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Abstract:  16 

Total and organic mercury concentrations were determined for males, females and 17 
juveniles of Euphausia superba collected at three discrete locations in the Scotia Sea 18 
(the South Orkney Islands, South Georgia and the Antarctic Polar Front) to assess 19 
spatial mercury variability in Antarctic krill. There was clear geographic differentiation 20 
in mercury concentrations, with specimens from the South Orkneys having total 21 
mercury concentrations 5 to 7 times higher than Antarctic krill from South Georgia 22 
and the Antarctic Polar Front. Mercury did not appear to accumulate with life-stage 23 
since juveniles had higher concentrations of total mercury (0.071 µg g-1 from South 24 
Orkney Islands; 0.015 µg g-1 from South Georgia) than adults (0.054 µg g-1 in females 25 
and 0.048 µg g-1 in males from South Orkney Islands; 0.006 µg g-1 in females and 26 
0.007 µg g-1 in males from South Georgia). Results suggest that females use egg 27 
laying as a mechanism to excrete mercury, with eggs having higher concentrations 28 
than the corresponding somatic tissue. Organic mercury makes up a minor 29 
percentage of total mercury (15 to 37%) with the percentage being greater in adults 30 
than in juveniles. When compared to euphausiids from other parts of the world, the 31 
concentration of mercury in Antarctic krill is within the same range, or higher, 32 
highlighting the global distribution of this contaminant. Given the high potential for 33 
biomagnification of mercury through food webs, concentrations in Antarctic krill may 34 
have deleterious effects on long-lived Antarctic krill predators. 35 
 36 

Capsule: Mercury concentrations in Antarctic krill decrease along life stage (females 37 

use egg laying to excrete mercury) and vary along the Scotia Sea. 38 

Key words : Food-web; Eggs; Organic Mercury; Southern Ocean, Antarctica 39 
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Mercury contamination in the environment has been acknowledged as a global 42 

problem, and the production and use of this element is nowadays very strictly 43 

regulated and limited (Selin, 2009; UNEP, 2013). Pathways of dispersion through 44 

ecosystems, including in the Antarctic, of this long-range contaminant are complex 45 

(Streets et al., 2009). Interplay between the distinctive Antarctic atmosphere and the 46 

seasonal sea-ice cycle in the Southern Ocean generates a unique combination 47 

environmental factors that can explain why the remote Southern Ocean has some of 48 

the highest reported concentrations of organic mercury (i.e. compounds containing 49 

covalent bonds between carbon and mercury) in open waters (Cossa et al., 2011). 50 

Due to its high affinity for proteins (Bustamante et al., 2006), organic mercury is the 51 

most toxic form of the element (Clarkson, 1992). It accumulates in aquatic organisms 52 

and biomagnifies within food webs, being toxic for top predators (Ackerman et al., 53 

2014; Chouvelon et al., 2012; Coelho et al., 2010; Dehn et al., 2006) with 54 

consequences at the population level (Goutte et al., 2014a; 2014b). Wandering 55 

albatrosses are an example of this biomagnification effect in Antarctica, as it was 56 

found that they had some of the highest concentration of total mercury (from now on 57 

noted as mercury) in marine birds (up to 24.80 ± 8.61 µg g-1 dry weight) (Cherel et 58 

al., 2018; Tavares et al., 2013). 59 

In the Southern Ocean, Antarctic krill, Euphausia superba, is a key species in 60 

the marine food webs connecting primary producers and higher predators (Everson, 61 

2000). It has an estimated biomass of around 379million tonnes (Atkinson et al., 62 

2009) and being the main food for many vertebrates (Murphy et al., 2007; Xavier and 63 

Peck, 2015). For example, minke whales, Balaenoptera acutorostrata and Crabeater 64 

seals, Lobodon carcinophaga, feed almost exclusively (>95 %) on Antarctic krill 65 

(Adam, 2005; Armstrong and Siegfried, 1991; Croll and Tershy, 1998; Dimitrijević et 66 
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al., 2018; Perrin et al., 2008). Chinstrap penguins, Pygoscelis antarctica, Gentoo 67 

penguins, Pygoscelis papua, and other species of penguins, in the Southern Ocean, 68 

also feed mostly on Antarctic krill (Dimitrijević et al., 2018; Xavier et al., 2018) with 69 

values around 1.2 kg d-1 (Croll and Tershy, 1998). Finally, Antarctic krill is the most 70 

harvested species in the Southern Ocean, with > 260 000 tonnes fished in 2016, 71 

regulated under the Convention for the Conservation of Antarctic Living Resources 72 

(Nicol et al. 2000; Tou et al. 2007; CCAMLR 2017).  73 

In the context of environmental change (Constable et al., 2014; Cossa, 2013; 74 

Gutt et al., 2015), it is important to evaluate the impact of contaminants like mercury, 75 

particularly in a remote and presumably less impacted environments such as 76 

Antarctica with the associated risk to Southern Ocean top predators. This approach 77 

will contribute to a more in-depth knowledge of mercury bioaccumulation dynamics, 78 

in an effort towards the preservation of Antarctica ecosystems into the future (Rintoul 79 

et al., 2018; Seewagen, 2010). Despite the major role of Antarctic krill in the Southern 80 

Ocean, there are only a few studies reporting mercury concentrations in this region 81 

(Bargagli et al., 1998; Brasso et al., 2012b; Locarnini and Presley, 1995; Moren et al., 82 

2006). Indeed, to our knowledge, no studies have ever analysed organic mercury 83 

content in Antarctic krill. Assessing the levels of organic mercury in such an important 84 

prey as Antarctic krill is crucial to better understand the pathway of this contaminant 85 

through Southern Ocean food webs. In this context, this study compares the total and 86 

organic mercury of Antarctic krill from three different locations: the South Orkney 87 

Islands, an Antarctic island group which experiences winter sea ice (Murphy et al., 88 

1995); South Georgia, a sub-Antarctic island free of sea ice (Rogers et al., 2015); 89 

and the Antarctic Polar Front, a transition area from the Southern Ocean to the 90 

Atlantic Ocean with warmer waters (Dong et al., 2006). Under this context, 91 
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differences among life stages (eggs, juveniles, adults) and sexes (males and 92 

females), were assessed and interpreted in the scope of a possible biomagnification 93 

of mercury in the Antarctic trophic web. 94 

 95 

Material and methods  96 

Sampling 97 

Antarctic krill Euphausia superba were collected from the British research 98 

vessel RRS James Clark Ross during the austral summers of 2007/08, 2015/16 and 99 

2016/17 (cruises JR177, JR15004 and JR16003 respectively). The three cruises 100 

sampled three areas of the Scotia Sea (Figure 1) with different oceanic 101 

characteristics. JR16003 had one sampling point at the Antarctic Polar Front. Both 102 

JR16003 and JR177 sampled predominantly around South Georgia, and JR15004 103 

sampled around the South Orkney Islands. 104 

Samples were collected from the water column using an 8 m2 mouth-opening 105 

Rectangular Midwater Trawl (RMT8; mesh size reducing from 4.5 mm to 2.5 mm in 106 

the cod end) (Roe and Shale, 1979). The net was rigged with two nets that could be 107 

remotely opened and closed at different depths. The RMT8 was used to target 108 

particularly Antarctic krill swarms and other layers of interest (e.g. fish layers) 109 

identified by the vessel scientific echosounder system (i.e. Simrad EK60/EK80 110 

operating between 38 and 200 kHz). 111 

Antarctic krill in the catches were identified and total length (TL) of each 112 

individual was measured, from the anterior edge of the eye to the tip of the telson 113 

and rounded down (Morris et al., 1992). Sex and maturity stage were determined with 114 

reference to the presence of a petasma (males), thelycum (females) or absent 115 

(juveniles; individuals without visible external sexual characteristics) (Ross and 116 
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Quetin, 2000). Samples were either preserved in sample bags at -20ºC (JR15004 117 

and JR16003) or on vials in ethanol (for JR177) (Fort et al., 2016).  118 

 119 

Laboratory procedures 120 

Prior to the mercury analysis, all samples were freeze-dried for at least 24 121 

hours. The eggs of females (Maturity stage III) (Ross and Quetin, 2000) from JR177 122 

(South Georgia) were removed under the microscope before freeze-drying.  123 

Figure 1 – Sampling sites of Antarctic krill (white square – samples of juveniles, females and 
males; white dot – samples of juveniles ) and general positions of the Subantarctic Front 
(SAF), Polar Front (PF) and the Southern boundary of the Antarctic Circumpolar Current 
Front (SACCF) (Sallé et al., 2008). 
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Dried individuals and tissues were homogenized and analysed for total 124 

mercury by thermal decomposition atomic absorption spectrometry with gold 125 

amalgamation, using a LECO AMA-254 (Advanced mercury analyser) following 126 

(Coelho et al., 2008). Organic mercury was determined through digestion with a 127 

mixture of 18 % potassium bromide (KBr) in 5 % sulfuric acid (H2SO4), followed by 128 

extraction of organic mercury into toluene as described in (Válega et al., 2006). 129 

Analytical quality control was performed using certified reference material (CRM; in 130 

this case TORT-2 and TORT-3 [lobster hepatopancreas, National Research Council, 131 

Canada]). The obtained values (mean ± SD) for the whole of the CRM analyses 132 

ranged from 81 to 102 % (TORT-2: 87 ± 3 %, n = 41; TORT-3: 90 ± 8 %, n = 27), 133 

results were corrected using the daily recovery efficiency of CRMs. The mass of 134 

CRM used for quality control analyses was adjusted to be within the range of total 135 

mercury (in ng) present in the samples. Analyses were performed in duplicate, blanks 136 

were analysed at the beginning of each set of samples and the coefficient of variation 137 

between replicates never exceeded 10%. CRMs were also used to validate organic 138 

mercury analyses, with an extraction efficiency of 80 ± 2 % and 98 ± 5 %, 139 

respectively. The limit of detection for this analytical method is 0.00001 µg g-1 of 140 

absolute mercury and 0.004 µg g-1 for organic mercury. All concentration data are 141 

expressed subsequently in µg g-1 dry weight.  142 

 143 

Statistical analysis 144 

Wilcoxon test were used to investigate whether there were any differences in 145 

mercury concentrations between females and males, between eggs and females, or 146 

between sampling sites. Kruskall-Wallis were performed to examine if there were 147 

statistical differences between sex/maturity and location. Linear regressions were 148 
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calculated to examine possible relationships between Antarctic krill length and 149 

individual mercury concentration. All analyses were performed using the R software 150 

version 3.4.2 (R Core Team, 2013). All values are presented as mean ± SD. 151 

 152 

Results 153 

Total mercury concentrations in Antarctic krill according to geographic areas 154 

 Total mercury concentrations varied between 0.054 ± 0.018 µg g-1 in females, 155 

0.048 ± 0.011 µg g-1 in males and 0.071 ± 0.023 µg g-1 in juveniles from the South 156 

Orkney Islands to 0.006 ± 0.002 µg g-1 in females, 0.007 ± 0.002 µg g-1 in males and 157 

0.014 ± 0.005 µg g-1 in juveniles from the South Georgia and 0.017 ± 0.006 µg g-1 in 158 

juveniles from the Antarctic Polar Front. 159 

There was a clear differentiation in mercury concentrations between the three 160 

locations (Figure 2): Adult Antarctic krill from the South Orkney Islands had 161 

concentrations of mercury about 7 times higher in females (Wilcoxon rank sum test, 162 

W = 120, p< 0.001) and males (Wilcoxon rank sum test, W =120, p< 0.001) than adult 163 

Antarctic krill from South Georgia, and juveniles showed concentrations around 5 164 

times higher in the South Orkney Islands (Kruskall-Wallis, H 3 = 41.03, p< 0.001) than 165 

those collected at South Georgia and the Antarctic Polar Front. Juveniles from the 166 

northern locations (South Georgia and Antarctic Polar front) had similar mercury 167 

concentrations (Wilcoxon rank sum test, W = 192, p= 0.093).  168 

 169 

Total mercury concentrations in Antarctic krill according to life stage 170 

 There were significant differences (Wilcoxon signed rank test, Z= -3.351p = 171 

0.001) between the mercury concentrations in the eggs (0.015 ± 0.002 µg g-1) and 172 

the corresponding female somatic tissue (0.008 ± 0.003 µg g-1) from South Georgia 173 
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(Figure 2). There were no significant differences (Wilcoxon rank sum test, W = 189, p 174 

= 0.071) between the females sampled in 2007/08 and 2016/17 at South Georgia 175 

(0.007 ± 0.002 µg g-1). Juveniles caught around South Georgia (0.014 ± 0.005 µg g-1) 176 

had significantly higher mean concentration of mercury than adults (0.007 ± 0.002 µg 177 

g-1; Kruskall-Wallis H = 41.031, p < 0.01 ) from the same region. Juveniles and eggs 178 

from South Georgia also had similar concentrations (Wilcoxon rank sum test, W = 179 

205, p = 0.254). Like in juveniles from South Georgia, juveniles caught at the South 180 

Orkney Islands (0.071 ± 0.024 µg g-1) also had significantly higher mercury 181 

concentrations than adults (0.051 ± 0.015 µg g-1; Kruskall-Wallis H =  10.048, p 182 

=0.07). 183 
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Significant negative correlations of mercury concentration with body size was 184 

common to both the South Orkney Islands and South Georgia (Y = -0.0124*X – 185 

1.525, R2= 0.46, F1, 43= 36.41, p < 0.001 from South Georgia; Y = -0.01072*X - 186 

0.8675, R2= 187 

0.2746, F1, 188 

52= 19.69, p 189 

< 0.001 190 

from South 191 

Orkney 192 

Islands) 193 

meaning 194 

that bigger 195 

individuals 196 

had lower mercury concentrations (Figure 3). It was not possible to discern if such a 197 

relationship also existed at the Antarctic Polar Front, since only juveniles were found 198 

at this location. 199 
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Figure 2- Total mercury concentrations (µg g-1 dw) in Antarctic Krill (Euphausia 
superba) collected around South Georgia and at the Antarctic Polar Front in the 
austral summer of 2016/17, and around the South Orkney Islands during the 
austral summer of 2015/16. Bars show the mean. Error bar is 1 standard deviation. 
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Figure 3 – Total mercury concentration (µg g-1 dw) on a log10 scale versus total length (mm) for individual 
Antarctic krill (Euphausia superba) by maturity stage and sex respectively. Data are shown separately for krill 
collected around South Georgia (Y = -0.0124*X – 1.525, R2= 0.46, F1, 43= 36.41, p < 0.001), the Antarctic Polar 
Front (both in the austral summer of 2016/17) and the South Orkney Islands (Y = -0.01072*X - 0.8675, R2= 
0.2746, F1, 52= 19.69, p < 0.001; summer of 2015/16). 
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 202 

  203 

Total mercury concentrations in Antarctic krill according to sex 204 

  Concentrations of mercury in adult females (0.054 ± 0.018 µg g-1) and males 205 

(0.048 ± 0.011 µg g-1) from South Georgia were similar (t28= 0.9323, p= 0.4; Figure 206 

2). There were also no differences in mercury concentration between sexes in the 207 

samples collected from the South Orkney Islands (t27 = 0.917, p= 0.4; Figure 2). 208 

 209 

Organic mercury in Antarctic krill 210 

Adult Antarctic krill from the South Orkney Islands had higher concentrations 211 

of organic mercury than adults from South Georgia (Table 1) (for both males and 212 

females), but concentrations in juveniles were similar between the two locations. 213 

While no significant differences between juveniles, males and females were observed 214 

in the South Orkney Islands, juveniles in South Georgia had higher organic mercury 215 

concentrations than adults. 216 

Organic mercury percentages in Antarctic krill were lower in the South Orkney 217 

Islands (15% in juveniles, 16% in females and 21% in males) than at South Georgia 218 

(29% in juveniles, 37% in females and 36% in males) and the Antarctic Polar Front 219 

(35% in juveniles; Table 1). Adults had slightly higher organic mercury percentages 220 

than juveniles (Table 1). 221 

  222 
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 223 

 224 

 225 

Discussion  226 

 Despite some studies reporting mercury levels in Antarctic krill (Bargagli et al., 227 

1998; Brasso et al., 2012b; Locarnini and Presley, 1995; Moren et al., 2006), there 228 

has remained a gap in knowledge regarding variability in mercury concentration by 229 

size, gender and location. Furthermore, to our knowledge this is the first study to 230 

determine organic mercury concentrations in Antarctic krill. 231 

 232 

Total mercury concentrations according to geographic areas 233 

We found Antarctic krill from South Orkney Islands had mercury body burdens 234 

5 to 7 times higher than those from South Georgia and from the Antarctic Polar Front. 235 

Habitat differences may explain the differences in contamination levels between 236 

Location Year Sex / Maturity  Number 
OHg (ug g -1 

dw) 
THg (ug g -1 dw) %OrgHg

South Orkney 

Islands 
2016 Juvenile 

20 
0.008 ± 0.003 0.051 ± 0.016 15%

South Orkney 

Islands 
2016 Female 

20 
0.008 ± 0.002 0.052 ± 0.022 16%

South Orkney 

Islands 
2016 Male 

20 
0.008 ± 0.003 0.040 ± 0.014 21%

South 

Georgia 
2017 Juvenile 

20 
0.008 ± 0.002 0.024 ± 0.006 29%

South 

Georgia 
2017 Female 

20 
0.002 ± 0.0002 0.006 ± 0.0003 37%

South 

Georgia 
2017 Male 

20 
0.003 ± 0.0001 0.007 ± 0.0004 36%

Antarctic 

Polar Front 
2017 Juvenile 

20 
0.005 ± 0.001 0.014 ± 0.005 35%

Table 1 – Organic mercury (OHg) and total mercury (THg) concentrations in samples 
of Antarctic krill (Euphausia superba) collected from different locations in the Scotia 
Sea during the austral summers of 2015/16 and 2016/17. Average ± Standard 
deviation 
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these three areas in the Southern Ocean. The average sea surface temperature 237 

around the South Orkney Islands is lower than in South Georgia (Barnes et al., 2005; 238 

Clarke and Leakey, 1996) and at the Antarctic Polar Front. This temperature gradient 239 

leads to an important ecosystem difference, promoting the presence of more winter 240 

ice in the South Orkney Islands (Atkinson et al., 2001). Ice formation can act as a 241 

buffer for mercury and other elements (Lindberg et al., 2002). Furthermore, the ice 242 

may act as a trap for contaminants precipitating from the atmosphere (Beyer and 243 

Matthies, 2001; Cossa et al., 2011), which are released into the water column upon 244 

ice melting (Brierley and Thomas, 2002; Geisz et al., 2008; Mastromonaco et al., 245 

2017). In the Arctic, for instance, higher concentrations of mercury were measured in 246 

seawater under sea-ice, when compared with ice-free regions (Hintelmann et al., 247 

2007) and higher concentrations of mercury were found under ice during spring 248 

(Mastromonaco et al., 2017). Additionally, depletion events promote higher 249 

precipitation rates of atmospheric mercury in colder areas, mainly during springtime, 250 

when halogen radicals oxidize the mercury (Ebinghaus et al., 2002; Lindberg et al., 251 

2002). Indeed, these depletion events have been reported along and between 252 

regions of Antarctic sea-ice (Dommergue et al., 2010).Thus, higher depletion rates, 253 

sea ice formation and its melting may explain why there were more contaminants 254 

available to Antarctic krill around the South Orkney Islands than around South 255 

Georgia. Comparing our data with previous records of mercury in Antarctic krill, we 256 

see that samples from the Ross Sea, an area with winter sea ice (Bargagli et al., 257 

1998), had higher concentrations than South Georgia and the Antarctic Peninsula 258 

(Brasso et al., 2012a; Cipro et al., 2016; Locarnini and Presley, 1995), but similar to 259 

those at the South Orkney Islands (Table 2).  260 
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Other possible explanations for the higher mercury contamination in Antarctic 261 

krill from the South Orkney Islands could be the proximity to active volcanoes, which 262 

are well-known sources of mercury (Varekamp and Buseck, 1981; Zambardi et al., 263 

2009). Several volcanoes have recently been reported in the Antarctic Peninsula 264 

(van Wyk de Vries et al., 2018), which is closer to the South Orkney Islands than to 265 

the other two sampling sites in the present study. Nevertheless, the uptake of 266 

mercury from such sources is likely to be variable given that previous studies 267 

measuring mercury concentrations in Antarctic krill from the Antarctic Peninsula 268 

measured levels that were lower than those specifically in the South Orkney Islands 269 

Antarctic krill population reported here (Brasso et al., 2012a; Locarnini and Presley, 270 

1995; Moren et al., 2006) (Table 2). Mercury body burdens in Antarctic krill may also 271 

be related to food availability (Chen and Folt, 2005). Phytoplankton blooms, which 272 

are a main source of mercury to krill, are spatially and temporally variable in the 273 

Southern Ocean and have a large influence on Antarctic krill growth (Atkinson et al., 274 

2006; Cuzin-Roudy, 2000). Accordingly, the dynamics and availability of food 275 

between locations will probably have a significant effect on the mercury 276 

bioavailability, intake and bioaccumulation in Antarctic krill. 277 

In comparison with other krill species around the world (Table 2), there are 278 

examples where the concentration of mercury is lower, for instance, species from the 279 

Order Euphausiacea in the Hudson bay (Canada) (Foster et al., 2012) and 280 

Euphausia pacifica in the Californian Current (Sydeman and Jarman, 1998) than in 281 

some of our samples. Mercury concentrations in euphausiids from more 282 

industrialized European regions (Chouvelon et al., 2012; Leatherland et al., 1973; 283 

Minganti et al., 1996) and the Arctic (Ritterhoff and Zauke, 1997) are nevertheless 284 

considerably higher than in Antarctic krill (Table 2). Higher concentrations are also 285 
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evident in euphausiid populations in the sub-Antarctic Kerguelen Islands (Cipro et al., 286 

2018) which, like the Southern Ocean, is likely to result from remote atmospheric 287 

sources (Cossa et al., 2011).  288 
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Species Hg (µg g -1) Location Reference 

Euphausia frigida 0.023 ± 0.002  Kerguelen Islands Cipro et al. (2017) 

Euphausia pacifica, Thysanoessa 

spinifera 

0.030 Californian Current  Sydeman et al (1998) 

Euphausia superba 0.008  ± 0.002 Antarctic Peninsula Brasso 2012 

Euphausia superba 0.008  Krill food Moren 2006 

Euphausia superba 0.018  ± 0.005 King George Island Cipro et al. (2016) 

Euphausia superba 0.013 to 0.049 Antarctic Peninsula Locarnini (1995) 

Euphausia superba 0.077  ± 0.026 Ross Sea Bargali 1998 

Euphausia superba (Adult) 0.007 ±0.002 South Georgia This study 

Euphausia superba (Adult) 0.051 ± 0.015 South Orkneys This study 

Euphausia superba (Female) 0.008 ± 0.003 South Georgia This study 

Euphausia superba (Juvenile) 0.014 ± 0.004 South Georgia This study 

Euphausia superba (Juvenile) 0.017 ± 0.006 Polar Front This study 

Euphausia superba (Juvenile) 0.071 ± 0.023 South Orkneys This study 

Euphausia triacantha 0.036 ± 0.006 Kerguelen Islands Cipro et al. (2017) 

Euphausia vallentini (Large 25-30mm)  0.017 ± 0.001 Kerguelen Islands Cipro et al. (2017) 

Euphausia vallentini (Small 16-24mm) 0.042 ± 0.003 Kerguelen Islands Cipro et al. (2017) 

Euphausiaceae 0.023  ± 0.004 Hudson Bay (Canada) Foster et al. (2012) 

Meganyctiphanes norvegica 0.130  ± 0.004 Arctic Ritterhoff et al. (1997) 

Meganyctiphanes norvegica 0.172  ± 0.014 Bay of Biscay  Chouvelon et al (2012) 

Table 2 – Total mercury concentrations (µg g-1 dw) in different species of Antarctic krill around the world from 
published data and this study (mean ± standard deviation). 
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 289 

 290 
  291 
 292 
 293 

Meganyctiphanes norvegica 0.250 South of Portugal Leatherland et al. (1973) 

Meganyctiphanes norvegica 0.490 Mediterranean Minganti et al (1996) 

Thysanoessa inermis 0.120  ± 0.004 Arctic Ritterhoff et al. (1997) 

Thysanoessa sp. 0.067 ± 0.031 Kerguelen Islands Cipro et al. (2017) 
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Total mercury concentration according to life stage and sex 294 

Mercury concentration in Antarctic krill unexpectedly decreased with age (see 295 

results). Since juveniles have a faster rate of growth compared to adults, one would 296 

otherwise expect burdens to be lower in juveniles through a growth dilution effect, as 297 

reported for Daphnia pulex (Karimi et al., 2007). Furthermore, juveniles have more 298 

frequent molting cycles compared to adults (Buchholz, 1991), and excretion ratios will 299 

probably be more efficient at these early stages. Somatic growth of Antarctic krill is 300 

pre-programmed to slow once a certain age or maturity has been reached (Tarling et 301 

al., 2006), in order to divert considerable resources to reproductive tissue when 302 

reaching adulthood (Atkinson et al., 2006; Cuzin-Roudy, 2000). Adults also prey on 303 

higher trophic levels compared to juveniles (Atkinson et al., 2002) which should mean 304 

higher bio-magnification potential, and therefore contrary to what was observed. The 305 

higher contaminant load of juveniles when compared with adults has, however, been 306 

reported in previous studies on Antarctic krill (Locarnini and Presley, 1995) as well as 307 

the subantarctic krill Euphausia vallentini (Cipro et al., 2018). One mechanism that 308 

may explain this phenomenon is through egg laying, which has been reported as an 309 

important elimination route for mercury in several organisms such as birds (Brasso et 310 

al., 2012a; Pedro et al., 2015) and fish (Johnston et al., 2001; Schofield et al., 1994), 311 

and also previously hypothesized for crustaceans species (Coelho et al., 2008). In 312 

the present study, the higher mercury concentrations were found in Antarctic krill 313 

eggs when compared to corresponding somatic tissue, suggesting that egg laying 314 

maybe an elimination mechanism. However, males also have lower mercury burdens 315 

compared to juveniles which either rules out this hypothesis or indicates that males 316 

also eliminate mercury through their own gonadic tissue. Spermatophores are 317 
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regularly produced and passed out of the body throughout the lifespan of males, 318 

although concentrations of mercury in these structures has yet to be measured.  319 

 320 

Organic mercury 321 

We found concentrations of the highly toxic, organic form of mercury of 322 

between 0.002 and 0.008 ug g-1 dw, with the higher concentrations being found in 323 

both the South Orkneys and South Georgia, particularly in juveniles. Antarctic krill is 324 

the main prey for several Southern Ocean predators and it is estimated that more 325 

than half of its total biomass of 379 Mt is eaten by whales, seals, seabirds, squid and 326 

fish (Atkinson et al., 2009). Assuming the lowest individual mercury concentrations 327 

measured by the present study, this would mean 1.33 t of mercury will be passed on 328 

from the consumption of Antarctic krill, of which 0.57 t will be in the organic form. 329 

However the 1.33t of mercury potentially transferred in the trophic web is a 330 

conservative number, as it was calculated from the lowest concentration levels found 331 

in the present study, that is, at the same time the lowest concentration ever 332 

measured in the literature. So it can be considered an underestimation. This organic 333 

mercury will be potentially bioaccumulated in the tissues of Antarctic krill predators 334 

and transferred towards upper food web predators leading to its biomagnification. 335 

Thus, it may reach concentrations that can affect the behaviour, reproductive 336 

success and even to reduce the survival of the top predators (Tan et al. 2009; 337 

Eagles-Smith et al. 2018). Such bioaccumulation of organic mercury from Antarctic 338 

krill consumption can explain how some Antarctic seabirds have particularly high 339 

concentrations of mercury (Tavares et al., 2013).  340 

 341 

Conclusions 342 
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The accumulation of mercury in Antarctic krill decreases with increasing body 343 

size and maturity. Juveniles have higher concentrations than adults which may be the 344 

result of a growth dilution effect and also elimination through gonadic tissue (eggs 345 

and spermatophores).  346 

The observed spatial differences suggest that Antarctic krill reflects differential 347 

contaminant bioavailability in the Southern Ocean, while further studies are needed 348 

to discern the most significant variables governing site-specific mercury 349 

bioaccumulation.  350 

The range of mercury concentrations reported in Antarctic krill are within the 351 

same range, or even higher, than other euphausiids from areas closer to the 352 

industrialized part of the world, highlighting mercury as a global pollutant.  353 

Overall, our results stress the need to put into action pollutant monitoring 354 

programs to evaluate the sources, pathways and effects of contaminants in remote 355 

ecosystems. 356 
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Highlights: 
 

• Mercury concentration in Antarctic Krill decreases with size and maturity; 
• Adults have higher ratio of organic mercury than juveniles; 
• Females may use egg laying as an mercury excretion mechanism; 
• Mercury concentration in Krill vary along the Scotia Sea; 
• Some euphausiids from other locations have lower concentration than Krill. 




