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Abstract. The ability to locally degrade the extracellular matrix (ECM) and interact with
the tumour microenvironment is a key process distinguishing cancer cells from normal cells, and
is a critical step in the metastatic spread of the tumour. The invasion of the surrounding tissue
involves the coordinated action of the cancer cells, the ECM, the matrix degrading enzymes, and
the epithelial-to-mesenchymal transition. In this paper, we present a mathematical model which
describes the transition from an epithelial invasion strategy of the epithelial-like cells (ECs) to an
individual invasion strategy for the mesenchymal-like cells (MCs). We achieve this by formulating a
genuinely multiscale and hybrid system consisting of partial and stochastic di↵erential equations that
describe the evolution of the ECs and the MCs while accounting for the transitions between them.
This approach allows one to reproduce, in a very natural way, fundamental qualitative features, of
the current biomedical understanding of cancer invasion, that are not easily captured by classical
modelling approaches, for example, the invasion of the ECM by self-generated gradients and the
formation of EC invasion islands outside of the main body of the tumour.
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1. Introduction. Identified as one of the hallmarks of cancer, Hanahan and
Weinberg [2000, 2011], cancer invasion is a complex process involving numerous in-
teractions between the cancer cells and the extracellular matrix (ECM) (the tumour
microenvironment) facilitated by matrix degrading enzymes. By its nature, the inva-
sion involves the development and alteration of the cell-cell and cell-matrix adhesion
processes. Broadly speaking, during the progression to full malignancy, cancer cells
reduce their cell-cell adhesions and gain cell-matrix adhesions. Coupled with changes
in the cell migration and proliferation, this enables the local spread of cancer cells
into the surrounding tissue. Any encounter with blood or lymphatic vessels in the
tumour microenvironment initiates the spread of the cancer to secondary locations in
the host organism i.e. metastasis, Mehlen and Puisieux [2006], Weigelt et al. [2005].

Having been studied in some detail for the past 15-20 years, it has become clear that
cancer invasion has a certain degree of diversity in its migratory mechanisms and
of plasticity in cellular behaviour and properties. The diversity of cancer invasion
mechanisms is illustrated schematically in Fig. 1 and their behavioural plasticity in
Fig. 2. Both types of invasion are extensively discussed in Friedl and Wolf [2003].
Subsequently, cancer invasion can be broadly classified into two main groups, di↵er-
ing in the behaviour of how the cells migrate—individually or collectively—and how
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Fig. 1. “Diversity of cancer invasion”. Classification of the various migration and invasion

strategies and corresponding types of tumour. As the complexity of the tumour increases, so do

the expressions of cell-matrix and cell-adhesion molecules (integrins and cadherins) and the charac-

terisation of the invasion as individual or collective. Figure adopted from Friedl and Wolf [2003].

(PERMISSION REQUESTED)

these are controlled by di↵erent intra-cellular molecular programmes. Accordingly,
cancer invasion can be characterised as epithelial or collective invasion whereby clus-
ters or sheets of connected cells move en masse, or as mesenchymal or individual
invasion whereby single cancer cells or small numbers of cancer cells actively invade
the microenvironment.

Cancer cells may transition back and forth between the two mechanisms during the
invasion process as they penetrate the surrounding tissue. The transition from ep-
ithelial to mesenchymal invasion is known as the epithelial-to-mesenchymal transition
(EMT), and the opposite as mesenchymal-to-epithelial transition (MET). Both the
EMT and MET processes are largely controlled by variations in the expression lev-
els of integrins, proteases, and cadherins and varying cell-cell communication via gap
junctions. They are moreover induced by, e.g., the secreted transforming growth factor
beta (TGF-�) and the epidermal growth factor (EGF) proteins. We refer the reader
to consult Thiery [2002], Roche [2018], Kalluri and Weinberg [2009], Te Boekhorst
et al. [2016], and the references therein for detailed discussions on the triggering of
EMT; MET; and their properties and role in development and cancer.

An alternative invasion mechanism, known as amoeboid invasion also exists, whereby
individual cells exhibit morphological plasticity and develop the ability to squeeze
through gaps in the ECM, rather than modify/degrade the ECM via matrix degrading
enzymes, e.g. urokinase-type plasminogen activator (uPA), and matrix degrading
metalloproteases (MMPs), Madsen and Sahai [2010], Sabeh et al. [2009].

Cancer invasion has also been the focus of mathematical modelling over the past
twenty years or so, beginning with the work of Gatenby and Gawlinski [1996]. Since
then, many di↵erent models and approaches have been formulated, some taking an
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Fig. 2. “Plasticity of cancer invasion”. The character of cancer cell migration changes from

collective to individual, following the loss of the cadherin or �1 integrin function. The corresponding

cellular transition programmes are conditionally reversible, leading to metastases at later locations

within the organism. Figure from Friedl and Wolf [2003]. (PERMISSION REQUESTED)

individual-based approach e.g. Ramis-Conde et al. [2008a,b], Hatzikirou et al. [2010],
Wang et al. [2013], Schlüter et al. [2015], others adopting a continuum approach
using systems of partial di↵erential equations e.g. Chaplain and Orme [1996], Preziosi
[2003], Chaplain and Lolas [2005, 2006], Andasari et al. [2011], Domschke et al. [2014a],
Deakin and Chaplain [2013], Painter and Hillen [2013], Kolbe et al. [2016], Sfakianakis
et al. [2017], Engwer et al. [2017], Peng et al. [2017], while others have adopted a hybrid
continuum-discrete approach, e.g. Anderson et al. [2000], Anderson [2005], Colombi
et al. [2017]. An individual-based approach has the advantage of being able to focus
on single cells, account for cellular processes in detail, and is more accurate at smaller
scales and smaller cell numbers. On the other hand, the averaging of the microscale
dynamics that takes place in the continuum approach has the advantage of being able
to capture macroscopic processes and e�ciently model large scales without having to
resort to high performance computing. Moreover, the continuum approach has the
added benefit to allow for mathematical analysis of the developed models.

In the current paper, we apply a multiscale modelling framework to cancer invasion
that explicitly incorporates the transition from epithelial to individual invasion and
vice versa. In particular, we describe the epithelial-like cancer cells (ECs) through a
density distribution and their spatiotemporal evolution by amacroscopic deterministic
model. On the other hand, the mesenchymal-like cancer cells (MCs) are modelled by
an atomistic approach, and their spatiotemporal evolution by an individual stochastic
model. This is a genuinely hybrid approach where we explicitly include the EMT and
MET processes between the two cancer cell types and their corresponding discrete
and continuum descriptions.

Previous approaches in the literature of a similar modelling philosophy and scientific
focus are not many. We refer for instance to the works of Colombi et al. [2015a,b],
where the authors employ a measure theoretic approach to study cell di↵erentiation
and aggregation, to Colombi et al. [2017] in which a biological and mathematical
“switch” between a concentrated cell-particle description and the corresponding dis-
tributed mass approach is studied, to Capasso and Morale [2010] where a “doubly
stochastic” system of interacting cell-particles is studied leading, in the large cell-
particle limit, to deterministic partial di↵erential equations (PDEs), Hiremath and
Surulescu [2016a], Hiremath et al. [2018], Colombi and Scianna [2017] where coupled
PDE-SDE (stochastic di↵erential equations) systems describing biological processes
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at population, cellular, and sub-cellular scales are studied, and to Cañizo et al. [2015],
Carrillo et al. [2018] where continuum models of (energy) interacting cell-particles are
studied and the existence of global minimizers is established.

2. Model derivation. The modelling framework that we propose is a genuinely
hybrid combination of the two cancer cell types, ECs and MCs, described by a contin-
uum density and a collection of discrete cells. For the sake of clarity of presentation,
the development of the model and the corresponding techniques are constrained to
the two (spatial) dimensional case.

Therefore, our paper is structured as follows. In Section 2.1 we describe the continuum
density submodel of the problem. This is a macroscopic deterministic model that
addresses the spatiotemporal evolution of the densities of the ECs, ECM, and the
MMPs. In this submodel, the MCs participate only implicitly, i.e. they influence the
ECs and the rest of the components of the submodel but their time evolution is not
dictated by it. We then introduce the discrete cell-particle submodel of the problem
in Section 2.2. This submodel describes the time evolution of the MC cells, including
their biased random motion along the gradients of the ECM. It does not include cell
growth or proliferation although they can be easily incorporated in the model. The
coupling between the continuum components (ECs, ECM, MMPs) and the discrete
(MCs) occurs in several places: the proliferation of the ECs, the degradation of the
ECM, the production of the MMPs, the haptotaxis of the MCs, and most notably
the transition between the ECs and MCs. In particular, in Section 2.3 we describe
the transitions between the density and cell-particle phases of the cancer cells. We
address the way the MC cells are “substantiated” from their density formulation via
a density-to-particle process, and how they transition back to density via an opposite
particle-to-density process. In Section 2.4 we present the combined spatiotemporal
evolution of the two cancer cell types under the prism of the EMT and MET processes.

2.1. Density formulation. From a macroscopic deterministic approach, we
follow the seminal works of Liotta et al. [1977], Gatenby and Gawlinski [1996], An-
derson et al. [2000], Byrne et al. [1999] and describe the ECs, MMPs, and ECM by
their densities. The MCs are primarily described as isolated cell-particles; the model
for their time evolution is derived in Section 2.2. It should be noted that the MCs
appear also in the density formulation as they directly a↵ect the ECs, MMPs, and
the ECM. Since the focus of this paper is on the combination of the two cancer cell
phenotypes and their corresponding discrete and continuum phases, rather than on
the biological applications of the model, we incorporate only the very basic biological
processes. More detailed and cancer-type specific models will be considered in follow
up works.

Indeed, we mainly assume that the ECs are transformed to MCs and vice-versa via
the MET and EMT processes, and that they proliferate by following a logistic volume-
filling constraint as they compete for free space and resources with each other, the
MCs and the ECM. Furthermore, we assume that the ECs di↵use in the environment;
although this process is expected to be very slow. This is included in the model to
capture, in a simplified and linear way the e↵ect of mechanical forces exerted on the
cells. More realistic assumptions of the di↵usion can be considered by accounting
for the appropriate biological phenomena and extending the model accordingly. The
same holds true for the -taxis driven migration as well; extensions of the model can
account for a plethora of intra- and extra-cellular processes relevant to the migration
of cancer cells.
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To proceed, we denote by ⌦ ⇢ R2 the Lipschitz domain of study, and by c↵(x, t),
c�(x, t), m(x, t), and v(x, t), x 2 ⌦ and t � 0 the densities of the ECs, MCs, MMPs,
and the ECM respectively. From here onwards, we denote by superscripts ↵ and �
the two types of cancer cells, the ECs and MCs, respectively.

Based on the above discussions, we consider the following equation for the evolution
of the ECs

@

@t
c↵(x, t) = D↵�c↵(x, t)| {z }

di↵usion

� µEMT
↵ (x, t)c↵(x, t)| {z }

EMT

+µMET
� (x, t)c�(x, t)

| {z }
MET

+ ⇢↵c c
↵(x, t)

�
1� c↵(x, t)� c�(x, t)� v(x, t)

�
| {z }

proliferation

,(1a)

where µEMT
↵ (x, t) = µ↵XE(t)(x), µ

MET
� (x, t) = µ�XM(t)(x), with E(t),M(t) ⇢ ⌦, and

D↵, µ↵, µ� , ⇢↵c � 0.

As previously noted, the MCs are described by their cell-particle formulation —which
we present in Section 2.2— and the corresponding evolutionary equations. The MCs
participate in (1a) via their density c� after having undergone a specific particle-to-
density transformation; this is discussed in Section 2.3.

Since the triggering mechanisms of EMT and MET are not the focus of this work,
we refrain from a detailed modelling. We instead assume a simplified approach where
EMT occurs in a randomly chosen subset of the domain E(t) ⇢ ⌦ in (1a). We
understand E(t) as the union of a number of sets each having the size of a single
biological cell, cf. (11) and Section 2.3 for further discussion on the way that E(t) is
formed. In a similar way, we assume that the MET occurs randomly at every cell-
particle each giving rise to a domain of the size of a biological cell, and their union to
the set M(t); see also (16) and Sections 2.2 and 2.3 for further details.

We also assume that both types of cancer cells, ECs and MCs, produce MMPs, which
in turn di↵use in the environment (molecular di↵usion) and decay with a constant
rate, thus satisfy:

(1b)
@

@t
m(x, t) = Dm�m(x, t)| {z }

di↵usion

+ ⇢↵mc↵(x, t) + ⇢�mc�(x, t)| {z }
production

��mm(x, t)| {z }
decay

,

with Dm, ⇢↵m, ⇢�m, �m � 0 constants. Alternative approaches could also be consid-
ered, e.g. an ECM-density dependent production of the MMPs by the cancer cells.

We assume that the ECM is represented by the density of the collagen macromolecules,
and is therefore modelled as a non-uniform, immovable component of the system that
neither di↵uses nor otherwise translocates. Furthermore, we assume that the ECM
is degraded by the combined action of the cancer cells/MMPs complex. Finally, for
simplicity, no reconstruction of the matrix is assumed. Overall, the evolution equation
of the ECM is given by

(1c)
@

@t
v(x, t) = �

�
�↵
v c

↵(x, t) + ��
v c

�(x, t)
�
m(x, t)v(x, t)

| {z }
degradation

,

with �↵
v , ��

v � 0 constants. We are motivated by Sabeh et al. [2009], to model
the matrix degradation in this particular way, i.e. dependent on the complex cancer
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cells/MMPs instead of the MMPs alone. Possible extensions of the model could
include non-di↵usible MMPs, MC-only matrix degradation, matrix reconstruction,
and other biologically relevant processes.

The (advection-)reaction-di↵usion1 (A-)RD system (1a)–(1c) can also be written in a
more convenient matrix-vector compact form for the numerical treatment formulation,
see also Appendix A. In particular, using the notation

w(x, t) =
�
c↵(x, t),m(x, t), v(x, t)

�T
,

(1a)–(1c) read

(2) wt(x, t) = D(w(x, t)) +R(w(x, t)),

where

D(w) = D�w and R(w) =

0

@
�µEMT

↵ c↵ + µMET
� c� + ⇢↵c c

↵
�
1� c↵ � c� � v

�

⇢↵mc↵ + ⇢�mc� � �mm
�
�
�↵
v c

↵ + ��
v c

�
�
mv

1

A ,

with D = diag(D↵, Dm, 0)T , denote the di↵usion and reaction operators, respectively.
As noted previously, in the more general case where chemotaxis or haptotaxis are
considered, the corresponding formulation should also include an advection operator.

Clearly, cancer invasion models of the form (2) are mere simplifications of the biologi-
cal reality; they are also quite simple in their mathematical structure. Still their ana-
lytical and numerical investigations are challenging; depending on the actual structure
of the assumed model, whether e.g. -taxis, non-local adhesion, or non-linear di↵usion
is included in (2). Indicatively, we refer to Hillen et al. [2017], Marciniak-Czochra
and Ptashnyk [2010], Andasari et al. [2011], Giesselmann et al. [2018], Stinner et al.
[2016], Kolbe et al. [2016], Marciniak-Czochra et al. [2013], Winkler and Tao [2014]
and the references therein, for the study of a various cases of cancer invasion models.
One of the reasons for this, is their mixed nature, i.e. the ECs and MMPs obey partial
di↵erential equations (PDEs) with respect to time and space, whereas the ECM obeys
an ordinary di↵erential equation (ODE) with respect to time for every point in space.

2.2. Particle formulation. We are motivated in this description by methods
and techniques that have been used previously in other scientific fields. One such
example is the classical particle-in-cell (PIC) method which was first proposed in
Harlow [1965] and used among others in plasma physics. A second example is the
smoothed-particle hydrodynamics (SPH) method used in astrophysics and ballistics
see e.g. Gingold and Monaghan [1977]. The stochastic nature of the ODEs that the
cell-particles obey is motivated by the seminal work of Stratonovich [1966]. For the
combination of the two cancer cell formulations, we are inspired by Blanc et al. [2007],
Kitanidis [1994], Makridakis et al. [2014], Tompson and Dougherty [1992].

In view of the above, we describe the MCs as a system of N cell-particles that are
indexed by p 2 P = {1, . . . , N}, and account for their positions xp(t) 2 R2 and masses
mp(t) � 0. We allow for their number to vary in time and so we set N = N(t) 2 N.

1In the general case, the ECs equation (1a) could include -taxis terms in the form of advection
as well.
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The mass distribution of such a system of cell-particles, {(xp,mp), p 2 P}, is given
by

(3) ˜̃c(x, t) =
X

p2P

mp(t)�(x� xp(t)),

where �(· � xp(t)) represents the Dirac distribution centred at xp 2 R2. Clearly (3)
is not a function so we consider a kernel ⇣ and re-define the mass distribution of the
cell-particles {(xp,mp), p 2 P} as

c̃(x, t) =

Z

⌦

˜̃c(x0, t)⇣(x� x0)dx0 (3)
=

X

p2P

mp(t)⇣(x� xp(t)).(4)

The function ⇣ need not be smooth; to simplify hence the rest of this work we choose
the characteristic function of the rectangle K0 centred at the origin 0 2 R2

(5) ⇣(x) = XK0(x), x 2 R2.

The choice of K0 (shape, size, and location) is justified in Sections 2.2.1 and 3.

2.2.1. Interactions between cell-particles. We understand the cell-particles
as isolated cancer cells or cancer-cell aggregates of similar size and masses. To main-
tain though similar masses, we split and merge the cell-particles according to their
mass and position. In particular, when a cell-particle represents an isolated cancer
cell, we set mref to be the reference cell mass and K0 its (two-dimensional) footprint,
and proceed as follows:

Splitting. A cell-particle (xp,mp) with mass mp > 4
3 mref is split into two cell-

particles (x1
p,m

1
p), (x

2
p,m

2
p) of the same position x1

p = x2
p = xp and mass

m1
p = m2

p = 1
2 mp. From that moment onwards, these two cell-particles are

considered di↵erent from each other.

Merging. A small cell-particle (xp,mp) with mass mp < 2
3 mref is merged with an-

other small cell-particle (xq,mq) if they are close to each other i.e.

kxp � xqk < diam(K0),

where k ·k describes the two-dimensional Euclidean norm. The resulting cell-
particle is set to have the cumulative mass of the two cell-particles and to be
located at their (intermediate) centre of mass

(6)

✓
mpxp +mqxq

mp +mq
,mp +mq

◆
.

If more than two small cell-particles are found in merging distance at the
same time, they are merged pair-wise in the order they have been created.

Given that the distance between the cell-particles is su�ciently small, iterations of the
merging and splitting processes lead to cell-particles with massesmp 2 [ 23 mref,

4
3 mref],

i.e. cell-particles with more-or-less the reference cell mass mref.

These two processes are primarily meant to deal with two particular biological phe-
nomena: the formation of MC-clusters and the cell growth and mitosis. Still, as the
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focus of the current paper is more methodological, and since we respect a go-or-grow
dichotomy between the ECs and the MCs, we postpone the discussion of the underly-
ing biological procedures and the corresponding mathematical modelling to a future
work. Besides the merging and splitting procedures, we do not consider other pro-
cesses that alter the masses of the cell-particles. We also do not consider any further
interactions between the cell-particles in this work (such as competition for free space
or development of collision forces) as we try to be consistent with the dynamics that
are usually assumed by macroscopic deterministic models similar to (1a)–(1c). In
e↵ect, two or more cell-particles could occupy the same physical position, in the same
way as the local density of cancer cells can be large.

2.2.2. Time evolution of cell-particles. We assume that the cell-particles
perform a biased random motion that is comprised of two independent processes: a
directed-motion part that represents the haptotactic response of the cells to gradients
of the ECM-bound adhesion sites, and a random/stochastic-motion part that describes
the undirected kinesis of the cells as they sense the surrounding environment; we
understand this phenomenon as a Brownian motion. We reproduce this way, at the
cell-particle level, the di↵usion and -taxis dynamics prescribed by the macroscopic
deterministic cancer invasion models, see e.g. Anderson et al. [2000].

In a slightly more general framework, we assume that the cell-particles obey a stochas-
tic di↵erential equation (SDE) of the (di↵erential) form

(7a) dXp
t = µ (Xp

t , t) dt+ � (Xp
t , t) dW

p
t , for p 2 P,

where Xp
t represents the position vector of the cell-particles p 2 P andWp

t is a Wiener
process with independent components. Here, µ and �2 are the drift and di↵usion
coe�cients that encode the modelling assumptions made on the directed and random
parts of the motion of the cell-particles. Their contribution in (7a) can be understood
as follows: during a short time period �t the changes of the stochastic process Xp

t

follow a normal distribution with expectation µ (Xp
t , t) �t and variance � (Xp

t , t)
2
�t.

Further insight into (7a) can be heuristically derived from the corresponding random
equation

(7b)
d

dt
Xp

t = µ (Xp
t , t) + � (Xp

t , t) ⇠
p
t , for p 2 P,

where the integral of the noise ⇠pt gives rise to the Wiener process Wp
t . The noise

⇠pt along with the intensity � represent the fluctuations around the expected value
of the velocity µ. In the current work, and primarily for the sake of simplicity, we
assume that µ depends on the gradient of the ECM and � is constant. If more
complex dynamics and, most notably, if interactions between the cell-particles and/or
the environment are assumed, µ and � should be adjusted accordingly.

We do not undertake an analysis of (7a) here. However, we note that it should be
performed over a complete probability space (S,H,P) with a filtration {Ht}t�0. The
sample space S can be seen as containing all cell-particles ! belonging to one particular
tumour. Thus, for every p 2 P , the position vector Xp : S ⇥ [0,1) ! R2 represents
an appropriate stochastic process. For more details, we refer to, eg., Oksendal [2003].

Furthermore, in the special case µ(x, t) = ↵x and �(x, t) = �, ↵ 2 R and � �
0, the stochastic process that solves (7a) can be numerically approximated by the
corresponding half-step explicit Euler-Maruyama particle motion scheme,

(7c) Xp
t+⌧ = Xp

t + ↵Xp
t ⌧ + �Zpp⌧ , for p 2 P ,
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with ⌧ > 0 being the timestep of the scheme, and Zp a vector of normally distributed
values of zero mean and unit variance, c.f. Appendix B and Kloeden and Platen
[1992].

Although not the aim of the current work, we note that the many-particle limit
N ! 1 in (7a) is important as it allows to recover the macroscopic deterministic
equation that the MCs would satisfy, if the N ! 1 limit was relevant and justified.
In the special case of (7c) the N !1 limit would give rise to an advection-di↵usion
equation for the corresponding densities, with constant di↵usion coe�cient 1

2�
2 and

non-constant advection speed ↵x, see e.g. Kitanidis [1994], Tompson and Dougherty
[1992], Stratonovich [1966]. Conversely, if the di↵usion coe�cient of the macroscopic
equation is non-constant as, e.g., in Engwer et al. [2017] the corresponding particle-
motion scheme should read, instead of (7c), as

(8) Xp
t+⌧ = Xp

t +A(Xp
t )⌧ +B(Xp

t ) · Z
pp⌧ , for p 2 P ,

with the advection operator

(9) A = v +r ·D,

encoding the advection speed v of the macroscopic equation adjusted by a drift term
that involves the di↵usion matrix D, and where

(10) B ·BT = 2D.

If v andD depend on the physical space, the Itô-type correction of the advection speed
v in (9) is necessary so that the many-particle limit N ! 1 of (8) converges to the
correct macroscopic equation. We refer to Arnold [1974], Raviart [1986], Stratonovich
[1966], Tompson and Dougherty [1992] and Kitanidis [1994] for further discussions
and proofs of these claims.

Modelling reactions. Although the MCs participate in several reaction pro-
cesses (such as the EMT, MET, the proliferation of the ECs, the production of MMPs,
and the degradation of the ECM), the particle motion scheme (8) does not include
any reaction terms. We account for them in the following way:

Some of the MC cell-particles undergo MET to ECs, and subsequently are transformed
to density via the particle-to-density operator that will be introduced in Section 2.3.
These MCs are removed from the system of the MC cell-particles. The new EC
density is added to the existing one and participates normally in the system (1a)–
(1c). Conversely, a part of the EC density undergoes EMT towards MC, at first as
density, which is then transformed into cell-particles via a density-to-particle operator
defined in Section 2.3. These newly formed MCs are then added to the system of the
existing MC cell-particles.

We also note that within this framework, the modelling of cell-growth (increase of
cellular mass) and cell-mitosis are straight forward. Still, as we respect, in the current
paper, a go-or-grow dichotomy between the ECs and MCs, we do not study these
processes any further.

Moreover, at every timestep of the method, the full distribution of MC cell-particles
is transformed temporarily to density (without undergoing MET to ECs), via the
particle-to-density operator. They participate then in the proliferation of the ECs,
the production of the MMPs, and the degradation on the ECM, cf. (1a)–(1c). We
give more details on the combination of the ECs and MCs in Section 2.4.
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2.3. Modelling phase transitions between cell-particles and densities.
In this section we describe the particle-to-density and the density-to-particle phase
transition operators.

We assume at first, that the domain ⌦ is regular (e.g. rectangle in two-dimensions)
and large enough (of the order of 102–104 biological cells), to be uniformly partitioned
in equal rectangles/partition cells {Mi, i 2 I}

(11) ⌦ =
[

i2I

Mi,

where every Mi is an a�ne translation of the generator cell K0. Note that K0 is the
same as the support of the characteristic function in (5). Clearly |Mi| = |K0| = K > 0.

Remark 2.1. More general domains ⌦ can also be considered, possibly at the expense
of the equality of the Mis and the upcoming mass distribution relations (16), (18).
Note moreover that the partition cells Mi, i 2 I do not coincide with the discretisation
cells of the numerical method used to solve (1a)–(1c). The latter constitute an instance
of a sequence of computational grids of zero-converging step sizes, whereas the former
have a step size that represents physical properties of biological cells and remains fixed
over all computational grid resolutions.

Using the partitioning of ⌦ to {Mi, i 2 I}, we represent a measurable c : ⌦⇥(0,1)!
R by its simple-function decomposition

(12)
X

i2I

ci(t)XMi(x),

where XMi is the characteristic function of the set Mi ⇢ ⌦, and ci(t) the mean value
of c(·, t) over Mi

(13) ci(t) =
1

K

Z

Mi

c(x, t)dx.

Clearly, this representation conserves the mass of c(·, t) over ⌦

(14)
X

i2I

Kci(t) =

Z

⌦
c(x, t)dx

On the other hand a particle, indexed here by p 2 P , can be represented either by its
position and mass (particle formulation)

(15) (xp(t), mp(t)) ,

or by the characteristic function with density value (density formulation)

(16)
mp(t)

K
XKp(x),

whereKp is the a�ne translation of the generator cellK0 and is centred at xp. Clearly
(16) implies that the mass mp of the particle is uniformly distributed over Kp.

Although the Kp, p 2 P and the Mi, i 2 I in (12) are equivalent up to a�ne
translations (to the K0), they do not in general coincide. The Mi, i 2 I form a fixed
partition of the domain, cf. (11), whereas the Kp, p 2 P follow the position of the
cell-particles (16).

Based on the dual description (15) and (16) of the cell-particles, we set forth the
transition operators between cell-particles and densities.
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Fig. 3. Two-dimensional graphic representation of the particle-to-density operator F . (left:)

We consider a support Kp (p 2 P ) around the location xp of every particle. The mass of every

particle mp, (shown as points) is uniformly distributed over the respective support Kp. The grid

represents the partitioning of the domain. (right:) A view from above reveals that the supports

Kp can overlap with several cells of the partition. The corresponding masses are assigned to the

partition cells using (19).

2.3.1. Particles-to-density transition. Let {(xp(t),mp(t)), p 2 P} be a col-
lection of cell-particles. Using (4), we define the particle-to-density operator F as,

(17) {(xp(t),mp(t)), p 2 P}
F
�! c(x, t).

To define the target function c(x, t), we go through all the cell-particles, indexed here
by p 2 P , and consider their corresponding density formulation (16). The support Kp

of the cell-particles, overlaps with (possibly) several2 of the partition cells Mi, i 2 I.
In each of these partition cells, and in view of (16), we assign the corresponding
portion of the particle mass

(18) mp

��
Mi

=
mp

K

��Kp \Mi

��.

Due to the simple-function decomposition (12)–(13), we account for the contribution
of all cell-particles p 2 P to the partition cell Mi by

(19) ci(t) =
X

p2P

1

K
mp

��
Mi

(18)
=

X

p2P

mp(t)

K2

��Kp \Mi

��, for i 2 I .

In view now of (12) and (19), we deduce the density function c(x, t) (as a simple
function) over the full domain ⌦ as

(20) c(x, t) =
X

i2I

ci(t)XMi(x), x 2 ⌦.

Refer to Fig. 3 for a graphical representation of the particle-to-density operator F in
two dimensions.

2.3.2. Density-to-particles transition. Conversely, we define the density-to-
particle operator B for a given density function c(x, t) by

(21) {(xp(t),mp(t)), p 2 P}
B
 � c(x, t),

2Since the sets Kp, p 2 P and Mi, i 2 I are two-dimensional quadrilaterals of the same dimen-
sions, every Kp overlaps with at most five Mis.

11
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Fig. 4. Graphical representation of the density-to-particle operator B. We compute the mass

mi of the density function c(x, t) (surface), over every partition cell Mi, i 2 I (quadrilateral grid

on the xy plane), using (22). We then define the particle as (xi,mi) where the location xi is given

by (23).

in the following way: in every partition cell Mi, i 2 I, we assign one particle with
mass

(22) mi(t) =

Z

Mi

c(x, t)dx,

and position

(23) xi(t) = the (bary)centre of Mi.

For practical considerations, we set in the numerical simulations a minimum threshold
value on the densities, below which no transition to cell-particles takes place. This
threshold value is quite small and is used to avoid large numbers of cell-particles
of negligible mass. Refer to Fig. 4 for a graphical representation of the density-to-
particles operator.

2.4. Coupling of the two cancer cell phenotypes and phases. We denote
again the two cancer cell phenotypes, EC and MC, by the superscripts ↵ and �
respectively, and consider for t � 0 the vector formulation (2) of the system (1a)–(1c)
with the density variables

w(x, t) = (c↵(x, t),m(x, t), v(x, t)) .

At the same physical time t, we write the MC cell-particles as

(24) P
�(t) =

��
x�
p (t),m

�
p

�
, p 2 P (t)

 
,

and, accordingly, the overall system is given by the tuple

(25)
�
w(x, t),P�(t)

�
, x 2 ⌦, t � 0.

In the evolution of the overall system, we consider the EMT and MET processes
separately from the rest of the dynamics of the system (1a)–(1c)3.

3To ease the presentation and since the EMT and MET are assumed to be instantaneous and
tautochronous, we drop the dependence of the density variables and the cell-particles on x and/or t.
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2.4.1. EMT operator. The detailed modelling and biophysical accuracy of the
EMT triggering mechanism is not one of the main focal points of this work. Instead,
we assume a simplified approach where a randomly chosen part of the ECs (in density
formulation) c↵EMT undergoes EMT to give rise to MCs (still in density formulation)

c↵EMT
EMT
���! c�EMT.

The newly created MC density c�EMT is transformed to MC cell-particles via the
density-to-particle operator B given in (21)

(26) c�EMT
B
�!

�
(x�

p ,m
�
p ), p 2 PEMT

 
,

where x�
p , m

�
p follow from (22), (23) and PEMT is the corresponding set of indices.

Subsequently, the family of existing MC cell-particles is updated with the newly cre-
ated cell-particles. This is given by the disjoint union

(27)
�
(x�

p ,m
�
p ), p 2 P

 
| {z }

existing MC cells

]
�
(x�

p ,m
�
p ), p 2 PEMT

 
| {z }

newly created MC cells

=
�
(x�

p ,m
�
p ), p 2 P new

 
,

where P new is a re-enumeration of the multiset P ] PEMT.

Overall, combining the two cancer cell types, the EMT operator reads as

(28) R
EMT

�
c↵,

��
x�
p ,m

�
p

�
, p 2 P

 �
=
�
c↵ � c↵EMT,

�
(x�

p ,m
�
p ), p 2 P new

 �
.

2.4.2. MET operator. As with the EMT, the triggering mechanism of the
MET is not one of the focal points of this paper. We instead assume an approach where
each of the MC cell-particles

��
x�
p ,m

�
p

�
, p 2 P

 
undergoes MET to ECs randomly

(29)
�
(x�

p ,m
�
p ), p 2 P

 MET
���!

�
(x↵

p ,m
↵
p ), p 2 PMET

 
| {z }

newly created EC cells

.

The resulting EC cell-particles are instantaneously transformed to density via the
particle-to-density operator F given in (17):

�
(x↵

p ,m
↵
p ), p 2 PMET

 F
�! c↵MET.

In operator form, the MET reads

(30) R
MET

�
c↵,

��
x�
p ,m

�
p

�
, p 2 P

 �
=
⇣
c↵ + c↵MET,

n
(x�

p ,m
�
p ), p 2 P̃ new

o⌘
,

where P̃ new is a re-enumeration of the set di↵erence P \ PMET.

2.5. Time evolution of the two cancer cell types. The evolution of the ECs
is controlled by (1a)–(1c) and through their coupling with the MCs cell-particles, by
(7a). We study this combined system of PDEs and SDEs numerically while postponing
any analytical investigations for a follow up work. To this end, we consider the model
(2) and set

Wn =
n
wn

(i,j) =
⇣
cn(i,j),m

n
(i,j), v

n
(i,j)

⌘
, (i, j) 2Mx ⇥My

o
,

P
�,n =

��
x�,n
p ,m�

p

�
, p 2 Pn

 
,
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to denote numerical approximations of the density and particle variables w(x, t) and
P

�(t), respectively, at the instantaneous time t = tn. Here, Mx, My 2 N denote the
resolution of the numerical grid along the x-, and y-directions respectively. We refer
to the Appendix A for further information on the numerical method employed on W;
we focus here on the time evolution of the density and particle variables by means of
an operator splitting approach. In particular, for t 2 [tn, tn+1], tn+1 = tn + ⌧n, we
assume that:

— During the time period [tn, tn+ 1
2⌧

n], the system evolves, without the influence
of the EMT or MET, as

(31a)
�
Wn,P�,n

�
�!

⇣
Wn+1/2,P�,n+1/2

⌘

with

Wn+1/2 =N
[tn,tn+ 1

2 ⌧
n] �Wn,P�,n

�
,(31b)

P
�,n+1/2 =

n⇣
x�,n+1/2
p ,m�,n+1/2

p

⌘
, p 2 Pn+1/2

o
,(31c)

where N
[t,t+⌧ ] is the numerical solution operator responsible for the spa-

tiotemporal evolution of the system (1a)–(1c) —without EMT and MET.

Here, x�,n+1/2
p , p 2 Pn, is given by the half-step Euler-Maruyama particle

motion scheme (8), re-written here with respect to the local variables

(32) X�,n+1/2
p = X�,n

p +A
�
X�,n

p

� ⌧n

2
+B

�
X�,n

p

�
· Zp

r
⌧n

2
.

The number of cell-particles, their indices and masses remain unchanged dur-
ing this step [tn, tn + 1

2⌧
n], i.e.

Pn+1/2 = Pn and m�,n+1/2
p = m�,n

p , 8p 2 Pn.

Altogether, the combined evolution operators of the densities and cell-particles
read for this time period as:

(33) M 1
2 ⌧

n

�
Wn, P�,n

�
=
⇣
Wn+1/2, P�,n+1/2

⌘
.

— At t = tn+ 1
2⌧

n, the EMT and MET processes take place; they are assumed to
be instantaneous and tautochrone. They are represented by the R

EMT and
R

MET operators introduced in (28) and (30) respectively. For consistency,
we scale them by the time step ⌧n and change their notation to R

EMT
⌧n and

R
MET
⌧n , respectively.

In e↵ect, the tuple
�
Wn+1/2, P�,n+1/2

�
develops as

(34)
⇣
W̃n+1/2, P̃�,n+1/2

⌘
= R⌧n

⇣
Wn+1/2, P�,n+1/2

⌘
,

where R⌧n denotes the parallel application of REMT
⌧n and R

MET
⌧n

4.

4Note that REMT
⌧n acts on the EC density and RMET

⌧n acts on the MC cell-particles.
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— During [tn + 1
2⌧

n, tn+1], the densities and cell-particles evolve again without
the influence of EMT and MET as

⇣
W̃n+1/2, P̃�,n+1/2

⌘
�!

�
Wn+1, P�,n+1

�
,

where, in a similar way as in [tn, tn + 1
2⌧

n],

Wn+1 =N
[tn+ 1

2 ⌧
n,tn+1]

⇣
Wn+1/2, P̃�,n+1/2

⌘
,(35)

P
�,n+1 =

��
x�,n+1
p ,m�,n+1

p

�
, p 2 Pn+1

 
.(36)

Again, N [tn+ 1
2 ⌧

n,tn+1] represents the numerical method for the solution of the
system (1a)–(1c),

Pn+1 = Pn+1/2 and m�,n+1
p = m�,n+1/2

p , 8p 2 Pn+1.

In the above, x�,n+1
p , p 2 Pn+1/2, is given by the half-step Euler-Maruyama

scheme (8)

(37) X�,n+1
p = X�,n+1/2

p +A
⇣
X�,n+1/2

p

⌘ ⌧n

2
+B

⇣
X�,n+1/2

p

⌘
· Zp

r
⌧n

2
.

We combine the two evolution operators as:

(38) M ⌧
2

⇣
W̃n+1/2, P̃�,n+1/2

⌘
=
�
Wn+1, P�,n+1

�
.

Overall, using (33), (34), and (38), we can write the combined evolution operator for
the time period [tn, tn+1] as a splitting method of the form

(39)
�
Wn+1, P�,n+1

�
= M ⌧n

2
R⌧n M ⌧n

2

�
Wn, P�,n

�
.

We close the system (39) with no-flux boundary conditions for the EC and MMP
densities, and reflective boundary conditions for the MCs cell-particles. The latter
should be understood as follows: each particle that escapes the domain ⌦ is returned
to its last position within the domain, and its new direction is chosen randomly. As
the ECM is modelled as an immovable part of the system, it does not translocate,
hence no boundary conditions are employed.

3. Experiments and simulations. We perform three numerical experiments
that exhibit the dynamics and the combination of the two cancer cell phenotypes and
the transitions between the continuum and particle phases. For simplicity, we consider
a constant di↵usion coe�cient � in (7a) for the random part of the cell motion, and
a drift coe�cient µ depending on the gradient of the ECM, i.e. µ = ↵rv, to address
the directed part of their motion.

The discretization grids used for the numerical solution and simulations of (39) should
not be confused with the partitioning of ⌦ in {Mi, i 2 I} as in (11). The former are
used to solve the system (1a)-(1c) and are subject to mesh refinements. The latter
are used for the back-and-forth transitions between the density and particle phases of
the biological cells and are fixed, with sizes given equivalent to the reference cell K0.

The implementations of numerical schemes and algorithms, and the simulations of
the experiments included in this paper have been conducted in MATLAB [2015].
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Table 1
Parameters and units corresponding to Experiment 3.1 and Fig. 5.

description symbol values and units
EC dens. di↵. coef. D↵ 0 cm2d�1

EC dens. prol. coef. ⇢↵ 0 d�1

MC part. di↵. coef. |B| 1.6 cm2d�1

MC part. hapt. coef. 30 cm3mol�1d�1

MC part. ref. mass mref 1 ⇥ 10�5 gr
MC part. ref. diam. 1 ⇥ 10�2 cm
EMT prob. 5 ⇥ 10�4

EMT rate µa 1 ⇥ 103

MET prob. 0
MMP di↵. coef. Dm 0
ECM EC dens. degr. �↵

v 0 cm2mol�1d�1

ECM MC dens. degr. ��
v 0 cm2mol�1d�1

Experiment 3.1 (EMT and particle flow). We set ⌦ = [�1, 1]2 and consider the
initial EC density

(40a) c↵(x, 0) =
⇣
e�5(x2

1+x2
2) � 0.7

⌘+
,

with x = (x1, x2) 2 ⌦, where (·)+ denotes the positive part function. The ECM is
non-uniform and exhibits a gradient towards the upper-right part of the domain

(40b) v(x, 0) = 0.045 (2x1 + 3x2) + 0.45.

Initially, no MC cell-particles nor MMPs are present.

The parameters for this experiment are given in Table 1 and the results of the sim-
ulation are shown in Fig. 5. There is no particular biological justification for the
parameter values and initial conditions in this experiment.

The phenomena observed in this experiment are the following: the ECs undergo EMT
to MCs and new cell-particles appear in the system. The cell-particles “sense” the
gradient of the ECM and respond haptotactically to it. This is included in the model
and simulations via the advection velocities v of the cell-particles, see e.g. (9). Their
motion incorporates also a random component; the resulting migration is a biased-
random motion. The simplified EMT that we assume in this experiment takes place
in every partition cell Ki, i 2 I with a probability that is denoted as “EMT prob.”
in Table 1. The set union of all partition cells where EMT takes place defines the
set E that appears in (1a). The rate µa at which the EMT occurs in E is a given
constant. In this experiment, we do not assume proliferation of the ECs, nor MET.
Hence, the losses of the EC density, due to the EMT, appear as “holes” in their density
profile and are not replenished with time. Moreover, the ECs do not actively migrate
or otherwise translocate as (1a) includes neither haptotaxis nor di↵usion (have set
D↵ = 0 in this experiment), see Table 1.

Experiment 3.2 (Self-generated gradient). A typical phenomenon that macroscopic
cancer invasion models exhibit, is the appearance of a propagating front that invades
the ECM faster than the rest of the tumour, see e.g Byrne et al. [1999], Chaplain
and Lolas [2005], Sfakianakis et al. [2017]. This front is followed by an intermediate
distribution of the density, whereas the bulk of the tumour lags further behind. This
phenomenon is due primarily to the degradation of either an extracellular chemical
(in the case of a self-generated chemical gradient), or of the ECM (in the case of a
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(a) t = 0.01 (b) t = 0.06 (c) t = 0.10

(d) t = 0.40 (e) t = 0.85 (f) colorbars

Fig. 5. Experiment 3.1 (EMT and flow). Shown here is the time evolution of an initial EC

density (isolines) and the resulting (after EMT) MC cell-particles (stars) over an ECM (background)

that exhibits a directed gradient. The domain is ⌦ = [�1, 1]2. (a): An initial circular EC tumour

resides over an ECM that exhibits a gradient towards the north-east direction. (b): The EC density

undergoes EMT and gives rise to MC cell-particles. (c): Due to the di↵usion and the haptotaxis,

the cell-particles escape the initial tumour and migrate along the gradient of the ECM. (d): No

proliferation is assumed for the ECs, hence the losses of their densities, due to the EMT towards

MCs, are not replenished. This gives rise to “holes” in the initial tumour. (e): The phenomenon

continues as long as parts of the EC density transform to MC cell-particles. (f): Common colorbars

for the ECM (left) and the EC densities (right) in all sub-figures. See Table 1 for the parameters

for this experiment.

self-generated haptotaxis gradient) by the cancer cells. Such phenomena have been
observed previously both in mathematical models and biological experiments, see e.g.
Tweedy et al. [2016], Anderson et al. [2000].

In this experiment we exhibit the ability of our cell-particle submodel to reproduce
such phenomena. In particular, we show that as the cancer cells (considered here
as cell-particles) degrade the ECM, they induce a gradient on it and subsequently
respond to this gradient by performing a directed and sustainable invasion. Most
notably they form an isolated propagating front that invades the ECM.

For this experiment we consider the domain ⌦ = [�0.5, 0.5]⇥ [0, 2], over which lies a
uniform ECM

(41) v(x, 0) = 0.1, x 2 ⌦.

On the upper part of the domain, an initial EC density is assumed to be given by

(42) c↵(x, 0) = 10�4
XS1(x) , x 2 ⌦,

17



Table 2
Parameters and units corresponding to Experiment 3.2 and Fig. 6.

description symbol values and units
EC dens. di↵. coef. D↵ 0 cm2d�1

EC dens. prol. coef. ⇢↵ 0 d�1

MC part. di↵. coef. |B| 2 ⇥ 10�2 cm2d�1

MC part. hapt. coef. 1 ⇥ 10�3 cm3mol�1d�1

MC part. ref. mass mref 3 ⇥ 10�9 gr
MC part. ref. diam. 1 ⇥ 10�3 cm
EMT prob. 1
EMT rate µa 10
MET prob. 0
MMP di↵. coef. Dm 0
ECM EC dens. degr. �↵

v 20 cm2mol�1d�1

ECM MC dens. degr. ��
v 200 cm2mol�1d�1

with S1 =
�
x = (x1, x2) 2 ⌦

��x2 > 0.01 sin(5⇡x1) + 1.97
 
. Before the beginning of

the simulation, the EC density c↵(x, 0) is completely transformed into MC cell-
particles. As no MET takes place in this experiment, the MC cell-particles do not
transition back to ECs. The MCs secrete MMPs that participate in the degradation
of the ECM. The corresponding modelling parameters are given in Table 2 and the
simulation results in Fig. 6.

In view of (8), all cell-particles perform a biased random motion; since the ECM
is initially uniform, this motion is purely Brownian. As the cell-particles degrade
the ECM, a gradient is formed in the matrix. The cell-particles found closer to this
“interface” sense the gradient and respond haptotactically to it. This is encoded in the
model through the dependence of the advection operator A on the particle velocity v,
e.g. (9), which in turn depends on the gradient of the ECM at the current position of
the particle. The directed part of their motion dominates and drives the cell-particles
to higher matrix densities. As the cell-particles continue their invasion of the ECM
they keep producing MMPs, degrading the ECM, and following the newly created
gradient. Their motion is persistent in direction and speed.

With our model, we can now address particular questions of experimental interest:
What is the minimum number of cancer cells needed to induce and sustain an invasion
of the ECM persistent in direction and speed? How does the remodelling of the matrix
a↵ect the self-generated gradient motion? Such questions would among others serve
as a bridge between experimental observations and mathematical models. Their study
has to be the topic of a follow-up work, where the relevant experimental data should
be analysed, as was done, for example, in Yang et al. [2016].

Experiment 3.3 (ECM invasion). This experiment is motivated by the organotypic
invasion assays where cancer cells are plated over a collagen gel that contains healthy
tissue, and where their invasion is studied over time, see for example Nyström et al.
[2005], Valster et al. [2005] and Fig. 7.

We employ the complete set of dynamics of the system and consider the domain
⌦ = [�2, 2]2 occupied by an ECM of initial density v(x, 0) constructed by 64 randomly
chosen extremal values per direction that are interpolated in a piecewise linear way.
Small perturbations of the form of additive Gaussian noise are also included.

An initial density of ECs is given in the upper part of the domain as

(43) c↵(x, 0) = 0.05XS2(x) , x 2 ⌦,
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(a) t = 1 (b) t = 40 (c) t = 90

(d) t = 130 (e) t = 180 (f) t = 230

Fig. 6. Experiment 3.2 (Self-generated gradient). Shown here is the migration of a number of

MC cell-particles (stars) over an ECM (background landscape) in the absence of MET and EMT.

The directed migration of the MC cell-particles is due to their haptotactic response to the gradients

of the ECM that the MC cell-particles have induced. The domain is ⌦ = [�0.5, 0.5] ⇥ [0, 2]. (a):

The MC cell-particles reside over an initially uniform ECM. Their migration is mostly Brownian.

(b)-(c): The cell-particles degrade the matrix and introduce a gradient which is sensed by the cell-

particles that are closer to the “interface”. In e↵ect, their motion is driven mostly by haptotaxis. As

the cells invade the ECM, they continue to degrade the matrix and follow the new gradient that they

have induced. (d)-(f): The migration of the cell-particles in the front is persistent in direction and

speed, while the cell-particles in the rear (where the ECM is depleted) perform mostly a Brownian

motion.

with S2(x) =
�
x = (x1, x2) 2 ⌦

��x2 > 0.05 sin(5⇡x1) + 0.05x1 + 1.1
 
. Initially, nei-

ther MC cell-particles nor MMPs exist in the system. The parameters for this ex-
periment can be found in Table 3 and the simulation results are presented in Fig.
8.

The ECs proliferate and di↵use, but most notably transform via EMT to MC cell-
particles. These MC cell-particles do not proliferate but they are very aggressive in
their motility. As they escape the main body of the tumour, they undergo MET back
to ECs. As a result, new EC concentrations appear, they grow due to proliferation,
and give rise to tumour “islands”. These “islands” merge with each other as well as
with the main body of the tumour. The main characteristic and novelty of our hybrid
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Fig. 7. Timecourse (days 3, 9, and 14) study of the invasion of squamus carcinoma cells (black

matter) on an organotypic assay with human fibroblast cells (gray matter). The invasion occurs in

the form of cancer cell “islands” formed in front of the main body of the tumour. We reproduce

the same phenomenon in the invasion Experiment 3.3 and in Fig. 8. These images are taken from

Nyström et al. [2005] (PERMISSION REQUESTED).

Table 3
Parameters, units, and sourses corresponding to Experiment 3.3 and Fig. 8.

description symbol values and units sources
EC dens. di↵. coef. D↵ 3.456 ⇥ 10�6 cm2d�1 Chaplain and Lolas [2005]
EC dens. prol. coef. ⇢↵ 1.2 d�1 Orme and Chaplain [1997]
MC part. di↵. coef. |B| 3 ⇥ 10�1 cm2d�1 Stokes and Lau↵enburger

[1998]
MC part. hapt. coef. 3 cm3mol�1d�1 (estimate)
MC part. ref. mass mref 3 ⇥ 10�9 gr B10NUMB3R5 (HeLa cell)
MC part. ref. diam. 1 ⇥ 10�3 cm B10NUMB3R5 (HeLa cell) &

Zhao et al. [2008]
EMT prob. 1 ⇥ 10�5 (estimate)
EMT rate µa 4 ⇥ 10�3 (estimate)
MET prob. 2 ⇥ 10�2 (estimate)
MMP di↵. coef. Dm 0
ECM EC dens. degr. �↵

v 1 ⇥ 10�5 cm2mol�1d�1 Anderson and Chaplain [1998]
ECM MC dens. degr. ��

v 1 ⇥ 10�4 cm2mol�1d�1 Anderson and Chaplain [1998]

model, is that it predicts the emergence of these tumour “islands” outside of the main
body of the tumour.

The growth of the tumour with the combined dynamics of the ECs and MCs possesses
several interesting properties. The tumour grows much faster than it would, if it was
comprised only of the ECs. This is so, since the new EC “islands” that arise after the
MCs have escaped the main body of the tumour undergo MET, exploit uninhabited
locations, and grow “to all directions”. On the contrary, in the main body of the
tumour, only the ECs found in the periphery contribute to the growth of its support.

Moreover, the independent and aggressive migration of MCs provides them with faster
access to the circulatory network and the possibility to translocate to secondary places
within the organism. As the MCs possess the ability to give rise to EC “islands” at
the new locations, new tumours might appear, and metastasis will have occurred.
Although it is not our aim in the current paper to reproduce particular experimental
scenarios, a direct comparison of the simulation results in Fig. 8 with the organotypic
assay images in Fig. 7 exhibits clearly that this phenomenon is reproduced by our
model.

Another sought-after property in cancer invasion modelling is that the MCs remain
undetected while they invade the ECM. It is not until a new ECs tumour has been
established that it can grow to be of any detectable size. Again, this property is
inherently built in our modelling approach.
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(a) t = 1 (b) t = 150 (c) t = 200

(d) t = 270 (e) t = 330 (f) colorbars

Fig. 8. Experiment 3.3 (ECM invasion). Shown here is the time evolution of the ECM (back-

ground landscape), the EC (isolines), and the MC cell-particles (stars) over the domain ⌦ = [�2, 2]2.
(a): According to their modelling dynamics, an initial uniform density of ECs evolves according to

system (1a)–(1c), and mostly proliferates rather than di↵uses. (b)-(c): The MC cell-particles that

are produced through the EMT escape the main body of the tumour, invade the ECM, undergo MET

and eventually give rise to new EC “islands”. (d)-(e): These “islands” grow mostly due to prolifer-

ation and eventually merge with the main body of the tumor. (f): The colorbars for the ECM (left)

and the EC density (right) are common to all figures.

4. Discussion. We present in this work a modelling framework to study the
combined invasion of the ECM by two types of cancer cells, the ECs and MCs. The
proposed framework is a genuinely multiscale hybrid model that treats the ECs in
a macroscopic and deterministic manner and the MCs in an atomistic and stochas-
tic way. It has similarities with, and develops further along the lines laid, e.g., in
Anderson et al. [2000], Anderson [2005], Colombi et al. [2017].

Cornerstone to our modelling approach is the remark that the MCs are much fewer
than the ECs and that they emanate from the ECs via a dynamic EMT cellular
di↵erentiation program. We also assume that the MCs give rise, via the opposite
MET-like cellular program, to ECs; a key property in the metastasis of the tumour.
For the sake of simplicity, we assume that both types of cancer cells perform a random
motion, and that the MCs are much more aggressive in their migration than the ECs.
Clearly, more complex and biologically relevant assumptions can be placed on the
cancer cells.

We encode this information through a hybrid approach: The spatiotemporal evolution
of the ECs, the ECM, the MMPs, and the rest of the environmental components are
dictated by the macroscopic deterministic model (1a)–(1c). Namely, the ECs are
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assumed to di↵use and proliferate. The MMPs are assumed to be produced by the
cancer cells and degrade the ECM, and the ECM in turn, is assumed to be non-uniform
and is not remodelled. The MCs on the other hand are considered as separate cell-
particles that obey a system of SDEs, (7a), that accounts for haptotaxis and random
motion for each MC.

The (combined) evolution of the two types of cancer cells is coupled through tran-
sitions between the EMT and MET. The triggering mechanisms of EMT and MET
are quite complex and involve the action of several biochemical components such as
TGF-�, EGF, and more. For the purpose of clarity of the presentation, we follow in
this work a simplified approach and assume that the EMT and MET occur randomly
over the ECs and MCs respectively, cf. Section 2.4. The EMT and MET programmes
are realised through the density-to-particle and particle-to-density operators given in
(17) and (21).

Our modelling approach allows to reproduce several biologically relevant phenomena
encountered in the invasion of cancer that are not easily addressed with the usual
modelling approaches. Our focus though in this work lies with the description and
the handling of the mathematical model and the numerical method; we only present
here basic biological situations and postpone the more elaborate investigations for a
follow-up work.

With the atomistic component of our model, we are able to reproduce a sustainable
invasion of the ECM by means of a self-induced haptotaxis gradient as shown in
Experiment 3.2. Such behaviour is observed in biological situations, e.g. Tweedy et al.
[2016], and becomes crucial to several biological processes like wound healing. The
detailed study of such cases falls beyond the scope of the current paper; here we use
this experiment as an indication that our model can reproduce biologically relevant
situations. At the same time it serves as verification of the propagating invasion
front seen in simulations of macroscopic deterministic cancer invasion models, e.g.,
Anderson and Chaplain [1998], Chaplain and Lolas [2005], Sfakianakis et al. [2017].

With the full model, we are able to reproduce the spread of the tumour and the
invasion of the ECM in the form of invasion “islands”, Japanese Gastric Cancer As-
sociation [2011], Ito et al. [2012], Masuda et al. [2017] and Experiment 3.3. These
are well known to appear in many cases of cancer and are quite challenging to repro-
duce by either macroscopic or atomistic cancer invasion models, e.g., Domschke et al.
[2014b], Hiremath and Surulescu [2016b]. With our approach these invasion “islands”
are an emergent process of our modelling framework and—most notably—they appear
outside the main body of the tumour.

What is also natural in our approach, is that the MC cell-particles escape the main
body of the tumour and remain undetected while they invade the ECM. It is only
after they have established new “islands” in the vicinity of the original tumour or
in another location within the organism that they can be detected. This is another
sought-after property in the field of cancer invasion modelling.

For the sake of presentation, we have only considered here some of the fundamental
properties of cancer growth that our model can reproduce, see (1a)–(1c). Still they
su�ce to warrant extensions and investigations of more realistic biological situations
and experimental settings. To mention but a few: extension to the more realistic three-
dimensional space, more realistic EMT and MET transitions, interactions between
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cancer cells of the same and di↵erent types including collisions, adhesions, short or
long range interactions, and the collective behaviour of cancer cells.

Data Management. All the computational data output is included in the
present manuscript.
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Appendix A. (Numerical method for the ARD model (2)). We use a second
order Implicit-Explicit Runge-Kutta (IMEX-RK) Finite Volume (FV) numerical method that
was previously developed in Kolbe et al. [2016], Sfakianakis et al. [2017] where we refer for
more details, see also Lakkis et al. [2012]. Here we provide some basic description of the
method.

We consider a generic ARD system of the form

(44) wt = A(w) +R(w) +D(w),

wherew represents the solution vector, and A, R, andD the advection, reaction, and di↵usion
operators respectively.
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Table 4
Butcher tableaux for the explicit (upper) and the implicit (lower) parts of the third order IMEX

scheme (47), see also Kennedy and Carpenter [2003].

0

1767732205903
2027836641118

1767732205903
2027836641118

3
5

5535828885825
10492691773637

788022342437
10882634858940

1 6485989280629
16251701735622 � 4246266847089

9704473918619
10755448449292
10357097424841

1471266399579
7840856788654 � 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

3
5

2746238789719
10658868560708 � 640167445237

6845629431997
1767732205903
4055673282236

1 1471266399579
7840856788654 � 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654 � 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

We denote by wh(t) the corresponding (semi-)discrete numerical approximation —indexed
here by the maximal spatial grid diameter h— that satisfies the system of ODEs

(45) @twh = A(wh) +R(wh) +D(wh),

where the numerical operators A, R, and D are discrete approximations of the operators A,
R, and D in (44) respectively.

Our method of choice for solving (45) is an Implicit-Explicit Runge-Kutta (IMEX-RK)
method based on a splitting in explicit and implicit terms in the form

(46) @twh = I(wh) + E(wh).

The actual splitting depends on the particular problem in hand but in a typical case, the
advection terms A are treated explicitly in time, the di↵usion terms D implicitly, and the
reaction terms R partly explicit and partly implicit.

More precisely, we employ a diagonally implicit RK method for the implicit part, and an
explicit RK for the explicit part

(47)

8
>>>>>>>>>>><

>>>>>>>>>>>:

W⇤
i = wn

h + ⌧n

i�2X

j=1

āi,jEj + ⌧nāi,i�1Ei�1, i = 1 . . . s

Wi = W⇤
i + ⌧n

i�1X

j=1

ai,jIj + ⌧nai,iIi, i = 1 . . . s

wn+1
h = wn

h + ⌧n

sX

i=1

b̄iEi + ⌧n

sX

i=1

biIi

,

where s = 4 are the stages of the IMEX method, Ei = E(Wi), Ii = I(Wi), i = 1 . . . s,
{b̄, Ā}, {b, A} are respectively the coe�cients for the explicit and the implicit part of the
scheme, given by the Butcher Tableau in Table 4, Kennedy and Carpenter [2003]. We solve
the linear systems in (47) using the iterative biconjugate gradient stabilised Krylov subspace
method Krylov [1931], van der Vorst [1992].

Appendix B. (An explicit numerical scheme for the SDE (7a)). We consider
an Ito process X = {Xt, t0  t  T} that satisfies the Brownian motion SDE

(48) dXt = ↵Xtdt+ �dWt,
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where Xt denotes the position in space, and where ↵ 2 R and � > 0 are constants.

We discretise (48) with the explicit Euler-Maruyama scheme as

(49) Xn+1 = Xn + ↵Xn⌧ + ��Wt.

By setting �Wt = Z
p
⌧ with Z ⇠ N(0, 1), (49) reads

(50) Xn+1 = Xn + ↵Xn⌧ + �Z
p
⌧

which is a simpler version of the scheme that we employ in (8).

For further details on the numerical treatment of (48) and other SDEs we refer to Iacus
[2008], Kloeden and Platen [1992].
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