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ABSTRACT 

We previously demonstrated that treatment with the demethylating agent 5-aza-2′-deoxycytidine (5-aza-

dC) alters the offspring sex ratios produced by females of the parasitoid wasp Nasonia vitripennis (Cook 

et al. 2015). Females allocate offspring sex ratio in line with Local Mate Competition theory, producing 

more or less female-biased sex ratios as the number of other females laying eggs on a patch varies, 

thereby reducing competition amongst their sons for mates. Interestingly, treatment with 5-aza-dC did 

not ablate the facultative sex allocation response. Instead, sex ratios became less female-biased, a shift in 

the direction of the optimum sex ratio for paternally-inherited alleles according to genomic conflict 

theory. This was the first (albeit indirect) experimental evidence for genomic conflict over sex allocation. 

Ellers et al. (2019) have since assayed the effects of 5-aza-dC on DNA methylation in ten Nasonia genes, 

finding no evidence of demethylation in these 10 genes, from which they conclude that 5-aza-dC has no 

demethylating capability in Nasonia vitripennis. Quantifying the efficacy of 5-aza-dC in terms of 

demethylation is indeed crucial to in-depth interpretation of studies using 5-aza-dC to link phenotypes to 

epigenetic regulation. Here, we outline the mode of action of 5-aza-dC and demonstrate that determining 

the efficacy of 5-aza-dC in insect systems requires a whole-genome approach. 
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Main Text 

 

DNA methylation, sex allocation and 5-aza-2′-deoxycytidine 

In a previous study, we demonstrated that treatment with the demethylating agent 5-aza-2′-

deoxycytidine (5-aza-dC) alters the sex allocation response of Nasonia vitripennis females (Cook et al. 

2015). As with all Hymenoptera, N. vitripennis is a haplodiploid species, with males arising from 

unfertilized, haploid eggs and females developing from fertilized, diploid eggs. Females are in putative 

control of sex allocation, either laying unfertilized eggs that will become sons or releasing sperm to fertilize 

eggs that will become daughters. Female Nasonia allocate sex broadly in line with Local Mate Competition 

(LMC) theory (Hamilton 1967, Burton-Chellew et al. 2008, West 2009); females laying eggs alone will 

produce very female-biased sex ratios to minimize competition amongst their sons for mates. As the 

number of laying females (foundresses) on a patch increases though, the level of LMC consequently 

declines and less female-biased sex ratios are produced. 

Recent theory, however, has demonstrated that maternally- and paternally- inherited alleles 

should have differing patterns of optimal sex allocation under LMC, with maternally-inherited alleles 

selected to produce more female-biased sex ratios (see Wild and West 2009 for a detailed explanation). 

Importantly, parent-of-origin information must be associated with each allele, for instance via epigenetic 

marks such as DNA methylation. We demonstrated that disrupting DNA methylation with 5-aza-dC did 

not ablate the facultative sex allocation response, but instead found that sex ratios were shifted in the 

direction of the paternal optimum (sex ratios became more less female-biased; Cook et al. 2015). This 

result was consistent with predictions from genomic conflict over sex allocation theory (Wild and West 

2009), suggesting that unmanipulated sex ratios are closer to the optimum for maternally-inherited alleles 

(Figure 1). Ellers et al. (2019), in their valuable comment on this study, raised the valid point that the 
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efficacy of 5-aza-dC in insect systems should be tested, and have suggested from their own 

experimentation that 5-aza-dC does not disrupt methylation in Nasonia vitripennis. To fully address their 

comments, we will begin by briefly reviewing the mechanism by which 5-aza-dC brings about the 

demethylation of DNA, before showing that assessing the role of 5-az-dC requires a whole genome 

approach. 

Originally synthesized in 1964 by Piskala and Sorm (and also known as 5-AZA-CdR, DAC, 

decitabine, ZdCyD and AzaD amongst other names), 5-aza-dC is an analog of the natural nucleoside 2′-

deoxycytidine (the carbon at the 5-position of the pyrimidine ring is replaced by a nitrogen) and was 

repurposed as a demethylating agent in 1980 (Jones and Taylor 1980). Much of the current attention 

surrounding 5-aza-dC is attributable to its success in the treatment of cancers, particularly acute myeloid 

leukaemia and myelodysplastic syndrome (Seelan 2018, Bryan et al. 2011, Momparler 2012). In mammals, 

DNA methylation acts as a transcriptional silencer and the clinical efficacy of 5-aza-dC results from its 

ability to reactivate tumor suppressor genes silenced by aberrant DNA methylation (Karahoca and 

Momparler 2013). 

 DNA methylation for the vast majority of cases occurs at the C5 position of the cytosine ring in 

CpG dinucleotides and is catalysed by DNA methyltransferase enzymes (Dnmts), of which 3 types are 

known in eukaryotes. Dnmt3 establishes DNA methylation patterns de novo, Dnmt1 maintains these 

patterns, and Dnmt2 is involved in tRNA methylation (Lyko 2018). DNA methyltransferase genes have 

been found across the Insecta, varying in presence/absence and copy number across species. The Nasonia 

vitripennis genome encodes a full DNA methylation toolkit including 3 copies of Dnmt1 (Werren et al. 

2010). DNA methylation itself is also present across the Insecta and is largely restricted to the transcribed 

regions of genes, in contrast to DNA methylation in mammals, which is found throughout the genome 

(Bewick et al. 2017, Glastad et al. 2011). In addition, genomic levels of DNA methylation in insects is much 

lower (0-14%; Bewick et al. 2017) as compared to 60-90% in mammals (Glastad et al. 2011). Regardless of 
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the level of DNA methylation present within a genome, or whether methylation signals transcriptional 

suppression (as in mammals) or acts to maintain transcript integrity and/or initiate/regulate splicing (as 

has been suggested for the insects: reviewed Glastad et al. 2011), the epigenetic modification itself is, to 

our knowledge, chemically identical. 

The introduction of 5-aza-dC to a cell results in a cascade of chemical reactions to cause an 

eventual reduction in DNA methylation. Upon its introduction to a cell 5-aza-dC is activated in situ via 

phosphorylation by deoxycytidine kinase, producing the biologically active triphosphate form of 5-aza-dC, 

5-aza-dCTP (Seelan et al. 2018). This active form is an excellent substrate for DNA polymerase and is 

readily incorporated into DNA during the S-phase of the cell cycle (Momparler 2005, Christman 2002, 

Christman et al. 1983, Bouchard and Momparler 1983). In the resulting daughter strands produced from 

a DNA replication event, hemi-methylated CpG sites are remethylated by Dnmt1 to fully restore the 

patterns of methylation present in the parent strand. However, where 5-aza-dCTP is incorporated into the 

daughter DNA strand, a covalent bond is formed between 5-aza-dCTP and a cysteine residue in the active 

site of Dnmt1. Since the carbon at the 5-position in dCTP is replaced with a nitrogen in 5-aza-dCTP, the 

methyl transfer reaction cannot take place and Dnmt1 becomes irreversibly bound to the DNA (Seelan et 

al. 2018, Creusot et al. 1982, Taylor and Jones 1982). Thus, treatment with 5-aza-dC results in a 

diminishing pool of Dnmt1, resulting in the passive loss of DNA methylation: this is the key effect of 5-aza-

dC. Importantly, there is evidence that the effects of 5-aza-dC are unlikely to be random across methylated 

CpGs in a given genome, as genomic context can influence the extent to which its action is effective. DNA 

sequence context plays a role, with demethylation of CpGs outside of CpG islands occurring at a higher 

frequency (Hagemann et al. 2011, Mossmann et al. 2010). The distribution of transcription factor binding 

sites is also influential with, for example, “demethylation-sensitive” genes enriched for Forkhead box (Fox) 

binding sites and “demethylation-resistant” genes enriched for basic Helix-Loop-Helix (bHLH) binding 

sites. Indeed, some genes are never demethylated and these are enriched for binding motifs not present 
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in demethylated genes. More broadly, 5-aza-dC activity appears to be targeted to transcriptionally active 

euchromatin in mammalian cells (Ramos et al. 2015). Given that the mode of action of 5-aza-dC is passive, 

these results indicate that specific loci remain demethylated after replication, whereas others at first 

appear “resistant” because they become preferentially remethylated by the remaining pool of DNA 

methyltransferase, leading to non-random patterns of demethylation (Hagemann et al. 2011).  

We agree with Ellers et al. (2019) that quantifying the demethylation efficacy of orally-

administered 5-aza-dC in N. vitripennis will permit a more complete understanding of the relationship 

between DNA methylation and the sex allocation phenotype in Nasonia (see Cook et al. 2015). More 

broadly, this will allow us to determine the extent to which genome-wide demethylation can be altered 

with 5-aza-dC in insect systems. In their analysis of the involvement of DNA methylation in the 

photoperiodic diapause response in Nasonia, Pegoraro et al. (2016) demonstrated that consumption of 

5-aza-dC led to demethylation at specified CpG sites on a small scale. Ellers et al. (2019) have examined 

the demethylating effect of 5-aza-dC at 155 CpG sites spread across 9 candidate genes in a slightly more 

comprehensive analysis. The authors found no significantly differentially methylated CpGs at any of the 

155 sites in association with 5-aza-dC exposure and conclude from this result that 5-aza-dC has no 

demethylating effect. To our knowledge, there is no evidence to suggest that the candidate genes chosen 

by Ellers et al. (2019) are more (or less) likely to be influenced by 5-aza-dC – i.e. to have genomic contexts 

which favor or disfavor its action. It would also be the first time that 5-aza-dC would have been shown to 

be inert in an organism in terms of influencing DNA methylation. As such, to get a more complete picture 

and to more accurately quantify the demethylation efficacy of 5-aza-dC, we suggest that a whole-genome 

approach is required. 

 In the first instance, it is important to note that genomic DNA methylation in Nasonia is relatively 

low, with estimates ranging from 0.63% to 1.6 % of all CpG sites methylated (Beeler et al. 2014, Wang et 

al. 2013). These estimates are comparable with other hymenopterans such as the honeybee, which has 
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approximately 0.7% methylated CpGs (Lyko et al. 2010). Therefore, a demethylation effect will be 

inherently difficult to detect just by looking across a small number of CpGs. Ellers et al. (2019) examined 

fragments of 9 genes to examine for evidence of demethylation due to 5-aza-dC treatment. Two genes 

were chosen because of a heavy methylation pattern (aa and rnapol) and five (acc, fabd, fasn1, fasn3, and 

mcd) are part of the fatty acid metabolic pathway, purported to be epigenetically regulated. Two 

additional genes were selected from the study of Pegoraro et al. (2016; perq and wdr36) based on the 

incorrect assumption that these genes are heavily methylated under the conditions tested by Ellers et al. 

In fact, perq and wdr36 display elevated methylation only under long photoperiods. Whilst these genes 

may be heavily methylated under certain conditions and/or epigenetically regulated, there is no 

confirmed evidence in insects that the genomic context of these particular genes predisposes them to 

demethylation by 5-aza-dC. As outlined above, demethylation via 5-aza-dC occurs due to a lack of 

functional Dnmt1 to restore methylation to CpG sites post-replication. Given the contextual nature of the 

action of 5-aza-dC, there is a risk of false negatives in terms of assessing its genome-wide action. 

Therefore, a lack of demethylation in the gene fragments examined by Ellers et al. (2019) cannot be used 

to conclude that 5-aza-dC does not affect DNA methylation across the genome more broadly. 

 

Quantifying the efficacy of 5-aza-dC 

Recently we carried out a genome-wide analysis of the demethylating capacity of 5-aza-dC in Nasonia 

vitripennis (Cook et al. 2018). Briefly, female wasps were exposed to one of three 5-aza-dC exposure 

regimes: 1) 20% sucrose for 24h, 2) 20% sucrose supplemented with 10 µM 5-aza-dC for 24h and 3) 20% 

sucrose supplemented with 10 µM 5-aza-dC for 48h. For each of these three regimes, females were 

harvested at 0, 24 and 48h post-exposure and, prior to DNA extraction, heads were excised from the 

bodies as a nod in the direction of a tissue-specific analysis. Whole-genome sequencing of bisulphite-
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treated DNA samples was carried out to determine the methylation status of individual CpG sites across 

the genome (proportion of methylated reads/total reads per CpG). Median coverage depth across the 

whole experiment was approximately 900X across 4 million CpGs after quality filtering.  

 To examine the data as a whole, we summed proportion of methylated reads for each CpG by 

gene, to broadly account for contextual similarity of CpGs within the same genic region. Data were 

available for over 11,000 genes comprising 85% of the protein-coding genes in the Nasonia vitripennis 

genome. Distinct clustering of samples was associated with 5-aza-dC exposure regime, clearly 

demonstrating that 5-aza-dC exposure has a quantifiable effect on DNA methylation status on a genome-

wide scale (Figure 2A). To explore DNA methylation changes at the gene level, we used a generalized linear 

modelling approach to determine which genes had significantly different proportions of methylation 

across the gene with respect to 5-aza-dC exposure regime, time-point after exposure, and tissue. To 

encapsulate these results, we found that approximately 8500 genes showed significantly altered 

methylation in response to treatment with 5-aza-dC. Interestingly, it appears that methylation in some 

genes initially increases in response to treatment with 5-aza-dC, an effect that is noticeable after 24h of 

exposure and then less prevalent after 48h of exposure (Figure 2B). In our data, two of the genes tested 

by Ellers et al., aa and rnapol, do not exhibit significant differential methylation in association with 

“feeding regime” in our experiments. However, four of their tested genes (perq, acc, fasn1, and fasn3) 

exhibit significantly altered methylation levels in association with an overall effect of “feeding regime”. 

Interestingly a decrease in methylation levels of these genes (relative to controls) is noted in wasps that 

were exposed to 5-aza-dC for a 48-hour period but not in wasps exposed to 5-aza-dC for a 24-hour period. 

This indicates that 5-aza-dC may take longer to exert its effects on these four genes. We also note that 

Ellers et al. have used newly emerged N. vitripennis females, whereas we used two-day old mated 

females; the effects of 5-aza-dC are known to differ with life-stage (see below). We are unable to draw 

comparisons between our analysis and that of Ellers et al. for their remaining three genes; for wdr36 and 
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fabd we do not find any CpGs in the Ensembl Nasonia vitripennis annotation (v 2.1), and mcd was excluded 

from our analysis as genes with zero coverage for all samples in any particular treatment group were 

removed prior to statistical analysis.  

Hyper-methylation has been observed previously in response to treatment with 5-aza-dC. Using 

“amplification of intermethylated sites” (AIMS) in honeybees, Amarasinghe et al. (2014) observed 

hypomethylation in 10 and hypermethylation in 9 of 62 loci in 5-aza-dC exposed individuals relative to 

controls. Also, it looks as though Ellers et al. (2019), using bisulphite amplicon sequencing, may have 

uncovered some CpGs that exhibit hypermethylation in 5-aza-dC treated samples, particularly in perq 

(Ellers et al. 2019: Figure 3). It is also noteworthy that two of the nine genes reported by Ellers et al. (2019; 

in their Table 3 and Figure 3) show marginally significant Treatment X Site interaction (fabd, p=0.055; 

fasn1, p=0.079). This reflects the fact that 5-aza-dC affects CpG sites in a context-specific manner (and 

possibly in different directions), an effect which is likely masked in their data by other sites that do not 

differ. The mechanism by which hypermethylation is brought about by 5-aza-dC is as yet unclear. Current 

understanding of the DNA methylation machinery suggests that there are a range of Dnmt-including 

complexes and that there is cross-talk between them in terms of their roles in de novo and maintenance 

methylation (Hervouet et al. 2018). It is possible that drug-induced demethylation in one region of the 

genome may have altered the regulation of the DNA methylation machinery itself, such that hyper-

methylation occurs. Nonetheless, it is clear that 5-aza-dC alters methylation patterns in the N. vitripennis 

genome and that this is associated with the allocation of offspring sex ratio (Cook et al. 2018, 2015). 

 

Possible confounding effects 

Ellers et al. (2019) raised the valid concern that the anti-metabolic activity of 5-aza-dC could result in a 

decline in the physical condition of Nasonia vitripennis females, indirectly producing observed phenotypic 
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differences through a mechanism independent of DNA demethylation. Whilst we have shown that 5-aza-

dC at the dosage used in our original experiment (Cook et al. 2015) produces altered methylation patterns 

(above; Cook et al. 2018), the possibility of confounding side-effects should not be ignored. We do note, 

however, that an effect of condition-dependent sex allocation has yet to be elucidated in Nasonia 

vitripennis, although pathological side-effects of any given chemical exposure cannot be discounted. We 

also note that sub-lethal exposure to neurotoxic neonicotinoid pesticides does also influence sex 

allocation, albeit in the opposite direction to that seen with 5-aza-dC; i.e. more female-biased sex ratios 

are seen than expected: Whitehorn et al. 2015, Cook et al. 2016. 

In humans, the major side effect of 5-aza-dC treatment is myelosuppression (Karahoca and 

Momparler 2013), a condition in which bone marrow activity is decreased resulting in fewer red and white 

blood cells and platelets. It is difficult of course to extrapolate to what the major side effect of the drug in 

insects might be, if any. In mammals, high-dose schedules result in an increased presence of DNA-Dnmt1 

adducts which impede DNA polymerase function, leading to growth arrest and apoptosis. However, low-

dose schedules are known to capitalize on the hypomethylating capability of the drug and minimize these 

additional cytotoxic effects (Jones and Taylor 1980, Jüttermann et al. 1994, Issa et al. 2004, Yang et al. 

2006). In trialling the cancer drug 5-aza-dC as a tool for molecular ecology and evolution studies, 

researchers have also used low doses to achieve DNA demethylation (Uçkan et al. 2007, Amarasinghe et 

al. 2014, Cook et al. 2015, Pegoraro et al. 2016, Sak 2017). In their 2014 study, examining DNA methylation 

differences between different reproductive worker castes in Bombus terrestris, Amarasinghe et al. used 

5-aza-dC (<10µM) on both callows (bees less than one day old) and adults (bees more than one day old). 

This is less than half of the lowest concentration (25µM) used to test for genotoxic effects of 5-aza-dC in 

Drosophila melanogaster at a range of concentrations (Cunha et al. 2002). Their experimentation showed 

no effect of 5-aza-dC on the adult bees in contrast to the callows, which developed larger ovaries, became 

more aggressive, and showed altered methylation patterns (at 19 of 62 tested loci) relative to controls of 
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the same age. The authors hypothesized that cells in adult bees may be largely post-mitotic thus 

decreasing the efficacy of 5-aza-dC in adults vs callows. Importantly, neither callows nor adults showed 

reduced activity or reproduction, indeed callows became more reproductive. If the effects of 5-aza-dC 

were merely toxic it is reasonable to assume that reduced fitness would be observed in both age groups 

even if altered methylation patterns occurred only in callow bees. 

 Ellers et al. quantified the lipid reserves of both control wasps and those treated with 5-aza-dC as 

a general measure of body condition. The authors showed that lipid reserves were significantly lower as 

a result of 5-aza-dC treatment and that reserves in both treatment and control groups declined over the 

duration of the experiment. The authors conclude that these differences in lipid reserves can only be 

attributed to a detrimental effect of 5-aza-dC on wasp health given that they observed no alterations in 

DNA methylation in a total of 6 genes involved in fatty acid metabolism. Given demonstrations that 5-aza-

dC does produce altered methylation patterns (Amarasinghe et al. 2014, Pegoraro et al. 2016, Cook et al. 

2018) it is possible that hypo- or hyper-methylation in genes untested in their experiment could have 

induced a decrease in lipid reserves; the six genes tested cannot be regarded as representative of the 

entire fatty acid metabolism pathway. Interestingly, Amarasinghe et al. (2014) noted increased 

reproductive capability as a result of 5-aza-dC so it is possible that the observed reduction in lipid reserves 

is due to the diversion of resources elsewhere. It is also unclear whether the decline in lipid reserves was 

sufficient to produce a true reduction in fitness in terms of offspring production or longevity as this 

information is not available. 

 

5-aza-dC and evolutionary ecology 

Research has determined that 5-aza-dC acts to alter methylation patterns in insects and has assisted 

evolutionary biologists in elucidating a role for epigenetics in a range of phenotypic traits, including sex 
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allocation, worker reproduction, and diapause (Cook et al. 2018, Pegoraro et al. 2016, Amarasinghe et al. 

2014). However, a greater understanding of how 5-aza-dC brings about altered methylation could improve 

the precision of its use in evolutionary ecology studies. As a starting point, careful selection of the life-

stage of experimental individuals can prove important. 5-aza-dC had no demonstrable effect on DNA 

methylation when administered to bees more than one day old but resulted in significant hypo- and 

hyper-methylation in younger bees (Amarasinghe et al. 2014). This may be due to the passive mode of 

action of 5-aza-dC and a higher percentage of cells in adult bees being post-mitotic. This effect is also likely 

to be dose-dependent and species-specific. Therefore, if no effect of 5-aza-dC is initially observed in a 

given species, it is worthwhile investigating the efficacy at different life-stages. 

Upon introduction to the cell, 5-aza-dC is converted to 5-aza-dCTP but, in addition, 5-aza-dC is 

also subject to deamination resulting in an inactive form of the drug being produced alongside the active 

form. This is due to very high levels of cytidine deaminase in the human liver and spleen (Momparler et 

al. 1985, Chabot et al. 1983). Ellers et al. (2019) called attention to the fact that cytidine deaminase is also 

present in insects. Indeed, there is a “cytidine deaminase-like” gene in the Nasonia vitripennis genome 

(NCBI: LOC107980937) which may act to degrade some of the introduced 5-aza-dC to its inactive form. To 

counteract this effect, the use of an inhibitor of cytidine deaminase, such as tetrahydrouridine or 

zebularine has been suggested (Eliopoulos 1998). When administered in combination with 5-aza-dC in 

preclinical trials, the cytidine deaminase inhibitor zebularine was shown to increase the clinical efficacy of 

5-aza-dC in cell lines by reducing the degradation of 5-aza-dC (Lemaire et al. 2009). Pilot experiments to 

determine whether the use of a cytidine deaminase inhibitor increases the efficacy of 5-aza-dC in insect 

study systems would be beneficial. 
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Concluding remarks 

Here, we have discussed the mechanisms by which the demethylating agent 5-aza-dC exerts its effect and 

illustrated that a whole-genome approach is required to determine the efficacy of this agent in Nasonia 

vitripennis. Having used drug-induced demethylation to validate a role for epigenetic regulation in sex 

allocation (Cook et al. 2015, 2018), the desirable next step would be to ascertain which CpGs are involved 

in the expression of the sex allocation phenotype; i.e. the causal CpGs. As outlined above, research has 

shown that drug-induced demethylation is non-random and reproducible. Experimentation is warranted 

to determine the reproducibility and the genomic context underlying the methylation patterns produced 

by 5-aza-dC in N. vitripennis and other insect systems.  
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Figure Legends 

Figure 1. Reproduced from Cook et al. 2015. A, The optimal sex ratios under Local Mate Competition 

(LMC) for maternally-inherited alleles (dark gray) and paternally-inherited alleles (light gray) for a 

haplodiploid species with female control of sex allocation. Shown in black is the LMC prediction with no 

genomic conflict. Equations shown in Wild and West 2009. B, Females treated with 5-aza-dC (light gray 

bars) produce slightly less female-biased sex ratios than controls (dark gray bars). Both treated and 

untreated females vary sex ratio with foundress number as predicted. Data are presented as residuals 

after controlling for experimental replicate. Error bars are binomial confidence intervals. 

 

Figure 2. Based on data from Cook et al. 2018. A PCA of the proportion of methylated reads per gene 

(n=11,582), showing the effects of exposure regime and tissue type. Samples cluster by exposure regime 

with no obvious effect of tissue type. B Log odds of methylation for each of the two 5-aza-dC exposure 

regimes (24-hour or 48-hour exposure period) vs the sucrose control treatment group (n = 8,556 genes). 
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