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Abstract

Topology has enjoyed great success as a paradigm for the classification and un-

derstanding of condensed matter outside the framework of spontaneously broken

symmetry. This success is all the more remarkable considering that the impact of

interactions, in particular the Coulomb interaction between electrons, has been ne-

glected in most analyses. Experience in topologically trivial systems demonstrates

that, beyond simply leading to quantitative modifications, interactions can give rise

to qualitatively new physics in condensed matter. This thesis explores the interplay

between interaction effects and topologically non-trivial states and demonstrates

how this interplay can lead to novel physics which is fundamentally contingent upon

both a system’s topological character and interactions.

The prototypical example of a topological state in condensed matter is the Majorana

bound state (MBS). In the work presented here, MBSs are significant because they

lead to non-local fermionic states in superconductors that are bound to near-zero

energy, inside the superconducting gap. The new physics arising from the syn-

ergy of MBSs and electron-electron interactions is illustrated by two examples. A

Majorana-based analogue of the Kondo system is found to exhibit signs of a de-

localised many-body state consisting of electrons from both metallic leads and a

superconducting condensate. The presence of MBSs in a current driven capacitive

Josephson junction enables excitation of the system to a non-equilibrium state and

profoundly affects the overall charge dynamics of the junction.

This thesis offers compelling evidence for the importance of interactions in the con-

text of topologically non-trivial systems, not only with regard to determining the

topology of the system per se, but also as the means by which new physics is realised.

4



Acknowledgements

I must first thank Bernd for all the support and advice he has given me since the

start of my time at St Andrews. His vision provided the initial impetus for my

research and he has always been pleased to offer his input when it was required,

whilst still allowing me to make the work my own. I am grateful to him for his

patience with my shortcomings and enthusiasm for my successes. It was my honour

to be his first PhD student (to start, if not to finish!) and I’m sure there will be

many more.

Although too numerous to mention by name, I am also indebted to my friends

and colleagues, both in St Andrews and further afield, for their camaraderie and

insight, which made no small contribution to the eventual completion of this thesis.

In particular, a dishonourable mention goes to my officemates in Room 120, without

whom I would probably have had a more productive, but certainly less enjoyable,

start to my PhD studies.

Science is a collaborative, international, effort and so I am pleased to acknowledge

the hospitality of the physics department at Universidad Autónoma de Madrid,

especially Alfredo Levy Yeyati, who hosted me during the sultry summer of 2017.

Beyond researchers themselves, scientific progress is contingent upon adminis-

trative and material backing from the wider community. For the former, I thank

all the support staff in the St Andrews physics department, particularly those in

the CM-CDT office who never failed to impress with their efficiency. For the latter,

I am grateful to the British taxpayers whose insatiable appetite for knowledge led

them to fund this work via EPSRC Grant No. EP/I007002/1.

I will finish by thanking my parents, without whom I would not be in this position

today. This is true not only in the obvious material sense, but also because their

help and encouragement over the course of my PhD studies, as well as the preceding

twenty-two years, has had a profound influence on who I have become.

5



Contents

1 Introduction 8

2 Literature Review 14

2.1 Majorana Bound States . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Properties of Majoranas . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 The Creation of Majorana Bound States . . . . . . . . . . . . 16

2.1.3 The Observation of Majorana Bound States . . . . . . . . . . 20

2.1.4 Beyond Majoranas: Parafermions . . . . . . . . . . . . . . . . 23

2.2 Kondo Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 The Kondo Effect . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 The Anderson-Kondo Model . . . . . . . . . . . . . . . . . . . 25

2.2.3 Poor Man’s Scaling . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Mesoscopic Josephson Junctions . . . . . . . . . . . . . . . . . . . . . 30

3 Kondorana 36

3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Full Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Schrieffer-Wolff Transformation . . . . . . . . . . . . . . . . . 41

3.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Conductance Signatures . . . . . . . . . . . . . . . . . . . . . 51

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Non-Equilibrium Charge Dynamics in Majorana-Josephson Devices 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Majorana-Josephson Hamiltonian . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Quasicharge and Band Structure . . . . . . . . . . . . . . . . 56

4.2.2 Slow Quasicharge Evolution . . . . . . . . . . . . . . . . . . . 58

4.2.3 Majorana-Mediated Single Particle Tunnelling . . . . . . . . . 62

6



4.3 Device Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Time Evolution of Quasicharge . . . . . . . . . . . . . . . . . 69

4.3.2 Bias Voltage Dependence . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Transverse Current Switching . . . . . . . . . . . . . . . . . . 73

4.3.4 Time Dependent Driving Currents . . . . . . . . . . . . . . . 75

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Summary and Outlook 85

Bibliography 90

7



Chapter 1

Introduction

Perhaps the greatest achievement of Condensed Matter Physics in the Twentieth

Century has been the classification of matter according to the principle of sponta-

neous symmetry breaking [1–3], which has proved to be a widely applicable paradigm

that explains the existence of many different phenomena. Despite this success, it

has long been apparent that symmetry alone does not constitute a complete descrip-

tion of the phases of condensed matter and that there exists physics beyond this

scheme. Early indications that this might be the case were studies of the A-phase of
3He [4–6] and the theoretical discovery of the Berezinskii–Kosterlitz–Thouless tran-

sition in the 1970s [7, 8], which were explained in terms of not only symmetry, but

also topology. The experimental discovery, and theoretical explanation, of the Quan-

tum Hall Effect in the 1980s [9–14] further emphasised the role that topology plays

in determining the properties of condensed matter systems, but the rather special

nature of these cases caused many to feel that, whilst important, topology was not

of general significance in condensed matter. This attitude has had to be reconsid-

ered with the growth in the study of topologically non-trivial systems over the last

decade, as an increasingly wide variety of systems have been found to exhibit topo-

logical character and the theoretical understanding of topology in condensed matter

has also improved significantly. The emergence of topological insulators [15–17],

topological superconductors [18–21], Weyl semimetals [22–24] and other topologi-

cally non-trivial systems has been a source of great interest from both a physics

and engineering perspective [25,26]. By employing the idea of topology, it becomes

possible to describe a wide variety of complex many-body quantum systems in a

unified and systematic manner, thereby allowing us to make predictions about their

physical properties on the basis of very general considerations.
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A particularly prominent manifestation of topology in condensed matter systems

is the Majorana bound state (MBS), or Majorana zero mode, as it is also known

[27]. The MBS is based on the idea of a Majorana fermion, first proposed by

Ettore Majorana in 1937 as a neutral solution to the Dirac equation [28, 29]. The

defining feature of the Majorana fermion is often taken to be the Hermiticity of its

corresponding operator [30],

γ (E, p) = γ† (−E,−p) , (1.1)

where E and p are the energy and momentum of the Majorana fermion, respectively.

This relation demonstrates that the Majorana fermion is its own antiparticle, from

which it immediately follows that it has no charge. Furthermore, Eq. (1.1) leads to

the idea that a Dirac fermion, which corresponds to an electron or hole in the context

of condensed matter, may be represented in terms of two Majorana fermions, with

perhaps the most natural choice of normalization being,

d† =
1√
2

(γ1 − iγ2) , d =
1√
2

(γ1 + iγ2) . (1.2)

Note that, despite the charge neutrality of γ, a linear superposition of Majorana

fermions can still have a charge and is therefore a suitable way in which to represent

electrons and holes. One can, in principle, always choose to represent Dirac fermions

in this manner, but under most circumstances such a representation is rather un-

helpful as it does not reflect any underlying physical reality. However, as we shall

see below, in some condensed matter systems, a description in terms of Majorana

fermions has proven to be useful.

It is important to emphasise that the above discussion is concerned with elemen-

tary Majorana fermions, but the remainder of this thesis will consider Majorana

fermions in condensed matter. Whilst superficially similar, in so much as Eq. (1.1)

and Eq. (1.2) still apply, condensed matter Majorana fermions are a fundamentally

many-body phenomenon, arising from the interplay of a number of electrons. A

description of condensed matter systems in terms of Majorana fermions is useful

if conditions are such that, with reference to Eq. (1.2), γ1,2 are isolated and γ1 is

spatially separated from γ2. It then follows from Eq. (1.2) that, taken together, the

two Majorana fermions make up a single fermion state, that is delocalised over some

finite region of space. If we now consider the consequences of imposing particle-hole

symmetry on the system hosting the Majorana fermions, we see that, since γ1,2 have

an equal weighting of particle and hole components, they must be pinned to zero

energy, i.e. the Fermi energy of the system. We refer to this special case of a Ma-

jorana fermion in condensed matter as a Majorana bound state, or Majorana zero
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mode. It is these MBSs that have generated so much interest over the last decade,

in large part due to their potential utility in the field of quantum computing [31].

This utility is a result of two properties of the MBS. Firstly, the delocalised nature

of the electronic state corresponding to the MBSs means that computing operations

which utilise the MBSs are resistant to local perturbations of electronic states by

the environment [32]. Secondly, whilst we have not shown it here, it turns out that

the MBSs obey non-Abelian exchange statistics [33], which increases the number of

useful operations that can be carried out by exchanging MBSs [34], although the

set of operations accessible by MBS exchange alone is not sufficient for universal

computation and so must be supplemented by other operations [35]. Whilst the po-

tential of MBSs in quantum computing applications is noteworthy, this is far from

the only appeal that they hold for physicists. As we shall see over the course of this

thesis, MBSs also offer the possibility of realising novel physics in condensed matter

systems. The two essential properties of the MBSs described above, namely that

they are pinned to zero energy and, when considered in pairs, constitute spatially

delocalised single particle states, can interface with other phenomena to give rise to

a variety of exotic effects.

There are several straightforward experimental signatures associated directly

with MBSs themselves in condensed matter systems, most notably a zero bias peak

in the conductance properties of these systems [36]. However, to explore how the

presence of MBSs might give rise to qualitatively new physics, we shall go beyond

the non-interacting paradigm that has been the basis for much of the work on MBSs

up to now, and instead consider what impact interactions, in particular the Coulomb

interaction between electrons, might have on the behaviour of condensed matter sys-

tems that host MBSs. An obvious source of inspiration for where to start searching

for such new physics is provided by the interaction effects that were first investigated

in topologically trivial condensed matter over fifty years ago and have proved to be

a fruitful object of study ever since. It seems reasonable to believe that there will

be a strong interplay between these interaction effects and MBSs since the MBSs

are, ultimately, comprised of many electrons.

A good example of interactions qualitatively changing the behaviour of a system is

the Anderson Impurity model [37] and associated Kondo effect [38] which, whilst

in many ways conceptually simple, has played an important role in elucidating the

role of interactions in condensed matter and the theoretical techniques required to

understand the phenomena that they give rise to [39]. In general, the Kondo effect

occurs as a result of a single, localised, spin-degenerate, fermionic state with a charg-
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ing energy, interacting with a continuum of spinful fermions. The original example

of such a scenario was a magnetic impurity in a metal [40], but since then much

of the work around Kondo physics has considered a quantum dot in a mesoscopic

system [41, 42], which is effectively equivalent to a magnetic impurity but is much

more amenable to controlled experiment. This paradigm can be straightforwardly

extended to incorporate MBSs. A pair of MBSs comprise a single fermionic state

which is similar to the impurity state in a Kondo system, albeit not spin-degenerate

and spatially delocalised. It therefore seems plausible, if not necessarily obvious,

that a pair of MBSs, in an environment with a significant charging energy and able

to couple to a fermionic continuum, will give rise to an effect that is somewhat

analogous to the Kondo effect. We shall explore the nature of this effect and how

it comes about in greater detail in Chapter 3, but a brief summary of the salient

points is as follows. By carefully taking into account the tunnelling properties of

MBSs, it is possible to write down the Hamiltonian for a one dimensional topolog-

ical superconductor (TSC) hosting MBSs at its ends, which are in turn coupled to

two separate metallic leads. From this Hamiltonian it is apparent that the system

exhibits two distinct tunnelling processes, both of which are mediated by the MBSs,

but only one of which entails a change in the number of Cooper pairs in the super-

conducting condensate. If a charging energy of the form HC = EC (n− ng)2 is also

introduced, where n is the operator for the number of electrons on the TSC and ng

is a number corresponding to a gating voltage, then the effect is to split the Hilbert

space of the system into sectors, separated by an energy of order EC . Transitions

between and within these energy sectors are facilitated by tunnelling between the

metallic leads and TSC. This model is the Majorana analogue to the Anderson Im-

purity model and may be dealt with in a similar fashion. In particular, by applying

a Schrieffer-Wolff transformation [43] the high energy sector can be reduced to an

effective interaction. The resulting effective Hamiltonian is somewhat reminiscent of

the Kondo Hamiltonian but with three significant differences. Firstly, the role of spin

degeneracy in the Kondo model is taken over by “lead degeneracy” in the Majorana

case, i.e. the fact that the isolated fermionic state is coupled to two different reser-

voirs, thanks to its delocalised nature, results in a degeneracy that is similar to the

spin degeneracy in the Kondo case. Secondly, in contrast to the Kondo model, the

effective Hamiltonian in the Majorana case cannot be written as a pure spin-spin

interaction. Thirdly, and of crucial importance for the system’s behaviour under

renormalization, the non-local nature of the single particle state associated with the

MBSs results in the spin-spin part of the effective Hamiltonian having “cross” terms

of the form sySz, where s and S are pseudospins corresponding to the leads and

11



MBSs, respectively. The combined effect of these three differences is to cause the

Majorana version of the Anderson impurity model to behave very differently under

renormalization and, instead of going to a strong or weak coupling limit, tend to an

intermediate exchange coupling which is observable in the conductance properties

of the system. The key point is that, whilst the system appears very similar to the

scenarios which give rise to the Kondo effect, the unusual properties of the MBSs

result in qualitatively different physics. Since this new physics has Kondo aspects

but is dependent upon the Majorana bound states, it might concisely be referred to

as Kondorana physics.

A further scenario which makes clear the importance of interactions in condensed

matter, but has received relatively little attention compared to the Kondo effect

is the case of a current biased capacitive Josephson junction. This system, which

was first studied theoretically by Likharev and Zorin in 1985 [44], is interesting

because interactions lead to the possibility of observing quantum phase coherence

on a macroscopic scale. In contrast to the case of Kondo physics, MBSs may be

added to this system, rather than substituted for one of its elements, to produce

novel physics. In the case of the Josephson junction, the MBSs take on a somewhat

more specialised role than in the previously described Kondo analogue, with their

importance coming from the fact that they constitute a fermionic state that both

exists within the superconducting gap, and is spatially delocalised. We shall see

in Chapter 4 exactly what impact the presence of MBSs in this system has on its

charge dynamics, but the essentials of the discussion are as follows. The capacitive

Josephson junction exhibits charge dynamics which are 2e periodic, corresponding

to tunnelling of Cooper pairs across the junction. The MBSs are, in part, significant

because they enable single electrons to tunnel into and out of the junction, thereby

permitting perturbations of the system that are non-periodic and which can there-

fore induce excitation or relaxation. The delocalised nature of the fermionic state

associated with the MBSs is also important, in that it allows a current to be estab-

lished transverse to the bias current across the Josephson junction. Taken together,

these two attributes of the MBSs have the potential to greatly change the charge

dynamics of the Majorana-Josephson device, and the experimental signatures asso-

ciated with them, compared to a topologically trivial capacitive Josephson junction.

The Majorana-Josephson device exhibits several different regimes, in both the static

and time-varying bias current driving modes, which depend upon various system pa-

rameters and are a result of the presence of the MBSs in the system.
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The work on Kondorana physics described in Chapter 3 has been published in

Ref. [45], and the study of the Majorana-Josephson device described in Chapter

4 has been published in Ref. [46].

The overall message that the reader should take from this thesis is that topologically

non-trivial systems, as well as being of great interest in their own right, can also

play host to a variety of exciting new physics. This claim is substantiated by the two

examples described above, which feature the interplay of Majorana bound states and

interactions, but these cases are not unique and it seems likely that a wide variety

of other phenomena will emerge in the future.
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Chapter 2

Literature Review

The description and understanding of condensed matter systems in terms of topol-

ogy is not new, but in the past decade this field has witnessed rapid progress with

respect to both the diversity of systems recognised to be topologically non-trivial,

and also our understanding of the precise role that topology plays and how best to

study it. Nevertheless, much work still remains to be done, in particular in rela-

tion to how topological systems are influenced by interaction effects and many-body

physics. Whilst a fair amount of research has been carried out to determine how

interactions can impact the topological classification of a system [47–51], there has

been comparatively little interest in the novel physics that might arise from the

interplay of topological states and many-body physics and it is this subject that

will be the focus of this thesis. Of the many different manifestations of non-trivial

topology, perhaps one of the most promising candidates for realising new physics is

the Majorana bound state, on account of the fact that it is amenable to a simple

theoretical treatment, can be achieved relatively easily in experiments, and yet still

embodies distinctly topological characteristics. Before we embark upon an investi-

gation of this topic, it is worth briefly discussing the nature and origin of Majoranas,

as well as providing a more detailed description of the topologically trivial many-

body effects that we will be taking as the basis for new Majorana-mediated physics.

In particular, we consider Kondo physics and macroscopic quantum phenomena in

capacitive Josephson junctions.

2.1 Majorana Bound States

Over eighty years ago it was shown that the Dirac equation admits real solutions

consisting of two particles, each of which is its own antiparticle [28, 29]. There has

long been interest in these solutions, so-called Majorana fermions, as candidates for

14



the neutrino, but to date there remains no confirmed case of a fundamental particle

which is a Majorana fermion. In condensed matter, essentially the only fundamental

particles are electrons, but from this homogeneous starting point a remarkably rich

variety of phenomena can emerge. It is the case of Majorana fermions as emergent

quasiparticles, based on many-body electron correlations, that we study in this

thesis.

2.1.1 Properties of Majoranas

The Majorana fermion is, in essence, a very simple state, defined by the condition,

γ = γ†, (2.1)

where, for clarity, we suppress energy and momentum labels which do not influence

our discussion. As their name suggests, Majorana fermions also obey the fermionic

commutation relation,

γnγm + γmγn = δn,m. (2.2)

It follows that Majorana fermions may be written as a superposition of electron and

hole operators,

γ1 =
1√
2

(
d+ d†

)
, γ2 =

i√
2

(
d† − d

)
, (2.3)

which obey the standard commutation relation
{
d, d†

}
= 1. Any system of electrons

and holes may be written in terms of Majorana fermions, but Eq. (2.3) suggests

that, for the γ operators to have any physical meaning, the system must be capable

of supporting a superposition of particles and holes. The most prominent example

of such a system is a superconductor, in which Bogoliubov quasiparticles bear a

striking resemblance to the Majorana fermions of Eq. (2.3). Equivalently, we can

see that γ1,2 are only meaningful operators when acting on a state that consists

of a superposition of different particle number-states, which again is the case for a

superconductor in the Bardeen-Cooper-Schrieffer (BCS) model. This insight offers

our first clue as to where we might hope to find Majorana fermions in condensed

matter. Unfortunately, the Bogoliubov quasiparticles of the BCS model are a result

of s-wave paired electrons with opposite spins, such that their operators are of the

form [52],

b = ud†↑ + vd↓, (2.4)

and so we immediately see that b 6= b† due to the presence of spin. Hence, we

conclude that Majorana fermions will be observable only in a superconductor that

lacks spin-degeneracy which, by the Pauli exclusion principle, must therefore have

an odd orbital pairing between electrons [4], of which the most prominent example
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is p-wave pairing. Some of these p-wave superconductors are known to have a non-

trivial topology and therefore will exhibit topological defects and boundary states

corresponding to the topology of the bulk. If a Majorana fermion is bound to one

of these defects, and by extension zero energy, then it is referred to as a Majorana

bound state or Majorana zero mode. It is these MBSs that have excited so much

interest, in large part due to their associated non-Abelian exchange statistics, which

are attributed to the Ising anyon that results from binding a Majorana fermion to a

topological defect [25]. Although we do not exploit these exchange statistics through

braiding in this thesis, we shall see that the non-locality of the electron and hole

states associated with the MBS can have profound consequences.

Having established the essential conditions for a Majorana bound state to arise,

we now turn to how such conditions can be achieved in condensed matter systems.

2.1.2 The Creation of Majorana Bound States

Many systems have been proposed as theatres for the observation of MBSs. The

reason for this diversity is that the conditions required to create MBSs are, in princi-

ple, rather generic, which is perhaps unsurprising given their simplicity. The above

comments on their nature make clear that superconducting pairing is intimately

associated with MBSs. In addition, it is expedient to remove degeneracies by break-

ing both spin and time-reversal symmetries. We anticipate that a pair, or more

generally even number, of MBSs bound to topological defects will be present when

these conditions are satisfied. In terms of topology, the MBSs may be thought of as

the boundary states corresponding to the topologically non-trivial bulk of a system

with Altland-Zirnbauer symmetry class D [53], but this idea is inessential to our

discussion. Below, we provide a brief outline of two of the systems in which MBSs

are thought to be present.

P-Wave Superconductors and Superfluids The earliest proposals for the cre-

ation of MBSs suggested using the bound states associated with vortices in super-

conductors or superfluids. For s-wave superconductors, it has long been known that

these bound states are fermionic and have an energy given by [54],

En =

(
n+

1

2

)
~ω, n = 0, 1, 2, ..., (2.5)

for which the level spacing is small compared to the superconducting gap, ∆, since

~ω ∼ ∆2/EF , with EF the Fermi energy. However, extending the microscopic theory

of Kopnin and Salomaa [55], Volovik showed [56] that the energy of the vortex bound
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states in a p-wave superconductor or superfluid is,

En = n~ω. (2.6)

From our previous discussion, we identify the n = 0 bound state of the vortex as a

MBS. These states were explicitly found to be non-Abelian by Read and Green [57]

and Ivanov [33]. Unfortunately, p-wave superconductors and superfluids are, to

say the least, something of a rarity with 3He-A being the only confirmed example,

although Sr2RuO4 [58] and UPt3 [59] are also strong, if controversial [60], candidates.

Even in these systems, the superconductivity is easily destroyed by disorder. For

these reasons, it seems unlikely that observing MBSs in p-wave superconductors or

superfluids will be possible in practice and so we consider alternative experimental

implementations.

Quantum Wires The quantum wire is a well known geometry amongst semicon-

ductor physicists and offers a real world realisation of a one dimensional system. To

understand in detail how such a system might host MBSs, we begin by looking at a

toy model suggested by Alexei Kitaev in 2001 [18] and shown in Fig. 2.1.

Consider spinless fermions, on a one dimensional lattice with N sites, having the

Hamiltonian,

H =
∑
j

{
−t
(
c†jcj+1 + h.c.

)
− µ

(
c†jcj −

1

2

)
+ ∆

(
c†jc
†
j+1 + h.c.

)}
, (2.7)

where j is an index running over the lattice sites, cj are spinless fermion operators, t

is the hopping integral, µ is the chemical potential and ∆ is the superconducting gap.

Notice that this situation already has the ingredients previously determined to be

necessary for MBSs. Namely, superconductivity and manifest lack of spin degener-

acy, since the fermions are spinless. Decomposing the ordinary fermionic operators

in to pairs of Majorana operators, γ1 and γ2, as in Eq. (1.2), the Hamiltonian

becomes,

H = i
∑
j

{−µγj,1γj,2 + (∆ + t) γj,2γj+1,1 + (∆− t) γj,1γj+1,2} . (2.8)

It is instructive to consider two sets of parameters. Firstly, the case t = ∆ = 0

which results in a Hamiltonian,

H = −µ
∑
j

(
c†jcj −

1

2

)
. (2.9)

We see that all sites are occupied (empty) for µ > 0 (µ < 0) and this is clearly

a topologically trivial phase. On the other hand, for the case µ = 0, t = ∆, the
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Figure 2.1: Cartoon of the Kitaev chain, with two ends and one intermediate site

shown. Large ellipses represent fermionic states each of which consists of two Majorana

states represented by circles. With reference to Eq. (2.8), dashed lines correspond to the

chemical potential, µ, whilst wavy and curly curves represent the couplings (∆− t) and

(∆ + t), respectively. For the case ∆ = t and µ = 0, the two Majorana states in green are

unpaired, and together comprise a zero-energy fermionic state.

Hamiltonian becomes,

H = 2it
N−1∑
j=1

γj,2γj+1,1. (2.10)

We now pair up the Majorana fermion operators on adjacent sites to write this

Hamiltonian in terms of the auxiliary fermion operator, dj = (γj,2 + iγj+1,1) which

gives the result,

H = t
N−1∑
j=1

(
d†jdj − 2

)
. (2.11)

Remarkably, (2.10) does not include the two Majorana fermions γ1,1 and γN,2 and

similarly (2.11) does not include the ordinary fermion dN which is formed from

them. Thus, the “Kitaev Chain” hosts two Majorana fermions with zero energy,

i.e. Majorana bound states. Furthermore, we see that the MBSs, γ1,1 and γN,2, are

located on opposite ends of the wire, meaning that their corresponding auxiliary

fermion dN is highly non-local in nature. In terms of topology, we can think of

the system undergoing a topological phase transition from the trivial state with

Hamiltonian (2.9) to the non-trivial state with Hamiltonian (2.10), as the system

parameters are tuned from the point t = ∆ = 0 to the point µ = 0, t = ∆. The

emergence of the MBSs at the boundary of the system as the topology of the bulk

changes is a clear example of the so-called bulk-boundary correspondence. It is a

historical curiosity that an essentially identical result, including the existence of zero

energy modes, was found forty years earlier by Elliott Lieb and co-workers in the
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context of a one dimensional XY spin chain [61].

The above model is appealingly simple, but its relevance to real systems is rather

dubious. Therefore, to understand how MBSs might be created in practice, we

change tack slightly and turn to a more heuristic argument.

In 1939, William Shockley’s theoretical study of electrons in finite crystals, revealed

the existence of distinct surface states [62]. These Shockley states exist at energies

“forbidden” by the bare band structure, and were shown to arise due to a crossing

of energy bands, or what one might think of as a closing and reopening of the band

gap. In reality, these states have proven very difficult to observe since they can

easily be pushed out of the band gap by local perturbations. However, if Shockley

states were to occur in a superconductor at E = 0, then particle-hole symmetry

would constrain them to E = 0 in spite of perturbations. We conclude, admittedly

without giving a rigorous justification here, that these superconducting Shockley

states are none other than Majorana bound states. This connection, which offers a

pleasingly intuitive way of thinking about MBSs, was first pointed out by Wimmer

et al. in 2010 [63].

The question which we are now inclined to ask is how one might achieve the closing

and reopening of the superconducting energy gap. The first process is straightfor-

ward: a sufficiently large applied magnetic field will cause the superconducting gap

to close. The reopening of the gap is more difficult, but one possible method of

achieving this is through a Rashba spin-orbit coupling which cancels out the applied

magnetic field. Two studies in particular [64, 65] demonstrated the specifics of how

such a scheme might be realised in a quantum wire. We will now briefly discuss the

key points of their arguments.

We begin by considering a one dimensional semiconductor, with chemical poten-

tial µ(y), aligned along the y axis, with a strong spin-orbit coupling of magnitude u

in the z direction. Examples of suitable semiconductors include InAs and InSb. Let

this be in proximity to an s-wave superconductor with order parameter ∆, such that

superconductivity is induced in the semiconductor. Imagine, also, that a magnetic

field B is applied in the x direction. The corresponding Hamiltonian is [64,65],

H =

∫
Ψ†(y)HΨ(y)dy, Ψ† =

(
ψ†↑, ψ

†
↓, ψ↓,−ψ↑

)
H =

(
p2

2m
− µ(y)

)
τz + puσzτz +B(y)σx + ∆eff(y)τx,

(2.12)

where ψ† are electron creation operators, ∆eff is the effective superconducting gap,

σi are the Pauli Matrices in spin space and τi are the Pauli Matrices in Nambu
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space. Assuming spatially constant parameters, we can simply square H to find the

energies of the eigenstates,

E2
± = B2 + ∆2 + ξ2

p + (pu)2 ±
√
B2∆2 +B2ξ2

p + ξ2
p(pu)2, (2.13)

where we have defined ξp = p2/(2m) − µ. Considering E− at the p = 0 point, we

see that the energy gap is given by,

Eg = 2
∣∣∣B −√∆2 + µ2

∣∣∣ (2.14)

The gap can therefore be closed and reopened by varying the parameters B, ∆ and

µ. Of these three, µ will most likely be the easiest to control on short length scales

in experiments, since it can be manipulated directly using gate voltages. We note in

passing that, whilst Eq. (2.14) contains no reference to u, the spin-orbit coupling is

still essential to observe the topological transition described here. Having established

what Majorana bound states are, and how they might be generated, we next conduct

a brief survey of experimental efforts to probe their existence.

2.1.3 The Observation of Majorana Bound States

The quantum wire scheme is significantly more experimentally accessible than other

proposals, and so thus far has attracted by far the most experimental interest. In

all cases, experiments have relied on transport measurements to probe the existence

of the MBSs. If the superconducting gap is sufficiently large, then tunnelling into

the bulk states of the wire is greatly inhibited. But, if MBSs are present within the

gap, then these allow tunnelling by contributing a term of the form [36,66],

HT =
∑
k,σ,j

tj,k,σcj,k,σγj + h.c., (2.15)

to the system Hamiltonian, where tj,k,σ is a tunnelling coefficient, j is the lead in-

dex and cj,k,σ are lead electron annihilation operators. A detailed analysis shows

that this results in a conductance of GMBS = 2e2

h
[36]. Although there will also be

a contribution due to Andreev reflection, this is proportional to (e2/h)
(

Γ
∆

)2
[67],

where Γ is the tunnelling broadening and so in the large ∆ limit the MBS mediated

conductance dominates. On the basis of this result, the experimental signature of

the MBS was thought to be a so-called zero bias peak in the conductance of the

system. There was therefore great interest when this was reported by several groups

studying semiconductor nanowires in 2012 and 2013 [21,68–70], with representative

results shown in Fig. 2.2. In the interests of completeness, we note that other

experiments have used a chain of Fe atoms deposited on the surface of a Pb super-

conductor [71–73]. There is evidence [74] that Pb has significant intrinsic spin-orbit
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Figure 2.2: Typical zero bias conduction peaks observed in measurements on topologi-

cally superconducting quantum wires. Traces are offset for clarity. Adapted from Ref. [68]

(left) and [21] (right), reprinted with permission from Springer Nature and AAAS.

coupling which, in concert with its superconductivity and the helical ordering of the

Fe magnetic moments [75, 76] recreates the essential elements of the semiconductor

implementation discussed above. The advantage of the Fe chain approach is that it

more easily allows spatial probing of the system using a Scanning Tunnelling Micro-

scope tip. Using this method, it was claimed that MBSs were observed at the ends

of the chain. However, there was some scepticism surrounding this claim due to the

ferromagnetic coupling of the Fe atoms compromising the superconductivity of the

Pb in its vicinity, rendering any zero bias peak indistinct and potentially resulting

in strong Majorana hybridisation [77]. The latter of these issues may be nullified

by an unusual renormalization of the superconducting coherence length [78], but

measurements at lower temperatures are still desirable to come to a more definitive

conclusion as to the presence of MBSs in this system [79]. Nonetheless, it is still

possible that similar set-ups will provide a useful theatre in which to perform ex-

periments with MBSs in the future.

Soon after results indicating the presence of a zero bias conductance peak were

released, it was quickly pointed out that several other effects could also give a

very similar signal. For example, it has been shown that weak antilocalization

due to the superconductor’s particle-hole symmetry can contribute a conductance
e2

h
, even in the topologically trivial case [80]. Similarly, it has been suggested [70]

that the observed signals might be due to a Kondo Resonance [81–83]. Typically,

one would expect this effect to be suppressed provided ∆ is much larger than the

Kondo Temperature. However, the “soft” gap present in early experiments [84] has
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Figure 2.3: Plot of Majorana bound state hybridisation energy as a function of MBS

separation in quantum wires. Five devices (black points) with different lengths, L, were

measured. The green line is the theoretical prediction given by Eq. 2.16 with ξeff = 260nm.

Adapted from Ref. [86], reprinted with permission from Springer Nature.

been shown to provide a sufficient density of quasiparticle states to enable a Kondo

Resonance [85].

In light of the alternative explanations offered above, it is apparent that a zero-

bias conductance peak does not represent an absolute proof of the presence of MBSs.

These initial experiments were therefore followed by further attempts to produce

still more evidence for the existence of MBSs. Amongst these, perhaps the most

convincing was an experiment performed by Albrecht et al. in 2016 which probed

not only the energy of the MBSs, i.e. the fact that they exist at E = 0, but also their

exponentially localised spatial characteristics [86]. This work relied on the fact that

two MBSs spatially separated by some distance, L, have an overlap energy given by,

Eγ ∝ exp

(
− L

ξeff

)
, (2.16)

where ξeff = ~vF/π∆eff is the effective coherence length [18, 87]. It is possible to

measure Eγ by using a quantum wire with a charging energy and measuring the

linear conductance of the wire as a function of its gate voltage. By carrying out this

measurement on multiple wires with different lengths, Albrecht et al. were able to

experimentally test the relation (2.16). Their results are shown in Fig. 2.3 and offer

compelling evidence for the existence of exponentially localised states at the ends of

the quantum wires, which it is reasonable to identify as Majorana bound states.

The work of Albrecht at al. [86] constituted convincing evidence for the existence

of MBSs in quantum wires [88], and also highlighted the significance of interactions.

In this instance, the interactions were an experimentally useful tool, but as we will
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see over the course of the next few chapters, they can also allow a topologically

non-trivial system to host qualitatively distinct physics.

2.1.4 Beyond Majoranas: Parafermions

We might imagine that Majorana fermions are a special case of a more general class

of excitations whose operators, α obey the relations,

αn = 1,

α1α2 =α2α1 exp

(
2πi

n

)
,

(2.17)

where n is an integer greater than 1 and the Majorana relations, up to some normal-

isation, are recovered for the case n = 2. It turns out that such excitations emerge

as non-local mappings of “clock models” with Zn symmetry [89], which constitute a

natural extension of the Z2 symmetric XY Spin chain and its associated Majorana

fermions [18, 61]. On the basis that these excitations are many-body phenomena

arising from fermionic systems, but do not themselves exhibit fermionic statistics,

they have been dubbed parafermions. Just as Majorana fermions exhibit a two-fold

degeneracy, so too do parafermions exhibit an n-fold degeneracy.

In contrast to Majorana fermions, which can naturally be thought of as a super-

position of electron and hole states, it is not immediately clear if there is any prospect

of observing parafermions, as they are contingent upon fractionalised charges, which

do not appear as elementary particles in condensed matter. Fortunately, quasi-

particles with the necessary properties can be found in strongly correlated sys-

tems. In particular, it has been suggested [90–92] that several systems based on

the Fractional Quantum Hall State could support parafermions and, remarkably,

even a system without explicit fractionalisation has been proposed has a potential

host [93,94]. Having said this, there is currently no known experimental confirmation

of parafermions with n > 2.

Much of the interest surrounding parafermions has been in relation to their

potential applications in quantum computing, specifically the superior topological

protection and more complete set of computational operations that they enable com-

pared to Majorana fermions [95]. However, in keeping with the theme of this thesis,

we imagine that a union of parafermions and other many-body effects might give

rise to exciting new physics, although these are beyond the scope of our discussion

here.
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2.2 Kondo Physics

A subject of great importance within condensed matter physics is the role played by

the interaction of many electrons over an extended region. These so-called Many-

Body effects give rise to striking new observable phenomena, that cannot be ex-

plained in terms of a single particle model. It seems reasonable to speculate that,

since these many-body phenomena play such a prominent role in topologically triv-

ial systems, they may also give rise to novel effects in topologically non-trivial sys-

tems. Perhaps one of the most well studied and influential of all the systems in

which many-body physics plays a decisive role is that associated with the Kondo

effect. The generality and prototypical simplicity of this system suggests that it is

a promising subject for a first investigation into the interplay of many-body physics

and topology. With this in mind, we undertake a brief overview of the topologically

non-trivial physics, so that we might stand better equipped to address its topological

analogue.

2.2.1 The Kondo Effect

Study of Kondo physics began in 1934 when measurements on low purity gold wires

revealed a resistance minimum at low temperatures [40]. In particular, it was later

established that the resistivity exhibits a dependence on temperature of the form

ρ ∝ − ln (T ) [96]. Furthermore, experiments found that, below some threshold tem-

perature, TK , the logarithmic dependence of the resistivity disappears [97]. These

results for the electrical properties were complemented by magnetic studies which

revealed that, whilst the samples exhibited a magnetic susceptibility ∝ 1/T at tem-

peratures greater than TK , in accordance with the Curie Law for free magnetic

moments, at temperatures below TK the magnetic susceptibility tends to a con-

stant, indicating that the magnetic impurities are in a spin singlet state [98]. These

results were wholly unexpected at the time and remained unexplained for thirty

years, with existing theories predicting only a monotonically decreasing resistivity

with decreasing temperature and a consistent 1/T dependence of the magnetic sus-

ceptibility. It was not until the 1960s that research began to shed light on the

underlying mechanism of these effects, when it was recognised that they are con-

tingent upon the presence of magnetic impurities in the otherwise non-magnetic

metallic samples [99]. Shortly after this realisation, Jun Kondo was able to show,

using a minimal model, how these magnetic impurities could give rise to a resistivity

with a logarithmic temperature dependence [38]. Subsequently, this toy model has

been reproduced experimentally through the use of quantum dots, which allow a di-
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rect investigation of Kondo physics without the complications inherent in magnetic

impurity systems [41,42].

2.2.2 The Anderson-Kondo Model

Kondo considered a simple Hamiltonian modelling the interaction between a single

magnetic impurity and a sea of itinerant conduction electrons [38],

HK =
∑
k

εkc
†
kck + J

∑
k′,k′′

[
Szd

(
c†k′↑ck′′↑ − c

†
k′↓ck′′↓

)
+ S+

d c
†
k′↓ck′′↑ + S−d c

†
k′↑ck′′↓

]
,

(2.18)

where ck are the itinerant electron operators, εk is their dispersion, Sz,+,−d are the

impurity spin components and J is the Kondo coupling. The sign of J depends upon

the sign of the on-site energy of the magnetic impurity and the magnitude of this en-

ergy relative to the Coulomb interaction between electrons on the impurity, but for

typical systems J > 0. The electron scattering, and hence resistivity, corresponding

to this Hamiltonian can be found by summing the various different scattering pro-

cesses. Here, we outline the process in sufficient depth to understand the pertinent

physics, without going into all of the various technical details. This exposition will

provide the necessary background to contextualise the work described in Chapter 3.

We begin by noting that first order estimates of the scattering rate are independent of

the temperature of the system, T , which is at odds with the experimentally observed

ln (T ) dependence. At progressively higher orders, the scattering rate will decrease

by a factor of J and so we might naively expect such higher order processes to have

no qualitative effect on the scattering. Nonetheless, let us calculate their influence

explicitly, looking in particular at the process in which an electron is scattered into

an intermediate state with a flipped spin and then this intermediate state is in turn

scattered to a final state with the same spin as the original electron. This path

consists of two coherent processes, shown in Fig. 2.4, and it is the superposition of

these two processes that yields the overall amplitude. Considering, first the process

with a particle-like intermediate state, the amplitude for this is given by,

T
(2)p
k,σ→k′,σ = J2

∣∣〈s,ms + 1|S+
d |s,ms〉

∣∣2 α = J2 (s(s+ 1)−ms(ms + 1))α, (2.19)

where,

α =
∑
q

1− fq
εk − εq + iη

, (2.20)

is a factor that takes into account the requirement that the intermediate state be

unoccupied prior to the scattering event. Similarly, if the intermediate state is
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Figure 2.4: Representation of the particle (left) and hole (right) mediated channels

contributing to the scattering amplitude T
(2)
k,σ→k′,σ. The upper line with arrows denotes an

itinerant conduction electron, whilst the straight lower line corresponds to the magnetic

impurity with spin S. Based on the approach described in Ref. [100].

hole-like, then we find the scattering amplitude,

T
(2)h
k,σ→k′,σ = J2

∣∣〈s,ms − 1|S−d |s,ms〉
∣∣2 β = J2 (s(s+ 1)−ms(ms − 1)) β, (2.21)

where,

β = −
∑
q

fq
εq − εk + iη

, (2.22)

is a factor accounting for the requirement that the intermediate state be occupied

prior to scattering. Computing the sum of (2.19) and (2.21) gives the overall scat-

tering amplitude,

T
(2)
k,σ→k′,σ = J2 ((s(s+ 1)−ms(ms + 1))(α + β) + 2msβ) . (2.23)

Examining (2.23), we note that the factors of fq in (α + β) cancel and so the only

term with any temperature dependence is that proportional to 2msβ. We therefore

make the approximation,

T
(2)
k,σ→k′,σ ' 2J2msβ, (2.24)

where we have neglected the temperature independent term on the grounds that it

is smaller than T (1), which is also temperature independent, by a factor J and so

makes no significant contribution to the scattering. Note that the expression in Eq.

(2.24) is also smaller than T (1) by a factor J , but may not be neglected since, as

we shall now see, its temperature dependence can lead it to be comparable in size

to T (1) at some temperature. Evaluating β using the fact that only those electrons

within kBT of the Fermi energy are appreciably excited, we arrive at the result,

T
(2)
k,σ→k′,σ ' J2ms ln

(
TF
T

)
, (2.25)

where TF =
~2k2F
2mkB

is the Fermi temperature, and so the overall scattering rate,

given by the square of the sum of the scattering amplitudes, taking into account the
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first-order scattering amplitude, is found to be,

Γ ∝ J2 + J3 ln

(
TF
T

)
+O

(
J4
)
. (2.26)

Since J > 0, this expression reproduces the experimentally observed result that the

resistivity exhibits a minimum with logarithmic dependence at low temperatures.

The key point, which had been overlooked in many other analyses but which Kondo

realised, is that, although one might naively expect higher order terms to make no

meaningful contribution to the scattering rate, the fact that the magnetic impurity

has a spin degree of freedom and, more explicitly, that S+
d and S−d do not commute,

leads to an imperfect cancellation between particle and hole scattering channels,

which in turn results in a temperature dependent scattering rate. This logarithmic

scattering term is comparatively small at high temperatures, as its coefficient is a

factor of J smaller than that of the first-order scattering, but at low temperatures

the logarithm diverges, leading to its influence becoming visible in experiments.

2.2.3 Poor Man’s Scaling

As successful as Kondo’s perturbative approach was for explaining the existence of

a resistivity minimum at low temperatures, the result given by Eq. (2.26) presents

an immediate issue: As T → 0, logarithmic terms diverge and so we anticipate

the total resistance of the system growing logarithmically large. This expectation

is not substantiated by experiment and so we are faced with the prospect that the

approach described above ceases to be valid at low temperatures, a turn of events

known as the Kondo Problem [101, 102]. To be explicit, the perturbation analysis

is no longer valid below a so-called Kondo temperature, TK , for which the first and

second terms in Eq. (2.26) are comparable, which implies,

TK ∼ TF exp

(
− 1

J

)
. (2.27)

Finding a solution to this Kondo Problem became a matter of urgency for condensed

matter theorists and their efforts led to many lasting innovations in the study of

many-body phenomena. Here, we will briefly review one of the early attempts to

deal with the Kondo problem, namely the so-called “Poor Man’s Scaling” approach

of Anderson [103]. This method, whilst not totally rigorous, reveals the salient

features of Kondo physics in a straightforward manner and forms the basis for the

complete renormalization approach later employed by Wilson [104, 105]. The basic

approach of Anderson’s technique is to consider all possible processes permitted by

the system Hamiltonian and then “integrate out” those processes corresponding to
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Figure 2.5: Scaling iteratively reduces the total energy space of states considered. Shown

is the reduction of a bandwidth D by and increment δD.

excursions to high energy states. That is to say, the influence of these high energy

processes is accounted for by changing the coefficients in the low energy space, with-

out the high energy terms appearing explicitly. A visualisation of the method is

shown in Fig. 2.5. This technique is applied iteratively such that it becomes ap-

parent how the coefficients of the Hamiltonian “flow” under scaling. The question,

then, is how to accurately account for the impact of high energy processes on the

low energy sector? Poor Man’s scaling is approximate in that it achieves this only

by considering high energy excitations to second order, which nevertheless gives the

qualitatively correct result.

We begin by considering an asymmetric form of the Kondo Hamiltonian (2.18), with

high energy terms given by,

H ′ =
∑
k′,k′′

[
JzS

z
d

(
c†k′↑ck′′↑ − c

†
k′↓ck′′↓

)
+ J±

(
S+
d c
†
k′↓ck′′↑ + S−d c

†
k′↑ck′′↓

)]
. (2.28)

For the sake of simplicity we assume that the impurity has spin S = 1/2. Now, the

corrections to the Jz terms are given by processes of the form shown in Fig. 2.6.

We see that the particle-mediated second order processes, shown in the left half of

the figure, make a correction of the form,

J2
±

∑
q

S−d c
†
k′↑cq↓

1

(E −H0)

∑
q′

S+
d c
†
q′↓ck↑. (2.29)

Substituting H0 =
∑

k εkc
†
kck, evaluating S−d S

+
d and converting the sums over q and

q′ to an integral using the density of states at the Fermi surface, ρ, and size of the

high energy space, δD, this becomes,

J2
±ρ|δD|

(
~
2
− Szd

)
c†k′↑ck↑

1

(E −D + εk)
. (2.30)

Similarly, the hole-mediated process, shown in the right half of Fig. 2.6, make a

contribution,

J2
±ρ|δD|

(
~
2

+ Szd

)
ck↑c

†
k′↑

1

(E −D − εk′)
. (2.31)
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If we assume that the final and initial states are close in energy to the Fermi energy,

such that ε = εk′ = 0, then by comparing Eq. (2.30) and (2.31) to Eq. (2.28) we see

that the net effect of the second order processes shown in Fig. 2.6 is to change the

coupling constant Jz by an amount,

δJz = −
2ρJ2

±|δD|
E −D

. (2.32)

Now, if the excitations are low in energy relative to D, such that E−D ' −D, then

it follows immediately that,
dJz

d lnD
= −2ρJ2

±, (2.33)

where we have used the fact that δD is negative (see Fig. 2.5) to write |δD| = −δD.

A similar calculation of the corrections to the spin flip terms in Eq. (2.28) gives the

corresponding result for J±,
dJ±

d lnD
= −ρJzJ±. (2.34)

Solving Eq. (2.33) and (2.34) to find and expression for Jz in terms of J± and then

substituting this back into Eq. (2.34), we finally arrive at a useful scaling equation

for J±,
dJ±

d lnD
= ±ρJ±

√
k + J2

±, (2.35)

where k is some constant. Here, the + solution corresponds to the ferromagnetic

case, Jz < 0, whilst the − solution corresponds to the antiferromagnetic case Jz > 0.

Hence, we see that, as the bandwidth decreases, J± → 0 in the ferromagnetic

case, whilst in the antiferromagnetic case J± → ∞. If we make the identification

D ∼ kBT , on the basis that the bandwidth can never be less than the thermally

acessible energy regime, then this result demonstrates that, as the system temper-

ature decreases, an antiferromagnetic impurity scales to strong exchange coupling.

It is this increase in the strength of the exchange coupling that accounts for the

breakdown of the perturbative Kondo model at low temperatures. As we shall see

in Chapter 3, this Poor Man’s scaling, although simple, is a powerful tool for estab-

lishing the behaviour of a system with strong interactions at low temperatures. It

is, perhaps, worth pointing out that, whilst the above calculation for determining

scaling relations appears very similar to the second order perturbation theory used

to derive the logarithmic temperature dependence of the scattering, the method

is, in fact, conceptually very different. Whilst the latter involves an unapologetic

approximation and requires the acceptance of singularities in the resulting scatter-

ing rates, the Poor Man’s scaling approach involves no essential approximation and

avoids a singularity, by simply characterising the evolution of coupling constants.
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Figure 2.6: Diagrammatic representation of second order processes giving rise to correc-

tions to Jz in scaling analysis. Note that, whilst these diagrams appear almost identical

to those in Fig. 2.4, they are part of a very different physical context. Nonetheless, the

similarity between this figure and Fig. 2.4 does make clear that Poor Man’s scaling is a

second order approximation to a true renormalization group analysis.

2.3 Mesoscopic Josephson Junctions

In 1962, the prediction and subsequent experimental observation of the Josephson

effect offered a striking manifestation of a macroscopic quantum phenomenon in

superconductors [106–108]. However, although the Josephson effect is macroscopic

in its results, the underlying origin is fundamentally microscopic in nature, namely

the quantum properties of Cooper Pairs. In contrast to this primary effect, as early

as 1964 interest began to grow in exploring secondary effects [44, 109], which result

from the fundamentally macroscopic quantum properties of Josephson junctions.

The key distinction, then, is that although primary effects are contingent upon

microscopic quantum objects, the observables involved are nonetheless classical in

nature, whilst secondary effects are not only dependent on quantum objects, but

also feature observables whose quantum nature must be taken into account. We

anticipate that, if the energies of processes in the junction are greater than both the

Josephson coupling, EJ and the temperature kBT , then such secondary effects will

be apparent. A theoretical treatment of such a scenario requires that the quantities

associated with the junction are treated as operators. In particular, we demand that

the junction charge and phase obey the commutation relation [110],

[φ,Q] = 2ie, (2.36)

where e is the electron charge, which is a general property of a Cooper pair con-

densate. The uncertainty relation implied by Eq. (2.36) indicates how a standard

Josephson junction might be modified to exhibit secondary quantum effects. By

imposing some restriction on the variation of either φ or Q, the fact that the com-

mutator is non-zero becomes important. Of these two variables, it is Q which may

be readily influenced by experimental design. A traditional Josephson junction is
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sufficiently large that adding a single electron to the junction has no significant im-

pact on the overall charge and so, in effect, the variation of Q is unconstrained and

it is no longer necessary to treat φ as a quantum variable. However, for a meso-

scopic Josephson junction, a single electron constitutes a significant fraction of the

total junction charge and so our analysis must respect Eq. (2.36). Equivalently,

if the charging energy of a single electron, EC = e2

2C
, with e and C the electronic

charge and junction capacitance respectively, is comparable to or greater than both

the Josephson coupling, EJ and the temperature kBT , we might expect secondary

quantum effects to be apparent.

We may write the junction charge, Q, as an operator in terms of φ, by using the

commutation relation (2.36),

Q =
2e

i

∂

∂φ
. (2.37)

The essential Hamiltonian of the mesoscopic Josephson junction then becomes,

Hsc = −EC
∂2

∂ (φ/2)2 − EJ cos (φ) , (2.38)

where the first term corresponds to the charging energy and the second to the Joseph-

son coupling and we have used an adiabatic approximation to the full Hamiltonian,

subject to the condition
∣∣ eQ
C

∣∣ � ∆. The Hamiltonian given by Eq. (2.38) also

applies to two other well known physical systems: a simple quantum pendulum in

a uniform field of strength EJ with moment of inertia (~/2e)2C and angular deflec-

tion φ from equilibrium; a one-dimensional quantum particle with mass (~/2e)2C

moving along the φ axis in a field of the form EJ cos (φ). Although these two sys-

tems have similar Hamiltonians, their properties are very different, essentially due

to their distinct behaviours under a translation,

φ→ φ+ 2π. (2.39)

This transformation leaves the pendulum in an indistinguishable state, and so the

corresponding wave functions must be 2π periodic, ultimately leading to discrete

energy levels. In contrast, the states of the one-dimensional particle before and

after the transformation (2.39) are distinguishable and so the wave functions in this

case must be comprised of a superposition of Bloch waves, which in turn leads to

an energy spectrum consisting of bands.

Hence, at first sight, it seems that the mesoscopic Josephson junction could be

accurately modelled as either a quantum pendulum or a one-dimensional quantum

particle and, indeed, if we believe that the Josephson junction is represented in its
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entirety by Eq. (2.38) then this is true. However, there is a further term in the

Josephson Hamiltonian, namely the current-phase coupling [111],

VI =
~
2e
I(t)φ, (2.40)

where I(t) is the, in general time dependent, current through the junction and,

once again, we make the adiabatic approximation under the assumption
∣∣ eQ
C

∣∣� ∆.

This coupling is required for I(t) to affect the charge on the junction and, more

importantly for the present discussion, breaks the invariance of the system under

the transformation (2.39), provided that I(t) 6= 0 (any concerns about the case

I(t) = 0 can be addressed by an appeal to continuity). We therefore conclude that,

since two Josephson junction states with a difference in φ of 2π are distinguishable,

the system is most closely analogous to a one-dimensional quantum particle. This

allows us to immediately write down the wave functions of the junction, since they

simply take the standard Bloch form,

ψ (φ) =
∑
s

∫
dkC

(s)
k ψ

(s)
k , ψ

(s)
k = u

(s)
k (φ) exp (ikφ)

u
(s)
k (φ) =u

(s)
k (φ+ 2π) , E(s)(k) = E(s)(k + 1),

s = 0, 1, 2, .., −∞ < k <∞,

(2.41)

where k is the continuous wave number, s is the band index, C
(s)
K are Fourier coef-

ficients, u
(s)
k are periodic functions of the superconductor’s phase and E(s)(k) is the

energy of the state with wave number k in band s. To allow for better interpretation

of the theory in terms of observables, we introduce the further variable,

q = 2ek, (2.42)

which, in direct analogy with the quaismomentum of a crystal lattice, is known

as the quasicharge of the junction. The energy of the junction can then be writ-

ten as a function of the quasicharge and band index, E = E(s)(q) which exhibits a

periodicity E(s)(q) = E(s)(q+2e). The resulting band structure is shown in Fig. 2.7.

The first experimentally observable consequence of the band structure shown in Fig.

2.7 to be proposed was Bloch oscillations [44]. In direct analogy with electrons in a

crystal lattice [112], we anticipate that by driving q at a constant rate, such as by

imposing a fixed current across the junction, the value of the junction charge, and

therefore voltage, will exhibit oscillations. The driving current, made possible by
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Figure 2.7: The band structure corresponding to Eq. (2.38), plotted in quasicharge

space, for system parameters EC = EJ = 0.1meV. Three bands are shown in their

entirety , with the lower part of the fourth band also visible. Note that the energy gap

between the first (red) and second (blue) bands is approximately equal to EJ .

the presence of a non-zero density of quasiparticle states within the junction, will

result in q evolving slowly between q > −e and q < e. However, if q is driven across

one of the Brillouin Zone boundaries, then it will exhibit a discontinuous jump of 2e.

Physically, this corresponds to a Cooper pair tunnelling across the junction and will

manifest as a periodic variation in the junction voltage. To a first approximation,

we can model the quasicharge evolution within the Brillouin Zone as being solely

a result of the bias current, ignoring the “back-action” of the junction voltage. It

then follows immediately that the frequency of the associated Bloch oscillations will

be,

fB =
I

2e
. (2.43)

This apparently straightforward result, which attracted a fair amount of contro-

versy following its publication [113–115], is a clear manifestation of a secondary

quantum effect in Josephson junctions. Early attempts to observe Bloch oscillations

experimentally were hindered by the difficulty of screening the junction from lead

capacitances, which effectively result in a reduction of EC to such an extent that the

requirement EC & EJ is no longer satisfied. Nevertheless, by 1991 a carefully de-

signed experiment provided the first indication that Bloch oscillations in Josephson

junctions might be a real phenomenon [116]. Rather than looking directly for os-

cillations in junction voltage, which were not detectable using the techniques of the
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Figure 2.8: Measurement of differential resistance as a function of driving current, for

constant driving frequency, reveals broad peaks evenly spaced about zero current. The

points shown here are the half-distance between these peaks at a given driving frequency.

The solid line is the theoretical prediction, I = 2ef . From Ref. [116], reprinted with

permission from APS.

time, this experiment instead measured the differential resistance of the junction,

dV/dI as a function of the magnitude of the driving current and the frequency of

its AC component. The result, shown in Fig. 2.8, although not totally conclusive,

was in accordance with theoretical predictions and provided tentative evidence for

the existence of Bloch oscillations.

Whilst early experiments suggested the existence of Bloch oscillations, they were

unavoidably limited by the fabrication and measurement techniques available at the

time. As a result, it was not until 2007 that convincing evidence was found for

Bloch oscillations in Josephson junctions [117]. In addition to general improve-

ments in electronics, this experiment differed from earlier efforts in two key ways.

Firstly, rather than attempting to impose a constant bias current on the junction,

which is complicated by the requirement to embed the junction in a high impedance

environment, the experiment instead achieved an effective current bias by imposing

a triangle-wave gate voltage, Ng, with amplitude ∆N and frequency fg, on a capac-

itor in series with the junction. Secondly, the experiment probed the properties of

the junction using microwave reflectometry, allowing a much lower noise signal than

with a direct measurement. Such techniques enabled the observation of clear Bloch

oscillations, both directly in the demodulated microwave signal, shown in Fig. 2.9,

34



Figure 2.9: Output signal (blue) of a Josephson junction, measured with microwave

reflectometry. The red plot is the triangle-wave gate voltage, Ng. There is close agreement

between the theoretical result, fB = 2∆Nfg = 8kHz and the observed frequency of the

output signal. From Ref. [117], reprinted with permission from APS.

and in the power spectrum of the signal, not shown here.

The theoretical discussion and experimental results presented in this section should

serve to reinforce one of the main reasons why mesoscopic systems can be of fun-

damental interest and give rise to qualitatively distinct physics in superconducting

systems. Namely, whilst the traditional Josephson junction is, from a quantum per-

spective, unrestricted with regards to the junction charge, or equivalently number

of electrons, the mesoscopic junction, by virtue of its charging energy, limits charge

variations and so, by charge-phase conjugation, enables significant variation in su-

perconducting phase. This transition, from a ∆φ ∼ 0 to a ∆Q ∼ 0 regime, results

in a striking change in the behaviour of the system. As we shall see in Chapter 4,

this system is also of interest in the context of Majorana bound states in condensed

matter.
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Chapter 3

Kondorana

In this chapter we consider the nanowire setup depicted in Fig. 3.1, in which Majo-

rana modes appear at the wire ends as a result of, for example, spin-orbit interaction

in the wire, an applied magnetic field and superconductivity induced through con-

tact to an s-wave superconductor [64, 65, 118]. Furthermore, we consider a floating

superconductor so that there is a charging energy EC associated with the tunnelling

of electrons to and from the nanowire. Several studies have been performed on

the low energy behaviour of such a system, predicting distinctive non-local trans-

port and Coulomb blockade phenomena [119–127]. The latter of these appears to

have been confirmed experimentally [86]. A coupling of several such Majorana wires

through a common floating superconductor gives rise to the topological Kondo ef-

fect [128–136]. This is a result of the existence of Majorana modes in combination

with constrained fluctuations due to a charging energy EC . A Majorana mode may

also be coupled to a quantum dot to explore the competition between Kondo and

Majorana physics [137–140]. However, these works do not fully explore the potential

of the Majorana modes as a novel interface between the topological superconductor

and its environment.

Over the course of this chapter, we shall see that such an exploration reveals

fundamentally new physics in which the Kondo and Majorana aspects combine and

leads to a new type of many-body state. This marriage of traditionally distinct

physics leads us to call the result the Kondorana model.

We consider a single Majorana wire as shown in Fig. 3.1 and tune it to degeneracy

of two different charging states, such that tunnelling into the Majorana states can

make a transition between the degenerate states or lead to a high energy (2EC)

excitation. By integrating out the latter, we obtain an effective Kondo like low en-

ergy theory, in which the two degenerate charging states take the role of the Kondo
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Figure 3.1: A Majorana system with a floating superconductor. An s-wave supercon-

ductor (red) is grown on a nanowire with strong spin-orbit coupling (blue). For sufficiently

large applied magnetic field and appropriate chemical potential the nanowire becomes a

topological superconductor (TSC) with Majorana bound states γ1,2 at each end. A gate

at voltage Vg is used to tune the ground state occupation number, which is dictated by

the capacitive charging energy EC . The nanowire couples to leads at either end with

tunnelling coefficients t1 and t2 between lead electrons and γ1,2.

spin S. However, the situation differs from the Kondo model in two essential ways.

Firstly, a Kondorana spin flip is induced by electron tunnelling and not by an elec-

tron spin flip type process. Secondly, the effective Sz interaction couples not to the

electron spin but to a pseudo-spin s constructed from the electron operators for the

left and right leads. Indeed, the absence of an electronic spin degree of freedom for

the Majorana states, due to the spin polarization induced by the applied magnetic

field and spin-orbit coupling, is an important condition for the results found in this

chapter, as we shall discuss later. In addition to the regular Szsz coupling, the

teleportation property of the Majorana states [119] leads to a further Szsy coupling.

Due to the latter, the renormalization group flow for the interaction strength has

a zero eigenvalue and hence the fixed point of this Kondorana model is finite and

does not lie at zero or infinity as for the Kondo model. Nevertheless, this fixed point

describes a many-body state extending across the metallic leads, superconducting

condensate, and Majoranas. It is important to note that the Kondorana fixed point

is distinct from that found in the Two Channel Kondo Model, [39] despite superficial

similarities arising from the invocation of Majorana modes to solve the latter sce-

nario [141, 142]. Finally, we determine how the conductance of the nanowire scales

with the ratio of tunnelling couplings and with the temperature, and we suggest

signatures of this state, that should be observable with current experimental tech-

niques.

Subsequent to completion of the research described in this chapter, Bao and Zhang

published work [143] in which a similar setup was investigated in a time reversal

invariant topological superconductor with two Majorana states at each end of the
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Parameter Symbol Value

Lead Bandwidth D0 0.4meV

Charging Energy EC 0.2meV

Left Lead-TSC Tunnelling Coefficient t1 0.1meV

Righ Lead-TSC Tunnelling Coefficient t2 0.01meV

Table 3.1: Representative parameters for the floating TSC, with a superconducting gap

∆ > EC , based on values reported in Ref. [86].

wire. Remarkably, instead of Kondorana physics, a two channel Kondo model is

obtained in this system.

3.1 Model

Our analysis is based on the Majorana Single Charge Transistor (MSCT) [120,121],

which results from the usual Majorana setup of a quantum wire with strong spin-

orbit interaction in a magnetic field, but where the coupled superconductor is meso-

scopic and floating, with a charging energy EC , where 4EC . ∆TS, with ∆TS the

proximity induced gap of the topological superconductor. We furthermore assume

that EC is large compared with all other energy scales, notably the tunnel couplings

t1,2 to the leads, temperature T and applied voltage bias V . A representative exper-

imental setup is shown in Fig. 3.1 and typical parameter values are given in Table

3.1.

3.1.1 Full Hamiltonian

This system is described by the Hamiltonian H = Hel + HT + HC . The leads are

treated as non-interacting reservoirs, Hel =
∑

j,k,σ εjkc
†
jkσcjkσ, where cjkσ are electron

operators for leads j = 1, 2, momenta k and spins σ =↑, ↓, with the dispersion εjk.

The coupling between the leads and the superconductor is restricted to tunnelling

into the Majorana states γ1,2, and we explicitly exclude the possibility of exciting

quasiparticles [127]. The tunnelling Hamiltonian can then be written as [121],

HT =
∑
k

(t1c
†
1k↓η1 + it2c

†
2k↑η2) + h.c., (3.1)

where t1,2 are the tunnelling amplitudes and η1,2 = d±e−iφd†, with d = (γ1+iγ2)/
√

2.

We note that tunnelling through the Majoranas is spin polarised [64, 144], for in-
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stance, with opposite spins for both Majoranas if the magnetic field is applied

perpendicular to the spin-orbit polarization direction, as written here. The spin

polarization may also be non-antiparallel, if the magnetic field is tilted or if there

exists a mixture of Rashba and Dresselhaus spin orbit coupling [144]. For our pur-

poses here, it is only important that the coupling to the leads no longer has the

spin degree of freedom. This allows us to effectively eliminate the spin index in the

notations and we write c1k = c1k↓ and c2k = c2k↑. As previously noted, the absence

of this spin degree of freedom has important ramifications for the renormalization

group analysis. Were the tunnel couplings not spin polarised, as is typical in the

case of a normal quantum dot, then the system’s scaling would be different. The

form of the η1,2 operators takes into account that tunnelling between Majorana and

lead can occur over two channels: by removal of an electron from the fermionic

state d obtained by the superposition of γ1,2 (normal tunnelling), or by splitting a

Cooper pair and transferring one electron to the lead and the other electron to the

d state (anomalous tunnelling) as shown in Fig. 3.2. The removal of a Cooper pair

is expressed by e−iφ, where φ is the superconducting phase operator, which obeys

[NC , e
−iφ] = −e−iφ for NC the Cooper pair number operator. Andreev tunnelling

processes are deliberately neglected in this analysis for two reasons. Firstly, their

amplitude is proportional to t2/∆ and so much smaller than the amplitude, t, rele-

vant for the considered processes. Secondly, an Andreev process changes the number

of charges on the nanowire by ±2, leaving the system in an excited state that needs

further relaxation, and so the Andreev processes exist only at higher orders.

The final component of the system Hamiltonian is the charging energy which is

given by HC = EC(2NC +nd−ng)2, where nd = d†d and ng is a constant controlled

by the gate voltage Vg. In contrast to Ref. [121] we do not consider any Josephson

coupling to a further superconductor, since this would be a more difficult setup to

realise experimentally and is unlikely to lead to any significant change in our results,

except in the case EJ � EC which essentially corresponds to a grounded TSC. We

tune ng to the value ng = 2n− 1
2
, with n an integer. This results in a charging ground

state degeneracy between the states (NC = n, nd = 0) and (NC = n − 1, nd = 1),

with the next excited states at (NC = n, nd = 1) and (NC = n − 1, nd = 0) having

an excitation energy 2EC , as shown in Fig. 3.2. Note that we have neglected any

Majorana interaction energy, Hint = εγ (nd − 1/2), which would break the ground

state degeneracy. The energy εγ is proportional to the Majorana wave function

overlap and can be made exponentially small by a sufficiently large system size,

although this must be balanced by the requirement of maintaining a large EC .
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Figure 3.2: Charging energy against total number of electrons, Ne, in the nanowire for

ng = 2n− 1
2 . Filled (empty) circles represent states with nd = 1 (nd = 0). Both the ground

and excited states are degenerate, with transitions between them via normal tunnelling

(a) and anomalous tunnelling (b). Note that there is no process mediating transitions

between the two excited states.

Ultimately, this Majorana hybridisation energy is not an issue since degeneracy can

be restored by retuning ng to ng = 2n − 1
2
− εγ

2EC
. Whilst this retuning does cause

a splitting between the first excited states of 4εγ, the degeneracy of these states is

inessential to our results and as long as εγ � EC this perturbation to the excited

state energy is of no consequence.

Further excited states appear only at energy 4EC above the first excited states

and are neglected in the present low energy description, in part because a lower order

approximation is already sufficient to reveal non-trivial effects, but also because if

4EC . ∆TS, as stated above, then a system at energies above the first excited state

will support above-gap tunnelling processes.

The resulting situation is reminiscent of the large interaction limit of the An-

derson model with two-fold degenerate ground and first excited states, yet with

the restriction that there is no direct scattering process connecting the two excited

states because they have different total particle numbers, 2n − 2 and 2n + 1, as

shown in Fig. 3.2. This excludes the virtual spin-flip type processes, that dominate

Kondo physics, arising from the usual mapping of the Anderson model on the Kondo

model, and the resulting physics for the present situation is fundamentally different.

To discriminate it from the Kondo type behaviour obtained by a mutual coupling

of several such Majorana wires through a common superconductor [119–127], and

from the behaviour of independent Majorana states, we call the effective model
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obtained from an analogous mapping the Kondorana model as it combines Kondo

and Majorana properties on an equal footing, but exhibits exciting new physics.

We note in passing that the other charging degeneracy point, ng = 2n + 1
2
, also

results in a many-body state similar to the one described here, due to particle-hole

symmetry [126].

3.1.2 Schrieffer-Wolff Transformation

To find an effective low-energy theory of the full Hamiltonian, we carry out a

Schrieffer-Wolff transformation, defined by the unitary transformationHeff = eWHe−W .

This transformation is chosen such that it eliminates the tunnelling processes into

the high energy sector of the model and replaces them by effective low-energy pro-

cesses created by virtual high energy excursions. With our choice of tuning the gate

to the degenerate ground states (NC = n, nd = 0) and (NC = n − 1, nd = 1), the

normal tunnelling terms, as shown in Fig. 3.2, provide the excitations to the high

energy sector, given by the Hamiltonian,

H1 =
∑
k

(t1c
†
1kd+ it2c

†
2kd) + h.c., (3.2)

whereas the low energy sector is described by the lead Hamiltonian, Hel, the charging

energy, HC and the anomalous tunnelling terms indicated in Fig. 3.2,

H0 = Hel +HC +
∑
k

(t1c
†
1ke
−iφd† + it2c

†
2ke
−iφd†) + h.c. (3.3)

Expanding the unitary transformation in W then leads to the effective Hamiltonian,

Heff = H0 +
1

2
[W,H1] , (3.4)

in which the first order high energy excitations are absent because we require that,

[W,H0]
!

= −H1. (3.5)

To find the expression for W that satisfies (3.5), we first note that W must have the

same form as H1 and so we begin with the ansatz,

W =
∑
k

{
Akc

†
1kd+Bkc

†
2kd− h.c.

}
, (3.6)

where the fact that W is anti-hermitian follows immediately from (3.5) and the

hermitian property of H1 and H0. The coefficients Ak and Bk can now be found

from the condition (3.5). It is necessary to calculate four commutators (one for each
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of the terms in W ),[∑
k′

Ak′c
†
1k′d , H0

]
=
∑
k

Ak

{
εkdc

†
1k + EC (4NC + 1− 2ng) c

†
1kd
}

− i
∑
k,k′

Ak′t2c
†
1k′c

†
2ke
−iφ,

(3.7)

[∑
k′

Bk′c
†
2k′d , H0

]
=
∑
k

Bk

{
εkdc

†
2k + EC (4NC + 1− 2ng) c

†
2kd
}

+
∑
k,k′

Bk′t1c
†
1kc
†
2k′e

−iφ,

(3.8)

[
−
∑
k′

A∗k′c1k′d
† , H0

]
=
∑
k

A∗k
{
εkc1kd

† + EC (4NC + 1− 2ng) d
†c1k′

}
− i
∑
k,k′

A∗k′t2c1k′c2ke
iφ,

(3.9)

[
−
∑
k′

B∗k′d
†c2k′ , H0

]
=
∑
k

B∗k
{
εkc2kd

† + EC (4NC + 1− 2ng) d
†c2k

}
−
∑
k,k′

B∗k′t1c1kc2k′e
iφ.

(3.10)

We note that the above commutators generate Andreev type processes of the form

c†c†e−iφ. Such processes are indeed present at second order in tunnelling, but since

they change the number of charges on the wire by 2, they always lead to high energy

excitations and contribute to the low energy theory only at order O(t3j/E
2
C). These

Andreev type terms can therefore safely be neglected, since we have assumed that

tj � EC and so we find that,

[W,H0] '
∑
k

{
εk

[
Akdc

†
1k +Bkdc

†
2k + A∗kc1kd

† +B∗kc2kd
†
]

−EC (4NC + 1− 2ng)
[
Akdc

†
1k +Bkdc

†
2k + A∗kc1kd

† +B∗kc2kd
†
]}

.

(3.11)

Imposing (3.5) gives the required expressions for Ak and Bk,

Ak =
t1k

εk − EC (4NC + 1− 2ng)
Bk =

−it2k
εk − EC (4NC + 1− 2ng)

, (3.12)

and so the Schrieffer-Wolff transform necessary to fulfil (3.5) is,

W =
∑
k

Ξ(εk)
(
t1c
†
1kd− it2c

†
2kd
)
− h.c., (3.13)

where for convenience we have defined the function,

Ξ(εk) = [εk − EC(4NC + 1− 2ng)]
−1. (3.14)
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As noted previously this expression for W is correct only up to O(t3j/E
2
C), due to the

omission of Andreev type terms in its derivation. Now, following the prescription

of Eq. (3.4), we determine Heff by calculating the commutator [W,H1] which, term-

by-term, is,[∑
k

Akc
†
1kd , H1

]
=
∑
k,k′

{
Akt

∗
1

(
c†1kc1k′ − δk,k′d†d

)
+ iAkt

∗
2c
†
1kc2k′

}
, (3.15)

[∑
k

Bkc
†
2kd , H1

]
=
∑
k,k′

{
iBkt

∗
2

(
c†2kc2k′ − δk,k′d†d

)
+Bkt

∗
1c
†
2kc1k′

}
, (3.16)

[
−
∑
k

A∗kd
†c1k , H1

]
=
∑
k,k′

{
A∗kt1

(
c†1k′c1k − δk,k′d†d

)
− iA∗kt2c

†
2k′c1k

}
, (3.17)

[
−
∑
k

B∗kd
†c2k , H1

]
=
∑
k,k′

{
iB∗kt2

(
δk,k′d

†d− c†2k′c2k

)
+B∗kt1c

†
1k′c2k

}
. (3.18)

If we choose to make t1, t2 real (which is always possible since any phase can be ab-

sorbed by shifting the phases of the lead electrons through a gauge transformation),

it follows from Eq. (3.12) that Ak = A∗k and Bk = −B∗k. We therefore find that the

effective Hamiltonian is given by,

Heff = EC(2NC + nd − ng)2

+
∑
k

[
εk
(
c†1kc1k + c†2kc2k

)
+
(
t1c
†
1kd
†e−iφ + it2c

†
2kd
†e−iφ + h.c.

)]
+
∑
k,k′

Ξ(εk)
[
t21c
†
1kc1k′ + t22c

†
2kc2k′

− δk,k′
(
t21 + t22

)
nd + it1t2

(
c†1kc2k′ − c†2kc1k′

)]
. (3.19)

The term with δk,k′ in the last line produces an energy shift for the nd level, similar

to an overlap integral between the two Majorana wave functions. If we take ρ(ε) to

be the density of states and D0 to be the electronic bandwidth such that ρ ∼ 1/D0,

we can estimate the magnitude of this term as,

(t21 + t22)
∑
k,k′

δk,k′Ξ(εk) = (t21 + t22)

∫
dερ(ε)Ξ(ε)

∼ −t
2
1 + t22
D0

ln

[
D0 − EC(4NC + 1− 2ng)

D0 + EC(4NC + 1− 2ng)

]
, (3.20)

where we have used the definition in Eq. (3.14) to go from the first to second line. For

EC < D0 this term is on the order of O
(
t2jEC/D

2
0

)
and thus smaller than all other

considered energies. In any case, it can always be removed by a slight adjustment
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of ng through the gate voltage since it plays the same role as the charging energy,

and we shall set it to zero henceforth.

For the remaining effective theory the εk term in Eq. (3.14) is unimportant as it

causes only small corrections for the low-energy properties, and we shall drop it in

the following and use the approximation Ξ(εk) = Ξ = −[EC(4NC + 1 − 2ng)]
−1. It

is convenient to simplify this expression further by noting that, with ng = 2n− 1/2,

4NC + 1− 2ng =

+2 for (Nc = n, nd = 0),

−2 for (Nc = n− 1, nd = 1),
(3.21)

which allows us to write,

Ξ = (2nd − 1) /2EC , (3.22)

for these two states. Substituting this expression for Ξ into Eq. (3.19), and omitting

the term with δk,k′ for the reasons stated above, we find that the effective Hamilto-

nian of our system is given by,

Heff = Hel +HC +
∑
k

{
t1c
†
1kd
†e−iφ + it2c

†
2kd
†e−iφ + h.c.

}
+
∑
k,k′

(2nd − 1)

2EC

[
t21c
†
1kc1k′ + t22c

†
2kc2k′ + it1t2

(
c†1kc2k′ − c†2kc1k′

)]
.

(3.23)

As indicated in Fig. 3.2, the normal particle tunnelling between leads and Majoranas

generates the high energy excitations. Since there is no direct transition between

both excited states, the virtual excitations into the high energy sector generate an

nd dependent scattering potential between electrons, including a teleportation type

scattering across the Majorana wire ∼ c†1kc2k′ [119], but do not cause any change in

the Majorana parity. To facilitate comparison of the effective Hamiltonian in our,

Kondorana, case with that of the typical Kondo Hamiltonian, we may also write

Heff in a somewhat more familiar form,

Heff = Hel +
1√
2

∑
k

[(
J

(1)
± c†1k + iJ

(2)
± c†2k

)
S+ + h.c.

]
+
∑
k,k′

[
J (11)
z c†1kc1k′ + J (22)

z c†2kc2k′ + iJ (12)
z

(
c†1kc2k′ − c†2k′c1k

)]
Sz, (3.24)

where we have defined the pseudo-spin operators,

S+ =
√

2d†e−iφ, S− =
√

2deiφ, Sz = 2nd − 1, (3.25)

and the coefficients,

J
(j)
± = tj, J

(jj′)
z = tjtj′/2EC for j, j′ = 1, 2. (3.26)
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The Hamiltonian in Eq. (3.24) differs from the Kondo Hamiltonian in two essential

ways. Firstly, it cannot be written down as a pure spin-spin interaction because it

involves the tunnelling terms J
(j)
± which create and annihilate electrons while flipping

S. Secondly, the Sz term couples in parallel to an sz and sy electron pseudo-spin:

Since the tunnelling electrons have a spin polarization locked to the lead, we can

define a lead-spin pseudo-spin with projections s ∈ {s+, s−} = {(j = 1, ↓), (j =

2, ↑)} and operators sαk,k′ = c†ksσ
α
s,s′ck′s′ for σα the Pauli matrices (with σ0 the unit

matrix). This allows us to write the Sz term as,∑
k,k′

[
1

2
(J (11)
z + J (22)

z )s0
kk′ +

1

2
(J (11)
z − J (22)

z )szkk′ + J (12)
z sykk′ ]S

z. (3.27)

This special form, mainly the appearance of the sykk′ term, leads to a behaviour of

the Kondorana model that is entirely different from the usual Kondo physics. Note

that deviations from Eq. (3.21), such as by tuning ng slightly away from 2n + 1/2

due to compensation of Eq. (3.20) or because of the neglected dependence of Ξ on

εk cause only corrections that either remain proportional to Sz or are independent

of Sz and consist only of renormalizations of the chemical potentials in the leads.

Equation (3.24) therefore represents the generic effective Hamiltonian of the system.

3.2 Renormalization

The non-Kondo behaviour of the model becomes evident if we consider a renormal-

ization group analysis. Since Heff describes free electrons that are coupled to a single

localised pseudo-spin S, the Poor Man’s scaling technique [103] provides a transpar-

ent approach to the physics while being perfectly accurate for our purposes. In this

approach, excitations to high energy states are successively integrated out, and the

bandwidth is effectively reduced, leading to modification of the coupling constants

J . In the following we label with q, q′ these high energy states and with k, k′ the ini-

tial and final low energy states. The renormalization proceeds by directly producing

corrections to the Hamiltonian. We follow a diagrammatic variant of Poor Man’s

scaling, as described in, for example, Ref. [100]. The first point to note is that the

J
(jj′)
z couplings are invariant under scaling. The reason for this can be understood

by considering Fig. 3.3, which shows the two vertex process contributing to the

scaling of J
(11)
z .

Neither of the two vertices causes a change in Majorana parity, i.e. an Sz spin

flip, and they therefore commute. The result is that the hole-mediated version of

the depicted process will result in exact cancellation. Indeed, since only terms in the

Hamiltonian proportional to J
(j)
± change the value of Sz, and such terms constitute
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(1,k)(1,k')

Figure 3.3: The lowest order particle mediated process contributing to the scaling of

J
(11)
z . The line between the two vertices denotes a particle excited to the high energy

shell. Note that the two scattering events commute, so the pathway shown here is exactly

cancelled by a corresponding hole-mediated process and does not contribute to scaling.

terminal vertices, as shown in Fig. 3.4, there are no scattering diagrams, to any

order, that result in scaling of J
(jj′)
z . We can therefore conclude that J

(jj′)
z obeys

the scaling equation,
d

d`
J (jj′)
z = 0 for all j, j′. (3.28)

We now turn to the scaling of J
(1)
± , for which the first order scattering processes

are shown in Fig. 3.4. The particle mediated channels, with excitations q, q′ in an

energy shell of width δD at the upper band edge, lead to the following correction of

the Hamiltonian,

δHp =
∑
q,q′

[
J (11)
z Szc†1kc1q′ (E −H0)−1 J

(1)
± c†1q

1√
2
S+

+ iJ (12)
z Szc†1kc2q′ (E −H0)−1 iJ

(2)
± c†2q

1√
2
S+
]

=
∑
q,q′

[
J (11)
z J

(1)
± c†1kc1q′ (E −D)−1 c†1q

1√
2
S+

− J (12)
z J

(2)
± c†1kc2q′ (E −D)−1 c†2q

1√
2
S+
]
, (3.29)

where E is the energy at which the system is probed and D is the running bandwidth

of the leads. We have used the fact that SzS+ = S+ and written H0c
†S+ = Dc†S+,

since |δD| � D and S+ corresponds to zero energy excitations. Summing over the

high energy interval |δD|, using the fact that E − D ' −D and noting that far

above the Fermi surface c1q′c
†
1q = δqq′ , we find the particle mediated contribution to

the scaling is,

δHp = −ρ|δD|
D

[
J (11)
z J

(1)
± − J (12)

z J
(2)
±

]
c†1k

1√
2
S+, (3.30)
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(1,k) (1,k)

(d)

(b)(a)

(c)
(1,k)(1,k)

Figure 3.4: Scattering channels which contribute to renormalization of J
(1)
± . Diagrams

(a) and (b) show particle mediated scattering via the left and right leads, respectively.

Similarly, (c) and (d) depict hole mediated scattering. Curved lines represent lead elec-

trons, whilst the straight lines correspond to the nanowire with dashed and solid lines

denoting Sz = −1 and Sz = +1, respectively.

with ρ the density of states in the leads. A similar analysis for the hole mediated

terms provides an identical result, so that the total Hamiltonian associated with the

two vertex events corresponding to J
(1)
± is therefore,

δH2v = −2ρ|δD|
D

[
J (11)
z J

(1)
± − J (12)

z J
(2)
±

] 1√
2
c†1kS

+. (3.31)

Comparing this with Eq. (3.24), we see that renormalization group flow equation

for J
(1)
± is,

d

d`
J

(1)
± = −2ρ

[
J (11)
z J

(1)
± − J (12)

z J
(2)
±

]
. (3.32)

The derivation of the scaling for J
(2)
± is essentially identical and, combining this with

Eq. (3.32), we arrive at the required scaling equations,

d

d`

(
J

(1)
±

J
(2)
±

)
= −2ρ

(
J

(11)
z −J (12)

z

−J (12)
z J

(22)
z

)(
J

(1)
±

J
(2)
±

)
, (3.33)

where ` ∼ − ln(D/D0) and ρ ∼ 1/D0, with D the running cutoff energy and D0 the

initial electron bandwidth.

The renormalization flow of J
(j)
± is governed by the eigenvalues of the matrix

in Eq. (3.33), which remain constant due to the invariance of the J
(jj′)
z . Since
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J
(jj′)
z = tjt

′
j/2EC we find that the matrix has the eigenvalues 0 and λ = J

(11)
z +J

(22)
z =

(t21 + t22)/2EC , such that(
J

(1)
± (`)

J
(2)
± (`)

)
=
t21 − t22
t21 + t22

(
t1

−t2

)
e−2ρλ` +

2t1t2
t21 + t22

(
t2

t1

)
. (3.34)

The scaling therefore interpolates between the bare J
(j)
± values and the fixed points

J̄
(1)
± = 2t1t

2
2/(t

2
1 + t22) and J̄

(2)
± = 2t21t2/(t

2
1 + t22), as shown in Fig. 3.5, and does not

display the weak or strong coupling behaviour of a regular Kondo system. We note

that this scaling only takes place in the case of asymmetric tunnel couplings, since if

|t1| = |t2| the first term in Eq. (3.34) is always zero. Although the fixed point is finite

and the Hamiltonian maintains its form, the resulting state has an involved non-

local, many-body structure. This is exemplified by the fact that the tunnel coupling

asymmetry, t1 > t2, is reversed such that t∗1 < t∗2 at the fixed point, showing that

even for local coupling, the entire system including the leads is involved. Indeed, the

state revealed above extends over both leads regardless of nanowire length, and is

comprised of lead electrons, Majorana modes and the superconducting condensate.

It is not unreasonable to suggest that such a state surpasses the threshold of being

merely described as dressed and requires the many-body epithet.

Figure 3.5: Change in anomalous tunnel couplings, J
(j)
± , with scaling parameter `, as

given by Eq. (3.34) using the system parameters in Table 3.1. The solid purple and

dashed red lines show J
(1)
± and J

(2)
± , respectively. The vertical dashed black line is the

value of ` corresponding to the crossover temperature Tc = 2mK. The couplings display

a rapid, exponential change from their initial values of t1 and t2 as ` increases. This high

temperature sensitivity even far above Tc is due to the large ratio t1/t2 = 10.

It must be stressed that the existence of the 0 eigenvalue is a direct consequence of

the Szsy term in the Hamiltonian which incorporates the teleportation contribution
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unique to the Majorana system, and that the scaling equations (3.34) would be hard

to obtain in any other system. In the absence of the Szsy term, the renormalization

would flow to the regular weak coupling limit of the ferromagnetic Kondo model.

A significant consideration is whether or not the fixed point J̄
(j)
± will be reached

in practice. The final value for ` is determined by the cutoff scale D and the renor-

malization stops when D becomes equal to the thermal energy kBT or any voltage

bias applied to the system. The crossover scale from the bare to the renormalized

values is obtained by setting 2ρλ` ∼ 1, which resolves to

kBTc ∼ D0e−1/2ρλ = D0e−ECD0/(t21+t22). (3.35)

But, since the J
(j)
± only renormalize for t1 6= t2, this only makes sense for substan-

tially different t1 and t2, as otherwise the changes in J
(j)
± are small. Substituting

realistic system parameters from Table 3.1, which imply Tc = 2mK, into Eq. (3.35),

we notice that the flow is very slow, and practically the fixed point is never reached.

Due to this it is also of little relevance if the fixed point remains finite when further

corrections beyond Poor Man’s scaling are taken into account. Such corrections

have an even slower renormalization flow and are always cut off before becoming

important.

3.3 Transport

A straightforward verification of the behaviour predicted by Eq. (3.34) can be

achieved by measuring the two terminal conductance of the topological supercon-

ductor through the Majorana states. Neglecting terms in Eq. (3.24) proportional

to J
(jj′)
z , which are a factor t/EC smaller than the anomalous tunnelling processes,

the effective tunnelling Hamiltonian is given by HT =
∑

k[J
(1)
± c†1kf +J

(2)
± c†2kf +h.c.],

where we define the composite fermion, f = d†e−iφ, and where the amplitudes J
(j)
±

are the results of the renormalization flow. This tunnelling Hamiltonian describes

transitions between the two states of the system in the low energy sector, namely,

|α〉 = |N, 0〉 , |β〉 = |N − 1, 1〉 , (3.36)

where we have written the states in the form |NC , nd〉.

3.3.1 Master Equation

To find the current through the nanowire as a result of HT , we use a standard Master

Equation approach, neglecting the influence of the excited states, since these have
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been taken into account already via the Schrieffer-Wolff Transformation. We begin

by considering how the probabilities of occupying |α〉 and |β〉 change with time,

Ṗα = Γβ→αPβ − Γα→βPα

Ṗβ = Γα→βPα − Γβ→αPβ,
(3.37)

where Γi→f is the scattering rate from |i〉 to |f〉 and consists of contributions from

both the left and right leads i.e. Γi→f = Γli→f + Γri→f . Imposing the steady-state

condition Ṗα = Ṗβ = 0, along with the normalisation condition Pα +Pβ = 1 we find

that,

Pα =
Γβ→α

Γβ→α + Γα→β

Pβ =
Γα→β

Γβ→α + Γα→β
.

(3.38)

Now, the current through the device is given by,

I = e
(
Γlβ→αPβ − Γlα→βPα

)
, (3.39)

since |α〉 and |β〉 correspond to states with 2N and 2N−1 electrons in the nanowire,

respectively. Note that we have used the scattering rates arising from the left lead,

but this choice is immaterial since any current through the device must be the same

at both leads. Substituting (3.38) into (3.39) we find,

I =
e

Γβ→α + Γα→β

[
Γlβ→αΓrα→β − Γlα→βΓrβ→α

]
, (3.40)

where we have used the fact that Γi→f = Γli→f + Γri→f and cancelled the two

Γlα→βΓlα→β terms. The scattering rates can be found by applying Fermi’s Golden

Rule which, in this case, becomes,

Γjβ→α =
2π

~
∑
k

|J (j)
± |2δ (εk + Eβ − E − Eα) f (εk − µj) , (3.41)

where εk is the energy of electrons in the lead, E is the energy of electrons in the

nanowire, Eα is the energy of the state |α〉, Eβ is the energy of the state |β〉, f is the

Fermi function and µj is the chemical potential of the jth lead. Since the system is

in the low energy sector, Eα = Eβ = EC
4
, E = 0 and so,

Γjβ→α =
2π

~
|J (j)
± |2f (−µj) ρ. (3.42)

Similarly,

Γjα→β =
2π

~
|J (j)
± |2 [1− f (−µj)] ρ, (3.43)
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with ρ the density of states in the leads. The factor of [1− f (−µj)] in (3.43)

accounts for the fact that there must be an unoccupied lead state for the |α〉 → |β〉
transition to take place. Now, we consider applying a voltage, V to the left lead,

this implies,

µl = eV, µr = 0, (3.44)

and so the scattering rates are given by,

Γlβ→α =
2π

~
|J (1)
± |2f (−eV ) ρ,

Γrβ→α =
2π

~
|J (2)
± |2f (0) ρ,

Γlα→β =
2π

~
|J (1)
± |2 [1− f (−eV )] ρ,

Γrα→β =
2π

~
|J (2)
± |2 [1− f (0)] ρ.

(3.45)

Substituting the relations from (3.45) into Eq. (3.39), we find that,

I =
2πe

~
|J (1)
± |2|J

(2)
± |2

|J (1)
± |2 + |J (2)

± |2
[f (−eV )− f (0)] ρ, (3.46)

then using the standard expression for the Fermi function this becomes,

I =
πeρ

~
|J (1)
± |2|J

(2)
± |2

|J (1)
± |2 + |J (2)

± |2
tanh

(
eV

2kBT

)
. (3.47)

The differential conductance G = dI
dV

is therefore given by,

G =
πe2ρ

2~kBT
|J (1)
± |2|J

(2)
± |2

|J (1)
± |2 + |J (2)

± |2

[
cosh

(
eV

2kBT

)]−2

. (3.48)

In the V � kBT limit this simplifies to,

G ' K
|J (1)
± |2|J

(2)
± |2

|J (1)
± |2 + |J (2)

± |2
, (3.49)

where K = π2e2ρ
hkBT

. This result can also be obtained through the standard Green

Function analysis of the resonant level model as in, for example, Ref. [145].

3.3.2 Conductance Signatures

In principle, the conductance offers two signatures of the many-body state found

above. Firstly, at constant temperature, T , the variation of conductance with chang-

ing t1, t2 asymmetry is markedly different for T � Tc and T � Tc. In the former

case, the conductance is G = K
t21t

2
2

t21+t22
, whereas, at low temperatures, we find that

G ' K
2t21t

2
2

[
2t21t

2
2 + (t21 − t22)

2
e−α
]

(t21 + t22)
3 at T � Tc, (3.50)
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where α = ln(kBT/D0)
ln(kBTc/D0)

. However, for realistic system parameters, Eq. (3.50) implies

that, even though Tc may be just about realisable in experiments, the temperature

at which true fixed point behaviour is achieved is several orders of magnitude lower.

For example, at a temperature of Tc/10 we find that e−α ≈ 0.2, whereas at the fixed

point e−α = 0.

We therefore propose a further test for the existence of a many-body state, at

T > Tc. Fixing the system parameters, but varying T , results in a distinctive

signature, as shown in Fig. 3.6. Here we plot the product of G and T , to remove

the direct 1/T dependence in Eq. (3.49).

0.5 1.0 1.5 2.0
T (K )

0.01
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e2 K
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Figure 3.6: Variation of conductance amplitude with temperature, adjusted to account

for generic 1/T dependence, as given by Eqs. (3.34) and (3.49). Note that the origin

of the horizontal axis is offset for clarity. The solid blue line depicts the result for a

many-body state whilst the dashed orange line corresponds to the bare tunnel couplings.

The dot-dashed magenta line is a high temperature (T � Tc), high asymmetry (t1 � t2)

approximation, G = Kt22
(
e−2α − 4e−α + 4

)
, where α = ln(kBT/D0)

ln(kBTc/D0) . The parameters used,

from Table 3.1, imply Tc = 2mK.

It is remarkable that, even at temperatures well above Tc, there is a clear difference

between the scaled result and the result found from the bare tunnel couplings.

That the influence of the many-body state extends to such high temperatures is a

result of the strong J
(jj′)
± dependence in both the numerator and denominator of Eq.

(3.49). Observation of the characteristic behaviour shown in Fig. 3.6 appears to be

within reach of current experiments and would provide compelling testament to the

importance of many-body effects in this system.
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3.4 Conclusions

Given the impact that the Kondo effect has had on the understanding of electron cor-

relations in condensed matter, as well as the development of theoretical techniques

to investigate those correlations, it seems plausible that some kind of topologically

non-trivial analogue to the Kondo effect might be the source of deep insights into

the sort of novel physics that can be facilitated by topological matter. Taking this

idea as our motivation we have, in this chapter, investigated a floating topological

superconductor. This setup represents a topologically non-trivial parallel to a tra-

ditional Kondo system: The Majorana modes of the superconducting condensate

are analogous to magnetic impurities or quantum dots in the familiar Kondo effect,

whilst the metallic leads fill the role of the electronic continuum.

One might initially expect this system to exhibit something close to conventional

Kondo physics, possibly with a slight modification due to the presence of Majorana

modes instead of localised topologically trivial states. However, as we have seen

in this chapter, this is not the case. By using a Schrieffer-Wolff transformation to

eliminate the high energy sector arising from capacitive coupling of the topological

superconductor, we have found an effective Hamiltonian for the system that incor-

porates non-local scattering events dependent on the Majorana parity. Applying a

scaling analysis to this effective Hamiltonian then reveals that the system flows to

an intermediate fixed point, rather than the strong/weak coupling associated with

the Kondo model. Indeed, it is clear that the existence of this intermediate scaling

is directly contingent upon the presence of the Majorana Bound States.

This intermediate scaling behaviour should, in principle, be observable via a two

terminal transport measurement in which we would anticipate the product of con-

ductance and temperature, GT , displaying a distinct maximum at low temperatures.

The physics described above constitutes much more than simply a Kondo ef-

fect with Majoranas. Rather, it results from an involved interplay of Kondo and

Majorana physics, motivating us to use the term Kondorana to describe this novel

behaviour. As we shall see in the next chapter, Kondorana physics is not the only

qualitatively distinct effect that can arise from electron-electron interactions in topo-

logically non-trivial systems.
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Chapter 4

Non-Equilibrium Charge

Dynamics in Majorana-Josephson

Devices

4.1 Introduction

In this chapter, we explore how the topologically protected Majorana bound states

in a topological superconductor affect the non-equilibrium charge dynamics of a

Josephson junction. The Josephson effect is one of the most prominent manifesta-

tions of superconducting phase coherence [106]. Whilst the effect owes its existence

to microscopic quantum objects (Cooper Pairs), at the macroscopic level it is es-

sentially classical in nature. There are, however, other phenomena associated with

superconductors that do not admit such a classical description. As we discussed

in Chapter 2, it was realised over thirty years ago [44] that the competition be-

tween charging and Josephson energies in a Josephson junction results in a system

whose behaviour is directly analogous to that of an electron in a periodic potential.

Just as the electron’s properties depend periodically on its momentum, with period

given by the reciprocal lattice vector, the observables associated with the junction

are 2e periodic in charge, where e > 0 is the magnitude of the electronic charge.

This periodicity is, fundamentally, contingent upon charge-phase conjugation and

constitutes a macroscopic quantum phenomenon. That such a state of affairs can

exist is interesting in its own right, and some experimental progress has been made

in demonstrating that remarkable effects, such as Bloch Oscillations, can indeed be

observed in such systems [116, 117]. However, the 2e periodicity acts as a barrier

to interrogation of the system, since for ideal superconductors all sub-gap charge

perturbations must be in multiples of 2e and therefore do not change the state of
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the system.

By introducing a pair of MBSs into the system, we are not only able to over-

come this obstacle, but also exploit the non-locality inherent to the MBSs. Taken

together, the MBSs constitute a single fermionic state at zero energy which, due to

interactions, persists even in rather short systems [146, 147]. The MBSs therefore

allow single electrons from an external reservoir to tunnel into and out of the system,

thereby permitting perturbations of the junction’s electronic state in a way that is

qualitatively distinct from the Cooper pair processes considered previously. Further-

more, the delocalised nature of the fermionic state corresponding to the two MBSs

means that it permits current flow over an extended distance through the TSC. This

non-local nature contrasts with the sub-gap quasiparticles that have been considered

previously [148–152], which are believed to be due to thermal or photonic excitation

and comprise a continuum of states [153]. As we shall see, it is this current through

the TSC that allows controlled sub-gap perturbations of the Josephson junction.

We will develop the theoretical formalism necessary to characterise such MBS medi-

ated single-particle processes, and discuss the consequences of their existence on the

charge dynamics of the Josephson junction. We will find that the system exhibits

a rich variety of dynamic regimes which can be explored experimentally by varying

its electrical inputs.

In Section 4.2 we will discuss the theoretical framework required to describe the

dynamics of the Majorana-Josephson system. A thorough analysis of these dynamics

is presented in Section 4.3, and the chapter concludes with a summary of the salient

points of the Majorana-Josephson system in Section 4.4. Unless explicitly noted

otherwise, the parameter values in Table 4.1 were used to produce all plots shown

in this chapter. Furthermore, whenever a time average of V or IX was carried out,

the average was performed over an interval of 0.1µs.

4.2 Majorana-Josephson Hamiltonian

We consider the setup shown in Fig. 4.1, in which a one dimensional floating topo-

logical superconductor which has MBSs at its ends is coupled to three normal metal

leads and connected, via a weak tunnelling junction, to a grounded s-wave supercon-

ductor. The behaviour of this system is the result of three distinct factors, namely

charging energy, Josephson coupling and the MBSs. In this section we describe

how we model these three components. The charging energy and Josephson cou-

pling together give rise to quasicharge, which we discussed at length in Section 2.3
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Parameter Symbol Value

Temperature T 0.05K

Josephson Coupling EJ 0.02meV

Charging Energy EC 0.1meV

Quasiparticle Conductance G e2/h

Lead-TSC Tunnelling Coefficient Γ1,2 1011s−1

Inter-Lead Voltage V1,2 0

Table 4.1: Representative parameters for the Majorana Josephson devices studied in

this chapter. Values based in part on Refs. [86, 116,117].

and we briefly review here in Subsection 4.2.1, whilst the evolution of quasicharge

due to driving current is covered in Subsection 4.2.2. The MBSs mediate a single-

particle tunnelling process between the metallic leads and TSC, which is described

in Subsection 4.2.3.

4.2.1 Quasicharge and Band Structure

A setup very similar to Fig. 4.1 has previously been investigated in both theoret-

ical [45, 119–122, 126, 133] and experimental [86] work, with the setup here being

distinguished by the addition of a current biased Josephson coupling. It is therefore

straightforward to write down the Hamiltonian associated with the TSC [44] (see

also Ref. [148]),

Hsc =
Q2

2C
− EJ cos (φ) , (4.1)

where Q is the total charge difference across the Josephson junction between the

TSC and s-wave superconductor, C is the capacitance of the Josephson junction

and φ is the phase of the TSC relative to the s-wave superconductor. As with all

superconductors, the TSC obeys the charge-phase commutation relation,

[φ,Q] = 2ei. (4.2)

Using this, we rewrite (4.1) in terms of φ only,

Hsc = −EC
∂2

∂ (φ/2)2 − EJ cos (φ) , (4.3)

where EC = e2

2C
. Since the potential term in this Hamiltonian is periodic in φ, the

solutions will take the familiar, periodic, Bloch form. In particular, the energies of
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Figure 4.1: A floating topological superconductor (blue) hosting Majorana Bound

States, γ1,2 is coupled to normal metal leads (yellow) with tunnelling energies λ1,2 and

joined via an insulating weak link (white) to a grounded s-wave superconductor (red).

A bias current I is passed through the Josephson junction. A transverse current IX is

established between the two metal leads, via the TSC, when there is a potential difference

between them.

the Hamiltonian are given by Es (q) where s is a band index and Es (q) = Es (q + 2e).

The quasicharge, q, is directly analogous to the quasimomentum in a crystal lattice.

It corresponds to the total charge on the TSC, modulo 2e. The first two energy

bands of Eq. (4.3) are shown as a function of q in Fig. 4.2. Throughout our analysis

we will assume that the system is always in the lowest energy band and neglect inter-

band processes. The justification for this approximation is as follows. There are two

main mechanisms via which the Majorana-Josephson device might be excited to the

second, or higher, energy bands in quasicharge space shown in Fig. 4.2. The first of

these is straightforward thermal excitation, which has the usual probability,

PT = exp

(
− Eg
kBT

)
, (4.4)

where Eg is the energy gap between the first and second bands. For the system

parameters considered throughout this work, we find that, even at q = ±e where

Eg takes its lowest value Eg ≈ EJ , the excitation probability is only P ≈ 0.01.

This indicates that thermal excitation is likely to have a negligible impact and we

therefore do not consider its influence in our analysis of the Majorana-Josephson

device.

Of potentially greater significance for inter-band transitions is Landau-Zener
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(LZ) tunnelling. The probability of this leading to an inter-band transition is [149],

PZ ' exp

(
− πeE2

J

~EC |I|

)
, (4.5)

where |I| is the bias current applied across the Josephson junction. Substituting in

our system parameters, we find that PZ ≈ 0.5 for a bias current I = 5nA and that

PZ is negligible only for |I| . 0.1nA. Hence, as we shall see, the rate of LZ tunnelling

is appreciable in our system for most bias current values considered in this chapter.

Despite this, we suggest that LZ tunnelling can be neglected in a description of

the charge dynamics of the system. The reasoning behind this suggestion is that,

whilst LZ tunnelling does mediate an inter-band transition in the vicinity of the

quasicharge zone boundary, it does not change the value of the quasicharge. The

effect of LZ tunnelling is just to increase the rate of Majorana tunnelling, given by

Eq. (4.24) below, since the transition to a higher energy band causes subsequent

Majorana tunnelling events to yield a more negative charging energy difference,

δEch. However, at low temperatures, exp
(
δEch
kBT

)
' 0 near the zone boundary, even

in the lowest band and so the slightly enhanced tunnelling rate due to LZ transitions

to the higher band is of little relevance. This point will, perhaps, be clarified by the

exposition given in Subsection 4.2.3.

4.2.2 Slow Quasicharge Evolution

In addition to the charging and Josephson energies of the superconductor, the total

Hamiltonian of the system also includes the current-phase interactions [111],

VI = − ~
2e
I (t)φ, Vq =

~
2e
Iqφ, (4.6)

in which I(t) is the (possibly time dependent) bias current applied to the junction

and Iq is a leakage current arising from the voltage across the Josephson junction

associated with charge accumulation and carried via sub-gap quasiparticles in the

superconductor, which exist independently of the MBSs. The exact origin of these

quasiparticles is uncertain, indeed, they may have multiple sources, with the dom-

inant source depending on the sample in question, but the existence of the quasi-

particle current is an empirical fact [154] and so we include it in our model without

overly concerning ourselves with its microscopic origin. Substituting Es (q) for the

contribution to the Hamiltonian that comes solely from the superconductor, we see

that the total junction Hamiltonian is given by,

HJJ = E(s) (q)− ~
2e
I (t)φ+

~
2e
Iqφ. (4.7)
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Figure 4.2: The band structure corresponding to Eq. (4.3) for EC = 0.1meV and

EJ = 0.02meV. Only the first (red) and second (blue) bands are shown. Note that the

bandwidth of the first band is ∼ EC whilst the band gap between the two bands is ≈ EJ .

Also shown are two Majorana tunnelling events at a typical value of q ≈ 0.5e. The solid

black line represents tunnelling of an electron from the TSC to a metallic lead, thereby

reducing q by e. The dashed black line represents tunnelling of an electron from a metallic

lead to the TSC, followed by a Bloch reflection in which a Cooper pair tunnels from the

TSC to the s-wave superconductor, with the net result being that, once again, q is reduced

by e.
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As the first term in Eq. (4.7) depends only on q it is clear, from the commutation

relation Eq. (4.2), that the time evolution of q depends only on the phase-current

interaction terms and is given by, q̇ = I(t) − Iq. The quasiparticle current, Iq, is

written formally as the product of quasiparticle mediated conductance, G (ω), and

voltage, V , across the junction, Iq = G(ω)V . In the single band approximation V is

simply equal to dE0/dq. Furthermore, the quasiparticle conductance is a constant

G(ω) = G, provided [44] ω � ∆
~ . Typically, ∆ ≈ 0.1meV and so G is constant for

ω � 1011s−1, which is true throughout the range of driving frequencies we study.

Nevertheless, since G is a function of quasiparticle density, the exact value of G will

vary depending on the superconductor and its environment [155]. Whilst this does

introduce a random component to the value of G, and by extension Iq, previous

work indicates that, for any given sample, G may be treated as constant over the

timescales considered in this chapter [152, 154]. We therefore arrive at a Langevin-

type equation for the quasicharge,

q̇ = I(t)−GdE0

dq
. (4.8)

This evolution of the quasicharge is a result of both the bias current and the band

structure resulting from the charging and Josephson energies. By analyzing Eq.

(4.8) we conclude that the system exhibits two regimes. For low currents, specifically,

I

G
< max

(
dE0

dq

)
, (4.9)

the quasicharge tends to a fixed point, q0 where,

dE0

dq

∣∣∣∣
q0

=
I

G
. (4.10)

Whilst for currents greater than those in Eq. (4.9) the quasicharge never assumes

a constant value. From Eq. (4.8), q̇ > 0 at all times and so, since q is only defined

modulo 2e, the system executes Bloch oscillations with period,

τB =

∫ +e

−e

dq

I −GdE
dq

. (4.11)

We therefore define the Bloch oscillation threshold current, IB = Gmax
(

dE0

dq

)
.

Physically, these Bloch oscillations correspond to tunnelling of a Cooper Pair across

the Josephson junction. These two cases, a static quasicharge for bias currents given

by Eq. (4.9) and Bloch oscillations at larger currents, are illustrated in Fig. 4.3 (a)

and (b) respectively, in the absence of Majorana tunnelling.
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Figure 4.3: Evolution of quasicharge with time in the case of no Majorana tunnelling,

with initial quasicharge q0 = −0.6e. (a) A bias current of 4.0nA results in the quasicharge

tending to a fixed value, q = 0.52e. (b) A bias current of 8.0nA gives rise to Bloch

oscillations, as expected for IB = 6.2nA.
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4.2.3 Majorana-Mediated Single Particle Tunnelling

The results described above are a generic feature of Josephson junctions with a

charging energy and do not depend upon the presence of MBSs. However, by con-

sidering the setup in Fig. 4.1 we find that the system has the potential to exhibit

a much wider range of interesting phenomena when accompanied by MBSs. The

presence of MBSs is notable, not only because they offer the possibility of single-

particle tunnelling into the floating superconductor, below the superconducting gap,

but also because their non-local nature enables transmission of current across the

TSC. In this respect, the Majorana-Josephson device is essentially identical to the

Kondorana setup considered in Chapter 3.

To determine the effects of the tunnelling process, we begin by finding the tun-

nelling rates associated with the MBS. The Hamiltonian describing tunnelling be-

tween the normal metallic leads and superconductor has been found previously by

projecting the operators of the electrons in the superconductor onto an MBS mani-

fold [66] and is given by,

HT =
∑
j,k

λjc
†
j,kγje

− iφ
2 + h.c., (4.12)

where j = 1, 2 indexes the two leads, λj are the tunnelling energies, cj,k is the oper-

ator for a fermion in lead j with momentum k and γj are the Majorana operators.

Equation (4.12) is identical to Eq. (3.1), but is written in terms of Majorana op-

erators, γj, rather than the fermion operators, η, with λj used for the tunnelling

energies to avoid confusion with the time, t. The operator e−
iφ
2 corresponds to

annihilation of an electron in the superconductor and is required to ensure charge

conservation. This factor, in concert with the charge conserving representation of

γ gives rise to two tunnelling channels. Not only does the system exhibit normal

tunnelling, in which electrons tunnel from the metallic leads directly to the MBSs,

it also supports anomalous tunnelling, which involves splitting or forming a Cooper

pair as part of the tunnelling process [45, 120, 121]. Note that we assume negligible

overlap of MBS γ1(2) with lead 2(1), which is valid provided that the TSC is much

longer than its coherence length. Even if this length condition were not true, a

small overlap of MBS γ1(2) with lead 2(1) would not significantly affect our results.

Furthermore, self-interaction effects of MBSs work against the energy splitting by

the overlap and can cause a further pinning of the MBSs to zero energy [146, 147].

The absence of spin degeneracy in Eq. (4.12) is due to the spin polarisation of the

MBSs [144], allowing electrons to be treated as spinless fermions for the purposes of

tunnelling, despite the lead electrons being spinful. The spin polarization is inessen-

tial to the results reported in this chapter, but nonetheless is a feature of MBSs and
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may have some relevance in the case of coupling to a more specialised system. The

tunnelling rate corresponding to the MBSs may be calculated by applying Fermi’s

Golden Rule,

Γ =
2π

~
∑
i,f

|〈f |HT |i〉|2wiδ (Ei − Ef ) , (4.13)

where i and f label the initial and final states, respectively, wi is a weighting factor

associated with the initial states and Ei,f are the energies of the initial and final

states. We first consider the process in which an electron tunnels from the left (j = 1)

or right (j = 2) metallic lead to the TSC, a process denoted by p, for particle. We

may rewrite Eq. (4.13) in terms of |i〉 only, by noting that the tunnelling Hamiltonian

given by Eq. (4.12) implies,

|f〉 = e
iφ
2 γjcj,k |i〉 . (4.14)

Hence, Eq. (4.13) becomes,

Γ
(p)
j =

2π

~
∑
i

∣∣∣〈i| c†j,kγje− iφ2 λje iφ2 γjcj,k |i〉∣∣∣2wiδ (Ei − Ef ) , (4.15)

where we have not explicitly written out the conjugate term in HT , since it makes

no contribution. Using the identities, γ2
j = 1

2
and

∣∣∣〈i| c†j,kcj,k |i〉∣∣∣2wi = f (εk), with f

the Fermi function and εk the energy of electrons in the metallic leads, we arrive at

the expression,

Γ
(p)
j =

πλ2
j

~

∫
f (εk) δ (Ei − Ef ) ρ dεk, (4.16)

in which we have used the density of states, ρ, to write the sum over the initial states

as an integral over lead electron energies. Now, for tunnelling of electrons from the

metallic leads to the TSC, the initial energy of the system is given by,

Ei = εk − eVj, (4.17)

where we assume a lead bias Vj. The final energy of the system is,

Ef = δEch(q) + εγ, (4.18)

where εγ is the energy associated with occupation of the MBS pair due to hybridi-

sation, which we neglect from now on. By δEch(q) we denote the (quasicharge

dependent) energy change on tunnelling of a single particle into or out of the TSC

from the leads. We note that δEch depends on quasicharge alone, and not whether

tunnelling is to or from the TSC. This is a direct consequence of the particle-hole

symmetry imposed on the system by the Josephson coupling. To be more specific,

the 2e periodicity in quasicharge mentioned above means that tunnelling of either a
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particle or hole from a lead into the TSC results in the same energy change δEch (q)

in both cases, for any q, as shown by the solid and dashed arrows in Fig. 4.2.

Substituting the expressions for Ei and Ef into Eq. (4.16) we find,

Γ
(p)
j =

πλ2
j

~

∫
f (εk) δ (εk − eVj − δEch) ρ dεk =

πρλ2
j

~
f (δEch + eVj) . (4.19)

The calculation is similar for the case where holes tunnel from the metallic leads to

the TSC and we find that,

Γ
(h)
j =

πλ2
j

~

∫
(1− f (εk)) δ (Ei − Ef ) ρ dεk. (4.20)

In this hole tunnelling case, the initial and final energies of the system are given by,

Ei = εγ

Ef = δEch(q) + εk − eVj,
(4.21)

and so the tunnelling rate becomes,

Γ
(h)
j =

πλ2
j

~

∫
(1− f (εk)) δ (eVj − δEch − εk) ρ dεk, (4.22)

where, once again, we neglect the MBS hybridisation energy, εγ. After performing

the integral, and some algebraic manipulation, we find that,

Γ
(h)
j =

πρλ2
j

~
(1− f (eVj − δEch)) =

πρλ2
j

~
f (δEch − eVj) . (4.23)

Combining Eqs. (4.19) and (4.23) immediately gives the total tunnelling rate be-

tween the metallic leads and TSC due the presence of MBSs,

ΓMBS = Γ1ζ (δEch, V1) + Γ2ζ (δEch, V2) , (4.24)

where Γj = πρλ2
j/~, and ζ is a combination of particle and hole Fermi functions

given by,

ζ (δEch, V ) =
1

e
δEch+eV

kBT + 1
+

1

e
δEch−eV
kBT + 1

, (4.25)

where T is the electron temperature and kB is the Boltzmann constant. We have

assumed that the density of states is identical in both the left (1) and right (2)

leads (although this is not essential for Eq. (4.24) since any difference between the

density of states can absorbed into the difference between Γ1 and Γ2), but that each

lead has a voltage bias V1,2. Note that the simple form of Eq. (4.24) is due, in

part, to the 2e periodicity of q, discussed above, that is imposed by the Josephson

coupling and results in identical energy changes for particle and hole tunnelling

events. For an island without this 2e periodicity, particle and hole tunnelling events
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are inequivalent and consequently have different charging energies associated with

them, which results in a more complicated form for ΓMBS. However, as can be seen

from Eq. (4.25), the inherent particle-hole symmetry of Eq. (4.24) is broken by a

finite bias voltage, V1,2.

The impact of Eq. (4.24) on the charge dynamics of the Majorana-Josephson

device can be summarised as follows. At low temperatures, kBT � |δEch ± eV |,
we see from Eq. (4.25) that ζ ' 0 when both δEch + eV > 0 and δEch − eV > 0,

whilst if δEch + eV < 0 or δEch − eV < 0, or both expressions are less than zero,

then ζ is of order 1 and tunnelling is likely. Since the factor Γ1,2 in Eq. (4.24)

is typically very large, the above observation implies that, in the low temperature

limit, ΓMBS transitions rapidly from zero to some very large number, as the values

of δEch and eV change. From the expression for the charging energy, δEch, we find

that, in the T = 0 limit, the tunnelling rate ΓMBS is zero for |q| < e
2

(
1− eV

EC

)
and

very large otherwise. At finite temperatures the step boundary between tunnelling

and non-tunnelling regimes is softened, but nonetheless we can identify an absolute

value of the quasicharge above which tunnelling proceeds at a rapid rate and below

which tunnelling is very slow. In particular, as the applied voltages, V1,2, tend to

zero, the threshold value of the quasicharge tends to |q| = e/2.

In addition to the MBSs there could be, in principle, other sub-gap quasiparticle

states in the TSC [156], which may originate from thermal excitations or unin-

tentional electromagnetic irradiation [153]. Previous experimental studies on su-

perconducting qubits [154, 155] have found that the single-particle tunnelling rate

corresponding to these quasiparticles is, ΓQP ∼ 106s−1 which is much less than the

typical rate associated with the MBSs, ΓMBS ∼ 1011s−1, and so we safely neglect

the influence of these non-topological quasiparticles. It is worth noting that, even

if ΓQP and ΓMBS were comparable, the presence of the MBSs would give rise to

qualitatively different effects from the quasiparticles. This is due to the well defined

energy of the MBSs, compared with the continuum of energies adopted by the quasi-

particles, which results in ΓMBS being proportional to a Fermi function, whilst ΓQP

is proportional to a Bose function and so the two rates have qualitatively different

temperature, EC and V1,2 dependence. Furthermore, the delocalised nature of the

single particle state associated with the MBSs enables charge transport that would

not necessarily be possible in the presence of non-topological quasiparticles alone.

A final point to consider in regard to tunnelling between the TSC and metallic leads

is the influence of memory effects. That is to say, the impact of a given tunnelling
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event on the probability of subsequent tunnelling events taking place. The most

significant effect is that tunnelling changes the total charge on the TSC island,

and the influence this has on future tunnelling probabilities is captured in the δEch

terms that appear in Eq. (4.25). In principle there is an additional process which

should be considered, in which the tunnelling event modifies the quantum state of

the TSC beyond simply changing the total number of electrons. In this work we

do not take into account the impact of this second consideration, for two reasons:

firstly, the change in tunnelling probability associated with this process is likely to

be negligible compared to the influence of macroscopic charging effects; secondly, a

previous study into the relaxation of charge excitation “hotspots” in current biased

superconductors [157] found that the system typically relaxed after around 50ps,

which is shorter than the time scale of almost all the processes described in the rest

of this chapter. This figure, 50ps, is likely to be much longer than the time scale of

the processes we are neglecting, since it relates to an essentially classical excitation

that is less susceptible to environmental damping. We therefore conclude that, as

quantum relaxation is faster than classical relaxation, and classical relaxation takes

around 50ps which is shorter than the time scales of processes studied in this chapter,

we are justified in neglecting the effect of essentially quantum changes to the state

of the system. Nevertheless, it is possible that the very fast “ringing” phenomena

which is described later will be modified by quantum memory effects and this would

be an interesting effect to study theoretically or experimentally in the future.

4.3 Device Dynamics

Several parameters influence the behaviour of the Majorana-Josephson system, such

that it is impractical to simultaneously capture the effect of all of them in a single

analysis. However, in the case of a static bias current, there are three main quantities

of interest, namely the magnitude of the bias current, I that appears in Eq. (4.8), the

tunnelling rates from the normal leads to the TSC, Γ1,2, and the bias voltages, V1,2,

of the leads. By considering only the impact of variations in these three quantities,

it is possible to describe the salient features of the Majorana-Josephson system’s

dynamics in an easily accessible manner.

We determine the dynamics of the Majorana-Josephson system by solving Eq.

(4.8) with the classical Runge-Kutta algorithm and incorporate the influence of the

MBSs by using a Monte Carlo approach to find the tunnelling rate given by Eq.

(4.24). To appreciate the method in more detail, we first note that the dynamics

of the Majorana-Josephson system can be understood with reference to the qua-
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sicharge, q(t), and so the numerical approach is essentially concerned with finding

this quantity for a given set of system parameters and then using q(t) to find any

other variable desired.

The dynamics of q(t) are described by Eq. (4.8) and we integrate it using the

standard Runge-Kutta 4th order algorithm. To obtain E0(q), on the right hand side

of Eq. (4.8), we must find the ground state energy of the Hamiltonian, Hsc, given

by Eq. (4.3). As Hsc is of the Bloch form, we take as our ansatz the wave function,

Ψ =
∑
m

a(q)
m eiφ(

q
2e

+m), (4.26)

with m ∈ Z. Substituting this into the Schrödinger equation with Hsc gives,∑
m

{
−4EC

( q
2e

+m
)2

a(q)
m eiφ(

q
2e

+m)

+
EJ
2

(
a(q)
m eiφ(

q
2e

+m+1) + a(q)
m eiφ(

q
2e

+m−1)
)

+Ea(q)
m eiφ(

q
2e

+m)
}

= 0.

(4.27)

Relabelling indices as appropriate and requiring that each eiφ(
q
2e

+m) vanishes, we

find,

− 4EC

( q
2e

+m
)2

a(q)
m +

EJ
2

(
a

(q)
m−1 + a

(q)
m+1

)
+ Ea(q)

m = 0, (4.28)

which represents an infinite set of simultaneous equations. Note that, since the

potential term in Hsc is proportional to cos(φ), a
(q)
m couples only to a

(q)
m±1. It turns

out that the truncation, −3 ≤ m ≤ 3 is a very good approximation for our purposes.

The energy of the lowest band, E0(q), can then be found by computing the lowest

eigenvalue of the 7 × 7 matrix corresponding to Eq. (4.28) for values of q in the

range −e < q ≤ e.

The smooth evolution of q(t) by Eq. (4.8) is interrupted by the sudden charge

jumps caused by the tunnelling into and out of the MBSs. We therefore supplement

the equation of motion by checking for single particle tunnelling during each time

step of the integration, which is done in the usual way by comparison of a random

number in the interval [0, 1] with ΓMBS∆t, where ∆t is the integration time step.

Since tunnelling may occur through both leads simultaneously two independent

checks are performed for the left and right leads. Furthermore Bloch reflections and

oscillations are implemented when appropriate.

Having established q(t) and E0(q), the junction voltage at any time can be found

using the relation V = dE0/dq, which is evaluated numerically. The transverse

current IX is calculated by a minor addition to the Runge-Kutta algorithm which

counts the net flow of charge between the metallic leads through the TSC.
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Figure 4.4: Regime diagram for the Majorana-Josephson system, plotted in terms of

bias current, I, across Josephson junction and tunnelling rate Γ1,2 = Γ1 = Γ2 from normal

leads to TSC. The SQ regime corresponds to a constant quasicharge with no tunnelling,

in the MT regime quasicharge intermittently changes by 1e due to tunnelling via MBSs,

whilst in the BO regime the junction exhibits both Bloch oscillations and MBS mediated

tunnelling. SQ-MT and MT-BO regime boundaries are shown in blue and red, respectively.

Solid lines indicate regime boundaries for bias voltages V2 = −V1 = 0.0 or 0.1mV, whilst

dashed lines correspond to bias voltages of V2 = −V1 = 0.03 or 0.07mV, with arrows

indicating increasing voltage magnitude. Note that at a bias voltage of 0.1mV the SQ

regime is extinguished and no SQ-MT boundary is visible. The parameters EC = 0.1meV

and EJ = 0.02meV imply that Iθ/e = 2.4× 1010s−1 and IB/e = 3.9× 1010s−1.
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4.3.1 Time Evolution of Quasicharge

Quasicharge is the most basic quantity upon which other dynamic variables depend,

and so we begin by establishing a comprehensive picture of quasicharge dynamics

throughout the whole of the system’s parameter space. This information is presented

in the regime diagram shown in Fig. 4.4.

We sort the behaviour of the system into three broad categories: Static Qua-

sicharge (SQ), for which the bias and leakage currents in Eq. (4.8) exactly balance

and the quasicharge remains at a constant value below 0.5e; Majorana Tunnelling

(MT), where the bias current, I, is not sufficiently large to drive the quasicharge to

the zone boundary, but nonetheless is large enough to force the system into a regime

where MBS mediated tunnelling becomes appreciable; Bloch Oscillations and Majo-

rana Tunnelling (BO), in which tunnelling rates are appreciable, as in MT, but I is

sufficiently large to drive the quasicharge to the zone boundary, resulting in Bloch

oscillations. Note that whilst we denote this regime simply BO for convenience, the

dynamics of the system consists primarily of Majorana tunnelling, with occasional

Bloch oscillations. Examples of the different regimes are shown in Fig. 4.5. We

note, in particular, the difference between Fig. 4.5c and Fig. 4.3b, which highlights

the effect of the MBSs, namely enabling single particle tunnelling and consequently

suppressing Bloch oscillations. It is worth emphasising that choosing to classify the

Majorana-Josephson system according to these three regimes is somewhat arbitrary,

particularly in the case of BO since there is little meaningful physical distinction

between Bloch oscillations resulting from slow evolution of the quasicharge to the

zone boundary, as in BO, and those Bloch reflections caused by Majorana tunnelling

events that rapidly drive the system outside of the quasicharge Brillouin Zone, as

occurs in both BO and MT. Furthermore, the stochastic nature of the system be-

haviour means that the position, and indeed existence, of the regime boundaries in

Fig. 4.4 is not a universal property, but rather depends on the timescale over which

the system is studied. In the long time limit, the SQ regime no longer exists and the

MT-BO boundary is a line of constant I. Nevertheless, the classification shown in

Fig. 4.4 is meaningful, in that the behaviour of the system does change significantly

as its parameters change, but one should be cautious about interpreting Fig. 4.4 as

a phase diagram in the usual sense of the term.

It is straightforward to understand the general form of Fig. 4.4. The bias current

sets the long-time, zero-tunnelling, equilibrium quasicharge, in accordance with Eq.

(4.10).
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Figure 4.5: Examples of quasicharge behaviour for the three different regimes shown

in Fig. 4.4. (a) Static Quasicharge, SQ (I = 1.6nA). (b) Majorana Tunnelling, MT

(I = 4.8nA). (c) Bloch Oscillations, BO (I = 16.0nA). The red dashed outlines in (c)

indicate Bloch Oscillations.
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There are essentially three distinct bias current ranges:

• When the bias current is less than the threshold current for Majorana tun-

nelling, Iθ, we have,

I < Iθ = G
dE0

dq

∣∣∣∣
e/2

, (4.29)

and the system tends to a steady state with q < e/2.

• When the bias current is greater than Iθ, but less than the Bloch oscillation

threshold current, IB, we have Iθ < I < IB = Gmax
(

dE0

dq

)
and the equilibrium

quasicharge is in the range e/2 < q < e.

• At large bias currents, I > IB, the system does not adopt a stable value of q

but rather, in the zero-tunnelling limit, executes Bloch Oscillations.

Since the probability of MBS mediated tunnelling becomes very large for q > 0.5e

(if T ' 0, V1,2 = 0), for the system to be in the SQ regime, it is necessary that

I < Iθ, which is supported by Fig. 4.4. However, for high tunnelling rates, Γ1,2,

even at q . 0.5e the probability of tunnelling can be appreciable and so the SQ

regime persists only to lower values of bias current, as can be seen in Fig. 4.4.

Similarly, for I < IB there is no possibility of Bloch Oscillations, which is consis-

tent with the observation that the MT-BO regime boundary does not descend below

IB in Fig. 4.4. We also see that, as the tunnelling rate increases, the MT-BO bound-

ary shifts linearly to higher bias currents. In essence, an increase in the Majorana

tunnelling rate decreases the probability that the quasicharge will evolve slowly to

the zone boundary without undergoing a discrete jump due to Majorana tunnelling.

A larger bias current is therefore required to more quickly drive the quasicharge

towards the zone boundary. In Subsection 4.3.2 we shall discuss in more detail the

role that Majorana tunnelling has to play in the promotion or suppression of Bloch

oscillations.

4.3.2 Bias Voltage Dependence

Figure 4.4 also shows how the regime boundaries evolve on changing the bias volt-

ages, V1,2 in the left and right normal leads. The red and blue arrows indicate

increasing bias voltage magnitude. We see that the SQ-MT boundary shifts to

progressively lower values of bias current as |V1,2| increases. This is explained by

examining the role of bias voltage in Eq. (4.25). For V = 0 and T ' 0, the expo-

nential term in the denominator of ζ is large for δEch > 0 and so the tunnelling rate

is small for values of q corresponding to δEch > 0, viz. q < e/2. However, if V 6= 0,

71



then even when δEch > 0 one of the two exponentials in Eq. (4.25) will be small,

provided δEch ± eV < 0 in which case the tunnelling rate will be large despite the

charging energy associated with tunnelling being positive. As |V | increases, progres-

sively more positive values of δEch conform to the requirement δEch ± eV < 0 and

so the region in q-space where tunnelling rates are appreciable grows. That is to say,

if V = 0 tunnelling is only appreciable for |q| > e/2, but if V 6= 0, then tunnelling

is appreciable for |q| > e
2

(
1− V

EC

)
. The bias current, I, determines the equilibrium

value of the quasicharge according to Eq. (4.10) with lower I corresponding to lower

values of q0. Consequently, as |V | grows, increasing the range of quasicharge values

for which tunnelling is appreciable, the SQ region, where tunnelling is negligible,

corresponds to progressively lower values of the bias current.

The movement of the MT-BO regime boundary is, at first, more surprising. We

previously discussed how, at high tunnelling rates, Majorana tunnelling leads to

suppression of the BO region. We have also just seen how increasing bias voltage

results in Majorana tunnelling in more of the quasicharge space. We might, there-

fore, expect increasing bias voltage to suppress the BO regime, but from Fig. 4.4

we see that the opposite is true: as bias voltage increases, the BO regime grows. To

understand this result, we must fully appreciate the role that Majorana tunnelling

plays in inhibiting or promoting Bloch oscillations. For a Bloch oscillation to take

place, the quasicharge must evolve slowly to the zone boundary (as distinct from a

Bloch reflection which occurs whenever the quasicharge reaches the zone boundary,

slowly or by a sudden jump). Any processes which take the quasicharge closer to the

zone boundaries therefore promote Bloch oscillations, whilst those that take q fur-

ther from the zone boundaries inhibit Bloch oscillations. If tunnelling of a particle

or hole takes place when |q| > 0.5e then |q| decreases, whilst if tunnelling takes place

for |q| < 0.5e, |q| increases, i.e. moves closer to a zone boundary. It follows that

any change in the system parameters that increases the Majorana tunnelling rate

for |q| > 0.5e will decrease the probability of a Bloch Oscillation occurring, whilst

changes that increase the tunnelling rate for |q| < 0.5e will increase this probabil-

ity. Recalling the preceding discussion on the SQ-MT boundary’s movement with

increasing bias voltage, we see that non-zero V1,2 increases the total tunnelling rate

for |q| < 0.5e whilst having only a negligible impact for |q| > 0.5e, with the effect

becoming more pronounced at larger |V1,2,|. We therefore anticipate that the BO

region will grow as |V1,2| increases, which we see in Fig. 4.4 is indeed the case.
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4.3.3 Transverse Current Switching

We now consider the electrical properties of the Majorana-Josephson device, as

shown in Fig. 4.6. Considering the transverse current, IX , that is transmitted across

the TSC between the normal leads biased at V1,2, the system acts as a transistor

controlled either by the bias current, I, across the Josephson junction, or the bias

voltage, V1,2, across the TSC. Referring back to Fig. 4.4, IX = 0 when the system is

in the SQ regime: no tunnelling implies no transfer of charge from the leads to the

TSC and therefore no transverse current. In both the MT and BO regimes, tun-

nelling takes place at a high rate, resulting in an appreciable current. We note that

our analysis includes only first order sequential tunnelling processes, an approxima-

tion valid in the large EC regime where second order tunnelling processes are strongly

suppressed. Since the system is not gated to a charge degeneracy point [121], but

rather achieves charge degeneracy only intermittently due to the accumulation of

charge caused by the bias current, I, the zero bias peak that is often regarded as a

key characteristic of the MBSs does not contribute in a special way to IX . Instead

of remaining at the charge degeneracy point, the system is immediately driven away

to different charging values.

Fixing the bias current and changing V1,2 causes the SQ-MT regime boundary of the

device to shift, as depicted in Fig. 4.4. Provided that the bias current and tunnelling

rates are sufficiently low (such that the SQ regime is accessible in the first place)

the system will cross the SQ-MT regime boundary at some finite bias voltage and

transition from an insulating to conducting state, as shown in Fig. 4.6(b). The

exact voltage at which this occurs depends linearly on I and exhibits a non-linear

dependence on the tunnelling rate from leads to TSC. Similarly, if the bias voltage

is held at a sufficiently low value for the SQ regime to have a finite size, and the

bias current is increased, the system will cross the SQ-MT phase boundary and go

from the insulating to conducting state. This scenario is shown in Fig. 4.6(a). In

analogy with Vswitch, the position of this crossing, Iswitch, depends linearly on V1,2

and also non-linearly on the tunnelling rate, Γ1,2. A direct quantitative comparison

between the sensitivity of Vswitch(Iswitch) to I(V12) and Vswitch or Iswitch to Γ1,2 is not

particularly meaningful, due to the different dimensions of V1,2, I and Γ1,2. However,

from Fig. 4.4 it is possible to appreciate that, at least heuristically, the regime

occupied by the Majorana-Josephson system has a rather weak dependence on Γ1,2,

compared to the stronger dependence on V1,2 and I.
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Figure 4.6: Electrical properties of the Majorana-Josephson device. (a) Time averaged

IX vs. bias current, I, across the Josephson junction. (b) Time averaged transverse current

IX vs. bias voltage, V2 = −V1, between the leads and TSC. Arrows indicate the qualitative

change in (a) and (b) on changing |V1,2| and I, respectively. In (a), V2 = −V1 = 0.05mV

whilst in (b) I = 1.6nA.

74



4.3.4 Time Dependent Driving Currents

Thus far, we have concerned ourselves only with static driving currents, but we now

consider the effects of applying a time-varying bias current, I = I(t). In particular,

we imagine a current of the form I = IDC + IAC cos (2πft), with IDC , IAC > 0 and

study the response of the Majorana-Josephson system over a range of current am-

plitudes and frequencies.

There are two driving frequency-dependent quantities of interest: the voltage across

the Josephson junction, V = dE0

dq
, and the transverse current through the TSC,

IX . We note that whilst the presence of a frequency-dependent junction voltage

is a generic feature of any capacitive Josephson junction [152], the existence of a

transverse current IX is contingent upon the sub-gap Majorana bound states.

By considering the magnitudes of IDC and IAC relative to the current at which

MBS mediated tunnelling takes place, Iθ, given by Eq. (4.29), we identify three

different regimes of interest:

• The low bias regime, IDC , IAC � Iθ.

• The intermediate bias regime, IDC � Iθ, IDC + IAC & Iθ.

• The high bias regime, IDC & Iθ, IAC 6= 0.

These three regimes originate from the behaviour of q with varying driving frequency.

If driving is in the low current regime, IDC , IAC � Iθ, then I(t) < Iθ for all t and so

q never reaches a large enough value for Majorana tunnelling to be significant. In

the intermediate current regime, IDC � Iθ, IDC + IAC & Iθ, we see that I(t) ≶ Iθ,

depending on the value of t. We might therefore expect Majorana tunnelling to take

place at some point over one period of the bias current. However, this is not the case

at high frequencies where, even though I(t) > Iθ for some values of t, there is not

enough time for q to be driven to sufficiently large values for Majorana tunnelling

to take place. In the high current regime, IDC & Iθ, IAC 6= 0, if IDC − IAC > Iθ

then I(t) > Iθ for all t, whilst if IDC − IAC < Iθ then, as in the intermediate regime,

I(t) ≶ Iθ depending on the value of t. The crucial difference between this and the

intermediate regime is that, since IDC & Iθ, even as f →∞ the quasicharge is still

driven to large enough values for Majorana tunnelling to take place and so, unlike

the intermediate regime, there is no cut-off frequency. Note that, whilst there are

quantitative differences in the behaviour of I vs. f for the cases IDC− IAC > Iθ and

IDC − IAC < Iθ, there is no qualitative distinction between them and so we do not

divide the high bias current regime along these lines. To reiterate, the existence of
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three separate regimes is not so much a result of the value of I(t) at different times,

but rather the evolution of q at different frequencies.

The behaviour of the junction voltage, V , and transverse current, IX in each of

these three different regimes is shown in Fig. 4.7 and Fig. 4.8. With the exception

of Fig. 4.7(a), most of the features of these plots discussed below are contingent on

the presence of MBSs. The corresponding plots for the topologically trivial case are

not shown, since they add very little to the discussion.

In the limit of low bias currents, IDC , IAC � Iθ, the quasicharge takes a value of

q � e/2 at all times and so Majorana tunnelling is negligible. This immediately

implies both that the transverse current will vanish, IX = 0 and that the evolution

of q is determined entirely by Eq. (4.8). Furthermore, since q � e, the dispersion

of the lowest energy band can be accurately modelled as E0 = EC
e2
q2 and so the

evolution of q is described by the equation,

q̇ = IDC + IAC cos (2πft)− 2GEC
e2

q. (4.30)

The solution of this equation is elementary and gives q(t). Then, using the fact that

the voltage across the Josephson junction is given by V = dE0

dq
' 2EC

e2
q, we find that,

V =
2EC
e2

{
IACe

2

[
2GEC cos(2πft) + 2πfe2 sin(2πft)

(2GEC)2 + (2πfe2)2

]
+

[
q0 −

IDCe
2

2GEC
− 2IACe

2GEC

(2GEC)2 + (2πfe2)2

]
e−

2GEC
e2

t

+
IDCe

2

2GEC

}
,

(4.31)

with the exponential term unlikely to be significant, since it decays rapidly for typical

system parameters where GEC
e2
∼ 1010s−1. Over a long time interval (usually more

than 100ns) the sinusoidal and exponential terms in Eq. (4.31) average to zero and

we are left simply with the DC term,

〈V 〉δt→∞ '
IDC
G

, (4.32)

which is independent of frequency. However, if instead we consider the variance of

the average junction voltage, σ2
V = 〈V 2〉 − 〈V 〉2, then we find that,

σ2
V '

2 (ECIAC)2

(2GEC)2 + (2πfe2)2 , (4.33)

where we have neglected the rapidly decaying exponential terms in Eq. (4.31). We

therefore see that, whilst the junction voltage itself is frequency independent, the
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Figure 4.7: Time averaged voltage across Josephson junction, or variance of this voltage,

as a function of bias current frequency for three different regimes. In all cases Iθ = 3.8nA.

(a) IDC , IAC = 0.8nA � Iθ and so V (f) is approximated by Eq. (4.31), meaning that

〈V 〉t ' IDC/G. We therefore plot the variance of V (solid black line) and compare it

with the expected analytic result (dashed red line). (b) IDC = 0.8nA� Iθ, IAC + IDC =

4.8nA & Iθ and 〈V 〉t is suppressed below some cut-off frequency, fc, marked by a dashed

red line, whilst adopting a fixed value above it. (c) IDC = 4.0nA & Iθ, IAC = 4.0nA 6= 0

and the average junction voltage exhibits resonances at low frequencies, before increasing

to a constant value at higher frequencies.
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variance in the junction voltage has a driving frequency dependence which can be

measured experimentally. The solid black line in Fig. 4.7(a) is a plot of σ2
V gener-

ated by simulation and is plotted along with the analytic result (dashed red line).

As we would expect for a deterministic system, the analytic result is in excellent

agreement with the simulation.

If the DC component of the bias current, IDC is much less than the threshold current,

Iθ, but the sum of the DC and AC components, IAC , is greater than or similar

to Iθ, then the total bias current applied to the Josephson junction will oscillate

between values greater and less than the threshold current. By definition of Iθ, when

I > Iθ the quasicharge is driven to values greater than e/2, whilst when I < Iθ, the

quasicharge tends towards a fixed value less than e/2. For Majorana tunnelling to

take place, it is necessary that I > Iθ for long enough for the quasicharge to evolve to

a value q & e/2. Majorana tunnelling therefore occurs at low frequencies, but ceases

above some cutoff frequency, fc. This is clearly shown by the behaviour of IX in Fig.

4.8(a), where IX = 0 corresponds to no Majorana tunnelling. An approximate value

for fc can be calculated by considering the evolution of q according to Eq. (4.8). To

find an analytic approximation for this frequency, we begin with the expression for

q found by solving Eq. (4.8),

q ' IDCe
2

2GEC
+ IACe

2

[
2GEC cos(2πft) + 2πfe2 sin(2πft)

(2GEC)2 + (2πfe2)2

]
, (4.34)

where we have suppressed the rapidly decaying exponential term. Now, for Majorana

tunnelling to be negligible, we require that q < qc for all t, where qc is the smallest

value of the quasicharge for which tunnelling takes place at an appreciable rate.

In the T → 0 limit, qc = e/2, but at the finite temperatures typically achieved in

experiments on systems of the type we consider qc ≈ 0.4e. We therefore proceed by

differentiating Eq. (4.34) with respect to t and finding the maximum value of q at

any time, this is given straightforwardly by,

qmax =
IACe

2√
(2GEC)2 + (2πfe2)2

+
IDCe

2

2GEC
. (4.35)

Setting qmax = qc and solving for f gives the required expression for the cut-off

frequency in the intermediate bias regime,

fc =
1

2πe2

( eIAC
qc
e
− eIDC

2GEC

)2

− (2GEC)2

 1
2

, (4.36)

where qc is the smallest magnitude of quasicharge for which Majorana tunnelling

occurs at a significant rate. Taking qc = 0.4e and using the same system parame-
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ters as in Fig. 4.8(a), the above formula predicts fc = 11GHz, which we see is in

reasonable agreement with the simulation. Note also that, just below fc, there is a

distinctive peak in IX . With respect to the evolution of q, this can be understood

as corresponding to the driving frequency which is high and so rapidly brings q to

values near e/2, resulting in tunnelling, but is not so high as to cause cut-off. In plot

(b) of Fig. 4.7 we see that, like the transverse current, the junction voltage adopts

a constant value above some cut-off frequency. This behaviour can be understood

in essentially the same terms as just described for IX : at high frequencies there is

no Majorana tunnelling and so, after time averaging, 〈V 〉 = IDC/G, in accordance

with Eq. (4.31); below fc Majorana tunnelling results in an average value of q, and

therefore V , of close to zero.

In the large bias current limit, IDC & Iθ, IAC 6= 0, there is no frequency at which

Majorana tunnelling does not take place, and therefore no cutoff frequency. How-

ever, the AC component still has an effect on V and IX , as shown in Fig. 4.7(c)

and Fig. 4.8(b). Considering first the behaviour of the transverse current, we see

that at high frequencies IX adopts an approximately constant value, whilst at lower

frequencies it behaves highly non-monotonically. In particular, IX exhibits suppres-

sions at the frequencies fs = n
τ
, where τ is the average time between Majorana

tunnelling events and n is an integer. As an aside, one can, in principle, formu-

late an analytical expression for τ , the stochastic nature of tunnelling means that,

in practice, good agreement between the calculated and observed fs is found only

when τ is determined by numerical simulation.

To understand the origin of the suppressions of IX at f = n
τ
, we must first

appreciate what processes contribute to Majorana tunnelling and how these are

affected by changes in the driving frequency. For the probability of a tunnelling

event occurring to be non-negligible, q must have a sufficiently large value (typically

|q| & e
2
). This value can come about in two ways: the quasicharge is driven by I(t);

a Majorana tunnelling event causes q to jump. Figure 4.9 is a plot of q vs. t for

different driving frequencies, corresponding to the suppressions and non-suppressions

seen in Fig. 4.8(b). From the plots in Fig. 4.9 it is clear that, whilst there is some

variation, f has relatively little impact on τ , the time taken for q to be driven from

−e/2 to +e/2. However, one should not infer from this that IX is the same at all four

frequencies since, whilst τ is relatively unchanged, there are significant differences in

the number of Majorana tunnelling events that occur after q has been driven into the

tunnelling regime. In plots (i) and (iii), we see that Majorana tunnelling events tend

to occur singly, but in plots (ii) and (iv) there is a clustering of tunnelling events

79



Figure 4.8: Transverse current, IX , as a function of bias current frequency for two

different regimes. In both cases Iθ = 3.8nA. (a) IDC = 0.8nA� Iθ, IDC + IAC = 4.8nA &

Iθ; the transverse current is finite below some threshold frequency and zero above it. (b)

IDC = 4.0nA & Iθ, IAC = 4.0nA 6= 0 and IX exhibits resonances at low frequencies, before

increasing to a constant value at higher frequencies. Plots of q vs. t at the points (i)-

(iv) are shown in Fig. 4.9. In the low bias regime, IDC , IAC � Iθ, Majorana tunnelling

between the leads and TSC is negligible, resulting in IX ' 0. For both plots a bias voltage

of V2 = −V1 = 0.01mV was used.
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such that, IX is higher in both cases, compared with (i) and (iii). This “ringing”

phenomenon where, instead of a single tunnelling event, several occur over a very

short interval, is a result of jumps in q repeatedly causing |q| to be sufficiently large

for tunnelling to take place. Although the ringing phenomenon indicated by arrows

in Fig. 4.9 is difficult to see, due to the very short time scale over which it takes

place compared to normal tunnelling, a higher resolution comparison of ringing and

single tunnelling events is shown in Fig. 4.10, where the single tunnelling events

that make up the ringing are clearly visible. Note that Fig. 4.10 does not take into

account possible memory effects, as described in Subsection 4.2.3, which may be of

some importance, but for the reasons explained there we do not anticipate these

effects making a significant qualitative difference to the results.

Ringing is suppressed if I(t) rapidly drives the quasicharge to the region |q| � e
2

after a tunnelling event has taken place. Suppression of ringing therefore corre-

sponds to I(t) taking its maximum value immediately after a tunnelling event, i.e.

we require that τ = n
fs

, which is exactly the relation between fs and τ observed

in the simulations. In addition to τ = n
fs

, suppression of ringing also requires a

specific phase relationship between I(t) and the quasicharge oscillations. However,

this phase locking occurs naturally and so even if the initial phase offset for each

frequency instance is randomised, as in Fig. 4.8(b), suppression of ringing, and

therefore IX , is still observed. Simulations of q vs. t for different initial phases

demonstrate that the reason for the phase locking is that a positive or negative

phase offset leads to a shorter or longer time τ to the next tunnel event, respec-

tively. Thus each Majorana tunnelling reduces the offset and the latter vanishes

after a few events. It follows that the observed IX vs. f characteristics of the

system are independent on the initial configurations.

It is also important to note that, even if the condition f = n
τ

is satisfied, ringing

will not be suppressed for high f , since each drive cycle will be too fast for q to be

changed significantly. Quantitatively, we expect that, for f � (IDC + IAC) /e, IX

will be approximately constant. This effect can be seen in Fig. 4.8(b). Although

the suppression of ringing is the main contributor to the changes in IX seen in Fig.

4.8(b), variation of τ also has a minor effect at some frequencies. This variation

in τ is a result of I(t) changing the average value of q over one quasicharge cycle

and therefore affecting the average of q̇ via the G term in Eq. (4.8). For exam-

ple, comparing plots (a) and (b) in Fig. 4.9, we see that at the suppression point

f = 16.7GHz, we obtain τ ≈ 30ps, whilst in between suppressions, at f = 26.3GHz,

we obtain τ ≈ 25ps. From this change in τ alone, we would expect the suppressed

value of IX to be around 80% of the unsuppressed value, but since it is actually
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Figure 4.9: Typical plots of q vs. t at the frequencies identified in Fig. 4.8(b). Ringing

events, indicated by arrows, are difficult to distinguish from normal tunnelling at this scale,

but a clearer comparison is show in Fig. 4.10. Note that at the unsuppressed points, (ii)

and (iv), there are more ringing events than at the suppressed points, (i) and (iii).
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Figure 4.10: A detailed comparison of single Majorana tunnelling and ringing. A single

Majorana tunnelling event takes place at t ≈ 0.38ns, whilst a ringing event can be seen

at t ≈ 0.43ns. The ringing event constitutes five single tunnelling events over an interval

of approximately 0.01ns, whilst the usual interval between single tunnelling events for the

setup shown is 0.04ns. Ringing therefore has a very significant impact on the total charge

transferred over a given time period, and therefore the average value of IX .

only 40%, suppression of ringing is clearly a more important factor. Note also that,

at f = 100GHz, we once again obtain τ ≈ 30ps, further emphasising that changes

in τ are not as important as changes in the incidence of ringing as far as suppres-

sion of IX is concerned. Panel (c) of Fig. 4.7 shows that the junction voltage, V ,

changes with f in a similar manner to IX . The origin of this behaviour can be seen

by examining a plot of q vs. t at different bias frequencies, from which it is clear

that, at suppression points, q is driven rapidly from small values to the tunnelling

regime, resulting in low average q, and therefore V . The mechanism which causes

suppression of V is very different to the process described above that gives rise to

a suppression of IX . This is because, whilst ringing makes a major contribution to

the transverse current, its effect on the average value of q, and therefore V , is very

similar to that of normal Majorana tunnelling, since ringing is such a rapid process.

Consequently, the values of fs for V are not equal to the fs for IX .

As a final comment on the time-dependent driving phenomenology of the Majorana-

Josephson system, it is worth noting that Fig. 4.7 and Fig. 4.8 depict changes

in V and IX over a frequency interval of the order of a few GHz, which may be

at the limit of experimental accessibility. This is a direct consequence of the set

of system parameters we have chosen to use in our simulations, in particular the

values Γ1,2 = 1011s−1 and G = e2/h, corresponding to what we expect for typical

experimental setups. If, for example, we were to instead consider a system with
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the less typical, but still experimentally achievable, parameter values of Γ1,2 =

108s−1 and G = 0.001e2/h, and decrease the magnitude of the bias current by

a corresponding amount, then we would find that Fig. 4.7 and Fig. 4.8 were

reproduced, but over a scale of MHz rather than GHz, and with the magnitude of

IX reduced by the same factor. The phenomenology, however, does not change. We

therefore see that, since Γ1,2 and G can be modified by careful gating of the system,

the ability to measure at GHz frequencies is not required to observe the phenomena

reported in this section.

4.4 Conclusions

In this chapter, we have seen how the presence of Majorana bound states in topo-

logical superconductors can enrich the behaviour of capacitive Josephson junctions.

By enabling single-particle sub-gap tunnelling between the superconductor and its

surroundings, MBSs allow the Josephson junction to be perturbed in a manner not

consistent with the system’s underlying periodicity, and thus to be excited to a

non-equilibrium state. The resulting charge dynamics of the Majorana-Josephson

system are dependent upon a variety of factors, but the essential parameters are the

tunnelling rate between the superconductor and metallic leads and the magnitude

and time dependence of the bias current applied to the Josephson junction. For a

static bias current, the Majorana-Josephson system may be in one of three regimes,

determined by tunnelling rate and current magnitude. If the bias current is sinu-

soidally varying, then the system’s behaviour is a function of the current frequency

in a way that depends upon the current magnitude.

The charge dynamics can be observed experimentally through measurement of

the voltage across the Josephson junction, as in the non-topological case, or by study-

ing the transverse current through the Majorana-Josephson device, the existence of

which is made possible by the presence of an auxiliary fermionic state corresponding

to a delocalised pair of MBSs. In either case, we have seen how experimental results

can be directly linked to quasicharge behaviour.

To summarise the results of this chapter, we have seen how Majorana-Josephson

devices represent an unusual arena in which to realise stochastic, non-equilibrium

behaviour, made possible by the unique properties of Majorana bound states. This

system provides a good example of how the interplay of topology and interactions

can give rise to novel physics that can be studied both theoretically and through

experiment.
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Chapter 5

Summary and Outlook

Topology offers a way of understanding condensed matter systems that exhibit prop-

erties that cannot be explained purely within the paradigm of spontaneously broken

symmetry. The widespread applicability of topology has become particularly appar-

ent in the past fifteen years, as there has been a rapid increase in both theoretical

and experimental exploration of this topic. Beyond simply understanding known

states of matter, this research effort has led to the prediction, and subsequent ob-

servation, of novel phenomena which are not only of great physical interest in their

own right, but also constitute promising tools in advanced engineering applications.

Remarkably, the successes of the topological paradigm have, in most cases, been

achieved in spite of a highly idealised picture of electronic matter. In particular,

many theoretical studies have used single-particle wave functions and so electron-

electron interactions have been largely ignored when thinking about topologically

non-trivial systems. That theoretical predictions have been so well born out by

experiment, even under this severe approximation, is testament to the power of

topology as a way of thinking about condensed matter systems. Nevertheless, it is

desirable to go beyond a nearly-free electron type picture and consider what impact

interactions might have on topological matter.

Some progress has been made in this direction already, albeit largely in the con-

text of minimalistic toy models designed to be amenable to theoretical treatment,

rather than realistic systems. There have been several studies concerned with how

interactions might alter the topological classification of systems, which indicate that,

depending on the specific circumstances, interactions may destroy or protect topo-

logical states. Furthermore, it has been suggested that topology is a result of long

range entanglement, and therefore a manifestation of interactions [158]. However,

there has previously been very little work on the question of what new physics might

arise as a result of the interplay of interactions and topological states. It is this latter
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question that we have attempted to answer, at least in part, over the course of this

thesis.

If one hopes to observe new physics due to interactions in topological matter, it

seems intuitive to draw inspiration from those non-topological systems that exhibit

distinct behaviour that is directly attributable to interactions. In particular, we

have looked at the Kondo effect, which is perhaps the example par excellence of

novel physics driven by interactions, and also the case of the capacitive Josephson

junction, which is possibly rather less well known, but nonetheless is an important

illustration of how interactions can have a fundamental effect on the physics of

condensed matter systems.

We have seen how one might go about constructing a topological extension of

these two non-topological examples of interaction driven systems. For the Kondo

case, the essential features are a single “impurity” state, which is in some way degen-

erate, with an on-site interaction energy and exchange coupled to an electron sea,

which makes up a continuum of states. This scenario draws an immediate parallel

with a pair of Majorana bound states, i.e. a single fermionic state, coupled to a

pair of metallic leads and hosted in a floating topological superconductor. The most

obvious difference between the two cases is the absence of spin in the Majorana

realisation, with the degeneracy instead being a result of coupling a single fermionic

state to two distinct leads. Hence, although not identical, there is a clear similarity

between the Kondo system and its Majorana partner. The capacitive Josephson

junction has a topological analogue of a somewhat different nature. Rather than

try to realise a non-topological system with topological ingredients, we have instead

seen how, by adding MBSs to the system, it can exhibit novel physics as a direct

result of its new-found topology.

In Chapter 3, we considered a theoretical analysis for the Majorana analogue of the

Kondo system. Beginning with a Hamiltonian comprised of lead electron, lead-TSC

tunnelling and TSC charging energy terms, we carried out a Schrieffer-Wolff trans-

formation to take into account the effect of excursions to the high energy sector

on the behaviour of the system in the low energy sector. The resulting effective

Hamiltonian bears some resemblance to the Kondo Hamiltonian, but is distinct in

that it cannot be written as a pure spin-spin interaction and crucially there is, in

addition to the szSz coupling present in the Kondo case, a coupling between the

sy pseudo-spin of the leads and Sz pseudo-spin associated with the MBSs, which is

a direct result of the non-locality of the fermionic state associated with the MBSs.
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On carrying out a Poor Man’s scaling procedure to integrate out high energy pro-

cesses in the leads, we find that, again in marked contrast to the Kondo case, the

couplings between the metallic leads and TSC renormalize to an intermediate fixed

point. The existence of this fixed point is directly contingent upon the sySz term

in the effective Hamiltonian, which in turn depends on the non-local nature of the

fermionic state formed from the two MBSs. The value of the couplings at the inter-

mediate fixed point also demonstrates that the system plays host to a many-body

state, de-localised across leads, MBSs and TSC. Perhaps the simplest experimental

signature of this state would be an enhancement of the linear conductance through

the system at low temperatures. The fact that the Majorana based implementation

of the Kondo system exhibits behaviour that is distinct from that of the Kondo case

provides motivation for the term Kondorana to describe this physics, which results

from the marriage of Majorana and Kondo aspects.

The Majorana-Josephson device, discussed in Chapter 4, is a further example of

novel physics, in this case arising as a result of the introduction of topological ele-

ments, the MBSs, into a system dominated by interactions, the capacitive Josephson

junction. The presence of non-negligible interactions in a Josephson junction con-

strains the variation of the number of particles in the superconductor, taking the

system outside the typical BCS regime, and necessitates treating the junction charge

as a fully quantum variable. This in turn leads to an energy band structure as a

function of the junction quasicharge, with an associated 2e periodic Brillouin Zone.

The MBSs expand the phenomenology of this system for two reasons. Firstly, taken

together they constitute a single-particle fermionic state within the superconducting

gap, which therefore allows the system to be perturbed non-periodically. Secondly,

the fermionic state is non-local and allows a transverse current to be established

through the Majorana-Josephson device. By performing a numerical analysis, being

careful to account for the stochastic nature of tunnelling to and from the MBSs, we

can explore the consequences of these two properties. We find that the Majorana-

Josephson device exhibits a rich dynamical landscape, with the behaviour of the

system most strongly determined by two properties, the magnitude and time de-

pendence of the driving current and the MBS tunnelling coefficient. For static

driving currents, the system exhibits three regimes, as shown in Fig. 4.4. For a

sinusoidally varying driving current, both the junction voltage and transverse cur-

rent show non-monotonic behaviour as a function of the driving frequency. Both

these observations can be explained by considering the time evolution of the junc-

tion quasicharge, which is characterised by intervals of slow evolution as a result of
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the driving current, punctuated by rapid 1e jumps due to tunnelling via the MBSs.

Of particular importance to the dynamics is the “ringing” phenomenon whereby

the quasicharge undergoes a large number of 1e jumps over a very short interval.

These findings illustrate how the addition of topological states to a strongly inter-

acting system can greatly alter its behaviour beyond simple quantitative corrections.

The Kondorana and Majorana-Josephson systems are striking demonstrations of the

interplay between topological matter and interactions, and the resulting physics that

is qualitatively distinct from that which is present when one of the two is absent.

On the one hand, for the Kondorana system, the interplay arises as a result of recre-

ating the essential elements of a topologically trivial system, that is dominated by

interactions, using MBSs. On the other hand, the Majorana-Josephson case shows

how adding a topological state, the MBS, to a system with strong interactions can

also result in novel physics. Taken together, these two examples offer encouraging

evidence for the suggestion that, through exploiting topology and interactions in

condensed matter, we may open up avenues to exciting new physics.

Over the course of this thesis, we have discussed in detail two systems in which

the union of topology, or to be more specific Majorana Bound States, and electron-

electron interactions results in novel physics. It seems reasonable to believe that

these two cases are not unique and that there remains much research to be done

and many effects to be discovered in this field. We therefore conclude by briefly con-

sidering possible extensions of the investigations described in the preceding pages. A

potentially fruitful direction of research would be to extend the work presented here

to topological states beyond the MBS. In particular, it would be interesting to see

how the parafermions mentioned in Subsection 2.1.4 modify the behaviour of the

Kondorana and Majorana-Josephson systems. Unfortunately, in contrast to Ma-

joranas, there is no obvious representation of parafermions in terms of fermionic

operators, and so the theoretical approach described here cannot be easily ap-

plied in the parafermion case, although there has been some recent progress on

this point [159, 160]. A further topic worthy of investigation is the role played by

the lead electrons in the Kondorana device. If the leads were to be modelled as

a Luttinger liquid, this may well reveal new effects that are not apparent in the

analysis presented here. A related point is the nature of the many-body state that

extends across the leads and TSC in the Kondorana system, including its spin prop-

erties which are inaccessible via the Poor Man’s scaling approach. The theoretical

treatment of this problem is difficult, as the system appears resistant to the Bethe
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Ansatz approach that is employed in the Kondo case. Nevertheless, a more thorough

understanding of this point could lead to insights of importance not only for physics,

but also engineering, as a device with components similar to the Kondorana setup

could be expected to host this many-body state which may impact communication

between the leads, or on an even larger scale.

The study of interaction effects led to profound advancements in the understanding

of condensed matter during the second half of the 20th Century and topology has

been an area of burgeoning interest during the early decades of the 21st. In this

thesis we have seen how, at the interface of these two fields, diverse effects arise. We

may justly anticipate that this interface will prove a fertile ground for new physics

in the years to come.
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M. Thorwart and R. Wiesendanger. “Toward tailoring Majorana bound states

in artificially constructed magnetic atom chains on elemental superconduc-

tors.” Sci. Adv. 4, eaar5251 (2018).

95



[74] R. Heid, K.-P. Bohnen, I. Y. Sklyadneva and E. V. Chulkov. “Effect of spin-

orbit coupling on the electron-phonon interaction of the superconductors Pb

and Tl.” Phys. Rev. B 81, 174527 (2010).

[75] A. C. Potter and P. A. Lee. “Topological superconductivity and Majorana

fermions in metallic surface states.” Phys. Rev. B 85, 094516 (2012).

[76] B. Braunecker and P. Simon. “Interplay between classical magnetic moments

and superconductivity in quantum one-dimensional conductors: Toward a self-

sustained topological Majorana phase.” Phys. Rev. Lett. 111, 147202 (2013).

[77] P. A. Lee. “Seeking out Majorana under the microscope.” Science 346, 545

(2014).

[78] Y. Peng, F. Pientka, L. I. Glazman and F. von Oppen. “Strong localization of

Majorana end states in chains of magnetic adatoms.” Phys. Rev. Lett. 114,

106801 (2015).

[79] E. Dumitrescu, B. Roberts, S. Tewari, J. D. Sau and S. Das Sarma. “Majorana

fermions in chiral topological ferromagnetic nanowires.” Phys. Rev. B 91,

094505 (2015).

[80] D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schomerus and C. W. J.

Beenakker. “A zero-voltage conductance peak from weak antilocalization in a

Majorana nanowire.” New J. Phys. 14, 125011 (2012).

[81] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace and

D. A. Ritchie. “Possible spin polarization in a one-dimensional electron gas.”

Phys. Rev. Lett. 77, 135 (1996).

[82] Y. Meir, K. Hirose and N. S. Wingreen. “Kondo model for the “0.7 anomaly”

in transport through a quantum point contact.” Phys. Rev. Lett. 89, 196802

(2002).

[83] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven,

C. M. Marcus, K. Hirose, N. S. Wingreen and V. Umansky. “Low-temperature

fate of the 0.7 structure in a point contact: A Kondo-like correlated state in

an open system.” Phys. Rev. Lett. 88, 226805 (2002).

[84] S. Takei, B. M. Fregoso, H.-Y. Hui, A. M. Lobos and S. Das Sarma. “Soft

superconducting gap in semiconductor Majorana nanowires.” Phys. Rev. Lett.

110, 186803 (2013).

96



[85] E. J. H. Lee, X. Jiang, R. Aguado, G. Katsaros, C. M. Lieber and

S. De Franceschi. “Zero-bias anomaly in a nanowire quantum dot coupled

to superconductors.” Phys. Rev. Lett. 109, 186802 (2012).

[86] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jes-

persen, J. Nyg̊ard, P. Krogstrup and C. M. Marcus. “Exponential protection

of zero modes in Majorana islands.” Nature 531, 206 (2016).

[87] P. San-Jose, E. Prada and R. Aguado. “AC Josephson effect in finite-length

nanowire junctions with Majorana modes.” Phys. Rev. Lett. 108, 257001

(2012).

[88] J. Alicea. “Superconductors: Exponential boost for quantum information.”

Nature 531, 177 (2016).

[89] E. Fradkin and L. P. Kadanoff. “Disorder variables and para-fermions in two-

dimensional statistical mechanics.” Nucl. Phys. B 170, 1 (1980).

[90] N. H. Lindner, E. Berg, G. Refael and A. Stern. “Fractionalizing Majorana

fermions: Non-abelian statistics on the edges of abelian quantum Hall states.”

Phys. Rev. X 2, 041002 (2012).

[91] D. J. Clarke, J. Alicea and K. Shtengel. “Exotic non-abelian anyons from

conventional fractional quantum Hall states.” Nat. Commun. 4, 1348 (2013).

[92] M. Barkeshli and X.-L. Qi. “Synthetic topological qubits in conventional bi-

layer quantum Hall systems.” Phys. Rev. X 4, 041035 (2014).

[93] F. Zhang and C. L. Kane. “Time-reversal-invariant Z4 fractional Josephson

effect.” Phys. Rev. Lett. 113, 036401 (2014).

[94] C. P. Orth, R. P. Tiwari, T. Meng and T. L. Schmidt. “Non-abelian

parafermions in time-reversal-invariant interacting helical systems.” Phys.

Rev. B 91, 081406 (2015).

[95] J. Alicea and P. Fendley. “Topological phases with parafermions: Theory and

blueprints.” Annu. Rev. Cond. Matt. Phys. 7, 119 (2016).

[96] D. K. C. Macdonald, W. B. Pearson and I. M. Templeton. “Thermo-electricity

at low temperatures. IX. The transition metals as solute and solvent.” Proc.

R. Soc. A 266, 161 (1962).

[97] M. P. Sarachik, E. Corenzwit and L. D. Longinotti. “Resistivity of Mo-Nb

and Mo-Re Alloys containing 1 % Fe.” Phys. Rev. 135, A1041 (1964).

97



[98] O. S. Lutes and J. L. Schmit. “Low-temperature magnetic transitions in dilute

Au-based alloys with Cr, Mn, and Fe.” Phys. Rev. 134, A676 (1964).

[99] G. J. van den Berg. “Anomalies in dilute metallic solutions of transition

elements.” In C. J. Gorter (editor), “Prog. Low Temp. Phys.”, vol. 4, 194

(1964).

[100] P. Phillips. Advanced Solid State Physics. 2nd edn. Cambridge University

Press (2012).

[101] Y. Nagaoka. “Self-consistent treatment of Kondo’s effect in dilute alloys.”

Phys. Rev. 138, A1112 (1965).

[102] A. A. Abrikosov. “Electron scattering on magnetic impurities in metals and

anomalous resistivity effects.” Physics Physique Fizika 2, 5 (1965).

[103] P. W. Anderson. “A Poor man’s derivation of scaling laws for the Kondo

problem.” J. Phys. C 3, 2436 (1970).

[104] K. G. Wilson and J. Kogut. “The renormalization group and the ε expansion.”

Phys. Rep. 12, 75 (1974).

[105] K. G. Wilson. “The renormalization group: Critical phenomena and the

Kondo problem.” Rev. Mod. Phys. 47, 773 (1975).

[106] B. D. Josephson. “Possible new effects in superconductive tunnelling.” Phys.

Lett. 1, 251 (1962).

[107] P. W. Anderson and J. M. Rowell. “Probable observation of the Josephson

superconducting tunneling effect.” Phys. Rev. Lett. 10, 230 (1963).

[108] S. Shapiro. “Josephson currents in superconducting tunneling: The effect of

microwaves and other observations.” Phys. Rev. Lett. 11, 80 (1963).

[109] P. Anderson. “Special effects in superconductivity.” In “Lectures on the

Many-body Problems,” 113 – 135. Academic Press (1964).

[110] J. Bardeen, L. N. Cooper and J. R. Schrieffer. “Theory of superconductivity.”

Phys. Rev. 108, 1175 (1957).

[111] A. I. Larkin, K. K. Likharev and Y. N. Ovchinnikov. “Secondary quan-

tum macrpscopic effects in weak superconductivity.” Physica B+C 126, 414

(1984).

98
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