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Abstract  

The genetic diversity, morphology and biogeography of Ammonia specimens was investigated 

across the Northeast (NE) Atlantic margins, to enhance the regional (palaeo)ecological 

studies based on this genus. Living specimens were collected from 22 sampling locations 

ranging from Shetland to Portugal to determine the distribution of Ammonia genetic types 

across the NE Atlantic shelf biomes. We successfully imaged (via scanning electron 

microscopy, SEM) and genotyped 378 Ammonia specimens, based on the small subunit 

(SSU) rRNA gene, linking morphology to genetic type. Phylogenetic analyses enabled 

identification of seven genetic types and subtypes inhabiting the NE Atlantic margins. Where 

possible, we linked SSU genetic types to the established large subunit (LSU) T-type 

nomenclature of Hayward et al. (2004). SSU genetic types with no matching T-type LSU 

gene sequences in GenBank were allocated new T-numbers to bring them in line with the 

widely adopted T-type nomenclature. The genetic types identified in the NE Atlantic margins 
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are T1, T2, T3, T6, and T15, with both T2 and T3 being split further into the subtypes T2A 

and T2B, and T3S and T3V respectively. The seven genetic types and subtypes exhibit 

different biogeographical distributions and/or ecological preferences, but co-occurrence of 

two or more genetic types is common. A shore-line transect at Dartmouth (South England) 

demonstrates that sampling position on shore (high, middle or low shore) influences the 

genetic type collected, the numbers of genetic types that co-occur, and the numbers of 

individuals collected. We performed morphometric analysis on the SEM images of 158 

genotyped Ammonia specimens. T15 and the subtypes T3S and T3V can be morphologically 

distinguished. We can unequivocally assign the taxonomic names A. batava and A. 

falsobeccarii to T3S and T15, respectively. However, the end members of T1, T2A, T2B and 

T6 cannot be unambiguously distinguished, and therefore these genetic types are partially 

cryptic. However, we confirm that T2A can be assigned to A. aberdoveyensis, but caution 

must be taken in warm provinces where the presence of T2B will complicate the 

morphological identification of T2A. We suggest that T6 should not currently be allocated to 

the Pliocene species A. aomoriensis due to morphological discrepancies with the taxonomic 

description and to the lack of genetic information. Of significance is that these partially 

cryptic genetic types frequently co-occur, which has considerable implications for precise 

species identification and accurate data interpretation. 

 

Keywords: Ammonia; genetic types; morphometrics; biogeography; taxonomy 

1. Introduction 

Ammonia is amongst the most abundant and diverse genera of benthic foraminifera 

worldwide, with possibly as many as 25-30 biological species (Hayward et al., 2004). They 

occur in the most marginal marine environments with >80% mud/silt, from salt marsh and 

estuaries to subtidal habitats. Although members of the group are able to cope with the broad 

range of salinities, oxygen levels and temperatures associated with these habitats, they appear 

absent from the colder high latitudes (Murray, 1991, 2006). Coastal margin benthic 

foraminifera, including Ammonia, are used in a variety of (palaeo)environmental studies such 

as monitoring pollution (e.g., Le Cadre and Debenay, 2006; Frontalini and Coccioni, 2008; 

2011; Foster et al., 2012; Jorissen et al., 2018), determining sea level changes over time (e.g., 

Gehrels et al., 2005; Horton and Edwards 2006) and also as proxies in palaeoclimate 

reconstructions (e.g., Sejrup et al., 2004; Groeneveld and Filipsson, 2013; Dutton et al., 2015; 

Groeneveld et al., 2018). In addition, since Ammonia is easy to collect and culture, it is 

routinely used for laboratory experiments (e.g., de Nooijer et al., 2009; Keul et al., 2013; 

Toyofuku et al., 2017). Such studies require a sound understanding of the species concept, 
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since inaccuracy in determining species would result in invalid ecological and biogeographic 

data application. Further, modern palaeoproxy calibrations are often species-specific (e.g., 

Rosenthal et al., 1997; Elderfield et al., 2006; Healey et al., 2008), and it is therefore critical 

to establish and apply the species-specific calibrations to the correct species.  

 

In foraminifera, taxonomists primarily utilise the morphological characteristics of the test to 

classify taxa and describe morphospecies (e.g., Loeblich and Tappan, 1987). Despite rigorous 

taxonomic descriptions and revisions (Ellis and Messina, 1940 and supplements), the 

inconsistent application of species names and associated synonyms (Boltovskoy and Wright, 

1976; Haynes, 1992; Pawlowski and Holzmann, 2008) remains a major problem for studies 

using benthic foraminifera. This inconsistency is a cause of particular confusion between 

members of the genus Ammonia, as they exhibit high morphological variation. Whether this 

variation is a result of ecophenotypic traits or species differences has generated much debate 

(for a comprehensive review see Holzmann, 2000 and references therein) and highlights the 

problems of relying solely on morphological traits for species designation. However, by 

utilising a combination of molecular characterisation and morphological traits, it is possible to 

distinguish some of the morphological boundaries that separate the genetic types of Ammonia. 

Globally to date, genetic characterisation of the large sub-unit (LSU) rRNA gene, herein 

referred to as the LSU, has revealed 14 genetic types within Ammonia, that exhibit varying 

degrees of morphological distinction (Pawlowski et al., 1995; Holzmann and Pawlowski, 

2000; Hayward et al., 2004; Toyofuku et al., 2005; Schweizer et al., 2011b; Saad and Wade, 

2016). For practical application, the difficulty arises in linking these characterised genetic 

types to previously described Ammonia morphospecies. For Ammonia, Hayward et al. (2004) 

have undertaken the morphological comparison between genetically characterised specimens 

using the LSU and type material. These authors identified 13 Ammonia genetic types, 

designated T1-T13, of which eight were considered to have been described already, and the 

associated taxonomic names were therefore assigned to them.  

 

The T-type nomenclature for Ammonia is now well established in the literature. For example, 

a number of studies have utilised the type descriptions and genetic T-type nomenclature of 

Hayward et al. (2004), to give taxonomic names to morphologically described (Dissard et al., 

2010; Nehrke et al., 2013) and to genetically characterised (Schweizer et al., 2011b; Lei et al., 

2016) Ammonia specimens. However, many contemporary studies still rely on using 

morphological taxonomic assignments without reference to the taxonomic descriptions 

supported by molecular evidence as proposed by Darling et al. (2016) and Roberts et al. 

(2016). Morphological traits used for species distinction can prove erroneous following 

genetic characterisation and true ecophenotypic morphological characters could remain 
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unrecognised. Incorrect taxonomic assignments in the literature leads to the merging of 

mismatched data and flawed interpretation and conclusions. These issues demand that a more 

rigorous taxonomy should be used for Ammonia, based on molecular characterisation and 

morphometric analysis together with a morphological description of the SEM images 

associated with each individual genetic type (Darling et al, 2016). If genetic types are found 

to possess differentiating morphological characters, this should be followed by the allocation 

of the most appropriate taxonomic name by comparison with formal type descriptions. 

Ideally, morphospecies names should not therefore be placed onto molecular phylogenies, 

unless both the morphology and genetic type have been linked to a formally named holotype 

(e.g., Darling et al., 2016; Roberts et al., 2016). Once established, the rigorous taxonomic link 

provides a better understanding of the true biogeography and co-occurrences of genetic types 

that can be morphologically discriminated from those that remain cryptic, and of the 

ecological niches that they occupy.  

 

While the genetic characterisation of Ammonia specimens using the LSU enabled the 

development of the genetic type nomenclature for Ammonia (T-type; Hayward et al., 2004), it 

is not the principle gene used for the study of molecular diversity and genetic characterisation 

in microorganisms, which includes the foraminifera. Instead, the small sub-unit (SSU) rRNA 

gene, herein called the SSU, is the most commonly used marker. For example, curated 

databases developed for linking DNA to morphologically based taxonomies in eukaryotes, 

such as the SILVA rRNA database (Quast et al., 2013), the Protist Ribosomal Reference 

Database (PR
2
, Guillou et al., 2013) and the PFR

2
 database for planktonic foraminifera 

(Morard et al., 2015), all use the SSU. SSU sequences allow the discrimination of most 

foraminiferal species (Pawlowski et al., 2012), and make up the majority of foraminiferal 

sequences deposited in publicly available databases such as GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/).  

 

The main reference databases for the benthic foraminifera are the forambarcoding database 

(http://forambarcoding.unige.ch/; Pawlowski and Holzmann, 2014) and the 37f database 

(Pawlowski and Lecroq, 2010; Lecroq et al., 2011). The forambarcoding database is for 

identification at species level and is based on a partial sequence of six foraminifera-specific 

hypervariable expansion segments from the 3' end of the SSU (1,000 -1,200 nt), which is used 

as the “barcode” for foraminifera (Pawlowski and Holzmann, 2014). This database includes 

only specimens for which both molecular and morphological data are available, although 

high-resolution SEM images are not always shown. The 37f database is based on a very short 

fragment (~100 bp), covering the 37f variable region of the SSU. This database allows for 

taxonomic assignment of environmental DNA sequences amplified via next-generation 
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sequencing methods. Both databases are curated and although being added to continuously, 

are still lacking total assemblage coverage and hence require additional data.  

 

The aims of this study were first to gain a more comprehensive understanding of the genetic 

diversity and biogeography of Ammonia within the Northeast Atlantic shelf seas. We sampled 

living Ammonia specimens from 22 locations across the NE Atlantic Ocean margins to 

establish their biogeographic ranges, to determine their propensity to co-occur and to 

investigate their potential cryptic nature. All individual specimens were SEM imaged and the 

range of SSU barcodes determined for each genetic type identified. We subsequently linked 

these SSU genetic types to the T-type nomenclature already established for Ammonia, to 

avoid multiple and confusing genetic nomenclature. Using an integrated approach, we carried 

out morphometric analysis on individual, genotyped tests to identify any distinguishing 

morphological criteria. Where discriminant features were recognised, we described genetic 

type morphotype profiles and linked them to formally named holotypes. Where 

morphological features were more gradational between genetic types, the creation of genetic 

type morphotype profiles were not possible, and we discuss the taxonomic and ecological 

implications of this.  

2. Materials and Methods 

2.1 Sampling 

Within this project, our sampling strategy was to include the wide range of shelf provinces 

and biomes found within the middle to high latitude regions of the NE Atlantic. The 

biogeographic classification of the shelf and upper continental slope is shown in Fig. 1, which 

follows the most recent biogeographic classification produced for the Oslo and Paris 

Conventions (OSPAR) Maritime Area (Dinter, 2001). We collected samples from 33 major 

sampling locations ranging from Svalbard to Portugal. Twenty-two yielded Ammonia 

specimens (Fig. 1; Table 1). Samples containing Ammonia were collected from intertidal and 

subtidal habitats of south Scandinavia, the British Isles and the Dutch, French and Portuguese 

margins. Intertidal samples were collected by taking a mud scraping from the surface 

sediment including the flocculent layer and seaweeds were brushed in seawater to detach the 

foraminiferal tests.  For comparisons of the Ammonia genetic types and abundances along a 

transect, equal volumes (38 cm
3
) of surface sediment were taken with a cylinder corer, down 

to 1 cm, at upper-, mid-, and lower-shore sites. Subtidal samples were collected either by 

SCUBA diving or by deployment of coring devices. All sediments and seaweeds were stored 

at 4°C prior to processing.  
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2.2 Identification of live specimens, SEM imaging, and DNA extraction and amplification 

Live Ammonia specimens were identified and processed through SEM imaging of both 

umbilical and spiral views, DNA extraction, PCR amplification and cloning as described by 

Darling et al. (2016). Cloning was performed to ensure accurate designation of genetic types, 

as intra-individual variation is common within Ammonia (Pawlowski, 2000). Individuals were 

given a unique identification number, which was used at each progressive stage of the SEM 

image, DNA extraction, amplification and sequencing process. 

2.3 Genetic characterisation via sequencing and screening of partial SSU sequences 

Sequencing was carried out according to Darling et al. (2016) using a BigDye Terminator 

v3.1 cycle sequencing kit (Applied Biosystems) and an ABI 3070 DNA sequencer (Applied 

Biosystems). Once we confirmed genetic type boundaries by DNA cloning and sequencing, 

we adopted two further approaches to speed up genetic characterisation. The first was to use a 

short sequence only (the first ~100 bp) which sits within the foraminiferal variable region 37/f 

(Pawlowski and Lecroq, 2010) providing that it clearly defined the genetic type. The second 

approach was to use a screening method by designing SSU genetic type (S-type) specific 

primers to use in conjunction with s14F1 in the secondary PCR using the same PCR 

conditions (Darling et al., 2016), to give products of different sizes depending on genetic 

type. We designed primers for the most common S-types in our dataset as follows. S1: 5’- 

acgcacgatacgcatacacaa -3’ (product ~ 530bp). S2: 5’- gacacacgcctgtcgttaaac -3’ (product 

~280bp). S5a required a mix of three primers to account for the intra-individual variation, 

S5a-1: 5’-gcccgaaggtgcaacgy-3’, S5a-2: 5’-cgtgctcgagagcaacgy-3’ and S5a-3: 5’-

acctccgaagagagcaacgt-3’ (product ~100 bp). S6: 5’-gcgagtaccgaaatacgccg-3’ (product ~390 

bp). We confirmed that primers were type-specific by performing PCRs with the correct 

Ammonia genetic type, other Ammonia genetic types and with other foraminiferal species. 

2.4 Amplification and sequencing of the partial LSU sequences 

In order to compare our findings with previous studies based on LSU sequences (Hayward et 

al. 2004; Pawlowski and Holzmann, 2008; Saad and Wade, 2016) we assigned a T-type to our 

samples. We achieved this by searching GenBank for individuals sequenced for both LSU 

and SSU genes (e.g., Holzmann et al., unpublished; Schweizer et al., 2011a, 2011b). In 

addition, we sequenced both the partial SSU and the 5' end partial LSU genes of selected 

specimens across the range of genetic types collected during this study. Amplifications of the 

partial LSU sequences were performed with the same PCR conditions as the partial SSU 

(Darling et al., 2016) and with primers 2TA and LO (Pawlowski, 2000) for the primary PCR 

followed by 2TAbis (5’-gatacgcgctaaacttaaaca-3’) and L10r (5′-aacgatttgcacgtcag-3′) in the 
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secondary PCR. We aligned partial LSU and SSU sequences from the same individuals in two 

separate alignments as described in Section 2.5 to link the LSU sequences with SSU 

sequences and determine the T-types. 

2.5 Phylogenetic analyses based on partial SSU gene sequences 

The partial SSU sequences from this study were edited in ChromasPro v1.5 (Technelysium 

Pty Ltd) and aligned manually in BioEdit v7.0.9.0 (Hall, 1999). To obtain a full global picture 

of Ammonia diversity, we also included into the alignment all Ammonia partial SSU 

sequences present in the GenBank database in April 2015 (Supplementary Table S1). From an 

alignment of 1,143 nt sites, 904 sites could be unambiguously aligned for phylogenetic 

analysis. Sixteen potential groupings were identified in the alignment and a selection of full-

length sequences representative of each group were chosen for analyses (Table 2). No 

outgroup was used in order to maximize the number of alignable sites available for analyses; 

phylogenetic trees were therefore unrooted.  

 

Phylogenetic trees were constructed using three different methods. A Bio Neighbor-Joining 

(BioNJ) tree (Gascuel, 1997) was built using Seaview 4 (Gouy et al., 2010) with 1,000 

bootstrap (BS) replicates. Maximum likelihood (ML) analysis was performed with 1,000 BS 

replicates (Felsenstein, 1985) using PhyML (Guindon and Gascuel, 2003) implemented in 

Seaview 4. Finally, Bayesian analysis (BA) was built with MrBayes 3.2 (Ronquist et al., 

2012). Two independent analyses were done at the same time with four simultaneous chains 

(one cold and three heated) run for 10,000,000 generations, and sampled every 1,000 

generations with 2,500 initial trees discarded as burn-in after convergence was reached. The 

posterior probabilities (PP), calculated during the BA, estimated the reliability of internal 

branches. The evolutionary models selected were Kimura 2 parameters or K2P (Kimura, 

1980) for BioNJ, Hasegawa, Kishino and Yano or HKY (Hasegawa et al., 1985) and General 

Time Reversible or GTR (Tavaré, 1986) for ML. A mixed model was used for BA that 

sampled across the GTR model space (Huelsenbeck et al., 2004). To correct for among-site 

variations, the alpha parameter of gamma distribution (Γ), with four rate categories, was 

calculated by Seaview (HKY+Γ, GTR+Γ) and MrBayes.  

2.6 Morphometric analysis 

2.6.1 Image preparation and measurement of morphological characteristics 

To investigate whether the genetic types could be distinguished based upon their morphology 

alone, a combination of 25 morphological test characteristics were acquired from 316 SEM 

images of both the umbilical and spiral sides of 158 individual Ammonia specimens (Table 3). 
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The morphological characters measured were primarily derived from Hayward et al. (2004) 

with some minor modifications and omissions. For example, morphological characteristics 

such as foraminiferal test area and test roundness measurements were calculated following the 

methods set out by Roberts et al. (2016). The range of measurements of each morphological 

test characteristic within each genetic type is documented in Supplementary Table S2. All 

morphometric measurements for each specimen are available in Supplementary Data 1. 

 

Specimens were excluded if >10% of the test was obscured/damaged or if the specimen had 

not been imaged from both the umbilical and spiral views. In situations where <10% of the 

test was obscured/damaged, an infilling procedure was conducted following the methods of 

Hayward et al. (2004). The morphological data were standardised by ranging the variation 

between each character from 0 to 1, following the methods of Hayward et al. (2004). 

2.6.2 Multivariate data analysis 

An unweighted pair-group method using arithmetic averages (UPGMA cluster analysis; 

dendro UPGMA, Garcia-Vallve et al., 2010) and principal coordinate ordination analysis 

(PCO; PAST version 2.17, Hammer et al., 2001) were used to assess the utility of the 25 

morphological characters in delineating the genetic types within the 158 specimens processed, 

without a priori knowledge of genetic groupings. A discriminant function analysis (DFA) was 

calculated from the results of the standardised dataset to establish the key diagnostic criteria 

that can be used to aid classification of specimens into each genetically distinct group. T3V 

was excluded from the DFA multivariate classification procedure because only two 

specimens were available for morphological analysis within this genetic subtype. The 

robustness of the assignment is assessed through a resampling cross-validation procedure in 

SPSS v.22. The morphological characteristic of presence of dorsal opening, although the main 

morphological criterion used to distinguish T3 from T15“by eye” (Fig. 2), was excluded from 

this analysis because it did not exhibit enough variance between the genetic types.  

3. Results 

3.1 Genetic characterisation based on the SSU and phylogenetic analyses 

In total, 378 Ammonia individuals were SEM imaged and genetically characterised in this 

study using the partial SSU, via either cloning and sequencing, or screening methods 

(Supplementary Table S3). Of these, 233 individuals were sequenced, of which 59 have been 

cloned (between 2-12 clones each) to determine the number of genetic types and the degree of 

intra-individual variation. The remaining 145 specimens were fast screened with S-Type-

specific primers (Section 2.3). Altogether, 388 new partial SSU sequences were produced and 
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deposited in the GenBank database (accession numbers: MH124763-MH125150), with 

supplementary information (e.g., SEM images) deposited in the database 

“foramBARCODING” (http://forambarcoding.unige.ch). SEM images of representative 

individuals for each genetic type are shown in Fig. 2.  

 

For phylogenetic reconstruction, the sequences generated in this study were manually aligned 

together with 87 other Ammonia SSU sequences retrieved from GenBank (see methods, 

Supplementary Table S1). The sequences separate into 16 discrete groups within the 

alignment, of which six were identified within the NE Atlantic, one of which was further split 

into two subtypes. The NE Atlantic groups were assigned the S-type identifiers S1, S2, S3, 

S4, S5a, S5b, and S6. The remaining ten groups occur outside the study area in Japan, Israel, 

USA, Cuba, Australia, New Zealand and New Caledonia.  

 

A total of 73 partial SSU sequences were used for phylogenetic analyses (46 from GenBank 

and 27 from this study). All sequences used for phylogenetic analyses are listed in Table 2. 

The evolutionary relationships among Ammonia were inferred using the BioNJ method with 

the K2P model (Fig. 3). The general topologies retrieved using BioNJ, ML-HKY+Γ, ML-

GTR+Γ and BA were slightly different (see Supplementary Figs. S1-S3, respectively). These 

discrepancies can be explained by the low phylogenetic signal resulting from the relatively 

limited number of informative sites in the dataset. The statistical support for the BioNJ, ML-

HKY+Γ and BA trees is shown at the nodes of the BioNJ tree (Fig. 3). 

 

Sixteen genetic types previously identified in the alignment were also retrieved in the 

phylogenetic analyses (Figs. 3 and S1-S3). The genetic types represented by more than one 

sequence formed monophyletic clades with high statistical support (> 85% BS or 0.85 PP), 

except for S2, which exhibited either low support (BioNJ: 66%, ML-HKY+Γ: 44%) or was 

paraphyletic with S3 (ML-GTR+Γ, BA). Within the alignment, S5 can be divided into the two 

subtypes, S5a and S5b. They were given subtype ranks since their sequence differences are 

significant but small. Further sampling would improve their characterisation, but there is 

currently not enough phylogenetic signal in the 1,143 nt site alignment used in this study to 

fully separate them into two discrete phylogenetic clades (Figs. 3 and S1-S3).  

 

The relationships between the genetic types are more difficult to assess, as the deeper nodes 

have low support and the branching patterns sometimes vary between analyses (Figs. 3 and 

S1-S3). Nevertheless, some groupings are more stable than others. S5a and S5b are closely 

related subtypes and group together (98/42/0.87). They also form a highly supported group 

(99/85/82/0.88) with S6 in all analyses. The genetic types S2 and S3 are also closely related 
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with high statistical support (100/96/98/1.00). The two clades (S5-S6 and S2-S3) fall on a 

common but unsupported branch, but cluster closer to each other than to either S1 or S4 in the 

phylogeny. Genetic types S1 (100/100/1.00) and S4 (100/90/0.99) are both well supported 

clades in the unrooted tree. 

3.2 Linking SSU to LSU sequences and the T-type nomenclature used in the genetic 

characterisation of Ammonia 

Genetic characterisation of Ammonia utilising the LSU has yielded 13 genetic types, 

designated T1-T13 (Hayward et al., 2004). In order to avoid confusion, since the LSU T-type 

nomenclature is already established, we have linked our S-types S1-S6 directly to the LSU 

nomenclature. A GenBank search revealed that 37 individual specimens had previously been 

characterised for both their LSU and SSU genes (Hayward et al., 2004; Schweizer et al., 

2011a, 2011b). Among them, 19 represent the S-types S1, S2, S4, S5a and S6 identified in 

this study. In addition, we sequenced individual specimens of S-types S2, S3, S4, S5a and 

S5b for both genes, (LSU accession numbers: MH136606-MH136620) to obtain their 

equivalent T-type and also to supplement the available GenBank data (Supplementary Table 

S4). 

 

Separate alignments of all the SSU and LSU sequences from the same individuals revealed 

that the same six clades of Ammonia can be recognized in both genes. Two SSU genetic types 

and two subtypes from this study can be directly assigned to a previously defined T-type 

(Hayward et al., 2004). These convert to S1=T6, S4=T1, and the two subtypes S5a=T3S and 

S5b=T3V (Table 4). Allocation of a T-type to S2 and S3 is more complex because specimens 

containing S2 and S3 SSU sequences have both been previously allocated T2 (Table S1). 

However, the S2 specimens incorporate the T2 LSU sequences, whilst on close inspection, 

those of S3 differ (Supplementary Data 2). Despite being very closely related, the variable 

units in our S2 specimens were not found in the S3 specimens and vice versa indicating 

genetic distinction. However, S2 and S3 cannot always be separated in phylogenetic analysis 

(Figs. 3 and S1-S3), since we use a conservative alignment which does not include the 

variable units which characterise them (Section 2.5). A more comprehensive sample survey 

with extensive cloning is required to fully understand the relationship between S2 and S3. We 

have therefore assigned them to subtypes T2A (S2) and T2B (S3) until their relationship can 

be fully resolved. In addition, we have allocated T14 to a previously undesignated Australian 

genetic type (Fig. 3; Schweizer at al. 2011a), and finally T15 is allocated to S6. The 

established T-type nomenclature (Table 4) will be used for all further results and discussion. 

subtypesubtype3.3 Morphological analysis of the Ammonia genetic types 
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A combination of 25 morphological test characteristics (Table 3) were determined from the 

SEM images of both the umbilical and spiral sides of 158 individual Ammonia specimens for 

multivariate data analysis. The range of measurements of each morphological test 

characteristic within each genetic type is documented in Supplementary Table S2. UPGMA 

cluster analysis and PCO analysis were employed to assess the utility of morphology as a tool 

for Ammonia classification without a priori knowledge of genetic groupings. A DFA was 

then performed on the dataset utilising our knowledge of the genetic types, to assess the 

effectiveness of morphological traits in predicting genetic type membership and to identify 

the diagnostic value of the morphological features analysed. 

3.3.1 UPMGA analysis 

The UPGMA cluster analysis demonstrates that genetic types T3S, T3V, and T15 are 

morphologically distinct from genetic types T1, T2A, T2B, and T6, as they form discrete 

clusters within the morphology dendrogram (Fig. 4). In comparison, no clear clustering 

patterns were identified between the less ornate genetic types T1, T2A, T2B and T6, as they 

exhibited extensive morphological overlap between the individual specimens (Fig. 4).  

3.3.2 PCO analysis 

The primary PCO analysis demonstrates similar results to the UPGMA cluster analysis. 

Genetic types T3S and T3V can clearly be distinguished from genetic types T1, T2A, T2B, 

T6 and T15 in the PCO morphospace (Fig. 5). In addition, despite low numbers of T3V 

specimens, T3S and T3V can also be separated from each other. However, unlike the 

UPGMA cluster analysis (Fig. 4), T15 is not separated from the less ornate genetic types 

within the PCO morphospace (Fig.5).  

 

In order to clarify the validity of the morphological separation of genetic type T15 within the 

UPGMA analysis (Fig. 4), a refined PCO analysis was performed. This analysis omitted the 

specimens from genetic types T3S and T3V because they were clearly separated by the 

primary PCO analysis and the UPGMA dendrogram (Figs. 4 and 5). The refined PCO 

analysis illustrates that genetic type T15 specimens form a discrete non-overlapping cluster, 

clearly distinct from the PCO morphospace occupied by genetic types T1, T2A, T2B and T6 

(Fig. 6), in agreement with the UPGMA analysis. This extended multivariate morphological 

analysis also reveals that no other genetic type can be clearly delineated, as substantial 

morphological overlap is observed between genetic types T1, T2A, T2B and T6 within the 

PCO morphospace (Fig. 6). Although it should be noted that whilst specimens of genetic 

types T1 and T2B are completely encompassed within the morphospace of genetic types T2A 

and T6, they do not exhibit any overlap with each other (Fig. 6).  
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3.3.3 Discriminant function analysis (DFA)  

Genetic type T3V was excluded from the DFA multivariate classification procedure, again 

(see 2.6.2) because only two specimens were available for morphological analysis within this 

genetic type. The DFA reveals that in total 98.1% of Ammonia specimens were correctly 

classified into their genetic type, based upon their morphological test characteristics and that 

90.4% were correctly assigned after the cross-validation procedure (Wilks: -0.001, 

significance p: <0.001). From a total of 156 specimens, three Ammonia specimens were 

misclassified in the DFA, and 15 specimens were misclassified in the cross-validation 

analysis (Table 5).  

 

Genetic type T3S exhibits the highest assignment success based upon morphology, as all 

specimens were correctly classified in both the DFA and cross validation procedures. In 

addition, no other genetic types were misclassified into this genetic type (Table 5). Specimens 

of genetic type T15 also exhibit perfect discrimination in the DFA based upon their test 

morphology. However, the cross-validation procedure illustrates that four specimens of 

genetic type T15 were incorrectly classified into other genetic types. This misclassification 

could be explained by the omission of a key discriminatory variable (presence of secondary 

dorsal openings) from the DFA, because it did not exhibit variance between the groups. This 

suggests that even with the exclusion of a key morphological trait, this genetic type can be 

successfully discriminated from other Ammonia genetic types based on its other 

characteristics of test morphology. 

 

In contrast, the results of the DFA and cross validation procedure indicate that morphological 

separation between the less ornate genetic types T1, T2A, T2B and T6 is more challenging. 

Whilst genetic type T2A exhibited perfect discrimination in the DFA and cross-validation 

procedure, two specimens of T6 and four specimens of T2B were misclassified into this 

genetic type. Although the DFA illustrates that 87.5-100% of specimens of genetic types T1, 

T2B and T6 can be correctly classified, only 25-92% of specimens were classified into their 

correct groups in the cross-validation procedure. In addition, the misclassification of 

specimens is evenly distributed between the three genetic types (Table 5). This indicates that 

the interspecific morphological boundaries determined in this study between genetic types are 

not discrete and are gradational in nature. However, no morphological overlap was observed 

between genetic types T1 and T2B, suggesting that it may be possible to separate these 

genetic types from one another based on morphology. The key diagnostic morphological 

variables identified by the DFA include a combination of ornamentation and structural 

features. These are development of thickened calcite on the spiral side (24), development of 

beads and grooves along the edge of the suture (10, 11), porosity features including pore 
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density and pore diameter (5, 20, 21), degree of thickened calcite on folia (8), the 

development of radial sutural furrows (23), proloculus diameter (22), and test roundness (17). 

The morphological traits in brackets correspond to the characters described in Table 3.  

3.4 Biogeography, depth and habitat preferences of Ammonia genetic types in the NE 

Atlantic 

The biogeographical distribution of each genetic type identified in this study is described 

in Table 6 and accompanied by individual distribution maps (Figs. 7 and 8).  Depth and 

habitat preferences for each of the genetic types are described in Tables 1 and 6. At 

Dartmouth (location 18), three different Ammonia genetic types (T1, T2A, and T3S) 

were found in a single sediment sample taken from the lower-shore sampling site (Table 

1). To determine whether this was consistent across the whole of the intertidal zone or 

whether different genetic types dominated different areas of the shore, we collected 

three sediment samples of equal volume (38cm
3
) along a transect from the upper-, mid- 

and lower-shore, to genetically characterize the living Ammonia profiles. The results 

show increasing numbers of individuals and genetic types from the upper- to the lower-

shore (Table 1; Fig. 9). On the upper shore, T2A comprised 100% of the Ammonia 

assemblage, but only six Ammonia specimens were found in total. On the mid-shore, of 

15 specimens, T2A made up 80%, whilst T3S contributed 7% of the assemblage and T1 

accounted for 13%. On the lower shore, T2A again dominated the assemblage 

comprising 75% of the 65 Ammonia specimens, whilst T3S and T1 made up 22% and 

3%, respectively (Fig. 9).4. Discussion 

The taxonomy of Ammonia is still in confusion, although the seminal study by Hayward et al. 

(2004) has brought some taxonomic order to this globally distributed genus. Nevertheless, the 

identification of Ammonia specimens remains hugely challenging, due to the cryptic or 

pseudo-cryptic nature of some genetic types and the perceived wide morphological variation 

in others. We now present a clear overview of the seven genetic types and subtypes of 

Ammonia identified along the NE Atlantic Ocean margins. For each genetic type and subtype 

we have provided SSU barcodes (Genbank) linked to SEM images (forambarcoding database) 

enabling us to deliver the first morphometric analysis on a dataset of fully barcoded 

specimens.  

 

In agreement with Hayward et al. (2004) and Schweizer et al. (2011a), we demonstrate that 

genetic subtype T3S and genetic type T15 can be morphologically distinguished. In addition, 

genetic subtype T3V can also be distinguished by morphometric analysis. However, a larger 

sample set and further genetic profiling is required to establish this subtype as distinct from 

T3S. We also provide evidence that the remaining four genetic types/subtypes cannot be 

robustly delineated 100% of the time with the morphometric analyses performed in this study 

and, at present, should be considered as cryptic species. However, a semi-automated method 
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to measure the porosity of Ammonia tests presented in other studies (Petersen et al., 2016; 

Richirt et al. in press) may prove an additional and useful tool for their discrimination. 

 

Following the strict integrated approach proposed by Roberts et al. (2016), it is not possible to 

assign taxonomic names without adding further potential confusion to the literature. However, 

the taxonomic allocations made by Hayward et al. (2004) for these genetic types are discussed 

below. We provide biogeographical distributions of each genetic type within the NE Atlantic 

margins and ecological information including co-occurrence profiles, which, combined with 

morphological information, will be helpful in identifying genetic types in the field.  

 

Whilst the sampling regime employed in this study provides a broad overview of the regional 

distributional patterns of Ammonia in the NE Atlantic, it is important to recognise that it is not 

exhaustive. For example, some of the biogeographic provinces identified in Dinter (2001) 

have not been sampled, such as the Warm Lusitanean subprovince and the White Sea. 

Additionally, the Cool Lusitanean and West Norwegian subprovinces have only been 

marginally sampled (Fig. 1). Nevertheless, the northern limit of Ammonia is known (around 

60°N), and the bias concerns mainly the southern region. There is also a sampling bias 

towards intertidal areas. Consequently, the complete genetic and morphological diversity of 

Ammonia species may not have been fully captured in the subtidal areas of focus in this study. 

In addition to data from the NE Atlantic margins, we report a small dataset from subtidal 

sampling undertaken in the western Mediterranean Sea, to supplement a large body of 

intertidal sampling that has been documented in the region (e.g. references in Supplementary 

Tables S1 and S5). Despite these limitations, the sampling employed in this study presents the 

most extensive genetic and taxonomic evaluation of Ammonia diversity conducted to date 

within this region.  

4.1 Genetic characterisation and molecular phylogeny 

As discussed, the T-type nomenclature for the genetic types of Ammonia is now well 

established, despite being based on genetic differences in the LSU rather than the SSU, which 

is the common practise for the other foraminiferal groups (Pawlowski and Holzmann, 2014). 

Therefore, to avoid multiple and confusing nomenclature, a primary aim of this study was to 

bring the T-type nomenclature in line with the molecular characterisation of other 

foraminiferal groups and to generate SSU barcodes for database submission.  

4.1.1 Ammonia rRNA gene arrays  

Ammonia genetic types were initially characterised by direct comparison of SSU sequences 

within a 1143 nucleotide site alignment, of which only 904 bp could be unambiguously 
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aligned for use in phylogenetic analysis. Examination of the unalignable variable regions of 

the SSU 3’ fragments (e.g., Schweizer et al., 2008; Pawlowski and Lecroq, 2010; Weber and 

Pawlowski 2014), showed that five out of the six SSU genetic types identified in the study 

area contained several different gene copies. However, the variable units observed within and 

between individuals were unique to each genetic type, including between the closely related 

subtypes T2A and T2B. In contrast, T3S and T3V have one shared variable unit. The 

presence of multiple gene copies within the SSU gene variable regions in Ammonia is 

consistent with our data on elphidiid genetic types (Darling et al., 2016), and with work done 

specifically on a Patagonian Elphidium species (Pillet et al., 2012), together with other 

foraminiferal species belonging to the rotaliids, textulariids and allogromiids (Weber and 

Pawlowski, 2014). Multiple gene copies were also observed previously in the LSU of 

Ammonia (Holzmann et al., 1996), confirming that this is a common phenomenon in the 

rRNA gene arrays of the benthic foraminifera. We used a representative set of SSU gene 

copies to define each genetic type, with the exception of genetic type T1, for which only one 

gene copy was found within the eight specimens collected in our study area. However, T1 has 

a cosmopolitan distribution (Hayward et al., 2004) with a wide range of variable units within 

its SSU sequences (Fig.3; Table S1), and the New Zealand T1 sequence (HE598562) has 

identical units to those of our T1 sequences, confirming its identity.  

4.1.2 Phylogenetic analyses based on SSU sequences  

The Ammonia genetic types T1, T2, T3S, T3V, and T6 identified within our study area, were 

first recognised by Holzmann and Pawlowski (2000). However, we further divided T2 into 

two subtypes in this study (T2A and T2B), as there was some degree of support for their 

separation in the SSU NJ phylogeny. The clade T2B is always well supported (BioNJ: 99%, 

ML-HK: 94%, ML-GTR: 96%, BA: 1.00), whereas the clade T2A has either a low support 

(BioNJ: 66%, ML-HKY: 44%; Fig. 3; Fig. S1), or does not exist (ML-GTR, BA; Fig. S2-S3). 

The possibility of two potential subtypes of Ammonia T2 was mentioned in Holzmann and 

Pawlowski (2000) and later Weber and Pawlowski (2014) also suspected the presence of an 

additional genetic type within the T2 clade. The designation T15 was also allocated to the 

SSU genetic type S6, which was identified within our study area. This genetic type had 

previously been morphologically identified as the species A. falsobeccarii (Rouvillois, 1974; 

Schweizer et al., 2011a). Six of the Ammonia SSU genetic types (T1, T2A, T2B, T3, T6, and 

T15) were well supported in the NJ phylogeny (Fig. 3). However, the very closely related 

genetic subtypes T3S and T3V  were not well supported, as the SSU phylogenies produced 

from our conservative alignment do not fully resolve them (Supplementary Data 3). 

Nevertheless, they show sufficient difference in their variable regions to be considered 

subtypes, and these sister genetic types were already split and allocated to T3S and T3V by 
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Hayward et al. (2004) based on their LSU sequences (See Supplementary Data 2 for LSU 

alignment of T3S and T3V). Investigation of the hypervariate rRNA internal transcribed 

spacer (ITS) region of these two genetic types, in combination with additional T3V specimens 

sampled and cloned from other locations, may shed more light on their phylogenetic 

relatedness. 

 

One divergent clade within the phylogenetic tree (Fig. 3) includes two sequences from Lizard 

Island on the East coast of Australia (Schweizer et al., 2011b). We have designated this 

genetic type T14, since it has not previously been assigned. Interestingly, it has not yet been 

identified across the Coral Sea in New Caledonia where T1, T12 and T13 were all found. 

However, Hayward et al. (2004) reported six distinctive Ammonia morphotypes within the 

sediments there, suggesting that there are three types still to be sequenced. Whilst it is 

important to note that some of these morphotypes might be present as a result of post-mortem 

transport, it is also plausible that T14 is one of these New Caledonia morphotypes that are yet 

to be sequenced. 

4.2 Morphological discrimination of Ammonia genetic types and cryptic diversity 

This study is the first morphometric analysis performed on a dataset of fully genotyped 

specimens including the complete range of Ammonia genetic types identified along the NE 

Atlantic margins. These are T1, T2A, T3S, T3V and T6, which were also analysed by 

Hayward et al. (2004), plus T2B and T15, which were not analysed in the 2004 study. In total, 

316 SEM images from 158 specimens were used in morphometric analyses. Using a range of 

statistical analyses, we have directly compared the interspecific taxonomic boundaries 

identified by quantitative morphological analysis, against the seven distinct genetic types and 

subtypes from the NE Atlantic.  

4.2.1 Morphologically resolved genetic types  

Genetic subtypes T3S and T3V can be robustly distinguished from genetic types T1, T2A, 

T2B and T6, using a combination of structural and ornamental test characteristics (Table 3; 

Supplementary Table S2). Interestingly, although only limited genetic divergence has been 

identified between T3S and T3V (Fig. 3; Supplementary Data 2 and 3), they exhibit clearly 

distinctive morphologies (Figs. 2, 4 and 5), providing substantial support for their potential 

genetic distinction. T3S can be distinguished based on a combination of morphological 

characters, including the development of thickened calcite over the spiral central area (Fig. 2). 

This species also typically exhibits a more pronounced development of the radial sutural 

furrows than specimens from genetic subtype T3V (Supplementary Table S2). In addition, 

T3S commonly possesses a number of umbilical bosses (0-3). In contrast, T3V lacks a 
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distinctive umbilical boss. Instead, T3V seems to be distinguishable from T3S by its stronger 

development of beads and grooved notches on the umbilical side, which sometimes extend all 

the way to the periphery of the test (as depicted in Fig. 2; Supplementary Table S2). T15 can 

be discriminated by a single discrete morphological test trait that is the presence of secondary 

dorsal openings (Fig. 2; Schweizer et al., 2011a), illustrating the effectiveness of morphology 

as a tool for species delineation in these genetic types. 

4.2.2 Morphologically cryptic genetic types  

The remaining four Ammonia genetic types (T1, T2A, T2B and T6) have significantly fewer 

discriminating characteristics. They overlap in the PCO morphospace, in the UPGMA cluster 

analysis tree, and even though T2A was correctly assigned to its genetic type 100% of the 

time in the DFA cross validation procedure (Figs. 4, 5 and 6; Table 5), other genetic types (T6 

and T2B) were misclassified as T2A. These genetic types exhibit gradational test 

characteristics, i.e., the morphological boundaries between them are not discrete 

(Supplementary Table S2). They exhibit the least test ornamentation, possess a broadly 

rounded periphery and have a similar number of visible test chambers per whorl 

(Supplementary Table S2).  

 

Genetic type T6 has the largest average pore diameter (mean diameter 1.0-4.23 μm on the 

spiral side and 1.39-8.64 μm on the umbilical side, (Supplementary Table S2). However, the 

average pore sizes of end members of T1, T2A and T2B all overlap with T6, with the 

exception of T2B on the umbilical side, where average pore size is smaller (there is overlap 

on the spiral side). In contrast to T6, genetic type T2A commonly has smaller pores (mean 

diameter 0.51-1.26 μm on the spiral side and 0.33-2.02 μm on the umbilical side), but higher 

pore density (4-28 pores per 100 sq. μm). Hayward et al. (2004) suggested that T2 can be 

distinguished from T1 and T6 by its small pores. However, our analysis shows significant 

overlap with other genetic types in the PCO morphospace (Fig. 6), and misclassifies T6 as 

T2A in the cross-validation procedure (Table 5). In addition, we have split T2 into T2A and 

T2B in this study, and T2B commonly has the smallest pore diameters (e.g., mean pore 

diameter 0.39-0.87 μm on the umbilical side). Both genetic types T6 and T2A also sometimes 

display the development of small pustules along the edges of umbilical sutures (often 

extending to the periphery) and ornamentation on the folia, which can help to distinguish 

them from genetic types T1 and T2B, which rarely exhibit these characters. Genetic type T1 

typically exhibits slightly lower pore density in contrast to the other three Ammonia genetic 

types (T1: 6-8 pores per 100 sq. μm; T2A: 4.76-29.40 pores per 100 sq. μm; T2B: 6.06-17.35 

pores per 100 sq μm; T6: 0.56-11.35 pores per 100 sq. μm; Supplementary Table S2), 

together with a fissure on the spiral side (Fig. 2), although this feature is not always strongly 
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developed. T1 also rarely possesses a small umbilical boss, being often depressed in the 

umbilical region and exhibiting very weak to weak secondary calcite on the spiral area 

(Supplementary Table S2). Interestingly, in the Lagoon of Venice, where both T1 and T2B 

have been observed, Holzmann and Pawlowski (1997) reported being able to distinguish 

“with difficulty” the two distinct genetic types, based on pore parameters and test size. Our 

morphometric analysis supports this, as T1 and T2B do not overlap in the PCO morphospace 

(Fig. 6). Pore parameters are one of the key diagnostics in morphometric analyses of the less 

ornate Ammonia genetic types (Hayward et al., 2004; this study). Studies using the semi-

automated method to measure the porosity (percentage of surface in the measurement frame 

covered by pores) of Ammonia tests (Petersen et al., 2016; Richirt et al., in press) have 

discriminated T1 and T6 from T2A/B but T2A and T2B remain morphologically 

indistinguishable. In the literature, porosity is currently explained either by genetic 

differences (e.g., Morard et al., 2009; Schweizer et al., 2009; Petersen et al., 2016) or 

ecophenotypic variations (e.g., Glock et al., 2011; Kuhnt et al., 2014; Petersen et al., 2016; 

Roberts, 2016). However, with the exception of Roberts (2016), those studies promoting 

ecophenotypic variations to explain porosity differences, used non-genotyped individuals. 

Hence, in these studies a genetic basis for changes in porosity cannot be ruled out. The work 

by Roberts (2016) however, does provide some evidence for ecophenotypic variation of pore 

size. Ammonia T6 specimens from Hanӧ Bay (location 7) had significantly larger pore size 

than T6 specimens from Norfolk (location 13), Laugharne Castle (location 14) and Cardiff 

(location 17). The major difference between these four sites is that the Ammonia T6 

specimens were sampled from low salinity (7-13) subtidal waters at Hanӧ Bay as opposed to 

intertidal mudflats at all other locations. In addition, the Hanӧ Bay specimens demonstrated 

significant signs of etching, which may have contributed to the larger pore sizes, and more 

studies are required therefore, to determine habitat influence on pore size. 

 

This study shows that genetic types T1, T2A, T2B and T6 are partially cryptic due to overlap 

of endmembers. Whilst some key diagnostic morphological variables were identified (Section 

3.3.3), no diagnostic features were found in this study to consistently delineate between these 

genetic types. This indicates that the less ornate genetic types are practically cryptic in an 

applied taxonomic situation. These results underscore the necessity for employing multiple 

lines of evidence (such as DNA, ecology, morphology, and biogeography) for re-evaluating 

taxonomic boundaries within this genus, because at present, morphology alone is insufficient 

for elucidating diversity. This is illustrated by a recent morphometric study focusing on the 

morphology of sequenced genetic types T1, T2A/T2B together and T6, which has 

successfully discriminated these three groups on the basis of morphological criteria 

observable with a stereomicroscope (Richirt et al., in press). 
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4.2.3 Comparative morphometric studies in Ammonia 

Hayward et al. (2004) found that all molecular types could be discriminated based on their 

morphology, although end members were hard to distinguish from each other. Superficially, 

this appears counter to our findings, as our study suggests that there is morphological overlap 

between end members that make some genetic types partially cryptic. However, previously 

unrecognised genetic diversity could account for some of the differences in the morphological 

boundaries observed between our study and those of Hayward et al. (2004). In particular, the 

splitting of T2 into T2A and T2B, has increased the difficulty in delineating these small less 

ornate genetic types. T2B is entirely enclosed within the morphospace of T2A and overlaps 

with T6 (Fig. 5), and 25% of T2B specimens are misclassified as T2A in the DFA cross 

validation procedure (Table 5).  The interspecific morphological boundaries identified for T2 

by Hayward et al. (2004) will therefore encompass the morphological characters of T2B.The 

differences in the morphological boundaries identified between this study and those of 

Hayward et al. (2004) may also be the product of the different morphological characteristics 

analysed. For example, this study measured 23 out of the 37 morphological characters 

originally assessed by Hayward et al. (2004), and a number of these variables were slightly 

modified. We also utilised computer-aided techniques to standardise the measurements of 

several morphological characteristics, thereby reducing human subjectivity. One of the 

morphological characteristics not measured in this study, but measured by Hayward et al. 

(2004) is the development of the protoforamen. Hayward et al (2004) determined that T1 

always possesses a protoforamen that is often strongly developed. Measuring this 

characteristic might help in discrimination of T1. Nine of the morphological features used by 

Hayward et al. (2004) that were omitted in this study were due to the unavailability of SEM 

images taken from the profile aspect of the foraminifera. Therefore, the taxonomic re-

evaluation of the morphological boundaries of Ammonia presented in our study might not 

have captured all the key diagnostic traits. For example, Hayward et al. (2004) identified that 

the profile diameter is a strong diagnostic character, thus the inclusion of this feature in future 

investigations may help to discriminate between cryptic specimens.  

4.3 Nomenclature and taxonomy  

The genetic types defined for Ammonia (T1-T15) are thought different enough to be 

considered as separate species (Holzmann, 2000; Hayward et al., 2004; this study), yet 

distinct genetic types are not always morphologically discrete (Pawlowski et al., 1995; 

Holzmann and Pawlowski, 1997; Holzmann, 2000; Hayward et al., 2004; this study). Where 

morphological variation is observed, the traditional view would have been that they represent 

ecophenotypic variants of Ammonia (e.g., Schnitker, 1974 Jorissen, 1988; Holzmann, 2000 
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and references therein). However, in agreement with Hayward et al. (2004), the high number 

of individual specimens genotyped in this study confirms that the morphological differences 

observed in morphometric analyses are due to genetic distinction and are not a result of 

environmentally controlled morphological variations. Species names can therefore be 

confidently allocated to those genetic types that can be morphologically discriminated and 

match a strict type description. However, several of the genetic types are partially cryptic or 

pseudo-cryptic (T1, T2A, T2B and T6) and only genetic types T3S, T3V and T15 can be 

robustly distinguished. 

4.3.1 Allocation of species names 

Morphospecies names cannot be confidently allocated to genetic types unless both the 

morphology and genetic type have been linked to a formally named holotype (Roberts et al., 

2016). Ideally live topotypes should also be sampled to complete the picture, but this is not 

always possible. To overcome this issue, a three-stage approach has been proposed to make 

the genetic/taxonomic link (Darling et al., 2016; Roberts et al., 2016), which incorporates the 

following steps. (i) Genetic characterisation with high-resolution imaging of the test, (ii) 

genetic type delineation by generating a morphotype description produced only from the 

range of test morphologies associated with the genetic type and (iii) allocation of the most 

appropriate taxonomic name by linking the genetic type morphotype description to a 

taxonomic morphospecies description, using only strict morphological criteria. Of those 

species that can be robustly delineated via morphometric analysis, T3S and T15 can be 

confidently allocated morphospecies taxonomic names using this three-step method. The 

allocation of T3V as a distinct subtype or species, and hence the allocation of a species name, 

requires further analysis of additional specimens to confirm the morphological delineation 

observed here and to determine the uniqueness of the units of intra-individual variation in the 

rRNA gene arrays.  

 

Genetic subtype T3S description. – Test relatively large, trochospiral, inflated and usually 

with lobulate periphery, at least in the last part of the final whorl. Between 8 and 12 chambers 

in the final whorl. On the spiral side, it typically has pronounced development of sutural 

furrows along both the radial chamber sutures and the spiral suture. These are usually 

restricted to the later part of the last whorl, but they are sometimes found almost throughout 

the last whorl. It has often developed thickened calcite over the spiral central area. Relatively 

strong development of beads and grooved notches are seen on the umbilical side, sometimes 

extending to the periphery. Usually it has one large umbilical boss, sometimes up to three, but 

sometimes lacking. 
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In agreement with Hayward et al. (2004) we link genetic type T3S to the morphospecies 

Ammonia batava (Hofker, 1951). Hofker (1951) described this new species (as Streblus 

batavus) with the North Sea as type locality (Voorne Island, The Netherlands). Hofker (1951) 

separated Streblus batavus from Ammonia beccarii (Linné, 1758), i.e., as a smaller and less 

depressed form, and he discussed in detail the differences between Streblus batavus and the 

type material of Ammonia beccarii (Linné, 1758) from Rimini in the Adriatic, including 

differences in apertural and internal structures.  

 

Genetic type T15 description. – Test relatively large, trochospiral, inflated and typically with 

lobulate periphery, at least in the last part of the final whorl. Between 7 and 9 chambers in the 

final whorl. A typical morphological test trait for this genetic type is the development of 

secondary dorsal openings where the spiral suture meets the radial chamber sutures. In most 

specimens these openings are only developed along part of the last whorl, but they are often 

seen throughout the last whorl and sometimes even along part of the second-last whorl. 

Relatively strong development of beads and grooved notches are seen on the umbilical side, 

but these are usually restricted to the central area and not extending to the periphery. There is 

no distinct umbilical boss, but sometimes several minor less well-defined bosses are seen in 

the central area. This genetic type (T15) can be linked to the morphospecies Ammonia 

falsobeccarii (Rouvillois, 1974; see Schweizer et al., 2011a). 

4.3.2 Naming cryptic types of Ammonia 

Until the partially cryptic genetic types can be conclusively linked to the morphology of type 

specimens and allocated taxonomic names, they should be named following the system of 

Hayward et al. (2004) as Ammonia sp. T1, Ammonia sp. T2A, Ammonia sp. T2B, and 

Ammonia sp. T6, to avoid the taxonomic confusion that is prevalent in the literature.  This is 

of course only possible, if genotyping has been carried out. The allocation of either a T-Type 

or a species name to any cryptic specimens, without the aid of genotyping is not 

recommended, but if carried out, must be done with care, and any supporting biogeographic 

and ecological information should be provided.  

 

Hayward et al. (2004) did apply taxonomic names to a number of the genetic types identified. 

Ammonia sp. T2 has been linked to the taxonomic name A. aberdoveyensis Haynes, 1973 (cf. 

pl. 38, no. 1-2; Holzmann and Pawlowski, 2000; Hayward et al., 2004). Although both T1 and 

T2 were found at the type locality, T2 was assigned to A. aberdoveyensis due to its smaller 

proloculus in line with the holotype. In this study, we have split T2 into the cryptic types T2A 

and T2B. Nevertheless, it is T2A that is found at the type locality in the Boreal province, 

Wales, UK. Although T2B is also found in Wales, it is only found in the Boreal-Lusitanean 
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province further south and appears to be a warmer water species than T2A. It is therefore 

possible to retain the name A. aberdoveyensis for T2A, with the caveat that T2A and T2B 

cannot be morphologically delineated with confidence. Biogeographical data can be used to 

assist identification, as it is unlikely that T2B will be found in the North Sea boreal province, 

whereas T2A has been identified there. However, in warmer waters they can co-occur (Fig. 7; 

Section 4.5.2) and hence care must be taken in taxonomic assignment of specimens in warmer 

provinces. 

 

Hayward et al. (2004) also allocated Ammonia sp. T6 the taxonomic name A. aomoriensis. 

Hayward’s allocation has led to a number of studies using either genotyping (Schweizer et al., 

2011b; Lei et al., 2016) or the taxonomic description (Haynert et al., 2012; Nehrke et al., 

2013; Langer et al., 2016) for the allocation of their study specimens to the taxon A. 

aomoriensis. We strongly recommend caution in utilising this taxonomic name. The holotype 

of Rotalia beccarii var. aomoriensis is from the Pliocene Hamada Formation (Shimokita 

Peninsula, Aomori Prefecture, Japan), but the taxon is mentioned by Asano (1951) as also 

occurring in recent material in northern Japan. It is not possible to sequence Pliocene topotype 

material. Toyofuko et al. (2004) sequenced T6 from modern assemblages of six localities in 

the nearby area. However, since the oceanographic conditions would have changed markedly 

since the Pliocene, it is not valid to allocate A. aomoriensis to the genetic type T6, despite T6 

being found abundantly in the wider region (Lei et al 2016; Supplementary Tables S1 and 

S5). In addition, we find a number of discrepancies in the taxonomic description of A. 

aomoriensis (Asano, 1951) and the morphology of the 50 T6 specimens we have imaged by 

SEM in our morphometric dataset. The original description states that there are 6-7 chambers 

in the last whorl whereas T6 has 6-11. It states that the wall is “finely perforate” (a rather 

broad description that can be assigned to almost any type) and “sutures not limbate”. 

However, several of our T6 images show thickened sutures on the spiral/dorsal side. It should 

be mentioned, however, that the description of A. aomoriensis (Asano, 1951) was based on 

light microscope examination, which may be difficult to compare with SEM observations. We 

conclude that T6 should not currently be allocated to the taxon A. aomoriensis due to 

morphological discrepancies and a lack of genetic information.  

 

The taxonomic name Ammonia tepida (Cushman, 1926) has been widely used in many 

studies in the NE Atlantic margins and the Mediterranean Sea, as well as globally. The 

holotype Ammonia tepida from the San Juan Harbour (Puerto Rico), which is recorded in the 

Cushman Catalogue of 1929, has been re-described by Hayward et al. (2003) and designated 

as a lectotype.  Hayward et al. (2003) concluded (using both morphological observations and 

DNA sequencing) that the Ammonia tepida morphotype has a tropical, equatorial distribution, 
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and that more temperate specimens are of other molecular types and differ in their 

morphology. We suggest therefore that the taxonomic name Ammonia tepida should not be 

applied to any of the small less-ornate specimens found in in the temperate waters of the NE 

Atlantic margins. 

4.4 The distribution of Ammonia in the NE Atlantic 

4.4.1 Northern boundary of Ammonia morphospecies  

In our study, sampling carried out at the northerly sampling sites at Svalbard and Iceland 

yielded no Ammonia specimens. This is in agreement with previous studies which have no 

recorded observations of Ammonia off Iceland (e.g., Nørvang, 1945; Jennings et al., 2004), in 

the White Sea (Korsun et al., 2014), off the north coast of Norway, in the Tanafjord (70°N; 

Corner et al., 1996) or slightly further south at Malangenfjord (69°N; Husum and Hald, 

2004). The most northerly occurrences of Ammonia recorded in the literature were identified 

in the shallow subtidal areas of the Bergen fjords (Austin and Serjup, 1994; Murray and Alve, 

2016). In this study, we also sampled off Bergen, (60°N), but found no Ammonia specimens 

amongst the 271 foraminifera collected there. The most northerly Ammonia specimens found 

in our study were in subtidal samples from the Shetland Islands. No specimens were found 

here in the intertidal sediments examined, either alive or dead. It is most likely that the near-

shore populations of Ammonia decline to zero between Bergen (60°N) and Malangenfjord 

(69°N), and therefore the northern limit of Ammonia lies within this region in the present day. 

Additional sampling in the region would confirm its more exact location. Poole and Vorren 

(1993) did find Ammonia specimens in sediments from the mid-Norwegian shelf (65°- 66°N), 

but these were fossil foraminifera dating from the Pliocene, a period which was warmer than 

today (Zachos et al., 2001). We therefore conclude that the most northerly Ammonia 

populations, are currently found at the northern boundary of the Boreal province and in the 

southern part of the West Norwegian subprovince (Fig. 1).  

4.4.2 Regional distribution of Ammonia morphospecies  

The distribution of Ammonia in the NE Atlantic has been summarised as present from 

southern Norway to Portugal (Murray, 2006). Ammonia has been shown to be prevalent in 

both the Skagerrak and Kattegat margins (Alve and Murray, 1999; Holzmann and Pawlowski, 

2000), down to depths of 70 m (Conradsen, 1993; Conradsen et al., 1994; Bergsten et al., 

1996). It has also been observed down to depths of 120 m in the Oslofjord (Risdal, 1964; 

Alve and Nagy, 1990; Alve and Goldstein, 2003). It is perhaps surprising then, that we did 

not find any subtidal Ammonia genotypes in the Skagerrak subprovince, where we collected 

large numbers of foraminifera (299 specimens adjacent to the Gullmar Fjord (119m); 859 

specimens from Oslofjord (22-202 m)). In this study, the first regional sediment samples 
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containing Ammonia specimens were collected further south in the Kattegat at Anholt 

(location 6) in the Boreal province and perhaps unexpectedly in the southern Baltic at Hanӧ 

Bay (location 7), where Ammonia was thought to be absent (Hermelin, 1987; Murray, 2006: 

p. 66). However, in 1965 Lutze reported its presence in the eastern boundary of the Arkona 

Basin adjacent to Hanӧ Bay (location 7) at salinities of 15. In this study, we have found 

Ammonia to be present along the length of the Atlantic European continental margin and into 

the Mediterranean (Figs. 1, 7 and 8), consistent with the literature (e.g., Pawlowski et al., 

1995; Holzmann and Pawlowski, 2000; Hayward et al., 2004; de Nooijer et al., 2009; Dissard 

et al., 2010; Foster et al., 2012; Frontalini et al., 2015; Saad and Wade 2016; LeKieffre et al., 

2017; Koho et al., 2018; Tables S1 and S5 and references therein). We therefore consider the 

genus to be ubiquitous in Europe south of 60°N.  

 

There are differences in the abundance and distribution of Ammonia between the 

biogeographical provinces. For example, the continental margins of the North Sea, including 

the east coast of Scotland, are within the Boreal province, a slightly cooler biome than found 

on the west coast of Scotland, which is bound by the Boreal-Lusitanean province. This west 

coast province is characterised by warm waters deriving from the North Atlantic Drift, and is 

a province of enhanced marine biodiversity, where warm water species appear at comparably 

high latitudes than in the east (Mitchell et al., 1983; Dinter, 2001; Hiscock and Breckels 

2007). This is also observed in our sample set. Ammonia was found abundant at latitudes of 

around 56°N at Torry Bay and Cramond (locations 8 and 9) and nearby at South Queensferry 

(Saad and Wade, 2016) on the east coast of Scotland, and at Dunstaffnage and Loch Sunart 

(locations 4 and 6) on the west coast, at similar latitudes. However further north, differences 

between the biogeographic provinces were observed. On the east coast in the cool Boreal 

province only a single specimen was identified at Cromarty (location 2; 57°N), whilst on the 

west coast, in the warmer Boreal-Lusitanean province, Ammonia was commonly found 

further north at North Uist (location 3; 57°N), where 29 intertidal Ammonia were genotyped. 

Ammonia was also observed in Shetland but in subtidal populations only. No intertidal 

specimens were observed in any of the intertidal mud and seaweeds sampled here. On a 

northerly transect, therefore, the intertidal Ammonia populations decrease prior to the subtidal 

ones. This makes ecological sense, as the intertidal assemblage would be exposed to greater 

temperature fluctuations and hence lower temperatures in winter than assemblages in the 

subtidal zone. The Shetland-Orkney channel also represents a weak eastern boundary between 

the Boreal-Lusitanean, and the Boreal provinces, and although Shetland sits in the Boreal 

province, some species here are “southern” species and are not found in other locations in the 

boreal North Sea (Dinter, 2001). 
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4.5 Distribution and ecology of Ammonia genetic types in the NE Atlantic 

The seven genetic types and subtypes identified in the NE Atlantic margins have both 

regional and potentially local ecological distinction. This is manifest in differences between 

the genetic types in their biogeography, depth preferences, or propensity to co-occur. Such 

information can be used to contribute to our understanding of the possibility of finding a 

specific Ammonia genetic type at a given location, even though they may be morphologically 

cryptic. The differences in their biogeography are presented in Figs. 7 and 8. The variations in 

biogeography and habitat and co-occurrences are summarized in Tables 6 and 7.  

4.5.1 Biogeography and ecology of individual genetic types 

Genetic type T1. – Although rare in our dataset (only eight T1 specimens were identified 

across four sampling locations (Fig. 7a) in our study) collated data indicate that the T1 genetic 

type has a broad distribution (Saad and Wade, 2016; Tables S1 and S5). It was found 

throughout the NE Atlantic margins in a range of biogeographic provinces (the Skagerrak 

subprovince and the Boreal, Boreal-Lusitanean and Lusitanean-Boreal provinces) and the 

western Mediterranean Sea (Fig. 7a). T1 has been collected from environments ranging from 

fully marine intertidal mudflats including estuarine systems to brackish high salt marsh 

environments (Table 6; Saad and Wade, 2016). It was also identified at subtidal depths (30 m) 

in low numbers in fjord environments off the west coast of Scotland (Table 1). In our dataset, 

T1 tended to be the least numerous in mixed Ammonia assemblages. However, Saad and 

Wade (2016) found that T1 dominated at two sites on the west coast of the UK within the 

cool Boreal province of the Irish Sea, but it was not found in the North Sea Boreal province, 

north of Norfolk (location 13; Figs.1 and 7). This, together with its presence further south in 

the warmer Lusitanean-Boreal province (Holzmann and Pawlowski, 1997) the Mediterranean 

(Holzmann and Pawlowski, 1997; Pawlowski et al. 1995; 1997) and sub-tropical locations 

(Hayward et al., 2004) indicate that it tends to prefer relatively warmer waters. It is associated 

with soft deep muddy sediments and muddy sand sediments (Table 6). T1 is predominantly an 

intertidal genetic type but has been found subtidally at two sites.  

 

Genetic subtype T2A. – The T2A genetic subtype is a common member of the Ammonia 

assemblage in the Boreal-Lusitanean province and the Boreal provincial regions of the east 

and south coasts of England (Fig. 7b; Saad and Wade, 2016). However, only a single T2A 

specimen was found in the Ammonia assemblages further north in the western North Sea 

(location 2, Fig. 1; Table 1). Neither was it found in the Boreal provincial coastal waters of 

the eastern North Sea, in the West Norwegian subprovince off Scandinavia or in the 

Skagerrak subprovince. This implies that T2A is largely associated with the relatively warmer 

waters of the Boreal-Lusitanean province and its presence in the southwestern North Sea may 
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be due to the possible encroachment of the Boreal-Lusitanean provincial conditions into the 

southern North Sea in response to global climate change. Its preference for warmer water is 

consistent with its presence further south in the warmer Lusitanean-Boreal province 

(Holzmann and Pawlowski, 1997, 2000) and the Mediterranean (Pawlowski et al., 1995; 

1997). T2A was collected from soft muddy intertidal sediments and estuarine environments 

(Table 1). A transect study of the steep shoreline at Dartmouth (location 18; Fig. 9) indicates 

that T2A is able to survive higher up the shore than the other Ammonia genetic types in the 

intertidal assemblage, suggesting that it has a high tolerance to temperature and salinity 

extremes. This finding is supported by the study of Saad and Wade (2016), who reported that 

T2A was found in sandy mud in a high salt marsh habitat, not routinely covered by seawater 

at every high tide. It was never found subtidally and is therefore an intertidal specialist. 

 

Genetic subtype T2B. – T2B has the most southerly distributed biogeography of all the 

genetic types identified in the NE Atlantic margins (Fig. 7c). It is the only genetic type (other 

than the highly restricted T3V) that has not yet been identified in the Boreal province. Its 

most northerly distribution is around Cork (location 16) and on the Welsh south coast (Saad 

and Wade 2016), both located in the southern part of the Boreal-Lusitanean province. T2B 

alone was found at the most southerly sampling location in this study, the Guadiana River 

(location 22). It has also been found in the Lusitanean-Boreal province and in the 

Mediterranean Sea (Tables S1 and S5). T2B appears to have a requirement for slightly 

warmer waters than all the other genetic types identified in the region. Yet, similarly to other 

partially cryptic types, its habitat preference is still to inhabit intertidal mudflats in estuarine 

systems composed of soft muddy sediments or hard muddy sand (Table 6; Saad and Wade, 

2016).  

 

Genetic subtype T3S. – T3S has the widest biogeographical range of all genetic types 

identified in this study. It is the most northerly genetic type (Shetland, location 1), and it was 

identified in nine sampling locations in this study (in the Boreal and Boreal-Lusitanean 

provinces, the Cool Lusitanean subprovince and the Mediterranean; Fig. 8a). It was also 

identified in the Skagerrak subprovince (Holzmann and Pawlowski, 2000; Table S1) and the 

Lusitanean-Boreal province (Ertan et al., 2004). Not only is T3S found in a wide range of 

biogeographical provinces, it is also found in diverse habitats (Tables 1 and 6) from intertidal 

seaweeds (location 3) and mud (location 2), intertidal estuarine mud (location 18), and 

subtidal sediments (locations 1, 4, 5, 6, 21 and 22). T3S, therefore, should be regarded as a 

highly adaptable generalist species in European waters. 
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A transect study of the steep shoreline at Dartmouth (location 18), where three genetic types 

(T1, T2A and T3S) were identified, highlights the differences in their habitat preferences (see 

section 4.5.2). T3S was found at both low- and mid-shore sites, though numbers were lower 

in the mid-shore samples. It was completely absent from the upper shore. The drop off in 

numbers up-shore fits with our understanding that T3S is both an intertidal and subtidal 

genetic type, also found in the deepest sites where Ammonia was identified in this study.  

 

Genetic subtype T3V. – Particularly interesting is that this genetic subtype is highly localised 

to the region of Vendée, on the French Atlantic coast (Fig. 8b; Pawlowski et al., 1995; Ertan 

et al., 2004; Hayward et al., 2004; this study). We collected T3V from intertidal seaweeds on 

Ile d’Yeu (location 19) off the Vendée coast. All specimens reported in the literature were 

from intertidal habitats, but whether from sediments or seaweeds is unknown.  

 

Genetic type T6. – This is the only genetic type that has been widely reported in the Boreal 

province of the North Sea (Fig. 7d), where Ammonia is considered ubiquitous. T6 may 

therefore account for the majority of the Ammonia specimens sampled from this region. It is 

also found in the Boreal province of the Irish Sea (Saad and Wade 2016), and to a lesser 

extent in the Boreal-Lusitanean province, where it is found on the Welsh south coast 

(locations 14 and 17) bordering the Boreal province. It was not found further south in the 

Boreal-Luistanean province at either Cork (location 16) or Dartmouth (location 18) in this 

study. We did, however, identify two T6 specimens further south at Baie de l’Aiguillon in the 

Lusitanean-Boreal province. We did not find T6 further south in the Portuguese margin 

(location 22) or the Rhône prodelta (location 21) in the Mediterranean, but these fully marine 

subtidal habitats are not preferred by T6. However, despite a range of intertidal sampling in 

the Gulf of Lions (at Camargue, Le Boucanet and Banyuls-sur-Mer; see Tables S1 and S5) 

and in the Adriatic Sea (Trieste, Lagoon of Venice; Tables S1 and S5) this genetic type has 

not been reported there to date. 

 

We have found T6 widely in brackish environments on the intertidal and estuarine shores 

within our study area and at one subtidal site of low salinity (location 7). This supports the 

finding of Schweizer et al. (2011b), who identified T6 subtidally (between 4-14 m) in the Kiel 

Fjord, in a lens of low salinity Baltic seawater. Such salinities may be more akin to the 

intertidal and estuarine environments, in which T6 has thus far has been found. Contrary to 

this, T6 was also found in the saline Grevelingen Lake (location 15) in The Netherlands. The 

lake was part of the Rhine River delta prior to being dammed, with a later edition of a sluice 

gate resulting in salinities of 29-32 (Hagens et al., 2015). T6 may be an invading species via 

the sluice, as it is widely distributed along the coast here. Cores from Grevelingen show that 
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prior to damming, the Ammonia specimens present had smaller pores, suggesting the presence 

of T2A rather than T6. After the closure of the lake, there was a shift to specimens with larger 

pores, suggesting an invasion of the lake by T6 via the sluice gate (Petersen et al., 2016). Its 

presence at these marine salinities, would indicate that it is a euryhaline species, despite a 

probable preference for brackish environments. Saad and Wade (2016) found Ammonia T6 

around the UK in 14 of 19 sites sampled, and all but one of these 14 sites were described as 

brackish. The final sampling site, where T6 was identified however (Barrow-in-Furness; on 

the English west coast in the Boreal province), was described by these authors as fully 

marine. However, no salinity measurements were reported for any of the sampling sites and 

certainly, the majority of sites where T6 has been found are intertidal and estuarine mudflats, 

which will experience fluctuating salinities.  

 

Genetic type T15. – T15 is relatively rare in our dataset. However, it was identified along the 

NE Atlantic margins where Ammonia is found at subtidal locations in the Boreal and Boreal-

Lusitanean provinces, the Cool-Lusitanean subprovince and the Mediterranean (Fig. 8c). The 

only other molecular data available for this genetic type identified T15 in the Mediterranean 

Sea (Rhône prodelta) and the Bay of Biscay in accordance with previous morphologically 

based studies which also found this type in the Adriatic Sea (Schweizer et al., 2011a and 

references therein). Subtidal sampling off Shetland yielded no T15 specimens, whilst T3S 

was identified here. This may be either due to the presence of cooler waters, or the 

requirement for more extensive regional sampling. It is important to note that T15 is a fully 

marine species, restricted to subtidal muddy organic matter rich habitats.  

4.5.2 Co-occurrence of Ammonia genetic types  

It is of great importance for accurate data interpretation, to know whether more than one 

Ammonia genetic type is present, at any given sampling site. Of the 22 locations in this study, 

13 locations contained only one genetic type, six locations contained two genetic types and 

three locations contained three genetic types. Their degree of co-occurrence is documented in 

Tables 6 and 7. Of significance is the fact that the smaller, less ornate cryptic genetic types 

T1, T2A, T2B and T6 co-occur in a variety of combinations (T1+T2A, T2A+T6, T1+T2B). In 

addition, T3S also co-occurs with T1 and T2A intertidally, as well as T1 and T15 subtidally. 

In agreement with our data from Cork, GenBank sequences (Supplementary Table S5) also 

place genetic types T1 and T2B together in Trieste in Italy, and with T2A in the Gulf of Lions 

(Camargue, French Mediterranean coast) and in the Lagoon of Venice, Italy (Holzmann et al., 

1996; Pawlowski et al., 1997; Holzmann and Pawlowski, 2000). It is noteworthy that, despite 

T3S and T6 being relatively abundant and found at nine separate locations each, they were 
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never identified together (Table 7). This is most likely due to their differing ecological 

preferences, but this requires further sampling for confirmation.  

 

The presence of different combinations of genetic types at different locations along a single 

shore transect at Dartmouth highlights the importance of clarifying the exact location of 

sampling on the intertidal shore (Fig. 9). For example, where T2A has been identified alone 

(e.g., locations 2 and 11, this study; Lymington: Saad and Wade, 2016), it is possible that 

only the upper shore was sampled, and that sampling the lower shore might reveal co-

occurrence with other genetic types. We therefore recommend sampling at different heights 

on the shoreline, or to record the height at which samples are taken.  

 

Of particular interest is that T6 very rarely co-occurred with the other genetic types in this 

study. Indeed, we identified only one example (a single specimen of T2A co-occurring with 

T6 at Norfolk; location 13; Table 7). Also, of the 14 sampling locations in the UK 

investigated by Saad and Wade (2016) where T6 was identified, T6 inhabited eleven sites 

alone and co-occurred with a second genetic type at only three sites, all in the Boreal 

province. In continental Europe, T6 was found alone in the Boreal province on the German 

coastline at Wilhelmshaven (Holzmann and Pawlowski, 2000), Crildumersiel (Langer and 

Leppig, 2000) and Amrum (Ertan et al., 2004) and on the coast of The Netherlands at Den 

Oever (Schweizer et al., 2011b). However, it was also found with T1 in The Netherlands at a 

single location, Mok Baai, (Holzmann and Pawlowski, 2000). In total, T6 has been reported at 

29 locations in the NE Atlantic margins, but only co-occurred at five. This indicates that it 

may be a highly robust genetic type, able to out-compete others when salinity and other 

conditions favour it.  

4.6 Global biogeographical patterns of the NE Atlantic Ammonia genetic types  

Outside Europe, T1 genetic types were identified in Australia, New Zealand, New Caledonia, 

Chile, Cuba, and the USA east coast (Supplementary Tables S1 and S5), demonstrating the 

cosmopolitan nature of this genetic type, despite the low numbers we observed in the NE 

Atlantic margins. On the other hand, a single GenBank LSU sequence originating from Cape 

Cod in the USA (Supplementary Table S5) identified T2A as potentially confined to the 

Atlantic, as it has yet to be identified in the Pacific or Indian Oceans. T3S has not been 

reported outside Europe (Hayward et al., 2004). However, in this study, T3S was found 

subtidally at six out of the nine sampling locations where it was identified. If global sampling 

was largely confined to intertidal margins, it may have been missed, as in the intertidal study 

around the British Isles by Saad and Wade, (2016). However, several potential endemic 
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Ammonia genetic types have been identified in other regions globally (Hayward et al, 2004), 

suggesting that T3S could equally be endemic to the NE Atlantic. This possibility is 

confirmed by the extreme endemism exhibited by its sister genetic type T3V, which appears 

isolated within a small coastal region of France in the NE Atlantic. The genetic type T6 has 

only been found in Europe, Japan and China to date (Holzmann and Pawlowski, 2000; 

Hayward et al., 2004; Schweizer et al., 2011b) (Tables S1 and S5; Fig.7c), and this disjunct 

distribution may indicate a possible exotic species (discussed below). T2B, originally 

designated as part of the T2 cluster by Hayward et al. (2004; Fig. 3), has yet to be identified 

outside European waters (Hayward et al., 2004) again implying that it may be endemic to NE 

Atlantic margins and the Mediterranean. Finally, T15 has not been documented from other 

regions, but this may be due to its subtidal nature and the predominance of intertidal sampling 

globally as mentioned above. 

 

There are a number of genetic types found in other regions that have not been identified in the 

NE Atlantic margins. For example, genetic types T7 and T9 are found on the east coast of the 

USA in temperate waters, but unlike T1 and T2A that are also found in the NE Atlantic, they 

are not transatlantic genetic types. The reasons for the differences in the biogeography of 

these genetic types is not yet clear, but may be a function of their ecology and the NE Atlantic 

circulation. T11 is found in the Caribbean and Cuba but has not been found further north on 

the USA coastline. T11 has not been found in the NE Atlantic margins and is most likely a 

warmer water specialist. This is in direct comparison to the ubiquitous T1, which although 

found in warm Cuban waters, is also a transatlantic genetic type able to tolerate wide 

temperature gradients.  

4.7 Potential expatriation of T6  

The disjunct distribution of T6 in the North Sea, China and Japan observed by Hayward et al 

(2004) led to the hypothesis that it originally came from Asia through ship ballast water to the 

North Sea (Pawlowski and Holzmann, 2008). Evidence for this came from the congruent 

distribution in Asia of Ammonia sp. T6 with the decapod Eriocheir sinensis, which was 

introduced to the Wadden Sea at the end of the 19
th
 century via shipping (Nehring and 

Leuchs, 2000). In the present study, and that of Saad and Wade (2016), it has been shown that 

the distribution of T6 is far broader in Europe than previously recorded (Fig.7d). There are 

two possible inferences from this. Firstly, increased sampling of its favoured estuarine 

mudflat habitats might reveal a non-disjunct distribution, with a more global dispersal for T6 

than currently recognised. For example, T6 has been found far up in to the Forth River system 

at both Torry Bay (location 8) and Cramond (location 9). Secondly, the observed wider 
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distribution in Europe might infer that invasion via ballast has led to extremely rapid 

colonisation of a wide area (including the UK west coast; Saad and Wade, 2016), due to its 

adaptable euryhaline nature. T6 may be an aggressive invasive species, able to outcompete 

indigenous genetic types. Down-core sampling to check the presence of T6 in Europe in the 

past decades or centuries would be of benefit. However, the morphological identification of 

T6 and its discrimination from other genetic types (T1, T2A and T2B) would be required (see 

Richirt et al., in press).  

 

Core data from the outer Kiel Fjord demonstrates the late arrival (2000) of Ammonia to the 

area. This coincided with a decrease in salinity that favoured invasion of the fjord by 

Ammonia and excluded the strong-halocline adapted Ammotium cassis that previously made 

up to 90% of the foraminiferal abundance (Polovodova et al., 2009). Genetic characterisation 

of the Ammonia genetic types in the Kiel Fjord identified them as T6 (Schweizer et al., 

2011b). Although Ammonia was thought to be absent from the Baltic Sea under the present 

salinity conditions (Hermelin, 1987; Murray, 2006: p. 66), we have demonstrated the 

presence of T6 also in Hanӧ Bay (location 7), with a population that could have been seeded 

by propagules from the Kiel Fjord, and the Kattegat and Skagerrak Seas (see Fig. 7d). The 

question remains as to the original source of Ammonia sp. T6 to the area. It is not known 

whether it is a globally distributed genetic type, that has slowly moved into the Kattegat and 

Baltic Seas as conditions have become more favourable to it, or if it is indigenous to China 

and Japan, transported in ballast water to the North Sea area and rapidly colonising the region, 

or vice versa. Only further global sampling of the brackish environments that it prefers will 

provide clues to its full biogeography. 

5 Summary and conclusions  

This study represents the first major genetic, biogeographic and morphometric investigation 

carried out on Ammonia specimens within the NE Atlantic margins.  Here, Ammonia  

comprises seven genetic types and subtypes (T1, T2A, T2B, T3S, T3V, T6 and T15). 

Phylogenetic analyses were unable to resolve the relationships between the subtypes T2A and 

T2B or T3S and T3V and a focussed genetic survey of their intra-individual SSU variants is 

required to establish their genetic distinction and biogeography. The nomenclature for 

classifying the degree of genetic separation within and between benthic foraminiferal 

morphospecies and genera such as Ammonia are in serious need of stability and clarification. 

Morard et al., (2016), have proposed a nomenclature for use in planktonic foraminifera that 

can be applied to prescribed levels of divergence. We would argue for its adoption for benthic 
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foraminifera, as it would provide a framework for characterising and the naming the different 

levels of genetic divergence we observe. 

This study has demonstrated that ecological niches can be used to help discriminate between 

Ammonia genetic types within the NE Atlantic margins. Subtidal Ammonia specimens will 

either be the morphologically distinguishable genetic types T3S (A. batava) or T15 (A. 

falsobeccarii). In fully marine subtidal regions, T1 may also be present, which is 

distinguishable from both T3S and T15. However, in more brackish subtidal waters, T1, T3S 

and T15 will not be present, and Ammonia specimens here are likely to be T6. Intertidal 

specimens are more difficult to delineate, particularly since co-occurrence of two to three 

types is common. However, the proportionate composition of upper slope genetic types 

differs from that of the lower slope ones, and this knowledge together with the 

biogeographical distribution of the different types contributes significant information towards 

the enhancement of (palaeo)ecological regional studies. This demonstrates the importance and 

value of identifying Ammonia at the biological species level instead of lumping them as 

cosmopolitan morphotypes, which provides limited environmental information. 
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Figures 

Fig. 1. Map of the NE Atlantic showing sampling locations in this study. Open circles (о) are 

locations where Ammonia was absent, and closed circles (●) are locations where Ammonia 

was successfully sequenced (numbered north to south, see Table 1). The map also shows the 

biogeographic classification of the benthic and neritopelagic regions of the shelf and upper 

continental slope (Dinter, 2001: Fig. 105). 

 

Fig. 2. SEM image plate showing representative specimens typical of each Ammonia genetic 

type with umbilical and spiral sides. The apertural side is also presented for some individuals. 

Scale bar 100 µm. 

 

Fig. 3. Molecular phylogeny of Ammonia based on partial SSU sequences inferred using the 

BioNJ method with the K2P model. The tree is unrooted and support values for BioNJ/ML-

HKY+Γ/BA are indicated at the main nodes. Individual sequences are labelled with the SSU 

genetic types (S) where known and/or T-types (Hayward et al., 2004). 

 

Fig. 4. UPGMA cluster dendrogram based on the morphological characteristics (Table 3) of 

the seven Ammonia genetic types across the NE Atlantic margins (n=158). 

 

Fig. 5 Primary PCO analysis of the morphometric data of the seven distinct genetic types 

found in the NE Atlantic margins. Each group is bounded by a convex hull. The first two 

principle coordinates account for 35.6% of the total variation. 
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Fig.6. Secondary PCO analysis of the Ammonia morphometric data, excluding T3S and T3V, 

which were separated in the primary PCO analysis (Fig. 5). Each of the genetic types is 

bounded by a convex hull. The two principle components account for 28.8% of the total 

variation. 

 

Fig. 7. Biogeographical distribution maps for the small less ornate, morphometrically 

overlapping genetic types; T1, T2A, T2B and T6.  Biogeographic provinces where genetic 

types are located are shaded grey. Closed circles (●) represent specimens genetically 

identified in this study; open triangles (∆) represent SSU sequences already in GenBank; and 

open squares (□) represent LSU sequences already in GenBank or specimens identified by 

restriction fragment length polymorphism (Denmark, T6 only).  

 

Fig. 8. Biogeographical distribution maps of the morphologically identifiable genetic types 

T3S, T3V and T15. Biogeographic provinces where genetic types are located are shaded grey. 

Closed circles (●) represent specimens genetically identified in this study; open triangles (∆) 

represent SSU sequences already in GenBank; and open squares (□) represent LSU sequences 

already in GenBank.  

 

Fig. 9. Cross section of a shore transect taken at Dartmouth (UK). Pie charts show proportions 

of genetic types identified in each of the upper-, mid- and lower-shore samples. Numbers in 

brackets are the number of individuals genetically characterised. Lower-shore samples were 

taken at extreme low tide within four days of the low spring tide event. Upper-shore samples 

were collected from the marine sediment below the transition from sediment to grass. Mid-

shore samples were taken approximately midway between the two, but using the mid-shore 

indicator seaweed, Fucus vesiculosus, as a guide. 

Tables 

Table 1. Description of sampling locations and the Ammonia genetic types identified. 

 

Table 2. Ammonia SSU sequences used for phylogenetic analyses (Fig. 3) including 

sequences from this study and those previously deposited in GenBank. References are either 

where the sequences were first published or direct submissions to GenBank (DS). Accession 

numbers are shown with previously published sequences in italic and new ones (this study) in 

bold.  
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Table 3. Test characteristics measured or assessed from the umbilical and spiral SEM images 

of the Ammonia specimens. These measured morphological characteristics have been derived 

from Hayward et al. (2004) with some minor modifications. The qualitative five-point 

assessment utilised in this study includes: 1- None, 2- Very weak, 3- Weak, 4- Medium, and 

5- Strong. The three-point scale utilised here includes: 1- Absent, 2- Moderately developed, 

3- Strongly developed. Chamber N is equivalent to the final chamber, whilst N1 is the 

penultimate chamber etc. 

 

Table 4. Conversion of SSU genetic types (S) from this study into the established T-type 

nomenclature originally based on the LSU (Holzmann and Pawlowski 2000; Hayward et al., 

2004). 

 

Table 5. Confusion matrix of the number of Ammonia specimens correctly and incorrectly 

classified into each genetic type in the Discriminant Function Analysis and cross validation 

procedure. Percentage of correctly classified individuals is also reported for each genetic type. 

T3V was not included in the DFA due to the small number of images available for analysis. 

 

Table 6. Description of the biogeographical range, habitat and co-occurrence of the seven 

genetic types and subtypes identified in this study. The biogeographical ranges described 

include specimens whose sequences have been previously deposited in GenBank by others 

(Tables S1 and S5), and are as shown on maps Figs. 7 and 8. Biogeographic provinces are 

based on the OSPAR Maritime Areas (Dinter, 2001). Habitat descriptions and co-occurrences 

are based on this study and Saad, and Wade (2016). 

 

Table 7. Number of specimens genetically characterised from each of the 22 sampling 

locations.  

 

Supplementary figures 

Fig. S1. Molecular phylogeny of Ammonia based on partial SSU sequences inferred using the 

ML method with the HKY+Γ model. The tree is unrooted and bootstrap values (1000 

replicates) are indicated at the nodes. 

 

Fig. S2. Molecular phylogeny of Ammonia based on partial SSU sequences inferred using the 

ML method with the GTR+Γ model. The tree is unrooted and bootstrap values (1000 

replicates) are indicated at the nodes. 
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Fig. S3. Molecular phylogeny of Ammonia based on partial SSU sequences inferred using the 

BA method with the mixed model. The tree is unrooted and posterior probabilities are 

indicated at the nodes. 

Supplementary tables 

Table S1. Ammonia partial SSU sequences retrieved from the GenBank database (April 2015) 

used in the SSU alignment. References are either the articles where the sequences were first 

published or direct submissions (DS). 

 

Table S2. The range of measurements of each morphological test characteristic for each 

genetic type. The qualitative five-point assessment utilised in this study (Table 3) includes: 1- 

None, 2- Very weak, 3- Weak, 4- Medium, and 5- Strong. The three-point scale utilised 

includes: 1- Absent, 2- Moderately developed, 3- Strongly developed.  

 

Table S3. Number of Ammonia specimens genetically characterised by sequencing or 

screening and new SSU sequences submitted to GenBank (this study). SSU sequences already 

published in GenBank for each genetic type (July 2018) are also shown. Genetic types in bold 

are those represented in NE Atlantic margins. 

 

Table S4: Link between SSU and LSU genetic types sequenced in the same individuals with 

GenBank accession numbers corresponding to each gene. Accession numbers in italics are 

previously published, those in bold are this study.  

 

Table S5. Ammonia partial LSU sequences retrieved from the GenBank database (August 

2015) with additional sequences from Saad and Wade (2016). References are either the 

articles where the sequences were first published or direct submissions (DS). 

Supplementary information 

Supplementary Data 1. Complete set of morphometric measurements for each Ammonia 

specimen morphometrically analysed. 

 

Supplementary Data 2. Alignment of LSU sequences showing variability between genetic 

subtypes T2A and T2B, and T3S and T3V. 
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Supplementary Data 3. Alignment of SSU sequences showing minor variation between 

genetic subtypes T3S and T3V. 
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Table 1. Description of sampling locations and the Ammonia genetic types identified. 

 

Location 

number 

(see 

map) 

Location name Multiple 

sampling site 

IDs 

Co-ordinates Site description Genetic 

types 

identified 

(n=number 

genotyped) 

1 Shetland (SH)  60o 14’ 31.20”N  

01o 22’ 

40.68”W 

Subtidal sediment 12 m T3S (n=12) 

2 Cromarty (CR)  57° 40′ 45.59″N  

04° 02′ 28.12″W 

Intertidal sediment T2A (n=1) 

3 North Uist (NU) Bagh a Chaise, 

Sound of Harris 

IT5SW 

57° 38' 47.81"N    

07° 04' 42.29"W 

Intertidal seaweed T3S (n=13) 

  LPSW21 57° 37' 18.72"N    

07° 09' 02.80"W 

Seaweeds T3S (n=3) 

  LM1B 57° 36' 17.75"N    

07° 09' 43.50"W 

Seaweeds T3S (n=14) 

4 Loch Sunart (SU)  56° 39′ 56.80″N   

05° 52′ 02.10″W 

Subtidal sediment 

30.6m 

T1 (n=1) 

T3S (n=2) 

T15 (n=3) 

5 Dunstaffnage (DF)  56°27′06.1″N  

05°27′27.9″W 

Subtidal sediment 

31.6m 

T1 (n=1) 

T3S (n=11) 

T15 (n=8) 

6 Anholt, Kattegat 

(BA) 

 56° 26’ 02.88”N   

11° 50’ 02.58”E 

 

Sediment, 12-30m. 

Salinity 18-32 

T3S (n=1) 

T15 (n=1) 

7 Hanӧ Bay, Baltic 

(BA)  

 55° 38' 00.00”N   

14° 50’ 00.00”E 

 

Sediment, 15-65m. 

Salinity 7-13 

T6 (n=18) 

8 Torry Bay (TB)  56°03' 28.3"N 

03°35' 02.5"W 

 

Intertidal estuarine soft 

muddy sediment  

T6 (n=8) 

9 Cramond (Cd)  55° 58' 54.2''N   

03° 17' 56.5''W 

 

Intertidal estuarine 

muddy sediment 

T6 (n=52) 

10 Loch na Cille (LK)  55° 57’ 36.00”N  

05° 41’ 

24.00”W 

Intertidal muddy 

sediment 

T2A (n=13) 

T3S (n=8) 

11 Whiterock (WR)  54° 29’ 05.42”N   

05° 39’ 

12.58”W 

Intertidal muddy 

sediment 

T2A (n=18) 

12 Den Oever (F)  52°56'24.8"N 

05°01'30.6"E 

Brackish water with 

local freshwater 

discharge. Intertidal 

sediment  

T6 (n=1) 

13 Norfolk (NF)  52° 49’ 02.41”N  

00°21’ 46.16”E 

Intertidal sediment T6 (n=30) 

T2A (n=1) 

14 Laugharne  Castle 

(LC) 

 51° 46’ 12.00”N   

04° 27’ 

00.00”W 

Intertidal estuarine 

sediment 

T6 (n=2) 

15 Grevelingen (Gv)  51° 44’ 50.04”N 

03° 53’ 24.06”E 

Lake with stratified 

water, saline/brackish, 

34m 

T6 (n=2) 

16 Cork (CK)  51° 38' 29.40''N   

08° 45' 44.50''W 

Estuarine intertidal 

muddy sediment 

T1 (n=2) 

T2B (n=28) 

17 Cardiff (CF)  51°29' 25.40” N  

03° 07' 

19.50"W 

Intertidal sediment T6 (n=20) 

18 Dartmouth (DM) Upper shore 50° 21’ 04.84”N   

03° 34’ 

11.33”W 

Intertidal estuarine very 

soft muddy sediment 

T2A (n=6) 

  Mid shore 50° 21’ 04.84”N   

03° 34’ 

11.33”W 

Intertidal estuarine very 

soft muddy sediment 

T1 (n=2) 

T2A (n=12) 

T3S (n=1) 
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  Lower shore 50° 21’ 04.84”N   

03° 34’ 

11.33”W 

 

Intertidal estuarine very 

soft muddy sediment 

T1 (n=2) 

T2A (n=49) 

T3S (n=14) 

19 Ile d’Yeu (Ye)  46°43′ 12.35″N   

02° 20′ 13″ W 

Intertidal sediment with 

seaweeds 

T3V (n=10) 

20 Baie de l’Aiguillon 

(Ai) 

 46° 15' 17.00''N   

01° 08'27.00''W 

Intertidal sediment  T6 (n=2) 

21 Rhône prodelta 

(Rh/F) 

BEHEMOTH, 

station 15 

43°17.055’ N 

04°45.148’ E 

Subtidal sediment, 60m T15 (n=1) 

  CHACCRA 

Bent 1, station I 

43°15.810 N 

04°52.916 E 

Subtidal sediment, 88m T3S (n=1) 

  Riotinto, station 

L 

43°18.58 N 

04°52.84 E 

 

Subtidal sediment, 55m T3S (n=1) 

T15 (n=1) 

22 Portuguese margin 

(Po) 

Po11-6/1 

 

41° 07’ 48.3”N 

09° 05’ 05.3”W 

Organic matter, 110m T3S (n=1) 

T15 (n=1) 

   Po11-17/2 38° 56’ 00.8”N 

09° 28’ 32.4”W 

Sand, 48m T3S (n=1) 

  Po11-17/3 41° 09’ 01.2”N 

08° 52’ 00.9”W 

Sand, 50m T3S (n=4) 

   Po11-18/5 

 

39° 01’ 53.0”N 

09° 40’ 26.5”W 

Mud, 116m  T15 (n=1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

 

 

 

Table 2. Ammonia SSU sequences used for phylogenetic analyses (Fig. 3) including sequences from this study and 

those previously deposited in GenBank. References are either where the sequences were first published or direct 

submissions to GenBank (DS). Accession numbers are shown with previously published sequences in italic and 

new ones (this study) in bold. 

 

Genetic 

Type  

Accession 

Number 

DNA isolate Location name Location 

number, Fig. 1 

and Table 1 

Depth Reference 

S1 (T6) MH124850 NF92 Norfolk, UK 13 intertidal This study 

S1 (T6) MH124874 CF02E Cardiff, UK 17 intertidal This study 

S1 (T6) MH124875 CF03A Cardiff, UK 17 intertidal This study 

S1 (T6) MH124903 Ai11 Baie de l'Aiguillon, 

France 

20 intertidal This study 

S1 (T6) AF190874  Crildumersiel, 

Germany 

 intertidal Langer & Leppig 

2000 

S1 (T6) AF190879  Crildumersiel, 

Germany 

 intertidal Langer & Leppig 

2000 

S1 (T6) AF533835  Amrum, Germany  intertidal Ertan et al. 2004 

S1 (T6) FR839692  East China   Pawlowski & 

Holzmann 2011 (DS) 

S1 (T6) GQ853573  Kiel Fjord, Germany  10-20m Schweizer et al. 

2011a 

S2 

(T2A) 
MH124941 WR39D Whiterock, UK 11 intertidal This study 

S2 

(T2A) 
MH124944 WR41C Whiterock, UK 11 intertidal This study 

S2 

(T2A) 
MH124915 DM42C Dartmouth, UK 18 intertidal This study 

S2 

(T2A) 
MH124918 DM43 Dartmouth, UK 18 intertidal This study 

S2 

(T2A) 
FR754385  Camargue, France   Pawlowski & 

Holzmann 2010 (DS) 

S2 

(T2A) 
FR754387  Golf du Morbihan, 

France 

  Pawlowski & 

Holzmann 2010 (DS) 

S2 

(T2A) 
HE598565  Dovey Estuary, UK   Pawlowski & 

Holzmann 2011 (DS) 

S3 

(T2B) 
MH124969 CK05A Cork, Ireland 16 intertidal This study 

S3 

(T2B) 
MH124970 CK05D Cork, Ireland 16 intertidal This study 

S3 

(T2B) 
MH124973 CK28B Cork, Ireland 16 intertidal This study 

S3 MH124974 CK28C Cork, Ireland 16 intertidal This study 
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(T2B) 

S3 

(T2B) 
AY210767  Ile d’Yeu, France  intertidal Ertan et al. 2004 

S3 

(T2B) 
AY359128  Ile d’Yeu, France  intertidal Ertan et al. 2004 

S3 

(T2B) 
AY359129  Ile d’Yeu, France  intertidal Ertan et al. 2004 

S3 

(T2B) 
FM999843  Bay of Biscay, 

France 

  Grimm et al. 2009 

(DS) 

S3 

(T2B) 
HE598564  Venice, Italy  ? Pawlowski & 

Holzmann 2011 (DS) 

S3 

(T2B) 
X86094  Camargue, France   Pawlowski et 

al.1996* 

S3 

(T2B) 
Z69616  Camargue, France  ? Pawlowski et al. 

1997 

S4 (T1) MH125002 CK20 Cork, Ireland 16 intertidal This study 

S4 (T1) MH125006 CK54 Cork, Ireland 16 intertidal This study 

S4 (T1) FR754382  Playa Bailen, Cuba   Pawlowski & 

Holzmann 2010 (DS) 

S4 (T1) HE598562  Waitemata Harbour, 

New Zealand 

  Pawlowski & 

Holzmann 2011 (DS) 

S4 (T1) HE598563  Playa Bailen, Cuba   Pawlowski & 

Holzmann 2011 (DS) 

S4 (T1) Z69617  Camargue, France  ? Pawlowski et al. 

1997 

S4 (T1) AY465834  Ile d’Yeu, France  intertidal Ertan et al. 2004 

S5a 

(T3S) 
MH125016 DF18B Dunstaffnage, UK 5 subtidal This study 

S5a 

(T3S) 
MH125032 DM10D Dartmouth, UK 18 intertidal This study 

S5a 

(T3S) 
MH125074 F432 Rhône Prodelta, 

France 

21 88m This study 

S5a 

(T3S) 
MH125065 Po203C Portuguese margin 22 110m This study 

S5a 

(T3S) 
MH125070 Po220 Portuguese margin 22 50m This study 

S5a 

(T3S) 
FR839705  Tjärnӧ, Sweden   Pawlowski & 

Holzmann 2011 (DS) 

S5a 

(T3S) 
FR839708  Tjärnӧ, Sweden   Pawlowski & 

Holzmann 2011 (DS) 

S5b 

(T3V) 
MH125076 Ye32 Ile d’Yeu, France 19 intertidal This study 

S5b 

(T3V) 
MH125080 Ye60A Ile d’Yeu, France 19 intertidal This study 

S5b 

(T3V) 
MH125094 Ye75A Ile d’Yeu, France 19 intertidal This study 

S5b 

(T3V) 
MH125078 Ye125 Ile d’Yeu, France 19 intertidal This study 

S5b 

(T3V) 
EF534072  ?  ? Schweizer et al. 2008 
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S6 (T15) MH125130 SU134 Loch Sunart 4 subtidal This study 

S6 (T15) MH125114 DF94 Dunstaffnage 5 subtidal This study 

S6 (T15) MH125149 F187H Rhône Prodelta 21 60m This study 

S6 (T15) MH125132 Po202A Portuguese margin 22 110m This study 

S6 (T15) HM448841  Rhône Prodelta, 

France 

 60m Schweizer et al. 

2011b 

T4 FR839697  Hamana Lake, Japan   Pawlowski & 

Holzmann 2011 (DS) 

T4 FR839698  Hamana Lake, Japan   Pawlowski & 

Holzmann 2011 (DS) 

T4 FR839699  Hamana Lake, Japan   Pawlowski & 

Holzmann 2011 (DS) 

T4 FR839700  Hamana Lake, Japan   Pawlowski & 

Holzmann 2011 (DS) 

T5 FR839689  Pollen Island, New 

Zealand 

  Pawlowski & 

Holzmann 2011 (DS) 

T5 FR839690  Pollen Island, New 

Zealand 

  Pawlowski & 

Holzmann 2011 (DS) 

T7 FR839702  Sapelo Island, USA   Pawlowski & 

Holzmann 2011 (DS) 

T7 FR839703  Sapelo Island, USA   Pawlowski & 

Holzmann 2011 (DS) 

T8 FR839751  Taba, Israel   Pawlowski & 

Holzmann 2011 (DS) 

T9 FR839747  Long Island, USA   Pawlowski & 

Holzmann 2011 (DS) 

T9 FR839748  Long Island, USA   Pawlowski & 

Holzmann 2011 (DS) 

T10 FR839693  Grays Harbour, USA   Pawlowski & 

Holzmann 2011 (DS) 

T10 FR839694  Grays Harbour, USA   Pawlowski & 

Holzmann 2011 (DS) 

T10 FR839695  Grays Harbour, USA   Pawlowski & 

Holzmann 2011 (DS) 

T10 FR839696  Grays Harbour, USA   Pawlowski & 

Holzmann 2011 (DS) 

T11 FR839709  Playa Bailen, Cuba   Pawlowski & 

Holzmann 2011 (DS) 

T12 FR839712  Tieti Beach, New 

Caledonia 

  Pawlowski & 

Holzmann 2011 (DS) 

T12 FR839713  Tieti Beach, New 

Caledonia 

  Pawlowski & 

Holzmann 2011 (DS) 

T13 FR839710  Noumea, New 

Caledonia 

  Pawlowski & 

Holzmann 2011 (DS) 

T13 FR839711  Noumea, New 

Caledonia 

  Pawlowski & 

Holzmann 2011 (DS) 

T14 GQ853567 475 Lizard Island, 

Australia 

  Schweizer et al. 

2011a 

T14 GQ853568 476 Lizard Island, 

Australia 

  Schweizer et al. 

2011a 
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Table 3. Test characteristics measured or assessed from the umbilical and spiral SEM images of the Ammonia 

specimens. These measured morphological characteristics have been derived from Hayward et al. (2004) with 

some minor modifications. The qualitative five-point assessment utilised in this study includes: 1- None, 2- Very 

weak, 3- Weak, 4- Medium, and 5- Strong. The three-point scale utilised here includes: 1- Absent, 2- Moderately 

developed, 3- Strongly developed. Chamber N is equivalent to the final chamber, whilst N1 is the penultimate 

chamber etc. 

 

Type of 

character 

 

Variable 

Number 

Corresponding 

variable 

number in 

Hayward et al 

(2004) 

Morphological 

feature name 

Method of measurement Unit/ 

Category/ 

Type 

Umbilical View 

Quantitative 1 7 Relative diameter of 

the umbilical area 

Largest diameter of 

umbilicus between the ends 

of the folia/ maximum test 

diameter 

Ratio 

Quantitative  2 10 Relative maximum 

boss diameter 

Maximum diameter of the 

largest umbilical boss (if 

present)/ maximum 

diameter 

Ratio 

Quantitative 3 11 Total number of 

umbilical bosses 

Number of umbilical bosses 

(if present) 

Count 

Quantitative 4 n/a Radial curvature of 

suture N1 

Curvature of suture 

between chambers N1 and 

N2. This feature was 

calculated using the arc tool 

in Image Pro Express 

Angle 

Quantitative 5 n/a Mean pore diameter Mean pore diameter of the 

ten pores nearest the 

junction between chamber 

N1 and chamber N2  

Micrometres 
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Quantitative 6 n/a Total number of 

chambers visible  

Total number of chambers 

visible/ maximum test 

diameter 

Ratio 

Quantitative 7 n/a Relative width of 

radial suture 

Maximum width of suture 

nearest to the umbilical 

area/ maximum width of 

suture at the test periphery 

Ratio 

Categorical 8 13 Degree of 

development of 

thickened calcite on 

folia 

Development of thickened 

calcite on chambers N-N3 

1 to 3 scale  

 

Categorical 9 16 Degree of blunt 

ragged folia 

Blunt ragged folia on 

chambers N- N3 

1 to 5 Scale 

Categorical 10 20 Development of 

beading on the folia  

Folia cut into flat beads by 

grooves on chambers N-N3 

Presence/ 

absence 

Categorical 11 18 Development of  

beading along the 

radial sutures 

Development of strong 

beads along edge of radial 

sutures on chambers N-N3  

1 to 5 scale 

 

Categorical 12 14 Degree of 

ornamentation on 

folia 

Coverage of folia by small 

pustules on chambers N-N3 

1 to 5 scale 

Categorical 13 19 Development of 

grooved notches 

Development of grooved 

notches along radial edge of 

sutures 

1 to 5 scale 

Categorical 14 n/a Development of 

small pustules on 

radial edge of 

sutures  

Development of small 

pustules along the radial 

edge of sutures in chamber 

N-N3 

 

1 to 5 scale 

Spiral view 

Quantitative 15 22 Number of 

chambers in the first 

whorl 

Total number of chambers 

in the first whorl 

Count 

Quantitative 16 26 Relative chamber 

proportions  

Maximum length (parallel 

to the periphery) of 

chamber N1/ maximum 

width (perpendicular to 

periphery) of the chamber 

Ratio 

Quantitative 17 Modified 

variable 27  

Test roundness As calculated from the 

outline of the entire shape 

utilising the Image outline 

analysis tool in Image J 

software (Roberts, 2016) 

0 to 1 

Quantitative 18 29 Angle between 

radial and spiral 

sutures 

Angle between radial and 

spiral sutures in Chamber 

N1 

Angle 

Quantitative 

 
19 28 Relative length of 

fissure 

Length of fissure along the 

spiral suture (when 

present)/ maximum test 

diameter 

Ratio 

Quantitative 

 

20 36 Mean pore diameter Mean pore diameter of the 

10 nearest pores to the 

junction between chamber 

N1 and chamber N2   

Micrometres 

Quantitative 

 

21 37 Pore density Pore density was calculated 

from total number of pores/ 

100 sq µm 

Count 

Quantitative 

 

22 21 Proloculus diameter Maximum diameter of the 

proloculus 

Micrometres 

Categorical 23 30 Development of 

radial suture 

furrows 

Development of furrows 

along radial sutures (when 

present)  

1 to 5 scale 

Categorical 24 33 Development of 

thickened calcite 

Development of raised 

thickened calcite over 

central spiral area 

1 to5 scale 
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Categorical 25 n/a Development of 

secondary dorsal 

openings 

Development of  discrete 

non-continuous secondary 

dorsal openings  

Presence (1) 

/ Absence 

(2) 
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Table 4. Conversion of SSU genetic types (S) from this study into the established T-type 

nomenclature originally based on the LSU (Holzmann and Pawlowski 2000; Hayward et al., 2004). 

SSU genetic type 

(this study) 

LSU genetic type 

(Hayward et al., 2014) 

S1 T6 

S2 T2A 

S3 T2B 

S4 T1 

S5a T3S 

S5b T3V 

S6 T15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Confusion matrix of the number of Ammonia specimens correctly and incorrectly classified 

into each genetic type in the Discriminant Function Analysis and cross validation procedure. 

Percentage of correctly classified individuals is also reported for each genetic type. T3V was not 

included in the DFA due to the small number of images available for analysis. 

Discriminant Function Analysis (DFA) 

Number of 

specimens 

T1 T2A T2B T3S T6 T15 Percentage 

correctly 

classified 

T1 4 0 0 0 0 0 100 

T2A 0 70 0 0 0 0 100 

T2B 0 2 14 0 0 0 87.5 

T3S 0 0 0 8 0 0 100 

T6 0 1 0 0 49 0 98 

T15 0 0 0 0 0 8 100 

Cross Validation Procedure 

 T1 T2A T2B T3S T6 T15  

T1 1 0 0 0 3 0 25 

T2A 0 70 0 0 0 0 100 

T2B 0 4 12 0 0 0 75 

T3S 0 0 0 8 0 0 100 

T6 1 2 1 0 46 0 92 

T15 1 2 1 0 0 4 50 
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Table 6. Description of the biogeographical range, habitat and co-occurrence of the seven 

genetic types and subtypes identified in this study. The biogeographical ranges described 

include specimens whose sequences have been previously deposited in Genbank by others 

(Tables S1 and S5), and are as shown on maps Figs. 7 and 8. Biogeographic zones are based 

on the OSPAR Maritime Areas (Dinter, 2001). Habitat descriptions and co-occurrences are 

based on this study and Saad and Wade (2016). 

Genetic type Map Biogeographical range within the study area Habitat preferences Observed co-

occurrence 

T1 (S4) Fig. 7a Rare in our data set, but broadly reported by others. Range extends 

from the Skagerrak subprovince through to the Lusitanean-Boreal 

province. Also reported in the Mediterranean Sea.  

Intertidal mudflats including estuarine systems, and high salt 

marsh. Soft deep muddy sediments and muddy sand.  Rarely 

subtidal (only observed two specimens, 30 m).  

T2A, T2B, T3S, T15 

T2A (S2) Fig. 7b Distribution ranges from the Boreal province to the Lusitanean-

Boreal province with samples also identified in the Mediterranean 

Sea. In the Boreal province, T2 has only been identified on the UK 

coast, and to date has not been reported on the coast of mainland 

Europe including Scandinavia. 

Intertidal mudflats including estuarine systems, and high salt 

marsh. Found at extreme high through to low shore, able to 

tolerate reduced tidal coverage. Soft deep muddy sediments and 

muddy sand. 

T1, T3S, T6 

T2B (S3) Fig. 7c A warmer water genetic type, rare in our sample set. Unusually, it 

is not reported in the Boreal province to date. It ranges from the 

Boreal-Lusitanean province to the Warm Lusitanean subprovince 

and is also present in the Mediterranean. 

Intertidal mudflats in estuarine systems. Soft muddy sediments 

and hard muddy sand.  

T1, T6 

T3S (S5a) Fig. 8a The most northerly distributed genetic type in our data set, it 

ranges from the Shetland Islands in the Boreal Province and the 

Skagerrak subprovince, to the Cool-Lusitanean province. This 

genetic type is also identified in the Mediterranean Sea.  

Abundant in both intertidal and subtidal muddy sediments and 

seaweeds. Rarely estuarine. Found from mid-intertidal shore to 

deepest sampled sediments of 116m. 

T1, T2A, T15 

T3V (S5b) Fig. 8b Very limited biogeographical range, identified only in the 

Lusitanean-Boreal province in the region of Vendée, on the French 

Atlantic coast. 

Currently identified only on intertidal seaweeds at a single 

location. 

None 

T6 (S1) Fig. 7d An extremely abundant genetic type throughout the Boreal 

province. Also identified in the Baltic Sea and the Boreal-

Lusitanean province, extending into the Lusitanean-Boreal 

province. Not yet reported in the Mediterranean. 

Predominantly brackish intertidal mudflats, particularly in 

estuarine environments but not exclusively. Low salt marsh 

environments. Soft deep muddy sediment through to hard 

muddy sand. Also found subtidally at low salinities (e.g. 7-13 

in the Baltic Sea). 

T2A, T2B 

T15 (S6) Fig. 8c Ranges from the Kattegat Sea in the Boreal Province to the Cool 

Lusitanean subprovince. Also identified in the Mediterranean Sea. 

Fully marine subtidal species found in marine sediments. T3S 
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Table 7. Number of specimens genetically characterised from each of the 22 locations 
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Highlights 

 Largest ever survey of Ammonia sp. in the Northeast Atlantic margins to aid 

taxonomic delineation 

 All specimens are SEM imaged, SSU genotyped and morphometrically analysed 

 Of seven genetic types and subtypes, four are partially cryptic, but can co-occur 

 Genetic types have different biogeographies and ecologies, aiding identification 

 Taxonomic assignment is currently possible for only three of the genetic types 

ACCEPTED MANUSCRIPT



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8



Figure 9


