
1

Classification of drones and birds using convolutional neural networks applied
to radar micro-Doppler spectrogram images

Samiur Rahman 1*, Duncan A. Robertson 1

1 SUPA School of Physics and Astronomy, University of St Andrews, North Haugh KY16 9SS, St Andrews,

Scotland
*sr206@st-andrews.ac.uk

Abstract: This study presents a convolutional neural network (CNN) based drone classification method. The primary

criterion for a high-fidelity neural network based classification is a real dataset of large size and diversity for training.

The first goal of the study was to create a large database of micro-Doppler spectrogram images of in-flight drones and

birds. Two separate datasets with the same images have been created, one with RGB images and other with grayscale

images. The RGB dataset was used for GoogLeNet architecture-based training. The grayscale dataset was used for

training with a series architecture developed during this study. Each dataset was further divided into two categories, one

with four classes (drone, bird, clutter and noise) and the other with two classes (drone and non-drone). During training,

20% of the dataset has been used as a validation set. After the completion of training, the models were tested with

previously unseen and unlabelled sets of data. The validation and testing accuracy for the developed series network have

been found to be 99.6% and 94.4% respectively for four classes and 99.3% and 98.3% respectively for two classes. The

GoogLenet based model showed both validation and testing accuracies to be around 99% for all the cases.

1. Introduction

Real time classification of drones in airspace has

become a major technical challenge in recent times. Due to

the low radar cross-section (RCS) and velocity of drones,

constant real time reliable classification is difficult to

achieve. Various sensors such as radar, acoustic and passive

RF sensors have been explored commercially to address this

issue so far [1]. Radar has the capability to perform during

night time and inclement weather and does not require any

signal emissions from the target. Hence, a radar sensor is a

primary candidate for any drone detection and classification

system. In the last few years, there has a been a proliferation

of publications concerning the classification of drones using

radar [2].

Most commercial drones are rotary wing, as the

ability to hover is a highly desired feature. The Doppler

signature induced by the high speed continuous rotation of

the propeller blades, known as micro-Doppler [3], produces

a distinct radar signature. This signature can be used to

classify a drone from clutter or other false targets (e.g. birds).

The micro-Doppler signature of a bird is produced by an

entirely different physical property, the oscillatory flapping

of the wings. These are very different from and occur much

more slowly than the drone propeller blade induced

signatures, which can be used for distinguishing the targets.

One of our prior studies has investigated these properties in

detail [4]. Many research works have been performed to

date regarding micro-Doppler based drone classification and

discrimination of drones and birds [5]–[9]. All these articles

analyse the micro-Doppler spectrogram plots and extract

characteristic features which can be fed to the classifier

algorithm. The feature extraction based classification

algorithms reported in these articles have shown very good

validation accuracy (~90% or more). One problem with

these feature extraction based algorithms is the latency

caused by the feature extraction process. Usually, the feature

extraction algorithms (e.g. singular value decomposition)

are computationally costly to implement. This is not ideal

for real time operation where very fast localisation and

classification of the target is required which could then be

used to initiate a counter measure.

Neural network based algorithms are very good

candidates to resolve this latency problem as the micro-

Doppler spectrogram can be directly fed to the classifier,

eliminating the feature extraction process. However, there

are a few issues which are associated with neural network

based classifiers. A CNN, which is a widely used network,

requires the data to be an image. This has been used

extensively for optical image-based classifications but radar

spectrogram plots are not true optical images. Also, to make

the classifier efficient, the training process must be rigorous

in terms of the amount and diversity of training data. This is

comparatively easier to achieve for optical images than

radar data. Nonetheless, the distinctive micro-Doppler

features of drones (and birds) are best revealed by short time

Fourier Transform (STFT) derived spectrograms. Raw data

(time series or complex FFT’ed magnitude and phase data)

do not illustrate the micro-Doppler characteristics. High

fidelity micro-Doppler signatures are still required for neural

network classification as the underlying dominant features

for target discrimination lie within the micro-Doppler data.

In [10]–[13], proofs of concept have been

demonstrated regarding the use of spectrogram image based

neural networks for target classification. Those authors have

shown that neural network architectures can be created to

classify specific human activities (i.e. armed/unarmed

personnel), gait recognition or different moving targets.

There are also some recently published reports on using

neural networks specifically for drone classification. An

optical image based CNN model to classify drones has been

reported in [14]. Those authors trained the dataset with three

classes (drone, bird and clutter) and used their developed

algorithm at the 2017 Drones vs birds challenge [15], which

they won. In [16][17], the authors introduced and

implemented a CNN model for simulated radar micro-

Doppler based classification. They used simulated data for

various types of commercial drones (Vario helicopter, DJI

mailto:sr206@st-andrews.ac.uk

2

Phantom 2 and DJI S1000+). They showed that the temporal

fluctuations observed in micro-Doppler spectrograms can be

learned by the CNN. In [18], a CNN model is applied to a

Ku-band radar dataset combining spectrograms and cadence

velocity diagrams and used to discriminate between two

different types of drones (DJI Inspire 1 and Hobbylord

F820). Those authors gathered 50,000 data samples from

anechoic chambers and 10,000

outdoor data samples and used the GoogLeNet architecture

[19], which is an open source model, to train their dataset.

They achieved 89.3% accuracy for anechoic chamber data,

using the merged Doppler (spectrogram and cadence

velocity diagram) dataset. For the outdoor dataset, they

achieved 100% accuracy. It should be noted that their

outdoor dataset contained only hovering data, hence

significantly lacked diversity. In [20], the authors analysed

and compared two neural network initialisation techniques

(unsupervised pre-training and transfer learning). They

implemented the transfer learning method to train the

dataset with the GoogLeNet architecture, to show the

robustness of the model that uses only a small amount of

data for training. This approach is commonly used in optical

image classification. One restriction with GoogLeNet is that

it requires an RGB image input. Radar spectrogram images

are intrinsically false coloured so there is always the risk of

the model not being generic as spectrograms can be

generated with different colour scales or using different

parameters.

In terms of the previous work done so far, we have

concluded that there is a large potential to use a CNN based

algorithm to classify drones. A common limitation is the

need for a large dataset comprising different types of drones

and birds, both hovering (drones) and flying. Ideally, it is

better to not use synthetic data but to have a dataset of real

radar data obtained in realistic scenarios. To make it more

robust, diversity in terms of operating frequency,

polarisation aspect angle, range, radar dynamic range and

noise floor threshold is also essential. We introduce such a

dataset in this work. We have created a GoogLeNet based

model based on our RGB spectrogram image dataset.

Secondly, we have created a copy of the same dataset using

only grayscale images. This gives the flexibility of the

dataset being as colour neutral as possible, so that no colour

features are mistakenly learned by the neural network. We

have used the grayscale image set to train a series network

architecture developed by us. Detailed comparison between

and performance analysis of the GoogLeNet and series

network models is presented in later sections of this paper.

All the spectrogram images used in this study were obtained

with a K-band (24 GHz) radar and a W-band (94 GHz) radar.

All the data processing, CNN training and testing have been

performed using Matlab®.

2. CNN model

The motivation for using a CNN is based on the

hypothesis that as micro-Doppler spectrograms provide a

visually obvious method of discriminating the target, the

neural network should be able to learn those discriminatory

features when the spectrograms are treated as images. A

CNN is a multilayer perceptron (MLP) based neural

network, using a supervised learning technique termed

backpropagation [21]. The learning process in each layer is

done fundamentally by a cross correlation process, using

filters of different sizes at different stages. Given enough

time and computational power, it could learn the distinctive

features of the targets (both low and high level) without any

specific weight initialisation of the filter values. Here, low

level features are various shapes common to every image

(e.g. lines, edges, colours, curves etc.). Whereas, high level

features are more specific to the image object (e.g. wings of

an airplane, flashes of drone propeller blades on

spectrogram image etc.). The main work is to define the

different layers of the network to obtain the optimal

classification result. There is no standard rule for that as the

training performance is highly dependent on the data type,

size, contrast among different classes etc. In this section we

will briefly discuss the GoogLeNet architecture and then

will present the series network we developed for the

grayscale dataset.

2.1. GoogLeNet
GoogLeNet is a directed acyclic graph (DAG) network

which can have complex connection layers with inputs from

multiple layers as well outputs to multiple layers [19]. This

addresses the issue of filter size selection. In many cases,

this issue requires a bit of trial and error where we need to

 (a) (b)

Figure 1 GoogLeNet layers a) zoomed in GoogLeNet layer showing the first 10 layers whose weights are frozen before

training initialization, b) zoomed in GoogLeNet layer tree showing the newly replaced layers connected in the end

3

choose among different filter sizes and sequences of layers.

Meanwhile, GoogLeNet provides the opportunity to use all

the different combinations in parallel (which is known as the

inception module [19]), thus improving the optimisation

process. Also, GoogLeNet has previously been developed

with about 1.2 million images for training so the low level

features are already very rigorously learned by this model.

We have taken advantage of this and build on these pre-

trained low level features by only performing training of

high level features specific to drone/bird classification. Even

though the requirement to use an RGB dataset can be seen

as disadvantageous for false colour radar image

classification, this is a very well-established model to test

the capability of CNN for real time drone classification.

The GoogLeNet has 144 layers in total (considering

every element within the parallel inception modules as a

separate layer). To reuse the pre-trained network, the

weights of the first 10 layers (corresponding to low level

feature learning) have been frozen by setting the learning

rate values as zero for those layers, seen in Fig. 1(a). These

early layers contain information on generic low-level image

features (edges, curves etc.) and provide a strong foundation

for learning the high-level features specific to the drone and

bird dataset. We have changed the final two layers named

‘loss3-classifier’ and ‘output’. The first one is the fully

connected last learnable layer and the latter one is the final

classification layer. There is a ‘Softmax’ layer in between

these two which designates decimal probability values for

each class. The ‘loss3-classifier’ is replaced by a new fully

connected layer according to the number of classes we are

using for training, whereas the actual GoogLeNet model

consists of a 1,000 class fully connected layer. The ‘output’

layer is then replaced with the appropriate class labels that

are going to be used during training. Fig.1(b) is the zoomed

in layer graph plot of the GoogLeNet model (generated in

Matlab), verifying that the new layers are properly

connected.

2.2. Series Network
Unlike GoogLeNet, a series network consists of layers

connected serially with each other (no multiple inputs or

outputs for any layer). This is a simpler model with the

flexibility of easily manipulating the convolutional layer

filter sizes. Hence, we have decided to create a series

network to train the grayscale image dataset. We have

created different variations of the model to find out the

optimal version.

We have used a Stochastic Gradient Descent with

Momentum (sgdm) optimiser during training, which is very

widely used [22]. This used the backpropagation process to

minimise the loss function by updating the weights in the

opposite direction of the loss function gradient.

Conventionally, the momentum value is set between 0.9 and

0.95. We used 0.9 meaning that 90% of information from

the previous iteration will be used for the next iteration.

Here, one iteration means processing of a single batch of

images, both forward and backward.

The main aspect that was considered was to ensure the

generalisation of the model (i.e. that the model did not suffer

from over-fitting). Therefore, we have run the model with

different learning rates and tested the performance

afterwards. To overcome the over-fitting problem, a

regularisation method is also often used which requires the

modification of the performance function during training.

We have split the labelled dataset into training and

validation data (randomly selected before the training starts).

The validation dataset is used during training at specified

intervals to check if the model is over-fitting or not. L2

regularisation (Ridge regression) [23] is implemented during

training as well which adds a penalty term to the loss

function. A small value of 1e-4 was set for this to avoid

under-fitting.

Learning rate is a very important parameter which

controls the change of weights during training. The model

will get under-fitted and will have difficulty converging if

the learning rate value is quite large whilst a very small

value will make the model vulnerable to over-fitting. There

is no standard learning rate value which can be generically

used for all types of datasets. ImageNet, which was

developed by Microsoft, used the initial learning rate value

of 0.1 [24]. Decreasing the learning rate from an initially

large value during training is also a common practice, as it is

difficult to select the optimum value in the beginning. Our

assumption is that the spectrogram image based model can

be more prone to over-fitting than optical image based

classification training because a physical shape of an object

is more concrete than its micro-Doppler signatures. Hence,

to be extra cautious, we omitted adaptive rate scheduling to

enforce the model not to reduce the learning rate during

training. Instead, we have trained the model with different

learning rates and carefully compared the results. We have

used five different values (0.0005, 0.001, 0.01, 0.1, and 0.2)

during training. As can be seen, the range of values here is

quite large to discover the optimum spot between under-

fitting and over-fitting. The performance comparison is

discussed in section 4.

Another factor which is important for generalisation is

the dropout rate. The dropout layer randomly assigns zero to

a certain number of input elements (defined by a probability

value) after the first fully connected layer. The idea behind

this is that by relearning multiple times, noise in the dataset

will be cancelled out and the model will become more

generalised. We have trained the model without dropout and

with 50% dropout. The performance of the model with

dropout has been found to be significantly better, which

again will be shown later.

We have used different combinations of convolutional

layer filter sizes. All the combinations include 5x5 and 3x3

filters, with a different number of filters in each layer. Using

more filters in each layer enables better preservation of the

spatial dimensions. A larger filter size of 7x7 has also been

tested but did not produce better results and hence was

discarded. Conventionally, every convolutional layer is

followed by a ReLU (Rectified Linear Units) layer and a

Maxpool layer. A ReLU layer is used to incorporate

nonlinearity in the model because the convolutional layer

operation is linear (multiplication between filter values and

pixel values). This layer basically changes the negative

values of each pixel after the convolutional layer to zero.

Using this makes the training faster compared to

conventional nonlinear functions (e.g. sigmoid). A Maxpool

layer is then used for down-sampling the array by taking the

maximum from a specified area. In this case, we have used

the Maxpool layer size as 2x2 with stride [2 2]. When the

same convolutional layer filter size and numbers are used on

back-to-back layers (with different strides), a Maxpool layer

4

is then not used in between. The convolutional layer strides

are set as [1 1] as well as [2 2] to introduce more diversity to

feature learning.

We have also implemented a batch normalisation layer

between every convolutional and ReLU layer which speeds

up the training. Also, as the initial weights of the network in

the CNN are randomly assigned, a batch normalisation layer

helps to make the model less sensitive to initialisation values.

Each value is normalised by subtracting the mean of the

batch during the iteration, then dividing by the standard

deviation of the batch.

We have trained the model by using the convolutional

network size range from 16 to 32 in the first place. Then we

have increased the network by adding more convolutional

layers with sizes varying from 16 to 128. This makes the

model more rigorous which has been validated by the

training and validation accuracy performance.

An average pooling layer before the dropout layer has

been tried as well. This layer is used for down-sampling the

input by dividing it into smaller rectangular regions and then

taking the average. We have found out this decreases the

training accuracy hence we omitted it from the final version.

Table 1 Series Network layers

Layer Name Type Description

1 'input' Image Input 224x224x1 images with 'zerocenter' normalization

2 'conv_1' Convolution 16 5x5 convolutions with stride [1 1] and padding 'same'

3 'BN_1' Batch normalization Batch Normalization

4 'relu_1' ReLU ReLU

5 ‘Maxpool_1’ Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

6 'conv_2' Convolution 32 5x5 convolutions with stride [1 1] and padding 'same'

7 'BN_2' Batch normalization Batch Normalization

8 'relu_2' ReLU ReLU

9 ‘Maxpool_2’ Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

10 'conv_3' Convolution 32 3x3 convolutions with stride [2 2] and padding 'same'

11 'BN_3' Batch normalization Batch Normalization

12 'relu_3' ReLU ReLU

13 'conv_4' Convolution 32 3x3 convolutions with stride [1 1] and padding 'same'

14 'BN_4' Batch normalization Batch Normalization

15 'relu_4' ReLU ReLU

16 ‘Maxpool_3’ Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

17 'conv_5' Convolution 64 3x3 convolutions with stride [2 2] and padding 'same'

18 'BN_5' Batch normalization Batch Normalization

19 'relu_5' ReLU ReLU

20 'conv_6' Convolution 64 3x3 convolutions with stride [1 1] and padding 'same'

21 'BN_6' Batch normalization Batch Normalization

22 'relu_6' ReLU ReLU

23 ‘Maxpool_4’ Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

24 'conv_7' Convolution 128 3x3 convolutions with stride [2 2] and padding 'same'

25 'BN_7' Batch normalization Batch Normalization

26 'relu_7' ReLU ReLU

27 'conv_8' Convolution 128 3x3 convolutions with stride [1 1] and padding 'same'

28 'BN_8' Batch normalization Batch Normalization

29 'relu_8' ReLU ReLU

30 ‘Maxpool_5’ Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

31 ‘dropout’ Dropout 50% dropout

32 ‘fc’ Fully connected 4 fully connected layer

33 ‘Softmax’ Softmax Softmax

34 ‘Classoutput’ Classification output Final classification output

Table 2 Training dataset image diversities

Parameter Variation

Operating

frequency

24 GHz (staring mode),

94 GHz (staring mode)

Polarization Horizontal-Horizontal (H-H),

Horizontal-Vertical (H-V),

Circular Polarization (CP)

Aspect angle 0° - 19° drones,

0° - 5° birds

Flying dynamic Hovering, Flying

(mainly radially but also across)

Range 30 - 120 m

Noise floor

threshold

0 - 30 dB SNR

(mostly 10 dB SNR)

Types of drones DJI Phantom Standard 3,

DJI Inspire 1, DJI S900

Types of birds Northern Hawk Owl,

Harris Hawk, Indian Eagle Owl,

Tawny Eagle

5

The series network that we have developed which

demonstrates the best performance consists of 34 layers.

Table 1 illustrates the whole network with a short

description of each layer. It is seen that padding is also used

so that the input and output size remain the same for stride

size [1 1] and rounded values of the input size divided by

stride. This ensures that the edge values of the image are not

correlated less than the inner values when the filter is sliding

end to end. We have trained this model with all the different

learning rates mentioned earlier, for both 4-class and 2-class

training.

3. Training dataset

Our aim was to ensure that the training dataset

resembles images to be expected from a real time drone

detection radar system. The best way to do this was to use

actual in-flight micro-Doppler spectrograms obtained from

experimental trials. We did this for both 4-class and 2-class

training. We have obtained a large amount of in-flight drone

and bird data to analyse micro-Doppler signatures at K-band

and W-band [25]. We have used that extensive experimental

data set to select images for all the training purposes. As the

GoogLeNet image format is fixed, we have used the same

size for the grayscale images as well. For GoogLeNet, the

image format is RGB 224x224x3. The RGB images are

produced using the Matlab colourscale ‘Jet (256)’. The

grayscale image generation was slightly indirect, as the

Matlab gray colourscale is also in RGB format. To create

images in the desired 224x224x1 format, the corresponding

matrix values have been converted to an index of 8-bit

integer values and then converted to gray. This omits the

hue and saturation information whilst keeping the luminance

information hence making the image monochromatic.

Each spectrogram image is produced from 0.4

seconds worth of FMCW radar data. This is a trade-off

between having enough micro-Doppler information within

one image and classification time. Whilst we also have a

large set of CW images, we have not included those in this

study. This is because our intention is that the trained model

can be used by a real time drone classification system which

requires tracking and hence entails the use of range-Doppler

FMCW radar data. We have processed around 50,000

images in total to select images for the training. For 4-class

training, the labels are defined as ‘drone’, ‘bird’, ‘clutter’

and ‘noise’. Here, clutter corresponds to the surrounding

static targets, appearing as the zero-Doppler values in the

spectrogram (horizontal band in the middle). We have

selected 600 images for each label, 2,400 images in total.

For 2-class training, the labels are ‘drone’ and ‘non-drone’.

1,000 images have been selected for each label in this case,

2,000 images in total. The reason for having a smaller

number of images for 4-class training is because fewer bird

images were available (as it was not straight forward to keep

Table 3 Radar parameters

Parameters 94 GHz 24 GHz

Operating mode FMCW, staring FMCW, staring

Chirp repetition frequency (CRF) 12.4 kHz 4.25 kHz

Maximum unambiguous velocity ±9.93 ms-1 ±13.3 ms-1

STFT length 512 samples (41.2 ms) 512 samples (120.2 ms)

STFT overlap 95% 95%

 (a)

 (b)

 (c)

 (d)

Figure 2 Example RGB training data a) drone, b) bird, c)

clutter, d) noise. X-axis is time, Y-axis is velocity

 (a)

 (b)

 (c)

 (d)

Figure 3 Example grayscale training data a) drone, b) bird,

c) clutter, d) noise. X-axis is time, Y-axis is velocity

6

the birds well within the antenna beam all the time). All the

images are obtained with the radars operating in staring

mode. The selection of the images from the large pool was

done to ensure that each label does not become homogenous.

The diversity will be more apparent in the drone and bird

datasets, as the scenarios there are more dynamic. Also, as

mentioned before, for direct comparison between the two

models, the RGB dataset and the grayscale dataset consist of

exactly the same images in jet 256 and grayscale colour

maps respectively. We have intentionally omitted using

synthetic data augmentation to retain only authentic data for

training. We have split the dataset during training in to two

sections, training and validation. 80% of the images were

selected for training and the remaining 20% were for

validation. To be as generic as possible, the selection was

done randomly by the code. The 80%-20% division has

been chosen by considering various trade-offs. Usually, for

a very large dataset (e.g. dataset used for original

GoogLeNet training), having a good portion of the data for

validation purpose is useful. This reduces the training time

without considerably increasing the variance in parameter

estimation so a 70%-30% or even a 60%-40% spilt can be

made. In contrast, with a small dataset (e.g. ~100 images for

each class), most of the data need to be used for training (i.e.

90%-10% split), otherwise the model will not get trained

properly. We consider the size of our dataset to be in the

middle-range. Hence, we designed the training with the

80%-20% split, which is quite commonly used. It should be

noted that we have not used any images within these

datasets to test the performance of the trained models

afterwards. Those are done with entirely separate, unseen

and unlabelled images.

Table 2 shows the various aspects that have been

varied during image selection to create a diverse training set.

The types of drones and birds vary in sizes and weights. It

should be noted that whilst we have varied the noise floor

threshold for generalisation, it should not be varied too

much. As propellers are usually under-sampled in the

Doppler domain for an FMCW radar, there is a

characteristic spread of micro-Doppler signatures (seen in

Fig. 2). Setting the noise floor threshold too low will then

create ambiguity and consequently decrease the

classification performance. This means, there should be a

compromise while setting the noise threshold. Too high a

threshold can lose the propeller blade returns whereas too

low a threshold can increase the false

alarm rate. Eventually, this is up to the training model

developer to decide on, which will depend on application

requirements.

Table 3 provides some of the relevant radar

parameters (94 GHz radar, named T-220 [26], and 24 GHz

 (a) (b)

 (c) (d)

Figure 4 GoogleNet training and validation accuracy and loss function plots, a-b) for 4-class, c-d) for 2-class

 (a)

 (b)

Figure 5 Effect of dropout layer for series network a)

with 50% dropout, b) without dropout

7

radar [27]) used for the spectrogram image processing.

Fig. 2 shows some example RGB images obtained

directly from the training dataset. The vertical axis of the

images corresponds to velocity (+/-), with positive velocity

on the top half, negative velocity on the bottom half and

zero in the middle. The horizontal axis corresponds to time.

The variety of data can be seen here, especially from the

drone and bird images. In Figs. 2(a), the drone is partially

within the spectrogram in the first image, barely within the

spectrogram in the second image and fully within the

spectrogram in the last two images. In Figs. 2(b), the bird is

partially within the spectrogram in the first image, fully

within the spectrogram in the second image and barely

within the spectrogram in the last two images, almost

impossible to identify, even visually. All the corresponding

grayscale images are shown in Fig. 3. It can be seen that the

signal strength of both bulk and micro-Doppler also vary in

the images, depending on antenna beam coverage of the

targets. This demonstrates the advantage of using real data.

As both the targets fly at speeds up to 20 ms-1, the scenario

is quite dynamic. Only using spectrograms consisting of

strong micro-Doppler signatures with no variation in flight

dynamics would almost certainly cause the trained model to

significantly underperform in real situations. Fig. 2(c) and

3(c) are examples of ground clutter whilst Figs. 2(d) and 3(d)

are examples of noise.

4. Training results

The training was performed on a single quadcore

CPU with 8 GB RAM. On average, the time taken for

training was around 36-45 minutes for every single run.

(a)

(b)

(c)

Figure 6 Training and validation accuracies of the 34 layer series network for different learning rates a) 2-class training

with learning rates 0.2, 0.1, 0.01, 0.001 and 0.0005 respectively, b) Example of model overfitting and degraded accuracy

without validation dataset used during training (learning rate 0.0005), c) 4-class training with learning rates 0.2, 0.1, 0.01,

0.001 and 0.0005 respectively

8

Fig. 4 shows the GoogLeNet training results by

presenting the plots for accuracy and loss. The dataset has

been divided into 32 batches during training hence there are

32 iterations for each Epoch for 2-class training and 38 for

4-class training. For the GoogLeNet model training, 6

Epochs have been used. The Epoch number was eventually

set by running the model a few times to see when the model

converged. The training should not be run significantly

(a) (b)

 (c) (d)

Figure 7 Example classification performance figures comparing series network (grayscale) and GoogLeNet (RGB) using

test dataset where the title of each image is the target classified by the network and below that is the confidence level with

maximum value of 1, showing: a) both networks accurately classifying a drone, b) series network missing a drone, c) both

networks accurately classifying a bird, d) both network accurately classifying a bird even when the bird is not entirely

within the image

 (a) (b)

 (c) (d)

Figure 8 More example classification performance figures comparing series network (grayscale) and GoogLeNet (RGB)

using test dataset where the title of each image is the target classified by the network and below that is the confidence level

with maximum value of 1, showing: a) series network wrongly identifying a bird as a drone, b) series network wrongly

identifying noise as a bird, c) both networks correctly identifying noise, d) both networks correctly identifying clutter

9

longer once the plots saturate as then the model might start

to learn noise. The learning rate was set to 0.001 in this case.

We have also trained with other values and found this gives

the best validation accuracy. The validation frequency was

set to 32 iterations. As seen in Fig. 4, validation and training

accuracy remain very close - a very good indication of the

model generalisation. The training accuracy in both cases

reaches 100% and the validation accuracy is 99.1% for 2-

class network and 99.0% for 4-class network. This

demonstrates the strength of GoogLeNet for discriminating

drones from birds and clutter.

For the series network training, different variations

have been used before obtaining the optimum model. Fig. 5

shows the effect of dropout. Here the training was

performed both with and without the dropout layer activated

in the series network shown in Table 1. It is seen that the

validation accuracy for the 4-class network is 95.9% with

dropout but 91.3% without dropout. In each case, the

training accuracy is ~100%. This suggests that the model

has been over-fitted. Also, not using dropout makes the

performance worse.

Fig. 6 shows the training and validation

performances of the 34 layer series network in Table 1 for

different learning rates and for both 4-class and 2-class

networks. The number of Epochs was set to 20 eventually in

this case after testing with a few different values. The

number of iterations per Epoch is 12 for the 2-class network

and 15 for the 4-class network. The validation frequency is

set to 50. Not using the validation data during training again

makes the model more prone to over-fitting as it cannot

check for that during training and hence cannot modify the

weights accordingly if needed. An example of this is

provided in Fig. 6(b) where the validation is performed only

after the training has ended, giving poorer performance. It

has been found that the best performance is achieved with

the learning rate being 0.01, where the validation accuracies

are more than 99% in both cases. Values smaller or greater

show the trend of the validation accuracy gradually

decreasing.

5. Test results

After the whole training process was completed, we

tested the models with entirely unseen and unlabelled

datasets. We ran various datasets with flying drones or birds

and let the models classify on the fly. We then manually

verified whether correct prediction had been made.

Subsequently, we quantified the prediction accuracy

percentage. We have found that most of the time the

accuracy with the test dataset is slightly lower than the

validation accuracy but is still quite high. Initially, we ran a

94 GHz data file in which a DJI Inspire 1 is flying from 70-

80 m range. A total of 556 spectrogram plots were generated

covering this range. It should be noted that this test dataset

includes noise and clutter along with drone micro-Doppler

as the drone is moving and hence changing range bins. As it

is extremely time consuming to manually check for all the

models with different learning rates and different number of

classes, we have used only the model which performed best

during training (with 0.01 learning rate value). Similar

manual verification has also been performed with bird data.

The bird (Harris Hawk) flew from 30-100 m although it was

out of the beam most of the time as the flight path was not

straight. We thus chose a range of 70-100 m yielding 746

images with a good combination of bird and non-bird

spectrograms.

Fig. 7 and Fig. 8 show example figures of with

prediction results from the two classification methods using

the test data. The spectrograms are generated simultaneously

and the direct comparison between the GoogLeNet and the

series network can be visually observed. The performances

have been visually verified and then recorded.

The overall test prediction accuracy is given in Table

4 which shows that GoogLeNet outperforms the series

 (a) (b)

Figure 9 Example classification performance figures for NIRAD data which was never used during training where the title

of each image is the target classified by the network and below that is the confidence level with maximum value of 1,

showing a-b) both networks correctly classifying the drone

Table 4 Test data prediction accuracy

 Test drone data file Test bird data file

Number of spectrograms 556 746

Series network accuracy (4-class) 525 (94.42%) 728 (97.59%)

GoogLeNet accuracy (4-class) 549 (98.74%) 741 (99.32%)

Series network accuracy (2class) 546 (98.20%) 732 (98.12%)

GoogLeNet accuracy (2-class) 553 (99.46%) 746 (100%)

10

network in all cases. This suggests that the series network is

not entirely immune to over-fitting. Nonetheless, it should

be stressed that we have pushed the classification model to

its limit and have obtained test accuracies well over 90% in

all cases.

We have also tested the false alarm rate by selecting

324 images from the test bird data where every image fully

or partially consists of bird micro-Doppler. We then ran the

2-class network and checked the number of times the image

is predicted as drone. The series network predicted 4 images

as drone, giving a false alarm rate of 1.23%. In contrast,

GoogLeNet did not label a single image as drone providing

a 0% false alarm rate. In a real time surveillance application,

a 1.23% false alarm rate may be higher than desired, but this

is the raw individual image false alarm rate. The alert

system of the classifier can be set to alarm only with

successive hits (e.g. 2 or 3 images in a row being predicted

as drone) which would decrease the false alarm rate to a

suitable level.

Finally, we have also tested the prediction

performance by using data from an entirely different W-

band FMCW radar, named NIRAD [28]. This was done to

verify the generalisation of the trained models. A data file

was chosen where the drone was flying from 75-80 m range

(no bird data was available with this radar) and 204

spectrograms were generated. Fig. 9 shows couple of

example figures of the classification performance of NIRAD

data. The accuracy was 95.1% for 4-class series network,

98.5% for 2-class series network, 98.5% for 4-class

GoogLeNet and 99.0% for 2-class GoogLeNet. This

illustrates that the developed models have sufficient

performance to be integrated into a real time radar based

drone detection system.

It can be argued that the GoogLeNet should be used

in all cases as it offers better performance than the series

network. However, there are two factors that go in favour of

the series network. One is the colourscale issue with the

GoogLeNet as it remains to be seen if any random

colourscale performs equally well compared to others all the

time. The second factor is the computational time during

classification. When a single image is fed to the trained

model, the average time taken by the GoogLeNet is 0.4

seconds whilst the average time taken by the series network

is 0.05 seconds, i.e. eight times faster. This is

understandable as GoogLeNet is a large network compared

to the series network. Also, the convolutional layer filters

are applied to a single dimension in the case of the series

network whereas they are applied to three dimensions in

case of 224x224x3 RGB images in GoogLeNet. This

contributes to the faster classification time for the series

network. For a real-time application in which a drone can

move at 10-20 ms-1, the faster classification time gives the

series network a significant advantage.

6. Conclusion

In this study, we have successfully created a neural

network training dataset for drone classification using only

experimental data obtained in dynamic scenarios. Both a

pre-trained model (GoogLeNet) and our own developed

series network have been used for training and both have

shown well above 90% accuracy. Both models have been

tested with previously unseen data and have again shown

very good accuracy. GoogLeNet performs better but is more

time consuming compared to the series network. It has been

shown that they can be used in practical scenarios.

The obvious potential of the CNN classifiers

demonstrated here suggests that, via further optimisation,

they can be used to achieve an extremely robust radar sensor

based classification system. We anticipate that this approach

can be translated in to other types of target classification

algorithm development using spectrogram images (i.e.

various human activities, different types of animals etc.).

The best way to improve a CNN model is to make the

dataset larger and more diverse. The continuation of this

work is then to include more drone and bird data,

particularly including a wider diversity of different clutter

surroundings. Additionally, more complex images

consisting of two birds in a single spectrogram or a bird and

a drone in one image can be trained. This extra complexity

will be more challenging to the CNN model hence might

require further refinement of the current model. It will also

be interesting to quantitively compare the classification

performance we achieved here with other algorithms. A

proper comparison can only be made if they are tested under

the same scenario (i.e. with the same dataset). We realize

that the large dataset that we have created can be of great

value to other researchers developing different classification

models. Therefore, we would be happy to share the data on

request. We hope this would benefit the ongoing effort

within the field to develop a robust, real-time drone

detection algorithm, which can be broadly used by diverse

types of radar systems.

7. Acknowledgments

The authors acknowledge the funding received from

the Science and Technology Facilities Council which has

supported this work under grant ST/N006569/1. The authors

also acknowledge the contribution of ‘Elite Falconry’ for the

bird data collection and Dr Rob Hunter, Dr Adeola Fabola

and Dr Paddy Pomeroy for flying the drones.

8. References

[1] I. Guvenc, F. Koohifar, S. Singh, M. L. Sichitiu, and

D. Matolak, “Detection, Tracking, and Interdiction

for Amateur Drones,” IEEE Commun. Mag., vol. 56,

no. 4, pp. 75–81, Apr. 2018.

[2] J. S. Patel, F. Fioranelli, and D. Anderson, “Review

of radar classification and RCS characterisation

techniques for small UAVs ordrones,” IET Radar,

Sonar Navig., vol. 12, no. 9, pp. 911–919, Sep. 2018.

[3] V. C. Chen, The micro-doppler effect in radar.

Artech House, 2011.

[4] S. Rahman and D. A. Robertson, “Millimeter-wave

micro-Doppler measurements of small UAVs,” in

Proc. SPIE 10188, Radar Sensor Technology XXI,

2017, vol. 10188, p. 101880T.

[5] J. de Wit, “Micro-Doppler analysis of small UAVs,”

in 2012 9th European Radar Conference : 31

October - 2 November 2012, Amsterdam, the

Netherlands, 2012, pp. 210–213.

[6] P. Molchanov, R. I. A. Harmanny, J. J. M. de Wit, K.

Egiazarian, and J. Astola, “Classification of small

UAVs and birds by micro-Doppler signatures,” Int.

J. Microw. Wirel. Technol., vol. 6, no. 3–4, pp. 435–

11

444, 2014.

[7] M. Ritchie, F. Fioranelli, H. Borrion, and H.

Griffiths, “Classification of loaded/unloaded micro-

drones using multistatic radar,” Electron. Lett., vol.

51, no. 22, pp. 1813–1815, Oct. 2015.

[8] M. Ritchie, F. Fioranelli, H. Griffiths, and B. Torvik,

“Monostatic and bistatic radar measurements of

birds and micro-drone,” in 2016 IEEE Radar

Conference (RadarConf), 2016, pp. 1–5.

[9] L. Fuhrmann, O. Biallawons, J. Klare, R. Panhuber,

R. Klenke, and J. Ender, “Micro-Doppler analysis

and classification of UAVs at Ka band,” in 2017

18th International Radar Symposium (IRS), 2017,

pp. 1–9.

[10] Y. Kim and T. Moon, “Human Detection and

Activity Classification Based on Micro-Doppler

Signatures Using Deep Convolutional Neural

Networks,” IEEE Geosci. Remote Sens. Lett., vol.

13, no. 1, pp. 8–12, Jan. 2016.

[11] A. Angelov, A. Robertson, R. Murray-Smith, and F.

Fioranelli, “Practical classification of different

moving targets using automotive radar and deep

neural networks,” IET Radar, Sonar Navig., vol. 12,

no. 10, pp. 1082–1089, Oct. 2018.

[12] J. S. Patel, F. Fioranelli, M. Ritchie, and H. Griffiths,

“Multistatic radar classification of armed vs

unarmed personnel using neural networks,” Evol.

Syst., vol. 9, no. 2, pp. 135–144, Jun. 2018.

[13] Z. Chen, G. Li, F. Fioranelli, and H. Griffiths,

“Personnel Recognition and Gait Classification

Based on Multistatic Micro-Doppler Signatures

Using Deep Convolutional Neural Networks,” IEEE

Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 669–

673, May 2018.

[14] A. Schumann, L. Sommer, J. Klatte, T. Schuchert,

and J. Beyerer, “Deep cross-domain flying object

classification for robust UAV detection,” in 2017

14th IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), 2017,

pp. 1–6.

[15] “Drone-vs-Bird Detection Challenge – International

Workshop on Small-Drone Surveillance, Detection

and Counteraction Techniques.” [Online]. Available:

https://wosdetc.wordpress.com/challenge/.

[Accessed: 07-Jul-2019].

[16] D. A. Brooks, O. Schwander, F. Barbaresco, J.-Y.

Schneider, and M. Cord, “Temporal Deep Learning

for Drone Micro-Doppler Classification,” in 2018

19th International Radar Symposium (IRS), 2018,

pp. 1–10.

[17] D. Choi, Byunggil: Oh, “Classification of Drone

Type Using Deep Convolutional Neural Networks

Based on Micro- Doppler Simulation,” in ISAP

2018 : 2018 International Symposium on Antennas

and Propagation : October 23-26, 2018, Paradise

Hotel Busan, Busan, Korea, 2018.

[18] B. K. Kim, H.-S. Kang, and S.-O. Park, “Drone

Classification Using Convolutional Neural

Networks With Merged Doppler Images,” IEEE

Geosci. Remote Sens. Lett., vol. 14, no. 1, pp. 38–42,

Jan. 2017.

[19] C. Szegedy et al., “Going deeper with convolutions,”

in 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, pp. 1–9.

[20] M. S. Seyfioglu and S. Z. Gurbuz, “Deep Neural

Network Initialization Methods for Micro-Doppler

Classification With Low Training Sample Support,”

IEEE Geosci. Remote Sens. Lett., vol. 14, no. 12, pp.

2462–2466, Dec. 2017.

[21] S. S. Haykin, Neural networks : a comprehensive

foundation. Prentice Hall, 1999.

[22] D. P. Kingma and J. Ba, “Adam: A Method for

Stochastic Optimization,” Dec. 2014.

[23] A. E. Hoerl and R. W. Kennard, “Ridge Regression:

Biased Estimation for Nonorthogonal Problems,”

Technometrics, vol. 12, no. 1, pp. 55–67, Feb. 1970.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep

Residual Learning for Image Recognition,” in 2016

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 770–778.

[25] S. Rahman and D. A. Robertson, “Radar micro-

Doppler signatures of drones and birds at K-band

and W-band,” Sci. Rep., vol. 8, no. 1, p. 17396, Dec.

2018.

[26] D. A. Robertson, G. M. Brooker, and P. D. L.

Beasley, “Very low-phase noise, coherent 94GHz

radar for micro-Doppler and vibrometry studies,” in

Proc. SPIE 9077, Radar Sensor Technology XVIII,

2014, vol. 9077, p. 907719.

[27] S. Rahman and D. A. Robertson, “Coherent 24 GHz

FMCW radar system for micro-Doppler studies,” in

Radar Sensor Technology XXII, 2018, vol. 10633, p.

17.

[28] D. A. Robertson and S. L. Cassidy, “Micro-doppler

and vibrometry at millimeter and sub-millimeter

wavelengths,” in Proc. SPIE 8714, Radar Sensor

Technology XVII, 2013, vol. 8714, p. 87141C.

