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ABSTRACT 21 

Movement is a central feature of the ecology of fish, yet the study of fish movement has been 22 

inhibited due to its multidimensional nature and technological and analytical limitations. We 23 

used a relatively new fine-scale acoustic tracking system to quantify movements of an 24 

economically valuable, demersal marine fish species (gray triggerfish Balistes capriscus) on a 25 

natural hardbottom reef on the continental shelf of North Carolina, USA.  Overall, 30 fish were 26 

tagged and released, and 104,170 highly precise (~ 1–3 m) spatial positions were estimated 27 

during the 43-d study.  To quantify gray triggerfish movements, we used a combination of 28 

exploratory data analyses and hidden Markov models (HMM), the latter of which can identify 29 

and elucidate normally hidden behavioral states.  Both methods suggested gray triggerfish 30 

movements varied by diel period and among individuals, and that some of the variation among 31 

individuals could be explained by fish size.  Depending on model specification, HMMs 32 

identified two or three behavioral states, one of which was likely resting that occurred mostly at 33 

night and another was likely foraging or transit that occurred mostly during the day.  Moreover, 34 

resting at night occurred in small, discrete patches within the study area, whereas foraging or 35 

transit behaviors occurred broadly throughout the study area.  We encourage a wider use of 36 

acoustic telemetry and HMMs to shed light on the normally hidden behaviors of demersal fishes.     37 

 38 
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1.  Introduction 40 

 Movement is a fundamental, organizing feature of animal ecology, influencing gene flow, 41 

colonization and extinction rates, disease spread, intraspecific interactions, and population and 42 

community dynamics (Nathan et al., 2008).  Despite its importance, methodologies for 43 

quantifying movement have received less attention than methods for measuring population 44 

density and survival, in part because movement is inherently a multidimensional (spatial and 45 

temporal) phenomenon (Turchin, 1998).  Elucidating movement is also challenging because it 46 

varies widely based on an animal’s physiological demands, internal state, and their biotic and 47 

abiotic environment (Gurarie et al., 2009).   48 

 Quantifying the movements of marine organisms has tended to lag behind those in 49 

terrestrial environments due to various logistical and technical challenges imposed by the open 50 

ocean.  It is difficult to find and tag marine organisms that spend most of their time underwater, 51 

far offshore, or in deep seafloor habitats.  Moreover, animals in terrestrial environments are most 52 

commonly tracked using devices based on the global positioning system (Kays et al. 2015), but 53 

these tags cannot be spatially located while underwater, so they are only useful for tracking 54 

marine organisms that regularly come to the surface (e.g., Michelot et al., 2017; Quick et al., 55 

2017).  Most fish species do not break the water’s surface, so traditional tracking methods cannot 56 

be used for this diverse group of marine organisms.  Some tags can estimate an animal’s position 57 

while underwater, but these tags typically use sunrise and sunset times and perhaps water 58 

temperature for geolocation, and they are therefore useful only for fish moving across broad 59 

spatial scales (e.g., bluefin tuna Thunnus thynnus; Block et al., 2005).  Very recently, novel 60 

tracking systems have been developed that can provide meters-level spatial resolution of a wide 61 
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variety of marine fishes using arrays of underwater receivers (e.g., Espinoza et al., 2011), 62 

allowing for fine-scale relocations of many animal species that were previously untrackable.  63 

Although recent technological advances in tracking devices have resulted in an 64 

abundance of tracking studies (Kays et al., 2015), approaches for analyzing these datasets have 65 

been a bottleneck (Calabrese et al., 2016).  Traditionally, animal movement data have been 66 

analyzed empirically to determine temporal movement patterns across space, home range size, 67 

and diurnal or seasonal movement rates (see review by White and Garrott 1990).  Yet an 68 

animal’s movement path is composed of a mixture of different behavioral states (e.g., resting, 69 

feeding, transiting) that may leave statistically unique signatures.  Recent movement models 70 

have been developed that can be used to identify behavioral states of individually tracked 71 

organisms using information such as distance moved over time, turning angle, acceleration or 72 

deceleration, and depth or elevation (Langrock et al., 2012; Leos-Barajas et al., 2017).  Most of 73 

these movement models are hidden Markov models (HMMs; Franke et al., 2006), which are time 74 

series models that use an observation model derived from relocation data to make inferences 75 

about an animal’s “hidden” or non-observable behavioral states (Langrock et al., 2012).  Hidden 76 

Markov models have been rarely applied to fish telemetry data.     77 

Here we use exploratory data analyses and HMMs to describe the movement patterns and 78 

identify behavioral states of a marine fish species, gray triggerfish (Balistes capriscus), on a 79 

natural temperate reef in the western North Atlantic Ocean.  Gray triggerfish is a demersal reef-80 

associated fish species (asymptotic length = 457 mm fork length; Burton et al. 2015) that is 81 

targeted by recreational and commercial fishers along the southeast United States Atlantic coast 82 

(hereafter, SEUS), and occurs in 15 – 100 m water depth (Bacheler et al., 2016a).  Movements of 83 

gray triggerfish have been elucidated in relation to hurricanes (Bacheler et al. 2019) and around 84 
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artificial reefs (Herbig and Szedlmayer, 2016), but their movements around natural reefs, and 85 

their associated behavioral states, are unknown.   86 

We tested four hypotheses about triggerfish movement.  First, we hypothesized that 87 

movements would vary among individual gray triggerfish.  Many animal populations exhibit 88 

leptokurtic movements, whereby most individuals remain in relatively small areas while others 89 

move long distances (Fraser et al., 2001), but this topic has received little attention for marine 90 

fishes.  Second, we hypothesized that some of the individual differences in movements could be 91 

explained by fish size.  This question has important implications for the ecology of the species, 92 

size-based fisheries management practices, and the efficacy of marine protected areas across the 93 

species ontogeny, but to the best of our knowledge has not been previously examined in gray 94 

triggerfish.  Third, we hypothesized that gray triggerfish would exhibit diurnal movements, given 95 

that Herbig and Szedlmayer (2016) documented highly diurnal movements of gray triggerfish 96 

around artificial reefs in the Gulf of Mexico, with fish moving substantially more during the day 97 

than at night.  Last, we hypothesized that gray triggerfish would display different movement 98 

behaviors in distinct areas within the study area.  Each of these hypotheses has importance for 99 

applied fisheries management (e.g., design of marine protected areas), as well as for a broad, 100 

ecological understanding given the relative dearth of information about demersal marine fishes 101 

whose natural behavior is rarely observed.  102 

 103 

 2.  Material and methods 104 

2.1.  Study site 105 

 This study was conducted at an area of mixed low-relief hardbottom reef and sand 106 

habitats covering approximately 0.5 km2 on the continental shelf of North Carolina, USA (Fig. 107 
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1).  The specific site was located about 35 km east of Cape Lookout, North Carolina, in 37 m of 108 

water and was chosen for three reasons.  First, gray triggerfish have been tagged at this location 109 

by Runde (2017), who documented high abundance and site fidelity of the species.  Second, a 110 

high-resolution bathymetric seafloor map was available for the study area (C. Taylor, 111 

unpublished data).  Third, the bathymetric relief across the study area was low, which eliminated 112 

acoustic signal dead zones that can complicate fish telemetry studies in high-relief habitats 113 

(Bacheler et al., 2015).       114 

 115 

2.2.  Data collection 116 

 We quantified the movements of gray triggerfish using a Vemco positioning system 117 

(VPS).  In VPS, an array of underwater receivers are used to acoustically triangulate coded 118 

transmitters within the array, providing meters-level precision of spatial positions each time the 119 

transmitter emits a signal (Espinoza et al., 2011; Piraino and Szedlmayer, 2014).  Several 120 

previous studies have successfully used VPS to quantify demersal marine fish movements (e.g., 121 

Espinoza et al., 2011; Furey et al., 2013; Piraino and Szedlmayer, 2014; Herbig and Szedlmayer, 122 

2016; Williams-Grove and Szedlmayer, 2017).           123 

 The process by which receivers were deployed and retrieved and fish were tagged was 124 

previously described in detail by Bacheler et al. (2018), so we only provide a brief summary 125 

here.  We deployed 20 submersible Vemco VR2AR receivers on 31 August 2017 in a 4 × 5 grid 126 

at the study area (Fig. 1).  Receivers were separated by ~ 200 m from one another based on the 127 

detection range estimates of Bacheler et al. (2015) using smaller (V9) transmitters.  Thus, our 128 

receivers covered an area that was 600 × 800 m in size.   129 



 
 
 

Bacheler et al.                                                                   Fine-scale movements of gray triggerfish 

7 
 

 Gray triggerfish were captured, tagged, and released in the study area on 15 September 130 

2017.  After capture in baited traps, gray triggerfish were immediately placed in a holding tank 131 

and then tagged externally with Vemco V13-1x transmitters.  We attached transmitters externally 132 

to maximize the detection range of transmitters (Dance et al., 2016) and minimize the time it 133 

took to attach transmitters to reduce barotrauma effects (Burns et al., 2002; Jepsen et al., 2015).  134 

Transmitters emitted unique acoustic signals every 110 – 250 sec on a frequency of 69 kHz, 135 

weighed 11 g in air, and had a battery life of approximately 2.5 years.  Gray triggerfish were 136 

tracked for 43 d (until 27 October 2017), at which point receivers were retrieved and detection 137 

data were downloaded.   138 

 We also deployed a separate reference transmitter in the study area to estimate water 139 

temperature and horizontal positional error of transmitters (Fig. 1).  This reference transmitter 140 

(Vemco V13T-1x; ping rate = 9–11 min) was attached to a 4-m line connected to a buoy on one 141 

end and weight on the other.  The reference transmitter was used to calculate horizontal 142 

positional error as the difference in distance between the reference tag’s known location and its 143 

estimated position each time it emitted a signal.  Daily horizontal position estimates from the 144 

reference tag were used to make inferences about the accuracy and precision of gray triggerfish 145 

positions.       146 

 147 

2.3.  Analyses 148 

 We tested our four hypotheses using two quantitative approaches – exploratory data 149 

analyses and HMMs.  These two analytical approaches were analyzed independently from one 150 

another but were based on the same raw acoustic data.  When used in combination, these two 151 

approaches are more powerful and informative than either approach alone, especially if there is 152 
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strong agreement between the two.  For the exploratory data analyses, movement rate of gray 153 

triggerfish was the response variable used for all calculations.  Movement rates (m/s) for each 154 

fish in the study area were calculated as the distance moved (m) between each successive pair of 155 

spatial positions divided by the time between detections (s).  The downside of using movement 156 

rates is that it assumes straight-line movements between detections, when in fact fish may not 157 

move in straight lines.  Given that gray triggerfish were detected on average every 2–4 minutes, 158 

this issue is less critical in our study compared to studies with longer time intervals between 159 

detections (Alós et al., 2016), but it does imply that our movement rates should be interpreted as 160 

minimum estimates.  161 

 Specific exploratory data analyses were used to provide an initial evaluation of each of 162 

our hypotheses.  First, we tested for differences in movement rates across individuals using a 163 

linear model, treating fish as a categorical variable.  This and all subsequent analyses were 164 

conducted in R (R Core Team, 2017).  Second, we tested for size-dependent movement rates of 165 

gray triggerfish by relating mean movement rates of each fish across the entire study to their fork 166 

length using a linear model.  For this analysis, we weighted points based on the available sample 167 

size for each fish.  And last, we tested for diel differences in movement rates for gray triggerfish 168 

using a linear model; hour of the day was binned into 24 hourly bins and treated as a categorical 169 

variable in the model.  Observations that straddled two adjacent hourly bins were assigned to the 170 

first bin.  For all linear models, model effects were considered fixed effects.  We used Akaike 171 

information criterion (AIC) to test whether the above linear models were better or worse when 172 

including the variable of interest compared to excluding that variable (Burnham and Anderson, 173 

2002).  We compared the AICs of fitted models to select the most parsimonious formulations, 174 

and models with the lowest AIC values (ΔAIC = 0) were considered the best model in the set. 175 
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 We also described the movement behaviors of gray triggerfish using HMMs.  These 176 

models have recently become a popular method to analyze animal movements (e.g., Langrock et 177 

al., 2014; DeRuiter et al., 2017; Michelot et al., 2017), and in a few cases have been applied to 178 

marine fishes (e.g., Patterson et al., 2009; Phillips et al., 2015; Heerah et al., 2017; 179 

Papastamatiou et al., 2018).  We used HMMs to classify gray triggerfish movement behaviors 180 

into the most likely underlying (hidden) behavioral states that give rise to our empirical, 181 

observed data.  In our case, observed data included in the HMMs were step length, which was 182 

the distance moved during each time interval, and turning angle, which was the change in 183 

direction between time intervals t and t + 1.  A fish continuing in exactly the same direction 184 

across two time intervals would have a turning angle of 0°, whereas a fish turning in the opposite 185 

direction would have a turning angle of 180°.   186 

 The HMMs require that telemetry data are provided on a consistent time interval, but our 187 

telemetry data occurred on an irregular time interval to reduce the likelihood of acoustic signal 188 

collision among individuals.  We regularized our telemetry data by interpolating the animals’ 189 

locations on a regular time grid using package crawl (Johnson et al., 2008) in R (R Core Team, 190 

2017), which implements continuous-time correlated random walk models to provide a 191 

consistent time interval for the HMMs.  We explored a variety of time intervals for 192 

regularization, but ultimately chose a 4-min interval because most time intervals in the data were 193 

between 2 and 4 min.  Regardless of the time interval used for regularization, output from the 194 

HMMs were nearly identical.    195 

 There were also instances where longer gaps between acoustic detections were apparent 196 

due to, for instance, temporary emigration of individual fish from the study area.  Regularizing 197 

telemetry data across these longer time gaps was problematic because it introduced substantial 198 
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regularization uncertainty.  Therefore, we split tracks for individual fish when there were 199 

temporal gaps in detections longer than 20 min, which removed the temporal gap from further 200 

analyses.  Multiple split tracks were then treated as independent time series arising from the 201 

same underlying statistical model.  Because a common set of parameters is fitted to all tracks, the 202 

same behavioral states govern the movement before and after the gap, and they can therefore 203 

capture any existing correlation.  Moreover, individual tracks for fish that included fewer than 204 

100 detections were also removed from analyses because a continuous-time model needs to be 205 

fitted to each track for the regularization, and numerical issues arose for short tracks.  Short 206 

tracks also provide very little information about the dynamics of switching between behavioral 207 

states.  We also ran HMMs with different values for the time of temporal gaps and minimum 208 

sample sizes for detections and all HMM outputs were very similar, suggesting insensitivity of 209 

HMMs to our choice of threshold values.  If telemetered gray triggerfish did not have any tracks 210 

with more than 100 detections, they were excluded from our HMM analyses.    211 

 A primary strength of HMMs is the ability to identify underlying behavioral states of 212 

animals that are not easily observed (i.e., unsupervised), which is particularly useful for demersal 213 

marine fishes.  For instance, marine fishes may exhibit resting, foraging, and traveling states.  A 214 

key challenge, however, is determining how many behavioral states should be included in 215 

HMMs (Pohle et al., 2017).  Traditional model selection approaches like Akaike information 216 

criterion appear to select a much larger number of states than is expected or meaningful based on 217 

a priori knowledge (DeRuiter et al., 2017; Li and Bolker, 2017).  Pohle et al. (2017) argue that 218 

the number of states in HMMs should be chosen pragmatically using a combination of statistical 219 

and biological inferences.  Given we have very limited inference about the behavioral states of 220 

gray triggerfish, we focused our analyses on two- and three-state HMMs, by far the most 221 
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common in the movement ecology literature.  We refrain from presenting more complicated 222 

models because (1) we lack biological justification that more than three behavioral states exist 223 

for gray triggerfish, (2) increasing the number of behavioral states results in a quadratic increase 224 

in the number of parameters to estimate, and (3) the goodness-of-fit improved little with 225 

additional states.  226 

 We fitted the models using the R package momentuHMM v1.4.1 (McClintock and 227 

Michelot, 2018).  In all models, we used gamma distributions to model the step lengths and von 228 

Mises distributions for the turning angles.  The von Mises distribution is a continuous probability 229 

distribution on the circle and has a concentration parameter, which measures how concentrated 230 

the turning angles are around their mean.  An angle concentration of 0 indicates random turning 231 

angles, while values ~1 indicate highly correlated turning angles.  The package momentuHMM 232 

uses numerical optimization to obtain maximum likelihood estimates of all model parameters. 233 

Initial parameter values must be provided to begin optimization, and poorly-chosen starting 234 

values can lead to failure to identify the global maximum of the likelihood function (Michelot et 235 

al., 2016). To ensure that we correctly estimated the parameters, we ran the fitting procedure 25 236 

times with randomly selected starting parameters, and kept the models with highest maximum 237 

likelihood. There were no signs of convergence issues for the selected fits, even for the more 238 

complex models. 239 

 We modeled the transition probabilities of the HMM as functions of fish length and time 240 

(hour) of day to address our specific hypotheses. A multinomial logit link function was used to 241 

ensure that the transition probabilities were between 0 and 1, and that rows of the transition 242 

probability matrix summed to 1 (Michelot et al., 2016). The effect of the time of day should be 243 

cyclic over 24-hour periods to capture the circadian rhythm of the fish. This was implemented 244 
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with the inclusion of the periodic covariates cos(2π 𝑡 24⁄ ) and sin(2π 𝑡 24⁄ ), where 𝑡 is the time 245 

of the observation as a number between 0 and 24 (Towner et al., 2016). We considered five 2-246 

state and five 3-state models with the following covariate dependencies: (1) no covariates 247 

(hereafter, “base” model, (2) fish length only (“length”), (3) time of day only (“tod”), (4) fish 248 

length and time of day (“tod + length”), and (5) fish length and time of day with interaction 249 

(“full”). We again used AIC for HMM covariate selection (Burnham and Anderson, 2002).  For 250 

the selected models, we estimated the unobserved behavioral states using the Viterbi algorithm, 251 

which is the standard method to derive the most likely sequence of states of a HMM given the 252 

observations and the fitted model (Zucchini et al., 2016).  From the Viterbi algorithm, we 253 

obtained an estimated behavioral state for each observed location. 254 

 Last, we estimated the probability of state persistence and state switching for fish in each 255 

of the HMMs.  High state transition probabilities would indicate switching among behavioral 256 

states was common for gray triggerfish, while low transition and high persistence probabilities 257 

would indicate gray triggerfish movement behaviors occurred in bouts and were correlated.  All 258 

transition probabilities were obtained by fixing each covariate to its mean value. 259 

 260 

3.  Results 261 

 Thirty adult gray triggerfish tagged in our study ranged in size from 250 to 335 mm fork 262 

length (Table 1).  Using observed positional data for each fish (Appendix A), we determined that 263 

six gray triggerfish either died in the study area or lost their transmitter, 13 fish permanently 264 

emigrated from the study area during the study, and 11 fish were alive, retained their transmitter, 265 

and remained in the study area at the end of the study (Table 1).  We censored all fish that 266 

stopped moving due to tag loss or death from all analyses after their movement ceased.  Overall, 267 
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104,170 spatial positions were determined for the 30 telemetered gray triggerfish during the 43-d 268 

study (mean = 3,472 detections per fish; range = 63 – 11,789; Table 1).  269 

 Using the reference transmitter, we estimated median daily horizontal positional error at 270 

approximately 1–3 m (Fig. 2).  Median horizontal positional error of the reference transmitter 271 

appeared to increase slightly throughout the study, from around 1 m early in the study to 2–3 m 272 

near the end of the study (Fig. 2).  Rarely, some individual horizontal positional error estimates 273 

were as high as 10 m.  In general, these results suggest that spatial precision of telemetered gray 274 

triggerfish in the study area was quite high over the same time frame.   275 

 Seven telemetered gray triggerfish did not meet minimum sample size requirements of 276 

the HMMs (i.e., at least 100 spatial positions with no more than a 20-min temporal interruption; 277 

Table 1).  These seven fish were excluded from all HMM analyses, leaving 23 fish that were 278 

included in HMMs.       279 

 Model selection for the 2- and 3-state HMMs indicated that full models including fish 280 

size, time of day, and their interaction were preferred over various reduced models (Table 2).  281 

The 2-state full model that included tod and length effects, as well as their interaction, was 49 282 

AIC points lower than the second-best model that excluded the tod × length interaction.  283 

Similarly, the 3-state full model was 301 AIC points lower than the next best model that only 284 

included tod (Table 2).  Thus, it appears that, regardless of the number of assumed behavioral 285 

states, gray triggerfish movement behavior varied by time of day, fish length, and their 286 

interaction.  All subsequent results focus on 2- and 3-state full models that were preferred based 287 

on AIC.   288 

 The 2- and 3-state gray triggerfish HMMs identified behavioral states that differed in 289 

their step lengths and turning angles (Fig. 3, Table 3).  In the 2-state model, state 1 was 290 
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characterized by a short step length, with fish only moving a mean of 2.7 m every min, and a 291 

lack of concentrated turning angles (angle concentration = 0.18), suggesting frequent change of 292 

direction (Table 3).  In contrast, state 2 was characterized by a much longer step length (mean = 293 

21.7 m) and turning angles concentrated around 0° (angle concentration = 0.78), suggesting 294 

movement direction was often similar (correlated) among successive positions (Table 3).  In the 295 

3-state HMM, state 1 was similar to the 2-state model in that step length was short (mean = 1.6 296 

m) and turning angles were diffuse (angle concentration = 0.33).  State 3 in the 3-state model 297 

was similar to state 2 in the 2-state model, typified by a longer step length (mean = 27.5 m) and a 298 

high turning angle concentration (1.08) around 0° (Fig. 3, Table 3).  State 2 in the 3-state model 299 

had a moderate step length (mean = 6.4 m), but the least concentrated turning angle of all 300 

behavioral states (angle concentration = 0.02), suggesting frequent turning.      301 

There were significant individual differences in movement rates and state behaviors 302 

among gray triggerfish in our study.  Mean movement rates varied among individuals, ranging 303 

from a minimum of 0.028 m/s for fish #45 to 0.127 m/s for fish #55, with an overall mean of 304 

0.061 m/s (Fig. 4A).  In the 2-state HMM, individual fish spent 24 to 97% of their total time in 305 

state 1 (low movement state) and their remaining time (3 – 76%) in state 2 (Fig. 4B).  Results for 306 

the 3-state model were similarly variable among individuals.  Time spent by individual fish in 307 

state 1 was the most variable, ranging from 10 to 86% among individuals (Fig. 4C), but the time 308 

spent by gray triggerfish in state 2 (12 – 62%) and state 3 (2 – 59%) was also quite variable (Fig. 309 

4C). 310 

 Exploratory data analyses and HMMs indicated that some of the variability in gray 311 

triggerfish movement could be explained by fish size.  Exploratory data analyses indicated that 312 

movement rates for larger fish were about twice as high than for smaller fish (P < 0.0001), 313 
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increasing from a mean of approximately 0.04 m/s at 250 mm fork length to 0.08 m/s at 335 mm 314 

(Fig. 5A).  The 2-state HMM showed that larger gray triggerfish tended to spend more time in 315 

State 2, which was typified by higher movement rates, compared to smaller gray triggerfish that 316 

spent more time in state 1 (Fig. 5C).  Similarly, in the 3-state model, larger gray triggerfish spent 317 

about twice as much time in state 3 and less time in state 2 compared to smaller gray triggerfish 318 

(Fig. 5E).  However, there did not appear to be a size effect on the time spent in state 1 for the 3-319 

state HMM (Fig. 5E).   320 

   Strongly diel movement rates and state probabilities for gray triggerfish were also 321 

observed using exploratory data analyses and HMMs.  Mean movement rates of gray triggerfish 322 

were significantly lower (~0.03 m/s) at night and higher (0.07–0.10 m/s) during the day (F = 323 

1122, P < 0.0001; Fig. 5B, Appendix B1, B2), and median movement rates followed the same 324 

general pattern.  These results were obvious from the both 2- and 3-state HMMs.  At night, the 2-325 

state HMM suggested gray triggerfish spent most (> 90%) of their time in state 1 (low movement 326 

state), while most of their time during the day (~ 70%) was spent in state 2, the high movement 327 

state (Fig. 5D).  The 3-state HMM results were very similar to the 2-state model, indicating gray 328 

triggerfish spent most of their time in state 1 at night (~ 60%) and state 3 during the day (~ 50%; 329 

Fig. 5F).  State 2 was exhibited by gray triggerfish similarly (~ 30%) both day and night (Fig. 330 

5F).   331 

 The spatial distribution of locations where gray triggerfish exhibited various behavioral 332 

states in the HMMs were nonrandom and spatially distinct.  Gray triggerfish exhibited state 1 333 

behaviors in 15 or 20 small (< 100 m diameter) patches that were associated with low-relief 334 

hardbottom throughout the study area (Fig. 6).  In contrast, state 2 (in the 2-state model) and state 335 

3 (in the 3-state model) behaviors occurred more broadly across the study region.  State 2 in the 336 
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3-state model occurred in distinct patches, but these patches tended to be much larger (up to 200 337 

m in diameter) than locations where state 1 behaviors were exhibited by gray triggerfish (Fig. 338 

6B).        339 

 Gray triggerfish displayed highly correlated state behaviors.  Gray triggerfish remained in 340 

their current behavioral state with a probability greater than 0.80 across all states and models, 341 

and in the 2-state model, the probability of state persistence was at least 0.96 for both states 342 

(Table 4).  The lowest probability of staying in the current state was observed for state 2 of the 3-343 

state model (0.83).  The probability of switching to a different state was always less than 0.10 344 

across all models and states (Table 4). 345 

 346 

4.  Discussion 347 

 Gray triggerfish inhabit demersal seafloor habitats where they are rarely observed 348 

directly, yet understanding their movement behavior is important for their sustainable 349 

management and conservation.  During summer and fall months, we found that gray triggerfish 350 

movements and behavioral states varied greatly across the diel period (higher during the day than 351 

at night) and among individuals, the latter of which could partially be explained by fish size.  352 

Gray triggerfish also exhibited strong persistence in each behavioral state identified by the 353 

HMMs, suggesting serially correlated behaviors.  Strong agreement between our exploratory 354 

data analyses and HMMs indicated that our results are robust.   355 

The main benefit of HMMs is the ability to identify behavioral states of animals that are 356 

not easily observed. However, it can be challenging to interpret each behavioral state from the 357 

HMMs for a species such as gray triggerfish with little supporting biological information.  It is 358 

likely that state 1 of both the 2- and 3-state models is resting behavior; fish moved very little and 359 
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was similar in magnitude to our estimated median horizontal position error, had a low turning 360 

angle concentration, and mostly exhibited this behavioral state at night when gray triggerfish are 361 

thought to rest on the bottom (Herbig and Szedlmayer, 2016).  State 2 of the 2-state model and 362 

state 3 of the 3-state model were characterized by faster movement mostly in a correlated 363 

direction, so those states are likely transit or foraging.  State 2 of the 3-state model is more 364 

difficult to interpret because it was characterized by moderate movement rates, frequent turning, 365 

and occurred both day (when they are active) and night (when they typically rest).  More 366 

research is needed to determine if this was a true behavioral state (and not just a blending of 367 

other behavioral states), and if so, what behaviors gray triggerfish are exhibiting while in this 368 

state.   369 

 Gray triggerfish exhibited highly variable movement behaviors across individuals.  For 370 

instance, there was a ~350% difference in movement rates between individuals moving the least 371 

and most in our study, which was similar to the substantial differences among individuals in the 372 

time they spent in resting and transit behavioral states in our HMMs.  A portion of the variation 373 

in gray triggerfish movement rates was explained by fish size, which is consistent with most 374 

studies finding a positive relationship between movement rates and animal size (Ware, 1987; 375 

Swihart et al., 1988).  However, the size range of fish examined in our study (250 – 335 mm fork 376 

length) was fairly narrow, so our analyses likely do not represent gray triggerfish of a broader 377 

size range. For instance, larval and juvenile gray triggerfish are pelagic and associate with 378 

floating debris while likely circling the Atlantic Ocean (Harper and McClellan, 1997), suggesting 379 

fish of that smaller size move or drift much more than the larger sizes examined in our study.  380 

Movement rates of gray triggerfish larger than the sizes examined in our study (i.e., > 335 mm 381 

fork length) are also unknown.   382 
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         While size explained some of the observed behavioral differences among gray triggerfish 383 

in our study, other factors such as sex or personality may have contributed to the substantial 384 

differences in movements among individuals.  Externally determining sex is not possible for gray 385 

triggerfish, so we were unable to examine potential differences in movement rates between males 386 

and females.  Recent research suggests variability in animal personalities like boldness or 387 

shyness can explain individual differences in movement behaviors (Villegas-Ríos et al., 2018).  388 

Heterogeneity in movement rates can also produce leptokurtic distributions, where most 389 

individuals move small distances (“stayers”) and some move very large distances (“movers”; 390 

Gilliam and Fraser, 2001).  Gray triggerfish superficially appeared to display leptokurtic 391 

movements in our study, but it is unclear if this is due to differences among the sexes (i.e., one 392 

sex moving much more than the other), personality, or some other trait.  Whether movement 393 

distributions are leptokurtic or not has important implications for marine protected area design, 394 

predator-prey interactions, and the genetic consequences of fishery harvests (Fraser et al., 2001; 395 

Grüss et al., 2011).   396 

In addition to identifying distinct behavioral states, our analyses also characterized 397 

locations where gray triggerfish displayed each of the states.  Resting behavior only occurred in 398 

small areas around low-relief hardbottom (i.e., ledges), whereas foraging or transit behaviors 399 

occurred broadly throughout the study area over a variety of sand and hardbottom areas.  In a 400 

similar study, blacktip reef sharks (Carcharhinus melanopterus) and grey reef sharks 401 

(Carcharhinus amblyrhynchos) used relatively small deep areas when they were less active and 402 

broad, shallow areas for feeding (Papastamatiou et al., 2018); the main difference was that sharks 403 

were much more active during the night than at day, the opposite of gray triggerfish.  Being able 404 

to determine specific locations where gray triggerfish or other species display behaviors can be 405 
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used to identify habitats that require protection and optimally design marine protected areas for 406 

specific behavioral states. 407 

 Gray triggerfish movements and behavioral states were highly variable across the diel 408 

period.  Movement rates were over 200% higher during daylight hours than at night, and fish 409 

spent much more time in a resting state at night than during the day.  Similarly, Herbig and 410 

Szedlmayer (2016) showed that, on average, gray triggerfish ranged over a much larger area 411 

during the day (~ 2,000 m2) than at night (~ 200 m2) around artificial reefs in the Gulf of Mexico.  412 

Other closely related species such as fine-scale triggerfish (Balistes polylepis), orangeside 413 

triggerfish (Sufflamen verres), and black triggerfish (Melichthys niger) show similar diel patterns 414 

of resting at night and being active during the day (Hobson 1965, Kavanagh and Olney 2006).  415 

Herbig and Szedlmayer (2016) posit that inactivity of gray triggerfish at night may be a strategy 416 

to reduce predation from nocturnal predators like sharks, or perhaps their prey are not active at 417 

night.   418 

 There were some shortcomings of our study.  First, since we focused on a demersal 419 

marine species, we mostly lacked biological information that could be used to help develop our 420 

HMMs (i.e., choosing the number of HMM states, verification that each HMM state is an actual 421 

behavioral state), as recommended by Pohle et al. (2017).  Anecdotal information from fishers 422 

and SCUBA divers suggests gray triggerfish rest on the bottom at night without foraging, 423 

consistent with the resting behavioral state we identified that mostly occurred at night.  However, 424 

similar biological information does not exist for other behavioral states of gray triggerfish.  425 

Second, we used two characteristics of gray triggerfish movement behavior – step length and 426 

turning angles – to parameterize our HMMs, but additional concurrent information on such 427 

factors as depth or acceleration would have helped to refine and classify behavioral states of gray 428 
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triggerfish and should be used in future studies where possible (Leos-Barajas et al., 2017).  Last, 429 

gray triggerfish have been shown to display highly seasonal movements (Herbig and 430 

Szedlmayer, 2016), yet our study occurred over a relatively short (43-d) period in September–431 

October 2017.  Thus, it would be imprudent to assume that the gray triggerfish movement 432 

behaviors quantified in our study would be static year-round.    433 

 With recent advances in tracking technologies and new analytical approaches such as 434 

HMMs, some believe we have entered a golden age of animal tracking science (Kays et al., 435 

2015).  Tags are becoming more reliable, smaller, and less invasive, allowing for the tracking of 436 

more animal species than ever before, including relatively small marine fish like gray triggerfish 437 

that display relatively high site fidelity in the open ocean.  Data from fish tracking studies are 438 

being used by scientists and managers to determine optimal marine protected area design (Meyer 439 

et al., 2007), identify essential fish habitats (Simpfendorfer et al., 2010), and quantify fish 440 

mortality rates (Bacheler et al., 2009).  Thus, we encourage a wider use of VPS systems 441 

combined with HMMs to shed light on the normally hidden behaviors of demersal marine fishes.     442 

     443 
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Table 1 629 

Information for individual gray triggerfish (Balistes capriscus) in North Carolina, USA, in 2017. 630 

A Vemco positioning system was used to estimate spatial positions for telemetered gray 631 

triggerfish, and fish were tagged on 15 September 2017. An asterisk next to the fish tag number 632 

indicates that fish was excluded from hidden Markov models due to insufficient estimated 633 

positions.     634 

 635 

Tag 

Fork  

length 

(mm) 

Number of 

estimated 

positions 

Last day 

detected 
Fate 

30 335 1764 27-Sep Emigrated 

31 270 4321 10-Oct Lost tag or died 

32 290 235 29-Sep Emigrated 

33 265 1668 02-Oct Lost tag or died 

34 275 2002 29-Sep Lost tag or died 

35 335 982 01-Oct Emigrated 

36 310 7884 27-Oct Alive in array 

37 280 6992 27-Oct Alive in array 

38 250 8491 27-Oct Alive in array 

39 273 1263 23-Sep Lost tag or died 

40 325 1079 01-Oct Lost tag or died 

41* 275 178 18-Sep Emigrated 

42* 268 242 15-Oct Emigrated 

43 320 661 26-Sep Emigrated 

44 295 8223 27-Oct Alive in array 

45* 312 92 15-Sep Emigrated 

46 285 4345 27-Oct Alive in array 

47 268 8881 27-Oct Alive in array 

48 315 837 22-Sep Lost tag or died 

49 285 5061 27-Oct Alive in array 

50* 305 204 18-Sep Emigrated 

51 318 1320 24-Sep Emigrated 

52 275 10912 27-Oct Alive in array 

53* 250 167 27-Sep Emigrated 

54 270 9018 27-Oct Alive in array 

55* 308 63 16-Sep Emigrated 

56 312 5028 27-Oct Alive in array 

57 305 370 20-Sep Emigrated 

58 255 11789 27-Oct Alive in array 

59* 315 98 17-Sep Emigrated 

 636 
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Table 2 637 

Model selection of 2-state and 3-state hidden Markov models fit to gray triggerfish (Balistes 638 

capriscus) telemetry data from North Carolina, USA, in 2017. Models are defined in the 639 

Methods section, K is the number of parameters in the model, and ΔAIC is the Akaike 640 

information criterion of that model relative to the best model in the set.  The full models included 641 

tod, length, and their interaction, while base models did not include any predictor variables.         642 

 643 

Model K ΔAIC 
2-state model   

   full 21 0 

   tod + length 17 49 

   tod 15 110 

   length 13 1549 

   base 11 1579 

   
3-state model   

   full 50 0 

   tod 32 301 

   tod + length 38 470 

   length 26 1988 

   base 20 2110 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 



 
 
 

Bacheler et al.                                                                   Fine-scale movements of gray triggerfish 

32 
 

Table 3  653 

Estimates of telemetered gray triggerfish (Balistes capriscus) step length (m) and turning angle 654 

distributions in the 2-state and 3-state hidden Markov models at 4-min intervals in North 655 

Carolina, USA, in 2017. Step length is the mean distance moved in each state during each time 656 

interval, and “Step SD” is the standard deviation of step length. The angle concentration is a 657 

measure of how concentrated the distribution is around its mean. 658 

 659 

 State 1 State 2 State 3 

2-state model    

Step mean (m) 2.7 21.7 - 

Step SD 2.4 16.7 - 

Angle concentration 0.18 0.78 - 

    

3-state model    

Step mean (m) 1.6 6.4 27.5 

Step SD 1.2 4.2 17.7 

Angle concentration 0.33 0.02 1.08 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 
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Table 4 672 

State transition probabilities of telemetered gray triggerfish (Balistes capriscus) among 673 

behavioral states estimated by the 2-state and 3-state hidden Markov models in North Carolina, 674 

USA, in 2017.  Since transition probabilities depended somewhat on time of day, they are 675 

provided here for 12:00 local time, and all transition probabilities were obtained by fixing each 676 

covariate to its mean value.    677 

 678 

Current state 
Next state 

State 1           State 2          State 3 

2-state model    

State 1 0.96 0.04 - 

State 2 0.03 0.97 - 

    

3-state model    

State 1 0.91 0.08 0.01 

State 2 0.08 0.83 0.09 

State 3 0.00 0.06 0.94 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 
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 691 

 692 

Fig. 1. Left panel: location of the study (green filled circle) east of Cape Lookout along the coast 693 

of North Carolina, USA, in 2017. Right panel: close-up view of the study area where a Vemco 694 

positioning system was used to estimate fine-scale positions of telemetered gray triggerfish 695 

(Balistes capriscus). The background of the right panel is a multibeam sonar map showing the 696 

bathymetry (depth) of the study area, submersible receivers are represented by black filled 697 

circles, the reference tag location is represented by the blue filled circle, and tagging locations 698 

are represented by yellow filled circles.   699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 
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 707 

 708 

Fig. 2. Daily horizontal positional error (m) estimates of a reference transmitter deployed in 709 

North Carolina, USA, in 2017. The estimated position of the reference tag each time it emitted 710 

an acoustic signal was compared to its actual, known position to determine the horizontal 711 

positional error on each day of the study.  Daily boxes show median horizontal positional error 712 

rates by the thick horizontal black line, bottom and top of boxes provide 25th and 75th 713 

percentiles, respectively, and whiskers are 1.5 times the interquartile range.   714 
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 715 

 716 

Fig. 3. Distributions (lines) and histograms (gray bars) of step lengths (m) and turning angles for 717 

2-state (left column) and 3-state (right column) hidden Markov models developed for 718 

telemetered gray triggerfish (Balistes capriscus) in North Carolina, USA, in 2017. A fish 719 

continuing in exactly the same direction across two time intervals would have a turning angle of 720 

0°, whereas a fish turning in the opposite direction would have a turning angle of 180°.        721 
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 722 

Fig. 4. Individual-level variability in movement rates and state probabilities among telemetered 723 

gray triggerfish (Balistes capriscus) in North Carolina, USA, in 2017. (A) Boxplot of observed 724 

movement rates of telemetered gray triggerfish, also showing mean movement rates (red line). 725 

(B) The amount of time each individual telemetered gray triggerfish spent in each of the two 726 

states of the 2-state hidden Markov model. (C) The amount of time each individual telemetered 727 

gray triggerfish spent in each of the three states of the 3-state hidden Markov model. Empty 728 

columns of B and C indicate fish that were excluded from hidden Markov models due to limited 729 

sample sizes.     730 
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 731 

Fig. 5. (A) Relationship between movement rate and length of telemetered gray triggerfish 732 

(Balistes capriscus), weighted by the total number of positions available for each fish in North 733 

Carolina, USA, in 2017. (B) Diel movement rates of telemetered gray triggerfish in our study; 734 

boxes show median (thick horizontal black line), 25th, and 75th percentiles of movement rate; 735 

whiskers are 1.5 times the interquartile range; and red line is mean movement rate by hour of the 736 

day. (C) Size-dependent and (D) time-of-day-dependent stationary state probabilities for two 737 

behavioral states of gray triggerfish using hidden Markov models. (E) Size-dependent and (F) 738 

time-of-day-dependent stationary state probabilities for three behavioral states of gray triggerfish 739 

using hidden Markov models. Solid lines show mean stationary state probabilities, and error bars 740 

indicate 95% confidence intervals.      741 
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 742 

 743 

Fig. 6. Locations where telemetered gray triggerfish (Balistes capriscus) exhibited various 744 

behavioral states in the 2-state (A) or 3-state (B) hidden Markov models in North Carolina, USA, 745 

in 2017. Note that points overlap, and state 1 is plotted on top of states 2 or 3.  Receiver locations 746 

are noted by the filled white circles.  747 
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 Appendix A. Movement paths of each telemetered gray triggerfish (Balistes capriscus) in this 748 

study, 15 September – 27 October 2017, in North Carolina, USA. The grid of submersible 749 

receivers used to estimate gray triggerfish positions are shown by black dots. Note that lines 750 

representing gray triggerfish movement paths overlap often.    751 

 752 

 753 

 754 
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Appendix B1. Time series of movement rates estimated for telemetered gray triggerfish 755 

(Balistes capriscus) over the course of the study, 15 September – 27 October 2017, in North 756 

Carolina, USA. Missing data for fish in certain time periods was due to those fish being absent 757 

from the study area. Only fish 30 through 44 are shown in this plot.         758 

 759 
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Appendix B2. Time series of movement rates estimated for telemetered gray triggerfish 760 

(Balistes capriscus) over the course of the study, 15 September – 27 October 2017, in North 761 

Carolina, USA. Missing data for fish in certain time periods was due to those fish being absent 762 

from the study area. Only fish 45 through 59 are shown in this plot.           763 

 764 


