores.The label nevertheless records the type
of the current core – threads have priority to be selected by the same type
of cores if there exists a core of the same type with an empty runqueue.
Running threads on little cores are also labeled as they may be preempted
to migrate and execute on big cores when suited, but running threads will
never have priority over waiting ready threads.

4.3.3 Relative Equal Progress

Another important issue handled by the collaborative multi-factor model
is to ensure relative equal-progress of threads. Instead of interfering with
the priority and decisions of thread selection, the scheduler achieves equal
progress of threads by applying the scaled time slice approach, based on
the predicted speedup value of threads running on big cores. The slices of
threads on big cores are relative shorter than on little cores. The thread
selection function is triggered more often to swap executing threads on big
cores, which guarantees the equal-progress of threads executed on all cores.

4.3.4 Multi-bottleneck Co-acceleration

After the above process, fairness, core sensitivity and bottleneck accelera-
tion are represented by labels on threads can be handled by either the core
allocator or the thread selector or both together in a fairness way. Based
on this coordinated model, the core allocator and thread selector handle dif-
ferent priorities queues from the set of ready threads – their decisions are
not greedy on a mixed multi-factor ranking like WASH, rather provide a
collaborative schedule.

74
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

The runtime model periodically extracts the performance counters, which
represents the current execution environment of multi-threaded multi- pro-
grammed workloads on the AMPs. The model then provides the updated
runtime feedbacks, including the predicated speedup value and blocking
counts. This information is attached to the threads and reported back to
the multi-factor labeler for next round. The runtime model implementations
is presented in the section below.

4.4 Scheduling Algorithm Design and Imple-

mentation

The COLAB scheduling algorithm described in this subsection is imple-
mented on the GEM5 simulator [14], modifying the simulator and construct-
ing interfaces between the Linux kernel v3.16 with the CFS scheduler.

4.4.1 Runtime Factors Implementations

The runtime multi-factor model is implemented by updating the main sched-
uler function sched schedule() of the Linux kernel by adding a thread
process as described in section 3.2 above. A similar approach is followed by
the WASH re-implementation when updating thread affinities.

Machine Learning based Speedup Prediction

Predicting the performance of threads on different core types is central for any
scheduler targeting AMPs. This prediction uses an offline trained speedup
model to estimate speedups online. This is a common approach in previous
works [99, 58, 85].

Benchmarks from PARSEC3.0 are compiled all in single-program mode
to construct the training set with two symmetric configurations, using either
only little cores or only big cores. Firstly, all 225 performance counters of
the simulated big cores and the relative speedup between the two configura-
tions are recorded. Since on a real system, there will not be uniform high
speed access to all performance counters simultaneously, Principal Compo-
nent Analysis (PCA) technique [105] is applied to select the six performance
counters with the largest effect on speedup modelling. They are then nor-

4.4. Scheduling Algorithm Design and Implementation 75

Table 4.1: Selected performance counters and Speedup Model

Selected GEM5 performance counters by PCAT
Index Name Description [14]
A: fp regfile writes number of integer regfile writes
B: fetch.Branches number of branches that fetch encountered
C: rename.SQFullEvents number of times rename has blocked due to

SQ full
D: quiesceCycles number of cycles quiesced or waiting for an

interrupt
E: dcache.tags.tagsinuse cycle average of tags of dcache in use
F: fetch.IcacheWaitRetryStallCycles number of stall cycles due to full MSHR
G: commit.committedInsts number of instructions committed

Linear predictive speedup model
2.6109+((0.0018*-0.185A)+(0.0259*0.187B)+(0.1047*0.194C)+(-0.023*0.238D)+(0.0492*-0.299E)+(-0.1388*-0.227F))/G

malised to the number of committed instructions and linear regression is
applied to build the final model, which is shown in Table 4.1.

Bottleneck Identification

On modern Linux systems synchronisation primitives are almost always im-
plemented using kernel futex, regardless of the threading library used. Futex-
based mechanisms use a single atomic instruction in user space to acquire
or release the futex, if it is uncontested. Otherwise, it triggers a system call
which forces the thread to sleep or wakes up sleeping threads, respectively.

This gives a convenient single point where the scheduler can monitor
blocking patterns between threads. The first code addition is in futex wait

queue me() and futex lock pi(), right before the active thread starts wait-
ing on a futex. It records the current time and store it in the task struct

of the thread. Followed by that, code is inserted in wake futex() and
wake futex pi(), right before the waiting task is woken up by the thread
releasing the futex. There the length of the waiting period can be calculated
and then accumulated in the task struct of the thread releasing the futex.
This way the scheduler will be able to measure the cumulative time each
thread has caused other threads to wait. This is used as the metric of thread
criticality for the rest of this chapter.

Speedup based Scale-slice Preemption

Although implementing the functions on Linux kernel by fully re-writing both
the core allocator and thread selector, the underlining preemption mechanism
of Linux is applying the virtual runtime vruntime in CFS with red-black tree

76
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

data structure. The vruntime of each task is its actual runtime normalized
to the total number of running tasks. This vruntime-based preemption tech-
nique is designed to get multiple co-executed tasks all finished as soon as
possible. Whenever a new task is enqueued, a preemption wake-up func-
tion is invoked to check whether the new coming task should preempt the
current task by computing the difference in vruntime and comparing with a
boundary. So the vruntime of each task can efficiently specify when its next
timeslice would start execution on ideal multi-tasking CPU, where each task
is ran at precise equal speed.

However, this is problematic on AMPs. Since different types of cores have
different frequencies, speeds and instruction processing models (in-order or
out-of-order), precise equal timeslice can not lead to equal progress of each
task. Threads running on different types of cores should have different lengths
of time slices in proportion to their performance variance to achieve equal-
progress on AMPs.

The default preemption wake-up function wakeup preempt entity() is
updated in Linux kernel. The runtime speedup model is then applied to
update the vruntime of the current task by dividing it by the thread’s speedup
value if the triggering core is a big core. The ensures relative equal progress.

4.4.2 Scheduling Algorithm Implementation

In brief, the default Linux CFS scheduler implemented in sched/fair.c

contains an extensible hierarchy of scheduler modules, which encapsulate
scheduling policy details. Scheduler modules contain hooks to functions that
will be called when corresponding event occurs. Two main functions here
are pick next task fair() for choosing the most appropriate task eligible
to run next and select task rq fair() for choosing the most appropriate
runqueue of a ready task.

The proposed COLAB scheduling algorithm is implemented by overrid-
ing the default pick next task fair() and select task rq fair() in the
Linux kernel. The pseudo-code of COLAB scheduling algorithm is shown
in Alg. 2. Similarly to commonly used Linux notations, rq is used to rep-
resent runqueue and cur is used to represent the current task of a core in
the code. The main motivation of this algorithm design is to distribute the
high speedup and bottleneck threads to be co-accelerated on multiple types
of cores instead of accumulating on big cores as previous approaches and in
such a way, to achieve multi-factor collaboration. The descriptions of the

4.4. Scheduling Algorithm Design and Implementation 77

Algorithm 1 Collaborative Multi-factor Scheduler targeting Asymmetric
Multicore Processors

1: core alloctor(thread struct t){
2: if t.high speedup then
3: return rr allocator(big cores)
4: if t.low speedup & t.low block then
5: return rr allocator(little cores)
6: return rr allocator(cores)
7: }
8:

9: thread selector(core struct c){
10: if !empty(c.rq) then
11: return max block(c.rq)
12: if !empty(c.sched domain.rq) then
13: return max block(c.sched domain.rq)
14: if c.cpu mask == big then
15: return max block(c.sched domain little.cur)
16: return idle
17: }

78
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

two main functions are listed below:

Hierarchical Core Allocator

When a thread is ready to be executed, whether it was just spawned or woken,
the core allocator will be invoked to assign this thread to a core’s runqueue.
A hierarchical round-robin mechanism rr allocator() is used to achieve
relative load balancing and address the influence from the core sensitivity
factor. Indicated by the speedup and blocking labels, threads are allocated
to different core groups. Threads with high speedup will be assigned to big
core clusters in round-robin (line 3). Low speedup and low blocking threads
will only be assigned to little core clusters (line 5).

Remaining ready threads (usually with average speedup level and lit-
tle blocking) will be relatively equally allocated to both core types by rr

allocator(core). This final round-robin decision helps to keep both core
clusters equally occupied and load balanced (line 8).

Biased-global Thread Selector

The thread selector is based on the principle of accelerating the most criti-
cal/blocking thread as soon as possible, shown in lines 10 to 21. The selector
tries to choose a thread from the local runqueue first (lines 11-13). When
there are no ready threads and migration is beneficial, the core triggers the
migration of a candidate thread waiting in another runqueue. The thread
with the highest blocking level will be selected. A default design principle
of Linux CFS scheduler is followed here to reduce the overhead of accessing
state in other runqueues - returning the best candidate thread from the local
core group first (line 14-16). Further, big cores are allowed to select and pre-
empt a running thread on a little core to accelerate it (line 17-19). Big cores
are only allowed to go idle only when there is no ready thread left (line 20)
- for instance, little cores are not allowed to preempt a big core’s execution.

In summary, the thread selector can still access all other runqueues when
necessary, but it is biased to access neighbouring ones first. Note that the
relative equal-progress for achieving fairness is addressed by the scale-slice
preemption checker instead of the thread selector – each thread is given a
maximum time slice relative to its expected performance on the asymmetric
core. Further, cache efforts or interference should also be addressed by thread
selector in the future work when targeting complicated architectures with

4.5. Experimental Setup 79

shared LLC or memory.

4.5 Experimental Setup

4.5.1 Experimental Environment

The experiments are run on GEM5, which simulates an ARM big.LITTLE-
like architecture. The big cores are similar to out-of-order 2 GHz Cortex A57
cores, with a 48 KB L1 instruction cache, a 32 KB L1 data cache, and a 2
MB L2 cache. The little cores are similar to in-order 1.2 GHz Cortex A53
cores, with a 32 KB L1 instruction cache, a 32 KB L1 data cache, and a
512 KB L2 cache. Four distinct hardware configurations are evaluated. Two
had balanced numbers of big and little cores, one with two big and two little
cores (2B2S) and one with four big and four little ones (4B4S). The other
two had different numbers of big and little cores, one with two big and four
little cores (2B4S) and one with four big cores and two little cores (4B2S).
The OS is Linux v3.16. The kernel is cross-compiled with gcc v5.4.0, while
benchmarks inside the emulated environment are compiled with gcc v4.8.2.

The simulated environment is chosen to make it easier to evaluate the
proposed approach on multiple different hardware configurations. While this
experiment targeted simulated ARM cores, the underlying general procedure
and model can be implemented on any real processor as long as they provide
enough hardware performance monitor units (PMU). All hardware counters
used by the model are supported by the real ARM Cortex-A57/A53 [3] PMU.

4.5.2 Workloads Composition

The system are evaluated using 15 different benchmarks (Table 4.2), pulled
from PARSEC3.0 [11] and from SPLASH2 [106] applied to generate the tested
workloads. 1 To keep the simulation time reasonably short, all benchmarks
use the simsmall inputs. The benchmarks are grouped based on two criteria:
a) synchronization intensity and b) communication vs computation intensity.

1The applied version of GEM5 cannot simulate all PARSEC3.0 benchmarks on ARM.
On top of canneal and raytrace that other researchers have also failed to build [38, 101].
Among the SPLASH2 benchmarks, cholesky and volrend depended on huge input data files
that did not fit on the hard drive image. Other benchmarks not used in the experiments
includes barnes, radiosity, facesim, x264, vips and streamcluster because their runtime is
prohibitively long even for simsmall inputs.

80
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

Table 4.2: Benchmarks categorization [12, 106, 92]

Name Sync. Intensity Comm/Comp Intensity
blackscholes low high
bodytrack medium high
dedup medium high
ferret high medium
fluidanimate very high low
freqmine high high
swaptions low low
radix low high
lu ncb low low
lu cb low low
ocean cp low low
water nsquared medium medium
water spatial low low
fmm medium low
fft low high

4.5. Experimental Setup 81

Table 4.3: Multi-programmed Workloads Compositions

Synchronization-intensive VS Non-synchronization-intensive Workloads
Index Workload Composition Synchronizations Threads
Sync - 1 water nsquared - fmm intensive 4
Sync - 2 dedup - fluidanimate intensive 18
Sync - 3 water nsquared - fmm - flu-

idanimate - bodytrack
intensive 9

Sync - 4 dedup - ferret - fmm - wa-
ter nsquared

intensive 20

NSync - 1 water spatial - lu cb non-intensive 4
NSync - 2 blackscholes - swaptions non-intensive 16
NSync - 3 radix - fft - water spatial -

lu cb
non-intensive 8

NSync - 4 blackscholes - ocean cp -
lu ncb - swaptions

non-intensive 20

Communication-intensive VS Computation-intensive Workloads
Index Workload Composition Comm/Comp Threads
Comm - 1 water nsquared - blacksc-

holes
Communication-
intensive

4

Comm - 2 ferret - dedup Communication-
intensive

16

Comm - 3 water nsquared - fft - radix
- bodytrack

Communication-
intensive

9

Comm - 4 blackscholes - dedup - ferret
- water nsquared

Communication-
intensive

20

Comp - 1 water spatial - fmm Computation-
intensive

4

Comp - 2 fluidanimate - swaptions Computation-
intensive

17

Comp - 3 lu ncb - fmm - water spatial
- lu cb

Computation-
intensive

8

Comp - 4 fluidanimate - ocean cp -
lu ncb - swaptions

Computation-
intensive

20

Random-mixed Multi-programmed Workloads
Index Workload Com-

position
Threads Index Workload Composition Threads

Rand - 1 lu cb - dedup 19 Rand - 6 water spatial - fmm - fft -
fluidanimate

21

Rand - 2 lu ncb - body-
track

10 Rand - 7 fmm - water spatial - ferret
- swaptions

20

Rand - 3 ferret - wa-
ter spatial

9 Rand - 8 water spatial - wa-
ter nsquared - ferret -
freqmine

17

Rand - 4 ocean cp - fft 8 Rand - 9 blackscholes - bodytrack -
dedup - fluidanimate

55

Rand - 5 freqmine - wa-
ter nsquared

6 Rand -
10

lu cb - lu ncb - bodytrack -
dedup

53

82
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

The insight information of each benchmark is extracted from its source pa-
pers [12, 106, 92]. For each group, workloads are randomly generated with
variable numbers of benchmarks and threads. These workloads provide the
opportunities to investigate the behavior of the three scheduling policies un-
der different scenarios. There are also 10 workloads generated with random
benchmarks from all groups to explore the general case of scheduling for an
AMP system. Table 4.3 shows the selected workloads. For all of them, the
experiment starts from a checkpoint taken after all benchmarks have com-
pleted their initialization.

Each individual result represents the average over two simulations with
different core orders - either big cores first or little cores first. Because there
are only two types of cores and practical AMPs either configure big or little
core first without trying to arrange them by mixing up. Small variations in
the initial state of the system might have a significant effect on scheduling
decisions and thus performance. For the Linux scheduler in particular, the
order of starting benchmarks will decide which benchmarks will be initially
assigned to big and little cores. By varying the initial state and measuring
average runtimes over multiple simulations, the experiment minimizes the
effect of randomness on the evaluation. The WASH and COLAB provide
more finer grained control on thread scheduling on AMPs than Linux, which
lead to deterministic and repeatable solutions on different core orders.

4.5.3 Schedulers

COLAB is evaluated by comparing it against the Linux CFS scheduler [75]
and a state-of-the-art realistic scheduler based on WASH [58]. CFS is the
default Linux scheduler and it provides fairness while trying to maximize
the overall CPU resource utilization. WASH is re-implemented driven with
a core sensitivity model that fits the simulated system and it is used for
controlling all application threads.

4.6 Results

4.6.1 Single-programmed Workloads

Much of the research on AMP scheduling focuses on single-programmed work-
loads. In this context, fairness and load balancing are not important, the

4.6. Results 83

Figure 4.4: Heterogeneous Normalized Turnaround Time (H NTT) of single
program workloads on a 2-big 2-little system. Lower is better

focus is on core sensitivity and bottleneck acceleration. In this section, how
COLAB fares under this scenario is examined. Figure 4.4 shows Hetero-
geneous Normalized Turnaround Time for the multi-threaded benchmarks
when executed alone on a 2-big-2-little hardware configuration. For each
configuration and benchmark, there are three bars presented, Linux(blue),
WASH(red) and COLAB(violet). Three SPLASH2 benchmarks fmm, wa-
ter nsquared and water spatial do not support more than 2 threads with
simsmall input size on GEM5, so those 2-threaded benchmarks are not pre-
sented: scheduling them optimally for performance is trivial.

The AMP-agnostic Linux scheduler is inappropriate for most benchmarks.
COLAB improves H NTT by up to 58% and by 12% on average. The best re-
sult from COLAB relative to Linux is for ferret. Most computation happens
in a pipeline pattern but its stages are not balanced. AMP-aware sched-
ulers take advantage of that by scheduling the longest stages, the bottleneck
threads, on big cores. As a result, COLAB does only 13% worse than running
on a system with four big cores, while CFS executes the benchmark 173%
slower.

Compared to WASH, COLAB achieves its best result for fluidanimate.
Previous work [12] has shown that fluidanimate has around 100x more lock-

84
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

based synchronizations than other PARSEC applications. The collaborative
core allocation and thread selection policy is much better than WASH at
prioritizing bottleneck threads. As a result, COLAB reduce turnaround time
by 30% compared to Linux and 20% compared to WASH.

In some cases, such as bodytrack, lu ncb, or freqmine, AMP-awareness
has little effect on performance. Such benchmarks split work dynamically
between threads. As a result, all threads have the same core sensitivity and
the application adapts automatically to asymmetries in processing speed.
Any AMP-aware scheduling policy, whether WASH or COLAB, will offer
no benefit while introducing overhead. Such behavior was also apparent
in WASH [58]. The pipeline benchmark dedup has five stages to stream
the input set. When the number of threads is greater than the number of
cores that can be run, both heterogeneous-aware schedulers can not service
the excess threads in time, resulting in a certain impact on overall system
performance.

There is only one case where COLAB performs significantly worse than
WASH. For swaptions, COLAB performs as well as the AMP-agnostic Linux
scheduler while WASH improves turnaround time by 31%. This is because
the bottleneck threads of swaptions are core insensitive while the non-bottleneck
threads are core sensitive. This being the ideal case for WASH, it improves
turnaround time while COLAB fails to do the same.

On average, WASH and COLAB perform similarly well and improve per-
formance by 12% compared to Linux when handling single program work-
loads. This is a limited scenario, with no need for fairness and a simple
decision space. COLAB was not expected to perform much better than the
state-of-the-art, doing as well as it is a positive result.

4.6.2 Multi-programmed Workloads

The main aim of the COLAB scheduler is to target workloads of multiple
multi-threaded programs, which represents the most general case for CPU
scheduling. In this section, the performance of COLAB is evaluated in this
setting. Overall, it is able to outperform both the Linux CFS and WASH
when there is room for improvement. This is particularly true when there are
a limited number of big cores and/or many communication-intensive bench-
marks. In such cases, the scheduler needs to consider at the same time both
core affinity and thread bottlenecks. COLAB can do that, while CFS and
WASH cannot, leading to significant performance improvements. In the rest

4.6. Results 85

of this subsection, the behaviour of COLAB is examined under four differ-
ent hardware configurations (2B2S, 2B4S, 4B2S, 4B4S) for the five different
classes of workloads shown in Table 4.3.

Synchronisation-intensive vs Synchronisation Non-intensive work-
loads

The synchronisation-intensive group contains workloads where all programs
have high synchronisation rates. Because of this, these workloads are ex-
pected to have a large number of bottleneck threads, so COLAB should be
able to schedule them better than CFS and WASH. Conversely, synchroni-
sation non-intensive workloads should provide few opportunities for COLAB
to improve on CFS and WASH.

Figure 4.5 shows how well the three schedulers perform on average for each
workload class and hardware configuration. The top plot shows the average
H ANTT while the bottom plot shows the average H STP. The left half of
each plot contains the results for the synchronization-intensive (Sync) work-
load class, while the right half is the synchronization non-intensive (N Sync)
workload class.

The results agree with the expectations. COLAB improves the turnaround
time of Sync workloads by around 15% and 4% on average compared to CFS
and WASH, respectively. Hardware configurations with low core counts, such
as 2B2S, favors COLAB. It can reduce turnaround time by up to 20% over
CFS and by up to 16% over WASH. With fewer cores, the pressure from co-
executed applications rises and properly balancing bottleneck acceleration
and core sensitivity across multiple programs becomes increasingly difficult.
WASH places all bottleneck threads onto the big cores, which results in these
threads having to wait for CPU time in busy run queues, ending up with only
3% of performance improvement over Linux. COLAB handles these bottle-
neck threads in a more holistic way, improving turnaround time by 20% and
system throughput by 27%, compared to Linux.

As for N Sync workloads, there are few bottleneck threads to be ac-
celerated, making scheduling decisions much easier. As a result, both CO-
LAB and WASH perform similarly to Linux, with COLAB improving average
turnaround time by 6% and average system throughput by 12% compared
to Linux.

An interesting point is that COLAB does significantly better (10% and
15% improvement on turnaround time) than WASH and Linux for N Sync

86
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

Sync N_Sync

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

WASH COLAB

H
_

A
N

T
T

N
o

rm
a

li
z
e

d
 t
o

 L
in

u
x

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

Sync N_Sync

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

H
_

S
T

P

N
o

rm
a

li
z
e

d
 t
o

L
in

u
x

Figure 4.5: Heterogeneous Average Normalized Turnaround Time
(H ANTT) and Heterogeneous System Throughput (H STP) of
Synchronization-Intensive and Non-Synchronization-Intensive Workloads.
All results are normalized to the Linux CFS ones. Lower is better for
H ANTT and higher is better for H STP.

4.6. Results 87

workloads on the 4B2S configuration. In this case, where there are sufficient
big core resources without enough critical threads, WASH keeps migrating
predicted critical threads on big cores even when there is no actual need.
However, COLAB will make intelligent decisions by keeping relatively more
threads on little cores, which gives more chance for big cores to execute the
limited really critical threads as soon as possible.

Communication-intensive vs Computation-intensive workloads

When handling programs with high communication-to-computation ratios,
bottleneck threads are likely to arise and accelerating them is critical. This
is an ideal scenario for COLAB. On the other hand, workloads with little
communication are easier to schedule, so CFS and WASH should do reason-
ably well, leaving little space for improvement.

Figure 4.6 shows the evaluation results for these two classes of work-
loads, Comm and Comp. Both COLAB and WASH improve over the Linux
scheduler for communication-intensive workloads. They, however, offer dif-
ferent advantages on different hardware configurations. COLAB distributes
the bottleneck threads to both big and little cores which is extremely im-
portant when having only two big cores (2B2S, 2B4S). COLAB improves
the turnaround time by up to 21% compared to Linux and 15% compared to
WASH on the 2B4S configuration. When more big cores are available, WASH
does better as it keeps all bottleneck threads on big cores. On these configu-
rations, WASH improves turnaround time by up to 18% over Linux (on the
4B4S configuration) and up to 10% over COLAB (on the 4B2S configuration).
On average, COLAB reduces turnaround time by around 12% compared to
Linux and 1% compared to WASH for the communication-intensive workload
class.

Figure 4.6 also confirms that there are few opportunities for better schedul-
ing with computation-intensive workloads. Still, COLAB does better than
WASH and Linux. Its turnaround time and system throughput are improved
by around 10% and 15%, respectively, compared to Linux and 5% compared
to WASH. This is, again, due to a fact that multiple bottlenecks are dis-
tributed both to big and little cores, which results in more efficient use of
the available hardware resources for the few bottlenecks that are present.

88
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

Comm Comp

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

WASH COLAB

H
_

A
N

T
T

N
o

rm
a

li
z
e

d
 t
o

 L
in

u
x

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

Comm Comp

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

H
_

S
T

P
N

o
rm

a
li
z
e

d
 t
o

 L
in

u
x

Figure 4.6: Heterogeneous Average Normalized Turnaround Time
(H ANTT) and Heterogeneous System Throughput (H STP) of
Communication-Intensive and Computation-Intensive Workloads. All
results are normalized to the Linux CFS ones. Lower is better for H ANTT
and higher is better for H STP.

4.6. Results 89

2
b

2
s

2
b

4
s

4
b

2
s

4
b

4
s

G
e

o
m

e
a

n

Random-mix

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

H
_

A
N

T
T

N
o

rm
a

li
z

e
d

 t
o

 L
in

u
x

2
b

2
s

2
b

4
s

4
b

2
s

4
b

4
s

G
e

o
m

e
a

n

Random-mix

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

H
_

S
T

P

N
o

rm
a

li
z
e

d
 t
o

 L
in

u
x

WASH COLAB

Figure 4.7: Heterogeneous Average Normalized Turnaround Time
(H ANTT) and Heterogeneous System Throughput (H STP) of 2-
programmed and 4-programmed Workloads. All results are normalized to
the Linux CFS ones. Lower is better for H ANTT and higher is better for
H STP.

90
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

Mixed workloads

Mixed workloads represent the general case of different applications with dif-
ferent needs, affinities, and communication patterns competing for the same
cores. Figure 4.7 shows the average evaluation results for 10 such workloads.
COLAB performs very well for these workloads: more diverse programs mean
more asymmetry, more bottlenecks, more critical threads, and more potential
for acceleration. The proposed collaborative multi-factor scheduling method
carefully balancing all scheduling aims (core sensitivity, thread criticality and
fairness) leads to a significant performance gain against WASH and Linux.
COLAB improves turnaround time and system throughput by 12% and 11%
compared to Linux and 8% and 7% compared to WASH in average.

Thread and program count

The experimental results are further grouped based on thread and program
count to examine their impact on the behavior of each scheduler. Figure 4.8
shows the performance of all schedulers both for workloads with a low thread
count (less than the core count for that hardware configuration) and for work-
loads with a high thread count (at least double higher than the maximum
core count). Both COLAB and WASH perform significantly better than
Linux for workloads with a low number of threads. Fewer threads make it
easier to identify bottleneck threads and give them the resources they need -
either by migrating them to big cores (WASH and COLAB) or by prioritiz-
ing them on little cores (COLAB). With limited big core resources, COLAB
does much better than WASH since it distributes bottleneck threads on all
available cores, avoiding overloading the few big cores and keeping the little
cores idle. COLAB outperforms Linux by up to 25% (2B4S) and WASH
by up to 21% (2B4S) on turnaround time. On average, COLAB improves
turnaround time and system throughput by around 20% and 35% compared
to Linux and around 8% and 11% compared to WASH for workloads with a
low number of threads.

For workloads with a high thread count, neither Linux nor WASH are
able to improve much on Linux. Overloading the system with threads means
that, regardless of where threads are placed, cores will have long runqueues.
COLAB and WASH increase the management overhead, including more fre-
quent thread migrations. With little benefit from such better management,
the management overhead leads to performance degradation. Of the two

4.6. Results 91

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

Thread-low Thread-high

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

WASH COLAB

H
_

A
N

T
T

N
o

rm
a

li
z
e

d
 t
o

 L
in

u
x

2
b
2

s

2
b
4

s

4
b
2

s

4
b
4

s

G
e

o
m

e
a

n

2
b

2
s

2
b
4

s

4
b
2

s

4
b

4
s

G
e

o
m

e
a

n

Thread-low Thread-high

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

H
_

S
T

P
N

o
rm

a
li
z
e

d
 t
o

 L
in

u
x

Figure 4.8: Heterogeneous Average Normalized Turnaround Time
(H ANTT) and Heterogeneous System Throughput (H STP) of low number
of application threads and high number of application threads Workloads. All
results are normalized to the Linux CFS ones. Lower is better for H ANTT
and higher is better for H STP.

92
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2-programmed 4-programmed

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

WASH COLAB

H
_

A
N

T
T

N
o

rm
a

li
z
e

d
 t
o

 L
in

u
x

2
b

2
s

2
b

4
s

4
b

2
s

4
b

4
s

G
e

o
m

e
a

n

2
b

2
s

2
b

4
s

4
b

2
s

4
b

4
s

G
e

o
m

e
a

n
2-programmed 4-programmed

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

H
_

S
T

P

N
o

rm
a

li
z

e
d

 t
o

 L
in

u
x

Figure 4.9: Heterogeneous Average Normalized Turnaround Time
(H ANTT) and Heterogeneous System Throughput (H STP) of 2-
programmed and 4-programmed Workloads. All results are normalized to
the Linux CFS ones. Lower is better for H ANTT and higher is better for
H STP.

4.6. Results 93

heterogeneity-aware schedulers, COLAB, with its scale-slice technique, more
frequently migrates threads, which results in a slightly worse performance
than WASH. On average, COLAB improves turnaround time and system
throughput by less than 2% and 3% compared to Linux, while WASH slightly
outperforms COLAB by 2% on turnaround time and 0.2% on system through-
put.

There is a similar picture considering workloads with different number of
programs in them. Figure 4.9 shows the performance of all schedulers for
2-programmed and 4-programmed workloads. As in the case of high and low
thread counts, increasing the number of co-executed programs gives higher
pressure on the scheduler, increasing the waiting time of threads in runqueues
and reducing the direct benefit of migration between waiting threads. But
more programs also cause more bottlenecks and provide new opportunities
for co-acceleration instead of only increasing data-parallel threads.

By intelligently distributing bottleneck threads from different programs
between big and little cores, COLAB faces less problems than WASH from
the pressure of increasing programs.

As a result, both COLAB and WASH outperform Linux by more than
10% on 2-programmed workloads on turnaround time and COLAB can keep
the 10% performance gain also on 4-programmed workloads, while WASH
reduced to only have 5% performance gain on 4-programmed workloads. As
for system throughput, COLAB improves by 23% and 12% on 2-programmed
and 4-programmed workloads compared to Linux while improves by 5% and
6% on 2-programmed and 4-programmed workloads compared to WASH.

4.6.3 Summary of Experiments

The experiments show that the state-of-the-art heterogeneous-aware WASH
scheduler struggles to make better scheduling decisions that the Linux sched-
uler for a number of different types of workloads and configurations: synchro-
nization-intensive workloads, computation-intensive workloads, low threads
number workloads, high program number workloads, mixed multi-class work-
loads and limited big cores configurations. Trying to handle both core sen-
sitivity and bottleneck acceleration through thread affinity alone may lead
to too many threads assigned to big cores. Instead, COLAB handles the
two optimization aims separately. It assigns on big cores only threads which
run significantly faster on them and prioritizes running bottleneck threads
regardless of their thread affinity. This leads to improved turnaround time,

94
Chapter 4. COLAB: A Heterogeneity-Aware Scheduler for Asymmetric

Chip Multi-core Processors

higher throughput, and better use of the processor resources compared to
both Linux and WASH. In summary from all experiments, COLAB improves
turnaround time and system throughput by 11% and 15% compared to Linux
and by 5% and 6% compared to WASH.

4.7 Conclusion

In this chapter, a novel COLAB scheduling framework is presented that
targets multi-threaded multiprogrammed workloads on asymmetric multicore
processors (AMPs) which occupy a significant part of the processor market
today, especially in embedded systems. COLAB is the first general-purpose
scheduler that simultaneously tries to optimize all three factors that affect
the AMP scheduling - core affinity, thread criticality, and scheduling fairness.
By making collaborative decisions on core affinity (in terms of selecting the
most suitable core for a given thread of a workload) and thread selection (in
terms of selecting which thread from a runqueue of a given core to run next),
COLAB is able to improve on the state-of-the art WASH, as well as on the
Linux CFS, which consider these two decisions in isolation.

Experimental results have demonstrated on a number of different work-
loads comprised of benchmarks taken from the state-of-the-art parallel bench-
mark suites PARSEC3.0 and SPLASH-2, simulating a number of different
AMP configurations using the well-known GEM5 simulator, that the CO-
LAB scheduler outperforms both WASH and Linux CFS scheduler by up to
21% and 25%, respectively, in terms of turnaround time (5% and 11% on
the average). It also demonstrates improvements of 6% and 15% in terms of
system throughput on the average. This demonstrates the applicability of
the proposed approach in realistic scenarios, allowing better execution times
for parallel workloads on AMP processors without additional effort from the
programmer.

Chapter 5

SupCOLAB: A Heterogeneity-
aware Data Partitioner and
Scheduler for Supercomputers

5.1 Introduction

Large-scale workloads and algorithms usually have custom designs and im-
plementations targeting specific supercomputers. This brings new opportu-
nities to accelerate the system performance by not only efficiently scheduling
the parallel threads during runtime as what COLAB has achieved, but also
by customised partitioning of the original dataflow to exploit the unique
features of given heterogeneous hardware resources. Under carefully data
partitioning, the scheduler can give much more accurate decisions on assign-
ing running threads to suitable resources. Having dealt with the complexity
in the data partitioning, a simple scheduling model, such as the greedy ap-
proach, can result in an efficient solution. This also has the benefit of scaling
well when targeting modern supercomputers with tens of millions of cores –
the greedy scheduler can scale and work on massive solution space with the
lowest system overhead.

A concrete study on addressing a representative type of large-scale work-
load, the k -means algorithm based workload, has been performed on the
world-leading Sunway Taihulight supercomputer [43] to demonstrate the ad-
vantage of applying the heterogeneity-aware data partitioning and scheduling
approach on real applications, named as SupCOLAB. It has shown significant

96
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

benefits of not only improving the system performance, but also achieving
more scalability than the state-of-the-art.

The rest of this chapter is structured as follows: Section 5.2 shows the
problem definition of k -means and discusses some state-of-the-art approaches
to addressing k -means based large-scale workload on modern supercomput-
ers. Section 5.3 presents the SupCOLAB data partitioner as a concrete study
of k -means on Sunway Taihulight supercomputer. Section 5.4 shows the Sup-
COLAB scheduling algorithm. The experimental setup and results are shown
in the sections 5.5 and 5.6.

5.2 A Case Study: K-Means

K-means is a well-known clustering algorithm, used widely in many AI and
data mining applications, such as bio-informatics [8, 57], image segmentation[27,
55], information retrieval [93] and remote sensing image analysis[65].

The purpose of the k-means clustering algorithm is to find a group of
clusters to minimize the mean distances between samples and their nearest
centroids. Formalized, given n samples,

X d = {xdi | xdi ∈ Rd, i ∈ {1, ..., n}}

where each sample is a d-dimensional vector xdi = (xi1,. . . , xid) and u is used
to index the dimensions: u ∈ {1 . . . d}. The object is to find k d-dimensional
centroids Cd = {cdj | cdj ∈ Rd, j ∈ {1 . . . k}} to minimize the object O(C):

O(C) =
1

n

n∑
i=1

dis(xdi , c
d
a(i))

Where a(i) = arg minj∈{1...k}dis(xdi , c
d
j) is the index of the nearest centroid

for sample xdi , dis(x
d
i , c

d
j) is the Euclidean distance between sample xdi and

centroid cdj :

dis(xdi , c
d
j) =

√√√√ d∑
u=1

(xiu − cju)2

In the literature, several methods have been proposed to find efficient
solutions [76, 77, 35, 31, 90, 19]. While the most popular baseline is still the

5.2. A Case Study: K-Means 97

Lloyd algorithm [72], which is composed by repeating the basic two steps
below:

1. : a(i) = arg minj∈{1...k} dis(x
d
i , c

d
j) (Assign)

2. : cdj =

∑
arg a(i)=j x

d
i

|arg a(i) = j|
(Update)

An initial set of centroids also need to be chosen. The initial centroids usu-
ally randomly selected from the original datasets to avoid empty clusters.Note
that those notations here are mainly from previous works by Hamerly [47],
Newling and Fleuret [76]. Customised notations are only applied when
needed. The first step above is to assign each sample into the nearest cen-
troid according to the Euclidean distance. The second step is to update
the centroids by moving them to the mean of their assigned samples in the
d-dimensional vector space. Those two steps are repeated until each cdj is
fixed.

5.2.1 Parallel K-Means

k-means algorithm has been widely implemented in parallel architectures
with shared and distributed memory using either SIMD or MIMD model
targeting on multi-core processors [34, 46, 16], GPU-based heterogeneous
systems [115, 71, 98], clusters of computer/cloud [30, 51].

Commonly, l is used to index the processors (computing units) P (P =
{Pl}, l ∈ {1 . . .m}), and m is used to denote the total number of processors
applied. The dataset X d is partitioned uniformly into m processors. Com-
pared with the basic Lloyd algorithm, each processor only assigns a subset
(n
m

) of samples from the original set X d before the Assign step. Then the
Assign step is finished in parallel by m processors. To formalize the steps,
there is:

1.1 : Pl ← xdi , i ∈ (1 + (l − 1)
n

m
, l
n

m
)

1.2 : ∀l ∈ (1,m), Pl : a(i) = arg minj∈{1...k} dis(x
d
i , c

d
j)

Message Passing Interface (MPI) library is mostly applied in common
multi-core processor environments to facilitate communication between com-
puting units. Performance nearly linearly increases with the limited number
of processors as the communication cost between processes can be ignored in
the non-scalable cases, as demonstrated in [34]. Similarly, the Update steps

98
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

are finished by m processors in parallel through MPI as well. Processors
should communicate with each other before the final cdj can be updated.

5.3 Large-scale Data Partitioning on K-Means

This section presents how the proposed SupCOLAB approach efficiently par-
titions the large-scale dataflow of k-means algorithm targeting the given su-
percomputer, Sunway Taihulight, in a heterogeneity-aware way. This in-
cludes a multi-level dataflow partitioning method targeting the hierarchical
hardware resources and storage limitations and then a self-aware automatic
data partitioner. An automatic hyper-parameter detector is also been pro-
posed to address on dataflows without pre-knowledge, for which the goal
number of clusters (the k value) is not given by default. The partitioned
workflow can be easily processed on the given supercomputer, exploit the
fully advantages from the heterogeneous hardware resources and show break-
through large scalability on tens of millions of co-executed cores.

5.3.1 Hierarchical Multi-level Partitioning

SupCOLAB explores the hierarchical parallelism on the heterogeneous many-
core architecture to achieve efficient large-scale k-means on the Sunway su-
percomputer. It demonstrates the proposed scalable methods on three par-
allelism levels by how the data is partitioned.

• Level 1 - DataF low Partitioning: Store a whole sample and k centroids
on single-CPE

• Level 2 - DataF low and Centroids Partitioning: Store a whole sample
on single-CPE whilst k centroids on multi-CPE

• Level 3 - DataF low, Centroids and Dimensions Partitioning: Store
a whole sample on multi-CPE whilst k centroids on Multi-CG and d
dimensions on Multi-CPE

An abstract graph of how the data is partitioned into multiple levels is
presented in Figure 5.1.

5.3. Large-scale Data Partitioning on K-Means 99

Figure 5.1: Three-level k-means design for data partition on parallel archi-
tectures

100
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

Algorithm 2 Basic Parallel k-means

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and initial centroid
set C = {cj|cj ∈ Rd, j ∈ [1, k]}

2: Pl
load←−− C, l ∈ {1 . . .m}

3: repeat
4: // Parallel execution on all CPEs:
5: for l = 1 to m do
6: Init a local centroids set Cl = {clj|clj = 0, j ∈ [1, k]}
7: Init a local counter countl = {countlj|countlj = 0, j ∈ [1, k]}
8: for i = (1 + (l − 1) ∗ n

m
) to (l ∗ n

m
) do

9: Pl
load←−− xi

10: a(i) = arg minj∈{1...k}dis(xi, cj)
11: cla(i) = cla(i) + xi
12: countla(i) = countla(i) + 1
13: for j = 1 to k do
14: AllReduce clj and countlj

15: clj =
clj

countlj

16: until Cl == C
17: OUTPUT: C

5.3. Large-scale Data Partitioning on K-Means 101

Level 1 - DataFlow Partition

In the simple case, the first step is processing, Assign, on each CPE in
parallel while using multi-CPE collaboration to implement the second step,
Update. The pseudo code of this case is shown in Algorithm 2.

The Assign step is implemented similarly to the traditional parallel k-
means algorithm – (1.1) and (1.2) as above. Given n samples, they are
partitioned into multiple CPEs. Each CPE (Pl) firstly reads one sample xi
and finds the minimum distances dis from the sample to all centroids cj
to obtain a(i). Then two variables, cla(i) and countla(i), are accumulated for

each cluster centroid cj according to a(i), shown in line 11 and 12. The first
variable stores the vector sum of all the samples assigned to cj, notated as
cla(i). The second variable counts the total number of samples assigned to cj,

notated as countla(i).

In the Update step, the clj and countlj are first accumulated for all CPEs by
performing two synchronisation operations. So that all CPEs can obtain the
assignment results of the whole input dataset. register communication [117]
is applied to implement intra-CG AllReduce operation and MPI AllReduce
is used for inter-CG AllReduce. After the accumulation, the Update step is
performed to calculate new centroids, as shown in line 15.

Considering a one-CG task, constraints are analysed on scalability in
terms of memory limitation of each CPE. Based on the steps above, one
CPE has to accommodate at least one sample xi, all cluster centroids C, k
centroids’ accumulated vector sum Cl and k centroids’ counters countl. Con-
sidering that each CPE has a limited size of LDM, then there is a constraint
(C1) below:

C1 : d(1 + k + k) + k ≤ LDM

Since both the number of centroids k and the dimension d for each sample
xi should at least be 1, there are two more boundary constraints (C2) and
(C3) below, separately:

C2 : 3d+ 1 ≤ LDM

C3 : 3k + 1 ≤ LDM

As for performance, note that the Assign step of computing a(i) for each
sample xi is completed fully in parallel on the m CPEs. Given the bandwidth
of multi-CPE architecture to be B, the DMA time of reading data from main

102
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

memory can be simply formalized as:

Tread : (
n ∗ d
m

+ k ∗ d)/B

Theoretically, a linear speedup for computing time against the serial im-
plementation can be obtained for the Assign step if m = n CPEs can be
applied in total.

Two synchronisation operations are the bottleneck process in the Update
step. The register communication [117] technique for internal multi-CPE
communication guarantees a high-performance with a normally 3x to 4x
speedup than other on-chip and Internet communication techniques (such
as DMA and MPI) for this bottleneck process (referring to the experimental
configuration section for detailed quantitative values). Given the bandwidth
of register communication to be R, the time for the AllReduce process can
be formalised as:

Tcomm :
n

m
((1 + k) ∗ d)/R

Level 2 - DataFlow and Centroids Partition

Multiple (up to 64) CPEs are used in one CG to partition the set of cen-
troids to scale the number of k for cluster centroids C. The number of CPEs
grouped to partition the centroids is denoted by mgroup. For illustration, l′

is used to index the CPE groups {P}. Then there is:

{P}l′ := {Pl}, l ∈ (1 + (l′ − 1) ∗mgroup, l
′ ∗mgroup)

The pseudo code of this case is shown in Algorithm 3. A new sub-step
beyond previous case is to partition k centroids on mgroup CPEs as shown
in line 2. Different with the Assign step in above case, each data sample xi
is partitioned in each CPE group as shown in line 8. After that, similar to
(1.2), all Pl in each {P}l′ can still compute a partial value of a(i) (named as
a(i)′) fully in parallel without communication. Note that the domain of j in
line 11 is only a subset of (1, . . . , k) as presented above in line 2, so one more
step is needed to achieve data communication between CPEs in each CPE
group to obtain the final a(i) as shown in line 10.

The Update step is similar to previous case. The scheduler just views one
CPE group as one basic computing unit, which does what a CPE did in the
previous case. Each CPE only computes values of subset of centroids C and

5.3. Large-scale Data Partitioning on K-Means 103

Algorithm 3 Parallel k-means for k-scale

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and initial centroid
set C = {cj|cj ∈ Rd, j ∈ [1, k]}

2: Pl
load←−− cj j ∈ (1 +mod(l−1

mgroup
) ∗ k

mgroup
, (mod(l−1

mgroup
) + 1) ∗ k

mgroup
)

3: repeat
4: // Parallel execution on each CPE group {P}l′ :
5: for l′ = 1 to m

mgroup
do

6: Init a local centroids set Cl′ and counter countl
′

7: for i = (1 + (l′ − 1)n∗mgroup

m
) to (l′ n∗mgroup

m
) do

8: {P}l′
load←−− xi

9: a(i)′ = arg minj dis(xi, cj)
10: a(i) = min. a(i)′

11: cl
′

a(i) = cl
′

a(i) + xi

12: countl
′

a(i) = countl
′

a(i) + 1

13: for j = (1 +mod(l−1
mgroup

) ∗ k
mgroup

) to ((mod(l−1
mgroup

) + 1) ∗ k
mgroup

) do

14: AllReduce cl
′
j and countl

′
j

15: cl
′
j =

cl
′
j

countl
′
j

16: until ∪ Cl′ == C
17: OUTPUT: C

104
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

does not need further communications in this step as it only needs to store
this subset.

Concerning the scalability analysis of k in this case, the number of original
k centroids distributed inmgroup CPEs leads to a easier constraint of k against
the (C3) above:

C′3 : 3k + 1 ≤ mgroup ∗ LDM (mgroup ≤ 64)

Based on this, the (C1) can also be easily scaled as follow:

C′1 : d(1 + k + k) + k ≤ mgroup ∗ LDM (mgroup ≤ 64)

Note that the scheduler still need to accommodate at least one d-dimensional
sample in one CPE, so the (C2) should be kept as before: C′2 := C2

As for performance, since mgroup CPEs in one group should read the same
sample simultaneously, the processors need more time to read the input data
samples than the first case, but only partial cluster centroids need to be read
by each CPE:

T′read : (
n ∗ d ∗mgroup

m
+

k

mgroup

∗ d)/B

As for the data communication needed, there is one more bottleneck pro-
cess (line 12) than before. Comparing against the above cases, multiple CPE
groups can be allocated in different processors. Those communications are
done through MPI which is much slower than internal processor multi-CPEs
register communication. Given the bandwidth of network communication
through MPI to be M , there is:

T′comm :
k

mgroup

/R +
n ∗mgroup

m
((1 + k) ∗ d))/M

Level 3 - DataFlow and Centroids and Dimensions Partition

One d-dimensional sample is stored and partitioned by one CG using up-
to 64 CPEs to scale the number of dimension d for each sample xi. The
pseudo code of this case is shown in Algorithm 4.

Recall u is used to index the data dimension: u ∈ (1 . . . d); Now l′′ is used
to index the CGs and m′group to denote the number of CGs grouped together

5.3. Large-scale Data Partitioning on K-Means 105

Algorithm 4 Parallel k-means for k-scale and d-scale

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and initial centroid
set C = {cj|cj ∈ Rd, j ∈ [1, k]}

2: CGl′′
load←−− cdj , l

′′ ∈ {1 . . . m
64
}, j ∈ (1+mod(l′′−1

m′
group

)∗ k
m′

group
, (mod(l′′−1

m′
group

)+

1) ∗ k
m′

group
)

3: repeat
4: // Parallel execution on each CG group {CG}l′′ :
5: for l′′ = 1 to m

64
do

6: Init a local centroids set Cl′′ and counter countl
′′

7: for i = (1 + (l′′ − 1)
n∗m′

group

m
) to (l′′

n∗m′
group

m
) do

8: for u = (1 +mod(l−1
64

) ∗ d
64
to (mod(l−1

64
) + 1) ∗ d

64
) do

9: CGl′′ ← xi (Pl ← xui)
10: a(i)′ = arg minj dis(xi, cj)
11: a(i) = min. a(i)′

12: cl
′′

a(i) = cl
′′

a(i) + xi

13: countl
′′

a(i) = countl
′′

a(i) + 1

14: for j = (1 +mod(l′′−1
m′

group
) ∗ k

m′
group

) to ((mod(l′′−1
m′

group
) + 1) ∗ k

m′
group

) do

15: AllReduce cl
′′
j and countl

′′
j

16: cl
′′
j =

cl
′′
j

countl
′′
j

17: until ∪ Cl′′ == C
18: OUTPUT: C

106
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

to partition k centroids. Consider that m is represented the total number of
applied CPEs and each CG contains 64 CPEs, then there are

l′′ ∈ (1, . . . ,
m

64
),m′group ≤

m

64

CGl′′ := {Pl}, l ∈ (1 + 64(l′′ − 1), 64l′′)

An updated step is applied to partition k centroids on multiple CGs against
the previous case as shown in line 2. Line 9 shows the step to partition each
d-dimensional sample xdi on 64 CPEs in one CG. Similar to the above case,
all CGl′′ in each CG group compute the partial value a(i)′ fully in parallel
and then communicate to obtain the final a(i). Multi-CG communication in
multiple many-core processors (nodes) is implemented through MPI inter-
face. The Update step is also similar to the previous case. Now one CG is
viewed as one basic computing unit which conducts what one CPE did before
and what a CG group does is the same as what a CPE group did before.

In this case, each CG with 64 CPEs accommodates one d-dimensional
sample xi. Then the previous (C2) can be scaled as follow:

C′′2 : 3d+ 1 ≤ 64 ∗ LDM

Consider that there are totally m′group CGs to accommodate k centroids in
this case, then (C3) will scale as follow:

C′′3 : 3k + 1 ≤ m′group ∗ 64 ∗ LDM

Note that the domain of m′group seems limited by the total number of CPEs
applied, m. But in fact, this number can be further scaled as this work
targets supercomputers with tens of millions of cores. Finally, (C1) will scale
as follow:

C′′1 : d(1 + k + k) + k ≤ 64 ∗m′group ∗ LDM

which is equal to:

C′′1 : d(1 + k + k) + k ≤ m ∗ LDM

C′′1 is the main contribution over other state-of-the-art work [9]: the total
amount of d∗k is not limited by a single or shared memory size any more. It
is fully scalable by the total number of processors applied (m). In a modern
supercomputer, this value can be large-scaled to tens of millions when needed.

5.3. Large-scale Data Partitioning on K-Means 107

Considering performance, note that m′group CGs (64 CPEs in each) in
one group should read the same sample simultaneously. In another aspect,
each CPE only needs to read a partial of the given d-dimension of original
data sample together with a partial of k centroids similarly as before, then
a similar reading time can be obtained:

T′′read : (
n ∗ d ∗m′group

m
+

k

m′group
∗ d

64
)/B (5.1)

Comparing with the above cases, multiple CGs in CG groups allocated
in different many-core processors need communication to update centroids
through MPI. Given the bandwidth of network communication through MPI
to be M , the cost between multiple CG groups can be formalised as:

T′′read : (
n ∗ d ∗m′group

m
+

k

m′group
∗ d

64
)/B (5.2)

The network architecture of Sunway TaihuLight is a two-level fat tree.
256 computing nodes are connected via a customized inter-connection board,
forming a super-node. All super-nodes are connected with a central routing
server. The intra super-node communication is more efficient than the in-
ter super-node communication. Therefore, in order to improve the overall
communication efficiency of the proposed design, any CG group should be
located within a super-node if possible.

Automatic Multi-level Partitioning

An automatic method to partition dataflow into 3 levels based on the target-
ing k values. This method is mainly guided by the scalability of each level
of data partitioning. Based on the limitations presented in formulations
(C1,C

′
1,C

′′
1) above, it is easy to compute the range of possible k values for

each level: k ≤ LDM−d
1+2d

for level-1, k ≤ 64LDM−d
1+2d

for level-2 and k ≤ m∗LDM−d
1+2d

for level-3. By concatenating the ranges, it results in the automatic 3-stage
roofline model to guide the data partitioning as shown in figure 5.2.

5.3.2 Hyper-Parameter Determination

A critical parameter of the k-means algorithm, the number of clustering (k)
need to be predetermined for typical experiments. Zhang et al. claim in their

108
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

Figure 5.2: The roofline model for automatic data partitioning. SupCOLAB
changes its partitioning levels based on the complexity of the input. X-
axis represents the complexity of input indicated by the number of targeting
centroids and the value of Y-axis corresponds to the 3 different partitioning
levels

5.3. Large-scale Data Partitioning on K-Means 109

review paper[116] that how to define this value is a critical question for the
community, and an inappropriate decision wwill yield poor quality clustering
results.

Shi, et al. [91] proposed a basic method by gradually increasing the pos-
sible number of clusters and used the result when the distortion of solutions
between current k and k-1 is less than a static predefined threshold. Chen,
et al. [23] recently presented a method without any predefined threshold.
It generates a formula by computing the difference between sum of distance
inter and intra clusters.

This approach was found not to work in large-scale cases as it keeps
monotonically increasing when the k is greater than 2.

The notion of cluster radius r(k) is introduced into k-means clustering
to solve this problem. r(k) is defined to be the smallest non-negative real
number such that the sample set X d can be covered by k closed balls centred
at sample points with radius r(k). Expressed as:

r(k) = inf{t : ∃y1, . . . , yk in Rd,X d ⊆
⋃

1≤s≤k

B(ys, t)},

where B(ys, t) stands for the Euclidean Closed Ball centred at ys with
radius t. For instance, when k = n the number of samples, there is r(n) = 0.
It is easy to see that r(k) is non-increasing with respect to k. Radius has been
widely used in clustering problems, such as approximating clustering [4] and
incremental clustering [22], but not on k-means, because it is impossible to
compute and measure all possible radius values on large-scale datasets. For
n samples clustering into k centroids, there will be O(nk) possible solutions.

With the support of modern supercomputers with efficient parallel pro-
cessing techniques, an empirical method can be applied. It uses a minimum
radius from a random selection of solutions with k centroids, named r′(k)
to represent the r(k). With the increasing of k, the accuracy of r′(k) will
decrease. The r′(k) will even increase at some point when it is too difficult to
show a reasonable representation of r(k) by r′(k) from a limited selection of
solutions. This also indicates that to keep increasing the targeted centroids
(k) beyond this points becomes meaningless as it cannot easily distinguish
the difference between different clusters. The idea is to determine the best
k by measuring the change of r′(k) with respect to r(k). If r′(k) does not
keep the same trend of r(k), the current k would be regarded as a reasonable

110
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

choice choice. More formally, let

∆r′(k) = r′(k)− r′(k + 1),

then the optimal k is taken the first time this function ∆r′ increasing.

5.4 SupCOLAB Scheduling Algorithm

After partitioning the large-scale dataflow, it becomes much easier to de-
sign the heterogeneity-aware scheduler on the particular supercomputer com-
pared with other general scheduler design targeting workload without pre-
knowledge. With sufficient knowledge of the parallel threads, the scheduler
doesn’t need to rely on any additional ranking heuristic or runtime predic-
tion model to give intelligent decisions, but a simple greedy approach with a
cost function of dividing the resources and assigning corresponding threads
should be work.

This section presents the SupCOLAB scheduling algorithm targeting the
customised design large-scale k-means workloads on Sunway Taihulight su-
percomputer.

Algorithm 5 SupCOLAB Scheduling Algorithm

1: INPUT: Cost function T ′′(k,m,m′), number of CPEs p, number of
CPEs per CG q, number of points n

2: for i=1 to n− 1 do
3: mi = q; m′i = 0
4: remProc = p− (n− 1) ∗ q
5: while remProc > 0 do
6: i = argminn−1

j=1T
′′(j,mj,m

′
j)

7: mi = mi + q; remProc = remProc −q
8: for i=1 to k do
9: m′i = argmin

mi,j|mi

j=1 T ′′(i,mi, j)
10: OUTPUT: {m1, . . . ,mn−1,m

′
1, . . . ,m

′
n−1}

Recall n is used to represent the total number of data samples. The
maximum meaningful number of targeting centroids is n/2 based on the
Dirichlet’s drawer principle [1]. Dividing the resources of a supercomputer
between the n/2 instances of the k-means algorithm is viewed as the main

5.4. SupCOLAB Scheduling Algorithm 111

scheduling problem, where the scheduler needs to assign n/2 heterogeneous
tasks on a given set of resources. The tasks are heterogeneous because, for
different k, k-means algorithm will do different partitioning of the data (see
the previous section) which yields different degree of parallelism and differ-
ent reading, computation and communication costs. Therefore, dividing the
resources uniformly between the instances of the algorithm (tasks) will be
sub-optimal. Furthermore, it is not possible to statically compute the precise
cost of executing one instance of the algorithm on a given set of resources
because, in addition to the reading (equation 5.1) and communication (equa-
tion 5.2) time that can easily be estimated, there is also a computation time
that depends on the number of iteration for a particular value of k and a
particular input, and this number cannot be computed statically.

The SupCOLAB algorithm focuses on resource allocation and scheduling
for the most complicated large-scale scenario, the level-3 partitioning. The
cost function applied here, T ′′(k,m,m′group), is an estimation of the cost of
executing an instance of k-means on m CPEs and m′group CPE groups for each
centroid. For brevity, m′group is annotated with m′. The scheduling problem
can then be seen as the optimisation problem of finding the minimum of the
function:

A(m1, . . . ,mn
2
,m′1, . . .m

′
n−1) =

n
2∑

i=1

T ′′(i,mi,m
′
i)

with the following constraints: 1 ≤ mi ≤ p (for i ∈ {1, . . . , n
2
}),

∑n
2
i=1mi ≤

p, 0 ≤ m′i ≤
p
q

(for i ∈ {1, . . . , n
2
}),

∑n
2
i=1m

′
i = p

q
,m′i|mi; (for i ∈ {1, . . . , n

2
}

where p is the total number of CPEs and q is the number of CPEs per group
(64 in this case). Due to a way in which the data partitioning is done, it is
required that each m to cover at least one core group, i.e. to be a multiple
of 641. Then the cost function can be formalized as

T ′′(k,m,m′) = T ′′read(k,m,m
′) + T ′′comm(k,m,m′)

where T ′′read and T ′′comm are given in the equations 5.1 and 5.2.
The SupCOLAB algorithm is given in Algorithm 5, which is based on a

greedy approach. Note that, in theory, for level-3 scheduling the scheduler

1In other words, the scheduler is really allocating core groups to tasks, rather than just
individual CPEs

112
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

would need to consider allocation of individual CPEs (level-1), CGs (level-2)
and CG groups (level-3) to the instances of the k-means algorithm. However,
an easy way to present the approach and simplify the problem is by assuming
that no CG will share its resources between different instances of the algo-
rithm. Therefore, the basic unit of allocation will be CG. The parameters of
the algorithm are cost function, T ′′, number of available CPE groups (CGs),
p, number of CPEs per CG, q, and the number of points n.

Initially, one CG with zero CG groups is allocated to each of the n/2 in-
stances of the k-means algorithm (lines 2–4). Then, in successive iterations,
one more CG is added to the instance which has the highest cost (therefore
reducing its cost), until all of the CGs are allocated (lines 6–9). This, effec-
tivelly, gives the assignment of m1,m2, . . . ,mn−1 (mi will be the number of
CGs allocated to the instance i multiplied by q (64 in this case). Once the
number of CGs for instances has been decided, these CGs are divided into
CG groups and used to find, for each instance, the grouping that minimised
T ′′ (line 11). This gives the assignment of m′1,m

′
2, . . . ,m

′
k.

5.5 Experimental Setup

The datasets applied in experiments come from well-known benchmark suites
including UCI Machine Learning Repository[81] and ImgNet [54], as dis-
cussed in the technical background chapter.

The experiments have been conducted to demonstrate scalability, high
performance and flexibility by increasing the number of centroids k and
number of dimensions d on multiple datasets with vary data size n. The
three-level designs are tested targeting different benchmarks. Different hard-
ware setup on Sunway Taihulight Supercomputer will be provided for testing
different scalable levels:

• Level 1 - One SW26010 many-core processor is used, which contains
256 64-bit RISC CPEs running at 1.45 GHz, grouped in 4 CGs in total.
64 KB LDM buffer is associated with each CPE and 32 GB DDR3
memory is shared for the 4 CGs. The theoretical memory bandwidth
for register communication is 46.4 GB/s and for DMA is 32 GB/s.

• Level 2 - Up-to 256 SW26010 many-core processors are used, which
contains 1,024 CGs in total. The bidirectional peak bandwidth of the
network between multiple processors is 16 GB/s.

5.6. Results 113

4 8 16 32 64
0

0.05

0.1 US Census 1990

64 128 256 512 1,024
0

0.05

0.1
Road Network

16 32 64 128 256

Number of centroids

0

0.01

O
ne

 it
er

at
io

n
co

m
pl

et
io

n
ti

m
e

(s
)

Kegg Network

Figure 5.3: Level 1 - dataflow partition using UCI datasets

• Level 3 - Up-to 4,096 SW26010 many-core processors are used, which
contains 16,384 CGs in total.

The main performance metric concerned here is one iteration completion
time. Note that the total number of iterations needed and the quality of
the solution (precision) are not considered in the experiments as this work
does not relate to the optimisation of the underlining Lloyd algorithm or the
solution of k-means algorithm.

5.6 Results

This section presents the experimental results. The first subsection demon-
strates the high performance and large-scalability of the proposed workload
generator with hierarchical data partitioning targeting the customised re-
sources on the given supercomputer. The second subsection shows how the
whole heterogeneity-aware supercomputer oriented approach, equipped with

114
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

256 512 1,024 2,048 4,096
0

5 US Census 1990

6,250 12,500 25,000 50,000 100,000
0

5

10 Road Network

512 1,024 2,048 4,096 8,192

Number of centroids

0

0.1

0.2

O
ne

 it
er

at
io

n
co

m
pl

et
io

n
ti

m
e

(s
)

Kegg Network

Figure 5.4: Level 2 - dataflow and centroids partition using UCI datasets

5.6. Results 115

both the data partitioner and scheduler, can be applied to efficiently solve
real applications with massive data.

5.6.1 Results of Multi-level Data Partitioning

Level 1 - dataflow partition

The Level 1 (n-partition) parallel design is applied to three UCI datasets
(US Census 1990, Road Network, Kegg Network) with their original sizes (n
= 2,458,285, 434,874 and 65,554 separately) and data dimensions (d = 68, 4
and 28) for different numbers of targeting centroids (k). The purpose of these
experiments is to demonstrate the efficiency and flexibility of this approach on
datasets with relatively low size, dimensions and centroid values. Figure 5.3
shows the one iteration completion time for those datasets over increasing
number of clusters, k. As the number of k increases, the completion time on
this approach grows.

Level 2 - dataflow and centroids partition

The level 2 (nk-partition) parallel design is applied to same three UCI datasets
as above, but for a large range of target centroids (k). The purpose of these
experiments is to demonstrate the efficiency and flexibility of the proposed
approaches on datasets with large-scale target centroids (less than 100,000).
Figure 5.4 shows the one iteration completion time of the three datasets of in-
creasing number of clusters, k. As the number of k increases, the completion
time from this approach grows linearly. In conclusion, this approach works
well when one dimension is varied up to the limits previously published.

Level 3 - dataflow, centroids and dimensions partition

The Level 3 (nkd-partition) parallel design is applied to a subset of ImgNet
datasets (ILSVRC2012) with its original size (n = 1,265,723). The results
are presented with varying number of target centroids (k) and data dimen-
sion size (d) with an extremely large domain. The scalability is also tested
by varying the number of computational nodes. The purpose of these experi-
ments is to demonstrate the high performance and scalability of the proposed
approaches on datasets with large size, extremely high dimensions and target
centroids. Figure 5.5 shows the completion time of the dataset of increas-
ing number of clusters, k = 128, 256, 512, 1024 and 2,048 with increasing

116
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

Figure 5.5: Level 3 - dataflow, centroids and data-sample partition using a
subset of ImgNet datasets (ILSVRC2012)

5.6. Results 117

number of dimensions, d = 3,072 (32*32*3), 12,288 (64*64*3) and 196,608
(256*256*3).

Two more cases are tested to further investigate the scalability of the
proposed approach by either further scaling centroids by certain number of
data dimensions (d = 3,072) and number of nodes (nodes = 128) or further
scaling nodes applied by certain number of data dimensions (d = 196,608)
and number of centroids (k = 2,000). The results of those two tests are
shown in Figure 5.5.

As both k and d increase, the completion time from the proposed ap-
proach continues to scale well, demonstrating the claimed high performance
and scalability.

Comparison of partition levels

In this section, the Level 2 and Level 3 approaches are experimentally com-
pared.

Figure 5.7 shows how one iteration completion time grows as the number
of dimensions increases. The Level 2 approach outperforms Level 3 when
the number of dimensions is relatively small. However, the Level 3 approach
scales significantly better with growing dimensionality, outperforming Level
2 for all d greater than 2560. The Level 2 approach cannot run with d greater
than 4096 in this scenario due to memory constraints. However, it is clear
that, even if this problem were solved, the poor scaling would still limit this
approach. The completion time for Level 2 falls twice unexpectedly between
1536 and 2048, and between 2560 and 3072. This is due to the crossing of
communication boundaries in the architecture of the supercomputer - DMA
can fully use the bandwidth if and only if the reading granularity is greater
than 256 bytes and is an integral multiple of 128. Otherwise the bandwidth
resources will be wasted.

Figure 5.8 shows how the one iteration completion time grows as the
number of centroids, k increases. Since the number of d is fixed at 4096, the
Level 3 approach actually outperforms Level 2, with the gap increasing as
k increases. This scaling trend is replicated at lower levels of d too, though
Level 2 initially outperforming Level 3 at lower values of k.

Figure 5.9 shows how both Level 2 and Level 3 scale across an increasing
number of computation nodes. Level 3 clearly outperforms Level 2 in all
scenarios. The values of k and d are fixed, as described in the graph caption,
at levels which Level 2 can operate. The performance gap narrows as more

118
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

Figure 5.6: Level 3 - large-scale on centroids and nodes using a subset of
ImgNet datasets (ILSVRC2012)

5.6. Results 119

51
2

1,0
24

1,5
36

2,0
48

2,5
60

3,0
72

3,5
84

4,0
96

4,6
08

5,1
20

5,6
32

6,1
44

6,5
66

7,1
68

7,6
80

8,1
92

Number of dimensions

0

0.5

1

1.5

2

2.5

3

O
ne

 it
er

at
io

n
co

m
pl

et
io

n
ti

m
e

(s
)

Level 2
Level 3

Figure 5.7: Comparison: varying d with 2,000 centroids and 1,265,723
data samples tested on 128 nodes using a subset of ImgNet datasets
(ILSVRC2012)

120
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

25
6

51
2

1,0
24

2,0
48

4,0
96

8,1
92

16
,38

4

32
,76

8

65
,53

6

13
1,0

72

Number of centroids

0

50

100

150

200

O
ne

 it
er

at
io

n
co

m
pl

et
io

n
ti

m
e

(s
)

Level 2

Level 3

256 512 1,024 2,048 4,096
0

2

4

6

Figure 5.8: Comparison test: varying k with 4,096 Euclidean dimensions
and 1,265,723 data samples tested on 128 nodes using a subset of ImgNet
datasets (ILSVRC2012)

5.6. Results 121

2 4 8 16 32 64 128 256

Number of nodes

0

50

100

150

200

O
ne

 it
er

at
io

n
co

m
pl

et
io

n
ti

m
e

(s
)

Level 2

Level 3

64 128 256
0

2

4

6

Figure 5.9: Comparison test: varying number of nodes used with a fixed
4,096 Euclidean dimension, 2,000 centroids and 1,265,723 data samples using
a subset of ImgNet datasets (ILSVRC2012)

122
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

Figure 5.10: Remote Sensing Image Classification. Left: the result from
baseline approach provided by [33]. Middle: the corresponding original im-
age. Right: the proposed classification result. Different colors are applied to
identify different region classes as used in [33].

nodes are added, but remains significant. Clearly the exact performance
numbers will vary with other values k and d, as can be inferred from other
results, but the main conclusion here is that Level 3 generally scales well.

5.6.2 Results of Real Applications

Land Cover Classification

This is a popular remote sensing problem, requiring unsupervised methods
to handle high numbers of unlabeled remote sensing images [70]. K-means
algorithm has already been used for regional land cover classification with
small number of targeted classes. For example, Figure 5.10 shows the pro-
posed result of classifying a remote sensing image (from a public dataset
called Deep Globe 2018 [33]) into 7 classes, representing the urban, the agri-
culture, the rangeland, the forest, the water, the barren and unknown. There
are 803 images in the Deep Globe 2018 dataset, and each image has about
2k × 2k pixels. The resolution of the image is 50cm/pixel. In this problem
definition, one image is been processed, where n is 5838480, k is 7 and d
is 4096, which can be done with 400 SW26010 many-core processors. The
Level 3 design can process the clustering dataset efficiently.

5.6. Results 123

In recent years, high-resolution remote sensing images have become more
common in land cover classification problems. The problem definition on
high-resolution images is more complex as the classification sample can be a
block of pixels instead of one pixel, which means the d can be even larger.

Gene Expression Data Classification

Genomic information from gene expression data has been widely used and
already benefited on improving clinical decision and molecular profiling based
patient stratification. Clustering methods, as well as their corresponding
HPC-based solutions[103], are adopted to classify the high-dimensional gene
expression sequences into some known patterns, which indicates that the
number of targeted clustering centroids are determined in advance. There are
still large numbers of gene expression sequences, among which the patterns
are not yet discovered. Therefore, the proposed auto-clustering method can
potentially help find new patterns from high-dimensional gene expression
datasets.

In this work, the whole heterogeneity-aware data partitioning and schedul-
ing approach is tested on the ONCOLOGY& Leukaemia gene expression
datasets[41]. There are 4254 subjects and each subject has 54675 probe-
sets. In this problem definition, whole dataset is clustered using the level-3
partitioning method, where n is 4254, and d is 54675. In this task, the can-
didate k is generated by enumerating from 2 to 2000 (up-to around n/2).
The performance for one iteration execution time is shown in figure 5.11 and
the total execution time is shown in figure 5.12. The results demonstrate
good performance of the proposed approach with a linear scale on one itera-
tion time and also shows that the proposed supercomputer-based technique
can compute such a large-scale dataset for all needed iterations within 200
seconds at most.

The evaluation function is further applied to determine the optimal value
of k. The results are shown in figure 5.13. It can be seen that r′(k) reaches
the first increasing when k = 14. After that, r′(k) fluctuates around a certain
value, which indicates that continually increasing the k values cannot further
represent more patterns in the input data.

124
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

Figure 5.11: One iteration execution time for gene expression dataset ON-
COLOGY and LEukemia.

Figure 5.12: Total execution time for gene expression dataset ONCOLOGY
and LEukemia.

5.7. Conclusion 125

Figure 5.13: The evaluation function r′(k) to determine the optimal k value.

5.7 Conclusion

In this chapter, a systematic heterogeneity-aware scheduling with data parti-
tioning approach is conducted targeting large-scale workloads on many-core
supercomputers. Instead of a general high-level theory, this work proposes
a concrete study on addressing k -means based large-scale workloads on the
world leading Sunway Taihuilight supercomputer running tens of millions of
cores simultaneously.

Its heterogeneity-aware large-scale workload generator first provides a
fully data partitioned (nkd-partition) approach for parallel k-means imple-
mentation to achieve scalability and high performance at large numbers of
centroids and high data dimensionality simultaneously. Running on the Sun-
way TaihuLight supercomputer, it breaks previous limitations for high per-
formance parallel k-means. Furthermore, it contains an automatic hyper-
parameter determination process, by automatically generating and executing
the clustering tasks with a number of candidate hyper-parameters, and then
determining the optimal hyper-parameter according to a specified evaluation
method. It provides a systematic approach to generate large-scale workloads
on large data without pre-knowledge. Finally, it provides a simple but ef-
ficient scheduler for the supercomputer to address the customised workload

126
Chapter 5. SupCOLAB: A Heterogeneity- aware Data Partitioner and

Scheduler for Supercomputers

achieving high performance and large scalability.
The experimental results demonstrate not only the performance goal of

the data partitioning based workload generator on machine learning bench-
marks, but also how the whole heterogeneity-aware supercomputer-oriented
approach can be applied to solve real world problems efficiently.

Chapter 6

AccCOLAB: A Heterogeneity-
aware Scheduler for Multi-
accelerator Systems

6.1 Introduction

FPGA-based accelerators have been shown to perform exceptionally well in
terms of parallel performance and energy efficiency, yet the generality of this
approach is a significant issue in distributed multi-accelerator environments.
A key challenge for these platforms is to maintain high levels of performance
on diverse workloads where task size and computational elements required
vary dynamically. Existing dynamic scheduling for multi-FPGA systems rely
on a classic First-In-First-Out (FIFO) approach, which this work shows to
be sub-optimal. In this chapter, a topological ranking-based collaborative
scheduling approach, named AccCOLAB, is presented which significantly
outperforms both the existing FIFO scheduler Orchestrator used in the
Maxeler DataFlow Engine cluster [73], but also other scheduling approaches
[59, 97] targeted at other systems problems.

This work is evaluated on a Xilinx FPGA-based DataFlow Engine us-
ing multiple workloads from an industrial Reverse Time Migration (RTM)
application, and a parallel genetic algorithm, both of which are real-world
workloads which exhibit high levels of irregularity.

The use of multiple accelerators in additional of general purpose pro-
cessors to accelerate specialised workloads in distributed computations is

128
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

Figure 6.1: Abstract case of multi-task runtime scheduling on multi-FPGA
systems. The left hand side is 3 coming tasks. The right hand side is the
system states at the time of tasks arrival. FIFO approach can allocate task 1
to the first device and allocate task 2 to the first or second device, but cannot
allocate task 3 to any device.

becoming increasingly important both in industry and research communi-
ties [50, 26]. New generation cloud platforms can offer specialised hetero-
geneous resources such as FPGAs, GPGPUs and Coarse-Grained Reconfig-
urable Architectures (CGRAs), which are well suited to handling challenging
Quality-of-Service (QoS) requirements, and offer the opportunity for fast and
efficient distributed computation.

Dynamically scheduling irregular workloads in a FPGA-based multi- ac-
celerator system is a complex task. The scheduler need to find a way to effi-
ciently schedule multiple irregular tasks and assign corresponding resources
to hardware accelerators during runtime to find an adequate solution. This
can be difficult to achieve in practice for a number of reasons: (1) Multiple
tasks should be executed quickly and simultaneously to achieve a short total
execution time and high throughput; (2) tasks can be instantiated on differ-
ent system configurations with differing numbers of accelerators, so an ideal
configuration cannot be easily determined a priori; (3) tasks require different
topologies between hardware accelerators based on what communication is
needed during runtime.

Motivating Example

Consider the abstract case as shown in Fig. 6.1 – a cluster containing two
FPGA-based multi-accelerator devices, each of which has eight intercon-

6.2. Ranking Irregular Tasks 129

nected accelerators1in a state where some accelerators are busy. Three new
tasks are dynamically sent to the system, and each has different resource re-
quirements and connectivity constraints. Using a classic First-In-First-Out
(FIFO) approach, the first two tasks will be assigned to run on the first device
as there is vacancy, but the third task cannot be allocated to the any de-
vice as it requires six interconnected accelerators. This means the scheduling
will stall until new resources are released by the completion of the previous
tasks. It is clear that current load-balancing based heuristics [59], which
would allocate Tasks 1 and 2 to different accelerator clusters, also fail to per-
form in this scenario because neither of the two devices would have enough
remain resources to allocate Task 3. Similarly, Maximum-execution-time
based heuristics [97] do not necessarily help here if Task 3 would not have
the longest predicated execution time although it asks for more resources –
a common occurrence.

This challenge leads to the main motivation of the work presented in this
chapter: to give a generalised method to design high-performance runtime
scheduling methods in multi-FPGA systems targeting irregular tasks with
arbitrary capacity representations. Different tasks can ask for different size
and topology of accelerators: large workloads may need more accelerators to
satisfy timing requirements, and tasks that are capable of exploiting multi-
ple accelerators and specific topologies should have potential access to such
resources.

This chapter proposes the AccCLOAB scheduler which efficiently sched-
ules irregular workloads using a novel heuristic-based runtime resource al-
location methodology. It uses a representation which is general enough to
be used across different types of accelerator system, and is capable of repre-
senting the required resource and connectivity requirements for workloads.
Leveraging this representation, a ranking-based scheduler is built.

6.2 Ranking Irregular Tasks

This section presents an original approach to representing irregular tasks
targeting multi-accelerator systems. It first models these tasks and then
illustrates the representation and ranking approach.

1In this chapter, one FPGA is referred to be one accelerator.

130
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

6.2.1 Modeling Irregular Tasks

A generalised procedure for developing a heuristic-based runtime scheduler
should handle resources with arbitrary capacity and allocation represen-
tations. The primary goal is to efficiently construct heuristics for irreg-
ular multi-dimensional tasks to guide the allocation strategy. Task rank-
ings should be universally consistent – that is they should have the same
ranking priority during the modelling process. They should also be easily-
computable, within polynomial-time, so not to increase the complexity. This
work first defines the universal relationship between irregular multi-dimensional
tasks in order to model and rank them appropriately.

Definition 1 Given the relationship ≤, named less than, between tasks on
a multi-FPGA system α: ∀A,B ∈ Tasks, α(B) 7→ α(A)⇔ A ≤ B.

Here P 7→ Q means Q must be true if P is true. α(B) is true iff α can
serve B. So the right hand side of the equation means that for all possible
states of this multi-FPGA system which can serve B, will also serve A. Then
A ≤ B represents the observation that A asks for less or equal capacity from
system α than B, or equivalently that B is at least as difficult to satisfy as A
in α. A more constrained relationship between Tasks on α, named covering,
is given as follows:

Definition 2 ∀A,B ∈ Tasks, A ≤ B, @C ∈ Tasks, C 6= A,C 6= B,A ≤
C ≤ B ⇔ A � B.

It means α cannot provide such a capacity or resource which is in the
medium of the need of A and B. For example, consider there is a multi-FPGA
based cluster. Each FPGA can only be assigned to run one task at once and
then it is easy to say a task which asks for two FPGAs simultaneously will
actually covers a task which asks for only one FPGA as there is no any other
tasks between them such as asking for one and a half FPGA.

When two tasks are uncorrelated - a parallel relationship between them
is defined as following:

Definition 3 ∀A,B ∈ tasks, A � B ∧B � A ⇔ A ‖ B.

Some kinds of tasks use only one type of hardware resources. For instance,
one task, named A1, may only need some CPU capacities for computation
while another, named A2, just need some memory to record information. It

6.2. Ranking Irregular Tasks 131

is easy to verify that not all cluster devices which can serve A1 will serve A2

and vice versa. So in this case, A1 and A2 are parallel. Then it is easy to
extend this instance to a more general case with n different dimensions of
tasks, and there is a following corollary: ∀i, j ∈ n, i 6= j ⇔ Ai ‖ Aj

After that the union of tasks can be defined: some more complicated tasks
may contain multi-dimensional resource needs, which can be viewed as asking
different one-dimensional tasks simultaneously and this can be achieved by
the union of those parallel Ai:

Definition 4 Given An, a n-dimensional task, then: An = (∀Ai, i ∈ n)
∨
Ai.

By defining relationships between tasks, a closed-topology for a general
multi-FPGA system involving irregular tasks can be built. Any possible
task can be viewed as either a one-dimensional task or the union of one-
dimensional parallel tasks and the topology can be generated as a partially-
ordered set (poset) through the relationships. In fact, it will be a lattice
structure: there is a common lower bound of all tasks for non-resource-need,
which is denoted by ⊥. There is also a common upper bound of all tasks
for any certain multi-FPGA system which asks for all the possible capacities
simultaneously of this system.

A concrete example of this partial ordered model for multi-FPGA tasks
targeting a 8-FPGA system is shown in figure 6.2. The 8 FPGAs in this
example is connected by a ring topology where the first FPGA and the final
FPGA are directly connected. In this figure, Ii denotes a task asking for i
independent FPGAs and Ci denotes a task asking for i directly connected
FPGAs.

6.2.2 Representing and Ranking Irregular tasks

Based on this model, suitable rankings on tasks to show the level of diffi-
culty in allocating corresponding resource in general multi-FPGA systems is
possible to be designed. An efficient way to construct rankings on modular
lattice topologies is by considering the height function [86] which counts on
the number of interim nodes from the bottom to the current node.

Definition 5 ∀ x,y ∈ lattice L, a function H is called height iff:

(1) H(x) = H(y) + 1 ⇔ y � x;

(2) H(x) = 0 ⇔ x = ⊥.

132
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

⊥

I1

I2

I3

I4

I5

I6

C7

C8

C2

C3

C4

C5

C6

Figure 6.2: The partial ordered model of multi-FPGA tasks targeting a 8-
FPGA system. The 8 FPGAs in this example is connected by a ring topology
where the first FPGA and the final FPGA are directly connected. In this
figure, Ii denotes a task asking for i independent FPGAs and Ci denotes a
task asking for i directly connected FPGAs.

6.2. Ranking Irregular Tasks 133

Universal consistency is satisfied if and only if the height function on
lattice representation of tasks can label each node to result in a consistent
distance between that node to the bottom whilst preserving their initial
order. The consistence means for any node in the lattice, the length of every
path from that node to the bottom will be the same. For a finite lattice, it
is equivalent to state that the ranking R satisfy a valuation law [15]:

∀x, y ∈ lattice L, R(x ∩ y) +R(x ∪ y) = R(x) +R(y).

The difficulty appears when considering the non-modular lattice structure
for general multi-FPGA systems with arbitrary topology: if there is a node
which has different interim nodes from itself to bottom by following different
paths, then it cannot be easily ranked by the height function.

A concrete example of this scenario is provided as shown in the left hand
side of figure 6.3, which is a subset of figure 6.2. Consider the node e (I5 in
figure 6.2), its height value will either equal to 3 or 2 based on the different
paths followed from the bottom node a (I2 in figure 6.2).

The lattice-based approach definition uses some definitions from set and
lattice theory:

Definition 6 Given a poset P, a subset S ⊆ P is a downset of x ∈ P, named
S =x↓ iff:

∀a ∈ P , a � x, a ∈ S
The downset of a resource allocation request x ↓ is a set containing that

request and all smaller requests which are less than x. i.e the downset of
bottom element in a lattice contains only itself while the downset of top
element in a lattice contains all elements in this lattice.

Definition 7 Given a lattice L, an element x ∈ L is join-irreducible iff:

∀a, b ∈ L, x = a t b↔ x = a or x = b

The original approach to solve this problem is by considering an reverse
Birkhoff’s representation [15] on the initial non-modular lattice topology for
tasks model on general cluster:

Theorem 8 (Birkhoff) Any finite modular2 lattice L is isomorphic to the
lattice of downsets of the partial order of the join-irreducible elements of L.

2In Birkhoff’s original definition, it used distributed lattice instead and gave a corollary
saying any distributed lattice is modular. The followed result is used directly in this
chapter as the detail mathematical description of the original theorems and corollary with
the corresponding proof are far away beyond the scope of this thesis.

134
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

The verification of this theorem is presented in Birkhoff’s well-known book
[15]. This theorem efficiently provides a way to transfer any non-modular
lattice, or widely say any poset, to a modular lattice composed by downsets
of join-irreducible elements in the initial topology which can easily be ranked
through the height function just defined. As for implementing the represen-
tation process, there are two steps: 1) generate the set of downsets for each
task in the initial topology by traversing the initial set of orders between
tasks. 2) generate the resulting modular lattice by ordering the downsets
through inclusion relationships. Recall the example shown in Fig. 6.3, the
resulting modular lattice is presented in the right hand side where each node
in here has a height value. A theorem to guarantee easy-computable of the
proposed process is that the height value for each downset in the resulting
modular lattice is equal to the number of tasks it contains:

Theorem 9 ∀X↓ ∈ modular downset lattice L′ containing N tasks in initial
representation L, H(X↓) = N .

Proof: Proof by induction: when N = 1, different X↓ contains single different
task, so those X↓ are independent of each other and the bottom ⊥ is covered
by all of them. Then in this case, there is H(X↓) = 1.

Let H(X↓) = N for N = k. When N = k + 1, different X↓ contains one
more task compared with when N = k. All of those different X↓ in this level
cannot be included by each other as they have the same size, so they can
only cover the downsets in a lower level. If a X↓ include one downset in the
level below N=k, then there must be a corresponding downset in the N=k
level which contains all the tasks of the lower level downset and be included
in X↓. So all X↓ in N=k+1 level can only cover downset in N=k level, then
there is: H(X↓)(N=k+1) = H(X↓)(N=k) + 1 which finish the verification.

�

Based on this theorem, the irregular tasks can be ranked by assigning the
size of its corresponding downset without generating the modular lattice. A
pseudo-code description of this process is shown in Algorithm 6. It shows
that this ranking is easy computable, that the processing can be finished
within polynomial time O(n2) by only traversing the initial matrix of orders
between tasks. The ranking value can be assigned for each task after gen-
erating the corresponding downset instead of traversing the set of tasks one
more time after the result modular downset lattice generated.

6.2. Ranking Irregular Tasks 135

Figure 6.3: Lattice representation. The left hand side is a subset of the
partial ordered model from figure 6.2, where a represents I2 asking for two
independent FPGAs, b represents I3 asking for three independent FPGAs, c
represents I4 asking for four independent FPGAs, d represents C2 asking for
two directly connected FPGAs and e represents I5 asking for five independent
FPGAs. Recall that in this example, the system composed by 8 FPGAs
connected in a ring topology. So if a task asking for 5 independent FPGAs,
there must be at least 2 FPGAs are directly connected, which leads to d(C2)
� e(I5). The right hand side is the resulting modular downset lattice model.
a t b means a task asking for c and d simultaneously.

136
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

Algorithm 6 Birkhoff’s representation to rank tasks

1: INPUT: (Set of tasks with dependences (taskOrders) // the initial par-
tial ordered task model)

2: // Initialisation: setup the empty downset for each task
3: N = number of tasks
4: for i = 1 to N do
5: Set taskDownseti = {}
6:

7: // Representation: Birkhoff’s representation by computing the size of
downset of each task

8: for i = 1 to N do
9: for j = 1 to N do

10: if taskOrdersj ≤ taskOrdersi then
11: taskDownseti = taskDownseti + 1
12:

13: // Ranking: set the ranking value of each task to be its downset size
14: taskRanki = getSize.taskDownseti
15: OUTPUT: (downset based task model with rankings)

Finally, verify the correctness of ranking. The height function on downset
lattice is universally consistent. Below shows that the ranking on height
function is order-preserving for the initial relationship between tasks:

Theorem 10 ∀ X↓,Y↓ ∈ modular downset lattice L′ while X,Y are tasks in
initial topology L, X ≤ Y ⇒ H(X↓) ≤ H(Y↓).

Proof: ∀ X,Y ∈ L, if X ≤ Y, then there is X↓ ⊆ Y↓, which leads to (X↓)
≤ (Y↓) in L′. Recall the definition of height function, it is easy to say H
is monotonous increasing and this give (X↓) ≤ (Y↓) ⇒ H(X↓) ≤ H(Y↓).
Based on the transitivity of the partial-order relation, there is: X ≤ Y ⇒
H(X↓) ≤ H(Y↓).

�

In conclusion, a novel ranking method has been designed for dynamically
scheduling tasks on FPGA-based multi-accelerator system. Unlike previous
work, it achieves universal consistency for irregular multi-FPGA tasks. It
is easy computable within polynomial time.

6.3. AccCOLAB Scheduling Algorithm 137

6.3 AccCOLAB Scheduling Algorithm

This section illustrates a dynamic scheduling algorithm equipped with the
above ranking model.

Firstly, a problem formulation is provided, then an illustration of the
terminologies used to denote variables in the algorithm and their initialisa-
tion. The main body of scheduling algorithm is illustrated by steps: fit and
round. Finally, the algorithm is analysed by its complexity and theoretical
performance upper bound.

6.3.1 Problem Formulation

Consider the underlining problem: there is a certain amount of hardware
accelerator resources which can be formulated as a set of A : Acc1...AccM ; a
multi-workload scenario is denoted as S : W1...WN , where each workload Wk

contains different number of tasks Tk : task1...taskN ′ . The outputs of the
algorithm are scheduling solutions derived at runtime which can be formu-
lated as mappings P(S) : {Tk} 7→ A. Each workload has a completion time
wTimek:

wTimek(P) = max. taskT imei(P), i ∈ (1 . . . N ′)

Where taskT imei is the completion time of taski. Based on the different
mappings P , the multi-FPGA system will have different total workloads
completion time WCT which can be formulated as a higher level function of
the mapping P :

WCT (P) = max. wTimek(P), k ∈ (1 . . . N)

The purpose of the algorithm is to give good solutions P to achieve high
system performance represented by reducing WCT . The optimal solution P ′
on the given set A and W can be formulated as follows:

∀P(S) : {Tk} 7→ A,WCT (P ′) ≤ WCT (P).

6.3.2 Abbreviations and Initialisation

This subsection presents abbreviations used in the algorithm description to
illustrate the algorithm. As presented above, N is used to denote the number

138
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

Table 6.1: Abbreviations in Scheduling Algorithm and Initialization of Pa-
rameters

of workloads in a multi-workload scenario, N ′ to denote the number of tasks
in a workload, Acc to denote accelerator and M to denote the number of
accelerators. Each accelerator has a flag state (AccState) showing whether it
is busy (1) or not (0). It also has a time state (AccTime) showing how long it
should be working on the current task. Each input workload is presented by
a set of tasks: Each task can ask for certain amount of accelerators (taskDim)
and specific topology of them (taskTopl). A predicted task completion time
(taskTime) for each task is also associated in the input workloads which is
determined by an analysis. For each task, an allocation state (taskState) is
used to represent whether it has been allocated to run on suited resources (1)
or not (0) as well as a round number (taskRound). This round number shows
the predicted starting time of the given tasks . A N’*M matrix (taskSol)
is applied to record the solutions of scheduling for each workload, where
taskSoli,j = 1 means taski is assigned to run on accelerator Accj. Those
terms are summarized in the left hand side of Table 6.1.

Before the running of the scheduler, all accelerators should be idle. Ini-
tially all tasks have not been scheduled to any accelerator. This initialization
is shown in the right hand side of Table 6.1.

6.3. AccCOLAB Scheduling Algorithm 139

6.3.3 Ranking-based Scheduling

This section illustrates the main body the ranking-based heuristic scheduling
algorithm. The pseudo code of is shown in Algorithm 7.

Fit Mechanism

The first step to implement the scheduling process is how to achieve the
fit mechanism based on rankings from tasks. The proposed fit mechanism
is a variant edition of the well-known First-Fit-Decreasing (FFD) approach
guided by ranking. As demonstrated by [78], FFD is efficient for heuristics-
based allocation on multi-resource environments. Recall that the ranking
of a task is universally consistent and easily computable, which means it
can identify the most difficult-to-satisfy irregular tasks in a given system
efficiently in polynomial time.

Similar to a previous static multi-FPGA resource allocator [109], the rank-
ing value of each task used as a heuristic to guide the allocator to make deter-
ministic decision on selecting the most difficult-to-satisfy task, represented
by the highest ranking value. Different from the static resource allocator,
which only assigns resources at once and output static mapping, the runtime
scheduler will assign newly released resources during runtime to those tasks
which could not be allocated in the previous rounds, and in each round, it
selects the most difficult-to-satisfy task with the highest ranking value first.

Round Mechanism

A Round mechanism is involved to finish the runtime scheduling. The sched-
uler traverses all remain tasks (taskState = 0) after each round until all tasks
have been allocated to run on accelerators. In each round, if the task’s round
number (taskRound) is greater than some accelerator’s expected execution
time (AccTime), those accelerator will be released. If the task still cannot
be allocated after new resources have been released, its round number will
be added which means it delays to at least in next round. If the task can
be allocated in the current round by scheduling on some accelerators, then
for those accelerators, their expecting execution time should be increased by
adding the predicted time of this task.

For example, there is a task which needs 2 interconnected accelerators
for 2 time units and there are only 2 interconnected accelerators who are
currently busy for other tasks and their expected working time is until the

140
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

Algorithm 7 Ranking-based Scheduling Algorithm on multi-FPGA Systems

1: INPUT: Set of task ordered by ranking
2: Initialization (refer to Tab.6.1)
3: // If there is any remaining task in queue
4: while N > 0 do
5: // Schedule tasks based on ranking order
6: for each taski in queue do
7: if taskStatei=0 then
8: //Release new resources if the current round number is greater

than the accelerator’s execution time.
9: for j’ ∈ 0 to M do

10: if taskRoundi ≥ AccT imej′ then
11: AccStated=0
12: // Schedule taski to accelerators.
13: // Count the number of accelerators allocated on the given task
14: count = 0
15: while count ≤ taskDimi do
16: if AccStatej = 0 then
17: taskSoli,j = 1
18: AccStatej = 1
19: AccT imej = AccT imej + taskT imei
20: count = count + 1
21: j = j+1
22: //If the current task can be scheduled, dequeue this task
23: if j ≤ M then
24: taskStatei = 1
25: dequeue(taski)
26: N = N -1
27: else
28: //If the current task cannot be scheduled, mask to next round
29: taskRoundi = taskRoundi +1
30: reset taski states and release the accelerators on this task
31: j → the first empty Acc in the first empty device
32: OUTPUT: Schedule of tasks presented in taskSol

6.3. AccCOLAB Scheduling Algorithm 141

Figure 6.4: Abstract Model of multi-accelerator Synchronisation

3rd time units from now on. This new task should be waiting during the first
2 rounds and then in the 3rd round, the two accelerators will be released and
it will be scheduled on those accelerators. The expected working time for
those two accelerators will then be increased by adding 2 time units.

Another issue for common heuristic-based runtime scheduling is to avoid
task starvation. A consequence of task starvation is idle resources and huge
runtime overhead - if the scheduler gives a particular task a high priority to
be scheduled, then low-ranking tasks maybe wait in the queue and cannot
get a chance to be scheduled on available resources. The proposed round
mechanism directly solves this problem based on the fact that it traverses
all remaining tasks in each round before handling new tasks. If a task can
be allocated to run in a certain time stamp during the runtime process,
the scheduler is required to let this task run no later than the end of the
corresponding round.

A technical problem in this approach is that during the runtime schedul-
ing process, it is not easy to know how long each accelerator will be idle
before it can be assigned to a new task. A technique applied to address this
problem is that instead of trying to record the idle time of each accelerator in
a given system through multiple counters during runtime, a global counter is
applied to record the maximum expected execution time for each accelerator
when they schedule on the same task and then apply a normalization process
to achieve synchronization. An abstract model is shown in Figure 6.4 to il-
lustrate this technique. A time unit can be set up to represent different real
time slot based on the different predicted execution time of workloads. For
instance, if a workload on a certain trace needs to work on several minutes
on a targeting accelerator, then one time unit can be set up to one minute
in the scheduler configuration.

142
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

6.3.4 Analysis

Complexity

The complexity for optimal task scheduling is known to be NP-hard [94]. Ef-
ficient heuristic based approach usually provides a polynomial time heuristic
method to find reasonably good solutions.

Through each round of the runtime scheduling, the scheduler will only
traverse the remaining tasks once, which leads to a complexity O(N) where
N is the number of tasks. In practice, the algorithm can make the decisions
of how to schedule hundreds of tasks within milliseconds which leads to an
negligible scheduling overhead.

Performance Upper-Bound

Another issue is the theoretical upper bound of the performance in a perfect
solution. Note the difference between the specific goal in here and a pure
bin-packing problem: the bin-packing problem aims to reduce the number
of bins used for certain number of balls while in this case, while in this
case there are certain amount of bins and scheduler needs to reduce the
loads for each bin which represents the performance. Based on this, the
theoretical d-approximation upper bound for any heuristic-based algorithm
on d-dimensional bin-packing problems [107] is not suitable for this work
here, but a simple theoretical upper-bound targeting on performance can be
defined as:

WCTupper ≥ max.{
∑
wTimek
M

,max.{wTimek}}

Where WCTupper denotes the upper-bound of the system performance. In
an optimal solution, WCTupper cannot be less than either the total workloads
completion time over the number of accelerators applied or the maximum of
each individual workload completion time. This upper bound is applied
to evaluate the proposed algorithm against FIFO and other heuristic-based
approaches in the experiment section.

6.4 Software Architecture

The software architecture of this approach is shown in Fig. 6.5. The Runtime
Scheduling system is responsible for the order of execution and the mapping

6.4. Software Architecture 143

Figure 6.5: Scheduling Architecture

144
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

of tasks to FPGAs. The tasks are all malleable, meaning they can be instan-
tiated on any number of compute units in parallel, and any number of tasks
may be scheduled concurrently.

The original workloads from application traces initially flow into the static
workload analysis. This offline process empirically determines and stores the
ideal system configuration for each task in terms of compute unit alloca-
tion, targeting a specific hardware architecture employed, and assuming full
resource availability. This approach is similar to that taken in [58, 99].

At runtime, the tasks are first ranked by the Ranking Generator. This
decision is based on both the static information about the ideal allocation
provided from the analysis, and runtime information about the current re-
source availability, provided by the Resource Monitor. Finally, the scheduler
allocates tasks to FPGAs based on the Fit and Round algorithm.

6.4.1 Components

Main functional components of the software architecture are illustrated in
this section. They are the Resource Monitor, the Ranking Generator and
the Core Scheduler. Trivial interferences between those components within
the main architecture are ignored.

• Resource Monitor: A basic component in this architecture is the re-
source monitor. The resource monitor records the runtime resource
usage of the system and reports to the ranking generator. The runtime
resource usage also containing the topology of those idle resources -
whether interconnected or not. At runtime, if any hardware accelera-
tor changes state, it will send a message to the monitor.

• Ranking Generator: The ranking generator receives the information
from both workload analysis and resource monitor, and then computes
the universally-consistent and polynomial time computable ranking
values by applying the downset representation strategy and the ranking
generation algorithm as described in Algorithm 6. This computation
is triggered during runtime whenever new tasks are arrived.

• Core Scheduler: The core task scheduler is a novel component in this
architecture. Instead of taking a FIFO approach, it applies a heuristic-
based approach guided by ranking values to select tasks to schedule on

6.4. Software Architecture 145

available resources. The underlining algorithm in this scheduler is im-
plemented through the Fit and Round mechanism as described above
in Algorithm 7. The output of this scheduler is the final scheduling
decision which indicates the tasks to run on corresponding resources
and can be viewed as a mapping from tasks to resources.

6.4.2 Analysis

This subsection analyses two main characteristics of the proposed scheduling
approach.

Generality of Application

The generality of the proposed scheduling approach can be considered as
follows:

• Varying workloads: The proposed analysis stage automatically adjusts
to target different workloads, and different granularity of data input.

• Varying optimizations: The proposed analysis stage can adjust to tar-
get different optimization goals such as high performance, high through-
put or high energy efficiency by setup specific metrics without further
changing the underlining software architecture.

• Varying architectural setup: The scheduling approach optimises for
different configurations of FPGA clusters, with different topologies and
number of accelerators. Updating the domain of the proposed lattice
representation for ranking generation does not lead to further change
of the underlining representation algorithm.

Availability

Based on the workload analysis which can be equipped with different per-
formance metrics, the proposed software architecture can be customized to
achieve high performance for a wide class of HPC applications. The partial-
order model and ranking-based heuristic are limited by the following assump-
tions:

• The links for adjust accelerators are stable. This approach does not
consider reliability or fault-tolerant issues of links.

146
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

• Any multi-FPGA system with only four or fewer FPGAs is considered
to be trivial for multi-FPGA scheduling. Simple scheduling algorithms
should be sufficient in these cases – this work targets more complex
networks of accelerators where all accelerators cannot be fully directly
linked in a crossbar structure.

• This work only considers how to schedule workloads between acceler-
ators across a multi-FPGA system. It does not consider the internal
configuration of each FPGA for computation and single FPGA kernel
optimisation – those are beyond the scope of this work.

In conclusion, the proposed approach is suited for wide classes of HPC ap-
plications/kernels to achieve application-specific goals targeting on current
multi-FPGA systems.

6.5 Experimental Setup

This work was tested on a testbed with FPGA-based multi-accelerator sys-
tems, the MPC-X device produced by Maxeler Technologies [73]. It is evalu-
ated by both the F11 Genetic algorithm benchmarks and the Reverse Time
Migration (RTM) application. The hardware and workloads were described
in the technical background chapter above. The proposed software resource
manager and scheduler are implemented as a middleware on top of the system
OS using Java.

The approaches of preferring real-world techniques over synthetic bench-
marking make little sense in the context of evaluating irregular workloads,
where the heterogeneous hardware configuration is chosen over homogeneous
parallel machines precisely to adapt to the real problem of irregular work-
loads.

6.5.1 Static Analysis

A static analysis is completed to:

• Classify tasks and determine the best system configuration targeting
the given hardware resources for each task.

• Classify the workloads and analyse the workload irregularity.

6.5. Experimental Setup 147

Tasks Classification

When the physical cluster is mainly composed of multi-FPGA systems as
presented in Figure 6.5, the basic analysis metric is taskT imei(Sk), the
predicted execution time for each task i on the system configuration Sk where
k denotes the number of interconnected accelerators. The static analysis will
then select the best system configuration Sk for each task i. Trivially, it
selects a Sk to achieve the minimum of taskT imei(Sk) which represents the
highest performance the system can reach.

Counterexamples also exist, such as if there are only a few hard tasks,
why not just schedule them by each task per accelerator simultaneously to
finish them as soon as possible and achieve an overall high performance?
This counterexample would be more serious when there are workloads con-
taining different sizes of tasks. If the scheduler can assign large tasks on
multiple accelerators while basic small tasks run on each per accelerator, it
may save a lot of resources, which can then be used to finish many other co-
executed tasks. So instead of just applying the basic metric taskT imei(Sk),
a customised metric and two special cases below are to be considered:

Normal Cases: A metric, named dTtask/Acc(Sk, i) is to show the ratio
of performance gain of task i when adding accelerators to reach the
configuration Sk, which can be computed as follow:

dTtask/Acc(Sk, i) =
taskT ime(Sk−1, i)− taskT ime(Sk, i)

|Sk| − |Sk−1|

Where |Sk| is the number of accelerators in configuration Sk. Note
that |Sk| may not equal to k as there may be some non-connected
accelerators in this configuration. The workload analysis selects the Sk

which the maximum dTtask/Acc(Sk, i) value which means the tasks enjoy
the most significant performance gain after adding more accelerators to
run on it to reach this configuration and if continue add accelerators on
this task, the performance will not increase much. Although presenting
execution time on variable number of FPGAs is a common approach to
show performance of multi-FPGA systems by research communities [32,
24], researchers only use those kind of graphs to prove their scalability
instead of extracting good configurations. Thus, this work extracts a
new metric based on the initial motivation from typical mathematical

148
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

optimisation: the derivate of Ttask/Acc(Sk, i).
3

Special Cases: A special upper case appears where a workload only
contains a few large/hard tasks. For example, if a user submits a work-
load containing only one large task, the static analysis should allocate
all possible resources to work on it simultaneously to reach best per-
formance. The exact entry condition of the upper case will be different
based on different application workloads. A special bottom case appears
where a workload just contains many small/easy tasks. For example,
if a user submits a workload just containing several small tasks, the
workload analysis should allocate available resources to work on them
simultaneously (one accelerator per task) to reach the overall best per-
formance. The exact conditions for a trace to be classified in this case
will be different based on different application workloads.

As a result of those cases, the final performance metric m(Sk, i) used to
select best configuration in the workload analysis is selected as a trade-off:

m(Sk, i) =

all Accs per task for upper case
one Acc per task for bottom case
dTtask/Acc(Sk, i) for o.w.

The output information from this static analysis will include the tasks with
corresponding configuration information:

Sk = {taskDim, taskTopl, taskT ime}

As shown above, it includes the required number of accelerators taskDim,
the topology of those accelerators taskTopl and the corresponding predicted
execution time taskT ime based on this configuration.

In the experiments, there are three different sizes of workloads for both
RTM tasks and GA F11 benchmark input: small (S), middle (M) and large
(L). Multi-large tasks scenarios (Multi-L) for RTM and Mix-large domain
scenarios (Mix-L) for GA F11 benchmark are added to increase the com-
plexity and irregularity of the workloads. Each case is run by four times
and then the mean value of execution time which is viewed as the original
taskT imei(Sk).

3Different with the real derivate, it does not need to consider a δT in the discrete case
here.

6.5. Experimental Setup 149

Table 6.2: Static Analysis

Different system configurations use different number of FPGAs and topolo-
gies between those FPGAs including Ring and Group. A Ring type denotes
connected multi-FPGA whilst Group type denotes independent FPGAs in
one device. The analysis only shows one FPGA case for the Group type
topology based on the following trivial equation:

taskT imei(1 G) = taskT imei(k G), k ∈ [1...5]

Where k G means the configuration Sk fully composed by k FPGAs in
a Group type. This equation trivially shows that if running one task on 1
FPGA, then its running time should be equal to run k task on k Group
FPGAs simultaneously. Recall the hardware limitations, k should not be
greater than 5 in the experiment. Similar as for Group type, k R is used to
denote the configuration Sk fully composed by k FPGAs in a Ring type.

The best configuration of each workload size for both applications with
corresponding average execution time are presented in Table 6.2.

Workloads Classification

The static analysis performed allows workload-level classification. Recall
the motivating example in introduction section – the irregularity of tasks
presented the difference between suitable configurations, the number of ac-
celerators and the topology needed. It is hard to define the underlining
irregularity from attributes of different data directly as it also depends on
the workloads composition and kernels which are actually used to execute it.

Instead, an empirical metric of irregularity in workloads is given here
to demonstrate the results. It represents how irregularity between different
given tasks caused slowdown in the experiments. In the most irregular case,
each different class (small,medium or large) of tasks has the same amount of
total predicted execution time which leads to the same importance on overall

150
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

performance. While in a case with low heterogeneity level, a certain class of
tasks need much more total execution time than other tasks, and then the
overall performance will more dependent on this class of tasks. A weighted
edition of the variance of execution time from each task Irg(W) to is applied
to denote the irregularity level of each workload Wk as follows:

Irg(Wk) =
N ′∑
i=1

(
taskT imei∑
taskT imei

) ∗ (
taskT imei − taskT ime

taskT ime
)2

Where
∑
taskT imei denotes the total execution time. The taskT ime

denotes the average execution time. N ′ denotes the total number of tasks in
this workload.

After the analysis, the main runtime scheduler can begin to work and
its performance is compared with a FIFO approach and the re-implemented
HEFT and MFIT schedulers on both F11 and RTM workloads. The proposed
approach is evaluated based on three kinds of multi-workload scenarios:

Single-task workloads

Each workload is made up of a single run of the benchmark, which consists
of a number of parallel elements of varying irregularity.

Multi-task workloads

Each workload is made up of a random number of runs of the benchmark
between 2 and 20, operating on different data. Each run consists a number
of parallel elements of varying irregularity.

High irregularity workloads

The scheduler is evaluated with a multi-task scenario where the tasks con-
sidered are highly irregular in size.

6.6 Experimental Results

The main experimental results are presented in this section. The proposed
ranking-based approach is compared against three other approaches – FIFO,
HEFT, MFIT in three multi-workload scenarios – single-task, multi-task and

6.6. Experimental Results 151

high irregularity. It compares principally against FIFO as it is the policy used
in the Maxeler Orchestrator [73] commercial implementation.

Additionally, it is compared against an implementation of the the multi-
FPGA research scheduling algorithm MFIT [59], and an implementation
of the heterogeneous scheduling algorithm, HEFT [97], adapted for multi-
FPGA scheduling. This is to show how this work compares to more sophis-
ticated research-level approaches.

The results are presented as a percentage of the theoretical upper bound of
performance, derived by assuming linear scaling of performance with number
of FPGAs, described in the section above.

6.6.1 Results for Multi-task Cases

The experimental results of RTM workloads and GA F11 benchmark on
different workload scenarios through different irregularity levels.

Each point in the plotted resulting graphs is the mean value of 50 tests
to improve the quality of results. For example, the result for the Ranking
approach in multi-task scenarios at the point of 0.4 normalized irregularity
is the mean value of 50 points for which normalized irregularity ranges from
0.375 to 0.425. The reason the number 50 is selected for each point is just
an empirical cost-efficiency value: Based on the initial tests, the mean values
for around 10 to 30 times tests are fluctuated whilst the values from 50 times
to more than 100 times are similar.

The Ranking approach consistently outperforms all other approaches
in multi-task scenarios across levels of irregularity. For RTM workloads,
Ranking maintains 99.7% to 99.8% of upper-bound of performance across
levels of irregularity. This represents a significant improvement of between
5% and 7% over the commercially implemented FIFO scheme.

The re-implementation of the HEFT approach for this task performs fairly
well here, but only reaches 97.5% to 98% of the maximum possible perfor-
mance. MFIT performs similarly to FIFO.

For F11 workloads, with normalised irregularity around 0.3, Ranking
already reaches more than 95% of the upper bound, while both FIFO and
MFIT are around 92% and HEFT 87%. As irregularity increases to 0.55,
the Ranking approach obtains 98% and does not decrease. Both FIFO and
MFIT reach a maximum of 93.5%, while in this case, HEFT only obtains
between 86% and 88% of the upper bound.

152
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

Over both scenarios, the Ranking approach provides the best perfor-
mance.

6.6.2 Results for Single-task Cases

Although this work focuses on multi-task workloads, it also works well on
single-task workloads. In single-task scenarios, the Ranking approach per-
forms identically to HEFT, while outperforming both FIFO and MFIT. In
practice, Ranking and HEFT make identical scheduling decisions in these
simpler scenarios.

Ranking and HEFT obtain a 93.5% for the RTM workload when nor-
malized irregularity is 0.35, while still outperforming both FIFO and MFIT,
which obtain 89.8% and 89.4% respectively. Similar results are obtained with
single-task F11 workloads.

6.6.3 Results for varying workload numbers in High
Irregularity Scenarios

Figure 6.7 shows the results where only highly irregular workloads are con-
sidered, and where the number of workloads simultaneously present for com-
putation is varied.

In general, scheduling becomes easier as the number of workloads in-
creases as there are more tasks of varying size which allow holes in the sched-
ule to be more easily filled. This intuition is borne out across all considered
approaches.

Ranking generally performs better than all other approaches across both
RTM and F11 workloads.

For RTM workloads, at a low number of workloads, HEFT performs a lit-
tle better than ranking. For example, when the number of workload is around
30, HEFT can reach around 93% whilst Ranking only get around 85%. This
is due to the HEFT algorithm preferring longer running tasks running on
a small number of accelerators, rather than ranking, which prefers shorter
running tasks running on a larger number of accelerators. The overhead of
changing tasks more quickly in low workload size scenarios leads to lower
performance with the ranking approach. Even in this case, Ranking is still
outperforms MFIT and FIFO, both of which obtain about 76% of the avail-
able performance. Ranking consistently outperforms HEFT as the number
of workloads increases past 50,quickly achieves 99% or available performance.

6.7. Conclusion 153

Figure 6.6: Experimental results on different workload scenarios

For F11 workloads, Ranking outperforms all other three approaches across
all numbers of workload. The results vary from 91% to more than 98% of
the upper bound of performance. MFIT and FIFO achieve around 93% when
the number of workloads is greater than 60. HEFT fluctuates around 90%
across differing numbers of workload.

6.7 Conclusion

In conclusion, this chapter presents a novel dynamic scheduling approach for
multi-FPGA based clusters, based on a partial order representation of tasks
and a ranking methodology.

It shows how the proposed dynamic scheduling approach, which models
and ranks irregular workloads, outperforms existing approaches including
FIFO and two heuristic-based research schedulers, HEFT and MFIT. The
performance gains between the proposed approach against other approaches
are more significant for high irregularity and multi-task scenarios on both

154
Chapter 6. AccCOLAB: A Heterogeneity- aware Scheduler for Multi-

accelerator Systems

Figure 6.7: Experimental results on high irregularity scenarios

workloads. In scenarios where most workloads contain similar sizes of task,
the proposed approach maintains the same or better performance. In these
simpler cases, the existing approaches are already perform well.

This work also shows the prevalence of FIFO schedulers in industrial and
research accelerator systems is not unreasonable – FIFO performs well in a
mostly homogeneous single-task environment. However, in the presence of
irregular tasks and FPGA-based multi-accelerator resources, a better method
is required to retain high levels of performance.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Addressing heterogeneity is a critical issue when running complex workloads
on modern computing systems, in order to guarantee good performance.
Schedulers in operating systems have the main responsibility to assign soft-
ware threads and allocate hardware resources in and efficient way. There is a
clear need for such schedulers to be intelligently designed in a heterogeneity-
aware way. This design is difficult because different types of heterogeneous
systems have different heterogeneities, and a simple uniform approach cannot
provide optimal solutions. Similarly, typical workloads on different types of
systems have varying characteristics too. Adding these complexities up leads
to a hugely complex and difficult optimisation space. Research in this area
should investigate both heterogeneities – hardware resources and the target
workloads – to design efficient schedulers.

This thesis presents a set of systematic methods to design heterogeneity-
aware schedulers to accelerate system performance targeting varying major
modern parallel machines, from FPGA-based clusters and hierarchical many-
core supercomputers to asymmetric multi-core processors. It provides con-
crete methods to model and address the different heterogeneities from the
scheduler side, including the asymmetric physical topology on multi-FPGA
clusters, the hierarchical processors and memory architectures on supercom-
puters and the different computing ability and core sensitivity with fairness
on big.LITTLE multi-core processors.

156 Chapter 7. Conclusion and Future Work

7.1.1 Contributions

This thesis makes four main contributions as follows:

• It analyses the general underlying problem models of heterogeneity-
aware scheduling with data partitioning. It then provides efficient
problem representations to guide the scheduler and data partitioner
design and implementation.

• It investigates and develops concrete schedulers, either in the OS ker-
nel (Linux) or middleware (FPGA resource manager) levels, targeting
heterogeneous systems with multicore processors and accelerators.

• It investigates and develops data partitioning methods, mainly by re-
design of the parallel algorithms used in large-scale workloads, targeting
high performance supercomputers with hierarchical hardware architec-
tures.

• It provides empirical studies and evaluation on either full system sim-
ulators or real machines to demonstrate the claimed advantage of the
proposed heterogeneity-aware approaches on both benchmark work-
loads and scientific applications.

These four contributions are further summarised in the subsections below.

7.1.2 Heterogeneity Analysis

This thesis describes and discusses the general underlying problem to model
different heterogeneities during runtime scheduling and guide the data par-
titioner. These include the asymmetric physical topology on multi-FPGA
clusters, the hierarchical processors and memory architectures on supercom-
puters and the different computing ability and core sensitivity with fairness
on big.LITTLE multi-core processors.

This thesis analyses the problem of how heterogeneity affects the decisions
and performance of schedulers, and goes on to investigate the opportunites
to address it. It also describes the problem of designing efficient hierarchical
data partitioning methods compared with a basic parallel approach with
simple dataflow partitioning, before discussing the potential improvement
space available, based on the hardware heterogeneity.

7.1. Conclusion 157

7.1.3 Scheduler Design and Implementation

The proposed schedulers provide design principles and implementations to
address the heterogeneities from different types of heterogeneous systems.

The scheduler running asymmetric multi-core processors for mobile de-
vices is the first the first ever collaboration-based approach to address all
three main runtime factors: core sensitivity, thread criticality and fairness,
simultaneously. Compared with previous research on heterogeneity-aware
schedulers, it presents a flexible framework to:

1. Accelerate multiple critical threads from multiple programs in-place on
heterogeneous processors;

2. Control the thread scheduling more accurate by updating the linux
kernel directly to scale time-slice and update task priorities instead of
only effect the thread-to-core affinity by middleware or VM.

The novelty of this approach can be summarised as multi-bottleneck co-
acceleration. Instead of putting all the pressure of bottleneck acceleration
on the out-of-order high frequency big cores, it shows the benefit of letting
the in-order low frequency LITTLE cores also execute suitable threads in-
telligently to achieve multi-core collaboration during execution time. This
scheduler has been implemented on the fully system simulator, GEM5 with
interfaces to Linux kernel.

The scheduler for multi-FPGA clusters proposes a novel framework to
address the heterogeneity generated by connection topology and computing
ability. Instead of the fully-connected or crossbar topology used on small
on-chip multi-core for CPUs and streaming multiprocessors for GPUs, mul-
tiple FPGAs in a cluster are usually physically connected by either a line
or a ring with an InfiniBand-like connection system. This results in a spe-
cialised heterogeneity for multi-FPGA systems – communication-intensive
multi-threaded tasks required to be allocated onto multiple physically con-
nected FPGAs for frequent communications, while other computing-intensive
tasks are free to be allocated onto multiple randomly located FPGAs to run
individually without heavy communication. This thesis suggests a lattice-
based representation and ranking heuristic to address this topological het-
erogeneity, together with consideration for the difference in resource need
from applications. The lattice based model is applied to construct a con-
sistent ranking between tasks, requesting a different amount of computing

158 Chapter 7. Conclusion and Future Work

resources and changing hardware topologies depending on the task. The run-
time scheduler algorithm is equipped with this ranking heuristic to schedule
tasks efficiently with negligible system overhead – the output table from lat-
tice representation can be read in O(1) time.

7.1.4 Data Partitioner Design and Implementation

Regarding the application-specific data partitioning and scheduling targeting
hierarchical many-core supercomputers, this thesis proposes an automatic
and large-scale approach to map the parallel program onto the heterogeneous
memory hierarchy. It investigates two concrete mappings:

1 Map the asymmetries on the frequency of synchronisation between mul-
tiple co-executed threads onto the heterogeneities from the communi-
cation speed between processors in different hardware architectures.

2 Map the asymmetries on the loads between different co-executed threads
onto the heterogeneities from storage limitations between local caches
and shared memory.

The proposed implementation uses on-chip multi-core processors with
the highest available bandwidth and communication speed to partition the
multiple dimensions of each data sample. It uses multiple core groups and
distributed nodes with less bandwidth to partition the original dataflow since
the communication need between multiple data is much less than the need to
communicate between the multiple dimensions inside each data point. After
the customised data partitioning, the runtime scheduler on supercomputers
is can be greedy designed to find the good scheduling solutions.

7.1.5 Impact on Benchmark Workloads and Scientific
Applications

The proposed scheduler for asymmetric multicore processors is tested on
complex multi-threaded multi-programmed workloads, which are composed
by systematically selected programs from benchmark suites including PAR-
SEC3.0 and SPLASH-2. The experimental results on GEM5 simulator with
simulated ARM A57/A53 architectures demonstrate that this approach gives
the greatest benefit on complicated mix-workload scenarios with limited and

7.2. Future Work 159

realistic processors resources, e.g. for smartphones, where the system needs
to run multi-threaded multi-programmed workloads on limited number of
cores. The proposed scheduler can outperform other work by up-to 27%
on synchronisation-intensive workloads and 15% on communication-intensive
workloads in terms of system throughput and normalised turnaround time.
Its potential impact has attracted industrial attentions to re-implement on
commercial chips for mobile devices, such as the Huawei Kirin 960.

The proposed data partitioner on heterogeneous manycore supercomput-
ers is tested on large-scale workloads from both well-known machine learning
benchmarks (ImgNet and UCI) and real applications (land cover and gene ex-
pression classification). Demonstrated by the concrete case study of k-means
clustering based real applications on the Sunway Taihulight supercomputer
with SW26010 many-core processors, this design surpasses the previous lim-
itations on the tractable data size for clustering and shows a significant scal-
ability by efficiently applying more than 1 million cores simultaneously to
execute massive workloads. After the customised data partitioning, the run-
time scheduler is designed to greedily find good solutions for scheduling these
asymmetric software threads onto the supercomputer.

The proposed scheduler on multi-FPGA cluster is tested on mixed work-
loads from a genetic algorithm benchmark (F11) and an oil and gas indus-
trial application (Reverse Time Migration). The experimental results demon-
strate the claimed advantage of the proposed approach on multi-FPGA based
Maxeler Dataflow Engines (MPC-X) with Xilinx FPGAs. It achieves up-to
20% performance gain in term of total execution time compared with other
multi-FPGA schedulers and the default first-in-first-out based commercial
scheduler.

7.2 Future Work

Future work is proposed on multi-accelerator based heterogeneous systems
beyond FPGAs. A typical kind of accelerators in modern heterogeneous
system which has not been covered by this work are the general-purpose
Graphics Processing Units (GPUs).

GPUs are increasingly widely used to accelerate general-purpose compu-
tation. GPUs achieve high computational power by exploiting thread-level
parallelism across a number of streaming multiprocessors (SMs). The num-
ber of SMs increases with each successive generation. Whereas Nvidia Fermi

160 Chapter 7. Conclusion and Future Work

and Kepler architecture implement 14 SMs (Tesla M2050) and 15 SMs (Tesla
K40), respectively, the next-generation Maxwell has 24 SMs (Tesla M40), and
the latest Pascal and Volta architectures feature as many as 56 SMs (Tesla
P100) and 80 SMs (Tesla V100), respectively.

This hardware trend coincides with the application trend towards using
GPUs as accelerators in cloud services and data centres to meet the ever-
growing demands while maintaining cost efficiency, as exemplified by Amazon
EC2’s offering of GPU instances in the cloud. In such systems, multiple in-
dependent applications from different users need to be executed as efficiently
as possible. Spatial multitasking is a promising solution to support GPUs
multitasking where the SMs in a GPU are divided into disjoint subsets to
which different kernels are assigned to co-run. For kernels with different
resource demands, i.e., a memory-bound kernel and a compute-bound ker-
nel, co-executing them on GPUs better utilizes the compute resources and
memory resources, which can brings 63% performance improvement on av-
erage [119].

Current GPUs multitasking work does not fit the real world where the
kernels executing on GPUs are actually launched by the host side – the CPU
side. In other words, state-of-art GPUs multitasking all naively assumes that
there some kernels waiting for GPUs to execute. Unfortunately, what kernels
that GPUs can execute actually depends on the CPU scheduling policy.

A proposed future work to address this problem is to design a CPU/GPU
co-scheduling framework using a compiler-based predictive model, and col-
laboratively aware CPU and GPU schedulers. In particular, the compiler-
based predictive model could consist of deep learning based code segments
classification which could analyses the GPU kernel characteristics within the
application. Based on the kernel information, the CPU scheduler chooses the
right application to execute and launch the suitable kernels to the GPU side.
Finally, the GPU scheduler can exploits the GPUs multitasking to co-execute
different GPU kernels and achieve the best performance.

Bibliography

[1] John Aldrich and Jeff Miller. Earliest known uses of some of the
words of mathematics. particular, the entries for” bell-shaped and bell
curve”,” normal (distribution)”,” Gaussian”, and” Error, law of error,
theory of errors, etc, 2014.

[2] Mauricio Araya-Polo et al. Assessing accelerator-based hpc reverse time
migration. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 22(1):147–162, 2011.

[3] ARM. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ddi0388e/ behedihi.html. In ARM Cortex-A57 Technical Reference
Manual, 2016.

[4] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clus-
tering via core-sets. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 250–257. ACM, 2002.

[5] Sudarshan Banerjee, Elaheh Bozorgzadeh, and Nikil Dutt. Consid-
ering run-time reconfiguration overhead in task graph transforma-
tions for dynamically reconfigurable architectures. In 13th Annual
IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM’05), pages 273–274. IEEE, 2005.

[6] Michela Becchi and Patrick Crowley. Dynamic thread assignment on
heterogeneous multiprocessor architectures. In Proceedings of the 3rd
conference on Computing frontiers (CF). ACM, 2006.

[7] Tobias Becker, Oskar Mencer, Stephen Weston, and Georgi Gaydad-
jiev. Maxeler data-flow in computational finance. In FPGA Based
Accelerators for Financial Applications, pages 243–266. Springer, 2015.

162 Bibliography

[8] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene ex-
pression patterns. Journal of computational biology, 6(3-4):281–297,
1999.

[9] Michael A Bender, Jonathan Berry, Simon D Hammond, Branden
Moore, Benjamin Moseley, and Cynthia A Phillips. k-means clustering
on two-level memory systems. In Proceedings of the 2015 International
Symposium on Memory Systems, pages 197–205. ACM, 2015.

[10] Janki Bhimani, Miriam Leeser, and Ningfang Mi. Accelerating k-
means clustering with parallel implementations and gpu computing.
In High Performance Extreme Computing Conference (HPEC), 2015
IEEE, pages 1–6. IEEE, 2015.

[11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[12] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The parsec benchmark suite: Characterization and architectural impli-
cations. In Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2008.

[13] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The parsec benchmark suite: Characterization and architectural impli-
cations. In Proceedings of the 17th international conference on Parallel
Architectures and Compilation Techniques (PACT), 2008.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[15] Garrett Birkhoff. Lattice theory, volume 25. American Mathematical
Soc., 1940.

[16] Christian Böhm, Martin Perdacher, and Claudia Plant. Multi-core k-
means. In Proceedings of the 2017 SIAM International Conference on
Data Mining, pages 273–281. SIAM, 2017.

[17] Carlos Boneti, Roberto Gioiosa, Francisco J Cazorla, Julita Corbalan,
Jesus Labarta, and Mateo Valero. Balancing hpc applications through

Bibliography 163

smart allocation of resources in mt processors. In 2008 IEEE Interna-
tional Symposium on Parallel and Distributed Processing, pages 1–12.
IEEE, 2008.

[18] Carlos Boneti, Roberto Gioiosa, Francisco J Cazorla, and Mateo
Valero. A dynamic scheduler for balancing hpc applications. In Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing, page 41.
IEEE Press, 2008.

[19] Thomas Bottesch, Thomas Bühler, and Markus Kächele. Speeding
up k-means by approximating euclidean distances via block vectors.
In International Conference on Machine Learning, pages 2578–2586,
2016.

[20] Y Dora Cai, Rabindra Robby Ratan, Cuihua Shen, and Jay Alameda.
Grouping game players using parallelized k-means on supercomputers.
In Proceedings of the 2015 XSEDE Conference: Scientific Advance-
ments Enabled by Enhanced Cyberinfrastructure, page 10. ACM, 2015.

[21] Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKin-
ley. The yin and yang of power and performance for asymmetric hard-
ware and managed software. In Proceedings of the 39th Annual Inter-
national Symposium on Computer Architecture (ISCA), 2012.

[22] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani.
Incremental clustering and dynamic information retrieval. SIAM Jour-
nal on Computing, 33(6):1417–1440, 2004.

[23] Siya Chen, Tieli Sun, Fengqin Yang, Hongguang Sun, and Yu Guan. An
improved optimum-path forest clustering algorithm for remote sensing
image segmentation. Computers & Geosciences, 112:38–46, 2018.

[24] Yuk-Ming Choi and Hayden Kwok-Hay So. Map-reduce processing of
k-means algorithm with fpga-accelerated computer cluster. In ASAP,
pages 9–16. IEEE, 2014.

[25] Kallia Chronaki, Alejandro Rico, Marc Casas, Miquel Moretó, Rosa M
Badia, Eduard Ayguadé, Jesus Labarta, and Mateo Valero. Task
scheduling techniques for asymmetric multi-core systems. IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), 28(7):2074–2087,
2017.

164 Bibliography

[26] CloudLightning. Cloudlightning position paper. 2016.

[27] Guy Barrett Coleman and Harry C Andrews. Image segmentation by
clustering. Proceedings of the IEEE, 67(5):773–785, 1979.

[28] David A Coley. An introduction to genetic algorithms for scientists and
engineers. World scientific, 1999.

[29] Jose GF Coutinho, Mark Stillwell, Katerina Argyraki, George Ioan-
nidis, Anca Iordache, Christoph Kleineweber, Alexandros Koliousis,
John McGlone, Guillaume Pierre, Carmelo Ragusa, et al. The harness
platform: A hardware-and network-enhanced software system for cloud
computing. In Software Architecture for Big Data and the Cloud, pages
323–351. Elsevier, 2017.

[30] Xiaoli Cui, Pingfei Zhu, Xin Yang, Keqiu Li, and Changqing Ji. Op-
timized big data k-means clustering using mapreduce. The Journal of
Supercomputing, 70(3):1249–1259, 2014.

[31] Ryan R Curtin. A dual-tree algorithm for fast k-means clustering with
large k. In Proceedings of the 2017 SIAM International Conference on
Data Mining, pages 300–308. SIAM, 2017.

[32] Guohao Dai et al. Foregraph: Exploring large-scale graph processing
on multi-fpga architecture. In FPGA, pages 217–226. ACM, 2017.

[33] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing
Huang, Saikat Basu, Forest Hughes, Devis Tuia, and Ramesh Raskar.
Deepglobe 2018: A challenge to parse the earth through satellite im-
ages. ArXiv e-prints, 2018.

[34] Inderjit S Dhillon and Dharmendra S Modha. A data-clustering algo-
rithm on distributed memory multiprocessors. In Large-scale parallel
data mining, pages 245–260. Springer, 2002.

[35] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd
Mytkowicz. Yinyang k-means: A drop-in replacement of the classic
k-means with consistent speedup. In International Conference on Ma-
chine Learning, pages 579–587, 2015.

Bibliography 165

[36] Kristof Du Bois, Stijn Eyerman, Jennifer B Sartor, and Lieven Eeck-
hout. Criticality stacks: Identifying critical threads in parallel pro-
grams using synchronization behavior. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA),
2013.

[37] Alejandro Duran, Marc Gonzalez, and Julita Corbalán. Automatic
thread distribution for nested parallelism in openmp. In Proceedings
of the 19th annual international conference on Supercomputing, pages
121–130. ACM, 2005.

[38] Fernando A Endo, Damien Couroussé, and Henri-Pierre Charles.
Micro-architectural simulation of in-order and out-of-order arm micro-
processors with gem5. In Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV), 2014 International Confer-
ence on, pages 266–273. IEEE, 2014.

[39] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics
for multiprogram workloads. IEEE micro, 28(3), 2008.

[40] Yuping Fan, Zhiling Lan, Paul Rich, William E Allcock, Michael E
Papka, Brian Austin, and David Paul. Scheduling beyond cpus for
hpc. In Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, pages 97–108. ACM,
2019.

[41] Expression Project for Oncology (expO). http://www.intgen.org/.

[42] Haohuan Fu et al. Scaling reverse time migration performance through
reconfigurable dataflow engines. IEEE Micro, 34(1):30–40, 2014.

[43] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song,
Xiaomeng Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao,
et al. The sunway taihulight supercomputer: system and applications.
Science China Information Sciences, 59(7):072001, 2016.

[44] Andrey Goder, Alexey Spiridonov, and Yin Wang. Bistro: Scheduling
data-parallel jobs against live production systems. In 2015 {USENIX}
Annual Technical Conference, pages 459–471, 2015.

166 Bibliography

[45] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and
Liadan O’Callaghan. Clustering data streams: Theory and practice.
IEEE transactions on knowledge and data engineering, 15(3):515–528,
2003.

[46] Ali Hadian and Saeed Shahrivari. High performance parallel k-means
clustering for disk-resident datasets on multi-core cpus. The Journal
of Supercomputing, 69(2):845–863, 2014.

[47] Greg Hamerly. Making k-means even faster. In Proceedings of the 2010
SIAM international conference on data mining, pages 130–140. SIAM,
2010.

[48] Jian-Jun Han, Xin Tao, Dakai Zhu, Hakan Aydin, Zili Shao, and
Laurence T Yang. Multicore mixed-criticality systems: Partitioned
scheduling and utilization bound. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 37(1):21–34,
2018.

[49] Manish Handa and Ranga Vemuri. An integrated online scheduling
and placement methodology. In International Conference on Field Pro-
grammable Logic and Applications, pages 444–453. Springer, 2004.

[50] HARNESS. The harness platform: A hardware- and network-enhanced
software system for cloud computing. Technical report, November 2015.

[51] Juan Mario Haut, Mercedes Paoletti, Javier Plaza, and Antonio Plaza.
Cloud implementation of the k-means algorithm for hyperspectral im-
age analysis. The Journal of Supercomputing, 73(1):514–529, 2017.

[52] N Heath. Azure: How microsoft plans to boost cloud speeds with an
fpga injection. TechRepublic, 2016.

[53] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Min-
lan Yu, and Mingyang Zhang. Wide-area analytics with multiple re-
sources. In Proceedings of the Thirteenth EuroSys Conference, page 12.
ACM, 2018.

[54] ImgNet ILSVRC2012. http://www.image-
net.org/challenges/lsvrc/2012/.

Bibliography 167

[55] Anil K Jain and Richard C Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., 1988.

[56] Brian Jeff. big.little technology moves towards fully heterogeneous
global task scheduling. In ARM White Paper, 2013.

[57] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene
expression data: a survey. IEEE Transactions on knowledge and data
engineering, 16(11):1370–1386, 2004.

[58] Ivan Jibaja, Ting Cao, Stephen M Blackburn, and Kathryn S McKin-
ley. Portable performance on asymmetric multicore processors. In
Proceedings of the 2016 International Symposium on Code Generation
and Optimization (CGO), 2016.

[59] Chao Jing et al. Energy-efficient scheduling on multi-fpga reconfig-
urable systems. Microprocessors and Microsystems, 37(6):590–600,
2013.

[60] José A Joao, M Aater Suleman, Onur Mutlu, and Yale N Patt. Bot-
tleneck identification and scheduling in multithreaded applications. In
Proceedings of the 17th international Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
2012.

[61] José A Joao, M Aater Suleman, Onur Mutlu, and Yale N Patt. Utility-
based acceleration of multithreaded applications on asymmetric cmps.
In Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (ISCA), 2013.

[62] Kurt Keutzer, Kaushik Ravindran, Nadathur Satish, and Yujia Jin.
An automated exploration framework for fpga-based soft multiproces-
sor systems. In 2005 Third IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+
ISSS’05), pages 273–278. IEEE, 2005.

[63] Changdae Kim and Jaehyuk Huh. Fairness-oriented os scheduling sup-
port for multicore systems. In Proceedings of the 2016 ACM Interna-
tional Conference on Supercomputing (ICS), 2016.

168 Bibliography

[64] Changdae Kim and Jaehyuk Huh. Exploring the design space of fair
scheduling supports for asymmetric multicore systems. IEEE Transac-
tions on Computers (TC), 2018.

[65] Jitendra Kumar, Richard T Mills, Forrest M Hoffman, and William W
Hargrove. Parallel k-means clustering for quantitative ecoregion delin-
eation using large data sets. Procedia Computer Science, 4:1602–1611,
2011.

[66] Rakesh Kumar, Dean M Tullsen, Parthasarathy Ranganathan, Nor-
man P Jouppi, and Keith I Farkas. Single-isa heterogeneous multi-core
architectures for multithreaded workload performance. In Proceedings
of the 31th Annual International Symposium on Computer Architecture
(ISCA), 2004.

[67] Liandeng Li, Teng Yu, Wenlai Zhao, Haohuan Fu, Chenyu Wang,
Li Tan, Guangwen Yang, and John Thomson. Large-scale hierarchical
k-means for heterogeneous many-core supercomputers. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage, and Analysis, page 13. IEEE Press, 2018.

[68] Tong Li, Dan Baumberger, and Scott Hahn. Efficient and scalable
multiprocessor fair scheduling using distributed weighted round-robin.
In Proceedings of the 14th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2009.

[69] Tong Li, Dan Baumberger, David A Koufaty, and Scott Hahn. Efficient
operating system scheduling for performance-asymmetric multi-core ar-
chitectures. In Supercomputing, 2007. (SC). Proceedings of the 2007
ACM/IEEE Conference on. IEEE, 2007.

[70] Weijia Li, Haohuan Fu, Le Yu, Peng Gong, Duole Feng, Congcong Li,
and Nicholas Clinton. Stacked autoencoder-based deep learning for
remote-sensing image classification: a case study of african land-cover
mapping. International Journal of Remote Sensing, 37(23):5632–5646,
2016.

[71] You Li, Kaiyong Zhao, Xiaowen Chu, and Jiming Liu. Speeding up
k-means algorithm by gpus. In Computer and Information Technology

Bibliography 169

(CIT), 2010 IEEE 10th International Conference on, pages 115–122.
IEEE, 2010.

[72] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions
on information theory, 28(2):129–137, 1982.

[73] Maxeler. https://www.maxeler.com, 2016.

[74] Sparsh Mittal. A survey of techniques for architecting and managing
asymmetric multicore processors. ACM Computing Surveys (CSUR),
48(3):45, 2016.

[75] Ingo Molnar. Cfs scheduler. In Linux, volume 2, page 36, 2007.

[76] James Newling and François Fleuret. Fast k-means with accurate
bounds. In International Conference on Machine Learning, pages 936–
944, 2016.

[77] James Newling and François Fleuret. Nested mini-batch k-means. In
Advances in Neural Information Processing Systems, pages 1352–1360,
2016.

[78] Rina Panigrahy et al. Heuristics for vector bin packing. research.
microsoft. com, 2011.

[79] D Pellerin. Announcing amazon ec2 f1 instances with custom fpgas
hardware-accelerated computing on aws, 2016.

[80] Francesco Redaelli, M Santambrogio, Donatella Sciuto, and
Seda Ogrenci Memik. Reconfiguration aware task scheduling for multi-
fpga systems. Reconfigurable Computing, page 57, 2010.

[81] UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets.html.

[82] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill
Bergeron, Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew
Prout, Antonio Rosa, et al. Scheduler technologies in support of high
performance data analysis. In 2016 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–6. IEEE, 2016.

170 Bibliography

[83] Christopher J Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin,
and Dennis Fetterly. Dandelion: a compiler and runtime for heteroge-
neous systems. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 49–68. ACM, 2013.

[84] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[85] Juan Carlos Saez, Alexandra Fedorova, David Koufaty, and Manuel
Prieto. Leveraging core specialization via os scheduling to improve
performance on asymmetric multicore systems. ACM Transactions on
Computer Systems (TOCS), 30(2):6, 2012.

[86] Michel P Schellekens. The correspondence between partial metrics and
semivaluations. TCS, 315(1):135–149, 2004.

[87] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel multilevel
algorithms for multi-constraint graph partitioning. In European Con-
ference on Parallel Processing, pages 296–310. Springer, 2000.

[88] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. Omega: flexible, scalable schedulers for large compute clusters.
In Proceedings of the 8th ACM European Conference on Computer Sys-
tems, pages 351–364. ACM, 2013.

[89] Volker Seeker, Pavlos Petoumenos, Hugh Leather, and Björn Franke.
Measuring qoe of interactive workloads and characterising frequency
governors on mobile devices. In 2014 IEEE International Symposium
on Workload Characterization (IISWC), pages 61–70. IEEE, 2014.

[90] Xiao-Bo Shen, Weiwei Liu, Ivor W Tsang, Fumin Shen, and Quan-Sen
Sun. Compressed k-means for large-scale clustering. In AAAI, pages
2527–2533, 2017.

[91] Rui Shi, Huamin Feng, Tat-Seng Chua, and Chin-Hui Lee. An adaptive
image content representation and segmentation approach to automatic
image annotation. In International conference on image and video re-
trieval, pages 545–554. Springer, 2004.

Bibliography 171

[92] Gabriel Southern and Jose Renau. Analysis of parsec workload scal-
ability. In Performance Analysis of Systems and Software (ISPASS),
2016 IEEE International Symposium on. IEEE, 2016.

[93] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison
of document clustering techniques. In KDD workshop on text mining,
volume 400, pages 525–526. Boston, 2000.

[94] Mark Stillwell et al. Dynamic fractional resource scheduling versus
batch scheduling. IEEE TPDS, 23(3):521–529, 2012.

[95] Jinwoo Suh, Dong-In Kang, and Stephen P Crago. A communi-
cation scheduling algorithm for multi-fpga systems. In Proceedings
2000 IEEE Symposium on Field-Programmable Custom Computing
Machines (Cat. No. PR00871), pages 299–300. IEEE, 2000.

[96] M Aater Suleman, Onur Mutlu, Moinuddin K Qureshi, and Yale N
Patt. Accelerating critical section execution with asymmetric multi-
core architectures. In Proceedings of the 14th international Conference
on Architectural Support for Programming Languages and Operating
systems (ASPLOS), 2009.

[97] Haluk Topcuoglu et al. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE TPDS, 13(3):260–274,
2002.

[98] Leonardo Torok, Panos Liatsis, Jos Viterbo, Aura Conci, et al. k-ms.
Pattern Recognition, 66(C):392–403, 2017.

[99] Kenzo Van Craeynest, Shoaib Akram, Wim Heirman, Aamer Jaleel,
and Lieven Eeckhout. Fairness-aware scheduling on single-isa heteroge-
neous multi-cores. In Proceedings of the 22nd international conference
on Parallel Architectures and Compilation Techniques (PACT), 2013.

[100] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez,
and Joel Emer. Scheduling heterogeneous multi-cores through per-
formance impact estimation (pie). In Proceedings of the 39th Annual
International Symposium on Computer Architecture (ISCA), 2012.

[101] Anouk Van Laer, Timothy Jones, and Philip M Watts. Full system
simulation of optically interconnected chip multiprocessors using gem5.

172 Bibliography

In Optical Fiber Communication Conference, pages OTh1A–2. Optical
Society of America, 2013.

[102] Sean Wallace, Xu Yang, Venkatram Vishwanath, William E Allcock,
Susan Coghlan, Michael E Papka, and Zhiling Lan. A data driven
scheduling approach for power management on hpc systems. In Pro-
ceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, page 56. IEEE Press, 2016.

[103] Shicai Wang, Ioannis Pandis, David Johnson, Ibrahim Emam, Florian
Guitton, Axel Oehmichen, and Yike Guo. Optimising parallel r cor-
relation matrix calculations on gene expression data using mapreduce.
BMC bioinformatics, 15(1):351, 2014.

[104] Xiaodong Wang and José F Mart́ınez. Rebudget: Trading off effi-
ciency vs. fairness in market-based multicore resource allocation via
runtime budget reassignment. In Proceedings of the 21th international
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2016.

[105] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data
Mining: Practical machine learning tools and techniques. Morgan Kauf-
mann, 2016.

[106] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The splash-2 programs: Characterization
and methodological considerations. In Proceedings of the 22th Annual
International Symposium on Computer Architecture (ISCA), 1995.

[107] Andrew Chi-Chih Yao. New algorithms for bin packing. Journal of the
ACM (JACM), 27(2):207–227, 1980.

[108] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple
linux utility for resource management. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 44–60. Springer, 2003.

[109] Teng Yu, Bo Feng, Mark Stillwell, José Gabriel F Coutinho, Wen-
lai Zhao, Shuang Liang, Wayne Luk, Alexander L Wolf, and Yuchun
Ma. Relation-oriented resource allocation for multi-accelerator sys-
tems. In Application-Specific Systems, Architectures and Processors

Bibliography 173

(ASAP), 2016. Proceedings. The IEEE International Conference on,
pages 243–244. IEEE, 2016.

[110] Teng Yu, Bo Feng, Mark Stillwell, Liucheng Guo, Yuchun Ma,
and John Donald Thomson. Lattice-based scheduling for multi-fpga
systems. In Proceedings of the International Conference on Field-
Programmable Technology 2018, Naha, Okinawa, Japan. IEEE Press,
2018.

[111] Teng Yu, Pavlos Petoumenos, Vladimir Janjic, Hugh Leather, and John
Thomson. Colab: A collaborative multi-factor scheduler for asymmet-
ric multicore processors. In Proceedings of the 2020 International Sym-
posium on Code Generation and Optimization (CGO), 2020.

[112] Teng Yu, Pavlos Petoumenos, Vladimir Janjic, Mingcan Zhu, Hugh
Leather, and John Thomson. Poster: A collaborative multi-factor
scheduler for asymmetric multicore processors. In 2019 28th Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 487–488. IEEE, 2019.

[113] Teng Yu, Wenlai Zhao, Pan Liu, Vladimir Janjic, Xiaohan Yan, Shi-
cai Wang, Haohuan Fu, Guangwen Yang, and John Thomson. Large-
scale automatic k-means clustering for heterogeneous many-core su-
percomputer. IEEE Transactions on Parallel and Distributed Systems
(TPDS).

[114] Seyed Majid Zahedi, Qiuyun Llull, and Benjamin C Lee. Amdahĺs
law in the datacenter era: A market for fair processor allocation. In
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018.

[115] Mario Zechner and Michael Granitzer. Accelerating k-means on the
graphics processor via cuda. In Intensive Applications and Services,
2009. INTENSIVE’09. First International Conference on, pages 7–15.
IEEE, 2009.

[116] Dengsheng Zhang, Md Monirul Islam, and Guojun Lu. A review on au-
tomatic image annotation techniques. Pattern Recognition, 45(1):346–
362, 2012.

174 Bibliography

[117] Wenlai Zhao, Haohuan Fu, Jiarui Fang, Weijie Zheng, Lin Gan, and
Guangwen Yang. Optimizing convolutional neural networks on the
sunway taihulight supercomputer. ACM Transactions on Architecture
and Code Optimization (TACO), 15(1):13, 2018.

[118] Wenlai Zhao, Haohuan Fu, Wayne Luk, Teng Yu, Shaojun Wang,
Bo Feng, Yuchun Ma, and Guangwen Yang. F-cnn: An fpga-based
framework for training convolutional neural networks. In 2016 IEEE
27th International Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP), pages 107–114. IEEE, 2016.

[119] Xia Zhao, Zhiying Wang, and Lieven Eeckhout. Classification-driven
search for effective sm partitioning in multitasking gpus. In Proceedings
of the 2018 International Conference on Supercomputing, pages 65–75.
ACM, 2018.

