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HIGHLIGHTS 

 Male bottlenose dolphins have significantly higher PCB concentrations than females 

 Nulliparous females have significantly higher concentrations than parous ones 

 There are no differences among social groups 

 Majority of animals exceed the toxicity thresholds 

 Pollutant concentrations can successfully be linked with demographic parameters 

 

ABSTRACT 

 

Marine top predators, including marine mammals, are known to bio-accumulate persistent pollutants 

such as polychlorinated biphenyls (PCBs), a serious conservation concern for these species. Although 

PCBs declined in European seas since the 1970s-1980s ban, considerable levels still persist in European 

and Mediterranean waters. In cetaceans, stranded animals are a valuable source of samples for 

pollutant studies, but may introduce both known and unknown biases. Biopsy samples from live, free-

ranging cetaceans offer a better alternative for evaluating toxicological burdens of populations, 

especially when linked to known histories of identified individuals. We evaluated PCB and other 

organochlorine contaminants in free-ranging common bottlenose dolphins (Tursiops truncatus) from 

the Gulf of Trieste (northern Adriatic Sea), one of the most human-impacted areas in the 

Mediterranean Sea. Biopsies were collected from 32 male and female dolphins during 2011–2017. All 

animals were photo-identified and are part of a well-known population of about 150 individuals 

monitored since 2002. We tested for the effects of sex, parity and social group membership on 

contaminant concentrations. Males had significantly higher organochlorine concentrations than 

females, suggesting offloading from reproducing females to their offspring via gestation and/or 

lactation. Furthermore, nulliparous females had substantially higher concentrations than parous ones, 

providing further support for maternal offloading of contaminants. Overall, 87.5% of dolphins had PCB 

concentrations above the toxicity threshold for physiological effects in experimental marine mammal 
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studies (9 mg/kg lw), while 65.6% had concentrations above the highest threshold published for marine 

mammals based on reproductive impairment in ringed seals (41 mg/kg lw). The potential population-

level effects of such high contaminant levels are of concern particularly in combination with other 

known or suspected threats to this population. We demonstrate the utility of combining contaminant 

data with demographic parameters such as sex, reproductive output, etc., resulting from long-term 

studies. 

 

KEYWORDS:  

Organochlorine contaminants, PCBs, ecotoxicology, Tursiops truncatus, Adriatic Sea, Mediterranean 

Sea 
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INTRODUCTION 

Persistent organic pollutants (POPs) are chemical compounds that occur in the marine environment 

and have far-reaching consequences for human and ecosystem health. Marine top predators, including 

marine mammals, are known to bioaccumulate POPs, which represent a conservation and health 

concerns for these species and their environment (Tanabe et al. 1994, Aguilar et al. 2002, Vos et al. 

2003, Jepson and Law 2016). Of these, organochlorines such as polychlorinated biphenyls (PCBs) and 

organochlorine pesticides (OCPs) are of particular concern, as they are persistent in the environment, 

highly lipophilic, bioaccumulate in individuals over time, and biomagnify in marine top predators 

through trophic transfer (Green and Larson 2016). These toxic compounds may cause anaemia 

(Schwacke et al. 2012), immune system suppression (Tanabe et al., 1994) and the subsequent 

increased vulnerability to infectious disease (Aguilar and Borrell 1994a, Jepson et al. 2005, Randhawa 

et al. 2015), endocrine disruption (Tanabe et al. 1994, Vos et al. 2003, Schwacke et al. 2012), 

reproductive impairment (Schwacke et al. 2002) and developmental abnormalities (Tanabe et al. 1994, 

Vos et al. 2003) in marine mammals, thereby representing a serious health risk for these top predators. 

Such health risks are likely to have direct impacts on marine mammal abundance, through reduced 

reproduction or survival (Hall et al. 2006, Hall et al. 2017). Because of their trophic position, propensity 

for bio-accumulating organochlorines, and long life span, marine mammals are often considered 

ecosystem sentinels (Ross 2000, Wells et al. 2004, Moore 2008).  

Due to concerns about toxicity and suspected carcinogenicity to humans, their effects on biota 

and environmental persistence, the use of PCBs and OCPs such as dichlorodiphenyltrichloroethane 

(DDT) was banned in most of Europe in the 1970s-1980s. Subsequent monitoring of POPs in tissues of 

several marine mammal species demonstrated their decline in several European seas (Law et al. 2012), 

including the Mediterranean Sea (Aguilar and Borrell 2005, Borrell and Aguilar 2007). However, a 

recent European-wide study showed that PCB levels continue to be high in European and 

Mediterranean cetaceans (Jepson et al. 2016). In particular, very high PCB concentrations were linked 

to small populations, range contraction, or population declines in some striped dolphin (Stenella 
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coeruleoalba), common bottlenose dolphin (Tursiops truncatus) and killer whale (Orcinus orca) 

populations (Jepson et al. 2016).  

Linking organochlorine concentrations with individual-level effects in wild marine mammals 

(and especially cetaceans) is challenging at best, while linking them with potential population-level 

effects is extremely difficult. It is therefore unsurprising that few quantitative approaches for 

estimating such effects have been developed (Hall et al. 2017). Stranded animals can be a valuable 

source of samples for pollutant studies in wild populations (Geraci and Lounsbury 2005), and are often 

the only source of samples used in toxicological analysis (Jepson et al. 1999, Jepson et al. 2005, Law et 

al. 2012). However, the use of stranded animals, especially in some contexts or in some locations, may 

introduce substantial biases. For example, stranded animals may not be representative of the 

population or area of interest, but may originate from other areas, due to winds, currents, or abnormal 

behaviour prior to stranding (Hansen et al. 2004). Moreover, putrefaction processes, resulting from 

exposure to the sun, high temperatures, wind and bacterial activity, can lead to altered organochlorine 

concentrations and potentially misleading results (Borrell and Aguilar 1990). Finally, it has also been 

suggested that the presence of disease may lead to abnormal rates of pollutant metabolism or 

excretion (Borrell and Aguilar 1990). On the other hand, blubber biopsy samples (Noren and Mocklin 

2012) collected from live, free-ranging cetaceans offer a good alternative for evaluating the 

toxicological burden of populations (Fossi et al. 2000), especially when linked to long-term re-sighting 

histories of known individuals (Ross et al. 2000, Ylitalo et al. 2001, Wells et al. 2005). For example, 

information on pollutant levels can be combined with mark-recapture techniques to estimate the 

impact of contaminants on survival or reproduction (Hall et al. 2009). Moreover, an appropriate study 

design can ensure that the sampling is representative of the population or area in question. It was 

previously recognised that the proper evaluation of pollutants on marine mammals will require efforts 

directed toward long-term studies of known individuals in wild populations (Hall et al. 2006). 

The common bottlenose dolphin is a long-lived marine top predator (Wells and Scott 1999, 

2009). In many parts of the world, including the Mediterranean Sea, it is essentially “coastal” and 
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mainly found nearshore (Bearzi et al. 2009). This makes it particularly susceptible to a range of 

anthropogenic impacts, including the exposure to organochlorine contaminants. This species is 

regularly present in the Gulf of Trieste and adjacent waters, where it has been continuously studied 

since 2002 (Genov et al. 2008, Genov et al. 2016, Genov et al. 2017). As a coastal, mobile and long-

lived top predator with strong site fidelity, it is a particularly good candidate for investigating the 

effects of organochlorine contaminants, and for regional monitoring of organochlorine pollution. 

In this study, we evaluated organochlorine levels, particularly PCBs, in free-ranging common 

bottlenose dolphins in relation to demographic parameters, as part of a long-term investigation into 

their ecology, behaviour and conservation status in the Gulf of Trieste and adjacent waters in the 

northern Adriatic Sea. In particular, we tested for the effects of sex, parity and social group 

membership on organochlorine concentrations, in one of the most heavily human-impacted areas 

within the Mediterranean Sea. 

 

 

MATERIAL AND METHODS 

The study population 

The Gulf of Trieste, together with its surrounding waters (Fig. 1), is probably one of the most heavily 

human-impacted areas within the Adriatic and Mediterranean Seas, due to shipping, fishing, 

industrialisation, tourism, aquaculture and agriculture (Horvat et al. 1999, Faganeli et al. 2003, David 

et al. 2007, Mozetič et al. 2008, Codarin et al. 2009, Grego et al. 2009). The dolphin population 

inhabiting these and surrounding waters (Fig. 1) has been the focus of a long-term study and 

monitoring by Morigenos – Slovenian Marine Mammal Society since 2002, primarily through boat-

based surveys and photo-identification, and is now relatively well studied (Genov et al. 2008, Genov 

2011, Genov et al. 2016, Genov et al. 2017). The population is present within the area year-round 

(Genov et al. 2008, Genov 2011) and appears to be demographically and genetically distinct (Genov et 
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al. 2009, Gaspari et al. 2015). The annual abundance estimates range between about 70 and 150 

animals (Genov 2011; Morigenos, unpublished data). Most encountered individuals have extensive re-

sighting histories over the study period, and several are of known sex and reproductive output. 

  

Fig. 1. Study area in the northern Adriatic Sea. The upper left inset shows the location of the study 

area in the Adriatic Sea. The upper right inset shows the survey effort (navigation tracks). 

 

Sample collection 

Biopsy samples were collected from free-ranging common bottlenose dolphins between 2011 and 

2017. Sampling followed standard methodology (Gorgone et al. 2008, Kiszka et al. 2010) and was 

carried out exclusively in good weather conditions (Beaufort sea state ≤2, good visibility, no 

precipitation). Samples of skin and blubber tissue were obtained using custom made bolts and stainless 
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steel sampling tips (tip length 25 mm, internal diameter 7 mm), made by Ceta Dart, Copenhagen, 

Denmark. Sampling tips were sterilised using 96% ethanol and burning prior to being used. Bolts with 

sterile sampling tips were fired into the dorso-lateral area below the dorsal fin (Fig. 2), at distances of 

4–10 m, using a Barnett Panzer V crossbow with 68 kg draw weight. A high-pressure moulded stopper 

prevented the tip from penetrating more than about 20 mm and ensured the re-bouncing of the bolt. 

The floating bolt was retrieved from the water by hand. Blubber samples were removed and excised 

with sterilised forceps and surgical scissors, placed in aluminium foil and stored at −20°C until chemical 

analysis. 

Sampling was only attempted on adults. No sampling was attempted on offspring or mothers 

with offspring. Care was taken not to attempt sampling of animals accompanied (followed) by another 

animal in their slipstream, to prevent potential shots in the head. All biopsy attempts were 

accompanied by concurrent photo-identification (Würsig and Jefferson 1990) of targeted individuals 

and other dolphins in their group. This ensured that the identity of the sampled animal was known, in 

order to prevent re-sampling the same individuals, and to be able to link organochlorine 

concentrations to various individual-specific parameters known from photo-identification. During each 

attempt, the behavioural reactions of the target animal and the focal group were recorded, together 

with information on distance of the target animal, the area hit and the sea state. Biopsy sampling was 

conducted under the permit 35601-102/2010-4 by the Slovenian Environmental Agency.  

In addition to biopsies, one sample was collected from an adult male found entangled in fishing 

gear – due to the freshness of the carcass, it could be identified with confidence, determined to be one 

of the local dolphins, and therefore included in the analysis. Stranded animals too decomposed to be 

identified were not included in the analyses, as they were of unknown origin and may not be 

representative of the population in question. 
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Fig. 2. Biopsy sample collected from a free-ranging common bottlenose dolphin in the Gulf of Trieste, 

northern Adriatic Sea. Photo: Ana Hace, Morigenos 

 

Demographic parameters 

Sex of individuals was determined by a) observations of temporally stable adult-offspring associations 

(adults consistently accompanied by offspring were assumed to be mothers and therefore females); 

b) photographs of the genital area during bowriding or aerial behaviour and c) molecular methods 

from biopsy samples. For molecular sex determination, DNA was extracted with phenol/chloroform 

and ethanol precipitation from tissue samples preserved in 95 % ethanol. Sex was determined through 
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differential amplification of the zinc finger gene regions present in the X and Y chromosomes (ZFX and 

ZFY, respectively), as described by Bérubé and Palsbøll (1996). 

 Parity was assessed based on re-sighting histories and reproductive output of photo-identified 

females. Females known to have produced at least one offspring during the study period were 

considered parous. Females never observed with offspring were assumed to be nulliparous. One of 

these females appeared older based on external appearance, and could potentially be of post-

reproductive age, although evidence for reproductive senescence in bottlenose dolphins is limited 

(Marsh and Kasuya 1986, Wells and Scott 1999, Ellis et al. 2018). 

Previous work on social network analyses has shown that the local dolphin population is 

structured into distinct social groups, which exhibit temporal partitioning, differences in behaviour 

with respect to fisheries and may have different feeding preferences (Centrih et al. 2013; 2014; Genov 

et al. 2014; 2015; Genov et al., in press). 

 

Chemical analysis 

Blubber samples were stored frozen at –20.0 °C. Samples were analysed using the method reported in 

detail in Jepson et al. (2016). In brief, samples were subjected to Soxhlet extraction using of acetone: 

n-hexane 1:1 (v:v) and cleaned up and fractionated using alumina (5% deactivated) and silica (3% 

deactivated) columns, respectively. The total extractable lipid content was determined gravimetrically 

after evaporation of the solvent from an aliquot of the uncleaned extract. Lipid content varied from 

3.4 to 33.8%. PCB concentrations in dolphin samples were determined with an Agilent 6890 GC with 

µECD. The PCB standard solutions contained the following 27 compounds in iso-octane: 

Hexachlorobenzene; p,p’-DDE; CB101; CB105; CB110; CB118; CB128; CB138; CB141; CB149; CB151; 

CB153; CB156; CB158; CB170; CB18; CB180; CB183; CB187; CB194; CB28; CB31; CB44; CB47; CB49; 

CB52; CB66, together with the internal standard CB53. Quantification was performed using internal 

standards and 11 calibration levels (range 0.5 – 400ng/ml). CEFAS follows a strict QA/QC regime for 

analysis of samples. The laboratory biannually participates in proficiency testing scheme Quasimeme 
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(Quality Assurance of Information for Marine Environmental Monitoring in Europe) as external quality 

assurance. All analyses were carried out under full analytical quality control procedures that included 

the analysis of a certified reference material (BCR349 cod liver oil; European Bureau of Community 

reference) and a blank sample with every batch samples analysed so that the day-to-day performance 

of the methods could be assessed. Wet weight analyte concentrations were converted to lipid-

normalised concentrations using measured lipid contents. Values below the limit of quantification 

(LOQ) were reported as <LOQ. LOQs are conservatively set at the lowest calibration standard 

concentration normalised to the sample multiplier (which varies depending on sample size and lipid 

content), which gives higher values than the alternative approach based on a S/N ratio of 10 would 

allow. In addition to the compounds mentioned above, four samples (two males, one female and one 

animal of unknown sex) were also analysed for p,p’-TDE (also known as p,p'-DDD) and p,p’-DDT. The 

limited budget available for analysis prevented us from doing this for the entire sample set. 

 

Statistical analysis 

For statistical analysis, congener concentrations below the limit of quantification (LOQ) were set to 

one-half of the LOQ (Darnerud et al. 2006, Lignell et al. 2009, Law et al. 2012). We compared this 

approach of treating <LOQ values with two alternative approaches: 1) replacing <LOQ values with zero 

and 2) keeping <LOQ values at the LOQ value. The choice of the approach had negligible effect on the 

results, and had no effect on conclusions. We therefore considered this approach the best compromise 

between underestimating and overestimating toxicological burden. 

The values of individual 25 PCB congeners for each sample were summed to obtain the Σ25PCB 

for each individual. In addition, the sum of priority PCB congeners (28, 52, 101, 118, 138, 153 and 180) 

listed by the International Council for the Exploration of the Sea (ICES) was also calculated and 

displayed, for ease of comparison with some of the previous studies. The lipid content of each sample 

was used to obtain concentrations as mg/kg lipid weight (mg/kg lw).  
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 Tests of normality revealed non-normal distribution of data. Both arithmetic and geometric 

means across individuals were calculated for Σ25PCB, ΣICES7 and p,p'-DDE. HCB values were too low 

(below the limit of quantification) to allow any useful analysis (Table 1). The contribution of each 

individual PCB congener to the Σ25PCB was also calculated across all individuals. 

We tested for the effects of 1) sex, 2) parity (whether a female has previously had a calf or not) 

and 3) social group membership on contaminant concentrations. The Mann-Whitney U test was used 

to examine differences between males and females, and between nulliparous and parous females. The 

Kruskal-Wallis test was used to examine differences among social groups. Statistical analysed were 

carried out in program R (R Core Team 2017). 

 

Assessing toxicity 

Two PCB toxicity thresholds or reference values were used, following Jepson et al. (2016). A lower PCB 

toxicity threshold was used for the onset of physiological endpoints in marine mammals of 17 mg/kg 

lipid weight (lw) (as Aroclor 1254, Kannan et al. 2000), that was calculated to be equivalent to 9.0 

mg/kg lw (Σ25PCB) in Jepson et al. (2016) and in this study. A higher PCB toxicity threshold, the highest 

reported in marine mammal toxicology studies, of 77 mg/kg lw (as Clophen 50) for reproductive 

impairment in Baltic ringed seals (Pusa hispida, Helle et al. 1976) was calculated to be equivalent to 41 

mg/kg lw (as Σ25PCB) in Jepson et al. (2016) and in this study.  
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RESULTS 

Between 2011 and 2017, samples were obtained from 32 adult dolphins, including 18 males, 9 females 

and 5 animals of unknown sex (Table 1). Six of these samples were included in the study by Jepson et 

al. (2016). Six females were previously observed with offspring, while three were not.  

 

PCBs 

Σ25PCB ranged from 4.13 to 293 mg/kg lipid weight, with an arithmetic mean of 81.5 (95% CI = 57.2 – 

105.8) and a geometric mean of 53.4 (95% CI = 36.9 – 77.3, Table 2). Males had significantly higher 

Σ25PCB concentrations than females (Mann-Whitney U test, U = 155, P < 0.001, Fig. 3). Furthermore, 

nulliparous females had significantly higher concentrations than parous ones (Mann-Whitney U test, 

U = 17, P < 0.05, Fig. 4). There were no statistically significant differences among social groups (Kruskal-

Wallis test, H = 1.21, P = 0.75, Fig. 5).  

Figure 6 shows female and male PCB concentrations in relation to two toxicity thresholds. 

Overall, 87.5% of dolphins had PCB blubber concentrations above the toxicity threshold of 9 mg/kg lw 

for physiological effects in experimental marine mammal studies (Kannan et al. 2000), while 65.6% had 

concentrations above the highest threshold (41 mg/kg lw) published for marine mammals based on 

reproductive impairment in ringed seals (Helle et al. 1976). In males, mean Σ25PCB were above the 

higher of the two thresholds, even when the lower confidence limit is considered (Fig. 6). One male 

had a Σ25PCB concentration of 293 mg/kg lw. In females, mean Σ25PCB were above the lower toxicity 

threshold of 9 mg/kg lw, but did not reach the higher one of 41 mg/kg lw, not even when the upper 

confidence limit is considered (Fig. 6). The lower confidence limit of ΣPCB in females was just below 

the lower toxicity threshold (Fig. 6). The ΣICES7 concentrations follow a similar pattern and are 

presented in Tables 1 and 2. 

Among dioxin-like PCBs, these represented 2.3% (PCB 118, found in 90.6% of samples), 0.8% 

(PCB 156, found in 75% of samples) and 0.7% (PCB 105, found in 75% of samples) of the total PCB 

burden, respectively. Concentrations of the PCB congener 28 was below LOQ for all samples. PCB 
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congeners 153, 138, 180, 187, 149 and 170 had the highest mean values across individual dolphins 

(Table 3, Fig. 7). Combined, they contributed 77.9% of the total PCB burden. Congeners 44, 31, 28, 18, 

141, 49 and 110 had the lowest mean values, with a combined contribution of 2.2% to the total PCB 

burden (Table 3, Fig. 7).  

 

DDE and DDT 

The concentrations of p,p'-DDE ranged from 0.3 to 32.9 mg/kg lw, with an arithmetic mean of 11.6 

(95% CI = 8.3 – 14.8) and a geometric mean of 6.7 (95 % CI = 4.2 – 10.7, Table 2). As with PCBs, males 

had significantly higher p,p'-DDE concentrations than females (Mann-Whitney U test, U = 152, P < 

0.001, Table 2), and nulliparous females had significantly higher concentrations than parous ones 

(Mann-Whitney U test, U = 18, P < 0.05). Like for PCBs, there were no statistically significant differences 

among social groups (Kruskal-Wallis test, H = 1.15, P = 0.76). The values of total DDT (the sum of p,p'-

DDE, p,p'-TDE and p,p'-DDT) for four individuals are shown in Table 1. For these four samples, the mean 

contribution of p,p'-DDE to total DDT was 89.7% (range = 83.9 – 92.6%), showing that p,p'-DDE is the 

predominant metabolite of total DDT. 

 

HCB 

Most HCB values were below the limit of quantification (Table 1). Using half the LOQ for calculations, 

the HCB concentrations ranged from 0.03 to 0.22 mg/kg lw, with an arithmetic mean of 0.09 (95% CI = 

0.08 – 0.12) and a geometric mean of 0.09 (95% CI = 0.07 – 0.10, Table 2). Due to these low values, no 

further analysis was carried out on HCB concentrations. 
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Table 1. Summary of common bottlenose dolphin samples from the Gulf of Trieste (northern Adriatic 

Sea), analysed in this study. F = female, M = male. Parity is indicated by + (parous) and – 

(nulliparous). Σ25PCB, ΣICES7, p,p'-DDE, DDT and HCB values expressed as mg/kg lipid weight. DDT 

represents total DDT. LOQ = Limit of quantification. The “<” indicates that the concentration was 

below the LOQ. 

 

Sample Year Sex Parity Source % Lipid Σ25PCB ΣICES7 p,p'-DDE ΣDDT HCB LOQ 

1 2011 M 
 

Biopsy 23.3 64.2 40.9 9.03 
 

<0.098 0.098 

2 2011 M 
 

Biopsy 9.7 80.2 50.9 11.3 
 

<0.144 0.144 

3 2011 M 
 

Biopsy 16.2 58.7 37.1 8.02 
 

<0.166 0.166 

4 2011 M 
 

Biopsy 11.7 139.8 94.8 13.7 
 

0.102 0.071 

5 2011 M 
 

Biopsy 19.5 293 190 32.9 
 

0.128 0.066 

6 2011 F + Biopsy 17.5 29.0 14.9 1.54 
 

<0.091 0.091 

7 2013 M 
 

Biopsy 15.2 34.2 21.2 4.49 
 

<0.197 0.197 

8 2013 F + Biopsy 12.9 7.96 3.96 0.44 
 

<0.341 0.341 

9 2013 F + Biopsy 10.9 17.9 9.89 0.95 
 

<0.202 0.202 

10 2013 M 
 

Biopsy 3.4 23.0 14.4 2.67 
 

<0.414 0.414 

11 2014 F – Biopsy 10.5 27.2 17.5 9.41 
 

<0.208 0.208 

12 2014 F + Biopsy 27.9 4.13 2.12 0.25 
 

<0.093 0.093 

13 2014 M 
 

Biopsy 6.6 32.2 20.2 16.7 
 

<0.441 0.441 

14 2014 M 
 

Biopsy 13.5 43.7 27.0 5.51 
 

<0.228 0.228 

15 2014 M 
 

Biopsy 6.9 56.7 35.6 7.72 
 

<0.305 0.305 

16 2014 M 
 

Biopsy 23.9 123 81.2 17.5 
 

<0.092 0.092 

17 2014 F – Biopsy 19.3 30.7 19.2 4.25 
 

<0.124 0.124 

18 2014 F – Biopsy 33.8 48.9 31.0 6.45 
 

<0.141 0.141 

19 2014 M 
 

Biopsy 10.1 131 84.8 21.9 
 

<0.217 0.217 

20 2014 M 
 

Biopsy 18.8 65.9 40.7 9.55 
 

<0.333 0.333 

21 2014 M 
 

Biopsy 9.3 93.8 60.9 13.5 
 

<0.139 0.139 

22 2014 M 
 

Biopsy 14.5 76.8 48.8 10.1 
 

<0.200 0.200 

23 2015 M 
 

Bycatch 6.6 152 96.5 25.9 
 

<0.166 0.166 

24 2015 M 
 

Biopsy 7.9 111 74.2 16.0 17.3 <0.164 0.164 

25 2015 U 
 

Biopsy 7.7 58.3 37.8 8.17 
 

0.195 0.128 

26 2016 U 
 

Biopsy 13.7 145 96.6 20.3 22.04 <0.080 0.080 

27 2016 F + Biopsy 14.4 6.82 3.88 0.54 0.54 <0.104 0.104 

28 2016 M 
 

Biopsy 4.4 121 80.3 16.7 18.6 <0.215 0.215 

29 2016 U 
 

Biopsy 11.3 150 98.2 23.5 
 

<0.194 0.194 

30 2017 U 
 

Biopsy 18.9 157 102 23.5 
 

<0.106 0.106 

31 2017 U 
 

Biopsy 11.8 219 144 27.2 
 

<0.126 0.126 

32 2017 F + Biopsy 25.3 7.64 4.37 0.47 
 

<0.059 0.059 
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Table 2. Σ25PCB, ΣICES7, p,p'-DDE and HCB concentrations by sex: mean, median, geometric mean 

with 95% confidence interval, and range. All values are in mg/kg lipid weight. “Mean” is arithmetic 

mean. “Geomean” is geometric mean. 

 

 
Σ25PCB 

N Mean Median Geomean Geomean 
95% CI 

Range  
(min–max) 

Males 18 94.5 78.5 78.3 58.3 – 105.1 23.0 – 293.0 

Females 9 20.0 17.9 14.9 8.5 – 26.1 4.1 – 48.9 

Unknown 5 145.7 150 134.1 87.0 – 206.7 58.3 – 219.0 

OVERALL 32 81.5 61.5 53.4 36.9 – 77.3 4.1 – 293.0 

 
 
ΣICES7 

     
 

Males 18 61.1 49.9 50.1 37.0 – 67.9 14.4 – 190.0 

Females 9 11.9 9.9 8.5 4.6 – 15.4 2.1 – 31.0 

Unknown 5 95.7 98.2 88.0 56.8 – 136.3  37.8 – 144.0  

OVERALL 32 52.7 39.3 33.2 22.4 – 49.1 2.1 – 190.0 

 
 

     
 

p,p'-DDE       

Males 18 13.5 12.4 11.4 8.5 – 15.3 2.7 – 32.9 

Females 9 2.7 0.9 1.3 0.6 – 3.1 0.3 – 9.4 

Unknown 5 20.5 23.5 19.0 12.5 – 29.1  8.2 –27.2 

OVERALL 32 11.6 9.5 6.7 4.2 – 10.7 0.3 – 32.9 

       
 

HCB       

Males 18 0.11 0.1 0.1 0.08 – 0.12 0.05 – 0.22 

Females 9 0.07 0.06 0.07 0.05 – 0.09 0.03 – 0.17 

Unknown 5 0.09 0.06 0.08 0.04 – 0.13 0.04 – 0.20 

OVERALL 32 0.09 0.09 0.09 0.07 – 0.10 0.03 – 0.22 
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Table 3. Summary statistics for individual PCB congeners. All values are in mg/kg lipid weight. 

PCB 
congener 

Mean Median SD Min Max Geomean Geomean 
95% CI 

C101 1.35 1.33 0.89 0.05 3.16 0.93 0.64 - 1.35 

C105 0.42 0.39 0.27 0.03 0.94 0.32 0.23 - 0.43 

C110 0.14 0.10 0.10 0.03 0.35 0.11 0.09 - 0.14 

C118 1.57 1.48 1.05 0.05 4.10 1.09 0.75 - 1.57 

C128 1.67 1.40 1.31 0.05 5.13 1.01 0.66 - 1.56 

C138 14.64 11.05 12.47 0.48 51.33 8.86 5.83 - 13.47 

C141 0.10 0.09 0.05 0.03 0.22 0.09 0.07 - 0.1 

C149 5.83 4.56 5.51 0.15 27.72 3.42 2.2 - 5.31 

C151 2.40 1.92 1.97 0.05 8.21 1.45 0.94 - 2.24 

C153 24.30 16.89 21.43 0.76 92.40 14.53 9.55 - 22.11 

C156 0.61 0.43 0.56 0.03 2.41 0.39 0.27 - 0.56 

C158 0.81 0.64 0.65 0.03 2.77 0.52 0.35 - 0.77 

C170 3.52 2.61 2.89 0.25 11.81 2.39 1.69 - 3.37 

C18 0.09 0.08 0.05 0.03 0.22 0.08 0.07 - 0.09 

C180 9.71 6.34 8.72 0.68 36.96 6.31 4.42 - 8.99 

C183 2.25 1.67 1.81 0.15 7.19 1.51 1.06 - 2.15 

C187 8.07 6.09 6.76 0.58 30.80 5.45 3.86 - 7.7 

C194 1.45 1.31 1.09 0.17 4.47 1.05 0.78 - 1.43 

C28 0.09 0.08 0.05 0.03 0.22 0.08 0.06 - 0.09 

C31 0.09 0.08 0.05 0.03 0.22 0.08 0.06 - 0.09 

C44 0.09 0.08 0.05 0.03 0.22 0.08 0.06 - 0.09 

C47 0.57 0.55 0.42 0.03 1.51 0.38 0.26 - 0.56 

C49 0.10 0.09 0.05 0.03 0.22 0.09 0.07 - 0.11 

C52 0.99 0.91 0.76 0.03 2.71 0.6 0.39 - 0.92 

C66 0.68 0.46 0.71 0.03 2.79 0.31 0.19 - 0.52 
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Fig. 3. Boxplots showing differences in Σ25PCB concentrations (mg/kg lipid weight) between females 

(F, n = 9) and males (M, n = 18). The difference is statistically significant (Mann-Whitney U test, U = 

155, P < 0.001). 
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Fig. 4. Boxplots showing differences in Σ25PCB concentrations (mg/kg lipid weight) between 

nulliparous (n = 3) and parous (n = 6) females. The difference is statistically significant (Mann-

Whitney U test, U = 17, P < 0.05). 
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Fig. 5. Boxplots showing differences in Σ25PCB concentrations (mg/kg lipid weight) among social 

groups A (n =15), B (n = 8), C (n = 5) and D (n = 4). Differences are not statistically significant (Kruskal-

Wallis test, H = 1.24, P = 0.743). 
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Fig. 6. Σ25PCB (mg/kg lipid weight) concentrations for females (n = 9), males (n = 18) and unknown sex 

(n = 5), in relation to published toxicity thresholds. The lower dashed line represents the lower toxicity 

threshold (9 mg/kg lw) for onset of physiological effects in experimental marine mammal studies 

(Kannan et al. 2000). The solid line represents the highest threshold (41 mg/kg lw) published for marine 

mammals based on reproductive impairment in ringed seals from the Baltic Sea (Helle et al. 1976).  
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Fig. 7. Contribution of individual PCB congeners to the total PCB burden. 

 

 

 

 

 

 

DISCUSSION 

We assessed the organochlorine levels in free-ranging common bottlenose dolphins from the Gulf of 

Trieste and adjacent waters in the northern Adriatic Sea. We show that concentrations vary with sex 

and reproductive status, but not with social group membership. With the largest sample size analysed 

in the Adriatic Sea to date, and samples coming from live resident animals with known resighting 

histories, this study provides an unprecedented insight into the organochlorine burden in Adriatic 
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dolphins. Judging from the literature, this may also represent the largest sample size of live free-

ranging animals in the Mediterranean Sea or Europe published for this species to date, and is 

comparable to some of the world’s largest sample sizes analysed (Table 4).  

To date, a number of studies looked at contaminants in different cetacean species in the 

Adriatic Sea. Marsili and Focardi (1997) investigated organochlorines in cetaceans stranded around the 

Italian coasts, but only three samples were from bottlenose dolphins from the northern Adriatic. 

Storelli and Marcotrigiano (2000) assessed organochlorines from three Risso’s dolphins (Grampus 

griseus) stranded in the southern Adriatic. Storelli and Marcotrigiano (2003) and Storelli et al. (2007) 

assessed organochlorines in bottlenose dolphins stranded on the southern Adriatic Sea coast, but the 

latter study did not include analysis of blubber tissue. In the same area, Storelli et al. (2012) measured 

organochlorines in stranded striped dolphins. In the northern Adriatic Sea, on its eastern side, Lazar et 

al. (2012) analysed different tissues in a single common dolphin (Delphinus delphis), a species 

considered extremely rare in the basin nowadays (Bearzi et al. 2004, Genov et al. 2012). Finally, Herceg 

Romanić et al. (2014) analysed organochlorine contaminants in various tissues in 13 bottlenose 

dolphins stranded along the Croatian coast in the northern Adriatic, providing the most comprehensive 

organochlorine assessment for dolphins in the northern part of the Adriatic Sea until now. All of these 

studies provided valuable insights, but due to limited sample sizes and the use of stranded animals, 

the inferences that can be made are somewhat limited. 

In most cases, cetacean studies typically involve either a) collecting photo-identification data 

of free-ranging individuals, or b) analysing pollutant concentrations in stranded animals. However, 

studies combining these two important aspects, the analysis of pollutants in conjunction with long-

term photo-identification of live animals (e.g. Ross et al. 2000, Ylitalo et al. 2001, Wells et al. 2005) are 

still relatively rare. In our study, all sampled animals were photo-identified and are part of a well-

known population of about 150 individuals monitored since 2002 (Genov et al. 2008, Genov et al. 2009, 

Genov et al. 2016, Genov et al. 2017), which adds additional value to this dataset. It allowed us to 

combine long-term records of identifiable individuals with individually-specific organochlorine 
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concentrations, which in turn enabled us to link contaminant loads to certain demographic parameters 

in a known resident dolphin population. In the long term, the continued organochlorine monitoring in 

conjunction with photo-identification may provide further useful insights and we hope to be able to 

expand on this in the future by including additional parameters. Such integrated approach offers a lot 

of potential, as PCBs can be linked to sex, reproductive output and other parameters (Ross et al. 2000, 

Ylitalo et al. 2001, Wells et al. 2005). Such information is often lacking for wild populations and is of 

considerable importance for evaluating the impacts of pollutants on marine top predators. 

When considering potential caveats, it should be noted that sampling live free-ranging animals 

meant there was some heterogeneity in the origin of samples with respect to the exact body location, 

despite the same general body area being targeted. This could potentially affect the resulting 

organochlorine concentrations, as these may vary across the body parts sampled (Aguilar 1987). 

However, because we quantified the proportion of lipid and expressed the concentrations on a lipid 

weight basis , the resulting concentrations can be considered unbiased (Aguilar 1987). Moreover, 

previous studies showed that biopsy samples yield representative details on chlorinated and 

brominated aromatic compounds in marine mammal blubber, regardless of the quantity and type of 

blubber sampled, provided that lipid normalization is performed on the resulting concentrations 

(Ikonomou et al. 2007).  

Even though known males were not preferentially targeted over known females, and several 

animals were of unknown sex at the time of sampling, the skewed sex ratio is likely driven by the fact 

that females with accompanying calves were not sampled.  

 

PCB concentrations 

We detected relatively high PCB concentrations. This is in agreement with other studies that showed 

the continued persistence of PCBs in large marine predators in Europe (Law et al. 2012, Jepson et al. 

2016). In a previous European-wide study (Jepson et al. 2016), PCB levels were shown to be high in six 

Gulf of Trieste bottlenose dolphins, but the sample size from this area was limited. Here, using a larger 
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sample size, we corroborate that concentrations in this population are indeed high in relation to 

published reference values (Kannan et al. 2000, Jepson et al. 2016). It is probably safe to assume that 

organochlorine threats to this population are mainly restricted to PCBs, as is the case for other 

Mediterranean areas (Jepson et al. 2016). Other studies in Europe have shown that following the 

1970s-1980s ban the declines of PCBs have been slower than those of DDTs (Aguilar and Borrell 2005) 

and levels have subsequently reached a plateau in harbour porpoises (Phocoena phocoena) around 

the United Kingdom (Law et al. 2012) and in striped dolphins (Stenella coeruleoalba) in the western 

Mediterranean Sea (Jepson et al. 2016).  

The main part of the PCB profile was represented by congeners 153, 138 and 180 (Table 3, Fig. 

7), which is in agreement with other studies from the region (Storelli and Marcotrigiano 2003, Lazar et 

al. 2012, Herceg Romanić et al. 2014) and elsewhere (Fair et al. 2010, García-Álvarez et al. 2014). 

Comparing organochlorine levels across various literature sources is not always 

straightforward and can in fact be challenging. The reasons for this include different methods of 

organochlorine quantification, differences in compounds analysed (e.g. the total number and selection 

of individual PCB congeners), the basis on which the concentrations are expressed (e.g. lipid, wet or 

dry weight basis - especially if the proportion of lipid or water is not reported), the summary statistics 

used (e.g. arithmetic mean, geometric mean or median) together with measures of spread (e.g. 

standard deviation, confidence intervals or range); the sources of samples (controlled live captures, 

biopsies, bycaught animals or stranded animals), sample size, the sex and age classes included or 

excluded from the analysis, period of sampling, etc. For these reasons, not all studies are directly 

comparable.  

Still, considering these caveats, some general comparisons can be made (Table 4). Looking at 

a regional perspective, it appears that PCB concentrations in our study are relatively similar to those 

found in stranded bottlenose dolphins along the eastern Adriatic coast of Croatia (Herceg Romanić et 

al. 2014), but substantially higher than in stranded bottlenose dolphins along the Adriatic coast of 

south-eastern Italy (Storelli and Marcotrigiano 2003), stranded along the coast of Israel, eastern 
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Levantine Basin (but note the extremely small samples size, Shoham-Frider et al. 2009), or biopsied in 

the Gulf of Ambracia, western Greece (Gonzalvo et al. 2016). Looking at the wider European and 

Mediterranean picture, concentrations in our study are higher than those found in bottlenose dolphins 

from Ireland (Berrow et al. 2002, Jepson et al. 2016), but lower than in bottlenose dolphins from 

western Mediterranean (Borrell and Aguilar 2007, Jepson et al. 2016) and those from Portugal, north-

western Spain, Wales, England and Scotland (although note that the patterns are somewhat different 

between males and females, Table 4, Jepson et al. 2016). Based on the above, it appears that within 

the Mediterranean, generally speaking, PCB concentrations tend to decline from west to east, and 

from north to south, which is consistent with the general geographical pattern of anthropogenic 

impacts (particularly pollution and exploitation of marine resources) in the Mediterranean basin (Coll 

et al. 2012). 

On a global scale, our reported concentrations are higher than those found in bottlenose 

dolphins in Taiwan (Chou et al. 2004), around Canary Islands (García-Álvarez et al. 2014), off Rio de 

Janeiro, Brazil (Lailson-Brito et al. 2012), Bermuda (Kucklick et al. 2011), Beaufort, North Carolina, USA 

(Hansen et al. 2004), southern Biscayne Bay, Florida, USA (Kucklick et al. 2011), and along the coasts 

of Louisiana, Mississippi and northwestern Florida (Kucklick et al. 2011, Balmer et al. 2015), relatively 

similar to those from Indian River Lagoon, Florida, USA (Fair et al. 2010), Sarasota Bay, Florida, USA 

(Yordy et al. 2010) and Charleston, South Carolina, USA (Fair et al. 2010, Adams et al. 2014), and lower 

than in New Jersey (Kucklick et al. 2011), northern Biscayne Bay and Tampa Bay in Florida, USA 

(Kucklick et al. 2011), and waters of Georgia, USA (Balmer et al. 2011). With respect to other species, 

our bottlenose dolphins had higher PCB concentrations than striped dolphins from the southern 

Adriatic Sea (Storelli et al. 2012), harbour porpoises from the United Kingdom (Law et al. 2012), Guiana 

dolphins (Sotalia guianensis) from north-eastern Brazil (Santos-Neto et al. 2014), common dolphins 

(Delphinus sp.) from New Zealand (Stockin et al. 2007) or northern resident killer whales from British 

Columbia, Canada (Ross et al. 2000, Ylitalo et al. 2001), but substantially lower than striped dolphins 

from the western Mediterranean Sea (Jepson et al. 2016), killer whales from the United Kingdom, 
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Canary Islands and the Strait of Gibraltar (Jepson et al. 2016), or southern resident and transient killer 

whales from the waters of British Columbia, Canada, and the states of Alaska and Washington, USA 

(Ross et al. 2000, Ylitalo et al. 2001). In addition, male dolphins in our study had higher concentrations 

than male pilot whales, male sperm whales and male fin whales from the western Mediterranean Sea 

(Pinzone et al. 2015), while female dolphins in our study had lower concentrations than female pilot 

whales, similar concentrations as female sperm whales and higher concentrations than female fin 

whales from the western Mediterranean Sea (Pinzone et al. 2015). 
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Table 4. PCB blubber concentrations in Tursiops truncatus across different studies for males, females 

and both sexes. Whenever possible, reported values pertain to adult animals. All concentrations are in 

mg/kg, and expressed on lipid weight basis, unless otherwise noted. Concentrations expressed in 

different units in source literature were converted to mg/kg. Concentrations are shown as either 

arithmetic mean (A) ± standard deviation, (or with range in parentheses), or geometric mean (G) with 

95% confidence intervals in parentheses. Summary statistics were obtained from text or tables of cited 

sources, or calculated from raw data reported in tables. Note that both the number and choice of 

individual PCB congeners tested varied across studies. See cited sources for details.  

Location N Mean M F M-F Source 

Croatia, north-eastern 
Adriatic Sea 

13 A - - 97  
± 133 

Herceg-
Romanić et al. 
2014 

Italy, southern Adriatic 
Sea 

9 A 30.3 28.8 32.7 
(7.3–53)  

Storelli & 
Marcotrigiano 
2003 

Gulf of Ambracia, 
western Greece 

14 A 23.4  
± 18.0 

32.9  
± 43.3 

26.9  
± 28.3 

Gonzalvo et al. 
2016 

Israel, eastern 
Levantine Basin 

2 A, wet 
weight 

6.3 ± 2.3 - - Shoham-Frider 
et al. 2009 

South-east Spain, 
western Mediterranean 

36 A 336.0  
± 241.1 

246.4  
± 183.5 

286.6  
± 274.6 

Borrell & 
Aguilar 2007 

Spain, western 
Mediterranean 

27 A 182.7 
(27.4–399) 

193.2 
(45.3–601.4) 

- Jepson et al. 
2016 

Strait of Gibraltar 8 A 324.0 
(28.3–879.3) 

123.1 
(20.8–179.7) 

- Jepson et al. 
2016 

Gulf of Cadiz, south-
west Spain 

21 A 247.3 
(98.5–445.3) 

150 
(3.7–426.4) 

- Jepson et al. 
2016 

Portugal 12 A 85.7 
(19.4–164.7) 

88.5 
(35.0–226.8) 

- Jepson et al. 
2016 

North-western Spain 11 A 118.9 
(5.1–382.2) 

34.7 
(5.4–82.0) 

- Jepson et al. 
2016 

Wales, UK 7 A 91.8 
(8.2–175.4) 

111.9 
(9.1–307.5) 

- Jepson et al. 
2016 

England, UK 10 A 176.9 
(22.1–446.6) 

91.2 
(4.1–358.5) 

- Jepson et al. 
2016 

Scotland, UK 21 A 96.6 
(1.8–698.0) 

46.1 
(8.5–125.1) 

- Jepson et al. 
2016 

Shannon Estuary, 
Ireland 

8 A 29.5  
± 21.0 

7.1  
± 8.7 

23.9  
± 20.8 

Berrow et al. 
2002 

Shannon Estuary, 
Ireland 

8 A 46.9  
(13.0–95.1) 

11.4 
(1.5 21.2) 

- Jepson et al. 
2016 

Canary Islands 25 A - - 47.2  
± 53.9 

García-Álvarez 
et al. 2014 
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Cape May, New Jersey, 
USA 

3 G 139 
(95% CI 62.8–
130) 

- - Kucklick et al. 
2011 

Beaufort, North 
Carolina, USA 

5 G 53.3 
(15.9–52.2) 

11.6 
(3.3–40.6) 

- Hansen et al. 
2004 

Charleston, South 
Carolina, USA 

9 G 50.4 
(23.6–84.6) 

7.9 
(2.7–31.2) 

- Hansen et al. 
2004 

Charleston, South 
Carolina, USA 

47 G 94  
(28.6–255) 
 

14.3  
(4.5–131) 
 

- Fair et al. 2010 

Charleston, South 
Carolina, USA 

40 G 76.6  
(25.9–246) 
 

- - Adams et al. 
2014 

Sapelo area, Georgia, 
USA 

46 G 115.7 
(95% CI 91.7–
146.1) 
 

48.3 
(95% CI 
27.3–85.5) 
 

- Balmer et al. 
2011 

Mixed area, Georgia, 
USA 

22 G 253.6 
(95% CI 
177.9–361.5) 
 

45.9 
(95% CI 
20.8–101.7) 
 

- Balmer et al. 
2011 

Brunswick area, 
Georgia, USA 

34 G 509.6 
(95% CI 
369.0–703.6) 

116.5 
(95% CI 
78.1–173.6) 

- Balmer et al. 
2011 

       

Indian River Lagoon, 
Florida, USA 

11 G 20 
(14.7–27.9) 

9.3 
(5.0–17.0) 

- Hansen et al. 
2004 

Indian River Lagoon, 
Florida, USA 

48 G 79.8  
(35–227) 
 

25.5  
(1.5–105) 
 

- Fair et al. 2010 

Biscayne Bay – North, 
Florida, USA 

15 G 157 
(95% CI 110–
224) 

- - Kucklick et al. 
2011 

Biscayne Bay – South, 
Florida, USA 

15 G 33.7 
(95% CI 23.6–
48.2) 

- - Kucklick et al. 
2011 

Sarasota Bay, Florida, 
USA 

47 G 98.6 
± 159 

4.7 
± 5.4 

- Yordy et al. 
2010 

Tampa Bay, Florida, 
USA 

5 G 109 
(95% CI 58.9–
203) 

- - Kucklick et al. 
2011 

East of Apalachicola 
Bay, Florida, USA 

20 G 33.1 
(95% CI 24.3–
45.1) 

- - Kucklick et al. 
2011 

St. Joseph Bay to St. 
Andrews Bay, Florida, 
USA 

38 G 63 
(95% CI 50.4–
78.9) 

- - Kucklick et al. 
2011 

Mississippi Sound, 
Mississipi, USA 

55 G 68 
(95% CI 56.4–
81.9) 

- - Kucklick et al. 
2011 
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Barataria Bay, 
Louisiana, USA 

19 G 51.4 
(95% CI 38.5–
68.6) 

- - Balmer et al. 
2015 

Bermuda 3 G 38.8 
(95% CI 17.4–
86.1) 

- - Kucklick et al. 
2011 

Rio de Janeiro State, 
Brazil 

2 A 11.8  
± 2.4 

- - Lailson Brito et 
al. 2012 

Taiwan 6 A 6.78 2.3 5.4  
± 3.6 

Chou et al. 
2004 

 

 

 

Effects of demographic parameters on PCB concentrations 

Males had significantly higher PCB concentrations than females (Fig. 3). Animals of unknown sex also 

had high concentrations, with values more similar to males than to females (Table 2, Fig. 6). This 

suggests most of these animals were likely also males. The significant differences between males and 

females are suggestive of PCB offloading from reproducing females to their offspring via gestation 

and/or lactation (Borrell et al. 1995, Schwacke et al. 2002, Wells et al. 2005, Weijs et al. 2013). The 

significant differences in PCB concentrations between nulliparous and parous females (Fig. 4) further 

support this, despite limited sample size. Even though the premise of maternal offloading is well 

established, particularly based on experimental laboratory or captive studies involving mammals 

(Kannan et al. 2000) and samples from whaling operations (Aguilar and Borrell 1994b, Borrell et al. 

1995), it is informative to be able to demonstrate that this is indeed happening in a wild, free-ranging 

cetacean population. In Sarasota Bay, Florida, research initiated in the 1970s, combining tagging, 

photo-identification monitoring and capture-release operations for health assessments, provided an 

unparalleled opportunity to investigate the relationships between organochlorine levels and life-

history and reproductive parameters in the world’s best-studied bottlenose dolphin population (Wells 

et al. 2005). In the eastern North Pacific, long-term identification records of one of the best-studied 

killer whale populations in the world enabled similar comparisons (Ross et al. 2000, Ylitalo et al. 2001). 
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However, such studies remain relatively rare, especially in the Mediterranean Sea, the largest enclosed 

sea in the world, with substantial anthropogenic pressure.  

There is some evidence of first-born offspring mortality in our dolphin population, as a few of 

the observed newborns (presumed to be the first offspring of respective females) did not survive to 

the following year (T. Genov, pers. obs.). This would support the notion that first-borns may receive a 

very high (possibly lethal) dose of PCBs from their mothers, as females may transfer up to 80% of their 

burden to offspring (Cockcroft et al. 1989). This may lead to poor first-born survival , with an improved 

survival of subsequent offspring (Schwacke et al. 2002, Wells et al. 2005). However, this evidence from 

our study area is limited and circumstantial, so further inferences are not possible. Given the long-term 

and ongoing monitoring of this population, future work incorporating PCB monitoring, individual re-

sighting histories and information on reproductive rates may provide further insight into the temporal 

accumulation of PCBs by females and the possible links between pollutant loads and recruitment, as 

recommended by Hall et al. (2006).  

Even though this dolphin population is structured into several social groups that display 

differences in behaviour as well as feeding strategies in relation to fisheries (Centrih et al. 2013, Genov 

et al. 2015, Genov et al. in press), it appears that PCBs pose a threat to these animals regardless of 

social group membership and potential associated dietary differences (Fig. 5). 

 

Potential toxicological effects 

The vast majority of animals in our study exceeded the lower toxicity threshold (Kannan et al. 2000), 

with more than 50% also exceeding the higher threshold (Helle et al. 1976, Fig. 6). As discussed by 

Jepson et al. (2016), the lower toxicity threshold may in fact overestimate the true PCB risk to 

cetaceans, but PCB levels reported here nevertheless provide a compelling case for the inherent PCB 

toxicity risk to these animals. In previous studies, high PCB levels were linked to pathological findings 

consistent with immunosuppression and increased susceptibility to disease, including macro-parasitic 

and bacterial pneumonias, high lung and gastric macro-parasite burdens, and generalised bacterial 
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infections in harbour porpoises (Jepson et al. 2016). In Mediterranean striped dolphins, high levels of 

PCBs were associated to increased mortality during a morbillivirus epizootic outbreak, possibly due to 

immunosuppression (Aguilar and Borrell 1994a).  

 Our results are of concern, particularly in combination with other known or suspected threats 

to this population, including marine litter, disturbance from boat traffic, frequent interactions with 

fisheries, overfishing and occasional bycatch (Genov et al. 2008, Hace et al. 2015, Genov et al. 2016, 

Kotnjek et al. 2017). Hopefully, the quantification of organochlorine concentrations and establishing 

links with various demographic parameters as presented here, will enable placing the effects of 

contaminants in context with other anthropogenic stressors (Hall et al. 2017). 

 

DDE and DDT 

We were only able to determine PCB concentrations, but not DDT in our samples, except for four 

samples referred to above. DDE concentrations could be determined as they were obtained as a “side 

product” of PCB analyses. In these four samples, DDE was the majority component of the total DDT, 

representing 89.7% (Table 1). Biotransformation processes of DDT in vertebrates largely end up as DDE 

(Aguilar and Borrell 2005). Unless there is a recent source, DDE tends to be the highest concentration 

DDT metabolite present (Storelli et al. 2004, Pinzone et al. 2015), and can be used as an indicator of 

DDT contamination (but see Kljaković-Gašpić et al. 2010 on possible recent input). Our results are 

similar to several other studies and indicative of DDT ageing (Lailson-Brito et al. 2012, Adams et al. 

2014, García-Álvarez et al. 2014, Gonzalvo et al. 2016). This suggests that DDE (and hence DDT) levels 

are relatively low, as is the case in the western Mediterranean Sea and around the United Kingdom 

(Aguilar and Borrell 2005, Borrell and Aguilar 2007, Law et al. 2012). In the Eastern Mediterranean Sea, 

however, levels of DDTs appear higher than those of PCBs (Shoham-Frider et al. 2009, Gonzalvo et al. 

2016). For HCB, the extremely low levels in our study, consistent with studies on other biota from the 

Adriatic Sea (Storelli et al. 2004), suggest that recent environmental input of this compound is 

negligible (Borrell and Aguilar 2007). 
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Future monitoring perspectives 

Our results represent a useful baseline for future research and monitoring. With ongoing studies of 

this dolphin population and new insights into its ecology, future sampling may provide a better 

understanding of population-level impacts of pollutants. It should be noted that concentrations in top 

predators with high lipid stores inevitably lag behind any reductions in environmental concentrations 

(and those in prey), due to the slow depuration of POPs out of the population (through the legacy from 

female to calf, as well as the cycling of POPs in the marine environment). Nevertheless, this approach 

may represent a monitoring tool in relation to EU legislation such as the Habitats Directive and the 

Marine Strategy Framework Directive (MSFD). The presence of pollutants in tissues of marine biota is 

already included as a Descriptor 8 of MSFD, while marine mammals are one of the indicators of the 

“Good Environmental Status” under Descriptor 1 of MSFD. Jepson and Law (2016) proposed that at a 

European policy level, PCB levels in relation to established toxicity thresholds should also be used to 

assess “Favourable Conservation Status” of marine mammals under the EU Habitats Directive.   

Even though biopsy sampling took place within Slovenian waters, the extensive spatial survey 

coverage (Fig. 1) and the fact that sampled dolphins have been re-sighted throughout the study area 

shown in Figure 1 (Genov et al. 2008), the reported organochlorine levels can likely be considered 

representative of this part of the Adriatic Sea. Furthermore, individual dolphin re-sighting frequencies 

have shown that the sampled individuals are part of a resident population inhabiting this area over the 

long term (Genov et al. 2008, Genov 2011), while both photo-identification (Genov et al. 2009) and 

genetic data (Gaspari et al. 2015) suggest that this population is distinct. This adds confidence to the 

notion that these concentrations are representative of this particular area, rather than being a result 

of acute PCB exposure elsewhere (Phillips and Segar 1986). 

 Molluscs have typically been used as model species to monitor contaminants in the Gulf of 

Trieste, elsewhere in the Adriatic Sea (Kljaković-Gašpić et al. 2010), and other parts of the world 

(Phillips and Segar 1986, Farrington et al. 2016). This is primarily due to their widespread distribution, 
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abundance, sessile nature, tolerance to various types of stress, and the ability to accumulate a wide 

range of contaminants (Phillips and Segar 1986, Kljaković-Gašpić et al. 2010), but probably also due to 

ease of access to the animals. However, while molluscs may be better indicators for local point sources 

of contamination, cetaceans may be more representative over larger spatial and temporal scales. 

Dolphins are long-lived predators that integrate contaminant concentrations over time. They have 

been shown to be incapable of metabolizing certain PCB congeners, making them accumulate these 

compounds more readily than other mammals or taxa of comparable life history (Aguilar and Borrell 

2005). Moreover, being highly mobile, they are likely better regional rather than local indicators, due 

to their propensity to move around more. Finally, as top predators, they are likely representative of 

the ecosystem as a whole (Borrell and Aguilar 2007).  

 

CONCLUSIONS 

It is important to review current methods of PCB mitigation in the marine environment, at a European 

and international level. In Europe, much greater compliance with the Stockholm Convention is urgently 

needed by many EU member states, in order to significantly reduce PCB contamination of the marine 

and terrestrial environment by 2028 (Jepson et al. 2016, Jepson and Law 2016, Stuart-Smith and Jepson 

2017). Measures may include the safe disposal or destruction of large stocks of PCBs and PCB-

containing equipment, limiting the dredging of PCB-laden rivers and estuaries, reducing PCB leakage 

from old landfills, limiting PCB mobilization in marine sediments, and regulating demolition of PCB-

containing precast buildings such as tower blocks built in the 1950s–1980s (Jepson et al. 2016, Jepson 

and Law 2016, Stuart-Smith and Jepson 2017). 

Our results show that PCB levels are relatively high in northern Adriatic dolphins, and may be 

high enough to potentially cause population-level effects in this population. We provide important 

baseline data of a considerable sample size, against which future trends can be assessed. We 

demonstrate that POP monitoring combined with long-term photo-identification and population 

ecology studies can be highly informative for assessing the impacts of organochlorine pollution.  
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