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Abstract: This study presents a convolutional neural network (CNN) based drone classification method. The primary 

criterion for a high-fidelity neural network based classification is a real dataset of large size and diversity for training. 

The first goal of the study was to create a large database of micro-Doppler spectrogram images of in-flight drones and 

birds. Two separate datasets with the same images have been created, one with RGB images and other with grayscale 

images. The RGB dataset was used for GoogLeNet architecture-based training. The grayscale dataset was used for 

training with a series architecture developed during this study. Each dataset was further divided into two categories, one 

with four classes (drone, bird, clutter and noise) and the other with two classes (drone and non-drone). During training, 

20% of the dataset has been used as a validation set. After the completion of training, the models were tested with 

previously unseen and unlabelled sets of data. The validation and testing accuracy for the developed series network have 

been found to be 99.6% and 94.4% respectively for four classes and 99.3% and 98.3% respectively for two classes. The 

GoogLenet based model showed both validation and testing accuracies to be around 99% for all the cases. 

 

1. Introduction 

Real time classification of drones in airspace has 

become a major technical challenge in recent times. Due to 

the low radar cross-section (RCS) and velocity of drones, 

constant real time reliable classification is difficult to 

achieve. Various sensors such as radar, acoustic and passive 

RF sensors have been explored commercially to address this 

issue so far [1]. Radar has the capability to perform during 

night time and inclement weather and does not require any 

signal emissions from the target. Hence, a radar sensor is a 

primary candidate for any drone detection and classification 

system. In the last few years, there has a been a proliferation 

of publications concerning the classification of drones using 

radar [2]. 

Most commercial drones are rotary wing, as the 

ability to hover is a highly desired feature. The Doppler 

signature induced by the high speed continuous rotation of 

the propeller blades, known as micro-Doppler [3], produces 

a distinct radar signature. This signature can be used to 

classify a drone from clutter or other false targets (e.g. birds). 

The micro-Doppler signature of a bird is produced by an 

entirely different physical property, the oscillatory flapping 

of the wings. These are very different from and occur much 

more slowly than the drone propeller blade induced 

signatures, which can be used for distinguishing the targets. 

One of our prior studies has investigated these properties in 

detail [4]. Many research works have been performed to 

date regarding micro-Doppler based drone classification and 

discrimination of drones and birds [5]–[9]. All these articles 

analyse the micro-Doppler spectrogram plots and extract 

characteristic features which can be fed to the classifier 

algorithm. The feature extraction based classification 

algorithms reported in these articles have shown very good 

validation accuracy (~90% or more). One problem with 

these feature extraction based algorithms is the latency 

caused by the feature extraction process. Usually, the feature 

extraction algorithms (e.g. singular value decomposition) 

are computationally costly to implement. This is not ideal 

for real time operation where very fast localisation and 

classification of the target is required which could then be 

used to initiate a counter measure. 

Neural network based algorithms are very good 

candidates to resolve this latency problem as the micro-

Doppler spectrogram can be directly fed to the classifier, 

eliminating the feature extraction process. However, there 

are a few issues which are associated with neural network 

based classifiers. A CNN, which is a widely used network, 

requires the data to be an image. This has been used 

extensively for optical image-based classifications but radar 

spectrogram plots are not true optical images. Also, to make 

the classifier efficient, the training process must be rigorous 

in terms of the amount and diversity of training data. This is 

comparatively easier to achieve for optical images than 

radar data. Nonetheless, the distinctive micro-Doppler 

features of drones (and birds) are best revealed by short time 

Fourier Transform (STFT) derived spectrograms. Raw data 

(time series or complex FFT’ed magnitude and phase data) 

do not illustrate the micro-Doppler characteristics. High 

fidelity micro-Doppler signatures are still required for neural 

network classification as the underlying dominant features 

for target discrimination lie within the micro-Doppler data. 

In [10]–[13], proofs of concept have been 

demonstrated regarding the use of spectrogram image based 

neural networks for target classification. Those authors have 

shown that neural network architectures can be created to 

classify specific human activities (i.e. armed/unarmed 

personnel), gait recognition or different moving targets. 

There are also some recently published reports on using 

neural networks specifically for drone classification. An 

optical image based CNN model to classify drones has been 

reported in [14]. Those authors trained the dataset with three 

classes (drone, bird and clutter) and used their developed 

algorithm at the 2017 Drones vs birds challenge [15], which 

they won. In [16][17], the authors introduced and 

implemented a CNN model for simulated radar micro-

Doppler based classification. They used simulated data for 

various types of commercial drones (Vario helicopter, DJI 
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Phantom 2 and DJI S1000+). They showed that the temporal 

fluctuations observed in micro-Doppler spectrograms can be 

learned by the CNN. In [18], a CNN model is applied to a 

Ku-band radar dataset combining spectrograms and cadence 

velocity diagrams and used to discriminate between two 

different types of drones (DJI Inspire 1 and Hobbylord 

F820). Those authors gathered 50,000 data samples from 

anechoic chambers and 10,000 

outdoor data samples and used the GoogLeNet architecture 

[19], which is an open source model, to train their dataset. 

They achieved 89.3% accuracy for anechoic chamber data, 

using the merged Doppler (spectrogram and cadence 

velocity diagram) dataset. For the outdoor dataset, they 

achieved 100% accuracy. It should be noted that their 

outdoor dataset contained only hovering data, hence 

significantly lacked diversity. In [20], the authors analysed 

and compared two neural network initialisation techniques 

(unsupervised pre-training and transfer learning). They 

implemented the transfer learning method to train the 

dataset with the GoogLeNet architecture, to show the 

robustness of the model that uses only a small amount of 

data for training. This approach is commonly used in optical 

image classification. One restriction with GoogLeNet is that 

it requires an RGB image input. Radar spectrogram images 

are intrinsically false coloured so there is always the risk of 

the model not being generic as spectrograms can be 

generated with different colour scales or using different 

parameters. 

In terms of the previous work done so far, we have 

concluded that there is a large potential to use a CNN based 

algorithm to classify drones. A common limitation is the 

need for a large dataset comprising different types of drones 

and birds, both hovering (drones) and flying. Ideally, it is 

better to not use synthetic data but to have a dataset of real 

radar data obtained in realistic scenarios. To make it more 

robust, diversity in terms of operating frequency, 

polarisation aspect angle, range, radar dynamic range and 

noise floor threshold is also essential. We introduce such a 

dataset in this work. We have created a GoogLeNet based 

model based on our RGB spectrogram image dataset. 

Secondly, we have created a copy of the same dataset using 

only grayscale images. This gives the flexibility of the 

dataset being as colour neutral as possible, so that no colour 

features are mistakenly learned by the neural network. We 

have used the grayscale image set to train a series network 

architecture developed by us. Detailed comparison between 

and performance analysis of the GoogLeNet and series 

network models is presented in later sections of this paper. 

All the spectrogram images used in this study were obtained 

with a K-band (24 GHz) radar and a W-band (94 GHz) radar. 

All the data processing, CNN training and testing have been 

performed using Matlab®.  

2. CNN model 

The motivation for using a CNN is based on the 

hypothesis that as micro-Doppler spectrograms provide a 

visually obvious method of discriminating the target, the 

neural network should be able to learn those discriminatory 

features when the spectrograms are treated as images. A 

CNN is a multilayer perceptron (MLP) based neural 

network, using a supervised learning technique termed 

backpropagation [21]. The learning process in each layer is 

done fundamentally by a cross correlation process, using 

filters of different sizes at different stages. Given enough 

time and computational power, it could learn the distinctive 

features of the targets (both low and high level) without any 

specific weight initialisation of the filter values. Here, low 

level features are various shapes common to every image 

(e.g. lines, edges, colours, curves etc.). Whereas, high level 

features are more specific to the image object (e.g. wings of 

an airplane, flashes of drone propeller blades on 

spectrogram image etc.). The main work is to define the 

different layers of the network to obtain the optimal 

classification result. There is no standard rule for that as the 

training performance is highly dependent on the data type, 

size, contrast among different classes etc. In this section we 

will briefly discuss the GoogLeNet architecture and then 

will present the series network we developed for the 

grayscale dataset. 

2.1. GoogLeNet 
GoogLeNet is a directed acyclic graph (DAG) network 

which can have complex connection layers with inputs from 

multiple layers as well outputs to multiple layers [19]. This 

addresses the issue of filter size selection. In many cases, 

this issue requires a bit of trial and error where we need to 

 
                                             (a)                                                                                 (b) 

Figure 1 GoogLeNet layers a) zoomed in GoogLeNet layer showing the first 10 layers whose weights are frozen before 

training initialization, b) zoomed in GoogLeNet layer tree showing the newly replaced layers connected in the end 
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choose among different filter sizes and sequences of layers.  

Meanwhile, GoogLeNet provides the opportunity to use all 

the different combinations in parallel (which is known as the 

inception module [19]), thus improving the optimisation 

process. Also, GoogLeNet has previously been developed 

with about 1.2 million images for training so the low level 

features are already very rigorously learned by this model. 

We have taken advantage of this and build on these pre-

trained low level features by only performing training of 

high level features specific to drone/bird classification. Even 

though the requirement to use an RGB dataset can be seen 

as disadvantageous for false colour radar image 

classification, this is a very well-established model to test 

the capability of CNN for real time drone classification. 

The GoogLeNet has 144 layers in total (considering 

every element within the parallel inception modules as a 

separate layer). To reuse the pre-trained network, the 

weights of the first 10 layers (corresponding to low level 

feature learning) have been frozen by setting the learning 

rate values as zero for those layers, seen in Fig. 1(a). These 

early layers contain information on generic low-level image 

features (edges, curves etc.) and provide a strong foundation 

for learning the high-level features specific to the drone and 

bird dataset. We have changed the final two layers named 

‘loss3-classifier’ and ‘output’. The first one is the fully 

connected last learnable layer and the latter one is the final 

classification layer. There is a ‘Softmax’ layer in between 

these two which designates decimal probability values for 

each class. The ‘loss3-classifier’ is replaced by a new fully 

connected layer according to the number of classes we are 

using for training, whereas the actual GoogLeNet model 

consists of a 1,000 class fully connected layer. The ‘output’ 

layer is then replaced with the appropriate class labels that 

are going to be used during training. Fig.1(b) is the zoomed 

in layer graph plot of the GoogLeNet model (generated in 

Matlab), verifying that the new layers are properly 

connected. 

 

2.2. Series Network 
Unlike GoogLeNet, a series network consists of layers 

connected serially with each other (no multiple inputs or 

outputs for any layer). This is a simpler model with the 

flexibility of easily manipulating the convolutional layer 

filter sizes. Hence, we have decided to create a series 

network to train the grayscale image dataset. We have 

created different variations of the model to find out the 

optimal version.  

We have used a Stochastic Gradient Descent with 

Momentum (sgdm) optimiser during training, which is very 

widely used [22]. This used the backpropagation process to 

minimise the loss function by updating the weights in the 

opposite direction of the loss function gradient. 

Conventionally, the momentum value is set between 0.9 and 

0.95. We used 0.9 meaning that 90% of information from 

the previous iteration will be used for the next iteration. 

Here, one iteration means processing of a single batch of 

images, both forward and backward. 

The main aspect that was considered was to ensure the 

generalisation of the model (i.e. that the model did not suffer 

from over-fitting). Therefore, we have run the model with 

different learning rates and tested the performance 

afterwards. To overcome the over-fitting problem, a 

regularisation method is also often used which requires the 

modification of the performance function during training. 

We have split the labelled dataset into training and 

validation data (randomly selected before the training starts). 

The validation dataset is used during training at specified 

intervals to check if the model is over-fitting or not. L2 

regularisation (Ridge regression) [23] is implemented during 

training as well which adds a penalty term to the loss 

function. A small value of 1e-4 was set for this to avoid 

under-fitting. 

Learning rate is a very important parameter which 

controls the change of weights during training. The model 

will get under-fitted and will have difficulty converging if 

the learning rate value is quite large whilst a very small 

value will make the model vulnerable to over-fitting. There 

is no standard learning rate value which can be generically 

used for all types of datasets. ImageNet, which was 

developed by Microsoft, used the initial learning rate value 

of 0.1 [24]. Decreasing the learning rate from an initially 

large value during training is also a common practice, as it is 

difficult to select the optimum value in the beginning. Our 

assumption is that the spectrogram image based model can 

be more prone to over-fitting than optical image based 

classification training because a physical shape of an object 

is more concrete than its micro-Doppler signatures. Hence, 

to be extra cautious, we omitted adaptive rate scheduling to 

enforce the model not to reduce the learning rate during 

training. Instead, we have trained the model with different 

learning rates and carefully compared the results. We have 

used five different values (0.0005, 0.001, 0.01, 0.1, and 0.2) 

during training. As can be seen, the range of values here is 

quite large to discover the optimum spot between under-

fitting and over-fitting. The performance comparison is 

discussed in section 4. 

Another factor which is important for generalisation is 

the dropout rate. The dropout layer randomly assigns zero to 

a certain number of input elements (defined by a probability 

value) after the first fully connected layer. The idea behind 

this is that by relearning multiple times, noise in the dataset 

will be cancelled out and the model will become more 

generalised. We have trained the model without dropout and 

with 50% dropout. The performance of the model with 

dropout has been found to be significantly better, which 

again will be shown later. 

We have used different combinations of convolutional 

layer filter sizes. All the combinations include 5x5 and 3x3 

filters, with a different number of filters in each layer. Using 

more filters in each layer enables better preservation of the 

spatial dimensions. A larger filter size of 7x7 has also been 

tested but did not produce better results and hence was 

discarded. Conventionally, every convolutional layer is 

followed by a ReLU (Rectified Linear Units) layer and a 

Maxpool layer. A ReLU layer is used to incorporate 

nonlinearity in the model because the convolutional layer 

operation is linear (multiplication between filter values and 

pixel values). This layer basically changes the negative 

values of each pixel after the convolutional layer to zero. 

Using this makes the training faster compared to 

conventional nonlinear functions (e.g. sigmoid). A Maxpool 

layer is then used for down-sampling the array by taking the 

maximum from a specified area. In this case, we have used 

the Maxpool layer size as 2x2 with stride [2 2]. When the 

same convolutional layer filter size and numbers are used on 

back-to-back layers (with different strides), a Maxpool layer 
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is then not used in between. The convolutional layer strides 

are set as [1 1] as well as [2 2] to introduce more diversity to 

feature learning. 

We have also implemented a batch normalisation layer 

between every convolutional and ReLU layer which speeds 

up the training. Also, as the initial weights of the network in 

the CNN are randomly assigned, a batch normalisation layer 

helps to make the model less sensitive to initialisation values. 

Each value is normalised by subtracting the mean of the 

batch during the iteration, then dividing by the standard 

deviation of the batch. 

We have trained the model by using the convolutional 

network size range from 16 to 32 in the first place. Then we  

have increased the network by adding more convolutional 

layers with sizes varying from 16 to 128. This makes the 

model more rigorous which has been validated by the 

training and validation accuracy performance. 

An average pooling layer before the dropout layer has 

been tried as well. This layer is used for down-sampling the 

input by dividing it into smaller rectangular regions and then 

taking the average. We have found out this decreases the 

training accuracy hence we omitted it from the final version. 

Table 1 Series Network layers 

Layer Name Type Description 

1 'input' Image Input 224x224x1 images with 'zerocenter' normalization 

2 'conv_1' Convolution 16 5x5 convolutions with stride [1  1] and padding  'same' 

3 'BN_1' Batch normalization Batch Normalization 

4 'relu_1' ReLU ReLU 

5 ‘Maxpool_1’ Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

6 'conv_2' Convolution 32 5x5 convolutions with stride [1  1] and padding  'same' 

7 'BN_2' Batch normalization Batch Normalization 

8 'relu_2' ReLU ReLU 

9 ‘Maxpool_2’ Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

10 'conv_3' Convolution 32 3x3 convolutions with stride [2  2] and padding 'same' 

11 'BN_3' Batch normalization Batch Normalization 

12 'relu_3' ReLU ReLU 

13 'conv_4' Convolution 32 3x3 convolutions with stride [1  1] and padding  'same' 

14 'BN_4' Batch normalization Batch Normalization 

15 'relu_4' ReLU ReLU 

16 ‘Maxpool_3’ Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

17 'conv_5' Convolution 64 3x3 convolutions with stride [2  2] and padding  'same' 

18 'BN_5' Batch normalization Batch Normalization 

19 'relu_5' ReLU ReLU 

20 'conv_6' Convolution 64 3x3 convolutions with stride [1  1] and padding  'same' 

21 'BN_6' Batch normalization Batch Normalization 

22 'relu_6' ReLU ReLU 

23 ‘Maxpool_4’ Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

24 'conv_7' Convolution 128 3x3 convolutions with stride [2  2] and padding  'same' 

25 'BN_7' Batch normalization Batch Normalization 

26 'relu_7' ReLU ReLU 

27 'conv_8' Convolution 128 3x3 convolutions with stride [1  1] and padding  'same' 

28 'BN_8' Batch normalization Batch Normalization 

29 'relu_8' ReLU ReLU 

30 ‘Maxpool_5’ Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

31 ‘dropout’ Dropout 50% dropout 

32 ‘fc’ Fully connected 4 fully connected layer 

33 ‘Softmax’ Softmax Softmax 

34 ‘Classoutput’ Classification output Final classification output 

 

Table 2 Training dataset image diversities 

Parameter Variation 

Operating 

frequency 

24 GHz (staring mode), 

94 GHz (staring mode) 

Polarization Horizontal-Horizontal (H-H), 

Horizontal-Vertical (H-V), 

Circular Polarization (CP) 

Aspect angle 0° - 19° drones, 

0° - 5° birds 

Flying dynamic Hovering, Flying 

(mainly radially but also across) 

Range 30 - 120 m 

Noise floor 

threshold 

0 - 30 dB SNR 

(mostly 10 dB SNR) 

Types of drones DJI Phantom Standard 3, 

DJI Inspire 1, DJI S900 

Types of birds Northern Hawk Owl, 

Harris Hawk, Indian Eagle Owl, 

Tawny Eagle 
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The series network that we have developed which 

demonstrates the best performance consists of 34 layers. 

Table 1 illustrates the whole network with a short 

description of each layer. It is seen that padding is also used 

so that the input and output size remain the same for stride 

size [1 1] and rounded values of the input size divided by 

stride. This ensures that the edge values of the image are not 

correlated less than the inner values when the filter is sliding 

end to end. We have trained this model with all the different 

learning rates mentioned earlier, for both 4-class and 2-class 

training.  

3. Training dataset 

Our aim was to ensure that the training dataset 

resembles images to be expected from a real time drone 

detection radar system. The best way to do this was to use  

actual in-flight micro-Doppler spectrograms obtained from 

experimental trials. We did this for both 4-class and 2-class 

training. We have obtained a large amount of in-flight drone 

and bird data to analyse micro-Doppler signatures at K-band  

and W-band [25]. We have used that extensive experimental 

data set to select images for all the training purposes. As the 

GoogLeNet image format is fixed, we have used the same 

size for the grayscale images as well. For GoogLeNet, the 

image format is RGB 224x224x3. The RGB images are 

produced using the Matlab colourscale ‘Jet (256)’. The 

grayscale image generation was slightly indirect, as the 

Matlab gray colourscale is also in RGB format. To create 

images in the desired 224x224x1 format, the corresponding 

matrix values have been converted to an index of 8-bit 

integer values and then converted to gray. This omits the 

hue and saturation information whilst keeping the luminance 

information hence making the image monochromatic. 

Each spectrogram image is produced from 0.4 

seconds worth of FMCW radar data. This is a trade-off 

between having enough micro-Doppler information within 

one image and classification time. Whilst we also have a 

large set of CW images, we have not included those in this 

study. This is because our intention is that the trained model 

can be used by a real time drone classification system which 

requires tracking and hence entails the use of range-Doppler 

FMCW radar data. We have processed around 50,000 

images in total to select images for the training. For 4-class 

training, the labels are defined as ‘drone’, ‘bird’, ‘clutter’ 

and ‘noise’. Here, clutter corresponds to the surrounding 

static targets, appearing as the zero-Doppler values in the 

spectrogram (horizontal band in the middle). We have 

selected 600 images for each label, 2,400 images in total. 

For 2-class training, the labels are ‘drone’ and ‘non-drone’. 

1,000 images have been selected for each label in this case, 

2,000 images in total. The reason for having a smaller 

number of images for 4-class training is because fewer bird 

images were available (as it was not straight forward to keep 

Table 3 Radar parameters 

Parameters 94 GHz 24 GHz 

Operating mode FMCW, staring FMCW, staring 

Chirp repetition frequency (CRF) 12.4 kHz 4.25 kHz 

Maximum unambiguous velocity ±9.93 ms-1 ±13.3 ms-1 

STFT length 512 samples (41.2 ms) 512 samples (120.2 ms) 

STFT overlap 95% 95% 

 

     
  (a) 

     
  (b) 

     
  (c) 

     
  (d) 

Figure 2 Example RGB training data a) drone, b) bird, c) 

clutter, d) noise. X-axis is time, Y-axis is velocity 

 

     
  (a) 

     
  (b) 

     
  (c) 

     
  (d) 

Figure 3 Example grayscale training data a) drone, b) bird, 

c) clutter, d) noise. X-axis is time, Y-axis is velocity 
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the birds well within the antenna beam all the time). All the 

images are obtained with the radars operating in staring 

mode. The selection of the images from the large pool was 

done to ensure that each label does not become homogenous.  

The diversity will be more apparent in the drone and bird 

datasets, as the scenarios there are more dynamic. Also, as 

mentioned before, for direct comparison between the two 

models, the RGB dataset and the grayscale dataset consist of 

exactly the same images in jet 256 and grayscale colour 

maps respectively. We have intentionally omitted using 

synthetic data augmentation to retain only authentic data for 

training. We have split the dataset during training in to two 

sections, training and validation. 80% of the images were 

selected for training and the remaining 20% were for 

validation. To be as generic as possible, the selection was 

done randomly by the code. The 80%-20% division has 

been chosen by considering various trade-offs. Usually, for 

a very large dataset (e.g. dataset used for original 

GoogLeNet training), having a good portion of the data for 

validation purpose is useful. This reduces the training time 

without considerably increasing the variance in parameter 

estimation so a 70%-30% or even a 60%-40% spilt can be 

made. In contrast, with a small dataset (e.g. ~100 images for 

each class), most of the data need to be used for training (i.e. 

90%-10% split), otherwise the model will not get trained 

properly. We consider the size of our dataset to be in the 

middle-range. Hence, we designed the training with the 

80%-20% split, which is quite commonly used. It should be 

noted that we have not used any images within these 

datasets to test the performance of the trained models 

afterwards. Those are done with entirely separate, unseen 

and unlabelled images. 

Table 2 shows the various aspects that have been 

varied during image selection to create a diverse training set.  

The types of drones and birds vary in sizes and weights. It 

should be noted that whilst we have varied the noise floor 

threshold for generalisation, it should not be varied too 

much. As propellers are usually under-sampled in the 

Doppler domain for an FMCW radar, there is a 

characteristic spread of micro-Doppler signatures (seen in 

Fig. 2). Setting the noise floor threshold too low will then 

create ambiguity and consequently decrease the 

classification performance. This means, there should be a 

compromise while setting the noise threshold. Too high a 

threshold can lose the propeller blade returns whereas too 

low a threshold can increase the false  

alarm rate. Eventually, this is up to the training model 

developer to decide on, which will depend on application 

requirements. 

Table 3 provides some of the relevant radar 

parameters (94 GHz radar, named T-220 [26], and 24 GHz 

 
                           (a)                                                                   (b) 

 

 
                           (c)                                                                   (d) 

Figure 4 GoogleNet training and validation accuracy and loss function plots, a-b) for 4-class, c-d) for 2-class 

 

 
            (a) 

 
            (b) 

Figure 5 Effect of dropout layer for series network a) 

with 50% dropout, b) without dropout 
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radar [27]) used for the spectrogram image processing.  

Fig. 2 shows some example RGB images obtained 

directly from the training dataset. The vertical axis of the 

images corresponds to velocity (+/-), with positive velocity 

on the top half, negative velocity on the bottom half and 

zero in the middle. The horizontal axis corresponds to time. 

The variety of data can be seen here, especially from the 

drone and bird images. In Figs. 2(a), the drone is partially 

within the spectrogram in the first image, barely within the 

spectrogram in the second image and fully within the 

spectrogram in the last two images. In Figs. 2(b), the bird is 

partially within the spectrogram in the first image, fully 

within the spectrogram in the second image and barely 

within the spectrogram in the last two images, almost 

impossible to identify, even visually. All the corresponding 

grayscale images are shown in Fig. 3. It can be seen that the 

signal strength of both bulk and micro-Doppler also vary in 

the images, depending on antenna beam coverage of the 

targets. This demonstrates the advantage of using real data. 

As both the targets fly at speeds up to 20 ms-1, the scenario 

is quite dynamic. Only using spectrograms consisting of 

strong micro-Doppler signatures with no variation in flight 

dynamics would almost certainly cause the trained model to 

significantly underperform in real situations. Fig. 2(c) and 

3(c) are examples of ground clutter whilst Figs. 2(d) and 3(d) 

are examples of noise. 

4. Training results 

The training was performed on a single quadcore 

CPU with 8 GB RAM. On average, the time taken for 

training was around 36-45 minutes for every single run. 

 

 
(a) 

 
(b) 

 

 
(c) 

Figure 6 Training and validation accuracies of the 34 layer series network for different learning rates a) 2-class training 

with learning rates 0.2, 0.1, 0.01, 0.001 and 0.0005 respectively, b) Example of model overfitting and degraded accuracy 

without validation dataset used during training (learning rate 0.0005), c) 4-class training with learning rates 0.2, 0.1, 0.01, 

0.001 and 0.0005 respectively 
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Fig. 4 shows the GoogLeNet training results by 

presenting the plots for accuracy and loss. The dataset has 

been divided into 32 batches during training hence there are 

32 iterations for each Epoch for 2-class training and 38 for 

4-class training. For the GoogLeNet model training, 6 

Epochs have been used. The Epoch number was eventually 

set by running the model a few times to see when the model 

converged.  The training should not be run significantly 

 
(a)                                                                            (b)                               

 
                (c)                                                                            (d) 

Figure 7 Example classification performance figures comparing series network (grayscale) and GoogLeNet (RGB) using 

test dataset where the title of each image is the target classified by the network and below that is the confidence level with 

maximum value of 1, showing: a) both networks accurately classifying a drone, b) series network missing a drone, c) both 

networks accurately classifying a bird, d) both network accurately classifying a bird even when the bird is not entirely 

within the image 

 
                (a)                                                                             (b)                               

 
                (c)                                                                             (d)                               

Figure 8 More example classification performance figures comparing series network (grayscale) and GoogLeNet (RGB) 

using test dataset where the title of each image is the target classified by the network and below that is the confidence level 

with maximum value of 1, showing: a) series network wrongly identifying a bird as a drone, b) series network wrongly 

identifying noise as a bird, c) both networks correctly identifying noise, d) both networks correctly identifying clutter 
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longer once the plots saturate as then the model might start 

to learn noise. The learning rate was set to 0.001 in this case. 

We have also trained with other values and found this gives 

the best validation accuracy. The validation frequency was 

set to 32 iterations. As seen in Fig. 4, validation and training 

accuracy remain very close - a very good indication of the 

model generalisation. The training accuracy in both cases 

reaches 100% and the validation accuracy is 99.1% for 2-

class network and 99.0% for 4-class network. This 

demonstrates the strength of GoogLeNet for discriminating 

drones from birds and clutter. 

For the series network training, different variations 

have been used before obtaining the optimum model. Fig. 5 

shows the effect of dropout. Here the training was 

performed both with and without the dropout layer activated 

in the series network shown in Table 1. It is seen that the 

validation accuracy for the 4-class network is 95.9% with 

dropout but 91.3% without dropout. In each case, the 

training accuracy is ~100%. This suggests that the model 

has been over-fitted. Also, not using dropout makes the 

performance worse. 

Fig. 6 shows the training and validation 

performances of the 34 layer series network in Table 1 for 

different learning rates and for both 4-class and 2-class 

networks. The number of Epochs was set to 20 eventually in 

this case after testing with a few different values. The 

number of iterations per Epoch is 12 for the 2-class network 

and 15 for the 4-class network. The validation frequency is 

set to 50. Not using the validation data during training again 

makes the model more prone to over-fitting as it cannot 

check for that during training and hence cannot modify the 

weights accordingly if needed. An example of this is 

provided in Fig. 6(b) where the validation is performed only 

after the training has ended, giving poorer performance. It 

has been found that the best performance is achieved with 

the learning rate being 0.01, where the validation accuracies 

are more than 99% in both cases. Values smaller or greater 

show the trend of the validation accuracy gradually 

decreasing. 

5. Test results 

After the whole training process was completed, we 

tested the models with entirely unseen and unlabelled 

datasets. We ran various datasets with flying drones or birds 

and let the models classify on the fly. We then manually 

verified whether correct prediction had been made. 

Subsequently, we quantified the prediction accuracy 

percentage. We have found that most of the time the 

accuracy with the test dataset is slightly lower than the 

validation accuracy but is still quite high. Initially, we ran a 

94 GHz data file in which a DJI Inspire 1 is flying from 70-

80 m range. A total of 556 spectrogram plots were generated 

covering this range. It should be noted that this test dataset 

includes noise and clutter along with drone micro-Doppler 

as the drone is moving and hence changing range bins. As it 

is extremely time consuming to manually check for all the 

models with different learning rates and different number of 

classes, we have used only the model which performed best 

during training (with 0.01 learning rate value). Similar 

manual verification has also been performed with bird data. 

The bird (Harris Hawk) flew from 30-100 m although it was 

out of the beam most of the time as the flight path was not 

straight. We thus chose a range of 70-100 m yielding 746 

images with a good combination of bird and non-bird 

spectrograms. 

Fig. 7 and Fig. 8 show example figures of with 

prediction results from the two classification methods using 

the test data. The spectrograms are generated simultaneously 

and the direct comparison between the GoogLeNet and the 

series network can be visually observed. The performances 

have been visually verified and then recorded. 

The overall test prediction accuracy is given in Table 

4 which shows that GoogLeNet outperforms the series 

 
                              (a)                                                                         (b) 

Figure 9 Example classification performance figures for NIRAD data which was never used during training where the title 

of each image is the target classified by the network and below that is the confidence level with maximum value of 1, 

showing a-b) both networks correctly classifying the drone 

 

Table 4 Test data prediction accuracy 

 Test drone data file Test bird data file 

Number of spectrograms 556 746 

Series network accuracy (4-class) 525 (94.42%) 728 (97.59%) 

GoogLeNet accuracy (4-class) 549 (98.74%) 741 (99.32%) 

Series network accuracy (2class) 546 (98.20%) 732 (98.12%) 

GoogLeNet accuracy (2-class) 553 (99.46%) 746 (100%) 
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network in all cases. This suggests that the series network is 

not entirely immune to over-fitting. Nonetheless, it should 

be stressed that we have pushed the classification model to 

its limit and have obtained test accuracies well over 90% in 

all cases. 

We have also tested the false alarm rate by selecting 

324 images from the test bird data where every image fully 

or partially consists of bird micro-Doppler. We then ran the 

2-class network and checked the number of times the image 

is predicted as drone. The series network predicted 4 images 

as drone, giving a false alarm rate of 1.23%. In contrast, 

GoogLeNet did not label a single image as drone providing 

a 0% false alarm rate. In a real time surveillance application, 

a 1.23% false alarm rate may be higher than desired, but this 

is the raw individual image false alarm rate. The alert 

system of the classifier can be set to alarm only with 

successive hits (e.g. 2 or 3 images in a row being predicted 

as drone) which would decrease the false alarm rate to a 

suitable level. 

Finally, we have also tested the prediction 

performance by using data from an entirely different W-

band FMCW radar, named NIRAD [28]. This was done to 

verify the generalisation of the trained models. A data file 

was chosen where the drone was flying from 75-80 m range 

(no bird data was available with this radar) and 204 

spectrograms were generated. Fig. 9 shows couple of 

example figures of the classification performance of NIRAD 

data. The accuracy was 95.1% for 4-class series network, 

98.5% for 2-class series network, 98.5% for 4-class 

GoogLeNet and 99.0% for 2-class GoogLeNet. This 

illustrates that the developed models have sufficient 

performance to be integrated into a real time radar based 

drone detection system.  

It can be argued that the GoogLeNet should be used 

in all cases as it offers better performance than the series 

network. However, there are two factors that go in favour of 

the series network. One is the colourscale issue with the 

GoogLeNet as it remains to be seen if any random 

colourscale performs equally well compared to others all the 

time. The second factor is the computational time during 

classification. When a single image is fed to the trained 

model, the average time taken by the GoogLeNet is 0.4 

seconds whilst the average time taken by the series network 

is 0.05 seconds, i.e. eight times faster. This is 

understandable as GoogLeNet is a large network compared 

to the series network. Also, the convolutional layer filters 

are applied to a single dimension in the case of the series 

network whereas they are applied to three dimensions in 

case of 224x224x3 RGB images in GoogLeNet. This 

contributes to the faster classification time for the series 

network.  For a real-time application in which a drone can 

move at 10-20 ms-1, the faster classification time gives the 

series network a significant advantage.           

6. Conclusion 

In this study, we have successfully created a neural 

network training dataset for drone classification using only 

experimental data obtained in dynamic scenarios.  Both a 

pre-trained model (GoogLeNet) and our own developed 

series network have been used for training and both have 

shown well above 90% accuracy. Both models have been 

tested with previously unseen data and have again shown 

very good accuracy. GoogLeNet performs better but is more 

time consuming compared to the series network. It has been 

shown that they can be used in practical scenarios.  

The obvious potential of the CNN classifiers 

demonstrated here suggests that, via further optimisation, 

they can be used to achieve an extremely robust radar sensor 

based classification system. We anticipate that this approach 

can be translated in to other types of target classification 

algorithm development using spectrogram images (i.e. 

various human activities, different types of animals etc.). 

The best way to improve a CNN model is to make the 

dataset larger and more diverse. The continuation of this 

work is then to include more drone and bird data, 

particularly including a wider diversity of different clutter 

surroundings. Additionally, more complex images 

consisting of two birds in a single spectrogram or a bird and 

a drone in one image can be trained. This extra complexity 

will be more challenging to the CNN model hence might 

require further refinement of the current model. It will also 

be interesting to quantitively compare the classification 

performance we achieved here with other algorithms. A 

proper comparison can only be made if they are tested under 

the same scenario (i.e. with the same dataset). We realize 

that the large dataset that we have created can be of great 

value to other researchers developing different classification 

models. Therefore, we would be happy to share the data on 

request. We hope this would benefit the ongoing effort 

within the field to develop a robust, real-time drone 

detection algorithm, which can be broadly used by diverse 

types of radar systems. 
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