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SUMMARY STATEMENT 36 

Controlled exposure experiments using simulated mid-frequency sonar and pseudo-37 

random noise revealed individual variation in behavioral responses of blue whales. 38 

Responses depended on contextual factors, including behavioral state, proximity, and 39 

prey. 40 

 41 

 42 

ABSTRACT 43 

This study measured the degree of behavioral responses in blue whales (Balaenoptera 44 

musculus) to controlled noise exposure off the southern California coast. High-45 

resolution movement and passive acoustic data were obtained from non-invasive 46 

archival tags (n=42) while surface positions were obtained with visual focal follows. 47 

Controlled exposure experiments (CEEs) were used to obtain direct behavioral 48 

measurements before, during, and after simulated and operational military mid-49 

frequency active sonar (MFAS), pseudorandom noise (PRN), and controls (no noise 50 

exposure). For a subset of deep-foraging animals (n=21), active acoustic measurements 51 

of prey were obtained and used as contextual covariates in response analyses. To 52 

investigate potential behavioral changes within individuals as a function of controlled 53 

noise exposure conditions, two parallel analyses of time-series data for selected 54 

behavioral parameters (e.g., diving, horizontal movement, feeding) were conducted. 55 

This included expert scoring of responses according to a specified behavioral severity 56 

rating paradigm and quantitative change-point analyses using Mahalanobis distance 57 

statistics. Both methods identified clear changes in some conditions. More than 50% of 58 

blue whales in deep feeding states responded during CEEs, while no changes in behavior 59 

were identified in shallow-feeding blue whales. Overall, responses were generally brief, 60 

of low to moderate severity, and highly dependent on exposure context such as 61 

behavioral state, source-to-whale horizontal range, and prey availability. Response 62 

probability did not follow a simple dose-response model based on received exposure 63 

level. These results, in combination with additional analytical methods to investigate 64 
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different aspects of potential responses within and among individuals, provide a 65 

comprehensive evaluation of how free-ranging blue whales responded to mid-frequency 66 

military sonar.  67 

 68 

I. INTRODUCTION 69 

Sound production and reception are centrally important in the life history of all marine 70 

mammals, and their responses to natural signals as well as human noise can have both 71 

positive and negative fitness implications. However, we lack a comprehensive 72 

understanding of how most marine mammals respond to sound in their natural 73 

environment. Given the substantial scientific and regulatory interest in quantifying the 74 

effects of anthropogenic noise on marine mammals in recent decades (National 75 

Research Council (NRC), 1994; National Research Council (NRC), 2005; Southall et al., 76 

2007, 2009, 2016; Hatch et al., 2016; National Academies of Sciences, 2017; Southall, 77 

2017), there is a pressing need for detailed measurements of responses to acoustic 78 

disturbance in known and/or controlled exposure conditions. Regulatory requirements 79 

include quantifying marine mammal behavioral responses to noise with sufficient 80 

resolution to understand key aspects of behavior (e.g., foraging) that, if negatively 81 

affected, may have fitness consequences at both the individual and population level 82 

(King et al., 2015; McHuron et al., 2018; Pirotta et al., 2018). 83 

 84 

The effects of military sonars on marine mammals have received particular attention. 85 

Specifically, focus has been placed on lethal mass strandings involving beaked whales 86 

associated with tactical mid-frequency (nominally 1-10 kHz) active sonar (MFAS) (see: 87 

Filadelfo et al., 2009). However, both observational and experimental studies have 88 

documented sub-lethal behavioral responses to various kinds of sonar systems in an 89 

increasingly wide range of marine mammal taxa (e.g., Fristrup, Hatch, and Clark 2003; 90 

Tyack et al., 2011; Miller et al., 2012, 2014; Moretti et al., 2014; Henderson et al. 2014; 91 

Sivle et al. 2015, 2016; Isojunno et al., 2016; Southall et al., 2016; Falcone et al., 2017). 92 

Responses range from brief and/or minor changes in social, vocal, foraging, and diving 93 
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behaviors to more severe modifications, including sustained avoidance of important 94 

habitat areas in some conditions (see: Southall et al., 2016; Southall, 2017). Although 95 

sub-lethal, such responses may negatively influence vital rates in ways that, depending 96 

on their duration, severity, and proportion of populations affected, may be 97 

consequential for protected or endangered marine mammal species. Direct, empirical 98 

measures of sub-lethal behavioral responses of marine mammals are thus needed in 99 

contexts where sonar exposure is known and can be compared within and across 100 

individuals (Southall et al., 2016). Specifically, given the regular exposure of various 101 

species to MFAS in and around military training areas, and the threatened or 102 

endangered status of most baleen whale species, understanding the frequency of 103 

occurrence and severity of how sonar affects behavior in these species has both 104 

scientific and regulatory importance. 105 

 106 

Observational studies using passive acoustic monitoring have documented behavioral 107 

responses in several baleen whales to various types of operational military sonar 108 

systems (Miller et al., 2000; Fristrup, Hatch, and Clark 2003; Martin et al., 2015). 109 

Controlled exposure experiments (CEEs) that use high-resolution animal-borne tags with 110 

movement and acoustic sensors provide detail on individual behavioral responses as 111 

well as the characteristics of received sound at the position of the animal (see: Southall 112 

et al., 2016). Such approaches can increase the ability to empirically relate and quantify 113 

known sonar exposure with fine-scale aspects of behavioral responses (e.g., foraging) 114 

that are more difficult to measure with coarser observational methods. For instance, 115 

Nowacek, Johnson, and Tyack (2004) demonstrated responses of some North Atlantic 116 

right whales (Eubalaena glacialis) to controlled alarm stimuli. Sivle et al. (2016) 117 

identified behavioral changes of individual humpback (Megaptera novaengliae) and 118 

minke (Balaenoptera acutorostrata) whales exposed to towed operational military 119 

sonars. 120 

 121 
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Blue whales (Balaenoptera musculus) are classified as endangered under the IUCN red 122 

list (Cooke, 2018). They are also considered endangered under the U.S. Endangered 123 

Species Act of 1973 (16 U.S.C. § 1531 et seq.), which along with the U.S. Marine 124 

Mammal Protection Act of 1972 (16 U.S.C. § 1361 et seq.) affords them federal 125 

protections within the U.S. Blue whales are the largest animals on the planet, yet they 126 

feed almost exclusively on small invertebrates (krill) in near-surface to deep (~300-400 127 

m) layers. They often occur in coastal waters, including along the California coast during 128 

summer and autumn. However, they also forage in pelagic areas, including in areas 129 

where Navy sonar is regularly used. While, like all baleen whales, there are no direct 130 

measurements of hearing in blue whales, they primarily produce and are presumably 131 

more sensitive to low frequency sound. However, recent evidence suggests they may be 132 

behaviorally sensitive in some conditions to mid-frequency sounds (1-10 kHz).  133 

 134 

Behavioral responses of blue whales to MFAS and other mid-frequency sounds have 135 

been quantified using CEEs in a series of studies off the southern California coast 136 

(Southall et al., 2012; Goldbogen et al., 2013; Friedlaender et al., 2016; DeRuiter et al., 137 

2017). These experimental studies have notably involved MFAS designed to simulate 138 

U.S. Navy SQS-53C systems that were used in previous stranding events. The results of 139 

this previous work, which involved subsets of the data used here, demonstrate 140 

significant behavioral responses of blue whales to MFAS (and pseudorandom noise 141 

(PRN), which is of similar frequency and exposure level) across many individuals. 142 

Further, they illustrate several context-dependencies in behavioral responses, as noted 143 

by Ellison et al. (2012), including strong influences of individual behavioral state at the 144 

time of exposure as well as prey distribution and density. DeRuiter et al. (2017) used 145 

hidden Markov models to evaluate behavioral state-switching, demonstrating greater 146 

probabilities for blue whales to either cease deep-feeding or fail to initiate deep-feeding 147 

behavior during sonar exposure. Collectively these studies show generally that blue 148 

whales may respond to controlled noise exposures in different ways, and that a suite of 149 

contextual factors influenced response probability. However, results from these kinds of 150 
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studies are more challenging to apply directly within regulatory applications where 151 

more explicit individual information on response probability and severity are often 152 

required. 153 

 154 

The above analyses of blue whale responses all involved methods assessing results 155 

across multiple individuals. These results demonstrate that some blue whales, which 156 

primarily use low frequency sound, may be sensitive to mid-frequency noise and that 157 

their responses appear to be influenced by various contextual factors. However, there is 158 

a further need to quantify individual responses (or lack of responses) of specified type 159 

and severity associated with known noise exposure conditions. Such data are directly 160 

useful in deriving exposure:response probabilistic functions for specific exposure 161 

variables commonly used in regulatory frameworks (e.g., received levels), as has been 162 

shown for Phase-I clinical trials in medicine and has been applied within other cetacean 163 

behavioral response studies (see: Miller et al., 2012; Southall et al., 2016). Individual 164 

case-by-case analyses also enable the evaluation of how other response covariates, such 165 

as source-individual range evaluated here, may also influence response probability (as in 166 

Harris et al., 2015). While this study includes individuals evaluated in a number of the 167 

studies above, by quantifying individual responses of blue whales to MFAS and PRN 168 

stimuli using whale-borne tags and CEEs we provide a completely novel analysis that is 169 

more explicitly applicable in predicting response probability in ways that are useful in 170 

regulatory decision-making. Further, comparing multiple methods that have been used 171 

in other studies provides an important evaluation across analytical methods for 172 

response analyses at the individual level to identify behavioral change-points for use in 173 

exposure:response functions. 174 

 175 

II. METHODS 176 

A. Study area and general field methods 177 

This study was part of a long-term, multi-disciplinary research collaboration - the 178 

Southern California Behavioral Response Study (SOCAL-BRS). The CEEs presented here 179 
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used several different experimental treatments with tagged blue whales during summer 180 

and autumn months (June-Oct) from 2010 to 2014 in coastal and offshore areas of the 181 

Southern California Bight. Within years, CEEs were conducted on different days (with 182 

two exceptions in 2010 where two CEEs were conducted within days at locations > 10 183 

nm apart) in different geographical locations or spaced in time to the extent possible to 184 

reduce the occurrence of multiple exposures over short periods in the same area.  185 

 186 

Detail on the SOCAL-BRS field methodology is provided in Southall et al. (2012; 2016) 187 

and is summarized here. Small (~6 m) rigid-hull inflatable boats (RHIBs) were used to 188 

locate, tag, and obtain positional and behavioral observational data for focal whales. A 189 

central research platform (M/V Truth; Truth Aquatics, Santa Barbara, CA) supported 190 

many research components, including the portable experimental sound source, passive 191 

acoustic listening systems, and visual observers on an elevated (7 m) observational 192 

platform directly above the ship’s bridge. Visual observers supported RHIBs in locating 193 

focal whales and monitoring marine mammal exposures during CEEs to meet specified 194 

permit requirements. Individuals were identified visually and from photos in the field 195 

and in post hoc analyses to the extent possible using long-term photo identification 196 

records. 197 

 198 

B. Quantifying individual blue whale behavior 199 

Individual blue whale behavior was measured during phases defined as before, during, 200 

and after CEEs using a combination of high-resolution tag sensors and detailed focal 201 

follow procedures (see: Southall et al., 2012; Goldbogen et al., 2013). Tagging effort was 202 

concentrated on sub-adult or adult animals; no young calves (estimated by experienced 203 

field researchers as being less than six months of age) or mothers with young calves 204 

were tagged. Several types of motion sensing and acoustic tags were used. For the large 205 

majority of whales, DTAGs (version 2 and 3) (Johnson and Tyack 2003) were used. These 206 

tags included broadband hydrophones (<0.1 Hz – >100 kHz sensitivity) sampled at rates 207 

of 48-240 kHz depending on the tag type and configuration. Two whales in the first year 208 
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of this experiment were tagged with B-Probes, sampled at rates of 20 kHz (see: Oleson 209 

et al., 2007). For each tag type, hydrophones were either calibrated directly or 210 

sensitivity was determined from calibrated tags of the same type. Acoustic records 211 

included environmental sounds, instances of calls produced by tagged and other whales 212 

(see: Goldbogen et al., 2014), known exposures to experimental stimuli, and other 213 

incidental anthropogenic noise including vessel noise and (in several instances) non-214 

experimental military sonar of multiple types outside CEE periods. Tag-measured 215 

received levels (RLs) were quantified for both tag types using the same approach. The 216 

maximum RMS sound pressure level for each exposure stimulus within any 200 ms 217 

analysis window over the 1/3-octave band centered at 3.7 kHz, which contained the 218 

predominant sound energy of all exposure stimulus types (as in Tyack et al., 2011; 219 

Southall et al., 2012; DeRuiter et al., 2013; Goldbogen et al., 2013). Additionally, 220 

cumulative sound exposure levels (cSEL; in dB re: 1µPa2-s) were measured as integrated 221 

sound energy across all received exposure stimuli (as in DeRuiter et al., 2013). 222 

 223 

Fine-scale, three-dimensional movement data from individual diving, foraging, and 224 

other behavioral and kinematic parameters were obtained from pressure transducers 225 

and inertial measurement units at sampling rates from 5 to 250 Hz for DTAGs (Johnson 226 

and Tyack 2003) and 1 Hz for B-Probes (Goldbogen et al. 2006; Oleson et al., 2007). For 227 

the DTAGs with higher sample sensor resolution, the following tag-derived 228 

measurements were used for analyses: depth (m); absolute heading (degrees); heading 229 

variance (unitless); minimum specific acceleration (ms-2); vertical and horizontal speed 230 

(ms-1); lunges/dive; and feeding lunge rate (lunges h-1). Heading variance was derived as 231 

relative variability between instantaneous absolute heading and median heading within 232 

each minute of tag data. Minimum specific acceleration (MSA) was derived from three-233 

axis accelerometers as an integrated metric of overall acceleration (Simon et al. 2012). 234 

For the two B-probe deployments with lower sensor sample resolution, slightly different 235 

parameters were measured and used in analyses described below, including depth, 236 

fluking acceleration (ms-2), and overall speed (ms-1). For both tag types, the 237 
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instantaneous velocity was determined by regressing the measured flow-noise from 238 

tags against the orientation-corrected changes in depth during stable ascending or 239 

descending portions of dives; this was calibrated for each individual tag deployment and 240 

tag orientation within the deployment (as in Cade et al., 2018). The instantaneous 241 

velocity was then multiplied by either the instantaneous pitch cosine (to obtain 242 

horizontal speed) or sine (for vertical speed) (Goldbogen et al., 2006). Feeding lunges 243 

were manually identified based on dive profiles, tri-axial body acceleration, and flow 244 

noise (as in Goldbogen et al., 2013). Given differential sensor sampling rates across tag 245 

types and sampling periods, all variables other than lunge rates were decimated to 1-Hz 246 

resolution. The minimum sampling rate across all tags (1 Hz) was sufficient to describe 247 

the most important biological relevant behaviors (feeding, diving). 248 

 249 

Once animals were tagged, focal individual tracking commenced to obtain accurate 250 

spatio-temporal surfacing positions. Focal animal surface positions at known times were 251 

determined from either: known RHIB locations combined with range and bearing 252 

measurements to animals, measured from a precision laser range finder (Leica Vector, 253 

Viper II), known animal surface locations based on recent surface footprint locations, or 254 

in cases where direct measurements were not possible, visually estimated range and 255 

bearing from known RHIB locations to focal whales. Error in surface positions was 256 

estimated to be <10 m from directly measured locations and 10s to 100s of meters for 257 

visual estimates of range and bearing, depending on conditions and range from visual 258 

observers to whales. Focal whale positions were used to generate time-series maps of 259 

animal movement and relative (over-ground) speed estimates used in expert evaluation 260 

of potential response severity.  261 

 262 

C. Synoptic environmental data 263 

The overall vessel configuration and experimental paradigm were described in detail by 264 

Southall et al. (2012). However, subsequent to the original experimental design 265 
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described therein was the inclusion of additional parameters related to the 266 

environmental contexts in which CEEs occurred.  267 

 268 

Calibrated measurements of noise associated with SOCAL-BRS vessel operations were 269 

made under controlled, standardized conditions that were representative of typical field 270 

configurations. Remotely deployed drifting acoustic buoys supported passive acoustic 271 

recorders using both a primary surface float and an isolated smaller secondary float. 272 

Shock-reducing bungee cords were suspended from the secondary float, to which 273 

recorders were attached. Loggerhead DSG recorders (Loggerhead Instruments, Sarasota, 274 

FL, USA) were suspended to depths of ~30-m depending on the angle of the suspension 275 

line (small sea anchors were used to maintain a vertical orientation) and tension in the 276 

bungee. The DSG recording units were affixed with HTI-96 hydrophones (High Tech Inc., 277 

Long Beach, MS, USA) with a nominal sensitivity of -180 dB re 1 V/µPa and had a 278 

nominal 20-dB pre-amplifier gain; the recording unit had a resulting flat sensitivity of -279 

160 dB re 1 V/µPa (+/-3 dB) between 16 Hz and 30 kHz. Recording buoys were deployed 280 

on three occasions in offshore locations (200-500m water depths) in areas near where 281 

CEEs were conducted. Recordings were obtained over three days in sea state 2-4 282 

conditions; data presented here were obtained from the lowest possible sea state 283 

condition. Both RHIBs (Ziphid and Physalus) were instructed to pass by the surface float 284 

suspending recorders at a range of ~100m at speeds of 5 and 10 kts. This range was 285 

commonly the distance at which focal follows before, during, and after CEEs were 286 

conducted. The RHIBs traveled variable speeds during focal follows, depending on the 287 

behavior of the individual being followed, with 5 kts being a typical speed and 10 kts 288 

likely closer to a maximum speed. The central research vessel (Truth) was also 289 

instructed to pass recorders at ~100m range and speeds of 5-10 kts, which represented 290 

more of a worst-case scenario during CEEs (since the vessel was stationary and usually 291 

much further apart), but was more realistic in context of environmental prey mapping. 292 

Additionally, the Truth was instructed to position ~ 1 km from recorders and maneuver 293 

as if suspending the simulated MFAS sound source. These measurements provided 294 



 

 11 

received sound levels associated with the operation of the sound source vessel at typical 295 

ranges whales were during CEEs, in isolation from the experimental signals used in CEEs. 296 

For vessel passes, 1-min acoustic recordings centered on the time of the closest point 297 

approach (CPA) were selected for analysis. For each 1-min sample, one-third-octave 298 

band RMS levels (dB re 1 µPa) were then computed for each 1-s interval. Median values 299 

of all 60 samples were then calculated and are presented as representative noise levels 300 

that would be received by a whale at a relatively shallow depth (~30m) and in typical 301 

proximity during approaches from each vessel).  For the stationary Truth maneuvering 302 

at ~1 km range from recorders, 2-min acoustic recordings during the confirmed time of 303 

maneuvering were used. Similarly, for each sample, one-third-octave band RMS levels 304 

(dB re 1 µPa) were computed for 1-s intervals. Median values of 120 samples were then 305 

calculated and are presented as representative noise levels that would be received by a 306 

whale at a relatively shallow depth (~30m) and in typical proximity during maneuvering 307 

of the Truth for sound source deployments during CEEs approaches. These values are 308 

then compared to comparable measurements of ambient noise made using the same 309 

and methods during the same day and similar conditions, with no experimental or other 310 

vessels operating within at least 3 km of recording buoys.  311 

 312 

For some feeding whales during 2011-2014 CEEs, active acoustic methods were used to 313 

measure krill distribution and density in the proximity of feeding whales immediately 314 

before and after CEE sequences. The general approach in obtaining these 315 

measurements is described here; detailed methods for the collection and analyses of 316 

prey data are provided by Friedlaender et al. (2014, 2016) and Hazen, Friedlaender and 317 

Goldbogen (2015). Once a tag was deployed on a focal whale and as conditions allowed, 318 

a pre-exposure prey mapping survey was conducted at or near (typically within ~100 m) 319 

recent, known tagged whale surfacing positions. Across whales, this period lasted for 320 

30-75 min prior to the onset of each full CEE sequence.  This complete CEE sequence 321 

included three sequential 30 min phases (pre-exposure baseline, exposure, and post-322 

exposure periods; see below), each of which occurred in the absence of active acoustic 323 
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sampling (i.e., echosounders were not active during CEE sequences). Following the CEE 324 

sequence, a second 30-75 min active acoustic prey mapping survey was conducted. 325 

Given the clear importance of prey distribution in the behavior of feeding whales and in 326 

their responses during CEEs demonstrated by Friedlaender et al. (2016), we sought to 327 

evaluate the available prey distribution data in the context of potential responses even 328 

though contextual prey data were not available for all CEEs. Thus, we use prey data 329 

when available to provide additional context to the derived response likelihood that was 330 

conducted uniformly for all whales. 331 

 332 

D. CEE methods  333 

The experimental methods and specifications for the experimental sound source used in 334 

CEEs for this study are described in greater detail by Southall et al. (2012) and 335 

summarized within the context of other recent studies using CEEs to study behavioral 336 

responses of marine mammals to sonar by Southall et al. (2016). Essentially, a standard 337 

before-during-after (A-B-A) experimental design (with 30 min phases for up to a total of 338 

a 90 min full experimental sequence) was used to quantify potential changes in 339 

individual movement, diving, feeding, and other aspects of behavior where individual 340 

noise exposure was controlled and known.   341 

 342 

Provided that numerous specific criteria were met regarding visibility, sea state, 343 

proximity to shore or other vessels, absence of very young calves, and other factors, the 344 

Truth was positioned at a range (typically 1000 m) estimated to result in maximum 345 

received RMS sound pressure level at the focal whale of 160 dB re 1µPa. In instances 346 

where multiple tagged whales were being monitored but were not in the same social 347 

group, a focal individual was selected in terms of positioning the sound source while a 348 

second tagged individual was followed by a second RHIB, but at some (typically greater) 349 

range that was less explicitly controlled. The experimental sound source was then 350 

deployed to a depth of 25 m and transmitted one of two signal types (MFAS: max 210 351 

dB re 1µPa @ 1m or PRN: max 206 dB re 1µPa @ 1m) at 25 sec intervals during CEEs 352 



 

 13 

(see: Southall et al., 2012). Signals were ramped up from an initial source level of 160 dB 353 

re 1µPa @ 1m in 3 dB increments to the maximum source level for each respective 354 

signal type within the first ~7 min of exposure and were maintained at that level for the 355 

remainder of the CEE. Total exposure duration was a maximum of 30 min, but some 356 

exposure intervals were terminated early as a result of mitigation requirements (e.g., 357 

other animals swimming within 200 m of the active sound source) or because of 358 

equipment failure.  359 

 360 

Following the completion of controlled noise exposure sequences, monitoring from 361 

archival tags and visual focal follow methods was maintained for at least 30 min. Early in 362 

this period, the experimental sound source was recovered, and the Truth was directed 363 

to maintain a comparable range (~1000 m) and speed relative to the focal whale (as 364 

done during the pre-exposure sequence). The RHIB maintained a comparable range and 365 

approach in the post-exposure as was done during the pre-exposure and exposure 366 

sequences. Complete CEE sequences thus consisted of constant monitoring using tags 367 

and visual follows of individuals from RHIBs during the consecutive 30 min pre-368 

exposure, exposure, and post-exposure sequences. During these periods, the sound 369 

source vessel was mobile at a deliberately comparable range and relative orientation for 370 

the pre- and post-exposure but stationary (drifting) during the exposure period.  371 

 372 

The primary research objective was to assess the potential responses of blue whales to 373 

military sonar. Consequently, and given the novelty of the study, a disproportionate 374 

number of CEEs, were conducted with MFAS stimuli. Following the first five exposure 375 

sequences during 2010 with MFAS, a 2:1 ratio of MFAS to PRN stimuli was used and 376 

tested in randomized order. While the primary experimental control was within the pre-377 

during-post exposure experimental design, a smaller number of complete “control” 378 

sequences were conducted in which the full sequence was replicated and the sound 379 

source deployed but no noise stimuli were presented during the ‘exposure’ phase (Table 380 

1).  381 
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 382 

In a single instance, a tagged blue whale was monitored while a CEE was conducted in 383 

coordination with an operational Navy ship (USS Dewey-DDG 105) using full scale MFAS 384 

(SQS-53C). Given the higher source level (235 dB re 1µPa @ 1m), in situ noise 385 

propagation modeling was conducted to position the vessel much further away from the 386 

individual in order to obtain the same desired maximum received level (~160 dB re 387 

1µPa). A relative orientation was selected such that the ship was generally approaching 388 

the whale but was not directed precisely toward it and no course adjustments were 389 

made during transmissions. The ship transited a direct course at 8 kt and, given the 390 

inability to gradually increase the source level as was done with the experimental sonar, 391 

a slightly longer exposure period (60 min) with corresponding 60 min duration of pre-392 

exposure and exposure phases was implemented.  393 

 394 

Provided that tagged whales were being monitored according to specified criteria and 395 

conditions, CEEs were conducted irrespective of the animal’s behavioral state at the 396 

time of exposure. To categorize each individual’s behavioral state at the beginning of 397 

each CEE, the following post hoc criteria were used based on tag sensor data to define 398 

deep-feeding, shallow-feeding and non-feeding. The presence of a single foraging lunge 399 

during the baseline period was used to indicate a feeding state for the CEE. Any dive 400 

depth exceeding 50 m was used to distinguish deep from shallow diving.  401 

 402 

Some CEEs were not fully completed, either due to tag failure or detachment, loss of 403 

visual contact with individuals for long periods, or premature termination of noise 404 

exposure resulting from required termination protocols or equipment failure. Because 405 

of the difficulty in obtaining large sample sizes for such experiments under field 406 

conditions, incomplete sequences were retained within partial analyses when possible. 407 

Where individuals were successfully monitored with tags and visual observations 408 

through the pre-exposure and at least half (15 min) of the experimental period, the CEE 409 

was included. Behavioral response analyses were conducted, although without the 410 
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ability to evaluate potential recovery from any responses during post-exposure periods.  411 

This is an additional benefit of individual-based, time-series analyses over a synthetic 412 

analytical approach. 413 

 414 

E. Behavioral response analyses 415 

Individual blue whale behavior and potential responses during noise exposure periods 416 

were evaluated in parallel using two different analytical approaches: a structured expert 417 

evaluation and a quantitative statistical analysis. Methods for each are discussed below 418 

and results are presented within each analytical method by individual and evaluated 419 

together based on CEE stimulus type and animal behavioral state at the start of CEEs. 420 

 421 

i. Expert scoring analyses 422 

A structured evaluation of selected, standardized data streams using method derived by 423 

Miller et al. (2012) based on the Southall et al. (2007) response severity scaling 424 

developed by was conducted by two independent groups of subject matter experts, 425 

each containing three of the co-authors (1: AF, AS, JG; 2: JC, AA, GS). Each group was 426 

provided synoptic time-series behavioral information in the form of annotated maps of 427 

individual spatial movement (from RHIB-based focal follows) and selected kinematic and 428 

behavioral parameters in time-series plots (extracted or derived from tag records). For 429 

DTAGs (40 of 42 individuals), these included: depth (m); feeding rate (lunges dive-1); 430 

MSA (ms-2); absolute heading (degrees), and horizontal speed (ms-1). For the two BProbe 431 

deployments, these included depth (m), fluking acceleration (ms-2), and overall speed 432 

(ms-1). As in Miller et al. (2012), many of the scorers were involved in the original 433 

fieldwork and thus may have had some recollection of events during CEEs (although 434 

some occurred over four years prior to expert scoring). In order to minimize any biases 435 

resulting from experience, scorers in this study were blind to the individual whale ID, 436 

date and location of CEEs, exposure treatment, or precise timing of received levels of 437 

exposure signals and CEEs were presented to groups in randomized order in terms of 438 

the date that the experiment was conducted.  Experimental phases (pre-, during-, post-439 
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exposure) for each CEE were identified in all data plots provided to each scoring group. 440 

This allowed scorers to evaluate behavior in pre-exposure baseline conditions, identify 441 

potential behavioral changes during exposure at specified times, and to assess whether 442 

any identified behavioral changes persisted throughout and/or after noise exposure.  443 

The three members of each group collectively evaluated these data plots and annotated 444 

maps and time-series data plots for each CEE. Maps showed the position of the 445 

experimental sound source at the start and end of the CEE, every surface location 446 

collected by RHIBs during individual focal follows identified in each CEE phase (with 447 

times shown for the first position in each phase), and a 1000 m radius around the source 448 

at the onset of exposure for scale. 449 

  450 

Scorers were instructed to evaluate the annotated maps and data plots for each CEE and 451 

to identify any behavioral changes to the nearest minute that occurred based on the 452 

descriptions specified in the severity scale. Criteria for temporal descriptors were as 453 

follows: brief or minor changes were identified as those returning to baseline conditions 454 

during exposure; moderate duration changes were identified as those not returning to 455 

baseline conditions until into the post-exposure period; extended duration changes 456 

were those not observed to return to baseline within the post-exposure period. If 457 

multiple changes were identified, all were reported based on visual inspection of plots. 458 

The two groups independently evaluated each CEE collectively and came to a consensus 459 

agreement about any identified behavioral changes, the time at which they occurred, 460 

and a confidence level (low, moderate, high) as to the overall severity score(s) for each 461 

CEE. Where no behavioral responses were identified, a severity score of 0 was assigned. 462 

Where multiple responses were identified, all were reported, but the most severe 463 

(highest score) was used as the resulting overall score for that CEE. Neither Southall et 464 

al. (2007) nor Miller et al. (2012) identified an increase in feeding as an adverse 465 

behavioral change. Because this was not included within the severity scale, when it 466 

occurred it was not systematically reported and scored by expert scoring groups here.  It 467 

was noted on multiple occasions as a change but was not scored as an adverse reaction. 468 
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 469 

After each group independently completed their evaluation of all CEEs, both groups met 470 

to compare results. An adjudicator (BLS) was selected to mediate the combined group 471 

discussion and served to break any irreconcilable disagreements that occurred about 472 

severity scores between groups.  A consensus behavioral response severity score (0 for 473 

no response; 9 for most severe response), a confidence score (low, med, high), and 474 

specified exposure times for any changes, were identified for all MFAS, PRN, and control 475 

(no noise) sequences. If a behavioral response was identified, the time of the response 476 

was used to derive exposure RLs (max RMS and cSEL to that point within the CEE). 477 

 478 

Exposure-response probability functions were then generated using recurrent event 479 

survival analysis to assess time-to-event changes using marginal stratified Cox 480 

proportional hazards models fitted to the severity score data (see: Harris et al., 2015 for 481 

full details of model application to severity score data). These models combine the 482 

results from individual CEEs to estimate the likelihood of response as a function of 483 

exposure received level (in cSEL) and behavioral or contextual covariates.  Models were 484 

fitted to broad categories of response severity levels (i.e., low, moderate, high) to 485 

ensure sufficient data to support the dose-response functions. The resulting hazard 486 

models provide a relationship between exposure level and the probability of response 487 

at different severity levels, while accounting for selected contextual variables. Similar 488 

analyses have been conducted for pilot whales, killer whales and sperm whales (Miller 489 

et al., 2012; Harris et al., 2015), as well as humpback whales (Sivle et al. 2015).  490 

 491 

Given data limitations for shallow and non-feeding behavioral states, the Cox 492 

proportional hazards models were only fitted to data from animals that were deep 493 

feeding in the pre-exposure period.  For these cases, the first occurrence of each 494 

response level (severity scores 1-3, 4-6, 7-9) was determined based on consensus expert 495 

scored results for each CEE for inclusion in the models. For CEEs with a severity score of 496 

0 (no response), the cSEL for the entire exposure sequence was used and the data were 497 
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labeled as right-censored, meaning that no response was detected up to this exposure 498 

level.  We fitted models to data from all CEEs associated with deep feeding animals and 499 

included source-animal range (m) at the start of the exposure phase and signal type 500 

(MFAS or PRN) as covariates. Observations were assumed to be correlated within 501 

individuals but independent between individuals. The standard errors of the model 502 

estimates were corrected for the correlations within individuals using a grouped jack-503 

knife procedure (Therneau and Grambsch 2000). All possible model combinations from 504 

the null model through to two-way interaction terms were fitted and AIC-based model 505 

selection was used. For the selected model, the proportional hazards assumption was 506 

verified (Kleinbaum and Klein 2005; Harris et al., 2015). Analyses were conducted in R 507 

version 3.0.2 (R Core Team, 2013) and exposure-response functions were generated as 508 

survival curves from the fitted models using the survfit function package (Therneau 509 

2014). 510 

 511 

b. Mahalanobis distance (MD) statistical analyses 512 

A Mahalanobis distance (MD) method (Mahalanobis, 1936; see: DeRuiter et al., 2013) 513 

was also used to statistically test for change-points in whale behavior. This approach 514 

involves the calculation of an integrated statistical distance-based metric that 515 

summarizes synoptic dive parameters from tag data and quantifies how they differ over 516 

time from those present within a specified baseline period (e.g., pre-exposure period).  517 

The MD metric is a scale-invariant integrated ‘difference’ from baseline behavioral 518 

parameters calculated in multi-dimensional space and accounting for correlations 519 

between dimensions. It is calculated within a sliding temporal window across all dive 520 

parameters to identify the specific time (if any) at which overall behavior changed. A 521 

window duration of 5 min (a conservative average dive duration for blue whales across 522 

all behavioral states) was selected with an MD value calculated every 25 seconds 523 

(corresponding to the interval between the onset of individual noise transmissions 524 

during CEEs). The MD calculations require a variance/covariance matrix to quantify 525 

statistical relationships among all variables. We calculated this matrix for each whale 526 



 

 19 

using the full dataset for the entire deployment, excluding an initial 15-min. period 527 

estimated (based on nominal blue whale diving behavior) to account for any tagging 528 

effects (based on Miller et al., 2009). The inclusion of the full dataset, including and 529 

following CEE periods, was deemed necessary to provide sufficient samples to 530 

accurately estimate matrix parameter values. It was also considered a conservative 531 

choice, in that if behavioral changes during or following exposure were such that the 532 

variance-covariance structure was altered, the MD analyses would be less likely to 533 

detect it when using the full dataset than if only pre-exposure data had been used. 534 

 535 

The following behavioral parameters (all quantified from individual animal-borne tags) 536 

were used as input variables in calculating MDs. For DTAGs this included: circular 537 

variance of heading (25 sec window); MSA (ms-2); vertical speed (ms-1); horizontal speed 538 

(ms-1); feeding lunge rate (lunges h-1, 15 min window), all at 1 Hz resolution. For the two 539 

Bprobe deployments, this included: overall speed (ms-1); and feeding lunge rate (lunges 540 

h-1) at 1 Hz resolution. Dive data from the 30-min pre-exposure period (where other 541 

contextual factors including experimental vessel presence were similar to those during 542 

exposure) were used as comparison baseline data; this period also began at least 15 min 543 

post-tagging. When a tagged whale was near the surface, all data points that were 544 

collected shallower than 10 m were replaced with median parameter values from the 545 

baseline period to result in MD values near zero. This was to account for artifacts 546 

introduced by noise in some input data streams, most notably accelerometer-based 547 

metrics. This effectively pulls MD values toward 0 as the proportion of data points 548 

obtained at shallow depths in a time-window increases. The MD was then computed 549 

between (1) average behavioral data parameters for the baseline period and 2) average 550 

data values within the 5 min sliding comparison window.  551 

 552 

Exposure and post-exposure periods were then evaluated to determine whether an 553 

individual behavioral change occurred, when it began, and when it ended. MD values 554 

exceeding the maximum value observed during the pre-exposure period were identified 555 
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as behavioral changes. For consistency with the expert scoring severity assessment, 556 

detected changes associated with the onset of or increase in foraging were not 557 

considered responses that would have any potential negative effects for individuals. 558 

Therefore, they were not included in the expert severity scoring options and were not 559 

reported as detected changes. 560 

 561 

 562 

III. RESULTS 563 

A. CEE Results 564 

A total of 48 CEE sequences were conducted for individual whales involving MFAS, PRN, 565 

or no noise ‘control’ exposures in (primarily) coastal and offshore areas spanning the 566 

southern California Bight (Fig. 1). Data from six sequences in which tags detached 567 

prematurely or CEE sequences were terminated before 15-min of exposure were not 568 

included in this analysis as they failed to meet specified experimental criteria; the 569 

remaining 42 sequences met these criteria and were analyzed. These occurred within 33 570 

discrete CEEs, as nine of these sequences involved two concurrently tagged and 571 

followed animals. In seven of these instances, simultaneously tagged whales were 572 

separated from one another and were followed by separate boats. In two cases, 573 

simultaneously tagged individuals occurred within close proximity and were being 574 

tracked within the same focal follow, although one of these the animals was later 575 

determined to be in different behavioral states during exposure. Four individual whales 576 

were later revealed through photo identification to have been exposed in two separate 577 

CEEs within the same year. In each scenario, CEEs were spaced by several days or weeks. 578 

Furthermore, in each case animals received different treatment types and were in 579 

different behavioral states for subsequent exposures. This likely reduced, but did not 580 

eliminate, the potential that behavioral responses during the second CEEs may have 581 

been influenced to some degree by exposure to the initial ones. 582 

 583 
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The 42 discrete, randomized CEE sequences evaluated here were conducted during 584 

2010-2014 field efforts within different exposure treatments and behavioral state 585 

contexts. The resulting distribution of CEEs conducted for individuals within these three 586 

different behavioral states for each treatment type are summarized in Table 1. 587 

Representative examples of different types of behavioral response results for three 588 

individual whales are provided (Fig. 2). 589 

 590 

The results of CEE #2011-01 on 29 July 2011 with individual bw11_210b are shown in 591 

time-annotated maps and MD data plots with received cSEL (in dB re 1µPa2-s) in the top 592 

panels (Fig. 2 a,b). This was a deep-feeding blue whale exposed to MFAS at a source-593 

whale horizontal range (at the start of the exposure) of 1.2 km. Clear changes in 594 

behavior were detected with both MD and expert scoring methods (high confidence) at 595 

virtually the same time (1528-1529 PDT), corresponding to a received cSEL of 119 dB re 596 

1µPa2-s. Changes identified by adjudicated expert scoring included horizontal avoidance 597 

of sound source (severity score 7) and moderate cessation of feeding (6) (see Table S1 598 

for expert scoring details). The results of CEE #2011-06 on 6 August 2011 with individual 599 

bw11_218b are shown in the middle panels (Fig. 2 c,d). This was a deep-feeding blue 600 

whale exposed to PRN at a source-whale range (at the start of the exposure) of 5.6 km. 601 

No changes in behavior were detected with either MD or expert scoring methods (high 602 

confidence) despite a relatively high received cSEL of 168 dB re 1µPa2-s (see Table S1 for 603 

expert scoring details). The results of CEE #2013-06 on 26 July 2013 with individual 604 

bw13_207a are given in the bottom panels (Fig 2 e,f). This was a shallow-feeding blue 605 

whale within a control sequence conducted at a source-whale range of 0.5 km. No 606 

changes in behavior were detected with expert scoring methods (moderate confidence), 607 

although the presence of increased feeding was noted (see Table S1 for expert scoring 608 

details). The increase in feeding rate resulted in a gradual increase in the MD metric 609 

relative to the pre-exposure baseline condition and was thus detected as a change.  As 610 

in several other instances where whales initiated or increased feeding during CEEs, the 611 

MD detected change was noted, but was not considered a conflicting result to the 612 



 

 22 

expert scoring evaluation because an increase in feeding was not defined as an adverse 613 

behavioral response (Southall et al., 2007; Miller et al., 2012). 614 

 615 

Expert scoring and MD results are presented for each treatment type and behavioral 616 

state category for each individual blue whale (Table 2). Received exposure levels for 617 

each whale either at identified change points or (where none were detected) maximum 618 

values for CEE sequences are also provided (Table 2). For CEEs with identified responses 619 

cSEL values at identified change points ranged from 97 to 155 dB re 1µPa2-s. Maximum 620 

cSEL values for CEEs where no change was identified ranged from 134 to 171 dB re 621 

1µPa2-s. Source-whale range varied from 0.4 to 7.7 km for the simulated MFAS and 19.5 622 

km for the single operational vessel MFAS signal, with a median range of 1.2 km. There 623 

was no significant correlation within experimental sound types (MFAS, PRN) across CEEs 624 

between received level and source-whale range. 625 

 626 

i. Deep-feeding whales  627 

The largest number of individual CEE sequences analyzed (n=29) occurred for blue 628 

whales engaged in deep-feeding during pre-exposure periods. Whales were most likely 629 

to respond during MFAS CEE sequences, with a similar overall proportion of individuals 630 

identified as changing behavior during exposure by both expert scoring (8 of 13) and MD 631 

(9 of 13) methods. A lower proportion of deep-feeding whales responded when exposed 632 

to PRN (4 of 11 in expert scoring analysis, 5 of 11 for MD) and almost no responses were 633 

detected in deep-feeding control sequences (0 of 5 for expert scoring; 1 of 5 for MD). 634 

 635 

For a subset of deep-feeding whales (n=21), prey distribution and density were 636 

measured before and after CEE sequences to provide an environmental context for 637 

interpreting responses in this behavioral state. Given the knowledge of the importance 638 

of this contextual relationship, we include three examples of whale behavior and 639 

contextual prey data to illustrate how these measurements provide additional insight 640 

into changes in whale behavior and the interpretation of potential response (Fig. 3). 641 
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 642 

For bw11_210b on 29 July 2011 (Fig. 3a; Fig S3), prey patch depth and density remained 643 

similar both before and shortly following the CEE (#2011-01) in the area where the 644 

whale was feeding. Both expert scoring groups identified very similar behavioral 645 

changes with high confidence at approximately the same time as one another and as the 646 

MD analysis (see Table S1 for expert scoring details), which identified a clear change 647 

relative to not only the pre-exposure condition, but the entire behavioral record for this 648 

individual (including pre-CEE prey sampling periods). Given the similarity in the prey 649 

environment before and at least immediately after the CEE, these identified changes 650 

(avoidance and cessation of feeding) are unlikely the result of changes in the prey 651 

environment (from the exposure or otherwise). However, subsequent changes in the 652 

overall prey environment (more schools identified at various depths) and/or changes in 653 

the local prey environment based on the whale’s geographic location may have also 654 

influenced whale behavior, particularly well after the CEE.  655 

 656 

For bw11_218b on 6 August 2011 (Fig. 3b; Fig S4), prey patches after the CEE (#2011-06) 657 

were shallower than those measured before the CEE sequence. This whale appeared to 658 

progressively decrease its feeding depth and continue to feed during the CEE as it 659 

moved into an area with shallower patches. This gradual decrease in whale diving depth 660 

was not identified by either expert-scoring group as a behavioral response during the 661 

CEE (Table S1). A behavioral change point was identified within the MD analysis (See Fig. 662 

S4 where the MD trace crosses the dashed line representing the pre-exposure baseline 663 

value used as the response threshold), although this was a small increase above the pre-664 

exposure baseline period and it was of smaller magnitude than the MD spike in this 665 

metric identified just after the pre-CEE prey sampling period. 666 

 667 

For bw13_207a on 26 July 2013 (Fig. 3c; Fig S5), prey patches measured around the CEE 668 

(#2013-06) in the area where the whale was feeding were deeper and less dense 669 

following the CEE sequence than before exposure. The animal maintained a similar 670 
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feeding depth before and during the exposure sequence but increased its feeding rate 671 

and switched to deeper feeding after the CEE, which also continued during the post-672 

exposure prey sampling period. Neither expert scoring group identified any behavioral 673 

change in this CEE, but there was a discernable change detected using the MD method, 674 

associated with an increase in foraging during the exposure phase relative to the 675 

defined baseline (pre-exposure) period (see Table S1 for expert scoring details). These 676 

MD values were of similar magnitude to those measured during both prey sampling 677 

periods (before and after the full CEE sequence). 678 

 679 

Cox proportional hazards models were fitted separately to responses of severity scores 680 

between 4-6 and 7-9; responses with severity scores of 1-3 were insufficient to apply 681 

this process. The Cox proportional hazards model selected by AIC for severity score 4-6 682 

retained only source-whale range as a covariate (Δ AIC=1.34), although its effect was not 683 

significant (p=0.316).  The selected model met the proportional hazards assumption 684 

(global p-value from Chi-square test = 0.079).  The model selected by AIC for severity 685 

score 7-9 was the null model (Δ AIC=1.03), with the model including source-whale range 686 

being the second best model according to AIC.  Given the interest in understanding the 687 

role of source-whale range in the probability of responding, model results from the 688 

selected model for severity scores between 4-6 and the second-best model for severity 689 

scores between 7-9 were used to produce predicted exposure-response probability 690 

functions in terms of received exposure level for the two different response severity 691 

levels (moderate severity: 4-6; high severity: 7-9). In order to illustrate the relationship 692 

with source-animal range, response probability functions were calculated for the ranges 693 

over which most CEEs were conducted (1-5km) (Fig. 4).  These prediction plots suggest 694 

that the probability of a moderate response (severity 4-6) as a function of RL decreases 695 

rapidly as range increases, but the wide confidence intervals indicate substantial 696 

uncertainty in this relationship.  The relationship is much less pronounced for high 697 

severity responses (severity 7-9) hence the selection of the null model.   698 

 699 
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  700 

ii. Shallow-feeding and non-feeding whales  701 

The second largest number of individual CEE sequences analyzed (n=8) occurred for blue 702 

whales engaged in shallow-feeding during pre-exposure periods. No whales (0 of 7) 703 

were determined to change behavior during MFAS exposure by either expert scoring or 704 

MD methods. No PRN sequences were conducted for shallow-feeding whales. No 705 

responses were detected by either analytical method during the single shallow-feeding 706 

control sequence.  707 

 708 

The fewest number of individual CEE sequences analyzed (n=5) occurred for non-feeding 709 

blue whales, although most of these individuals were determined to have an adverse 710 

behavioral response during CEEs across both methods. For MFAS CEE sequences, expert 711 

scoring determined such a response in one of two whales while MD analyses detected 712 

adverse responses for both individuals. For PRN CEEs, expert scoring determined an 713 

adverse behavioral response in one of three non-feeding whales whereas all three 714 

individuals were identified to have such a response using MD methods. No control 715 

sequences were conducted for non-feeding whales. 716 

 717 

B. Vessel noise characterization 718 

 719 

Median values of vessel noise were calculated for CPAs for all vessels during each 720 

condition. These values were compared for each condition for RHIBs Ziphid and Physalus 721 

to comparable measurements of ambient noise made using the same recorders and 722 

methods during the same day and similar conditions, with these vessels operating at 723 

much further ranges from recording buoys (Fig S1). Ambient noise measurements were 724 

also compared for each passage condition for the M/V Truth to comparable 725 

measurements of ambient noise made using the same recorders and methods during 726 

the same day and similar conditions, with this vessel operating at much further ranges 727 

from recording buoys (Fig S2a, b).  For the stationary Truth maneuvering at ~1 km range 728 
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from recorders, median noise values were calculated relative to ambient noise during 729 

the same day and similar conditions (Fig S2c). Both RHIBs and the Truth were clearly 730 

detectable over ambient noise for both speeds at these close ranges, with different 731 

relative spectral distribution of noise energy at different speeds for each vessel. Based 732 

on the associated noise levels and frequencies and typical ambient noise during non-733 

vessel periods, their operation is likely audible to subjects over ranges typical during 734 

CEEs, particularly the RHIBs at their typical operating speeds and ranges from animals. 735 

However, as a part of the experimental design during baseline, exposure, and post-736 

exposure sequences, these represent relatively continuous levels of additional noise 737 

exposure. During sound source deployment, the Truth conducted small maneuvers to 738 

remain stationary. The measurements of ambient noise during this period 739 

demonstrated that these maneuvers and the presence of the vessel was not 740 

discriminable over noise measured using the same recording system in the absence of 741 

the Truth. That is, while vessels were likely audible during their operation, particularly 742 

during pre- and post-exposure periods when the Truth was following focal animals, 743 

during exposure periods from the sound source vessel received by experimental 744 

subjects was predominately or exclusively the result of experimental exposures. 745 

 746 

 747 

IV. DISCUSSION 748 

This study generated the largest sample size (n=42) for any experimental behavioral 749 

response study involving sonar conducted to date for any marine mammal species 750 

(Southall et al., 2016). While the number of individual CEEs conducted in some 751 

behavioral states and treatments were limited, dozens of controlled individual 752 

experiments were conducted using high-resolution movement and acoustic sensors for 753 

individuals in well-defined exposure contexts. These results provide direct and robust 754 

means of evaluating how an endangered species responds to noise exposure, including 755 

simulated and actual military MFAS signals that have been associated with lethal 756 

responses in other species. The analytical approach provides a direct means of 757 
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quantifying individual behavior and behavioral responses within known noise exposure 758 

conditions in such a way that probabilistic response functions may be generated in light 759 

of important contextual variables. Such data provide an empirical basis for modeling 760 

efforts to evaluate potential consequences of disturbance at broader population scales 761 

(King et al., 2015; McHuron et al., 2018; Pirotta et al., 2018). 762 

 763 

Blue whales responded to noise in some but not all CEE sequences (19 of 37 for MD 764 

analysis; 14 of 37 for expert scoring) and in almost no control (no-noise) sequence (1 of 765 

6 for MD analysis; 0 of 6 for expert scoring). Treatment types had variable sample sizes, 766 

but responses were generally equally likely to occur for MFAS and PRN exposures. Other 767 

than a single instance detected only with the MD method, none occurred during control 768 

(no noise) sequences. Nine CEEs involved exposure of multiple individuals, although 769 

nearly all of these included animals in separate groups. A small number of CEEs involved 770 

paired individuals or subsequent exposures to the same individuals and in two instances 771 

in the first year of the study animals could have been remotely exposed to an earlier CEE 772 

prior to being the focal animal in a subsequent CEE later in the day. While these could 773 

call into question the treatment of all individuals as independent samples, they were 774 

treated as such here (rather than excluding individuals) given the small number of 775 

instances relative to the overall sample size. Further, we took into consideration the fact 776 

that in all but one instance these CEEs all involved differences in individual behavioral 777 

state and/or treatment type.    778 

 779 

Responses generally included short-term changes in diving behavior, small-scale (few 780 

km) horizontal avoidance of sound source location, and/or cessation of feeding activity. 781 

Recovery to typical pre-exposure behavior in most CEEs typically occurred within the 782 

post-exposure phase. However, the short-term and relatively rapid nature of recovery 783 

should be considered within the context of acknowledged differences between the 784 

MFAS from an experimental source and operational MFAS. The experimental MFAS is 785 

stationary, includes a ramp-up escalation of the source level, and the overall duration is 786 
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relatively short (tens of minutes). Operational MFAS training involves much louder and 787 

constant levels and can occur over many hours or even days in the case of multi-ship 788 

operations (see: Moretti et al., 2014). It can also occur at any hour of the day and 789 

throughout the year, whereas CEEs here were only conducted during daylight hours in 790 

the summer and autumn. 791 

 792 

Two different analytical approaches were applied to evaluate behavioral changes from 793 

baseline conditions within individuals using high-resolution, time-series kinematic and 794 

acoustic data. This approach included both quantitative statistical change-point 795 

methods and structured expert scoring assessment of deviations from baseline 796 

conditions during exposure by subject matter experts. The MD method is inherently 797 

objective in that it simply identifies changes in a suite of variables from baseline (pre-798 

exposure) conditions and is thus equally likely to detect a behavioral change associated 799 

with a presumably positive outcome (e.g., an increase in foraging behavior) as a 800 

presumably negative outcome (cessation of feeding). Further, the selection of a 801 

response “threshold” for MD strongly affects the probability of statistically detecting a 802 

behavioral response. Here a fairly low MD value was selected as a change-point 803 

threshold, namely a MD value within the exposure period exceeding that measured 804 

during the pre-exposure period. This results in a higher likelihood of identifying a 805 

behavioral response than if an alternate threshold were selected (e.g., two standard 806 

deviations exceeding the pre-exposure maximum) or if MD values during exposure 807 

exceeded the pre-exposure maximum value across the entire tag record. However, the 808 

intent here was to identify a discernable change in behavior during an exposure period 809 

with a similar context as pre-exposure conditions (e.g., local environmental variables, 810 

proximity of vessels) rather than aiming to identify a change that was more unusual 811 

than any other change measured for that or any other blue whale. Not surprisingly, the 812 

MD method was more likely to detect a change than expert scoring, both in controls and 813 

exposures. However, once detected changes associated with the onset of feeding 814 

(presumably not an adverse behavioral change) were discounted, results were quite 815 
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similar across individuals. Some differences were still observed, but for 32 of 42 CEEs 816 

(76%), the methods agreed as to whether an adverse behavioral change occurred 817 

(where changes associated with the onset of feeding were excluded). Further, detected 818 

changes tended to occur at similar exposure times and associated received levels. 819 

Expert scoring methods were consequently consistent with the MD method in 820 

identifying behavioral changes, but this approach also has the advantage of being 821 

descriptive and identifying changes associated with various types of behavior 822 

(movement, feeding), including variability in response severity and the level of 823 

confidence in discerning response both within and between groups. While both 824 

methods have advantages and limitations, the general agreement here was encouraging 825 

and having used both methods provides more comprehensive insight into changes 826 

during experimental exposures. Future studies should consider integrating objective 827 

statistical change-point analyses (e.g., MD results) within expert evaluation of potential 828 

responses. 829 

 830 

These findings demonstrate the kinds of context-specific differences in behavioral 831 

response identified by Ellison et al. (2012). Along these lines, they also complement and 832 

expand upon the findings of Goldbogen et al. (2013) and DeRuiter et al. (2017) regarding 833 

the importance of behavioral state in terms of response probability for blue whales, 834 

specifically the increased likelihood of response in deep-feeding animals. This study 835 

provides a different perspective on this behavioral state dependency in evaluating 836 

individual response type and severity for known exposure conditions for a relatively 837 

large sample size. Given these observations, we note the contextual differences 838 

between the simulated MFAS and some kinds of operational MFAS sources such as the 839 

SQS-53C sonar used in one CEE here; there are greater contextual similarities between 840 

the experimental source and other common operational military MFAS sources such as 841 

helicopter-dipping sonars. The experimental MFAS has proven useful in demonstrating 842 

previously unknown aspects of behavior, response, and context-dependency in these 843 

species, but, as we’ve shown, differences in exposure parameters can influence 844 
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response probability. Additional research, some of which has been conducted and some 845 

of which is underway, is needed to further evaluate the importance of contextual 846 

differences in sound source type (e.g., source level, movement, spectral features) and 847 

proximity. This approach with individual animals where exposure range was known 848 

allowed for a quantification of behavioral response probability as a function of proximity 849 

to the sound source (Fig. 4) for the ranges tested. For deep feeding animals, whales had 850 

a higher response probability when located closer to the sound source for comparable 851 

RLs, although there is considerable uncertainty within the relationships and insufficient 852 

data to test this relationship for other behavioral states. Given the available data at this 853 

point, a simple relationship between source range, received level, and response 854 

probability across all whales does not appear to exist. Further evaluation of the 855 

potential range-dependence identified within this study using a dedicated experimental 856 

design to test and further resolve these seemingly important range-received level 857 

relationships is needed before firm conclusions can be drawn. Specifically, additional 858 

studies should explicitly evaluate different dimensions of the received level-range space, 859 

including potential changes during near but quieter exposure conditions. 860 

 861 

Whale dive depth has been closely linked to changes in prey patch depth, thus prey can 862 

both mediate the response to sonar playbacks when prey are dense and can confound 863 

potential responses when prey distributions are not known. While a direct quantitative 864 

comparison is not possible for all individuals, given the absence of before and after prey 865 

data in some cases, our results were consistent with Friedlaender et al. (2016) in 866 

suggesting that the behavior of feeding blue whales is broadly influenced by features of 867 

the prey environment in ways that likely mediate responses to CEEs. Specifically, two of 868 

the three instances where the MD detected CEE responses were potentially a result of 869 

changes in prey while expert scoring classified 0 of the 3 as a CEE response (see 870 

supplemental materials for additional details). This highlights a potential strength in 871 

expert scoring in identifying specific aspects of a response in the absence of known 872 

important contextual variables. Changes in prey patch depth have been shown to result 873 
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in commensurate changes in whale dive depth, and for some individuals, the likelihood 874 

of a behavioral response to navy sonar during a playback is reduced with increased prey 875 

density while foraging.   876 

 877 

Many regulatory efforts to evaluate the effects of noise on marine mammals have 878 

primarily or exclusively used received noise exposure level as a predictor of response 879 

probability and have sought to develop more robust predictive associations. As 880 

illustrated by Ellison et al. (2012), a host of contextual factors can influence behavioral 881 

responses to noise. Several key contextual influences were identified here (and see: 882 

Goldbogen et al., 2013; Friedlaender et al., 2016; DeRuiter et al., 2017) that have strong 883 

effects on whether and how endangered blue whales respond when exposed to military 884 

MFAS signals or PRN of similar frequency and duration. Responses were mediated by a 885 

complex interaction of the animal’s behavioral state at the time of exposure, features of 886 

the environment, and the relative proximity of sound sources. Without identifying 887 

behavioral state using objective, quantitative metrics (e.g., dive depth, presence of 888 

foraging lunges) and considering this as a relevant contextual variable, it would have 889 

been much more difficult to unravel the complexity of these relationships across 890 

studies. Identifying this, within certain contexts, indicates that an increase in received 891 

levels are in fact associated with an increase in response probability. While this 892 

complexity is not yet fully understood, relating response probability, exposure level, and 893 

behavioral state dependency will enable a more insightful and informed understanding 894 

of exposure-response relationships. This does not mean that each behavioral state 895 

and/or prey contextual condition must be informed by distinct and empirical exposure-896 

response risk functions for management applications. Rather, integrated risk functions 897 

within behavioral states (e.g., foraging, traveling) and a small subset of contextual 898 

covariates (e.g., range) might be informed by targeted experimental studies in some 899 

species where relatively large sample sizes may be obtained (see Southall et al., 2016; 900 

Southall, 2017). 901 

 902 
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These results provide further evidence and increased resolution on how baleen whales 903 

respond to noise exposure. They also provide much-needed direct measurements of 904 

behavioral responses in an endangered species commonly exposed to MFAS within 905 

important habitat areas off California. As has been noted in other studies (see: Southall 906 

et al., 2016; Southall, 2017), results from locations where sonar exposure is common is 907 

likely much different from the behavioral responses of animals from areas where sonar 908 

exposure is uncommon or absent.  Although blue whales are likely low-frequency 909 

specialists, they can and do respond to sounds presented to them with primary energy 910 

in the 3-4 kHz range associated with many MFAS systems found in commercial, naval, 911 

and recreational platforms. Whales that do respond appear to recover to typical 912 

behavioral patterns relatively quickly based on the results from these CEEs, and their 913 

probability of response should be considered given the contextual dependencies 914 

described in this study. With increased energetic demands and needs for high density 915 

prey, even the cessation of feeding for a short time could have consequences for the 916 

fitness of these large animals (see: Goldbogen et al., 2013). If they are chronic, they 917 

could manifest as population-level effects. Future experimental studies and targeted 918 

monitoring informed by these results should focus on the energetic and, in turn, 919 

biological consequences of behavioral responses across different behavioral states.  920 

 921 
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 1114 

FIGURE CAPTIONS 1115 

 1116 
Figure 1. Map of overall study area showing locations for all controlled exposure 1117 
experiments (CEEs) conducted for all (n=42) blue whales. Treatment types for each CEE 1118 
(control, simulated mid-frequency active sonar (MFAS), pseudo-random noise (PRN), 1119 
and real MFAS) are indicated by different symbols.  1120 
 1121 
Figure 2. Movement, diving, and feeding behavior for three CEEs during pre-exposure 1122 
(baseline), MFAS exposure, and post-exposure phases. Subject movement during each 1123 
phase is shown in maps (left column) relative to the sound source (black circles) at 1124 
exposure. Whale diving behavior, lunges (green circles), and received cumulative sound 1125 
exposure level (cSEL in dB re: 1µPa2-s; right axis) are shown in the top panel of plots 1126 
(right column) showing lunge rate (lunges hr-1), maximum specific acceleration (MSA), 1127 
heading variance, calculated horizontal speed, and Mahalanobis distance metrics (M. 1128 
dist. - dashed line indicating maximum value in baseline conditions) are shown in 1129 
subsequent panels. Corresponding maps and plots are shown for: bw11_210b - CEE 1130 
#2011-01 (panels A,B); bw11_218b - CEE #2011-06 (panels C,D); and bw13_207a - CEE 1131 
#2013-06 (panels E,F). 1132 
 1133 
Figure 3. Movement, diving, and feeding behavior for three CEEs for which blue whale 1134 
prey (krill) schools were measured using active acoustics before and after 1135 
experimental sequences. Longitudinal plots show individual whale dive profiles (top) 1136 
and MD plots (bottom) with the exposure phase of CEEs shaded gray. Feeding lunges 1137 
are marked as green circles and prey patches measured in close horizontal proximity to 1138 
feeding whales are shown at their respective depth (m) in relative patch density (dB) 1139 
expressed as relative size and color (denser patches are larger, redder). Corresponding 1140 
dive profiles and MD plots are shown for: bw11_210b - CEE #2011-01 (panel A); 1141 
bw11_218b - CEE #2011-06 (panel B); and bw13_207a - CEE #2013-06 (panel C). 1142 
 1143 
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Figure 4. Behavioral response probability for deep-feeding blue whales exposed to 1144 
MFAS and PRN as a function of received cumulative sound exposure level (cSEL in dB 1145 
re: 1µPa2-s) for different source-receiver ranges and expert elicitation scored response 1146 
severities. Response probability model predictions (black lines) with 95% confidence 1147 
limits (shaded gray areas) are shown for 1, 2, and 5 km source-receiver ranges for 1148 
moderate (scores 4-6) and high response severity (scores 7-9). 1149 
 1150 
 1151 
TABLES 1152 
 1153 
Table 1. Controlled exposure experiments (CEEs) conducted for all blue whales in 1154 
deep-feeding, shallow-feeding, and non-feeding behavioral states. Treatment types for 1155 
CEEs include: control (no experimental stimuli presented), simulated or real mid-1156 
frequency (3-4 kHz) active sonar (MFAS), and pseudo-random noise (PRN) within a 1157 
similar frequency band (see Southall et al., 2012). Experimental start times are given for 1158 
‘pre-exposure’ (before no-noise control or noise exposure), ‘exposure’ (during no-noise 1159 
or noise presentation), and ‘post-exposure’ (following noise) phases are given in local 1160 
Pacific Daylight Time (PDT).  1161 
 1162 
 1163 
  1164 
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  1165 

                                                        
a Required source shut-down prior to full duration because individuals of non-focal species (California sea lions (Zalophus 

californianus)) entered mandated source shut-down zone. 
b Required source shut-down prior to full duration because individuals of non-focal species (either bottlenose dolphins (Tursiops 

truncatus) or common dolphins (Delphinus delphis)) entered mandated source shut-down zone. 
c Longer specified pre-exposure, exposure, and post-exposure period for operational Navy 53C sonar. 

Behavioral 
State at CEE 

Onset  

CEE  
Type 

Subject 
Identification 

CEE 
Date 

CEE 
Number 

Start Times for CEE Phases  
(local - PDT) 

Pre-
Exposure 

Exposure 
(min.) 

Post-
Exposure 

 

Deep-Feeding 
CONTROL 

(n=5) 

bw10_241a  8/29/10 2010_07 1125 1155 (30) 1225 

bw10_241_B034 8/29/10 2010_07 1125 1155 (30) 1225 

bw14_212a 7/31/14 2014_02 1346 1416 (30) 1446 

bw14_213a 8/1/14 2014_03 1506 1536 (30) 1606 

bw14_251a 9/8/14 2014_05 1155 1225 (30) 1255 

Deep-Feeding 
MFAS 
(n=13) 

bw10_239b 8/27/10 2010_05 1204 1234 (30) 1304 

bw10_246a  9/3/10 2010_12 1323 1353 (25)a 1418 

bw10_246b  9/3/10 2010_12 1323 1353 (25)a 1418 

bw11_210a 7/29/11 2011_01 1455 1525 (30) 1555 

bw11_210b 7/29/11 2011_01 1455 1525 (30) 1555 

bw11_213b 8/1/11 2011_03 1216 1246 (30) 1316 

bw11_219b 8/7/11 2011_07 1728 1758 (24)b 1822 

bw11_220b 8/8/11 2011_08 1519 1549 (30) 1619 

bw13_191a 7/10/13 2013_03 1219 1319 (58)c 1417 

bw14_211b 7/30/14 2014_01 1524 1554 (30) 1624 

bw14_218a 8/6/14 2014_04 1131 1201 (30) 1231 

bw14_256a 9/13/14 2014_07 1015 1045 (30) 1115 

bw14_262b 9/19/14 2014_10 1032 1102 (28)a 1130 

Deep-Feeding 
PRN 

(n=11) 

bw10_243a 8/31/10 2010_09 1209 1239 (30) 1309 

bw10_243b  8/31/10 2010_09 1209 1239 (30) 1309 

bw10_244b 9/1/10 2010_10 1654 1724 (30) 1754 

bw10_244c  9/1/10 2010_10 1654 1724 (30) 1754 

bw10_245a 9/2/10 2010_11 1322 1352 (30) 1422 

bw10_266a  9/23/10 2010_19 1559 1629 (30) 1659 

bw11_211a 7/30/11 2011_02 1038 1108 (18)a 1126 

bw11_214b 8/2/11 2011_04 1050 1120 (30) 1150 

bw11_218b 8/6/11 2011_06 1709 1739 (23)b 1802 

bw11_221a 8/9/11 2011_09 1429 1459 (30) 1529 

bw11_221b 8/9/11 2011_09 1429 1459 (30) 1529 
 

Shallow-Feeding CONTROL (n=1) bw13_207a 7/26/13 2013_06 1714 1744 (30) 1814 

Shallow-Feeding 
MFAS 
(n=7) 

bw10_235a 8/23/10 2010_01 1117 1147 (30) 1217 

bw10_235b 8/23/10 2010_01 1117 1147 (30) 1217 

bw10_238a 8/26/10 2010_04 1143 1213 (30) 1243 

bw10_240a 8/28/10 2010_06 0917 0947 (30) 1017 

bw10_240b 8/28/10 2010_06 0917 0947 (30) 1017 

bw13_259a 9/16/13 2013_16 1046 1116 (30) 1146 

bw14_262a 9/19/14 2014_10 1032 1102 (28)a 1130 
 

Non-Feeding MFAS (n=2) 
bw10_235_B019 8/23/10 2010_02 1617 1647 (18)a 1705 

bw10_265a 9/22/10 2010_17 1252 1322 (19)b 1341 

Non-Feeding 
PRN  
(n=3) 

bw10_251a 9/8/10 2010_16 1450 1520 (30) 1550 

bw11_218a 8/6/11 2011_06 1709 1739 (23)b 1802 

bw12_292a 10/18/12 2012_05 1304 1334 (30) 1404 
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Table 2. Controlled exposure experiment (CEE) results for all blue whales in deep-1166 
feeding, shallow-feeding, and non-feeding behavioral states. Maximum received 1167 
cumulative sound exposure levels (cSEL; dB re: 1µPa2-s) are given for all individuals for 1168 
all CEEs involving noise exposure. Behavioral changes identified using with Mahalanobis 1169 
distance statistical change-point methods and expert evaluation scoring (see text) are 1170 
presented for each whale and summarized within each behavioral state and CEE 1171 
treatment type. Relative confidence (low, med, high) for expert scoring panels as well as 1172 
the highest attributed response severity are provided. Where behavioral changes were 1173 
detected, received cSEL is given at change-points identified by MD and expert scoring 1174 
methods (see text). Whether analytical methods agree in detecting changes is identified 1175 
and total changes for MD analyses (excluding instances where changes were associated 1176 
with feeding onset) and expert scoring results are compared within categories.  1177 
 1178 
 1179 
  1180 
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 1181 


