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Abstract

Despite the many successes of the current standard modesifotogy on the largest physical
scales, it relies on two phenomenologically motivated tarents, cold dark matter and dark en-
ergy, which account for approximately 95% of the energytamatontent of the universe. From a
more fundamental point of view, however, the introductidraaark energy (DE) component is
theoretically challenging and extremely fine-tuned, desihie many proposals for its dynamics.
On the other hand, the concept of cold dark matter (CDM) alffiers from several issues such as
the lack of direct experimental detection, the questiotsatdsmological abundance and problems
related to the formation of structure on small scales. Ag@astmore natural solution might be that
the gravitational interaction genuinelyfidgirs from that of general relativity, which expresses itself
as either one or even both of the above dark components. Heoemsider dierent possibilities
on how to constrain hypothetical modifications to the gedional sector, focusing on the subset
of tensor-vector-scalar (TeVeS) theory as an alternative@M on galactic scales and a particular
class of chameleon models which aim at explaining the cdargies of DE. Developing an ana-
lytic model for nonspherical lenses, we begin our analydib testing TeVeS against observations
of multiple-image systems. We then approach the role ofdewsity objects such as cosmic fila-
ments in this framework and discuss potentially observaigieatures. Along these lines, we also
consider the possibility of massive neutrinos in TeVeS themd outline a general approach for
constraining this hypothesis with the help of cluster lsnsghis approach is then demonstrated
using the cluster lens A2390 with its remarkable straiglst @resenting a general framework
to explore the nonlinear clustering of density perturbaién coupled scalar field models, we
then consider a particular chameleon model and highlighptissibility of measurabldfects on
intermediate scales, i.e. those relevant for galaxy dlsistEinally, we discuss the prospects of
applying similar methods in the context of TeVeS and presersansatz which allows to cast the
linear perturbation equations into a more convenient form.
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Chapter 1

Introduction

1.1 The standard model of cosmology

Current observations of the universe at large scales itaitet it is to good approximation
isotropic and - following the Copernican principle - homongeus. Within the commonly ac-
cepted framework of general relativity (GR), this rematigadllowed cosmologists to develop
suitable theoretical models of the universe as a whole aodrstrain possible scenarios regarding
its origin and evolution as well as to pinpoint its energy dpeid With the advent of observational
evidence supporting a spatially flat spacetime geometwa# inferred that the universe’s energy
density must be close to a critical valpgi;. Naively, one expects this density to be made out of
known matter described by the standard model of particlsiphfSMPP), in which case it should
be dominated by the contribution of baryonic material. Hegvecurrent cosmological constraints
do not agree with this picture. For instance, Big Bang nuylathesis (BBN), which provides
a theoretical description for the creation of light elensentthe first three minutes after the Big
Bang, gives strict limits on the amount of ordinary mattethia universel|1]. Together with other
astrophysical observations, this suggests that baryamsilwate less than 5% to the found value
of perit. Therefore, if one assumes the framework of GR to hold therémaining 95% must be

constituted by something that is not part of the SMPP.

Indeed, the problem of missing matter is not entirely neweadly in the early 30s, an analysis
of the Coma cluster [2] pointed out that the mass inferrethftbe cluster’s luminosity distribu-
tion is not able to account for the system’s gravitationgkptal, and it was postulated that this

discrepancy might be due to the presence of dark matter (DNHe cluster, i.e. a hypothetical
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form of matter which does not couple to light and thus is iinésto direct observations. This
assumption has been further strengthened by the first amalfyiotation curves of spiral galaxies
[3,14], followed by many more studies in the general contéxdymamical investigations as well
as gravitational lensing (see, e.g., Refs.| [5-7] for receviews), and the currently shared view
is that this DM component is essentially collisionless [i&, cold dark matter (CDM). How-
ever, observations of the cosmic microwave background (LCafi8l the ratio of CDM to baryons
measured by the combination of weak lensing and x-ray aisalygalaxy clusters revealed that
this mysterious component alone is not able to fully accdanthe missing 95% of the critical
density. As it turned out, one had to add yet another ingnéd@the cosmic inventory which is
commonly denoted as the cosmological constant or more ailyndark energy (DE) and - unlike
any other known matter field - characterized by a strong negatessure. The introduction of
such a quantity became necessary to explain a further adas@roperty of the current universe,
its accelerated expansion. Although the fact that the ptaseiverse is undergoing a phase of
expansion was already discovered by Edwin Hubble at thenbigj of the twentieth century, the
first convincing evidence for an accelerated expansion daone observations on supernovae la
[9]. Sharing a common scale (in form of the Chandrasekhasitirag), these objects are believed
to form standard candles, i.e. objects with known luminesjtwhich allows one to use them as
cosmological distance indicators and thus as probes of ihense’s expansion history. Other
evidence for DE comes from the observed peaks in the CMB &ajsospectrum, the imprint of
baryonic acoustic oscillations in the matter power spectfl0], the relative speeds of galaxies in
the local group.[11] or the late-time integrated Sachs-@elfect [12] which describes the energy
gain of CMB photons traveling through the time-dependeavigational potentials generated by

large-scale structure such as galaxy clusters.

Putting everything together, the present view is that tted emergy density of today’s universe
is dominated by DE, followed by CDM and ordinary baryonic teatvith fractional contributions
of 20 - 25% and around 4 5%, respectively. Combined with the framework of GR, these-c
stituents form the pillars of what is now known as tR€DM model, the standard model of
cosmology. Over the recent years, th€EDM model has been remarkably successful in form-
ing a coherent picture on the largest physical scales andda® suitable explanations for the
observations on supernovael[13], large-scale structyrelf], weak lensing [16] and the CMB
[17,/18]. Despite its achievements as a phenomenologicarig¢ion of the universe, however,

the ACDM model is not free of problems and as we shall discuss hét@agems intriguing that
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these dficulties are related to the concepts of DE and CDM.

Cold dark matter At present, the generally accepted view is that CDM is pritpanade out of
nonbaryonic particles. Among the most common proposaksfiods so-called weakly interacting
massive particles (WIMPSs), axions or sterile neutrinos $&fc[3.4.1). None of these are actually
part of the SMPP, but can arise within certain extensions ear instance, many supersymmetric
models naturally give rise to stable and heavy WIMPs in thfof neutralinogfwith a lightest
neutralino around a mass of roughly 20.0*GeV providing an excellent candidate to comprise
the universe’s CDM. Until now, however, none of the abovdigias has been directly detected
in any of the experiments conducted so far [19] and it shoel@imphasized that their existence
still remains theoretical speculation. Furthermore, @éf/ench CDM candidates were found, one
would still be left with the question of their cosmologicélendance and it is likely that producing
the right amount of CDM would require severe fine-tuning af thodel parameters [20]. On
the other hand, the concept of CDM alsdfets from several issues related to the formation of
structure on small scales. For instance, cosmological lations predict that there should be a
substantially larger number of satellite galaxies oriitamound galaxies like the Milky Way than
actually observed [21-23]. A common explanation is thateghmay exist feedback processes
such as supernovae which extinguish the star formationatf small galaxies. However, no fully
convincing mechanism for this kind of scenario has beengweg so far. Another consequence
of the CDM paradigm is the prediction of cuspy density prdfile galaxies, which appears to
contradict the observed cored distribution of dwarf gadaxR4| 25]. Similar evidence against such
central cusps is also seen in the rotation curves of spitakiges [26] where the CDM density does
not increase towards the center. Possible remedies torbiemn such as feedback from active
galactic nuclei or supernova winds, which are principadpable of reducing the CDM density at

the center of galaxies, have been found to beftigant 27].

Dark energy Even more mysterious than assuming the presence of DM legari&cthe necessity
for DE which appears to constitute most of the total energten content of the present universe.
To be consistent with current observations supportinglacated expansion, DE must come with
a pressure which is approximately equal to its energy densit with the opposite sign. In this
case, the ffects of DE could be explained by simply allowing for a cosngadal constant term

in the gravitational field equations, the same constantraily proposed (and later discarded)

1Having the same quantum numbers, the supersymmetric paadf2 boson, photon and the neutral Higgs boson can
mix, forming four eigenstates of the mass operator whiclcanemonly denoted as neutralinos.
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by Einstein to enforce a static universe. To explain wheig ¢bnstant comes from, however,
poses a great challenge to physics [28, 29]. From a quantearetical point of view, it should

be identified as the energy density of the vacuum. Followiregstandard methods of quantum
field theory [30) 311], one may obtain a rough estimate for itteo of magnitude by considering

the vacuum energy of a free scalar field,

(o)

1 d¥k
{pvac) ~ Ef(Zﬂ'):g k2 + 2, (1.1)
0

if one takes the contribution of all the modes into accouninc& the integral in Eq.[(1l1) is
ultraviolet divergent, one might expect that such highrgpenodes do not contribute within a
more fundamental theory and introduce a cfiitto the integral. A natural choice would be the
Planck scale where quanturfiects are believed to become important. Using this assumpiite
finds an estimate fqu,sc Which is approximately by a factor 3% larger than the actual observed
value. Obviously, there is a cancellatioffeet needed which should lead to the desired value.
Certain supersymmetric theories even require a cosmealbgimstant that is exactly zero, which
further complicates things. This is the cosmological camsproblem, the worst problem of fine-
tuning in physics. Another related fine-tuning issue is thvealled cosmic coincidence problem
which simply concerns the question why the energy coniobhstof DE and matter (mostly CDM)
have become comparable just recently. This is disturbingeaw of the fact that the size of the
universe at the creation of the CMB, where DE was completelyligible, has roughly grown
by a factor of 168 until the present and that after an additional increase bgctoff of around
10, everything except DE will be negligible. Looked at thiaywthe transition between these
two regimes appears almost instantaneous and one woultblikederstand why this is the case.
Furthermore, it is curious that théfects of DE and DM in various systems seem to be tuned to
a common scale [32], hence requiring a coincidence in batk skectors which appears unlikely

given their current interpretation.

A perhaps more natural solution might be that the descripgfayravitational interaction gen-
uinely differs from GR, which expresses itself as either one or evendidtie above dark com-
ponents. Having only been accurately tested in very stroagity regime, i.e. the solar system,
there is no guarantee that GR will hold everywhere in theamsiz. This has motivatedftiérent
modifications to the gravity sector, either by directly opiauig the underlying principles of space-

time geometry or by introducing new fields and nonstandaupladags. Typical examples afgR)
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gravity [33], conformal Weyl gravity or scalar-tensor thieg, but there exist many more [32) 34—
38]. While some of these modifications are explicitly consted to provide a phenomenological
description of observational findings, others emerge frlioaotetical considerations in the context
of high energy physics. For example, there exist attemptedoncile gravitation with quantum
theory by introducing corrections to the conventional gedional interaction. Other approaches
involve strong couplings between spacetime curvature eadsfields like the Higgs field in order
to provide an explanation for DE, or introduce unconverdlorector fields to create thefects of
CDM on astrophysical scales. Finally, certain formulagiédmthe context of string theory propose
that extra-dimensions could have gravitationfieets on the visible universe, meaning that DE

and DM are not necessarily needed for a unified theory of ctugiyo

Ultimately, a modified theory of gravity must be able to cetetly explain observations
before one may consider it as a serious competitor tAtbBM model. In the following, we shall
discuss certain aspects of these theories such as theiigpraperties and possible approaches to
test and constrain them on extragalactic and cosmologiedds, restricting ourselves to a subset
of modified gravity theories which have recently gainedriesge within the scientific community.

After a general review of GR and cosmology, we will introdtlsese modifications in Selcl. 2.

1.2 Structure and contents of the thesis

The thesis is structured as follows:

e In Secl2, we will briefly review the basics of general religgiand cosmology, followed by

a discussion of selected possible extensions.

e The contents of SeEl] 3 are concerned with the study of gtan&l lensing in tensor-vector-
scalar gravity. Starting with a test of multiple-image lesystems, we discuss the role of
low-density objects such as filaments and finally considerpbssibility of constraining

massive neutrino matter with galaxy cluster lenses.

e In Sec.[4, we shall investigate the nonlinear regime of sirecformation in the context
of coupled scalar field models. This is followed by an analydi metric perturbations in
tensor-vector-scalar gravity, aiming at how to principalpproach such problems in this

case.

e Finally, we summarize in Sel] 5.



Chapter 2

Gravitation and cosmology

As the dynamics of the universe at large scales is governedrdoyity, we will begin with a
brief introduction to GR and its cosmological applicatiffe will also discuss more speculative
extensions to this framework, focusing on their motivati@md basic structure. Throughout this
thesis, we will mostly follow the conventions of Ref. [39h particular, we will assume a positive
metric signature-, +, +, +) and units where the speed of light equals unity, ce= 1. While

greek indices run from 0 to 3, latin ones run from 1 to 3.

2.1 General relativistic description of the universe

2.1.1 Basic equations

In GR, gravitation is described in terms of spacetime gegmetThe geometry is determined
by the matter content while the matter's movement is in twwegned by the geometry. More

mathematically, this interplay can be expressed in ternfielof equations which read

1
Ry — ERg‘V = 8rGT,,, (2.1)

whereG is Newton’s constantR,, is the Ricci tensor and,, denotes the energy-momentum
tensor. HereRis defined as the contraction Bf,, i.e. R = ¢’R,,, andR,, is constructed from
the metric fieldg,, according to (e.g., see Ref. [40])

MELY R VAR B MR A B (2.2)

wv,a uay ay’
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whereT is associated with the Levi-Civita connection of the metie I''s are then also called

the Christdfel symbols),

@ 1 Q.
Ty =59 "Gy + Giys — Gaya) - (2.3)

The above quantities describe the geometry of spacetinhe icdmbination defined as the Einstein

tensorG,,,

1
Gun =Ry - ERg,V, (2.4)

while T, contains the information of the matter configuration. Inrfdimensions, there are 16
field equations, but since in Einsteinian gragty andT,, are symmetric, i.eg,, = ,,, the num-
ber of independent equations is reduced to ten. In genbigkét of highly nonlinear equations is
practically impossible to solve. However, there exist rdble exceptions in cases of abundant
symmetries. In such situations, the number of independegreas of freedom can be substantially
reduced, resulting in a system of equations simple enoudpe nalytically trackable. The first
such example was found by Schwarzschild in 1915 and desdtieesacuum outside a spherically

symmetric matter distribution.

The field equations in Eq._{2.1) can be derived from the agirorciple and a suitable starting

point is given by the Einstein-Hilbert action which reads

Sg = f d“X\/—_g[l:TG +Lm (gw,TB)], (2.5)

whereg is the determinant of the metric. The Lagrangian densitydepends on the metric and
some collection of matter fields®, perhaps also on their first derivatives. The form of EQ.)(& 1
obtained through minimization of E4._(2.5): Variation oéthravitational part with respect to the
dynamical variabley" yields the previously defined Einstein ten€g)y,. To satisfy the structural
form of the field equations, one notes that the energy-mameénsor has to be defined as the

variation
T2 8(V8Lw
My \/_—g ogy ’

As we shall see further below, the action principt&ecs the most convenient way of introducing

(2.6)

possible modifications to the gravitational se@om particular, this approach will automatically
include necessary conservation laws through the actign'sretry properties (see Noether’s first

and second theorems).

INote that such modifications do not necessarily involve ghranthe geometric part of the action, but may be achieved
by introducing coupling terms between the metric and aolditi (new) fields.

7
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Finally, let us briefly comment on how Newtonian dynamics ryae from the framework of

GR. In the limit of weak fields and quasi-static configuraﬂ;irthe metric may be decomposed as

Ouw = M t h/lV? (2.7)

wherer,, denotes the Minkowski metric arfgj, is “small” in the sense that its components are
much smaller than unity and higher order terms are negégibhen the equation of motion for

test particles approximately takes the form (for detad® again Ref. [40])

d?x ,
W = _FIOO’ (28)
with
; 16hgg 0D
= = — .
Poo="25x ~ ax 29)
and
AD = 4nGp. (2.10)

Clearly, the above describes the equation of motion for athielan system and we identiffy as
the corresponding Newtonian potential. However, it is int@iat to note that - unlike the Newto-
nian case - the resulting trajectories are not a consequéficeces acting upon massive particles,

but rather follow from (free) propagation in a curved spewet

2.1.2 Friedmann-Robertson-Walker cosmology

Another example of a highly symmetric gravitational systenprovided by the universe as a
whole. Cosmological observations indicate that the usiean large physical scales is homo-
geneous and isotropl& The most general metric under these conditions is the Raed-

Robertson-Walker (FRW) metric whose line element is givgn b
ds’ = —dt® + (1) [dy® + FZ(x)dw?|, (2.11)
where we have introduced a set of polar coordinaes, () with

dw? = d? + sir? 6dy?, (2.12)

2Here we explicitly assume that there exists a global ineztiardinate system of,, such thafl,,, has only a time-time
component and that derivatives with respect to time caryshéeneglected.
3If a spacetime is isotropic at every point (the cosmologieaiciple), it is also homogeneous.
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the scale factoa and a radial functiorfx (y). The choice of the functiorik (y) is restricted by
the requirement of homogeneity. It can be shown thdj) is either linear, trigonometric or

hyperbolic iny, which corresponds to a flat, closed or open universe raspbgt

K2 sin(K/2y) (K > 0)
fc(r) =4y (K =0)- (2.13)

K["2sinh(|K|*2y) (K < 0)

HereK is a constant parameterizing the curvature of spatial syptces and bottix () and
IK|~¥? have the dimension of length. There is cosmological evidehat the curvature of the
universe is negligibly small. Would there be a not too smalivature, it should recently have
become detectable as its contribution to the expansioreafitiverse would have started to domi-
nate over that of matter. A universe with= 0 is also what one expects from the simplest models
of inflation. Therefore, we will mostly concentrate on flasowlogies for which the line element

takes the particularly simple form
ds’ = a%(r) [-dr? + 5;dXdX], (2.14)

where we have used Cartesian coordinatesd introduced the conformal timewhich is related
to the coordinate timevia dt = a(r)dr. Obviously, such a metric is also conformally flat, i.e. a

Weyl transformation of the Minkowski metrig,, .

The isotropy of the universe implies that it consists of eratthich can be described as a

perfect fluid. In this case, the energy-momentum tensor itbamnras
T = puyuy, + P(Qyy + UyUy), (2.15)

wherep andP are the fluid’'s energy density and pressure, respectivetyuadenotes the four-

velocity. Evaluating Eq[{2.15) in comoving coordinatese dinds
T/ = diag(—p, P, P, P). (2.16)

Furthermore, homogeneity dictates that hotndP are functions of time only. Their relation is
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called the equation of state (E0S),

w=—, (2.17)

If
SNV,

and the quantityw is called the EoS parameter which is generally a functiorinoét Recalling
from statistical mechanics that for relativistic matteadjation)w = 1/3, we see that this is
consistent with the theoretical result of a traceless grergmentum tensor for the Maxwell field.
In case of nonrelativistic matter (dust), the pressure npgyaximately be neglected and one has

w = 0. For any matter at hand, the energy-momentum tensor i:en&nE, meaning that
VAT, =0, (2.18)

Thev = 0 component of the above leads to the continuity equatiochwiétermines the evolution

of the matter density in an expanding universe,
. .a
p+3_(L+wp=0, (2.19)

where an overdot denotes the derivative with respect toocordl time. Assuming a constant EoS

parameter, the solution of Eq. (2]119) is
p oc @ SEW), (2.20)

In the case of dust, the energy density decreases invergerfiomally to the comoving volume as
the universe expands. The energy density of radiationedilfasterp o« a4, where the additional

factor ofa™! can be explained with the loss of photon energy due to thicking of wavelength.

To find an evolution equation for the scale factor, one hastiarn to Eq. [(ZI1). Considering

the equation’s time-time component, we arrive at the Frigaimequation,

8nG K

2—_ —_— —
HZ = 22— (2.21)

where the physical Hubble parameter is definetlasa/a?. The spatial components of Eq. (2.1)
do not yield any additional information. Assuming that thatter properties are given in terms of

w, there remain two unknowng,anda, which may be determined from Eq$._(2.19) and (2.21).

“Note that this does not generally correspond to the consenvaf energy and momentum, but emerges from the
invariance under general coordinate transformations.fiir@amental problem is that vectorial quantities like gger
momentum cannot be parallelly transported to another sipae@oint in a unique way.

10



2.1. General relativistic description of the universe

On the other hand, given a measured expansion history ofrtiverse, this also allows one to

reconstruct the matter content.

Parameterization To clarify the discussion of cosmological models, it is cement to introduce
both dimensional and dimensionless parameters. In whaine] the subscript “0” will be used
to denote the values offerent quantities as measured today. We begin with definegurrent

value of the physical Hubble parameter as
Ho = 10chkm st Mpc?, (2.22)
whereh is a dimensionless constant aHg is called the Hubble constant. Current cosmological

observations indicate thht~ 0.7. Next, we define the critical density

3H2
¢ = — 2.2
Pecrit 8:G ( 3)
and expressing the energy density in termpgf leads to the dimensionless density parameter

£ (2.24)

Q .
Perit

For multiple matter fluids, we have= ; pi and Eq.[(2.211) takes the form
K
1+ 55 = Z Qi = Q. (2.25)
|

From Eqg. [[2.25), one may also understand the notion of aatitensity: If the total energy
density equalgcit, the universe is flat. Whereas the total density is smallan th;; for open
universes, it is larger in closed ones. Apart from the pd#gilmf more exotic matter fluids, a
realistic universe will consist of both relativistic (e.gphoton radiation or massless neutrinos)
and nonrelativistic (e.g., baryonic matter) density congus. Defining the curvature parameter,
Qx = —K/H2, and allowing for a cosmological constant (which may be deed in terms of a

matter fluid withw = —1), we may recast Eq._(Z.21) into
E%@@) = Qroa? + Qmoa 3 + Qo + Qka ™, (2.26)

where the scale factor has been normalized suctaghatl andE?(a) = H?/ HS. Instead of using

the scale factoa, the above equations may also be written in terms of the clogjical redshiftz

11



2.1. General relativistic description of the universe

which is defined as the relative increase of photon wavelielgtweera andag = 1, thus yielding

the relationz = -1+ 1/a.

From the density scaling of individual components in EGZ62, it becomes evident that rela-
tivistic matter must have been the most significant contoibat an early stage of the universe, i.e.
Q; > Qn. Nowadays, radiation has cooled down, causing other coemgsrsuch a8, or Q, to
take over. With the help of cosmological observations, fiassible to put constraints on the the
above parameters and there is now vast evidence suppdrth¢he known matter fields account
for only less than 5% o€ in the present universe. For instance, one may infer thatiadi
contribution ag,¢ ~ 4.7 x 107° from the CMB temperature which is well described by a thermal
black body spectrum at arouid = 2.7K. On the other hand, one may also estimate the bary-
onic content of the universe, either from direct astroptglsineasurements or using the predicted
primordial abundance of light elements produced at big bardeosynthesis (BBN) which took
place during the first minutes of the universe. Althoughetespears some discrepancy between
these approaches, both imigty < 0.05, which is also consistent with recent observations of CMB
anisotropies [17]. If the framework of GR indeed holds trilren the missing energy density has
to be described by something which is not rooted within tldard model of particle physics.
The ACDM model provides the most simplistic example of consiggesxplaining observational

data by incorporating such unknown physics in a phenomeicalbway.

Cosmological distancesGiven a curved spacetime geometry, distance measures domger
unigue and need to be defined according to idealizations asanement prescriptions. The co-
moving distancd¢ is defined as the distance on the spatial hypersurface abnst between the
world lines of a source and an observer moving with the meamanflow. Therefore, one has the
relationdDc = dy (see Eq.[(2.11) above) and because light rays propagatedawoods = 0,

integration yields the result

a(z1)

da 1 [¥&) da

D¢ [a(z1), a(2)] = -— = — f ——. (2.27)
a H a2E(a

a(z) 0 Jalz) @

Usingda = —a’dz we can alternatively express EQ. (2.27) in terms of retighif

4]

Dc(z1,22) = Hiof% (2.28)

pAl

12



2.2. Tensor-vector-scalar theory

whereE(2) is given by Eq.[(Z2.26),

]1/2

E@ = [Qro(1+2)* + Quo(1+ 2% + Qa0 + Qk(1 + 2)° (2.29)

In preparation for Sed. 3, we also introduce the angular eiandistanceDa. It is defined in
accordance with the relation in Euclidean space betweeart@A and the solid angléw of an
object,éwDiE = 6A. As the solid angle of spheres of constant radial coordigdtescaled by

fk(x) in Eq. (Z.11), one must have

A
o _ (2.30)
4na?(z) T [Dc(z1, )]  4n
From the above, it follows that
1
Da(z1, 2) = a(z) fx (Dc(ze, 22)) = i1 fk [Dc(z1, 2)] . (2.31)

The angular diameter distance shows that cosmologicardies are not necessarily monotonic.
Assuming a universe filled with pressureless matter onlyefample Da(0, 2) has a maximum at

z = 5/4 and gently decreases for larger valueg, @fhich is a consequence of spacetime curvature.

2.2 Tensor-vector-scalar theory

In the following sections, we will discuss possible modificas to the gravitational sector which
are motivated by observational findings or more fundamehtairetical ideas. To begin with, we
give an introduction to Bekenstein’s tensor-vector-scéh@ory [41] which has originally been

constructed to explain empirical relations in galaxies.

2.2.1 Modified Newtonian dynamics

Without resorting to CDM, the modified Newtonian dynamicsgaigm (MOND) aims at solv-
ing the missing mass problem on a nonrelativistic level bstplating an acceleration-dependent

change of Newton’s law which is characterized by a seglf@2-45]:
_(lal\
i % a=-Von+S. (2.32)

Here, @y denotes the common Newtonian potential of a matter sourd& &na solenoidal vector

field determined by the condition thattan be expressed as the gradient of a scalar potential. The
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2.2. Tensor-vector-scalar theory
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Figure 2.1: Left The points show the observed 21cm line rotation curve ofldhesurface brightness
galaxy NGC 1560 (the figure is taken from Ref. |[46]). The dbtad dashed lines are the Newtonian
rotation curves of the visible and gaseous components dfitfikeand the solid line is the MOND rotation
curve withag = 1.2x1071°m s2. The only free parameter is the mass-to-light ratio of tiséoke component.
Right The near-infrared (Kband) Tully-Fisher relation of Ursa Major spirals (the figis taken from Ref.
[47]). The rotation velocity is the asymptotically congtaalue in units of km s' and the luminosity is
given in 10°L,. The unshaded points are galaxies with disturbed kinemafice line is a least-square fit
to the data and has a slope 093 0.2.

function, controlling the modification of Newton’s law, has the folmg asymptotic behavior:

a(x) ~ x X< 1,
(2.33)

ax) ~1 x> 1

For nonspherical geometries, one typically Bas 0 and finding the solution of Ed._(2.132) usually
requires the use of a numerical solver [46-50]. The law giweBRq. [Z.32) has been constructed to
agree with the fact that the rotation curves of spiral galskiecome flat outside their central parts.
Analyzing observational data, Milgrom estimated an acegiten scale ofg ~ 1.2 x 1071%m s72,
For example, using this value fag and choosing the so-called standard form of the interpaati

function i(x),
X

Vit @

it is possible to fit the observed rotation curve of the gallC 1560 as shown in the left panel

(2.34)

A =

of Fig.[2.1. Since accelerations in the solar system aregttompared tay, Eq. (2.32) will turn

into the classical Newtonian law there.

The MOND paradigm still appears suitable to explain the plesk“conspiracy” between the

distribution of baryons and the gravitational field in spialaxies [51-54]. It is striking that
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2.2. Tensor-vector-scalar theory

such a simple prescription leads to extremely successédligtions for galaxies ranging over five
decades in mass (see Rels.! [55, 56] for reviews), includurgown Milky Way |[57-+59], dwarf
spheroidals [60—62], x-ray dim elliptical galaxies![63],6ahd tidal dwarf galaxies [65—67]. In ad-
dition, MOND successfully reproduces empirical galaxylisgarelations such as the well-known
Tully-Fisher relation|[68—70], which is shown in the rigtatnel of Fig[Z.1L for the Ursa Major spi-
rals in the near-infrared (Kband) [47], and more recently the central surface briglstipesdicted
by dark halos|[71-=73]. In the view of MOND, these empiricali$aemerge as a consequence of

dynamics in the low acceleration regime.

While the framework of MONDian dynamics appears to work extely well on galactic
scales, the situation in galaxy groups and clusters is giifterent: Several studies of such sys-
tems [74-76] have shown that an additional nonluminousenattmponent is required to explain
observations, even after taking into account the grawitaliboost induced by the MOND formula.
In galaxy cluster, for example, this discrepancy is aboattor of two at very large radii, meaning
that there should be as much dark matter (mainly in the depaérds) as observed baryons. As-
suming that MOND is a viable description for such gravitgtgsystems, this result has led to the
question of what the needed matter component should beolivisus that any possible form of
exotic CDM is disfavored as it would cause the original idé&@. (2.32) to become redundant.
Possible remedies range from undiscovered baryonic rahgrth as cold molecular gas clouds
to the hypothesis of massive neutrinos accounting for thesimg mass [77]. We shall address this

issue further when considering the situation of gravitaldens systems in Sdd. 3.

A further problem arises from the fact that the original MONXtmulation does not spec-
ify cosmology or the nature of gravitational light deflectioRecent developments in the theory
of gravity, however, have been able to embed MONDian dynannito fully Lorentz-covariant
theories by means of a dynamical four-vector field (41, 783—-&lthough still lacking a deriva-
tion from fundamental principles underpinning the MONDaadigm, these theories allow for new
predictions regarding cosmology and structure formaf@#-B5] as well as gravitational lensing
[50,186+-90]. As it turns out, another appealing feature chsuodifications is also that they might
be able to simultaneously explain the observidats of DE [33, 91-96], but we do not consider
this possibility in this thesis. In the next section, we viiltroduce the first proposed relativis-
tic theory of MOND, Bekenstein’s tensor-vector-scalarottye(TeVeS), and discuss some of its

properties in more detail.
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2.2. Tensor-vector-scalar theory

2.2.2 Fundamentals of TeVeS

In this section, we shall briefly review the basics of TeVasparticular, we will focus on its
implications for quasistatic systems and cosmology andeeethe theory is related to MOND.
Finally, we also comment on more general constructions elposnary motivation goes beyond

the interpretation of astrophysical observations.

2.2.2 A Fields and action

TeVeS [41] is a bimetric theory of gravity and based on thrngeadhical fields: an Einstein metric

0., atime-like vector field, such that

FAA, = -1, (2.35)

and a scalar fielg. Furthermore, there is a second metj¢ which is needed for gravity-matter

coupling only and obtained from the non-conformal relation

O = € 2%, — 2A,A, sinh(2p). (2.36)

The frames delineated by the metric fielgls andg,, will be called Einstein frameand matter

frame respectively. The geometric part of the action is exatttydame as in GR:

1 o .
Sy = e f §" R, -0d*x, (2.37)

whereR,, is the Ricci tensor ofy;, andg the determinant of;;. Note that the TeVeS consta@t
must not be mistaken for the Newtonian gravitational cansg, (see Sed_2.2.2]B). The vector
field’s actionS, reads as follows:

S =5 f [KeF#Fyy = AAA + 1)] Y=3'x (2.38)

with F,, = @Ay—ﬁyA# and indices being raised and lowered with respegf,tpi.e. A = A,
Here the constarkg describes the coupling of the vector field to gravity anid a Lagrangian
multiplier enforcing the normalization condition given Byg. (2.35). Equatiori(2.88) corresponds

to the classical Maxwell action, the fieJ, now having an fective mass. The actiofs of the
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2.2. Tensor-vector-scalar theory

scalar fieldp involves an additional nondynamical scalar field, and takes the form

1
S¢=-=
=3 |

whereh” = & — A*A” andF is an initially arbitrary function. Furthermore, there apptwo new

2 Gog 2
B YV + —5°F (keGor3)
B

V-ad*x, (2.39)

constantskg andlg, wherekg is dimensionless arl@ corresponds to a length scale. As there is no
kinetic term forog, it is related to the invariarh“vﬁ,@ﬁv(p and could in principle be eliminated
from the action. To get a better insight into the structur¢hefscalar field action, we follow the

approach of Ref! [97] by introducing = 87TGO'ZB and

2 AnG2o4
V) = £—F = ——BF (keGo3). (2.40)
16712 2

where we absorb the constaky into the definition ofV(u). Using the above allows one may

rewrite Eq. [2.3P) as

1

Ss=-1Te g f bV, 0V, + V()| V=-3t*x. (2.41)

From Eq. [2.411), one identifies both a kinetic-like and a ptigé-like term and the action now
resembles other popular scalar field constructions likegfample, k-essence models|[98] which
are based on noncanonical kinetic terms for the scalar flalthe following, however, we shall

stick to the form of the scalar field action in EQ. (2.39).

Finally, matter is required to obey the weak equivalencaqipie, and thus the matter action
is given by

Sm= f L (9,78, VT?) y=gd'x, (2.42)

where B is a generic collection of matter fields. Note that world $inere by construction
geodesics of the metrig,, rather thang,,. As usual, the corresponding equations of motion
can be derived by varying the total acti6n= Sy + Sy + Ss + Sy, with respect to the basic fields
(see, e.g., Refs._[41,/97]). As already pointed out in Rel],[4 requirement for obtaining New-
ton’s law in the nonrelativistic high acceleration reginee={ ap) is thatkg, Kg < 1 (also see
Ref. [41] for a discussion on lower boundsl)f Therefore, TeVeS is kept close to GR in a sense
that it will recover well-known features of GR, but there Mde modifications induced by the
other fields. Albeit not a unique extension, TeVeS is the mopular “MONDian representative”

so far, and a variety of its aspects have been extensivetijestun the literature (see Ref._[99]
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2.2. Tensor-vector-scalar theory

for a review). Although the original formulation of TeVeSffars from several problems, e.g. in
the strong gravity regime [100, 101] or - at least for certaindels - in the cosmological domain

[85,1102], it still provides a viable description of relagtic MOND on extragalactic scales.

2.2.2 B The free function, quasistatic systems and relatioto MOND

Following the lines of Ref.|[41], the “equation of motion”rfo-g suggests the introduction of a

new functionug(y) which is implicitly given by

1, 1 /
~ neF (ue) — SuEF (ue) = — (1GF) = . (2:43)

with
keGog = s (Kal3h” V,,¢9,9) = ue(y). (2.44)

Here the prime denotes the derivative with respegtstd.e. F’ = dF/dug. Whether or not TeVeS
recovers the dynamics of MOND in the nonrelativistic limipnds on the assumed form of the

functionF. Originally, Bekenstein made the choice

_ 3us(4+2us - 42 + pd) + 2log (1- pg)?

F
8 2

, (2.45)

which leads to 312 — 27
y=7 Bl—,uB a (2.46)

What are the essential features of the functi@ii)? First of all, the denominator in Eq._(2]46)

ensures thag — oo whenug approaches unity, which, as will become clear shortly, spoasible

for TeVeS to have a Newtonian limit. Likewise, the behavimrgmall values o, i.e.y ~ 3:“25 for

y < 1, forces the MONDian limit to be contained in the theory. tliigion, the factor gg — 2)°

ensures the existence of a monotonically decreasing brahgh(y) covering the whole range

y € [0, —o0), which is relevant for cosmology (see Sec. 2.2.2 C).

To obtain the theory’s nonrelativistic limit, one may apgie usual approximations for weak
fields and quasistatic systems. In this case, ong/ha8, and therefore it follows from Eq._(2.43)
that O< ug < 1. Using that alsd- < O for the given range, the resulting metgg, turns out to
be identical to the metric obtained in GR if the nonrelaticigravitational potentialv (cf. Sec.
[2.1.3) is replaced by

W = ZDpN + ¢ = Doy, (2.47)
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2.2. Tensor-vector-scalar theory

where

E=e%c(1+Kg/2)L. (2.48)

The quantitygc is the cosmological value of the scalar figldt the time the system in question
breaks away from the cosmological expansion d@ndis the Newtonian potential generated by
the matter densitpH. In this approximation, it is consistent to assume #Rais pointing into the

direction of the timelike Killing vector associated withetBtatic spacetime. Then we have
WV,69,0 — (V¢) = [Vall5 (2.49)
and the equation of the scalar field reduces to
V - (ue (kel3(V¢)*) Vo) = keGp. (2.50)

As has been shown in Rel. [41], Eq§.(2.47) dnd (2.50) coore$po the MOND paradigm: If
ug — 1 (corresponding toV¢| — o), the theory reaches its (exact) Newtonian limit, and the

measured gravitational consta®y; is given by

—2¢c
Gy = ( © E)G.

&£ 2.51
1+Kg/2  ar (2.51)

Similarly, the theory reaches its MONDian limit ag — 0 and the acceleration constagtcan

be defined in terms of the TeVeS parameters,

3k
ap = 2c :{Ea + Kg/2). (2.52)

As can be seen from abova; depends oc and may therefore principally change with time.
For viable cosmological models (see Sdct. 2.2.2 C), howewmh changes are expected to be
basically imperceptible [103]. Moreover, we will see thasialso viable to assumec| < 1 and
together withkg, Kg < 1 this yieldsG ~ Gy. Thus we will assume thad = Gy and= = 1

throughout this thesis when working within the quasistapproximation.

As is obvious from the above, the TeVeS functignplays a similar role as the MOND inter-
polating functionu™from Sec[2.2]1 and the resulting dynamics is charactetigats asymptotic

behavior. More generally, it turns out that one needs ondyréguiremeny o« yé fory <1

®Note that forgc # 0, g,, does not asymptotically correspond to a Minkowski metric aready remarked in Ref.
[41], however, this is easily remedied by an appropriateaksg of coordinates.
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2.2. Tensor-vector-scalar theory

to guarantee a MONDian limit in TeVeS because the propaatignconstant may always be ab-
sorbed into the definition ddp [50]. Unlike i, however, the functiopg does not depend on the
gradient of the nonrelativistic potential, but 8. This means that there is generally no direct
correspondence between the two except for symmetric caafigns which require the aforemen-
tioned gradients to be parallel (cf. SEc.]3.4). For an apgatspchoice ofug, such configurations
further allow one to express the total nonrelativistic ptitd in particularly simple form. To see
this, we follow the lines of Ref. [88] and redefipg andy in terms of two new functionsss and

d4, according to

e gy Ka)‘l
Tk 1 5 ) HB (2.53)
and ,
4 K
2 _ (27 (1_Re\| ¥
52 = (kB (1 ; )) o (2.54)

wherebys is defined as the value Wué in the limity — 0. Using Eq.[(2.46), we haJa = 3 and

a bit of algebra reveals the relation

(1 o (1 Ke)_te )2
, [1-28(1-%B
Hs 8 2/ 1-ps

62 = . 2.55
? 7 (1 ps)? l_@(l_@) Hs (2:59)
An 2/ 1-pus
Sincekg andKg are much smaller than unity, we take the litiit Kg — 0 and obtain
2 52
Hs 2 ¢
62 = , ui= . (2.56)
T A-ud? TS (L+6,)

Note that this implicitly defines a news which will be close to the one given in Eq[_(2146).
Next, we substitute:g for us in Eq. (2.50). Restricting ourselves to spherically or mgtically

symmetric systems, it then follows from Gauss’ theorem that

_ 1-ps
Hs

Ve V. (2.57)

Using Eg. [2.4B) together with the definitionaf in Eq. (2.54), we also find

(V¢)?
a5

85 = . (2.58)
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Combining the above relations, one finally arrives at

IVl = ao VO, (2.59)

which allows one to express the gradient of the total notivédtc potential in terms oV ®@y. As
we shall see, the choice of EQ. (2.56) and the corresponésigting relations will be extremely

useful for analytic studies of the quasistatic limit in T&ef. Sec[B).

2.2.2 C Modified FRW cosmology

Similar to the case of GR, it is possible to derive a cosmahzgnodel in TeVeS. Imposing the
usual assumptions of an isotropic and homogeneous spacétitng,, andg,, are given by FRW
metrics with scale factora andb = a€’, respectively. For a flat univers& (= 0), the analog of

the Friedmann equation then reads [41, 97]
3 =8rGa’e™ (py +p) (2.60)

while the equation governing the evolution of the dengitgmains the same as in GR (see Sec.
[2.1.2). Here the overdot denotes the derivative with resjeethe conformal time coordinate in

the matter frame anal, is the energy density of the scalar field,

_ MBeZ"j _

For cosmological models in TeVeS, we have the condijian0. Requiring that the functiopg

is single-valued, one is free to choose between two posgiilntial branches given the form of
F in Eq. (2.45). One branch ranges fram = 1 to the extremum atg = 2 while the other
one ranges from the extremum to infinity. In accordance widvipus work, we define the latter

possibility as the physical one.

To find solutions for the evolution of the scale factarand b, one additionally needs to
consider the equation of motion for the scalar figldsee Sec.[413) which leads to a closed
system of equations. For Eq._(2/45) and more general clasthe potential, it has been shown
that the cosmological scalar field evolves slowly in time #mat its absolute value is much less
than unity throughout cosmological history [41) 92]. THere, its contribution to the Hubble

expansion is negligibly small, with a ratio @f(k) compared to the contribution of other matter

21



2.2. Tensor-vector-scalar theory

fields. Settingos = 0 and using tha| < 1 at the background level, the Hubble parameter in
the matter frame takes the form of Ef. (2.21) with= 0 and the background evolution in TeVeS
becomes structurally identical with that of a standA@DM modeIH. While this approximation
will suffice in many cases, a more detailed treatment of the cosmaldgickground will become

necessary when dealing with the growth of TeVeS metric peations in Sed. 413.

2.2.3 Aether-type theories and beyond

Despite its explicit bimetric construction, TeVeS may béten in pure tensor-vector form [104]
and provides a particular example for an Aether-type théo8y whose action involves a four-

vector fieldA, and is of the general form

R
— GV
s_fd X\/_g[16ﬂ6+L(g,A) +Sm, (2.62)

where L is constructed to be generally covariant and local wBjlecouples only to the metric
and not toA,,. If we require the Lagrangian to depend on covariant davieatof A, only and the

field A, to be both timelike and of unit norm, the theory may be wriitethe form
L£(g, AY) = M2F(K) + AA°A, + 1), (2.63)

where

K = M2KP V,AVVA7,
B ot . . (2.64)

yo = €107 Gyo + C20,,05 + 36,0y
and thec; are dimensionless constants. Hbtés a constant with the dimension of mass (in natural
units) anda is a Lagrange multiplier, enforcing the unit-timelike cdtiah for A,. Given the
form in Egs. [(2.6B) and(2.64), the Aether action includég@herally covariant terms with two
derivatives (without total divergences). The particutamni of 7 () is principally unconstrained
and one may also construct more complicated expression& fttvan specified in Eq.[(2.64),
including higher-order terms of the field, and its derivatives. Indeed, the framework of TeVeS
does correspond to a theory with such an exterifed herefore, Aether theory can be regarded

as generalized formulation of the Einstein-Aether framgwfjb05].

SNote that this “identity” does not apply to the matter comtefithe universe since we assume that there is no CDM in
TeVeS. In Sed]3, we shall address this issue and its imjgitain more detail and comment on viable cosmological
models in such a framework.
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A basic feature of these theories is the violation of locatdndz invariance (and thus also
gauge invariance) which is a consequence of the Aetherdialah-vanishing expectation value.
In other words, the Aether field dynamically selects a preféframe at each point of spacetime
which is given in terms of a distinct spacetime foliation defi byA,,. Traditionally, formulations
of this type have been designed as possifilecéive field theories and are used as phenomenologi-
cal probes of Lorentz-violatingf®cts in quantum gravity. In the context of more fundametnz t
ories like, for instance, string theory or M-theory, suéiieets are expected to generically occur via
spontaneous symmetry breaking at some early stage of thersai(see, e.g., Refs. [106, 107]).
Nevertheless, it is still unknown whether constructionghig type exist as quantum field theories
or whether they can be derived from first principles usingiftbeoretical methods. Employing
different approaches like classical tests of gravitation instheng field limit [108, 109] or the
analysis of cosmological observations, one ultimatelydsap detect intrinsic signatures pointing
towards the existence of Lorentz-violation or to falsifisthlass of theories. In any case, this will
likely help to constrain theoretical gravity models in thighlhenergy sector. Note that this gives
phenomenological models like TeVeS, which has been desiffoen empirical evidence only, a
more fundamental motivation and encourages one to explmfe fsameworks in more detail. Of
course, fective descriptions like Eq._(2.62) are not the most gemaalels one can think of and
there exist many others like, for instance, generalizede®M1], scalar-Aether inflation models

[110] or the generalized dark fluid theory [111, 112].

2.3 Dynamical dark energy models

Assuming that CDM exists and accounts for the missing matiatent in the universe, one still
has to face the problem of what is driving the acceleratecaresipn of the universe. In this
section, we shall present a selection of phenomenologiEamibdels which involve a scalar field

and promote DE to a dynamical quantity with generally tinepehdent EoS.

2.3.1 Quintessence

The dfects of dynamical DE on the background expansion are fulbcrileed by its generally
time-dependent EoS. If DE does not correspond to the cogiiwaloconstant, i.ewge # —1, its
interpretation as vacuum energy becomes unviable and arte kisink of something else. Current
observational constraints givel.34 < Wge < —0.79 (assumingv = const) anddwge/dz = 1.Oi(1):g

for a possible variation (assuming a simple parametriga{ib13]. More recently, it was possible
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2.3. Dynamical dark energy models

to improve these limits by combiningfiierent distance indicators [114], givimge = —0.96+0.08
orwge = —0.87 + 0.1 (depending on the data set of supernova observations)Eawibh constant
EoS. Although a cosmological constant provides a good fligaatvailable data, it still allows one

to have more general models for DE, including the so-callehpm DE models withvge < —1.

The most popular candidate for dynamical DE is a light sdadéat [115, 116] which is gener-
ically called quintessence. Its action takes the form of@immally coupled, self-interacting scalar

field with canonical kinetic term,

Sy =~ f d4X\/—_9Bg’”Vy¢VV¢ +V(¢)|, (2.65)

which yields its contribution to the cosmological energysity and pressure as

1 .
po = 554" +V(9) (2.66)

and

1 .
Py = 554" - V(9), (2.67)

respectively. Under slow-rolling conditions, i.e. comalits where the kinetic term is much smaller
than the potential energy, i.¥(¢) > a 2¢%/2 the scalar field’s EoS turns negative Wit ~ -1,
thus mimicking the behavior of a cosmological constantgwout negative. Again, quintessence
should be regarded affective phenomenological description of physics rootedhiwimore fun-
damental theoretical frameworks. For example, the ocooe®f such scalar fields is commonly

predicted in supersymmetric field theories and string theor

Quintessence models may be classified in terms of the asspaotedtial shape. In accor-
dance with today’s observations, the scalar field must hatsitl in a sfiiciently flat region of
its potential for the slow roll condition to apply. Furthesnstraints on viable potentials can be
obtained if one requires the field to exhibit a so-callediirag behavior, implying the existence
of an attractor solution which is reached for a wide rangeifiecent initial conditions and thus
avoiding fine-tuning issues. During tracking, the evolntaf the scalar's energy density will be
determined by the evolution of the background fluid, v&, = wy(wg), wherewg denotes the
EoS of the background fluid. For exponential potent(g) ~ e which naturally appear in
high-energy physics, however, it has been found that thisking is exact, meaning, = wg.

Therefore, exponential models are either fine-tuned or ttiggact on the cosmological expansion
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2.3. Dynamical dark energy models

is indistinguishable from the background, suggesting that= 0. This has motivated a vari-
ety of different plausible scenarios for such scalar fields, rangmg fpotential modifications as
in power-law models or Planck-scale quintessencel [117]deermmomplicated constructions such
as general k-essence (phantom DE models) [95] or extendategsence [118]. Finally, note
these dynamical DE models will generally exhibit clustgrproperties (similar to ordinary matter
fluids) which will have an impact on the formation of strugtuindependent of the background
evolution, this d¢fers additional ways of constraining the viability of such pi®posals (cf. Sec.
[4.2).

2.3.2 Chameleon fields

In the last section, we have discussed quintessence maelsassible candidate for DE. In order
to explain the cosmological expansion of the universe,etseslar fields must currently have a
mas:ﬁ on the order of the Hubble expansibfy (in Heaviside units), thus leading to the situation
of an essentially massless scalar on solar system scalesn the high-energy physics point
of view, however, it is commonly expected that such scalddgishould also couple to matter,
leading to an additional force acting on matter particlesthis case, however, experimental tests
of the equivalence principle [108] would constrain thisglng to be unnaturally small due to the
field’s low efective mass. An interesting approach to avoid this probkegivien in terms of the
chameleon mechanism [119, 120] where one allows the delfacting scalar fiele to also have

a strong coupling to matter. The key input here is that theadyins of¢ is no longer governed by

its potentialV(¢), but instead by anfiective potential which takes the general form
Veir = V(¢) — C(¢) L, (2.68)

whereC(¢) denotes the coupling to matter axidp) is typically assumed to be of runaway form,
i.e. a monotonically decreasing function satisfyMg— oo for ¢ — 0 andV — 0 for ¢ — oo,
which is generically predicted for non-perturbative pdigs in string theory. Assuming a species

of nonrelativistic matter particles with densjty,, Eq. [2.68) may approximately be written as

Vet = V(¢) + C(d)om. (2.69)

"The presence of a self-interaction potential for the sciddat allows to introduce the notion of arffective mass in
analogy to the mass term appearing in the action of the vt Klein-Gordon field.
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2.3. Dynamical dark energy models

If C(¢) is chosen to be of exponential form (cf. Sdc. 2.3.1), i.e. anatonically increasing
function of ¢, Veg exhibits a minimumgn,in and an &ective massng, usually defined by the

Taylor expansion around the minimum,
Vo = V(dmin) + %(d’ — Gmin)°, (2.70)

which are determined by the local matter density. For thergigonstruction, it turns out that
¢min and mgg are then decreasing and increasing functiong@frespectively, meaning that if
the matter density is low (cosmological situationsls becomes small and the scalar field may
act as dynamical DE. On the other handp/fis very large (e.g., in the solar system), sang
and the scalar force is significantly suppressed, thus kaleyto evade experimental detection.
Therefore, models of this kind are called chameleon fieldiso Aote that such coupled scalar
field models are mathematically equivalent to the framevadri(R) gravity, which can be shown

by performing an appropriate conformal transformatiorhe lordan frame.

To completely evade the constraints from solar system tégjgavity, one may also consider
models where the scalar field only couples to CDM particlehis Tdea has recently gained a
lot of interest because the physics of CDM are unknown antt sucoupling could alleviate
the coincidence problem of DE [121, 122]. Typically, theseimled scalar field models yield a
background evolution which is virtually indistinguishalftom a standard CDM cosmology and
one has to look out for other potentially observable discrators. An interesting approach into
this direction is to consider the nonlinear clustering ofgly perturbations in this context. In
Sec[4.2, we shall investigate the impact of such scalare@matter power spectrum and discuss
the prospects of observing characteristic signaturespsihg the particular coupled scalar field

model of Ref. [[123]
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Chapter 3

Gravitational lensing in relativistic

formulations of MOND

With the advent of fully relativistic theories for the MONagadigm, it has become possible to
extend the analysis of such modifications beyond the fieldatdajic dynamics. It is clear that
any theory trying to get along without CDM ultimately needddce observations and a powerful
tool to challenge these models is gravitational lensing.optihg the framework of TeVeS, we
will begin with a brief introduction to its basics, discussdevant details on the cosmological

background and present several applications thereafter.

3.1 Gravitational lensing in a nutshell

3.1.1 Light deflection in slightly curved spacetime

For any metric theory, the propagation of light rays is geliedetermined by the null geodesics

of the metricg,, (assuming that this is the metric matter fields couple te), i.

dx dx’
== _ 1
Guv da da 0 (3-1)

whereA is some suitablefine parameter for the light ray. In general, finding solutitersEq.
(3.1) is a very complicated problem. However, in the limitxafak fields and quasi-static systems,
i.e. if the metric potential given by Egq[(Z2]47) and the paaulelocity v of the lens are small
(Piot, vV < 1), one can presume a locally flat spacetime which is onlydisd close to inhomo-

geneities acting as gravitational lenses; these conditioa typically well satisfied for galaxies
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3.1. Gravitational lensing in a nutshell

and galaxy clusters. Following the lines of Ref. [124] anthg<€q. [2.47), the deflection angle
of a light ray in TeVeS under these assumptions can then bressed

& = 2[ VJ_(DtOtdI = &GR + Zf VJ_¢dI, (32)

whereV | denotes the two-dimensional gradient operator perpeladitw light propagation, and
integration is performed along the unperturbed light p&br’s approximation). In addition to
the deflection angle caused by the Newtonian potedtjal there is a contribution arising from
the scalar fields. Compared to the distances between lens and source andebaed source,
however, we may still assume that most of the bending occitiénna small range around the
lens [41/50]. Assuming that the nonrelativistic metricaqudial @y is known from solving the
corresponding field equations, one can therefore direatigged to calculate the usual lensing
quantities, fully adopting the standard GR formalism whiglbriefly reviewed in the following

section.

3.1.2 Lensing formalism

The dfects of gravitational lensing can mathematically be dbecrias a mapping in a two-
dimensional space. Given the assumptions introduced ilaghaection, Fig._3]1 shows a typical
gravitational lens system. As one may directly reédlre figure, the mapping of light rays from

the source to the lens plane takes the form|[124, 125]

n = D2 - Dash(). (33)
d

where& denotes the two-dimensional position vector in the lenaglg is the two-dimensional
position vector in the source plane abd, Dy, andDgys are the (angular diameter) distances be-
tween source and observer, lens and observer, and lensuee s@spectively. Introducing angu-
lar coordinates byd = n/Ds and@ = £/Dy, Eq. [3.3) may be rewritten in terms of dimensionless
quantities,

B=06- I:)Fd:ol(Dde) =0 - a(h), (3.4)
where we have used the definition of the scaled deflectioreangt Dyscx/Ds. The relation in
Eq. (3.4) is called the lens equation and determines thelangaositiond of the image for a given

source positior3. If there is more than one solution for a fixed value@fthe lens produces

1As previously mentioned in Sdc. 2.2.2 B, we assumeZhatl andG = Gy in the context of quasi-static systems.
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3.1. Gravitational lensing in a nutshell

-._.___L
Source plane
T

Lens plane

Observer
Figure 3.1: lllustration of a gravitational lens system. The distartoetsveen source and observer, lens and
observer, and lens and source Bxg Dy, andDgys, respectively (the figure is taken from Ref. [125]).

multiple images. Furthermore, it is convenient to intragltite deflection potentidlf(0):
(3.5)

_ Duds
") - 250 f Dror(Dal, 20z

where we have chosen coordinates such that unperturbedrdigh propagate parallel to tre

axis. Since light rays are deflectedtdrentially, shapes of images and sources willedifrom
each other. If a source is much smaller than the angular espalMhich the lens properties change,

the lens mapping can locally be linearized. Thus, the distoiof an image can be described by

2 ] (3.6)

AB) = — =
90 l-x+y7

the Jacobian matrix
b5J6] B l-xk-v
=2

The convergence is directly related to the deflection potentifthrough

1 1(6°¥Y 629
= AP =2 |—+— 3.7
K=200 2(39§+09§] (3.7)
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3.1. Gravitational lensing in a nutshell

Figure 3.2: Imaging of an extended source by a non-singular circulantyraetric lens (the figure is taken
from Ref. [125]): Closed curves in the lens plafeft] are denoted asritical curves those in the source
plane ¢ight) ascaustics Because of their image properties, the outer and innacariturves are called
tangentialandradial, respectively.

and the shear componentsandy- are given by

1(0°¥ o2¥ o2y -
_1 _ VR o SRV , 3.8
=3 ( 062 065 ) 72 00106 Y ERRE (38)

As there is no absorption or emission of photons in grawiteti lensing, Liouville’s theorem im-
plies that lensing conserves surface brightness, i¥9{f3) is the surface brightness distribution

in the source plane, the observed surface brightnesshdititm in the lens plane is

1(6) = 19 (3(6)). (3.9)

The fluxes observed from image and unlensed source can hdatatt by integrating over the
corresponding brightness distributions and their ratioléfined as the magnification which is

given as the inverse of the Jacobi determinant,
detA=1L-«—y)L-«+7). (3.10)

While the convergence causes an isotropic focusing of bghtles, the shear, acting anisotropi-
cally within the lens mapping, causes changes in both shagaiae of the image. Points in the

lens plane where
detA =0, (3.11)

form closed curves, theritical curves Their corresponding image curves residing in the source
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3.1. Gravitational lensing in a nutshell

plane are calledaustics Because of Eq.[(3.11), sources on caustics should be medybifi an
infinitely large factor. Since every astrophysical souc@xtended, however, its magnification
remains finite. An infinitely large magnification simply doast occur in reality. Nevertheless,
images near critical curves can be significantly magnifiedl distorted, which, for instance, is
indicated by the giant luminous arcs formed from sourcexg@éanear caustics. Knowledge about
the exact shape and location of these curves already alloegcomake solid statements about
the system’s matter distribution. In Fig._B.2, the mappihgmextended source is demonstrated
for a non-singular circularly symmetric lens. A source elés the point caustic at the lens center
produces two tangentially oriented arcs close to the ouitgral curve and a faint image at the lens
center. A source on the outer caustic produces a radialhgated image on the inner critical curve
and a tangentially oriented image outside the outer clitideve. Due to these image properties,

the outer and inner critical curve are denotedaagentialandradial, respectively.

In addition to the lens mapping, the deflection by the gréwital potential also causes a time
delay for light rays traveling from a source to an observéiisTan be understood from the fact
that the path of a photon traveling in a curved geometry igdorthan in a flat one. Assuming an

observer at redshift = 0, the traveling time of light rays can be expressed as

1+7
D

1(8) =

3002 116)| (3.12)

wherez is the redshift of the lens arld = D4s/(DsDg). If the deflection potential is known, Eq.

B.12) allows to calculate the relative time delay betwedfedent images.

Considering lensing in the framework of TeVeS, we also neespecify the form of the free
functionug. Unless we use the simplistic form of the free function idtroed at the end of Sec.
[2.2.Z B, this also includes a choice for the constan{or equivalentlylg) after rewriting the
equations in terms of the MOND acceleration constntising Eq. [(2.52) (Remember that we
work with Kg, ¢c ~ 0). If not specified in any other way, we shall ggt= 0.01 in these cases.
This is justified following the analysis of Ref. [50] wheretheVeS lensing maps have been shown
to be generally insensitive to variations of the paramietexs long as it is smalkg < 0.01. Also,
we will assumesg = 1.2 x 1071°m s72 in accordance with SeE.2.2.1 and particular constructions

of the free function will be given when needed.
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3.1. Gravitational lensing in a nutshell

3.1.3 Background cosmology

To calculate angular diameter distances in the context afigtional lensing, we still need to
choose a cosmological model in TeVeS. Here and throughdsitthsis, we will assume that
the cosmological branch afg (or equivalentlyF) is chosen in such a way that the basic result
¢, py < 1 presented in SeC. 2.2.2 C remains valid. There we havedglidiscussed the resulting
background equations and found them to be structurallytickdrto those obtained in the frame-
work of GR, but we are still left with the problem of specifgithe energy-matter content in a
TeVeS universe. Since previous constraints on the baryamtribution such as from BBN still
apply in this case [94] and we assume that there is no CDM Hindisuitable background model
poses a serious challenge to the theory. First attemptsoheding TeVeS with observations on
supernovae of type la [88] have led to the development of an aginimal-matter cosmology with
(In the following, we will always refer to present-day vaduef the cosmological parameters and

therefore skip the subscript “0”)
Qm~004 Qj~046, h~07 (3.13)

and although it is able to fit the data up to a redshiftef1 — 2, it was @uickly realized that such
a model will not be able to explain observations of CMB anigoiesld and the present matter

power spectrum [82]. Similarly, a flat minimal-matter codagy with
Qm~005 Qy~095 h~07 (3.14)

sufers from the same issues while providing a worse fit to thersigpae data.

An interesting solution for this problem is to consider thattrinos have masses. Assuming
three species of left-handed ordinary neutrinos with a raessnd 2eV and their antiparticles, it
has been possible to obtain power spectra for both CMB apjgies and matter which are able to
describe the observational data in a qualitatively actdptaay [82] (although the corresponding
fits do not match the excellent agreement &@DM model). Interestingly, the idea of massive
neutrinos around 2eV has already been discussed to provddiuon to the lack of matter on
cluster scaled [74, 75, [77] and to explain the observed weradirig map of the galaxy merger

1E0657-558 (“bullet cluster”) [89, 126]. It should be mentionedttii#e needed neutrino mass of

2Here the main dficulty is the resulting angular-distance relation whichds able to match the observed position of
the peaks in the angular power spectrum of the CMB.
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3.2. Analytic model for nonspherical lenses in TeVeS

2eV is barely consistent with the current upper limit on tleeton neutrino’s mass (e.g., see Ref.
[127]); future measurements such as the Karlsruhe Tritiwathho Mass Experiment (KATRIN)
[128,129] will be able to explore a mass range well below #i¢ threshold. While such neutrinos
must have been relativistic in the early universe, they khbehave like nonrelativistic matter
today, with their density evolving gs, « a=3. If we assume that these neutrinos followed a
thermal distribution at the time of decoupling, one mayraate their current total contribution to
the energy budget of the universetas~ 0.06m,/eV (see, e.g., Ref._[130]), whene, denotes the
mass of a single neutrino in eV. From this, one obtains theadled flat modified hot dark matter

(uHDM) cosmology whose parameters read
Qn=0+Q,~022 Q,~078 h~07. (3.15)

In situations relevant for gravitational lensing, the kgrckind of theuHDM model is close to a

standardACDM cosmology parametrized by
Qm~03 Qx~07  h~07, (3.16)

and for several applications it will fiice to consider the latter. As we shall discuss in §e¢. 3.4, one
is not bound to use ordinary neutrinos and there is eviddrateatmassive sterile neutrino provides

a much better candidate to account for the missing energgigein TeVeS or related theories.
Furthermore, it is also possible to construct covarianmnidations of MOND [[33] 111] which
yield a background evolution indistinguishable frax€DM without the need for an additional

matter fluid. In the present thesis, however, we will not adessuch alternatives.

3.2 Analytic model for nonspherical lenses in TeVeS

Equipped with the covariant framework of TeVeS, it is now gibke to investigate the conse-
guences and viability of the MOND paradigm beyond “cladsidamain of fitting observed rota-
tion curves. Building on an earlier noncovariant approd&ii,[for instance, this allowed several
authors to test MOND against multiple-image lens systerom fthe CfA-Arizona Space Tele-
scope Lens Survey (CASTLEHNL31] (see, e.g., Refs. [88, 132—134]). Their analysis vea®en
theless restricted to models sifherical geometryand thus only able to account for the size of the

Einstein ring of observed lenses, but not for the exact jposif collinear images in double-image

Scfa-www.harvard.edu/castles
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systems, and of course not for quadruple-image systems.ifthinsic limitation is due to the fact

that the MONDian acceleratiagy, is related to the Newtonian one according to £q. (2.32).

In the following sections, we will demonstrate how to cresitaple analytic models afon-
spherical lensein TeVeS, corresponding to the situation®& 0 in MOND. Without resorting
to a numerical Poisson solver, these analytic models caslibwsed to fit image positions in

double-image and quadrupled-image systems of the CASTlaESsdmple.
3.2.1 The Hernquist-Kuzmin Model

3.2.1 A Potential-density pair

The Kuzmin disk![135], defined by a Newtonian gravitationatgmtial of the form

-GM
q)N,K = b > 0, (317)

V2 +y2+ (4 + b2

is a well-known and simple model for a nonspherical densityfiguration: Foiz > 0, Eq. (3.17)
corresponds to the Newtonian potential generated by a puass located at (0, —b), in case of
z < 0 it turns into the Newtonian potential of a point mass lodae (Q0,b). Thus, above and

below the disk, wefectively have a spherical Newtonian potential, which implhat trulyS = 0

in Eq. (2.32).

Hereafter, the idea is simply to model lens galaxies by mptathe auxiliary point lens po-
tential of the Kuzmin disk with an auxiliary Hernquist potiah [136]; we shall refer to this model
as the Hernquist-Kuzmin (HK) model. A similar approachngsPlummer’s model and a smooth
transition atz = 0 instead, leads to the Plummer-Kuzmin model derived in R&87] which
provides a qualitatively good fit to the mass profile of obsdrgalaxies. Although our proposed
model is not a very good description of real galaxies, it é&mlis to derive fully analytic lens
models in the context of MOND (see Séc. 3.2]1 B) and to studyrtfluence of nonsphericity on

the ability to fit image positions.
The Newtonian potential of the HK model takes the form

-GM
Ve+y2+(Z+b2+h’

DN HK = (3.18)

with b being the Kuzmin parameter anddenoting the core radius of the Hernquist profile.

Choosing diferent ratiosh/b, this model will produce dierent Hubble type galaxies, going from
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(0,0)

z/b

z/b

R/b R/b

Figure 3.3: Contours of equal density in th&(2) plane for the HK lens mod€[{3.20) whéyib = 0.1 (top
right), h/b = 1 (bottom lefy andh/b = 10 (bottom righ). Contour levels are (01,0.003 0.001, ...)M/b?
(top right); (0.001, ...)M/b? (bottom lef}; (0.0003 ...)M/b? (bottom righ). Thetop left panelllustrates the
HK model: At the point R, —|Z) below the disk, the potential Eq. (3]18) is identical whiatof a Hernquist
distribution whose origin is located at a distatc&bove the disk’s center.

a pure Kuzmin disk galaxy fan/b — 0 to a pure Hernquist sphere fofb — . To clarify this
situation and to characterize the nonsphericity of the made may simply expand the right-hand

side of Eq. [[3.1B) far away from the disié(= X? + y? + 72):

_-GM(  I4b 2
q)N,HK = +h (1 (r " h)r) +0(b ) (319)

Using Poisson’s equation, we find that the underlying dgmigtribution is given by

Mh

5 (3.20)
27 \[R2 + (12 + 0)2 (/RZ + (1 + b)2 + h)

PHK =
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3.2. Analytic model for nonspherical lenses in TeVeS

where we have used the definiti®d = x* + y2. The corresponding density contours in tRez)

plane are plotted in Fi§. 3.3 forftierent values ofi/b.

Considering the HK model for gravitational lensing, we cé®thez-axis such that it is parallel
to the line-of-sight andx,y) are the Cartesian coordinates spanning the lens planeauBeave
need to account for ffierent possible orientations of galaxies, we additionadlyento rotate the

disk. Defining €)? = (X)? + (y)? + (1Z| + b)?, where
X = (XCOS$ — ysing) cosd — zsiné,
y = Xsing + ycosg, (3.21)
Z = (Xcos¢ — ysing) sing + zcosh,
the angle £/2) — 6 being the inclination of the galaxy’s symmetry plane withgect to the line of
sight andp the galaxy’s position angle (PA), Ed._(3118) turns into

-GM
r'+h

DN HK = (3.22)

3.2.1 B Lensing Properties

Assuming spherical symmetric configurations and choos$iagimplistic form of the free function
ug introduced at the end of Sdc. 2.2.P B, we have the followitafioe for the total gravitational

acceleration in TeVeS:

gm(r) = gn(r) + Von(r)ao, (3.23)

whereag = 1.2 x 101%ms2. Exploiting the above and introducirg = (xcos¢ — ysing) tand,

the deflection angle’s-component yields

Zodz( GM \/m)

ay = 2(X— bCOS¢COSH)fr_’ (r' + h)2 T

(3.24)

Oodz( GM \/W).

+2(x+ bcos¢>cosé?)fr—, (r' +h)2 T
4]

The integral[(3.24) can be evaluated by means of elemengdeylas, but as the resulting expres-
sion is quite lengthy, we shall skip its presentation at pluisit. Analogously, the closed analytic

form for ay can be derived, and as as a consequence, this is also trleflensing quantities
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3.2. Analytic model for nonspherical lenses in TeVeS

andy.

Concerning the calculation of distances in gravitatiomaising, we shall adopt a standard
flat ACDM cosmology withQ, = 0.3, Q, = 0.7 andh = 0.7. This choice is justified by the
fact that many covariant formulations of MOND mimic the bgba of a ACDM, accounting for
marginal diferences that will have no significant impact on our analysigarticular, this is true
for theyHDM cosmology based on the assumption of massive neutnm@sVeS or for covariant
approaches [38] yielding a Hubble expansion which is vilyuadistinguishable from th&aCDM

model within the redshift range relevant for the lens systera consider here (see SEc. 3.1.3).

3.2.2 Fitting procedure for CASTLE lenses

To model individual lens systems from the CASTLES samplewilefollow the approach pre-

sented in Ref.[[138]: For each pair of imageand j, when tracing one light-ray back for each
observed image to the source plane, the source positiomettérom Eq. [(3.8) should be the
same for both images. We can thus simply compare the regudtinrce position for each image

by computing their squared deviation,

A2 =3 ((xsi = X)) + (ysi =~ ¥s)?). (3.25)
i#]
wherexs andys denote the source position in EQ._(3.3). This is a measureofdiow well the
images retrace back to a single point in the source plane.th&nguantity to minimize is the

deviation of the lens center from the observed optical cegieen by
A? =X+ VP, (3.26)

However, our model has generally 9 fitting parameters (the feassMl, the Kuzmin lengthb,
the Hernquist lengtlin, the PA angle, the inclinationy the source positionxg, ys) and the lens
position (,yr)), while for a double-image system we have only four comstsafrom the two
image positions, and another two constraints from the @bdelens optical center. The problem

is thus ill-posed.

To cure this and to ensure the uniqueness of the solutiomsegtia regularization term in the

minimization. This term is penalizing solutions deviatiingm the fundamental plane as well as
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face-or‘H and disky solutions, and solutions with an anomalous nmadigtit ratio or a large flux

anomaly:
2

+

2
log ] . (3.27)

faB
+ [Iog fTbS M.

2
P = [(Iog FP) + (cosi)? + (th)

The deviation from the fundamental plane is measured b¥ g log(h/h;) — 1.26 log(M/M,),
whereh; = 0.72kpc andVl; = 1.5 x 101*M,, [141].

Choosing a very small regularization paramefier; (0.003)2, we minimize the following
regularized %?-like” quantity,

n? = A2+ A2 + AP, (3.28)

for 14 double-image systems and four quadruple-image regsté the CASTLES data sample.
Note that we also check that our results are insensitiveg@#tailed choice of the regularization
parameteH and that due to the flicient amount of constraints (position of lens and images),
the fitting procedure for quadruple-image lenses is perormithA = 0. The results are shown
in Table[3.1 and Table_3.2, respectively. Finally, note thatobserved mass of each lens was

calculated according to Sec. 7.1 of Ref./[88].

3.2.3 Fitting results

3.2.3 A Double-image systems

SettingAs < 0.01” as a reasonable threshold for acceptable fits of the HK leable[3.1
shows that our model is able to describe the observed imagjgqms of all double-image sys-
tems, with quite a number of these systems yielding plaggibrameters within the context of
MOND/TeVeS. Additionally, the HK model mostly seems to be ablexjlain the flux ratios of

these binaries.

However, there are a few outliers which we will discuss in fiblllowing. Since the model
should be capable of reproducing all observational coims¢rand the lens mass should have a

value close to the stellar mag8l(M. ~ 1) in TeVeS, these are characterized by very poor fitting

4As there is strong observational evidence supporting lieasystem B0218357 corresponds to a nearly face-on spiral
galaxy [139] 140], we choose the regularization term fos garticular lens such that edge-on solutions are penalized
instead. Further relaxing the penalties with respect th fmtdamental plane and observed flux ratio in Eq. (3.27),
the fit substantially improves, corresponding to a factd@2®fn As.

5In case of RXJ09244529, however, our choice afcreates an over-regularizatioffect, which results in a best-fit
lens mass that is roughly by a factor 10 smaller than estiriatRef. [88] from fitting the system’s Einstein ring size.
Decreasing the regularization parametef to (3 x 10*”)? is able to resolve this issue, with dropping by a factor
10 and the lens mass now being in accordance with the pregiiimate of Ref. [88] (see Talle B.1).
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Table 3.1: Fitting results for selected 2-image lens systems from tAET2_ES sample: In the table, the observed lens masss calculated according to Sec. 7.1
of Ref. [88], the parameter, is the Hernquist length expected from half-light measunasiévalues are taken from Ref._[88]). We do not gi¥ebut instead we
list As and compare the inferred values of PA, the Hernquist lehgthass and flux ratio to observations. Additionally, we peediclination and time delay for
the particular lens models. Outliers are characterizea@igel diferences between predicted and observed flux ratig®aadomalous mass ratids/M. (deviation
larger than a factor of 3) like, for instance, in case of RXIDZU529 which resides in a cluster. Note that the fitted lenstiposis given by &, yi) ~ (0, 0) for all
lenses.

Lens 2 b/h hrh M (fit/obs) PA incli. Ag fag (fit/obs) 6t (fit/obs)
[kpc] [10"Mo) [°] [”] [days]
Q0142-100 0.49 0.25 1.346 1.704.08 72.2 90.0 23x 104 8.068.22 151.%
B0218+357 0.68 1.0 2.14.8 2.692.67 -22.6 6.94 75x107° 0.7590.587 7.5210.5
HE0512-3329 0.93 0.24 1.468 1.492.912 28.2 90.0 P0x 1076 0.00131.175 19.6
SDSS09035028 0.39 0.76 1.83.8 2.773.80 -30.4 90.0 90x 104 2.292.17 135.2-
RXJ0921-4529 0.31 0.037 7.59.8 20.00.34 60.2 90.0 B5x 1074 3.6233.591 167.2
FBQ09512635 0.24 0.13 1.20.32 0.470.31 60.3 90.0 P3x 10 2.743.53 13.2-
BRI0952-0115 0.41 0.055 2.2m29 0.580.27 124.1 90.0 B4x 104 3.523.52 8.11-
QO095%561 0.36 1.55 1.25.23 6.948.44 40.0 90.0 P7x10°3 14.31.08 752.4417.0
Q1017-207 0.78 0.0092 23919 0.830.74 88.8 89.9 A6x 104 0.730.72 29.0-
B1030+071 0.60 0.10 0.84.50 1.8%31.66 29.3 90.0 B4x10°° 36.636.6 346.8
HE1104-1805 0.73 0.33 0.5848 4.913.32 61.9 90.0 P6x 1073 0.353.85 321.2
B1600+434 0.41 0.18 1.64.8 1.070.40 36.8 90.0 PIx 1074 0.830.84 32.251.0
PKS1830-211 0.89 0.48 2./158 1.331.48 62.3 90.0 44x10* 157.3157.3 32.726.0
HE2149-2745 0.50 0.026 0.94.4 1.042.00 -30.0 90.0 B0x 104 6.534.19 90.7103.0
SBS0909523 0.83 0.19 3.02.8 2.9213.52 49.2 90.0 184x 1073 1.421.42 65.9

2 Note that the analysis of Ref. [88] assumed féedent value foM, based on a wrong magnitude in an older version of the CASTLHS skt.
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3.2. Analytic model for nonspherical lenses in TeVeS

parameters in terms of largefidirences between predicted and observed flux ratios or aoomal

mass ratiosM/M, (deviation larger than a factor of 3).

RXJ0921+4529 The system RXJ092#529 contains twas = 1.66 quasars and Al = 182
spiral galaxy located in between the quasar images. Thisxg#ns is quite likely to be a member
of az = 0.32 x-ray cluster centered on the observed field|[142]. Cle&KJ092144529 does
not correspond to an isolated system, which complicatesithation in TeVeS and provides a
possible explanation for the extremely poofrfiass ratio 1/M. ~ 59). The presence of a cluster
could have causedfticulties in fitting the lens as the impact of an external fieldthier nonlinear
effects may be important. In addition, remember that theretdkeisresolved issues in MOND

and its extensions concerning clusters [50, 74, 75, 77, 89].

Q0957561 The gravitational lens Q095B61 is the most thoroughly studied one in literature.
The system involves a radio-loud quasar at redghift 1.41 which is mapped into two images by
a brightest cluster galaxy (BCG) and its parent cluster @ghift z = 0.36 [143, 144]. It is also

known that the lens galaxy has a small ellipticity gradiemd ssophote twist which are properties
the simple HK model cannot account for. Together with the tlaat the lens is embedded into a
cluster, this might be a reason for the huge discrepancydstwbserved and predicted flux ratio

in the context of modified gravity.

HE1104-1805 The lens galaxy’s colors are in agreement with a high-rédehrly-type galaxy,
and its redshift is roughly estimated as= 0.77 [145]. Concerning its lensing properties, the
system HE1104-1805 is quite uncommon in a the sense thatrikad closer to the bright image,
rather than the faint one. As is known from lensing within gtendard GR- CDM paradigm,
simple models can create such configurations only for a waramge of parameters due to the
peculiar flux ratio. Assuming simple ellipsoidal lens majdiowever, these parameters imply a
large misalignment between the light and the projectedityerBhe only possibility to align the
mass with the light, is to have a shear field being approxipatéce as strong as estimated from

the particular lens model.

Furthermore, the observed image separation is by a factoB farger than that of a typical
lens, strongly suggesting that the separation is enhangdldetpresence of a group or a cluster.
So far, however, there has been no direct observationaéev@lfor such a structure in the lens’
surrounding area. Analog to the aforementioned lens systdra unsatisfying fit and the corre-

spondingly inferred flux ratio might be a result of both lemyieonment and model limitations
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3.2. Analytic model for nonspherical lenses in TeVeS

(see also Se€. 3.2.3 Cdnd 3.213 D).

SBS0909523 SBS0909532 shows two images of a background quasar soureg -at1.377
separated by.11” [145]. Optical and infrared HST images indicate that thesileg galaxy has a
large dfective radius and a correspondingly low surface brightnadslitionally, the lens galaxy’s
redshift is estimated ag = 0.83 [146], and its total magnitude in ti¢-band has been measured
asH = 16.75+ 0.74. Although the lens galaxy’s colors are poorly measutegly seem consistent

with those of an early-type galaxy at the observed redshift.

The large uncertainties are a result of théidulty in subtracting the close pair of quasar
images|[145]. For instance, the uncertainty in tHeand magnitudel, = 18.85 + 0.45, allows a
deviation of the mass estimaké, by a factor of roughly 3 at the 2 level, where we have used
Egs. (73) and (74) of [88]. Thus we argue that the low mass (#ited in Tabld_3]1) may be
entirely due to these uncertainties in observed magnituditls better constrained observations

possibly softening the found problem in TeVeS.

HE0512-3329 The system HE0512-3329 was discovered as a gravitationslcgndidate in the
course of a snapshot survey with the Space Telescope Im&8giecfrograph (STIS), with the im-
ages of the lensed quasar source being separated¥'0[147]. Although the lens galaxy has
not been detected yet, measurements of strong metal albsolipes at redshifz = 0.93, identi-

fied in the integrated spectrum, hint towards a dampeddystem intervening at this redshift.

Analyzing separate spectra of both image components, ibéas pointed out that both dif-
ferential extinction and microlensingfects significantly contribute to the spectrafdiences and
that one cannot be analyzed without taking into account ther¢147]. For lens modeling pur-
poses, the observed flux ratio can therefore only be usedcaitecting for both fects. Thus the
large discrepancy between predicted and observed fluxmégiot be a consequence of neglecting

the above mentionedfects, rather than being intrinsic to TeVeS.

3.2.3 B Quadruple-image systems

As we can see from Table 3.2, most of the quadruple-imagemgsare very poorly fitted by the
analytic HK model. In accordance with our goodness-of-itedion (As < 0.01”) introduced in
Sec.[3.2.3'A, there is just one system where the model is algeetlict the image positions in a

satisfying manner. Additionally, none of the observed flatias can be explained.

The only acceptable fit is given for Q228730, the nearby Einstein cross € 0.04 [148]),
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Table 3.2: Fitting results for selected 4-image lens systems from tA8STLES sample: Note that all positions (RA and declinatiarg given in units of’. The
observed position angle and inclination of Q22830 (major-axis) are PA 77.2° andi = 64.5°, respectively, assuming a circular face-on disk. Reptatire

auxiliary Hernquist with a I&e profile barely changes the numbers: inclination and PAghéy about 5 the predicted mass by roughly 10% .

PG1115-080 Q223#030 B1422-231 SDSS09240219
Z 0.31 0.04 0.34 0.39
Zs 1.72 1.69 3.62 1.52
D, [kpc] 957.2 163.6 1020.2 1116.6
Ds [kpc] 1874.2 1874.0 1637.6 1867.0
Dis [kpc] 1413.2 1810.8 1341.7 1252.1
Image A ¢0.947,-0.690) + 0.003 (+0.075-0.939) + 0.003 (0375 0.973)+ 0.003 (+0.162 0.847)+ 0.003
Image B ¢1.096 -0.232) + 0.003 (0598 0.758) + 0.003 (0760,0.656) + 0.003 (+0.213 -0.944)+ 0.003
Image C (0722 -0.617)+ 0.003 (+0.7100.271)+ 0.003 (1097,-0.095) + 0.003 (0823 0.182)+ 0.003
Image D (0381,1.344)+ 0.003 (0791 -0.411)+ 0.003 (+1.087,-0.047)+ 0.003 (+0.701,0.388)+ 0.003
Source €0.011,0.091) (Q027,-0.0051) (0089 0.030) (+0.024 -0.047)
Lens (0.0011 -0.0041) (000066 0.00096) (¢0.000930.0065) (0019 -0.0051)
M (Mgit/M.) [10Mg] 7.80/1.23 078/1.19 483/0.77 280/0.32
h [kpc] 2.25 044 842 157
b/h 0.56 185 029 217
PA angle f] 244.8 2466 1179 2664
Inclination ] 445 306 486 405
As[”] 0.0402 00026 00593 00612
Flux ratio (obs) 4.03:2.53:0.65:1 2.62:1.64:1.30:1 33416:18.4:1 12.5:5.68:4.81:1
Flux ratio (fit) 3.98:4.15:1.40:1 0.81:0.66:0.68:1 8.56387.51:1 1.66:0.69:0.86:1
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3.2. Analytic model for nonspherical lenses in TeVeS
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Figure 3.4: Left panel Shown are the critical curves (black lines) and caustied (ines) of the best-fit
Hernquist-Kuzmin model for Q2237030. The empty and filled squares denote the observed pusitio
images and source, respectivaRight panel Convergence mapof the best-fit Hernquist-Kuzmin model
for Q2237%030, with the outer contour level startingsa& 0.7 and increasing in steps ofl0up to a level
of k = 2.0.
which is the only true bulge-disk system in our set. Also,pitysical Einstein ring size in the
lens plane is very smalRe ~ 0.7kpc (in B1422-231, for instance, it is already by a factor of
roughly 10 largerl[149]). Nevertheless, it is not possiblgilve a reasonable explanation for the
flux ratios using the smooth HK model. Takinfexts due to microlensing into account, which
are not considered in the present analysis, could be abldaw the situation. Note that the lens

galaxy actually contains a bar feature [150] which is igddreour analysis.

PG1115+080 The lens galaxy in PG113#®80 and its three neighbors belong to a single group
atz = 0.311, with the group being centered southwest of the lenxgalposition [151; 152].
Reasonable fits of this lens typically involve a significamioaint of external shear in the context of
GR + CDM. Moreover, the observed anomaly of the flux ratio0(9) between two of the images
strongly hints towards an additional perturbation of theteyn caused by a satellite galaxy or a
globular cluster. Similar to Selc. 3.2.3 A, we have a graagitetlly bound system which will likely

involve a diferent approach than provided by the isolated HK model.

B1422+231 The system B142£231 shows almost the same characteristics as PGIBIb
[153]. Again, the lens belongs to a galaxy group which is et south of the lens galaxy
(z = 3.62). In Ref. [154], the lensing system was fit using a very flagslar isothermal ellipsoid
(SIE) [155, 156] plus an external shear field. However, HS3eotations revealed that the lens

galaxy’s optical axis ratio is much closer to unity than ased for the flat SIE, favoring rounder
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3.2. Analytic model for nonspherical lenses in TeVeS

lens models with larger external shear.

SDSS09240219 Estimated colors and magnitudes of the lens galaxy are stensiwith those

of a typical elliptical galaxy ag = 0.4 [157]. Although the lens environment does not show any
nearby objects perturbing the system, quite an amount efreattshear is needed to obtain a satis-
fying fit to observations, with the lens being typically méateby a (flattened) singular isothermal
sphere (SIS). Additionally, microlensing plays an impnotteole in explaining the observed flux

ratios within GR+ CDM, which is likely to be true in TeVeS as well.

3.2.3C Maximum nonspherical shear of a Kuzmin lens

As we have seen, the outliers in our selection of quadrupkege lenses correspond to systems
with a large external shear. In PG1EB0, for example, this is due to a neighboring galaxy
group. However, the same situation also appears in unciedronments, usually constraining
the lensing potential to require a substantial ellipticifyrom Sec.[3.2Z.3B, it seems that our
present analytic model is not able to generate such a patémtnost cases. As is known, almost
all guadruple-image systems show evidence for the need ettemal shear field [155, 158, 159]
by violating a certain inequality of the image positionsslperhaps not surprising that the current
isolated HK model fails to fit these Iensl%sTo gain a better understanding about this issue, we
consider a pure edge-on Kuzmin lets=£ 0) and derive the maximum variation of the shear at
the Einstein radiu®e by comparing its values on the major and minor axis. For géson, let us

introduce a quantity) which is given as follows:

¥(Re. 0) — ¥(0, Rg)
¥(Re,0)+y(O,Re)’

Q

(3.29)

The parameter defined above will indicate the level of thasheld’s nonsphericity at the Einstein
radius and is a function of the dimensionless radiggb. Note that in case of the Kuzmin lens,

the quantityQ depends on redshift.

Figure[3.5 shows) as function ofRg/b for the pure Kuzmin model (solid line), assuming
aoD = 0.03. This value has been chosen in accordance with the nyagfriens redshifts in
the CASTLES sample, and changing it does have no significaalitgtive impact on the basic

outcome. Additionally, we also present the result for theé ®lodel [155], with the potential axis

SNote that our analysis does not take into account extermarsffects, which would complicate the relation between
lens mapping and associated density distribution due ttineanity in modified gravity. While our main task is to
explore the capability of the HK model, such contributiohewdd certainly be addressed in future work.
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3.2. Analytic model for nonspherical lenses in TeVeS
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Figure 3.5: Nonspherical shear paramet@rfor a simple TeVeS Kuzmin lens (solid line), assuming
agD/c? = 0.03: Additionally, we show the results for a SIE model with agudial axis ratio of ® (dotted-
dashed line), @ (dotted line) and @ (dashed line), respectively.
ratio varying from 07 to Q9 (shown by horizontal lines). As we can see, the Kuzmin model

becomes comparable to a very round SIRgf'b > 10.

To obtain a sfficiently strong quadruple moment, i.e. nonspherical sta¢#ne Einstein radius
(Q > 0.2), these disk-only models must satisfy the conditios 0.2Rg. In case of PG1115, the
observed ring size can be estimatedRasy 5kpc, so to fit four images, one might actually expect
thatb 2 1kpc. However, trying to fit the above mentioned Einsteig size using the stellar mass
only, we also find that this would need a Kuzmin parameterectoszero b ~ 0), corresponding
to a very concentrated point-like lens. Although we haveyailven a plausibility argument,
rather than a rigorous proof, this could explain why we cariimal a value ofb that meets both

requirements and why the HK model mostly fails to fit quadedphage systems.

3.2.3D Experimenting with hypothetical lenses

Another possibility of investigating the fitting capabjliof our model is to generally explore its
parameter space and to study the structure of critical slamd caustics. To avoid any limitations
that might be due to the particularly chosen radial profile, farthermore replace the auxiliary

Hernquist profile with the more general Dehnen profile [168$. Newtonian potential and the
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3.2. Analytic model for nonspherical lenses in TeVeS

corresponding density profile read as

Mh(1 + @)
Arr2-o(r + h)2+e’

Onp(r) = ?TM [—1+ (L)a] po(r) =

— (3.30)

whereh is a characteristic length of the model. Depending on theevaf «, the Dehnen model
represents dierent density distributions, ranging from quite cuspy torenbbroadened profiles.
Fora = 0 anda = 1, Eq. [3.3D) reduces to the models oftdd161] and Hernquist, respectively.
Allowing different values for, we repeat the fitting procedure for the quadruple-imagéesys
discussed in Set. 3.2.3 B. The result is basically the sarioe e HK model, with the parameters
listed in Table_3.2 not significantly changing. In case of Jlage profile ¢ = 0), for instance,
inclination and PA are altered by about&nd the predicted mass by approximately 10%.

To further illuminate the indticiency of our model, let us have a more detailed look at the
caustic structure, taking the system PG14030 as an example: Choosing a plausible setting for
the lens system in MOND, we fix its size tbo= 0.72kpc and the PA to 72° (observed value).

In accordance with the best-fit results, we additionallyuass a lens mass dfl = 8 x 10*M,
and vary the Dehnen index, the model's “diskynessb/(h + b) as well as the inclination on
a range from-1 to 1, Q1 to Q9 and 10 to 9C°, respectively. For a selection of such lenses,
the corresponding critical curves and caustics are shoviigin[3.6. Then, among all resulting
lens models, we select those which exhibit the strongestsfitterical) shear, corresponding to
a large astroid caustic size. Since the lens mass shouldbe t the stellar mas$A(M.. ~ 1)

in MOND/TeVeS, the idea is now to stepwise decrease the mass of thadedsm In all cases,
we find that, due to the caustics’ contraction, the sourcese® the astroid caustic way before
M/M., reaches unity, thus not corresponding to a quadruple-iraggfem anymore. Typically, the
crossing seems to take place when the lens model’s massgislycaround 4- 6 x 101*M,. For

a = 1,b/(h+ b) = 0.38 and an inclination of 48°, this situation is illustrated in the left and
middle panel of Figl_317. Note that we have kept the sourcédipondixed at (-0.011, 0.091)" for

our analysis, with the lens being centered on the origin.

Again, this provides a possible explanation why the Dehkemmin model (including the HK
model) mostly fails to fit quadruple-image systems, suppgrour earlier conclusion from Sec.
B.2.3C. Given thaM/M, ~ 1 in TeVeS, our model is obviously not able to generat@cantly
strong shear (hence large caustics) and a large Einstgjratithe same time. For comparison,

we also present the resulting caustics and critical curf/asest-fit SIS+ yex; model in the right
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Figure 3.6: Experimenting with hypothetical lenses: Shown are thécaliiturves (black lines) and caustics (red lines) dfestent Dehnen-Kuzmin models char-
acterized by the parametarsb/(h + b) and inclination (“core” radius and PA are fixedho= 0.72kpc and 72°, respectively). All models assume a lens mass ¢
M = 8 x 10'*M,, which is approximately 8 times the stellar mass of the ledaxyan PG1115-080. The empty and filled squares denote the observed image
source positions of PG1115880.
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Figure 3.7: Effects of reducing the lens mass: Shown are the critical cblask lines) and caustics (red lines) of a Dehnen-Kuzmideh@ = 1,b/(h+b) = 0.38,

h = 0.72kpc, PA= 77.2° andi = 44.5°), assumingM = 8 x 10'M,, (left pane) andM = 5 x 10''M, (middle pané), respectively. The empty and filled squares

denote the observed image and source positions of PGDBIL the stellar mass of the lens is estimatetas: 10''M,. Right panel Critical curves (black lines)
and caustics (red lines) of the best-fit $4&«: model given by Eq.[(3.31).
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3.2. Analytic model for nonspherical lenses in TeVeS

panel of Fig[3.l7. As is known, its deflection potential careRpressed as
W(E, ) = cf + %52005(2(9 ~6,). (3.31)

Choosing the lens’ positiorx( y;) = (0.0028 0.0048)", ¢ = 1.14”, y = 0.07 and¢, = 88.7°, the
above model is able to fit the observations of PGHIE) satisfyingly.

3.2.4 Discussion

We have found that the HK model is able to describe the obdémage positions of all analyzed
double-image systems, with 10 of these systems yieldingsfide parameters within the context
of TeVeS. Additionally, our analytic model is mostly abledrplain the flux ratios of these bi-
naries. Note that the implied masses for most of these leargequite similar to those derived
from the spherically symmetric models applied in Ref.| [88]t that the big advantage of our
nonspherical model is its ability to fit the precise imagsifons rather than just the size of the

Einstein ring.

On the other hand, 5 double-image systems do not providesamahble fit: While for two of
these systems, the found problems are likely to be solveahsidering observational uncertain-
ties, a more accurate model or additionfieets such as extinction and microlensing, the other
three lenses appear to be lacking an obvious epranBlidnis however quite striking that all
these remaining outliers are actually residing in (or ckmdgroups or clusteref galaxies. Since
TeVeS lensing is much more sensitive to the underlying tdieensional distribution of the lens
than in GR[50], this means thaffects due to environment or nonlinearity could have an impor-
tant incidence. Moreover, it is known for a while that adutitl dark matter is needed for galaxy
clusters in MOND and it has recently been shown that thiséstse for groups, too [[76]. Possi-
ble explanations for this “cluster dark matter” range frdma presence of numerous clouds of cold
gas [162] through the existence of neutrinos with a masswareaveral eV [163] to the nontrivial
effects of the vector field (or of an additional scalar field) iiv@8 or other covariant formulations
of MOND [32,180, 164]. Several studies (including the recamalysis of the velocity dispersions
of globular clusters in the halo of NGC 1399 [165]) have alsovjgled first evidence for such

dark matter omgalaxy scalesn MOND, which is typical for galaxies residing at the ceréclus-

"Note, however, that the stellar mass estimates depend @utimed initial mass function and star formation rate, and
can vary by a factor of 4 in the R-band, which could partly sdlve problem of the mass-ratio discrepancy, but not
the flux ratio anomalies.
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3.2. Analytic model for nonspherical lenses in TeVeS

ters only. This may be interpreted as a small-scale variftiteoaforementioned cluster problem
(although the two are not necessarily related to each o#tmat)could thus provide an additional

reason for the poor fits obtained for the two-image lensedingsin groups or clusters.

For the four quadruple-image systems, it is fatent story: the only acceptable fit is ob-
tained for the Einstein cross Q228730, but even in this case, the observed flux ratios cannot
be reproduced. However, the anomalous flux ratios here ast likely due to microlensing ef-
fects which have not been considered in our analysis. Wehtendonclude that MOND does not
provide a solution to the flux anomaly issue, mainly becaossosh MOND models naturally pre-
dict smooth amplification patterns. Among the 3 very poothgdi lenses, only PG113880 and
B1422+231 appear in a crowded environment, which could cause the g&rturbing fiects as
for non-isolated double-image systems; the remaining, IBEX5S09240219, appears relatively
isolated. We argue that, especially in this particular céise poor fits are due to the intrinsic
limitation of the HK model: Indeed, we have shown that the slagl unable to produce a large
Einstein ring and a large nonspherical shear at the same Aitfeough we have not presented a
rigorous proof, we have tried to make this limitation pldlsiby analyzing the maximum non-
spherical shear of a TeVeS Kuzmin lens as well as the caustictgre of diferent HK models.
We have also tried models based on the more general Dehni#ie [£60], but this has not led to
a satisfactory solution either. Again, note that our arialg&d not consider any contribution due

to external shearfiects.

In summary, we conclude that our analytic models generathyige good fits to the image
positions of isolated two-image lenses, but that some problare encountered for non-isolated
lens systems. On the other hand, we have shown that our merd@etgrely able to fit quadruple-
image systems, which is essentially traced back to thensitrilimitations of our model. The
present study has thus pinpointed some lenses for which detaded approaches such as a full
three-dimensional numerical model should be devised. &\hir analytic models do obviously
not yet represent a definitive test of MONI2VeS with gravitational lensing, they have neverthe-
less provided a new step toward understanding this quiteplored research area and isolating

the possibly challenging lens systems for the future.
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3.3. Gravitational lensing by intercluster filaments

3.3 Gravitational lensing by intercluster filaments

3.3.1 Weak lensing anomalies and filamentary structures

Recently, strange and hard-to-explain features have bisenvéred in galaxy clusters, such as
the “dark matter core” devoid of galaxies at the center of‘tmsmic train wreck” cluster Abell
520 [166] or the “dark clusters” discussed in Ref. [167]. Ihawfollows, we shall consider the
possibility that this kind of features could be due to thevijedional lensing fects generated by
intercluster filaments in a TeVeS universe. However, we ateperforming a detailed lensing
analysis of any particular cluster in the presence of filasydout rather provide a proof of concept
that the influence of filaments could be much less negligide twithin the framework of GR

CDM.

Filaments are among the most prominent large-scale steuofithe universe. From simula-
tions in ACDM cosmologies, we know that almost every two neighborilugters are connected
by a straight filament with a length of approximately-ZDMpc [168]. For instance, the dynamics
of field galaxies, which are generally embedded in such fitdmes well as their weak lensing
properties are persistently influenced by this kind of ¢tme; generally encountering accelera-
tions of about M1 - 0.1 x 10-1%m s72. Filaments also cover a fair fraction of the sky, much larger
than the covering factor of galaxy clusters. Thus, therege@d chance that filaments might be
superimposed with other objects on a given line of sightchedfecting the analysis of obser-
vational data like, for example, weak lensing shear measemés. Short straight filaments are
structures which, at the best, are partially virializedviio directions perpendicular to their axis.
According to Ref. |[168], a filament generally correspondsooverdensity of about 10 30,
having a cigar-like shape. Furthermore, filamentary stinast tend to have a low density gradient
along their axis and, in the perpendicular directions, theye a nearly uniform core which tapers
to zero at larger radii (usually about-25 times their core radius). Since filaments are typically
much longer than their diameter, we shall approximatelgttteem as infinite uniform cylinders
of radiusRs = 2.5h*Mpc. Lacking a structure formatioN-body simulation in the framework
of TeVeS, we shall adopt the naive assumption that filamgmstanctures have roughly the same

properties as in ACDM model and we will justify this approach in Séc. 3]3.3.
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photon ray

-infinity

lens filament
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Figure 3.8: Light deflection by an infinitely elongated cylinder of ccenst mass density: The unperturbed
photon traveling along the-direction passes the filament at the distagpd@npact parameter) from the
filament's axis and is deflected by the angleThe line density of the filament is assumed to be constant,
A= M/L = pnRZ, wherep is the volume density anfd; is the cylinder’s radius.

3.3.2 Modeling a filamentary lens

We investigate thefBect of gravitational lensing caused by a straight filamemineating two
galaxy clusters in both GR and TeVeS gravity. As a first simageroach, we shall take the
filament's matter density profile to equal an infinitely elated and uniform cylinder which is

illustrated in FigL[:3.B. The cylinder’s line density,
A= M/L = prR2, (3.32)

is taken to be constant, wheké is the total masd, denotes the length along the symmetry axis,
Rt is the cylinder’s radius, and is the volume density. A photon traveling perpendicularh® t
filament's axis will change its propagation direction whesging by the cylinder due to the local

gravitational field which is assumed to be a weak perturhatioflat spacetime, i.e. all further
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calculations may be carried out within the nonrelativistgproximation discussed in Séc.13.1.

In our example (see Fid._3.8), the filament’s axis is alignéith the x-axis, and light rays
propagating along the-direction are dragged into they-directions due to the symmetry of the
resulting gravitational field. Keeping this configuratiomdaintroducing cylindrical coordinates,

we may rewrite Eq.[(3]2) as

. [ Oy
a(y) = 4y dr, (3.33)
fZ=y2
y
where the prime denotes the derivative with respect to tliadrical radial coordinate, i.e.

cl);ot = ddy/dr. Considering the symmetry properties of our cylindricaisdenodel and the

configuration in Fig[_318, EqL(3.7) further simplifies to

_ 1DiDss da(y)

: (3.34)

with the convergence being related to the quantities(y? = yf, v2, = 0) andA = detA as

follows:

1-A1
K=y=="——. (3.35)

Furthermore, let us introduce the complex reduced shegaren by

g= 12+ (3.36)
1-«

To lowest order, this quantity is the expectation value efeHipticity y of galaxies weakly dis-
torted by the lensingfeect, thus corresponding to the signal which can actuallydseiwed. The
absolute value of the reduced shealgjs= y/(1 — «), and since we have = y < 1 in our case,

we obtain|g| ~ « = y. Note that the above result is independent of the partidalaiof gravity.

3.3.2 A The uniform filament in Newtonian gravity

The Newtonian gravitational field of our filament model isagivby

Ar
_R_?’ r <R
on(r) = IVON() = , (3.37)
Gal
—_—— r>R
2rr’ =
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with 2 being the previously defined line density given by Hg. (B.38)rR; <y, evaluating the

integral [3.3B) yields
an(y) = GA = const (3.38)

Inserting the above into Eq.L(3134), we may obtain the cpoeding convergence field. As
expected,xy equals to zero outside the cylinder’s projected matteritdensory < Rg, the

deflection angle has to be calculated from

. 2GA rdr dr
an(y) = ﬂyf + | —|. (3.39)

Carrying out the integrations ib_(3139), we finally end uphattie following expression:

yRf -y
an(y) = ZS/I + arcsin(Rl) : (3.40)

2
Rf f

Using Eq. [[3.34), the convergence in this case turns out to be

B D/Dis GA >
() = 2= = JRE - y2 (3.41)

3.3.2B The uniform filament in TeVeS

Now we shall consider light deflection within the frameworkT@VeS gravity, again using the
simplistic form of the free interpolating functiqms introduced at the end of Sdc. 2.2.P B. Assum-
ing a cylindrically symmetric configuration, the total gitational acceleration may be written in

the following way:

am(r) = IVOM()l = on(r) + von(r)ao, (3.42)

wherer denotes the cylindrical radial coordinate adbg(r) is the total nonrelativistic gravita-
tional potential in TeVeS. The constamt = 1.2 x 101%m s2 characterizes the acceleration scale
at which MONDian &ects start to become important compared to Newtonian ¢onins. Since
filaments are the most low-density structures within theensie, their internal (Newtonian) grav-
ity is very small. Therefore, the MONDian influence yieldseathancement of the gravitational
field which is on the order ofp/gn, being extremely large in such objects. For this reason, we

may expect a substantialftirence concerning the lensing signal caused by filamertiarstigres
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in TeVeS. Equipped with Eqd.(3133), (3137) ahd (B.42) wereaely to proceed with the analysis

of our cylindrical filament model: FdR; <y, the deflection angle is given by

o [6Glao ( dr T'(1/4)
am(y) = an(y) + . yg/f \/F\/m =GA+ m \2GAagy. (3.43)

In this case, the convergence reads as follows:

_ DiDisT(1/4) [Gaag
km(y) = D. 1"(3/4)\/ gy (3.44)

Fory < Ry, the integral[(3.33) has to be split in several parts, siyilto Eq. (3.39). Using

elementary calculus, we finally arrive at
2 \2
R -y

o [2G a0 Y2
am(y) =an(y) + TR_f 4 Ty
[2GAagy
+ TB(O,)/Z/R%) (1/43 1/2) )

wherea(y) is given by [3.4D) an®(,, g (a, b) is the generalized incomplete Beta function defined

~ By re ) 314 1/2)]
(3.45)

by
q

Bpg(@b) = f 11 -1)°'dt, Rea),Reb) > 0. (3.46)
p

As the expression for the convergenggturns out to be quite lengthy, we will drop it at this point.

From Egs. [(3.43) and (3.44), we find thay outside the cylinder’s projection increases with
the square root of the impact parametéty = const) whilexy, decreases with the inverse square
root ofy (ky = 0). This reveals a fundamentalfidirence between MONDeVeS and GR: Since
kN = 0, we also havery = 0 andAy = 1 according to Eq.L(3.35), meaning that there will be no
distortion dfects as well as no change in the total flux between source aagkinie. wherever
the projected matter density is zero, the lens mapping wrill tnto identity. However, this is no
longer true in the context of TeVeS as the convergence anshikar field do not vanish (cf. Fig.
[3.9). Obviously, the MONDian influence does not only enhaeftects that are already present in
GR, but rather creates something new, which, in principbeld be used to distinguish between
laws of gravity (see Se€._3.3.6). Finally note that if onesiders varying the inclination angte

of the filament's axis to the line of sight, the lensing prdigsrderived in this section have to be
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rescaled by a factor of sih6 in both GR and TeVeS.

3.3.3 Model application

From ACDM large-scale structure simulations, it has been shoatttiere are close cluster pairs
with a separation of 5 Mpc or less which are always connected by a filament [168].efiasa-
tions between 15 and B0'Mpc, still about a third of cluster pairs is connected by aigat. On
average, more massive clusters are connected to a largdrenwhfilaments than less massive
ones. Additionally, these simulations indicate that thesrmoassive clusters form at the intersec-
tions of the filamentary backbone of large-scale structioe straight filaments, the radial profiles
show a fairly well-defined radiuBs beyond which the profiles closely follow an? power law,
with R being around Dh~tMpc for the majority of filaments. The enclosed overdensithin

R: varies from a few times up to 25 times the mean density, inodgm of the filament's length.
Along the filaments’ axes, material is not distributed uniity. Towards the clusters, the density

rises, indicating the presence of cluster infall regions.

As previously stated, we will assume that filamentary stmgd in TeVeS have similar prop-
erties as in a CDM dominated universe based on GR. To judtifyassumption, one may, for
example, resort to theHDM cosmology (see SeC. 3.1.3) and on the fact that filameatgeneric

and have similar characteristics in hot dark matter (HDMJ &DM scenarios [169-171]. For
instance, neutrino dark matter is known to collapse int@shand filaments in HDM simulations.
Concerning the uniform model introduced in Séc. 3.3.2, wes ttake the filament’s radius as

R¢ = 2.5hMpc, and set its overdensity tb= 20, wheres denotes the density contrast defined

by

5=P"F0 (3.47)
£0

andpg is the intergalactic mean density.

On the other hand, analyzing the Perseus-Pisces segmég},ddncluded that a MONDian
description of filaments would not need any additional noydi@ic mass component. Due to
rather large systematic uncertainties, however, thidtresmains highly speculative and does not
rule out our approach where filamentary structures haveehigansities. Nevertheless, we will
also include this case, where filaments consist of baryomittanonly, into our analysis. Since

the absolute density of a filament in this situation is appnately by a factor 18- 100 smaller

8Note that the occurrence of filamentary structures is a gefeature of gravitational collapse from a Gaussian random
field which does not depend on the specific form of the law ofitya
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than inuHDM, we do expect the MONDian influence to become even moreitapt (compared
to a GR scenario with the same background cosmology). Eagedrby the MOND simulations
discussed in Ref|_[173], we shall stick to the assumptiohlibth shapes and relative densities of
filaments are similar to thACDM case when considering a universe made out of baryonitemat

only, thus keeping the choige= 20.

In order to calculate the intergalactic mean density andhtfeessary angular diameter dis-
tances for lensing, we shall use the fitDM cosmology in Eq.[(3.15) introduced in Séc. 311.3.
To investigate whether the such derived results are semsitthe background assumption, we will
also consider the less realistic flat minimal-matter cosgwigiven by Eq. [(3.14). Furthermore,

the model-dependent intergalactic mean densjtis calculated according to
po = Qmpc(1+2)°, (3.48)

wherep; = 3H§/87rG is the critical density and is the lens redshift, i.e. the filament's redshift.
Concerning the framework of GR, we shall use a As&tDM cosmology withQ, = 0.3 and
Qa = 0.7, which allows one to consistently compare the correspandisults to those obtained

in TeVeS.

3.3.3 A TheuHDM scenario

Using the TeVeS cosmology specified [n (3.15) and consideaifilament which is inclined by
an angled = 9C° to the line of sight, both the Newtonian and the MONDian deitecangle as
well as the corresponding convergence are plotted in thiornoteft and bottom right panel of
Fig. [3.9, with the filament placed at redshift= 1 and background sourceszt= 3. Whereas
the Newtonian signal is rather smatly, < 1073, the filament can create a convergence on the
order ofk ~ 0.01 in TeVeS. This even remains true in the outer regions where 0 if we take

into account that it can have other orientations, i.e.fgednt inclination anglé. For example,

a nearly end-on filament with = 10° has a lensing power 6 times larger than that of a face-on

filament, i.e.8 = 9C°.

Using Eq. [(3.3b), we therefore infer that a single TeVeS fdathmay generate a shear signal
which is on the same order as the convergemce,0.01, as well as an amplification bias at a 2%
level, A”1 ~ 1.02. Additionally, we present the densjtyr) and the radial evolution of the total

gravitational acceleratiog(r) in the top left and top right panel of Fid._3.9, respectiveNote
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Figure 3.9: Density profilep(r) (top lef)), radial evolutiong(r) of the total gravitational acceleratiotop
right), deflection anglex(y) (bottom lefy and convergence(y) (bottom right « = y = (1 - A™1)/2) in GR
(dashed) and TeVeS (solid) gravity for the uniform filameyltraler model whose axis is inclined by an
angled = 90 to the line of sight, assuming = 1, z; = 3 and the flagyHDM cosmology [3.1b) in TeVeS.
The radius of the filament iR = 2.5h~*Mpc and the overdensity within the filament is taken as 20sime
the mean densityo. Note that, for consistency, the Newtonian results aredasea flatACDM cosmology
with Qn, = 0.3 andQ, = 0.7.

again that the GR results are based on aXl@bM cosmology withQ,, = 0.3 andQ, = 0.7 for

consistency.

3.3.3B The baryons-only scenario

Now let us switch to the minimal-matter background given [Byl4). Keeping all remaining
parameters exactly the same as in the last section, thesporrding results are presented in Fig.
[3.10. Although the convergence is slightly smaller tharhimgtHDM case (roughly by a factor
of 1.5 - 2), we find that also in this case, single filamentary strest@are capable of producing a

lensing signal which is of the same order y ~ 0.01. Again, this is even true outside the “edges”
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Figure 3.10: Same as Fid. 319, but now assuming the flat minimal-mattenogyy Eq. [3.14) in TeVeS.

of the filament's projected matter density, accounting li@r fiact that the inclination anglemay

vary, ¢ < 6 < 9Cr.

3.3.4 Oscillating density model

Matter density fluctuations are steadily present througtimeiuniverse. Thus, as a more realistic
approach, we shall use a fluctuating density profile to desaifilament and its surrounding area
including voids, i.e. regions in the universe where thellowatter density is below the intergalactic
mean density. To keep our analysis on a simple level, let iis tre density fluctuation as till

denotes radial coordinate in cylindrical coordinates)

ar\ 7t ar
ool—] sin|— r <2R
O(Rf) (Rf)’ =

s(r) = : (3.49)

0, r > 2R
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whered(r) denotes the density contrast definedin (B.4¢)s 4 is the density fluctuation ampli-
tude (this value ensures a positive overall matter denaitgRs = 2.5h~*Mpc again the filament’s
characteristic radius. Multiplying with the mean dengigyand integrating along the radial direc-
tion, we find that the mass per unit length enclosed by an tafitylinder of radiug reads as

(Note that we neglect the contribution due to the mean debsitkground)

20000R2
! (1— cos(g—r)), r < 2R¢
f

M) _ " , (3.50)

0, r > 2Ry

whereog is the mean intergalactic matter density given by Eq. (3.B8m Eq. [(3.50), we directly

see that the Newtonian gravitational acceleration in thgeds

GM(r)}
27k r’

on(r) = (3.51)

Using Egs. [(3.33)[(3.42) and (3]51), we are now able to nioalér calculate the lensing prop-
erties of this configuration. Choosing lens and source iftidsfpain asz = 1 andzs = 3, re-
spectively, and assuming the previously used cosmolog@mekground models (see Séc. 3.3.3),
the resulting deflection angle as well as the convergencshemen in bottom panel of Fig. 3.11
(flat uHDM cosmology) and3.12 (flat minimal-matter cosmology)suaringd = 90°. Here the
occurrence of negative-values simply reflects the fact that our model (B.49) geesra local
underdensity, & 6(r) < 1, with the overall matter densify being strictly non-negative at any
radius. Compared to the Newtonian case whegres 107#, we again find that a face-on TeVeS
filament may cause a significantly larger lensing signalcivis now on the order of ~ y ~ 1073
within both TeVeS cosmologies. As the results of (DM and the minimal-matter cosmology
approximately dfer by a factor I5—2 just as in Sed._3.3.3, the order-of-magnitude lensiterts

caused by TeVeS filaments are also in this case more or leswotagically model-independent.

Close to the filament’s axis, wheke ~ 4 x 1073, one can actually have a lensing signal
k = y = 0.01 assuming that the inclination angle is smélls 20°. Although such angles
correspond to rather special configurations, we may coerdidt also for our simple oscillation
model, single TeVeS filaments potentially generate a lgnsignal~ 0.01, which is similar to our
result in Sec[-3.313. However, note that the above discussibased upon the choice 6f (3.49)

andép = 4. Considering a higher overdensity along its axis, everce-ém filament described by
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Figure 3.11: Density profileo(r) (top left), radial evolutiorg(r) of the total gravitational acceleration (top
right), deflection angle(y) (bottom left) and convergenagy) (bottom right;x = ¥ = (1 - A™1)/2) in GR
(dashed) and TeVeS (solid) gravity for the oscillating digmaodel given by Eq.[(3.49¥(= 90°), assuming
50 = 4,Rt = 25hMpc, z = 1, zs = 3 and the flagyHDM cosmology [[3.15) in TeVeS. Note that, for
consistency, the Newtonian results are based on A@&M cosmology withQ,, = 0.3 andQ, = 0.7.

a similar fluctuating profile could easily create a shear field0.01 fory < R;.

3.3.5 Superimposing filaments with other objects

To demonstrate the contribution of filamentary structueshe lensing map of other objects,
e.g. galaxy clusters, we superimpose twibatently orientated filaments with a toy cluster along
the line of sight, assuming the previously introdugddDM cosmology and dierent redshifts
for each component. If all objects arefistiently far away from each otheg(100Mpc), we
may approximately treat them as isolated lenses at a cegdshift slice, i.e. the corresponding

deflection angles can be calculated separQIeT)hus, we may resort to the well-known multiplane

Note that in general, one would have to solve the full nomlirEeVeS scalar field equation, which is beyond the scope
of the present analysis.
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Figure 3.12: Same as Fid._3.11, but now assuming the flat minimal-mat@notogy Eq.[(3.14) in TeVeS.

lens equation [124, 174]:
D N
n=pk- Zl Dischi(§). (3.52)

wheren is the number of lens planeB; corresponds to the angular diameter distance between

thei-th and thej-th plane and; is recursively given by

:_gl_ZDJ.aJ(g, 2<i<n. (3.53)

Comparing Eq.[(3.82) to the lens equation for a single leanglwe identify the total deflection

angle as

&uon(£2) = Ga(6a) + Z ia.(si) = o+ ar. (3.54)

Herea andas are the deflection angle of an isolated cluster; and an additional contribution

due to the superimposed filaments, respectively. Analodneéocase of a single plane, further
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Table 3.3: Parameters of the superimposed filaments in[Sec.]3.3.5

Plane PAf] incl. [°]? Shift from origin [kpc]¢ Redshiftz

2 90 12 (0-150) 025
3 45 45 (6000) 0.30

b Inclination of the filament's axis to the line of sight.
¢ Shift of the filament’s projection in the corresponding tetiplane.

lensing quantities such as the total convergence and thediotar can be calculated from Eq.
(3.54), using the general relations introduced in £eg. Bot simplicity, we shall assume that the

cluster's TeVeS potential follows the “quasi-isothermpitfile given in Ref.[89]:

o(r) =V log 4|1+ I -p;dz’ (3.55)

with v being the asymptotic circular velocitg,a scale length ani the center’s position.

Concerning the numerical setup, we $ét= 2 x 10°km? s2 and p = 200kpc, fixing the
cluster’s redshift taz; = 0.2. Furthermore, we choose the uniform filament model dismligs
Sec.[3.3.P and assume that filaments have a constant ovigydeng = 20 as well as the same
characteristic radiuBs = 2.5h~tMpc. While the cluster is centered at the origift € &, = 0),
the two filaments are set up according to the parameters giveable[3.8. Finally, we place the
source plane at a redshift of = 1. Note that this specific setting corresponds to a morestaali
lensing configuration compared to our order-of-magnitusiyssis in the previous sections, where

our choice is again motivated by results based siC®M universe.

From the top right panel of Figl_3.113, we see that the filamamstribution to the total
convergence maphk = kot — K¢ (kc iS the cluster’s convergence map in absence of any filamentar
structures along the line of sight) is comparable to our iptes/findings, with the signal again
being on the order of.01. Also, note the distortionffects caused by the cluster and the peak close
to the region where the two filaments overlap. Obviouslycbetribution pattern depends on the
actual configuration as well as on the type and amount of theidered objects along the line
of sight and can generally be quite complex. Additionallg, present the changes in the reduced
shear componentag; = yiot1/(1 — ktot) — ¥c1/(1 — k) andAgz = yiot2/(1 — ktot) — Y2/ (1 — k),

due to the filaments’ presence in the bottom panel of[Figl3.13

At this point, we should emphasize that we have consideredntipact of filamentary struc-
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Figure 3.13: Superposition of two filaments with a toy cluster along theelbf sight: Shown are the
cluster’s convergence map in absence of any filamentary structures along the line dfttop lef) and
the filaments’ contributionx = xiot—«. to the total convergenceop right) and as well as to the components
of the reduced sheakgs = yiot1/(1—ktor) = ¥e.1/(1—kc) aNdAG2 = Yior2/(1-kiot) —¥c2/ (1-kc), respectively
(bottom panél

tures alone. Depending on their particular position aldrggline of sight, additional (foreground)
objects such as galaxies, galaxy clusters or voids mightiiocontribute on a comparable level or
even exceed the signal caused by filaments. Of course, tfieficomplicates the interpretation
of the corresponding lens mapping and we conclude thatatixtgathe filaments’ contribution can

generally pose quite a challenge.

3.3.6 Discussion

Regardless of the actual used cosmological background,awe shown that TeVeS filaments
can account for quite a substantial contribution to the weaking convergence and shear field,
k ~ vy ~ 0.01, as well as to the amplification bia&;* ~ 1.02. This is even true outside, but
close § ~ 2R¢) to the projected “edges” of the filament's matter densdigrig into account that
the filamentary structures may be inclined to the line of sighrather small angle® (s 20°).
Additionally, we have demonstrated the impact of filamemt®dhe convergence map of other

objects by considering superposition with a toy clustenglthe line of sight. Again, our results
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3.4. Constraining neutrino dark matter with cluster lenses

have shown an additional contribution comparable to thatsihile isolated filament and that the

contribution pattern of filaments can be generally quite plext:].

Although our analysis is mainly of theoretical interest #bove result points to an interesting
possibility concerning recent measurements of weak Ignsiirear maps. For instance, the weak
shear signal in the “dark matter peak” of Abell 520 [166] isighly at a level of M2, which is
comparable to what filaments could produce in TeVeS, butm@&R (also cf. [[176]). Therefore,
we conclude that filamentary structures might actually de &bcause such anomalous lensing

signals within the modified framework.

In principle, the predicted flierence in the weak lensing signal could also be used to test th
viability of modified gravity. As several attempts to detéitiments by means of weak lensing
methods have failed so far, e.g. the analysis of Abell 22@&23d177], this might already be a first
hint to possible problems for such modifications. On themtlaad, shear signals aroupd- 0.01
are still rather small to be certainly detected by today'skviensing observations, and lacking
N-body structure formation simulations in TeVeS, we cann@nebe sure about how filaments
form and how they look like in a MONDian universe comparedh® €DM case. Another point
of concern is whether the treatment within the nonrelatwimit of TeVeS provides a good
description at the scales we have considered here. Prewiotkshas shown that TeVeS vector
perturbations have a significant impact on the evolutioraajd-scale structure [82,/83], which
could also be important for a discussion of filaments. Cleanbre investigation is needed to gain

a better understanding about the impact of filamentary tsiress.

3.4 Constraining neutrino dark matter with cluster lenses

3.4.1 Massive sterile neutrinos: A possible remedy for Te\&

As we have discussed in Séc. 3]1.3, massive ordinary nesitviith a mass around 2eV provide
an interesting candidate for the missing energy-densitieMeS and the question of the viability
of the assumed neutrino mass is soon expected to be answettesldpcoming results of the KA-

TRIN experiment. Nevertheless, the rather unsatisfaatesults of this solution on large scales,

especially for the CMB anisotropy power spectrumA@DM model provides a better fit to the

1%Here we have considered the lensing signal generated bie difments alone. Simulating the cosmic web in a
standardACDM cosmology, [175] have found a shear sigmat 0.01 — 0.02 along filamentary structures, which
seems quite similar to what TeVeS can do. Note, however thiigsignal is entirely dominated by the simulation’s
galaxy clusters, with the filament’s signal being much seralipproximately on the order of 10- 1%
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data), and problems within galaxy groups/[76] have led tovdd®e hypothesis of very massive
ordinary neutrinos unattractive. Alternatively, the riggd additional matter could be provided in
the form of (right-handed) sterile neutrinos (SNs) which arotivated by theoretical considera-
tions in particle physics (e.g., see Refs. [178+180] andreeices therein) andfer an elegant
way to explain the small masses of active neutrinos via teesaw mechanism” [181-183]. The
conceptual advantage of such an approach lies in combihmguccess of modified gravity on
small scales with new physics in a sector of the standard hwdueh is known to be incomplete
[184] and in need of revisio@. Motivated by a possible interpretation of the MiniBooNE ex
periment [185], Angus_[186] has suggested to use a singte figecies of SNs with a mass of
approximately 11eV and investigated its consequencesiclf SNs decouple while they are rel-
ativistic and in thermal equilibrium, one should obtaintbatbackground evolution and a CMB
anisotropy power spectrum which are basically indistisable from a standailCDM cosmol-
ogy, while at the same time, this additional hot dark matter (HZ&mponent may give rise to
a correct prediction of the linear matter power spectrumrapdesents a suitable candidate for the
missing mass in galaxy clusters without spoiling MONDianayics on galactic scales [187]. As
for the nonlinear regime of structure formation, the situais still unclear. Because of the more
sophisticated mathematical structure of the nonlineae®fiéld equations (or that of related the-
ories) as opposed to those of GR, there seems currently néosgain reliable information about
the nonlinear evolution. This fiiculty is somewhat reflected by the fact that the resultingl fiel
equations in the quasistatic, nonrelativistic limit tygdlg remain highly nonlinear. Assuming an
ad hocmodification of the original MOND formula Eq._(2.B2), howeya first simplified attempt

into this direction is discussed in Ref, [188].

It is noteworthy that TeVeS or TeVeS-like theories in conaltion with sdficiently abundant
massive neutrinos provide the most consistent relatividtOND framework presented in the lit-

erature so fa@; nevertheless, there are still innumerable aspects widel to be tested further.

without resorting to a modification of gravity, SNs in the kehass range still provide a viable candidate for all the
dark matter in the universe [180]. In this case, however,roag expect similar fine-tuning issues on small scales as
in current CDM models.

2Although this has not been explicitly calculated, one cam the following argument: For common choices of the
TeVeS parameters, the impact of perturbations due to tma g&tds is small at early times, i.e. those relevant for the
CMB. Thus the theory exhibits a GR-like behavior, which akoto directly adopt the results of Angus for TeVeS.
This is further supported by the nearly identical resultstf@ CMB power spectrum in TeVeS [82] and GR [186],
assuming three active neutrinos with a mass around 2eV. Howit is still an open question whether secondary
anisotropies such as the thermal or kinetic Sunyaev-Zabtioeffects leave a dierent signature than inCDM.

3Note that there are certain theories which aim at reprodui®ND and large-scale observations without any addi-
tional dark matter [38], but it is currently unknown whetlseich models naturally give rise to the observed properties
of galaxy clusters.
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3.4. Constraining neutrino dark matter with cluster lenses

As we have discussed in Séc. 312.1, one possibility to enthlyool of gravitational lensing is to
test the theory with the help of multiple-image galaxy leystesms. Another way of challenging
the theory is ffered by weak galaxy-galaxy lensing. Using data from the Begdence Cluster
Survey and the Sloan Digital Sky Survey (SDSS), it has beenddhat the most luminous galax-
ies & 10'Ly) would require a substantial fraction of nonbaryonic nrafi89]. Although this
result needs to be confirmed by larger data sets before a finaciusion can be drawn, it might
hint towards a problem with the original MOND idea on galactales. Again, SNs with a mass
around 11eV could provide a remedy as they should be ableustecldensely enough in such
massive systems [187]. However, it remains to be seen inl ddtather such an approach can
explain observations. Summarizing the above, we note lilgaa$sumption of 11eV SNs has the
potential to remedy the problems of TeVeS-like theories @myndiferent scales and therefore

merits further investigation.

In the following, we suggest to test TeVeS and the massive Bidthesis in the context of
complex lens systems which are typically present in therakrggions of galaxy clusters. A pre-
vious analysis [190] already revealed that such an enviemtroan put stringent constraints on the
distribution and plausibility of the needed dark neutrimmponent, thus providing an excellent
testbed for our purposes. Generally, the advantage of galasters lies in the independent esti-
mates of baryonic matter, inferred from observed x-ray &eiths luminosities, and of the system'’s
total mass distribution based on a combination of weak andgtgravitational lensing. Being in-
sensitive to the dynamical state of the deflecting massatter techniques are particularly suited
to constrain the properties of the dark component. In cehttaweak lensing estimates, strong
lensing is basically free of statistical uncertainties efidrs a unique and robust probe of the mat-
ter distribution on scales 100kpc. Here we shall use strong lensing to further test idgility
of 11eV SNs. Unlike conventional CDM, light SNs are subjecstrong phase-space bounds set
by the Tremaine-Gunn limit [191], which allows one to chetikster lens models inferred within
the modified framework for consistency. Since this limityanets SNs from clustering into dense
clumps, galaxy cluster lenses with a considerable amoudad¥ substructure provide an ideal
target for our intentions. As a first example, we shall stusydalaxy cluster Abell 2390 (A2390)
with its notorious straight arc, and investigate whethés ppossible to reproduce this particular
lens feature in TeVeS. Again, we shall restrict ourselvesdak fields and quasistatic syste@s

which allows one to make use of the relations presented in[E8c Based on the assumption of

1“Note a caveat here: The present approximation ignoreshpessintributions arising from perturbations of the vector
field A, which could have a significant impact on cluster scales. iBsise is further discussed in SEc. 3.4.6.
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a single species of 11eV SNs [186, 187], we shall further Ut aosmological model with

Om=0,+0,=029 Q,=07L h=07 (3.56)

to calculate angular diameter distances in the contextadfigtional lensing. Note that this gives
a background which is virtually indistinguishable from arstardACDM model. A particular
choice for the free functiopg(y), suitable for the gravitational lensing analysis of A23@@l be
given and discussed in Séc, 3]4.3.

The following sections are structured as follows: Starivith an observational summary of
the galaxy cluster A2390 and its pronounced straight arem[3.4.2, we highlight why this sys-
tem provides an excellent candidate for our intentions.ti@aimg with the setup for a simplified
density model of A2390 in Se¢._3.4.3, we discuss results tasgquilibrium configurations in
Sec.[3.4.14. Based on the latter, we outline a systemati®apprto cluster lenses in TeVeS, and
describe a lens model for the straight arc in Sec. B.4.5.1Iizivee conclude in Sed._3.4.6. For

clarity, several technical and numerical details are ginghe appendix.

3.4.2 Observations of the galaxy cluster A2390
3.4.2 A X-ray gas and member galaxies of A2390

The galaxy cluster A2390 at redshift= 0.23 [193, 194] is one of the richest and most luminous
clusters known in the literature. Several interesting proes, e.g. the large abundance of lensing
arcs and arclets [192], an elongated galaxy distributid@d®]land its large velocity dispersion
[196], have made the analysis of this system particulathaetive. In the context of GR, A2390
has been subject to extensive study by meansfédrént techniques including virial (e.g., Ref.
[197]), x-ray [198+201], redshift-space caustic [202] dath weak|[203—207] and strong [208—

211] lensing studies.

Observations with CHANDRA exhibit a very concentrated aighly peaked x-ray emission,
indicating a strong cooling flow which is centered on clusteentral cD galaxy [199]. On large
scales, the x-ray morphology has been found to be stronigiyiehl with an overall position angle
(PA) comparable to the main cluster direction in the opt{€Al = 133) [192]. Here and below,
the PA is defined as the anguldiset of the major axis with respect to the north-south dioggcti
being measured counterclockwise. The data provide evidim@n elongated x-ray morphology

in the very central part, and suggest the existence of arsighste in the cluster gas located
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Figure 3.14: A small section of an HSWFPC2 observation of A2390 shows the impressive straighi@r
the left side. Characterized by two breaks along its ligbfif (present in other observed bands as well),
the arc can be decomposed into three segments laBeledndC, respectively[192]. Also visible are the
galaxy 2592, which is located adjacent to the arc, as welhagalaxy 6666 (see Talile B.4).

roughly 40’ (~ 147kpc) from the cluster center. The CHANDRA image furthereals large-
scale cavities in the x-ray surface brightness extendimgoegimately 400kpc from the center,
where a sharp break in the surface brightness profile isl®isiBs observed in several other
clusters|[212], such cavities are likely produced by bublbleradio plasma emitted by the central
active galactic nucleus. Despite these irregularitiestarcappearance of a secondary gas peak,
however, the x-ray observations indicate that the systemwabkole is relatively regular and, to

good approximation, dynamically relaxed. Thus, if one edek the cluster’'s central part, the

overall assumption of hydrostatic equilibrium appears ssagonable one.

There are also several studies of individual galaxies withé cluster. For instance, the prop-
erties of the central cD galaxy have been examined usingad®13], infrared and radio ob-
servations|[214]. A large sample of 216 confirmed cluster tvens based on photometric and

spectroscopic information is presented in Ref. [215]. Mameent observations include a selec-
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tion of 48 early-type member galaxies which has been usewésiigate their evolutionary status
[216]. We note that the available observational data wilhiygortant for building a realistic cluster

model in TeVesS.

3.4.2B The straight arc of A2390

Among several arcs and arclets, the cluster A2390 exhibitgsrasual, strongly lensed straight
arc (see Fig[3.14) which is located approximately 88 140kpc) from the central cD galaxy
[192]. This particular arc is unusual in the sense that, eshibth located in the outer core region
and adjacent to a lens galaxy lying in between arc and cD gaitawould be expected to appear
curved with respect to the massive cluster center or thestaglaxy. Along its light profile, the
arc further exhibits two breaks in surface brightness, sgtngally located relative to the closest
galaxy’s center. Spectroscopic analysis of the arc reddahk it is actually the joint image of two
different sources, one at redshife 0.913 (corresponding t8 — C in Fig. [3.14) [192] and the
other atz = 1.033 (corresponding té) [217]. In addition, ISOCAM observations of the image
segmenB - C indicate the presence of an active star forming region apgat the scenario of
two interacting source galaxiesat 0.913 [218]. Nevertheless, the found straightness requires a

rather special lens configuration (also see §ec. 3.4.4 A).

Apart from the system A2390, there also exist other detestaf (relatively) straight images
which are typically well modeled from the visible distribarn of bright galaxies helped by the cen-
tral cluster potential [21.9—221]. As already pointed outhie literature![208], a similar approach
for A2390 within the usual framework of CDM would require ethely high mass-to-light ratios
for individual galaxies, and thus yields a rather unreialistenario. In recent years, several authors
have considered possible lens models which aim at repnegstich a straight image, and a first
attempt was performed in Rel. [192]. For instance, the faldstic of a single, highly elliptical
cluster lens can be used to create a straight image [209h &owdel gives a result comparable
with the arc’s morphology, but fails to explain infrared ebstions. Adopting a very large ellip-
ticity of the central cluster profile, it was demonstrate@vtzocusp model may produce the desired
elongated image morphology [211]; however, this solutieenss incompatible with other lensing
constraints of the system. Building on the existence ofyxstzbstructure in the arc’s vicinity, the
authors of Ref.|[210] employed a two-component model usingllgptical cluster center with axis
ratiob/a = 0.7 to explain the arc. Despite a slight deviation~aflo- significance, the obtained

x-ray temperature profile and the projected mass withith 38 140kpc) appear consistent with
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those derived from the observed x-ray luminosity [199].

It seems obvious that any suitable model needs substamiatifning to form the necessary
lens configuration for straight images. As a consequentef tilese models are extremely sensi-
tive and unstable with respect to perturbations due to igest galaxy or additional substructure
in the intracluster medium (ICM). While this does not poser@bfem per seg it is nevertheless
interesting to look for models with improved stability. Fraa general analysis on how to form
straight images [208], it has been concluded that the nasylconfiguration involves a dark mir-
ror component of the nearest galaxy located on the oppdditeo$ the arc, counterbalancing the
effect of the visible galaxy. With the help of the central clugteofile, this yields a so-calleldeak-
to-beak modelvhich explains the observed straight arc and, if realizal wiich a “dark galaxy,”
is suficiently stable against local perturbations. Alternativéiere is also the possibility oflgps
catastrophe[208], i.e. a lips caustic just emerged or just about to eméngthree-dimensional
caustic space (for a demonstration of a lips catastrophe3ir0fsee Ref.|[[222]). Since such a
model requires the lensing convergence - equal to the pgegjenatter density in GR only - to

peak at the arc’s position, however, it is not supported Iseolations.

3.4.2 C Achallenge for TeVeS and hot dark matter

Concerning the situation in TeVeS, we may already statettieat'dark galaxy” approach, i.e.
a nonluminous matter distribution of galactic size, cartmmiachieved with our choice of 11eV
SN HDM. Assuming that these particles are relativistic dratrmalized at the time of decoupling
(just like for active neutrinos around a temperature of svigleV which is much larger than
the considered mag, their Fermi-Dirac distribution freezes in, and their phapace density is
constrained by the Tremaine-Gunn (TG) limit [191]. For amte, a HDM galaxy in TeVeS would

have a typical phase-space occupation number (we negtaotdaofr and order unity)

BdN M ( L )3 agh’
3 - - 5
dBxBp m, \morc Gnto (3.57)

—4 -5
() ()
11eV/ \100km s?

15Note that whether or not SNs decouple whilst in thermal éoyitim depends on the assumed model, production
mechanism and parameters, e.g. the mixing to active nestriSince the physical processes in the early universe
are yet unknown, the relic distribution of SNs is quite utaier Here we choose a thermal distribution to obtain the
desired cosmological properties as discussed in Refs, |[158d.
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which exceeds unity, and thus the TG limit for thermal relizsless the HDM mass), is much
larger than 11eV (e.g~ 1keV warm dark matter) amok the structure’s velocity dispersian >
100km s, hence above the galactic scale. The estimate given in [E§Z)(assumes that the
structure’s dense core is subject to the Newtonian regirge-(1), which gives a core sizg: ~
GM/c?, and the total masM ~ o*/Gay can be well approximated within the “deep-MOND”
limit (ug ~ +/y). Also note that moving to masses significantly larger thgn= 11eV would
spoil the dynamics of MOND in galaxies and thus eliminateuse of such HDM in the first place
[187].

Therefore, a combination of HDM and modified gravity may, imgiple, face a challenge in
order to create observedfects of dark substructure. The TG phase-space bound noapplies
to HDM substructure, but also to its global distribution hvisit the cluster, which presents a well-
posed and constraining general test of TeVeS or similarits@supplemented by an additional
HDM component. As other realistic lens models for the strbigc [210] also suggest a substantial
amount of dark substructure, a basic question is whethee tire TeVeS lens models which are
compatible with the TG bound for 11eV SNs. Before we can afdtkis point, however, we
need a reliable way of modeling the straight arc in TeVeS. ppraeach into this direction will be

discussed below.

In preparation for the following sections, we introduce teeminology and procedure used

for two different kinds of lens configurations in our analysis:

Quasiequilibrium configurations Here we consider configurations which are based on the as-
sumption of hydrostatic equilibrium. Both the cluster gad the (SN) HDM component are mod-
eled by symmetric, central density distributions, thesiattaving a maximum phase-space density
set by the TG limit which is inferred in a self-consistent vigyconsidering the equation of state
for a partially degenerate neutrino gas![77,/187] (see Agp.IMaddition, we include substruc-
ture in the form of visible galaxies and further allow for fpgbations of the central distribution
(gas+ HDM) which are modeled by the same density profile as the akatre (corresponding to
structure of equal scale). We then check whether such caafigns can produce the observed

straight image in TeVeS.

Nonequilibrium configurations In this case, we allow for any HDM distribution which is ca-
pable of explaining the straight arc. This includes complestributions with multipeaked mass

densities and concentrations offdrent scale. Although we outline a general approach to lens
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models in TeVeS, we restrict our analysis to a bimodal cordijon based on a model in GR (cf.
Table[35 below) whose components exhibit dispersions 500km s§* and appear consistent
with the crude estimate of Eq._(3]57), i€.> 400km s'(m,/11eV)/>. Approximately treating

each density peak as a symmetric equilibrium distributibSNs, we investigate whether they
satisfy the TG phase-space limit for, = 11eV. For simplicity, we do not account for baryonic

substructure (galaxies) in this context.

3.4.3 Quasiequilibrium model of A2390

Because of the nonlinear relation of the TeVeS scalar fididganderlying matter distribution, we
cannot work with projected quantities, but need to performaalculations in three dimensions.
This significantly complicates the lensing analysis of A22thd requires knowledge about the
cluster’s three-dimensional matter density. A first apphot our problem is to consider cluster

configurations which are based on the assumption of hydrostguilibrium.

3.4.3 A Distribution of baryonic material

Using available data of x-ray gas [199, 201] and individualbgies [216], we have modeled the
distribution of baryons in A2390. Here we shall briefly prasthe results which are relevant for

the analysis in Se€._3.4.4. A detailed description of oucedare can be found in Appl B.

Figure[3.Ib shows the density distribution inferred fromay-observations with CHANDRA
(dotted line). In addition to this central profile, we corgidhe contribution of five massive early-
type galaxies which are located close to the straight are.rmasses of these galaxies are derived
following a twofold approach: The first estimate (denotedvl3 is based on a direct conversion
of observed luminosity to stellar mass while the second &g (Ises a dynamical method. In
what follows, we shall consider both prescriptions and gmesesults for the two flierent mass
estimates below. We further assume that all galaxies cardmritied by a spherical density profile
which is closely related to the Hernquist profile [136] fdipgical galaxies (see Apjh._B.2). Using
the notation of Ref. |[[216], the basic properties of our medel the galactic components are

illustrated in Tablé_3]4.

3.4.3B Adding massive neutrinos

As previously mentioned, TeVeS requires an additional enattmponent to consistently describe

observations of galaxy clusters. Assuming 11eV SNs withéndriginal formulation of MOND,
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Table 3.4: Positions, line-of-sight configurations and masses oviddil galaxy components for the density model of A2390: & tluster’s redshiftZ= 0.23), an
angular scale of’1corresponds to approximately7&pc.

Line-of-sight configuration

Projected stellar m&dé< 1.5”)

Galaxy IDY 6y by Ex & A B My M,
[”] [kpc] [kpc] [101M;]

#2180 -4821 -16.98 -17804 -6271 0 +850 202 160
#2592 -34.29 1332 -12663 4919 0 +850 351 466
#2619 -13.04 2880 -48.16 10636 0 +850 109 049
#2626 -34.62 2986 -12785 11027 0 -850 140 Q79
#6666 -50.25 1403 -18557 5181 0 -850 289 321

Substructuré -37 25 -137 92 - - - -
Center 0 0 0 0 - - - -

d |dentifiers for galaxies are taken from Ref. [216].

€ The given values roughly indicate the position of the x-ralgstructure presented in Ref. [210].
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Figure 3.15: TeVeS equilibrium configuration of 11eV sterile neutrinnsAi2390: The figure shows the
calculated density distribution of neutrinos (dashed)litlee analytic fit to this density using the profile
specified in Eq.[(3.84) (solid line) and the central baryonatter distribution derived from x-ray observa-
tions (dotted line).
the authors of Ref.| [187] derived their corresponding élofiilm density and (radial) velocity
dispersion distributions for a sample of 30 galaxy grougb@nsters, including the system A2390.
Starting from the observed density and temperature of tMe[ED1], ox(r) andT«(r), respectively,
the assumption of hydrostatic equilibrium immediatelyak one to determine the gravitational

field as a function of radius:

o) = —kgTx(r) (d logpx(r) dlog KBTX(r))

WMt dlogr dlogr (3.58)

wherexg is the Boltzmann constanty ~ 0.6 is the mean molecular weight ang, the mass of
the proton. The such derived result is typically accurate 1®% if equilibrium is realized [201].
Using the above, one directly obtains the total enclosed d®MNss which is given by
2 ~
M(r) = - 9 g

==, 3.59
& x=y (3:59)

Hereyi corresponds to the MOND interpolating function defined irs E2.32) and{2.33). Note
that this is the only stage where the modification of grawtynvolved. Once this function is

specified, Eg. [{3.39) can be used to obtain the cluster’$ tistiasity distribution, which then
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allows one to determine the contribution due to SNs by satitrg the known density of the ICM.
Considering the equation of state for a partially degesanatitrino gas, the resulting SN density
0, is then used to infer the associated radial velocity dispers, needed for equilibrium. A
detailed description of the actual calculation can be fann&pp.[Al. To check whether the results
for p, ando, are compatible with each other, one can exploit the TG pbpaee constraint [191].
Assuming a Maxwellian velocity distribution, the maxinyalillowed densityp, max for a given

value ofo, reads

_ Oy mf/l 3
Pv,max— EWUW (360)

where the number of allowed helicity states is assumegl as2 [187, 223] andn, = 11eV. For

the “simple” MOND interpolating function which is defined as

A= . (3.61)

it has been found that the calculated SN phase-space densitlyconsidered systems reaches
the TG limit in the central partr(< 20kpc for A2390)1[187], meaning that the SNs acquire their
densest possible configuration in that region. If the egiilm assumption is valid, this result
further implies that a small portion of the dynamical masshine covered by the brightest cluster
galaxy. As for the cD galaxy of A2390 and its contribution fistcontext, we refer the reader to
App.B.3.

In principle, we could directly adopt the SN density of A2380culated in Ref. [187] for our
simple cluster model if we specified a TeVeS free funclignwhich corresponds to the choice
Eq. (3.61) in MOND. For numerical reasons discussed in R&fl] (hereafter Paper 1) and to
maximize possible MONDianfiects, however, we assume a TeVeS free function of the fatipwi

form:

VY
1+ Y
wherey is defined according to Eqs_(2]143) and (2.44). Apart fronsiitsplicity, Eq. [3.6P) is

ps(y) = (3.62)

close to Bekenstein’s original choice of the free functiBager 1), and thus allows one to derive
the TeVeS lens properties in a fully analytic way for certaonfigurations like, for example,
spherically symmetric lens models [88]. In the intermesliand low acceleration regime, which

is typically realized in galaxy clusters, the MONDian caenpiart of Eq. [(3.62) can be expressed
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as [41]
1+4x-1

Vitax+1

which is known to yield a less favorable description for tottion curves of spiral galaxies than

fi(x) = (3.63)

Eg. (3.61) as it enhances gravity toffi@ently [224]. Inserting the above into Eq._(3159), we
have repeated the analysis of Ref. [187] for A2390, and tatled the equilibrium SN density
distribution suitable for our cluster model in TeVeS. Theuling density profile is shown as a
dashed line in Fig[_3.15. Note that the apparent wavinesstia mumerical artifact, but rather
emerges from using the data of Ref, [201] in Eq. (B.58). Adithe function Eq.[{3.83) enhances
gravity more @iciently than Eq. [(3.61), the SN density is notably decregséd Fig. 2 of
Ref. [187]), with the &ect becoming stronger for larger radii. In the center, hawethere is
basically no change, indicating that the previous con#isadue to the TG limit remain the same.
To simplify the input into a numerical solver, the obtaindd &nsity can be well fit by a profile
of the following form:

_ PO
p(r) = Lr O (3.64)

wherepg ~ 5.5 x 10’ Mgkpc 3, rg ~ 14kpc andy ~ 8.2. For comparison to the numerical result

(dashed line), the analytic fit (solid line) is also illused in Fig.[3.15.

Note that the actual choice of the free function, which fixes équilibrium distribution of
SNs, will have no significant impact on the results for quailrium configurations presented
in Sec.[3.44. While the main cluster potential will almostthe same - it is exactly the same in
case of spherical symmetry - forftérentug, only the dfects of substructure, e.g. the contribution
of individual galaxies in A2390, should befected by the particular form of the functiqug.
Therefore, our decision to use E@. (3.62) will result in opstic estimates offéects intrinsic to
the framework of TeVeS. Since we are interested in the regifregrong lensing, however, we

expect these fierences to be rather mild.

3.4.4 Quasiequilibrium lens configurations

As a first approach, we shall investigate the strong lensiopearties of quasiequilibrium con-
figurations based upon several variations of the clustereina@sented in Se€._3.4.3. Although
these models do not provide a realistic description of thistel’s core region, their study will
be extremely useful to explore intrinsic TeVeffeets and to see whether TeVeffeos alternative

mechanisms - dlierent from those in GR - which can produce straight images.tiesake of
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clarity, we discuss details on the used numerical tools hedasic simulation setup in App] C.

3.4.4 A Analysis of the TeVeS lensing maps

Considering the previously introduced equilibrium modethe cluster, we are still left with sub-
stantial freedom regarding the galaxies’ line-of-sighsipons which are not constrained by ob-
servations and may vary over the cluster’s extent which wimeldy the model’s cutd radius

R = 1Mpc introduced in App[_Bl1. Also, to account for nonsphigyiof the cluster, we shall
allow an additional ellipticity for the central density tlibution (x-ray and SNs) which is solely
modeled within the observed plane. Together with a respe@®, this gives a total of 7 free pa-
rameters for our simple model if we fix the galaxi®é4/L ratios. As for the range of ellipticities,
we choose a maximum corresponding to an axis ratioy/af~ 0.7. Moving significantly beyond
this threshold would cause a severe mismatch to x-ray oatens [199, 210], thus yielding a

rather unrealistic cluster description.

Modifications of the overall density profile along the linesiht have already been studied
in Paper I: Varying the lens’ extent between two extreme goméitions, a disklike and a strongly
“cigar-shaped” lens, can cause changes of up te2li¥ in the lensing maps as well as the critical
curves. For realistic cluster models lying in a range betwibese extrema, however, thi§ezt is
expected to be less pronounced, typically accounting feiatiens on the order of a few percent.
Therefore, we shall ignore such modifications in this worksoA since the straight arc’s sources
are located close in redshift space (the correspondingridissDs andD = DyDqys/Ds only differ
by roughly 3%), we restrict ourselves to a single sourcegfan our analysis. Unless otherwise

stated, we will always work with a lens and source redshift ef 0.23 andzs = 1, respectively.

For different plausible cluster configurations, we have found ngiggailibrium model that is
capable of producing (nearly) straight images at the oleseavc’s position. As all of our results
are qualitatively very similar, we only present a selectidsimulation runs in the following. For
example, Figl_3.16 shows the calculated TeVeS lensing nsgosrang an axis ratib/a ~ 0.7 cor-
responding to an ellipticity of = 0.7, PA= 115, mass modeM; and line-of-sight configuration
B (see Tablé3l4). A similar case is illustrated in Fig. B.&uming PA= 133 and mass model
M- while keeping all other parameters the same. We note thdetising properties in the arc’s
vicinity are almost entirely dominated by the closest galakhe structure of the critical curves
(right panel) already reveals that such models will prodsicengly bent images with respect to

the galaxy 2592 at the position of interest. To elucidate point and to demonstrate the problems
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Figure 3.18: Left panel The generated image contours (solid lines), resembliagtiserved luminosity
distribution of the straight arc, and the critical curveagided lines) for an equilibrium cluster model with
e = 0.7, PA= 133, mass modeM, and line-of-sight configuratioB. Right panel The resulting source
distribution (solid lines) and lens caustics (dashed Jingkere contours have been determined by averaging
the calculated source points onto a regular grid. The opatooolines are due to a cufof the mapped
image. In both panels, contours are in arbitrary units amdeh at equidistant levels.
of such configurations, we have constructed a luminositridigion, which roughly resembles
the observed image morphology. This distribution has theentbmapped back into the source
plane, assuming the “second” cluster model presented inEIY. The generated image and its
associated source distribution are shown in the left arid pgnels of Figl_3.18, respectively. Our
particular example exhibits several features indicathag the model is not compatible with the

observed straight image. These features can be summasiZeltosvs:

(a) Around the area where the three source patches visitie inght panel of Fig._3.18 appear
to intersect (marked with a rectangle), the inferred sodistibution becomes multivalued.
This remains true even after taking into account that theyavsdue to two distinct sources

(see Sed._3.4.2]B), and thus the lens model turns out to begaous and inconsistent.

(b) Apart from the tangential caustic, i.e. the inner dadhexishown in the figure’s right panel,
the found source distribution also crosses the radial (patustic, implying the existence
of further images dferent from the straight arc. However, there is no evidencestich

additional images as they are not observed in the system.

(c) Assuming an average size of roughly ~ 10kpc) for galaxies at = 1, the source’s
constituents appear too big in angular size (up’th #ielding a rather unlikely scenario.
This problem further deteriorates if one tries to avoid th&ues related to (a) and (b) by

lowering the total mass of the nearby (lens) galaxy 2592.
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Figure 3.19: Relative diference of the convergence maps calculated for the two frséght configurations
AandB: The here presented result assurmes0.7, PA= 133, and mass modé¥;.

Observations further indicate the presence of severd éhdmgated objects whose orientation is
approximately the same as that of the arc, with a scatter lgf afew degreesJ_L_J_SLZ]. Together
with the above, these arclets strongly support the req@iréfior a special lens composition rather
than the necessity for unusual source properties, suggdkbtit the lens configurations considered

here are inappropriate to explain the straight image.

This is the basic result of all simulated cluster models cliseems to be insensitive to the used
mass modelll; or M) or the actual line-of-sight alignment of galactic compatse To quantify
the dfect of the latter, we compared the lensing maps of individuadiels for two extreme line-
of-sight configurationsA and B. Adopting the parameters of the realization presented gn Fi
[3.18, Fig.[3.IP displays the obtained relativEatience between the corresponding convergence
maps. As we can see, the deviation can reach values wp3@ in regions of low (Bective)
surface density, but remains smaller (5%) in regions wherg > 1. A comparison of the
corresponding critical curves and caustics of galaxiesaisthat this line-of-sightféect typically
affects their position on the order €f10%, which has no qualitative impact on our results. As for
the dependence on the actually used mass models (galaxiewill investigate the influence of

varying M/L ratios in the next section.
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3.4.4B Variation of mass-to-light ratios

So far, we have restricted our analysis to two setdgt ratios for the cluster's galaxies (see
Table[3.4). How robust are our results with respect to vianatof these ratios? Here we take a
simplified approach to obtain reasonable estimates offtieeteon the strong lensing properties,
in particular, the critical curves. In what follows, we usklernquist profilel[136] with fixed core
radiusry = 3kpc for the density distribution of galaxies [correspamgdio the limite = 0 in Eq.
([B.2)]. In the isolated case and for our choice of the freecfimm ug, this allows one to express

the lensing properties fully analytically (e.g., Papeahd the deflection angle is given by

(&) =

rnAE) rEVGMay+4GM§]_4GM§ (3.65)

2 _ 2 2 _ 2’
G A

where

inh /|1 - 2
AE) - arsinh /|1 - (ru/&)?| §<rH. .60

arcsiny1—(ry/? &>ry

Furthermore, we will assume that

(a) the superposition principle remains valid; i.e. thesieg maps of isolated galaxies and
the cluster background can just be added, which is rigoyonsk if the components are

infinitely separated from each other and leads to an opicrastimate otherwise, and that

(b) the cluster background at each galaxy’s position canddeted as an external contribution

with locally constant convergenee and shear modulug:.

Choosing polar coordinates, the latter yields finaive cluster deflection potential of the follow-
ing form:

w&@:%#+%¥mq%—%» (3.67)

where the external shear’s principle axes system is defiped.d_ocally, the system’s total shear
modulus, relevant for the determination of critical cureesl caustics, depends nonlinearly on the

contribution due to the Hernquist lens and the cluster,

Yior = (vLh +71.0)° + (V2 + y20)> (3.68)
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Figure 3.20: Predicted mean radius of tangential critical curves of angeist lens embedded into the
external cluster field: The mean radius is plotted as a fanatif the projected enclosed mass within an
aperture of 3 diameter ¢ 11kpc). The vertical lines indicate the values of the ga2&92 for mass model
M; (dashed line) and}i, (dotted line), respectively.

Because of the shear’s tensor property, the above is anpsotwhich directly &ects the resulting

position of critical curves given by Ed. (3]11),
(1-k?-y*=0. (3.69)

To obtain the meanfiect due to the cluster background, we perform an averagegosed all

possible orientations of the external shear field, whicddda

¥2 = v4 + 9. (3.70)

We use the simulation result for an equilibrium cluster moglth e = 0.7, PA= 115 and

no galaxies to estimate the parameters of the backgroun&lmadound the arc’s position, this
roughly fixeskc ~ 0.29 andyc ~ 0.17. For this case, Fig._3.20 shows the resulting mean radius
of the tangential critical curve as a function of the enalbgalactic mass within an aperture ¢f 3
diameter. While this should give a reasonable picture fergalaxy 2592, which resides close to

the arc, the such estimated radii will be too large for theptfalaxies. These are located in regions
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where the background has a weaker impagtahdyc take lesser values), leading to an optimistic
prediction of their mean critical-curve size. Assuming Bwexiations inM/L, the figure suggests
no qualitative changes of our previous results. Even if wesiter thatM/L ratios may change
up to a factor of 4 in the infrared, we find a maximum increasthefmean critical-curve radius
corresponding to a factor of approximately 2. At most, sutkxreme scenario could come close
to a merged-cusp model for the galaxies 2592 and 6666, lmuttnfiguration cannot explain the
arc due to its inappropriate orientation and position dicai curves and caustics in the lens and
source plane, respectively. We therefore infer that theasult of Sed_3.4.41A does not depend
on the particularly assumdd/L ratios of individual galaxies - unless the background piidéis

substantially modified.

We have also explored the influence of perturbations to tiéradecluster profile. For this
reason, we have assumed a secondary spherical clump madégag and SNs which follows
the same profile as the central distribution and account$@er 15% of the system’s total mass.
The clump’s position has been chosen from a narrow rangehtpugentered on the detected
substructure in the x-ray map [199, 210] (see Tablé 3.4).iAgae have found no qualitative
difference compared to previous simulations. The calculateidtiEns in the lensing maps are on
the order of a few percent, leaving a basically negligiblpait on the critical curves and caustics.

Similar statements apply to an overall increase of the akdémsity profile by 16- 20%.

Together with the results presented in $ec. 3.4.4 A, we tbnslade that TeVeS quasiequilib-
rium configurations with 11eV SNs are not capable of exptajrthe observed arc. In particular,
we find no evidence for the formation of beak-to-beak or liptastrophes [208] due to intrinsic
TeVeS dfects, which could give rise to straight images. Therefonast as in GR - a suitable
TeVeS lens model needs substantially more mass as well ascalsgensity distribution in the
cluster’s core region. A general procedure on how to obtadat snodels will be discussed in the

next section.

3.4.5 Nonequilibrium lens configurations

In the following, we shall outline a general approach for elow) cluster lenses in TeVeS which
allows one to use existing GR lens models to estimate theankEBeMeS lens properties. Adopting
a bimodal lens model for the straight arc, we will present aam#ple of such a lens and discuss

implications for the modified framework.
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3.4.5A Systematic approach to cluster lenses

Taking a naive point of view, one might expect that strongsileq is subject to the strong accel-
eration regime, and therefore it should be enough to coniigelimit ug — 1. In this case, all

relevant equations would reduce to their GR counterpalttsyiag a conventional lensing anal-
ysis. Previous calculations (Paper 1) have shown that sndparoximation is not justified. In

particular, the scalar field can have a significant impacthensecond derivatives of the lensing
potential. For instance, this can increase the radii ofcatiturves by up to a factor of 2, depend-
ing on the assumed mass distribution of the lens (cf. FigukPaper I). As we shall see below,

however, there is another way of simplifying the lensingabem in TeVesS.

Let us return to the scalar field given by Edq._(2.50). Integcabnce, we may recast this
equation as

K
UV = 4—: (Vdy + V x h), (3.71)

whereh is a regular vector field determined up to a gradient by thalitiom that the curl of the
right-hand side of Eq[(3.71) must vanish. We note that thie hiculty associated with solving
the scalar equation are the generally nonvanishing conmpeméh. If for any reasorh ~ 0, Eq.
(3.72) reduces to a relatively simple algebraic relatiotwken the gradients of the scalar and the
Newtonian potential,

K
1eVe ~ —=Vdy, (3.72)
Ar

which can easily be inverted by numerical means to §i# assuming that the Newtonian poten-
tial (or only its gradient) are known. Therefore, we wantdd@ss the question of how the figld

is efecting the corresponding lensing maps in the strong lensigigne. We already expebto be
important around local extrema of the Newtonian potentiat,it is difficult to make any intuitive
guesses about its quantitative impact in stronger graeigjons as well as on the final projected
result. The most straightforward approach to this problema direct comparison of simulations
treating the full scalar equation to those whare- 0. To this end, we have taken our previous
quasiequilibrium models and fed them into a modified versibour solver, now assuming Eq.
(B Z2) to determine the scalar gradient. Since our choigesa$ very close to that presented in

Ref. [88] (e.g., Paper I), our code assumes

Vol = vao [V Oy (3.73)
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Figure 3.21: Simulation results with proper treatment of the scalar fegjdation compared to those where
the curl fieldh has been set to zero: The figure illustrates the relativeatiewiin the corresponding lensing
maps, the convergengdleft pane) and the shear modulyg(right pane), assuming an equilibrium model
with e = 0.7, PA= 133, mass modeM3, and line-of-sight configuratioB. The visible gridlike structure
is a combined #ect of Fourier fluctuations, interpolation, and the divisizy values close to zero.
to calculateV¢. For instance, adopting an equilibrium model wigh= 0.7, PA= 133, mass
model Mz and line-of-sight configuratiol, the relative deviation of the lensing maps from the
proper solution is presented in Fig._3.21. While the conmecg varies by 5 15%, diferences
in the shear map can be as high~-a$0%. As expected, the largest deviations occur in regions
where the Newtonian gradient approaches the null vectachyfor example, can be seen in the

very core of the central elliptic profile for both the convemnge and shear maps.

Clearly, the impact of the curl field is not negligible in regions of low gravity. Concerning the
domain of strong lensing, however, we find the following: Qumng the corresponding critical
curves and caustics, the curl field turns out to be much lepsiitant. Interestingly, the obtained
deviation with respect to their position in the lens and seuslane, respectively, is only about
< 2 - 3%. Within a stficiently large environment around these curves accountnglf strong
lensing features, the accuracy of the approximaked Q) lensing maps is typically of the same
order, meaning that the curl field negligibly contributeshte strong lensing properties of a given
matter distribution. Our result appears to generally hotdstrong cluster lenses and indicates that
itis enough to consider Ed._(3]72) in the context of TeVeS lmodels. Therefore, if one specifies
the line-of-sight extent of the total system as well as iitili@l matter components, thigfers a

direct systematic way of modeling strong lenses in TeVeS.
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3.4.5B Modeling the straight arc in TeVeS

Based on the result of Se€._3.4.5 A, one could, in princigke tan available GR lens fitting
routine, modify it to include the TeVeS scalar field accogdin Eq. [3.7R), and use it to obtain
a lens model for the straight arc. It is obvious that such giragzh will be computationally
more demanding because the scalar’s contribution has teddeated in three dimensions, and
one also needs to invoke numerical integration to derived#®red projected quantities. In the
following, however, let us consider an alternative way ttneate the necessary deflection mass
and its distribution in TeVeS. For this reason, we start frith@ bimodal GR model derived in
Ref. [210] which, in addition to the central matter clumpswases a smaller subcomponent at
approximately 45 (~ 166kpc) from the cluster center. The second clump is matildty the
existence of substructure in the cluster's x-ray map whichsied to infer its position in the lens
plane. Both clumps are chosen to follow a pseudoisotherftipfi@ mass distribution (PIEMD)
[225], but the subcomponent’s profile is assumed to be spirisymmetric. Correcting for
the here used cosmological background, the model gives @nsenl projected mass ofl; ~

1.2 x 10'*M,, within a circular aperture of 38(~ 140kpc) radius from the cluster center. As
typical for strong lensing mass models, this estimate shbtelwithin ~ 30% of the true value
[226)].

Using the arguments presented in Sec. 3.4.5 A, it is obvibasthere exists an analogous
bimodal lens model in TeVeS. To obtain a spherically avetagdensity estimate in TeVeS, we
ignore the secondary clump, which negligibly contributeshte enclosed mass within the given
aperture, and also assume that the main component can biéddduy a spherically symmetric

density profile. Thus, its three-dimensional matter disttion can be written as

2

r
p(r) = po5——. (3.74)
fc+r

wherepg is the central density ang the core radius. Alternatively, Eq._(3174) may be written
in terms of its asymptotic velocity dispersion, associated with the density profile of a singular

isothermal sphere:

1 o2
= 3.75
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Table 3.5: Fiducial parameters of the bimodal lens configuration preegkin Ref. [210]: Here the sub-
clump is dfset by approximately 45(~ 166kpc) from the main component.

b/a PA[] rc[’] 0 [kmsl]

Central mainclump @1 492 12+5 950+ 100
Subclump 1 - 7-12  420-500

The corresponding enclosed mass of this density distabudt radiug reads

M(r) = 4rr2po (r —rc arctar(rL)) . (3.76)
c

Since our choice of the free function allows us to make useqof{lE.73), it is possible to express

the enclosed mass in TeVeS, whidfegtively generates the same dynamical mass adEql (3.74),

as
agr? 4G M(r) 4s
Meg(r) = M(r) + =—|1- 4]/1 =MlIr)—m, 3.77
=M ZG[ ' aorz] ()(1+ VT4 o

wheres = GM(r)/agr?. As previously noted, however, the choice of Eg. (B.62) dustsyield a
good description of galaxy rotation curves. Adopting a Te¥fee function corresponding to Eq.
(3.61), a similar calculation leads to

MO s

Mer®) = Uy s aorze - MO

(3.78)

Settingrc ~ 13” (48kpc) [210] and requiring that the enclosed projectedadyical mass within
38" is still given by M,, the above expressions can be used to derive the underlgimsity distri-
butions which, together with the resulting surface dengitfiles, are illustrated in Fig,_3.22. The
visible density drop-fi within r < 20kpc is a consequence of the assumed PIEMD and probably
unphysical, but can easily be avoided by changing the denmtréile in favor of a peaked and finite
core, fixing the enclosed mass around 140kpc (and thus keeping the lens properties needed for
the arc). Of course, our results depend on the assumedflisight extent specified by Ed. (3174),
but the derived surface densities should vary by only a fenwearet for diferent models (see Sec.
[B.4.4°A). We also note that the “modified” density profiled¢ia finite mass; for both Eq4._(3177)
and [3.78), the total mass is given by (taking the limib 0)
167°Grép3

- (3.79)

liMm Meg(r) =
r—oo
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Figure 3.22: Spherically averaged densitheft pane) and corresponding projected surface densityht
pane) profiles for the bimodal lens model in TeVeS: Shown are tiseilte for the Newtonian dynamical
mass (solid line) and the two TeVeS free interpolating fiomst corresponding to Eql_(3177) (dotted line)
and Eq.[(3.78) (dashed line), respectively. Note that theetidimensional mass density profiles are entirely
dominated by the contribution of SNs within a radius of a femdired kpc. For < 25— 30kpc, the derived
densities are well below the TG-limit-saturating equiliton distribution of 11eV SNs in Fig._3.15, and they
are also much broader. This already indicates that the n@amponent’s phase-space limit is not violated
here.
Although the profiles are not diverging, the relevant mapgcglly extends to large radii. There-
fore, the use of such profiles within the full TeVeS solver ésyindficient because very large
box sizes would be necessary to perform the calculationghaimderlines the advantage of ne-
glecting the curl field for strong lensing models (see Sed.53A). The resulting total lensing
mass is entirely dominated by SNs within a radius of a few heahd¢kpc, which allows one to ig-
nore the contribution of gas and stellar material to exoelgoproximation. We have checked that
the three-dimensional density distributions in Hig._8.B&sically representing the lens model’s
main component, are consistent with the TG limit estimatdhifydrostatic equilibrium and a
Maxwellian velocity distribution, following the approacti Ref. [187]. This is already indicated
by the fact that the derived densities are much broader atidoglew the TG-limit-saturating
11eV SN equilibrium distribution (shown in Fig._3]15) fors 25— 30kpc. At the arc’s position
(6 = 38”), the actual enclosed projected mass of the TeVeS lens misdgiven by 6L x 103M,,
or 80 x 10'3M,, assuming Eq.[(3.77) of (3178), respectively. Here the ®dabcomponent
deserves special attention: Naively treating the probldn®,smaller clump’s presence acts as a
perturbation to the total system’s phase-space densitiyttars it is trivially in accordance with
the estimated TG limit since the main clump is. However, #fiproach typically leads to overes-
timating the TG limit, considering that the secondary clushpuld be regarded as a bound object

by itself. Taking the view that A2390 has undergone recentareactivity, it seems reasonable to
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Figure 3.23: Estimated 11eV SN density distribution (solid line) andresponding TG limit (dashed
line) for a subclump model witihc ~ 7” (26kpc) ando., ~ 500km s*: The origin is centered on the
subcomponent, and the TG limit has been calculated acaptdig. [3.60), following the prescription of
Ref. [187]. Note that the slight “wiggly” feature of the dashline is due to a nonuniform dispersiofr)
which is computed in a self-consistent way [187].

assume that the subcomponent has formed affizisitly earlier time, and therefore it should be
subject to its own phase-space distribution. This sugdkatone should examine the secondary
clump separately. Considering the subclump as an isoldiggttoentirely dominated by 11eV
SNs, we have repeated the above TG analysis for the rangeashpters listed in Ref._[210] (see
Table[3.h). To achieve a rather realistic TeVeS mass esjmat have adopted a free interpolating
function corresponding to Eq[_(3161) for our calculatioffhe obtained SN density profile and
the TG limit according to Eq.[(3.60) are illustrated for twases in Figs[ 3.23 aid 3124. As-
sumingre ~ 7 (26kpc) andr., ~ 500km s, the subcomponent’s density slightly exceeds the
TG limit (up to 30%) within a range of approximately £025kpc. Moving toward larger radii

(r = 50kpc), the SN density consistently stays below this lirkibr a less compact model with
rc ~ 10” (37kpc) andr., ~ 440km s?, the TG bound is never exceeded. Generally, our results
seem to rule out configurations where the subclump is modelbdsmall values ofc (< 8- 97)
whereas the bimodal TeVeS lens appears consistent with ENeVIDM for larger choices of

the core radius. Before drawing such a conclusion, how&ieneed to consider how strong the

implication of the present analysis really is.
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Figure 3.24: Same as Fid._3.23, but assumimg~ 10” (37kpc) andr,, ~ 440km s™.

First of all, we note that the lens model is based on the PIEMidehgiven by Eq. [(3.74).
This clearly introduces a bias on our estimates; other gsans about the components’ density
distributions might yield a diierent result. In particular, the PIEMD model leads to an ysjual
drop of the central density which couldfect our estimate of the TG bound. To check this, we
have modified the central SN density profile of the subclumplehpresented in Figl_3.23 in
favor of a uniform core, but without changing its propertieyyondr ~ 15kpc (the arc appears
atr ~ 26 from the subcomponent’s center). The resulting densifile and the corresponding
TG limit are shown in Fig.[3.25. While the TG bound is still kbdted within~ 10 — 25kpc,
we see that the density limit is notably decreased in theecealimost matching the assumed SN
distribution. Therefore, it is unlikely that shifting meattto the central region can help to avoid
an excess of the TG bound. Next, our estimates assume thatiltictump can be treated as an
isolated object. Since the clump resides within the baakgpidield of the main component, this
is not rigorously true. Using Eq[(3.78), we find that the madmponent provides an external
Newtonian gravitational field of aroura} at the subclump’s position. As for the subcomponent,
this modifies the relation between gravitational field andarlying density distribution, and gives
rise to an increase of the central SN density on the orderitf. Buch a density boost could push
seemingly consistent subclump models with> 10” toward or even beyond the TG limit, but

detailed statements about this issue are very sensitiveetadtual model parameters.
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Figure 3.25: Same as Fig[_3.23, but now assuming a uniform core of the SNhdison. Note that the
radius at which the density becomes constant {5kpc) is fixed by requiring a continuous distribution of
SNs.

Another point is related to the fact that our calculatiodg om completely SN dominated lens
components within- 100kpc. If placed at or close to the subclump’s center, direarelatively
small, concentrated baryonic mass, e.g. a galaxy, on ther & — 10°M,, could help to relax
the density constraint due to the TG li Whether such an approach can be reconciled with
observations of this region, however, remains to be seerst tua not least, we also need to
check the viability of the current estimate of the TG limitialinhas been derived under simplified
conditions. In what follows, we shall discuss in more detailv these simplificationsfi#ect our

analysis.

As previously mentioned, the strong lensing domain in threezeof A2390 is not in equilib-
rium and has a rather complicated nonsymmetric densityilalision. This will obviously have an
influence on the estimates for the TG limit. Considering mmilérium configurations in general,
the velocity dispersionr is expected to increase for a given matter distribution whexing away
from equilibrium. Since the value ef increases in this case, one would also obtain a higher den-
sity limit for SNs according to Eq[(3.60). Taking the adulital asymmetry into account, however,

the situation becomes less clear. Depending on the systaial properties, the TG limit could

18From private communication with G. W. Angus.
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increase or decrease, and there seems to be no universalloulieng one to make solid statements
for anisotropic systems. Finally, one should also adhedewations from a Maxwellian velocity
distribution. This issue has been addressed in Ref! [227¢rdit has been shown that the actual
physical density limit becomes larger than the previousrneges of the TG limit which can be
exceeded by up to a factor of 2. Again, this would imply thas®duld account for more mass in
the cluster. Combining the three aspects from above, it seeasonable to assume that the true
density limit will be on average higher than our previousreates, meaning that density models
with SNs become more flexible. Note, however, that such ammaegt generally does not replace

the need for a rigorous treatment of particular systems.

Given the accuracy of our present analysis and accountinglifof the above, we conclude
that the bimodal TeVeS lens model for the arc is in accordanttethe assumption of 11eV SNs.
Nevertheless, it seems intriguing that the needed amouwhdastribution of 11eV SNs lies so
close to what they can maximally contribute to the systenshétuld be obvious that all of our
statements depend on the assumed lens configuration analidrenly for the bimodal model we
have considered here. In particular, the bimodal lens migdeires the contribution of galaxies.
These can have a significant impact on the lensing maps (se€33E4_A), which is especially
true for the galaxy 2592 adjacent to the straight arc. A meadistic approach including all
visible components would be useful to further constrainpieperties of additional substructure
and check whether such configurations remain consistehtredpect to the TG limit. While our
analysis is concerned only with the straight arc, the ctu&83890 actually exhibits a number of
lensing features which should all be taken into account fooraplete cluster model. Extending
the investigation also to other massive galaxy clustetsydéuwork should address such complex
lens models and their implications for TeVeS or related tiescand 11eV SNs; a systematic way

for approaching this problem has been outlined above.

3.4.6 Concluding remarks

Here we have suggested the use of strong gravitationahkgisi galaxy clusters as a test of the
combined framework of TeVeS and massive SNs. Originallyivated by theoretical and recently
also experimental particle physics [185, 228,/1229], thaideSNs with a mass around 11eV has
gained further interest as it provides a possible remedyHerproblems of TeVeS and related
theories ranging from large cosmological scales down taxyatlusters. Unlike conventional

CDM, such a fermionic HDM component is subject to strong phesace constraints imposed by
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the TG limit. This allows one to check cluster lens modelgiirdd within the above framework

(or related ones) for consistency.

As an example, we have studied the cluster lens A2390 wittottsrious straight arc. Because
of its elongation and orientation, the straight image app&abe quite unusual and indicates the
need for a rather special lens configuration. Adopting ther@pmation for weak fields and
quasistatic systems, one of the main problems associatedheilensing analysis is the nonlinear
relation between the TeVeS metric potential and the unihgrlgnatter density distribution. This
nonlinearity prevents one from working with projected ditées and requires one to perform all
calculations in three dimensions. In addition, one is lathva nontrivial, Poisson-type partial

differential equation for the TeVeS scalar field.

To make some progress, we have considered a class of clustiisnbased on the assump-
tion of hydrostatic equilibrium, and investigated theindeng properties. This has been achieved
by employing a MPI parallel solver for the TeVeS scalar figydaion and simulating the corre-
sponding lensing maps on the HUYGENS supercomputer whittcated in Amsterdam. Our
results imply that such quasiequilibrium configuratiors ot capable of explaining the observed
straight arc. In particular, we have found no evidence ferftirmation of beak-to-beak or lips
catastrophes [208] due to intrinsic TeVeEeets, which could give rise to straight images. Line-of-
sight dfects and the impact of perturbations are typically smalnging the quantities of interest
only on the order of a few percent. Similar to the situatiorGiR, a suitable TeVeS lens model
therefore needs substantially more mass as well as a spletisity distribution in the cluster's

core region.

Based on the above results, we have further outlined a gearetaystematic approach to clus-
ter lenses which significantly reduces the problem’s corityléy avoiding the need of solving
the TeVeS scalar field equation. Combined with conventi@erading tools, this opens a new win-
dow to strong gravitational lensing in TeVeS-like modifigd\dty theories. As a first application,
we have explored the TeVeS analog of the bimodal lens coumtlignr discussed in Rel. [210]. For
this model, we have derived the SN distribution necessaprdduce the desired image, using a
simplified approach. The obtained SN density profile has tean compared to the maximally
allowed contribution set by the TG phase-space constrdiatthis end, we have estimated the
maximal density due to the TG limit following the prescraptiof Ref. [18/7] and found a slight

excess of this limit for the model's secondary componerisi€ore radius is smalt¢ < 8’ —9”).
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For less compact models, however, the TG bound is not viblaB#ven the accuracy of our cur-
rent analysis, we therefore conclude that the bimodal Tde¥eS model appears consistent with

the hypothesis of 11eV SNs.

Note that the bimodal lens model ignores the contributiogalhxies. As has been shown,
these can have a significant impact on the lensing maps. A reatistic approach, including
all visible components and other lensing constraints, lshiog taken into account to obtain better
bounds on the required SN distribution and to check whethar sonfigurations remain consistent
with respect to the TG limit. Future work should address nam@urate ways of estimating the TG
limit in this context, and we suggest extending the invedition to other massive galaxy clusters
which indicate the need for dark substructure. Unless omsiders dfferent solutions to the
missing mass problem inherent to this particular kind of ifications (see, e.g., Ref._[38]), the
basic approach presented here should apply to any clasasafrteector or tensor-vector-scalar
theory which recovers the dynamics of MOND in the nonrelstii limit. Lensing by galaxy
clusters could therefore provide an interesting discraton between CDM and such modified
gravity scenarios supplemented by SNs. In addition to tlevebwe note that next-generation
neutrino experiments [230—232] will further constrain fHausibility of 11eV SNs. Even if they
remain viable candidates, it still needs to be seen whetlgh SNs do actually cluster in the

desired way/[187].

Finally, we advert to the fact that our analysis neglectsitds contributions due to perturba-
tions of the TeVeS vector field,. Such contributions are known to be crucial for the formatd
large-scale structure [82,183], where they provide the kegnthanced growth while perturbations
of the scalak only play a subordinate role. As already pointed out in tterditure [[99], this typ-
ically affects scaleg 0.1 — 1Mpc and could be important for galaxy clusters. Owing torttae
sophisticated structure of the field equations, howevesnevrough magnitude of the vector's
impact on these scales has not been estimated yet. Thus duemphasizes the need for a quan-
titative description of these vector instabilities on drt@mintermediate scales, i.e. 0.01- 1Mpc.
We also note that the result of such an analysis could styategpend on the particularly assumed

theory.

Despite the previously mentioned limitations of the préseork, our numerical simulations
are probably by far the most detailed in the context of TeVe& @ertainly provide the first ex-

tensive study of strong lensing features within this modifigavity framework. Applications
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of our grid-based lensing code (e.g. with respectftsais between visible matter and weak or
strong lensing features [190, 233]) hold the promise of v@gstraining limits on TeVeS-like
theories combined with HDM and other unified recipes for tgaainics of MOND and DM
[38,1111) 234, 235].
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Chapter 4

Structure formation in modified gravity

theories

In the following sections, we shall investigate how modifggevity models influence the process
of structure formation. Assuming a particular realizataa chameleon field (see Séc. 213.2), we
discuss the nonlinear clustering of matter density peatimhs in this context and point toward
potentially observable signatures which may hold the keglistinguish such framewaorks from
the ACDM model. We will then proceed to TeVeS and focus on the dquesvhether similar

approaches are also possible in this specific class of teeori

4.1 General remarks

It is now commonly believed that the cosmological strucaseseen today evolved from tiny per-
turbations around an isotropic and homogeneous spacstithe very early universe. According
to the standard picture, these perturbations originateh fandom quantum fluctuations within
the universe’s energy density at that time (typically agged with the Planck scale), but the exact
physical processes occurring in this context are still emkm A popular and remarkably success-
ful approach is the inflationary model [236, 237] which nolygorovides a setting for generating
the spectrum of initial perturbations, but also a suitablplanation for the observed flatness,
isotropy and homogeneity of today’s universe on large scdbnce inflation sets in, the vacuum
fluctuations (in this case those of the inflaton field) arekjyidriven outside of the horizon, where
they freeze in due to the lack causal contact dfectively become classical. While this fixes the

initial conditions for perturbations right after inflatipthe further evolution is governed by grav-
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itational attraction. As matter collapses into denseramsgi it eventually form smaller structures
such as galaxies and then clusters of galaxies, with largjenre of empty space, the so-called

voids, appearing in between.

Typically, these perturbations remain small until deep thie matter dominated era, which al-
lows one to study their evolution with the help of cosmoladjiperturbation theory (applicable to
both GR and modified theories of gravity) by linearizing tmavitational field equations around
the FRW solution. Due to the statistical nature of primdrflizctuations, however, one cannot
make any specific statements about the their actual realiziatthe universe, but only infer infor-
mation about the distribution they were drawn from. In theest inflationary scenarios which
are usually implemented with a single scalar field, it fokothat the underlying distribution is
GaussiarH and thus the perturbations are expected to be Gaussianmdinelds. In accordance
with the fundamental cosmological assumptions, the fitatlgproperties of these random fields,
e.g. their mean or variance, do not change under rotatiotigranslations . Taking the density
contrast defined a& = (o — p)/p wherep is the mean density, for example, the entire statistical

information is encoded into the correlation functig(y),

£(y) = (0(x)o(x +y)) (4.1)

where the average extends over all positigrand orientations of. As dictated by isotropy, the
correlation function cannot depend on the directioryof.e. £ = £(y). More conveniently, the
above is expressed in terms of the power spectRfk) which is defined by the variance 6fin
Fourier space,

(3(k)o" (k")) = (2m)*P(K)sp(k — k'), (4.2)

wheredp is the Dirac delta distribution which ensures that modesifieent wave vectok
are uncorrelated in Fourier space to guarantee homogengite that the variance on a scale
of 8h~Mpc, usually denoted asg, is often used for characterizing the amplitude of the power

spectrum.

As soon as or other perturbation variables approach values on ther @fdenity, any per-
turbative approach breaks down and nonlindéeats become important. Since this breakdown

occurs at times where basically all modes of interest aréwitiin the horizon, i.e.aH/k <« 1,

1Since the density fluctuations arise from superpositionsnmfrmous numbers of statistically independent vacuum
fluctuations of the inflaton field, this property is a consemgeof the central limit theorem.
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one usually makes the assumption that time derivativesafelyse neglected compared to spatial
ones and tackles the problem using the corresponding r@ristic equations (while taking into
account the background evolution) since the involved ga#iohal fields remain small enough to
be considered as perturbations to spacemkn GR, for instance, this is supported by the fact
that the linearized Einstein equation for scales much mtibn the horizon becomes structurally
identical with the Poisson equation obtained in the notixédtic limit. Most notably, this has led
to the use of cosmologic®-body simulations as a tool for studying the density evoluiin the
nonlinear regime. In the next section, we shall see how tlgia may be applied to the framework
of coupled scalar field models. Finally, note that even if dhiginal density perturbation field
is Gaussian, it must develop non-Gaussianities during tméimear evolution. This is evident
because) > 1 by definition, but may grow to arbitrarily large values. Téfere, an originally

Gaussian distribution af becomes increasingly skewed as it develops a tail towanitef.

4.2 Nonlinear structure growth in chameleon models

In this section, we shall investigate the the nonlineartehirsg of density perturbations in the
context of coupled scalar field models. Introducing a sigtatodel which recovers the properties
of a chameleon scalar (see Séc. 2.3.2), we give the relewddtefjuations for weak fields and
quasi-static systems and outline a genétabody scheme applicable to this particular class of
models. Accounting for spatial variations of the scalardfieve then present the first complete
N-body simulations in this framework followed by a discussif the obtained results and their

implications.

4.2.1 Scalar field model with coupling to CDM

In the following, let us consider the specific coupled scéiEld model introduced in Ref! [123]
which is described by an action of the form (In accordancé wwibst of the literature on this

subject, we temporarily switch to a negative metric sigrejtu

1, R 1,
Ls= %fd X\/—_g[z - Eg” Vﬂ¢vv¢+veff(¢) ’ (4.3)

2Note that there is still no mathematically rigorous progititying such an approach.
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whereG = Gy, R denotes the Ricci scalag,is a dimensionless scalar field with canonic kinetic

term andVeg(¢) is an dfective potential assumed as

Veii(¢) = V(¢) — 87GC(¢) Lcpwm- (4.4)

While Lcpw denotes the Lagrangian of CDM particB,sthe potentialV(¢) and the coupling
functionC(¢) are given by
V(g) = Ao(1-€7*) " (4.5)

and

C(g) = @7, (4.6)

respectively, wherg andy are two dimensionless parameters apds a constant on the order of

the cosmological constant. Considering the nonrelaitivisteak field limit of Eq. [4.4) ¢ < 1),

Ver(¢) = Aop™ + 87G(1 + yp)pocom, (4.7)

the meaning of this particular parameterization can be nstoled as follows: As the scalar fiegd
tends to minimize theffective potential, the potential terxy¢™ and the coupling (& y¢) to the
CDM density lead to competindfects, favoring smaller and larger valuespofespectively. The
balance of these twdfects is controlled by the parameteraindy. The parametet is assumed
to be very small and controls the time when tlieet of the scalar field (mainly exerting a finite-
ranged scalar force on CDM particles on galaxy cluster sgélecomes important for cosmology

while the parametey determines how large it will ultimately bg [123].

From variation of the action defined in Ed._(4.3), one finds tha scalar field’s equation of
motion (EOM) is
VAV, ¢ + V' (¢) + 81Gye’pcom = 0, (4.8)

where the prime denotes the derivative with respegt iee. V' = dV/d¢. Furthermore, Einstein’s

equations can be expressed as

Gy = 817G (€ pcomby + T.) | (4.9)

3The CDM Lagrangianfcpm specifies the geodesic flow for many point-like particlesafrivelocityu, and density
Pcom
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Figure 4.1: Overdensity fields at = 0 for thepCDM model withy = 1, u = 107° (left) and theACDM
model fight). As can be seen, the former has developed more small-soadtuse within the void.
whereG,, is the Einstein tensor and the right-hand side correspdmdsrtergy-momentum tensors

of CDM particles with four-velocityu,and the scalar field, with the latter given by
1
81GTY = V,0V,6 - g (EVKgbV"qﬁ - V(¢)) : (4.10)

Note that because of their coupling, the energy-momentusots for the scalar fielgand CDM

particles are not individually conserved whereas their gim

The above equations summarize all the physics that will bd irsour analysis. An immediate
application is the prediction of a uniform Hubble expansip23]. For values ofy ~ O(1) and
u < 1, the model's background expansion is completely indistishable fromACDM, with an
actual diference on the order @¥(u). Basically, this is due to the large enougdteetive mass of
the scalar which forces the field near the potential minimueh ia almost time-independent for

u < 1 (for a more quantitative explanation, see Ref, [123])

4.2.2 Nonrelativistic approximations

The first step towards a numerical simulation is to obtainréhevant equations of motion in the
nonrelativistic and quasistatic limit (in the sense thattilme derivatives can be safely neglected
compared with the spatial derivatives). This task has dyréeen performed in Ref. [123] where
it was shown that the scalar field’s EOM in Ef._{4.8) and the ififexti Poisson equation can be
simplified to

82¢ = 81G& [pcomC'(¢) — peomC’ (8)] + a2 [V'(¢) - V' (¢)] (4.11)
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and

820 = 47Ga® [pcomC(¢) — pcomC (9)] — a8 [V(9) - V (#)], (4.12)

respectively, where the bar denotes background quantitfes —V2 and Vy is the covariant
spatial derivative with respect to the conformal coordinatNote that the auxiliary dimensionless

potential® is related to the usual nonrelativistic metric potentéathrough
1.,
®=aW+ Eax , (4.13)

where the dot denotes the derivative with respect to cordbtime. Finally, introducing the
canonical momentum conjugatexpp = ax, the EOM for CDM particles reads

X =

’

P
a (4.14)
p = —qu) - )/aVX(])

Note that the two terms on the right hand side appearing irséte®nd relation of Eq[(4.114)
correspond to gravity and scalar force, respectively/[123kuming that botky and® are known
from solving Eqsl(4.11) an@ (4.112), the above may be useddioate the forces on CDM particles

and to evolve their positions and momenta in time.

The validity and limitation of the approximation presentlie above equations, in particular
neglecting the time derivatives, have been extensivelgudsed in Ref. | [123]. We emphasize
that these approximations do not hold in linear regime whieeescalar field’s time dependence
is essential for structure growth. However such terms hasteed been shown to be negligible
on scales much smaller than the horizon scale|[238]. In thewimg, we will analyze the first
completeN-body simulations in the above framework. Compared to previvork [239, 240], our
analysis does not involve any additional assumptions fieirepthe field equations and thus takes
the spatial variation of into full account, leading to more quantitative and rigarquedictions.
Considering the linear regime, it has already been possibt®nstrain the parametegisandy
to a fairly narrow range. Here we sgton the order of unity to force a significant ratio of the
scalar force to gravity~ 2y) and explore the range 10 < u < 107°, covering three orders of
magnitude. Restricting ourselves to the above shoufficeuas the model is either essentially
indistinguishable fromACDM or deviates too much from it (already at the linear levsdyond

this parameter space, thus being of no further interesf][123
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4.2.3 A modified N-body code for coupled scalar field models

For the purposes of this work, we have adapted the Multi-L&daptive Particle Mesh (MLAPM)
code [241] to include the scalar field and its coupling to ti¥MCN-body particles. One benefit
of the adaptive scheme is that the majority of computinguesss is dedicated to few high density
regions to ensure higher resolution, which is desirableesime expect the behavior of the scalar
field to be more complex there. The main modifications to theAMM code for our model can

be summarized as:

(&) We have added a parallel solver for the scalar field basdgigo [4.11). The solver uses a
similar nonlinear Gauss-Seidel method [242] and the saitexion for convergence as the

Poisson solver.

(b) The resulting value fog after the first simulation step is used to calculate the lotass
density of the scalar field and thus the source term for theifredd?oisson equation which

is solved using a fast Fourier transform to obtain the locaVigational potentiadd given by

Eq. (412).

(c) The scalar force is obtained byfidirentiatingg, and the gravitational force is calculated by

differentiating®, as required from Eq[[(4.114).

(d) The momenta and positions of the CDM patrticles are thelatgol, taking into account both

gravity and the scalar force, just as in noriabody codes.

More technical details on the code as well as on how the fielchtgans are implemented into

MLAPM using its own internal units have been given in Ref.3lland will not be presented here.

4.2.4 Matter power spectra from N-body simulations

Using the modified\-body code introduced in the last section, we have perfornsidnulation
runs with parameterg = 0.5,1 andu = 107°,10°,107, respectively. For all these runs, we
consider 128 CDM particles, 128 domain grid cells in each direction, amldimulation box size

is chosen a8 = 64h~1 Mpc. We further assume/&CDM background cosmology which provides
a very good approximation fqi < 1 [123], adopting present values for the fractional energy
densities of CDM and dark energ®cpm = 0.28 andQ, = 0.72. In addition, the normalization

of the power spectrum is chosen@g = 0.88. Note that the current simulations only take CDM
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PpCDM(k)/PCDM(k) PpCDM(k)/PCDM(k)
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Figure 4.2: Ratios of calculated nonlinear matter power spectrayfer 1 andu = 107° (red line), 10°
(blue line) and 10’ (green line) as well as fokCDM (black dotted line): Shown are the results for two
redshiftsz = 1 andz = 0. At large scales (smak) the curves converge toward tA€€DM result (identical

to 1). Note that the dierence decreases at higher redshift and is expected to leosnimth large and
very small scales. Error bars of future lensing observatane likely small enough to detect any deviation
from ACDM on intermediate scalek € 0.1 — 10hMpc1) at a 30% level.

into account and that baryons will be added in a forthcomingysto investigate the biadtect
caused by the coupling to dark matter. Given the above paeasy¢he mass and spatial resolution
of the simulation are 91 x 10°M,, and 2344h~kpc (for the most refined regions), respectively.
This spatial resolution in high density regions is necessad stficient to precisely probe the

scalar field in regions where the scalar force is considgrsiiobrt-ranged.

All simulations started at redshift= 49. In principle, one would need to generate modified
initial conditions for the coupled scalar field model, ilee initial displacements and velocities of
particles which are obtained from a given linear matter pospectrum, because the scalar field
coupling also has an impact on the Zel'dovich approximal@#8]. In practice, however, we find
that the &ect on the linear matter power spectrum at this high redshiiegligible, with a relative
deviation< 10~ for our choice of the parameteysandu. Concerning the CDM particles in our
simulations, we thus simply use the initial conditions foA@DM model which are generated
with the help of the GRAFIC tool [244], where we again assutgn = 0.28,Q, = 0.72 and
og = 0.88. An example of the final density field obtained at redshift0 is illustrated in Figl[_4J]1.
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PpCDM(k)/PCDM(k) PpCDM(k)/PCDM(k)

k [h/Mpc]
Figure 4.3: Same as Fid. 412, but now assuming 0.5.

For comparison, the figure also shows the correspondindt iefsa standardACDM simulation.
The matter power spectra have been computed with the helgfaty Fourier transform of the
matter density field, computed on a regular g¥igl x Ng x Ng from the particle distribution via a
Cloud-in-Cell algorithm (see, e.g. Ref. [245]). For theuattcalculation, we séllg = 256 which
gives a maximum mode df ~ 20hMpc! well above the simulation resolution. The nonlinear
matter power spectra of the models with= 1 andy = 0.5 are displayed in Figé. 4.2 ahd ¥.3,

respectively.

As can be seen from the figures, the nonlinear power speatrdeasubstantially modified
compared to &ACDM model. Qualitatively, the basic features of the resaisy be understood
from our previous discussion of the chameledfee in Sec.[2.3]2: For smaller values of
and largepcpwm (higher redshift), the scalar force is significantly suggesl and thus one obtains
smaller deviations frorACDM. On the other hand, increasing the value sfrengthens the scalar
force and causes larger deviations from A@DM model. Since large scales are beyond the probe
of the scalar force [123], the power spectrum for srkdll not significantly &ected. Similarly,
when moving to very largk, the chameleonfiect suppresses the scalar force because the density
on small scales is high, therefore softening the deviatiomfA CDM. Interestingly, the dference

between the models becomes largest on intermediate schiels are relevant for galaxy clusters
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(~ 107 — 10°%kpc). Observationally, this would most likely appear as ange ofog on the order
of 15-20% for models withy ~ 0.5 - 1 andu = 107 (see Figs[4]2 arld 4.3). For current lensing
measurements such as the CFHT Legacy Survey (see, e.g]2R6f.or Fig. 11 of Ref. [[247])
over a rather limited range, one cannot constrain these Is)\sidiee any variation afg appears
to be lower than 30%. Future surveys such as the Kilo-Degoeee$ (KIDS), however, will be
able to measure the scale dependence within the farg8.1 — 10hMpc~! where the deviation
of the models fromACDM is maximal, and therefore open a new window to test thesdats
and to constrain the interesting part of their parametecespBinally, note that although we have
restricted our analysis to the models introduced in Ref3]1the general framework introduced

here is also applicable to other possible construction®opled scalar fields.

4.3 Metric perturbations in TeVeS

As we have seen in the last section, it is generally possibudy modified frameworks with
the help of conventional methods and tools. Now we shallstigate whether similar approaches
may principally be achieved in the context of TeVeS. In tldse; one may not simply start with
the nonrelativistic field equations because these do naidaccontributions of the vector field
which are known to be crucial for the formation of structurelarge scales [83]. Introducing a
more general class of potential functions, we revisit tremoalogical background evolution before
turning our attention to metric perturbations in the confar Newtonian gauge. Making an ansatz
for scalar field perturbations in the modified Einstein-dteBicosmology, we demonstrate how
the field equations can be casted into convenient form amdisisthe resulting TeVeS analog of

the growth equation. Finally, we outline several possilplpliaations of our results.

4.3.1 Choice of the scalar field potential
For the purposes of our analysis, it is convenient to work wie notation introduced in Eq._(2140)
(see Sed._2.2.2]1A). This allows one to rewrite Eq. (2.45) as

3,11(2)

V() = —=
) 128113

| (4+ 20— 40® + i®) + 2log (1- )] (4.15)

where we have defined = u/uo andyg is a dimensionless constant relatedkgothroughp =
8n/kg. Translating the results from Selc. 2.2.P B, one finds thasigtaic systems are charac-
terized by the conditio’v’ = dV/du < 0, and therefore & u < up. It should be pointed out
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Viu(u) [3u3/32m13]

1/ to

Figure 4.4: lllustration of the generalized potenti}(u) given by Eq. [4.16) fon = 2 (solid line), 3
(dotted line), and 6 (dashed line).

that potentials like the one specified in E@._(4.15) exhibiistonnection between the regimes
relevant for cosmology and quasistatic systems, resgdgti®ince cosmological models require
V'’ > 0, one obtaing: > ug and thus cannot use the same potential branch as for quiasssts:
tems {1 < ug). Lacking a smooth transition between these two regimeseter, it is unclear how
bound systems such as galaxies would decouple from the Elfibk! or if such a decoupling re-
sults in the quasistatic limit discussed abgvé'o resolve this issue, an interesting alternative has
been proposed in Ref. [224], with its cosmology studied ifi f@1]. In the following, however,

we will not take this approach.

Instead - for reasons that will become clear below - we shssllme the following general

class of potentials [92]:

B 3 [n+4+(M+1),.
Vn(u) = 327T|ZB (n+)(n+2) @-2 (4.16)
+%|og<1—m2+m2:1%@‘2)m |

4There isa priori no guarantee for reaching the domain of quasistatic sysieame considers the growth of initial
perturbations around a FRW background.
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4.3. Metric perturbations in TeVeS

wheren > ZH. Adopting diferent values ohf, Fig.[4.4 illustrates the resulting potential shape as
a function ofu. Note that the such generalized potential reduces to Bekeaisstoy model in Eq.

(4.15) ifn = 2. The derivative oV, (u) takes a simpler form and can be expressed as

3uo (@ -2)"

Vi(u) = A=
32n2" p-1

(4.17)

As already mentioned, cosmological models in TeVeS mustfgdhe conditionV’ > 0. As we
have already seen in Selc. 2.2.2 B, one is always free to chmiseen two possible potential
branches if one requires thdt is single-valued. In accordance with previous investaraj we
will use the branch ranging from the extremunuat 2ug to infinity. Under these preliminaries,
it was found that the potential in Eq. (4]16) gives rise takea solutions of the scalar field [92],
with a background evolution similar to other general cogigal theories involving tracker fields
[116,248| 249]. We shall further elaborate on this behaaiat an approximate analytic treatment
in Sect[4.3.2B.

4.3.2 Revisiting the cosmological background in TeVeS
4.3.2 A Evolution equations

Imposing the usual assumptions of an isotropic and homagsnspacetime, bot,, andg,, are
given by FRW metrics with scale factoasandb = ae, respectively, where is the background
value of the scalar field (see our previous discussion in[A2c2 T). For a spatially flat universe,

the modified Friedmann equation in the matter frame reads
3H? = 81Ger (pg + p) - (4.18)

where we have expressed Eq. (2.60) in a more convenient Wwayftysical Hubble parameter is
still defined asH = a/a? and the overdot denotes the derivative with respect to corebtime).
Herep corresponds to the FRW background density of the fluid andd¢héar field density takes
the form

5As previously pointed out in Ref, [92], this class of potatgiwill modify the dynamics of quasistatic systems i 2.
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4.3. Metric perturbations in TeVeS

The dfective gravitational coupling strength is given by

_ d(; -2
— —4¢ i
Ger = GE (1 * Jiog a) (4.20)

which is generally time-varying through its dependencehenscalar fields. Just as in GR, the

energy density evolves according to
- a _
o= —35(1 +W)p, (4.22)

wherew is again the EoS parameter of the matter fluid. In case of pheliackground fluids, i.e.

o = Yipi, the relative densitieQ; are defined as

_ pi P
Qi = 87TGeffﬁ = E+ E¢. (422)

The evolution of the scalar fielflis governed by

— g o 1] _b- -
-l )= et —44
b= ¢>(a 5) ! [3,1b¢ + 4xGae ™ 5+ 3P)|, (4.23)
whereP is the fluid’s background pressure and the functibis related to the potentidl,
_ Vv
U) =pu+ ZW' (4.24)
In addition, the scalar field obeys the constraint equation
51, —2¢\ /7
¢ = Ea eV (4.25)
which can be inverted to obtajr(a, ¢, 5) For later use, we also introduce the relation
ab b _- 45 (=
256 - B —/.ld) = 47TGaze (p + Is) (426)

which follows from combining Eq.[(4.18) with Eq[_(4]25) arftetcorresponding Raychaudhuri
equation (see Ref. [97]).

As already mentioned in Selc. 2.2.2 C, previous investigatidl1, 82| 92] have shown that a
broad range of expressions for the potentdincluding the choice in Eq[(4.16)) leadsdb~ 1

andp, < 1 throughout cosmological history. Therefore, the backgdevolution is very similar

110



4.3. Metric perturbations in TeVeS

to the standard case of GR, with only small corrections ieduay the scalar field.

4.3.2 B Tracker solutions of the scalar field

For the class of potentials specified in Hg. (4.16), it hasfeend that the scalar field exhibits a
(stable) tracking behavior and synchronizes its energgitiewith the dominant component of the
universe|[82, 92]. Tracking occurs ¥ tends to its zero point whege = 2uq, and the evolution

of the field¢ during tracking is approximately given by

5: 50 N |1+ 3w
2Buol1 — wWi—|1 + 3w

loga, (4.27)

wheregyg is an integration constant apd= +1, with the actual sign depending on the background
fluid’s EoS parametew and Eq. [(4.28). Its densify, then exactly scales like that of the fluid, and
the relative density paramet@y; turns approximately into a constant,

(1 + 3w)?

Note that the right-hand side of Eq. (41.27) slightlyfeis from the expression presented in Ref.
[92]. In App.[D.1, we discuss why this is the case and showHogt(4.27) is indeed the correct

result.

Following the lines of Ref.[[92]x may then be expressed @s= 2uo(1 + €) with 0 < e < 1.
UsingV’(2ug) = 0 and expandiny’ to lowest order ire, Eq. [4.25) leads to

2 3. 1/n
€= 1(16”'5%7] . (4.29)

2\ 3up a2
It turns out that this is the only stage at which the conskamnters the evolution equations. In
preparation for Sect. 4.3.3, we further take the time dévieaf the above, which yields the useful
relation

e = %(52—52+<;)6. (4.30)

Note that stable tracking requireso asymptotically decrease to zero, iee—~ 0. Therefore one
has the conditior < 0 which may be used to infer the proper sign of the parangeeEq. (4.27)
(see App[D.1).
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Figure 4.5: Relative deviation of the Hubble expansion in the modifietsEgdin-de Sitter cosmology from
the ordinary GR case: Shown are the resultgfpe 200 (dotted line), 500 (dashed line), and 1000 (solid
line).

4.3.2 C Modified Einstein-de Sitter cosmology

In what follows, we shall assume a universe entirely madere$gureless matter with perfect
tracking of the scalar field, corresponding to the EinstirSitter model in GR. Settifg= w = 0

fixesp = —1, and thus the scalar field can be written as

S 1
¢ =do— 2071 loga. (4.32)
To find the proper value ¢, one may either insert Ed. (4]27) into El. (4.23), or use theraent
presented in Apg_Dl1. Since the fluid evolves according to(E&1), the density takes the form
p = poa 23, with pg being the background density’s value today. Thus explyifin. [4.28) allows

one to rewrite the modified Friedmann equation in the mattéané as

H? = HZa 3+4/@uo+D), (4.32)
where we have used the definition
45 87Gpo 1 1\
H2 = g %o 1 1- . 4.33
0 3 ( +6,uo—l)( 2y0+l) (4.33)
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From Eq. [4.3R), it is evident that the deviation of the Hebkkpansion from the ordinary
Einstein-de Sitter case is entirely characterized by thrampaterug. For several reasons [41],
1o should take a rather large value on the order of 2QID00, and thus this deviation will be
small. Assuming dferent choices qfig, Fig.[4.4 shows the relative fiiirence between the mod-
els as a function of the scale factrindicating that the change of the expansion is only at the

percent level.
4.3.3 Perturbations in conformal Newtonian gauge

4.3.3 A Preliminaries

Now we will turn to metric perturbations around a spatialgt FRW spacetime in TeVeS. Start-
ing point is the set of linear perturbation equations for @8Wvhich have been derived in fully
covariant form in Ref.[[97]. For simplicity, we shall restrthe analysis to scalar modes only and
work within the conformal Newtonian gauge. In this case,riogterturbations are characterized

by two scalar potential¥’ and®, and the line element in the matter frame is given by
ds’ = &% [-(1+ 2¥)dr? + (1 - 20)5;;dXdX!|. (4.34)

Similarly, one needs to consider perturbations of the oftedds: While the fluid perturbation
variables are defined in the usual way, i.e. the density gmation, for instance, is expressed in
terms of the density contrast

p=p+ép=p(L+6), (4.35)

the scalar field is perturbed as

b=d+o, (4.36)
wherey is the scalar field perturbation. Finally, the perturbedteefield is written as
A =ae? (A, +a,). (4.37)

whereA, = (1,0,0,0) and
a, =W -9, Va). (4.38)

Note that the time component of the vector field perturbaisoconstrained to be a combination

of metric and scalar field perturbations, which is a conseggef the unit-norm condition given
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by Eq. [2.35). Therefore, one needs to consider only theitiadigal perturbation component
The full set of perturbation equations is given in App.ID.2.

4.3.3B Acloser look at scalar field perturbations

To begin with, we consider perturbations of the scalar fiéldom previous numerical analysis,
these have been found to play only a negligible role for stinecformation|[82], 85]. Assuming a
general matter fluid whose background evolution is given ipy(E.21) together with a cosmolog-
ical constant, we take the time derivative of g, (D.21) dirdieate 6 with the help of Eq.[(D.15)
from the resulting expression. The next step is to get ridheftime derivatives ob. This can be

achieved by exploiting an algebraic relation which is aiedi from combining Eqs[(D.22) and
(D.23). Finally, using Egs[(D.11) and (D]17), one arrives a

80 _b_ 162 — anGale (1 + w)

ab b ¥

. (4.39)
= [/7(452 + 2‘;2 + 5) + i + dnGae p(1 + 3w)] . 4.39

From Eq. [4.26), one immediately sees that theffocient in front of ¥ vanishes. Thus the above
gives a trivial identity and we cannot infer any informatiomthe relation between the scalar field
perturbationy and the metric potential. This somewnhat reflects the fact thatorresponds to
a full degree of freedom in the theory and the occurrenceiaélrelations like in Eqg. [(4.39) is
indeed a generic feature of modified gravity theories of IthisIH. For purposes that will become

clear below, however, let us introduce a functBnsuch that

¥ = B,g. (4.40)

In general B, will be a function of time and perhaps even depend on scaleedier, it is likely
that its particular form will also depend on the used cosmgickl model and the choice of the

scalar potentiaV/.

As for the auxiliary perturbatior, it is possible to arrive at a similar relation as given in Eq.
(4.39). To see this, we multiply EqL(DJ20) with the scaletéabd and take the time derivative.
Combining the result with Eqs[{D.L8) ard (D.23), we elinén& and the time derivative of,
respectively. Substituting andy with help of Egs.[(D.16) and(D.17), respectively, one eualy

5From private communication with C. Skordis.
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ends up with

iy a5 g,
Ugb a¢+¢ +¢+U47rGa2e p(1+3w)

b

b ;uz; + ,u¢ + 2(5 B)mp + dnGale p(l +3w)| ¢ (4.41)

25 (5— E) + E 12 + AnGEe o1 + w) (3d~> + K7 + 3%‘?) =0.

Using the background relations presented in $ec. 4.8.2 Ajngdlethat Eq. [(4.411) again yields
a trivial identity, with a general structure very similarttat found before. A direct comparison

between Eqs[(4.89) and (4141) suggests the definition ahanéunctionB, which is given by
(30 + k) +ae?B,y = 0. (4.42)

Now assuming that the functiori, andB, are known, one can show from a suitable combination
of the perturbation equations in App._D.2 that the metriceptils are solely expressible in
terms of the matter fluid variables, putting the equatiorte & form more suitable for further
investigations. Since corresponds to an auxiliary perturbation field relateg ttowever, one

might expect that these functions will not be independesrfeach other.

Taking the view thaB, and B, emerge from a mathematically well-defined limiting progess
the algebraic structure of Eq§. (4.39) and (4.41) suggeatshey may be related according to the
corresponding cdicients of the scalar field perturbatiopsandy. In situations wherg is close
to its minimum (such a during tracking), i.@.= 2ug(1 + €), we further have the two first-order
expressions

u 2
r-1-Z 4.43

and
Ho_q Ntz (4.44)

which can be exploited in Eq._(441), leading to the the ansat

+ 2

4410 (30 + K2Z) + ae‘_( e) B,y =0 (4.45)

to first order ine. If indeed such a relation exists or at least provides a Isleitapproximation,

it should be possible to verify this with the help of the fielgliations or directly by numerical
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analysis. Current work is investigating this issue in maggad. One obvious concern that such
an approach could introduce inconsistencies which wouddl gmy results obtained under the
assumption of Eq.[(4.45). As we shall see in the next sectiomgever, this does not appear to
be the case. The above relations may then be used to elintiatzalar field variableg andy

from the perturbation equations. As will become clear, thims the key to deriving approximate
expressions for the metric potentials in analogy to the &aork of GR. In accordance with the
findings of Ref. [83],B, should take values on the orderaf and for simplicity, we will further

assume thaB, may be treated as a constant.

4.3.4 Applications on subhorizon scales
4.3.4 A Modified Poisson equations

In the following, we shall assume the previously discussedified Einstein-de Sitter cosmology
with perfect tracking of the scalar fielsl This allows one to use the corresponding background
expressions presented in Séc, 4.312 C and considerablyif@sphe analysis of the modified
equations. Adopting the relations ferandy presented in Seci. 4.3.3 B and assuming Bjat
const, one may now express metric perturbations solelying®f the matter fluid variables and a
detailed derivation of this result can be found in App. D. Asst application, we shall investigate
the behavior of this model for scales much smaller than thiedwo. In this case, one ha$i/k < 1

and the metric potentials approximately take the form agae ApplD for details)

iémé. (4.46)
Just as in GR, the potentials depend on the density contnistand they also exhibit the same
scale dependence (which is not too surprising as we are mgfkithin the linearized approxi-
mation). Unlike the ordinary Einstein-de Sitter case, heevethe time dependence of the metric
potentials is more complex and involves the figlthich is therefore expected to have a significant

impact on the growth of density perturbations.

4.3.4 B Growth of density perturbations

Equipped with an analytic expression for the the potenti&br equivalently¥), we now proceed
with the analysis of structure growth in the context of TeV&S is well known, the ordinary

Einstein-de Sitter model in GR gives rise to a growth equatibthe form
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Figure 4.6: Evolution of subhorizon density perturbations in the medifEinstein-de Sitter cosmology:
Assuming a potential with = 4 and a scalar perturbation ra®y = 3uo/2, the figure illustrates results for
Kg = 1 (dashed line), @ (dotted line), and @9 (dashed-dotted line). For comparison, the correspgndin
evolution in the ordinary Einstein-de Sitter model is alsown (solid line).

d’s 3ds 3

@ + gd—a - gé = O, (447)

with the two solutionsy o« a=%2 andé « a. Following the same derivation as in GR, the TeVeS

analog of Eq.[(4.47) for our present assumptions reads

i U B,')o =0, (4.48)

(2

d?s 1 4 \do A(
da& 2a

— +— |3+ 20+ 1
whereA depends o and is given by Eq.[{D.30). Assumirtg), = 3u/2 and setting:g = 1000,
lg = 100Mpc,¢o = —0.003[1 andn = 4 for the scalar potential, Fi_4.6 shows the numerically
calculated evolution of for different values oKg and an arbitrary, but fixed choice of initial
conditions ata = 0.01. As can be seen from the figure, our simple model recoversrthanced
growth reported in Ref. | [83] for small values &fz (~ 0.1). For larger values oKg (> 1),
however, this enhancement does not occur and the densityasbifollows a power law with
6 oc @27, thus still growing faster than in the ordinary EinsteinSitter case. This behavior can

be better understood by expanding the functfoin terms of the scalar fielg which is much

"Note that the choice of a small negative value fodoes not automatically violate causality [41,1250] and is in
accordance with the results of Ref. [[83].
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Figure 4.7: Metric perturbation® and® for a top-hat overdensity at redshift= 1 (a = 0.5): Assuming
Kg = 0.1, the figure shows the resulting potenti#g$dashed line)p (solid line) and the corresponding GR
result (dotted line; the potentials are the same) as a fumctithe physical radial coordinate

smaller than unity, i.el¢| < 1. This immediately yields

B, 4 B
3%, 4 (1_ _9”)
“o Kg Ho

~ 3B
A=~ +6

20 ¢ +0(¢?), (4.49)

where we have additionally neglected terms proportionad é&md used thatig > 1. If Kg is
suficiently large compared te, the zeroth-order term in the above will dominate and tAus

3B, /2uq. In this case, one can solve EQ. (4.48) analytically and wedir aP with

B
p:}[,/1+24—"”—1] (4.50)
4 Mo

for the growing solution. On the other handKig is chosen small enough, the term proportional
to ¢ in Eq. (4.49) will become important, leading to the enhangemvth observed in Fig_4.6.
Although likely related to our present approximations, #a49) suggests that f@&, = uq, which
would correspond to Eq[L(4.47) in the limit of lar¢fg, additional growth should be suppressed
since the term proportional %/ Kg vanishes; indeed, we have numerically verified that entiance
growth does not occur in this case. Whether such a featurainerfor more realistic time-varying

choices ofB,, (possibly motivated from numerical analysis) remains tseen. Also note that
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Figure 4.8: Same as Fid, 417, but now assumiig = 1.

all models which exhibit enhanced growth eventually rum iatsingularity which appears to be
connected to the used logarithmic approximationddn Eq. {4.31), but could also arise as a
consequence of our assumption tBat= const. Clearly, this warrants further investigation and

should ideally include cosmologies which also accounttierdfects of DE.

To conclude this section, we demonstrate how the mechamisponsible for enhanced growth
generates dlierences between the matter frame potenttabnd® (Remember that in GR, such
a difference can only be caused by anisotropic stress). For thimge, we switch to physical
coordinates and use the twaTdrent Poisson equations specified by Efs. (D.28) land (Da28) t
calculate the potentials for a spherical top-hat distiutat redshiftz = 1 with a radiusR =
50Mpc and overdensit§y = 0.1, keeping the same parameters as before. The resultingtiatde
are illustrated in Figs_417 aind 4.8 f&ig = 0.1 andKg = 1, respectively. A small value dfg
drives the potentials apart, corresponding to relativeatien of around 10% in Fid. 4.7, whereas

the two potentials are basically identical #6g > 1.

4.3.4 C Further applications

If supplemented with numerical estimates for the funcgr(and perhaps alsB,) the framework
introduced in the last section appears particularly slétédr detailed studies and parametrization

of the growth factor in TeVeS. Such a parameterization waplen the possibility to adopt con-
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ventional methods and tests which are frequently appliethéncontext of weak lensing. For
instance, it would be interesting to see how the enhancedltigrguantitatively &ects estimates
on different signals and especially noise (which is expected tp)d first application into this
direction regarding the detectability of large-scale aid a TeVeS-like universe is currently in
progress. Furthermore, one might consider our results astafiproach toward investigations of
the nonlinear clustering of density perturbations in thteseries. Although one expects the linear-
ity in the gravitational sector to break down at some poirginty because of nonlinearities arising
from the potential terms which are responsible for the yiedvlONDian limit, this approxima-
tion should hold long enough to investigate the influenceeater perturbations on cluster scales.
For instance, a particular criterion for the validity of Buan approach would be the requirement
that perturbed expression for thdield derived in Ref.|[97] is satisfied,

Vo ¥

ou=2—Y+
M 7 4¢a2vu

. (4.51)

At the moment, however, there exist only first ideas and rakgiches on what course of action to
take, but it might certainly be something to think about ie fature. Finally, note that even if the
presently made assumptions turn out to be a bad descriptithe @rowth in TeVeS, our model
provides an interesting tool for generically studyineets in modified gravity with enhanced

growth.
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Chapter 5

Summary

In this thesis, we have tried to address several possdsiliin how to constrain hypothetical mod-
ifications to the gravitational sector, focusing on the stilug tensor-vector-scalar theory as an
alternative to CDM on galactic scales and a particular atdsshameleon models which aim at

explaining the coincidences in the DE sector.

Beginning with the framework of TeVeS theory, we have depetbanalytic models for non-
spherical lenses which allowed us to test the theory agalmstrvations of multiple-image sys-
tems. While isolated double-image lenses are generallyewxglained, the situation for quadruple-
image systems and lenses in dense environments such as gnoclpsters appears challenging.
Nevertheless, we have argued that the found problems amdynmalated to our simplistic lens
model which does not account for anffexts due to environment and may strictly be applied to
isolated systems only. Despite being inconclusive, outyaigahas pinpointed certain systems
which call for a more detailed analysis in the future and ddwld the key to make solid state-

ments about theory’s performance in the domain of galaetisds.

As the next step, we have investigated the role of interefdgaments in TeVeS. The typically
very low density of these large-scale objects suggestsithartures from GR are expected to be
quite significant. Modeling filaments as infinitely long adiers, we have analyzed their lensing
properties and confirmed this expectation. Furthermorehave shown that a single filament can
contribute a shear signal on the order ddDand considering multiple filaments along the line
of sight, this can add up, leading to a significant and comjslgact on the shear measurements
of other objects. In principle, our findings also allow onddtsify TeVeS by excluding a large

lensing signal through measurements around the positiarkabwn filament. Given the current
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observational uncertainties, however, this seems pedigticnpossible.

We then moved to the missing mass problem in TeVeS and caoadidiee possibility of mas-
sive sterile neutrinos with a mass of 11eV. To test this Hygsis, we have outlined how to use
cluster lenses with a significant level of substructure tastr@in the allowed neutrino density set
by the Tremaine-Gunn bound. The key input here is that if ateals a sficiently dense dark
matter concentration within such a lens system, then magtrvithin a given mass range would be
immediately ruled out. A preliminary analysis of the lergatuster Abell 2390, however, appears
to be consistent with a mass of 11eV. Nevertheless, we haygested the search for other cluster
lens candidates combined with a more detailed analysishaikilikely to give tighter constraints

than the analysis presented in this thesis.

Leaving the field of TeVeS for a little bit, we further conside coupled scalar field models
and presented a general framework for exploring the naarlinkistering of density perturbations
by means oN-body simulations. Choosing a particular realization fahameleon model where
the scalar field only couples to CDM patrticles, we have petéat the first complete simulations
in the sense that the spatial variation of the scalar fieldnoallsscales has been fully taken into
account. For a reasonable range of model parameters, altsrpeedict that the best chance of
discriminating such theories from the standa@DM model might come from observations on
intermediate scales which are relevant for galaxy clugters(? — 10°kpc) and there is a good

chance that future surveys such as the Kilo-Degree Survghtrbie able to detect such a signal.

Finally, we have discussed the prospects of applying simikathods or techniques to study
the linear and nonlinear evolution of density perturbaionTeVeS. The main obstacle arising for
this class of theories is that one cannot start from the tatiristic field equations because these
do not include contributions of the vector field which arenao be crucial for the formation
of structure on large scales. To find a possible way arourgdptttiblem, we have tried to moti-
vate an ansatz for the perturbations of the scalar field, wallows one to cast the perturbation
equations into a more convenient form. Although there ahesstveral open questions regard-
ing our approach, it allowed us obtain the TeVeS analog ofgtoevth equation in the modified
Einstein-de Sitter cosmology and appears as a useful frarkdar general studies of gravity the-
ories with enhanced growth. On a more speculative level,ave further outlined the possibility

of investigating the nonlinear regime of structure formatat least to some extent.
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Appendix A

Partially degenerate neutrino gas in

galaxy clusters

A.1 Nonrelativistic Fermi gas

For a system of identical fermionic particles in thermalikiguium, the average number of states
with energys; is given by

(M) = g (/T 4 1)‘1, (A.1)

wherexg is the Boltzmann constant is the chemical potential angl denotes the degeneracy
factor. Using thatyj = gandg = pi2/2m for nonrelativistic particles, taking the continuum limit
gives rise to the distribution functiom(is the particle mass)

VB2

f(e)de = g on 2

Ve (/8T 4+ 1) de (A.2)

which allows one to determine the corresponding thermaaymg@roperties of the gas. Consid-
ering spherically symmetric configurations and introdgcihe radial velocity dispersioar, the

corresponding equation of state is given parametrically as

m’
P =095 53 *Fu/2(x) (A.3)
and
vamt
P=0333 o Fa2(x), (A.4)
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A.2. Massive neutrinos in hydrostatic equilibrium

where

(9]

Folt) = f XP (€% + 1) dx (A5)

0
andy = u/xgT (for a derivation see, e.g., Ref._[251]). In the limit of fukgeneracy (corre-
sponding to very large positive values yf, this yieldsP o« p°2 while the non-degenerate limit

(corresponding to very large negative valuegpleads to the classical resiitec po-2.

A.2 Massive neutrinos in hydrostatic equilibrium

In an expanding and cooling universe, neutrinos (ordinarsterile) with a mass on the order of
several eV or larger may be considered as nonrelativistticfes at the late stages of cosmological
evolution (matter era and further stages). This appliesitiqular to galaxy clusters where such
neutrinos should move with velocities much smaller thangpeed of lightl[77, 187]. As these
particles are fermions, we may treat them using the relatfmesented in the last section. The
equation of state given by Eqs._(A.3) and (A.4) formally degeon the chemical potential, but
there is no independent way of estimatipgapart from numerical simulations of a collapsing
baryon-neutrino fluid. Lacking such simulations in the nfiedi framework, however, we will
start from the estimated densjby to obtain the chemical potential necessary for an equilibri
configuration. In the following, we will outline the proceduapplied in Sed._3l4 to calculate the
TG bound.

Assuming that the neutrino gas is in hydrostatic equililorithe pressure obeys

P, = -pu)00). (A6)

whereg(r) is the total gravitational force at radius Combining the above with Eqs,_(A.3) and
(A.4), we determing as a function of radius (one possibility of achieving thigéscribed in e.qg.
Ref. [187]). This result is used to calculate the correspundelocity dispersiorr, which will
generally dffer from that of the ICM. Inserting-, into Eq. [3.60), we then find the maximally
allowed neutrino density, max. Sinceo, generally varies with the radius, this obviously yields the
TG bound as a function of position. Finally, note that futsimulations of galaxy clusters in this
context will not only probe the estimated valuesyofout also tell us whether the such obtained

differences between the velocity dispersions of neutrinos @htldre actually realistic.
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Appendix B

Modeling the baryonic content of A2390

B.1 X-ray gas and central mass distribution

To derive a reasonable model for the gas distribution in 23 use the results given in Ref.
[199]. The intrinsic electron density derived from CHANDRAservations (shown in Fig. 10 of

Ref. [199]) can be well described by a spherical profile offtilewing form:

Mo (B.1)

ne(r) = (l . (r/ro)z)l/z’
whereng = 0.1cnm3 andry = 10kpc. Assuming a mean molecular weightwf= 0.6 and
an additional factor of 2 to account for the globalfiect of the cluster’s stellar components,
we thus obtain an expression for thffegtive central density profile with a central density of
po = 1.8 x 10°M,, kpc3. Since the volume integral of Eq._(B.1) diverges, we smagothit the
profile at radiusR within a range of 200kpc. The cufscale is set t&® = 1Mpc which corresponds
to 0.7r500H as given in Ref.|[201]. This yields a total integrated mas#of 1.3 x 10'*M,, and

a surface density profile which is in good agreement with a 20% gas fraction of the enclosed
projected lensing mass estimated in the framework of GR,[203]. The density distribution

specified by Eq.[{Bl1) is illustrated in Fig._3]15 (dottedeln

Although our choice for the density profile is less accuragrasults in a slightly smaller mass
than typicals models|[199], 210] or more flexible ones [201], it will beffstient for our analysis.

As is shown in Sed._3.4.3 B, the relevant lensing mass is gndsthinated by the contribution of

1Assuming the framework of GR with CDM, the overdensity radigh, is the radius within which the mean matter
density is 500 times the critical density of the universehatdluster’s redshift.

125



B.1. X-ray gas and central mass distribution

le+15 |-

le+14

Dynamical mass M (< 0) [Mg)]

| | | |
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Figure B.1: Enclosed projected (Newtonian) dynamical mass profile®@orTeVeS equilibrium model
(gas+ SNs; solid line) and an NFW model (dashed line). The lowersmdghe TeVeS model is mostly
caused by the approximate description of the gas densigngivEq. [B.1); triangles indicate the estimates
from weak lensing observations. At the arc’s positiér:(38”), the relative diference between the models
is about 10%.
SNs. Thus the strong lensing results, which we are primarirested in here, will be relatively
insensitive to the actual assumption of the central bacydistribution. Adopting the more realis-
tic density models above in a few selected simulation ruthegravise identical to those presented
in Sec.[3.4.14, we find only smallfiiérences on the order of a few percent in the corresponding
results and confirm our argument. This is also indicated lyparing the enclosed projected dy-
namical mass profiles of our cluster model (g&SNs) to the Navarro-Frenk-White (NFW) profile
[252] estimated in Ref. [201] (see Fig. B.1). Although th&@8 model underestimates the mass,
the discrepancy from the NFW model is only about 10% at this aasition @ ~ 38”). In addi-
tion, the figure shows the weak lensing results obtained frenCanada-France-Hawaii Telescope
(CFHT) for a photometric redshift distribution based on@EHT Legacy Survey data [205, 253].
The relative good agreement between dynamical and wealkdenmsass estimates further implies
that structure along the line of sight plays no significatd snd does notfeect our analysis. All
presented quantities have been corrected for the cosmalagodel specified in Eq._3.66. Note,

however, that a rather accurate description of the gas tgeassiwell as its temperature profile is

important to estimate the neutrino content necessary fordsgatic equilibrium in TeVe$ [187].
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B.2. Galaxy morphology and masses

B.2 Galaxy morphology and masses

Since a rather detailed model of the cluster might be impbitaTeVeS, we also need to take the
contribution of individual galaxies into account. For siiojy, we only consider the most massive
member galaxies in the immediate vicinity of the straigl{saobserved position; galaxies which
are located farther away are unlikely tffext the TeVeS lensing maps in this region, which is
confirmed by our results presented in Sec. 3.4.4. AlthougBO@Zxhibits a rich class of galaxy
morphologies, with many galaxies showing elliptical ortiemlar shapes, the impact of individual
morphologies on the arc’s environment can safely be negledtie to the galaxies’ ficiently
large distances. While this is not necessarily true for thkxy 2592 (see Fig[3.014) which
resides directly adjacent to the arc, a spherical densitgainarovides a good description, which
is indicated by the rather mild ellipticity seen in the optitiST image. As can be seen in Sec.
[3.4.4, this approximation does ndtect the basic results of our analysis - at least in the case of

quasiequilibrium configurations.

Furthermore, we assume that all considered galaxies carodeled by a matter distribution

of the form
Mry

2r(r + €)(r +ry)3’ (B2

p(r) =

wherep(0) = M/(erera) is the central matter density, and the profile’s core ragiusiversally

set tory = 3kpc. The length scale corresponds to a smoothing parameter becoming necessary
due to the limited resolution of our simulations and is sfediin App.[C.2. Fok = 0, Eq. [B.2)
reduces to the well-known Hernquist profile [136] which elgsapproximates the de Vaucouleurs

RY4 law for elliptical galaxies.

To infer the masses of individual galaxies, heeded for aongtlensing analysis, we consider
the data of the spectro-photometric catalog compiled in F&f6], which lists magnitudes for
48 galaxies inside the cluster A2390. All magnitudes aremivm the Gunm band [254], and a
simple formulal[255] to convert the Johnson magnitude and tBe- V color index to the Gunn
r band can be found in the IiteratLHeAccordineg, we have computed, the Gunr magnitude
of the sun, adoptingR, = 4.42 [256] and B — V), = 0.64 [257]. We have found,, = 4.95 which
is rather close to the value inferred from SDSS, the corresponding band beinge cgithilar to

the Gunnr band. Our result for, has then been used to evaluate the absolute luminositibg of t

2For further reference, an excellent description of the Gumnagnitude system is given on the website
http://ulisse.pd.astro.it/Astro/ADPS/.
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B.3. Role of the central cD galaxy

galaxies given in Ref. [216].

Next, we need a realistic mass-to-light ratM /L) in order to determine the galaxy masses.

To this end, we have followed a twofold approach: First, weehedopted a constaM/L derived

by combining the relation betwedwl/L and theg — r color index presented in Ref._[258] with
theg — r colors for massive ellipticals in the red sequence of the SBi8en in Ref. [[259]. The
corresponding masses are labeledvas Second, we have also considefddL as a function of

M in agreement with the results for the galaxies of A2390 dised in Ref. [[216]. For this, a
dynamical mass estimate based on measured velocity dmpemsas used. As elliptical galaxies
are mostly subject to the strong gravity regime within tigilf-light radius, however, estimates in
both MOND'TeVeS and Newtonian dynamics should be roughly the sams.sBeiond mass esti-
mate, denoted dd,, is probably more reliable since it involves fewer assuonsi The properties

of the such obtained galaxy models are listed in Table 3.4.

B.3 Role of the central cD galaxy

Assuming an equilibrium model for A2390, it has been fourat ttileV SNs reach their densest
possible configuration for < 20kpc (see Sed._3.4.3 B). Since Ef._(8.64) takes the TG bound
into account, our cluster model misses some mass in theatguart and does not correspond
to a genuine equilibrium situation. A way of compensatingtfos is to consider an additional
contribution due to the central cD galaxy. Following thesbrof Ref. [187], one can estimate a
total galaxy mass of approximatelyt = 1.8 x 10°M,,. As the central region of A2390 is neither
spherically symmetric nor in equilibrium_[199, 201], it mportant to note that such an approach

has no real physical meaning, but rathffets a convenient way to tweak our cluster model.

What does the above mean for our lensing analysis? Moddhiegcb galaxy as a point
mass, a straightforward calculation shows that its impac¢he TeVeS lensing maps can be safely
neglected. At the position of the straight arc’(38 140kpc from the cluster center), the additional
matter gives rise to changes of12%. Moving to smaller radii, the deviation grows, but we are
not interested in this region anyway. Thus we consider thstet model presented in Séc. 314.3

as stificient for our investigation.
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Appendix C

Numerical tools and setup for A2390

C.1 Solving the scalar field equation

Having set the framework of gravitational lensing and cdsgy in Sec.[3.11, we may proceed
with calculating the desired TeVeS lensing maps. The maiblpm associated with this task is to

solve the scalar field equation specified in Eq. (2.50) whatlge rewritten as

Ad = p, (C.1)
where the &ective density(p, di¢, 9i0;¢) is
_ kgG ksl3 dug
=—p-2—=——((0i¢)(0;0)(0i0i0)) , Cz2
p= Pt ((Gi9)@;9)(@i0;¢)) (C.2)

and indices run from 1 to 3. Equation (C.1) corresponds to rdimear second order elliptic
boundary value problem and can be tackled numerically. AiEobased solver operating on an
equidistant grid has been presented in Paper | where the dgsirithm and involved approxima-
tions are extensively discussed. The main idea is to emplateeative relaxation scheme of the

form (0© is calculated from an appropriate initial gues®)

AFO =50, ™D = wd + (1 - g, 3)

129



C.1. Solving the scalar field equation

where we have introduced the relaxation parameterR, an additional iteration field™ and

™ Kkgl2
7= e-2( 5] S (007 o) (00107,
B

»I g (C.4)
Q) o (%e\” _ ks o N = a2 [T
WD = s (). (a—y) = %2 (y0). Y~ Il

As the scalar field’s gradient decreases much more slowlypeoed to the Newtonian gradient far
away from the lens, one would actually be obliged to move tg large volumes to neglect contri-
butions from outside the box and obtain correct resultsHerdeflection angle. Assuming a fixed
grid size, this would excessively degrade the resolutiothefcorresponding two-dimensional
lensing maps. Fortunately, there is a way of avoiding thidblam: Considering a finite grid with

N + 1 points per dimensionN is chosen as an even number), we may rewrite the scalar part of
the deflection angle as the sum of contributions coming frah lnside and outside the grid’s

volume:
Nax
(oo}

As=2 f V.¢Wdz+ 4 . Vv, ¢4z, (C.5)
2 X

-Nax
where the quantitAx denotes the distance between neighboring grid points. mMisguthat the

scalar field at the boundaries is approximately given byahatpoint lens, i.e.

O ~ \[GMaylog(r), (C.6)

we obtain the following expressiot denotes the total mass inside the volume):

Nax
Gs=2 f V. ¢Mdz+ 4A, (C.7)

N
_7AX

T NAX\|| X
- — Cc.8
5 arctar‘( 2 )] [yJ (C.8)

andg? = x2 +y2. Thus, if the point lens approximation is applicable, wech&e perform the

where

integration only over our finite grid since all contribut®from outside the box can be expressed

analytically.

One of the numerical challenges of our analysis of A2390 as te need to resolve galac-
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C.1. Solving the scalar field equation

tic scales in a cluster-wide box, which requires a relagivatge number of grid points. Since
all calculations have to be performed in three dimensidms, dearly exceeds the capacity of a
single-processor machine, in terms of both needed time adary, and therefore calls for a
more powerful computer architecture. For this reason, we iraplemented a parallel version of
the original solver using the Message Passing Interfacd)(d&ndard. The parallelization as well
as all calculations presented in SEC.] 3.4 have been camieshahe HUYGENS supercomputer
at SARA in Amsterdam within the HPC-EUROPA Transnationaté@gss Programme. The HUY-
GENS system consists of 104 nodes, with 16 dual core proce@8& Power6, 4.7 GHz) as well
as either 128 GBytes or 256 GBytes of memory per node, thwsdamg an excellent environment

for our needs.

The parallel solver has been tested with analytic TeVeS t@leh as the Hernquist lens
(see, e.g., Ref.[ [88] or Paper I), and has also been comparptevious calculations for the
“bullet cluster” (Paper 1), yielding exactly the same résulup to machine accuracy - as the serial
version for identical input parameters. Considering theerical setup for A2390, we choose
a physical box size o¥ = d® = (4Mpc)® in order to meet the requirements of the point lens
approximation at the grid’s boundaries. Performing a varad test runs, we have found that
the solver’'s convergence property quickly deterioratesdfincrease the number of grid points
per dimensiorN, meaning that the code takes many iteration steps or evisntdaconverges.
Typically, this problem already occurs Bt = 512 and manifests itself through extreme fine-
tuning of the constant relaxation parameaterDepending on the particularly used density model
of the cluster, acceptable values forvary within a range of @ — 0.9, but allow them to be
easily identified just after a few iterations. Compared ® dinalysis of Paper |, we thus obtain
no universal value for the relaxation parameter. Similaxg also note that the solver’s behavior
becomes more sensitive with respect to the scalar’s irgtigiss. This is expected because the
effective deviation from the desired solution increases Witnd can usually be accounted for by

slightly modifying the original point mass ansatz of Paptr &chieve a finite core,
#O(r) o log(r + re), (C.9)

wherer. is on the order of a fewd/N. While more elaborated guesses are also possible, they

typically do not yield a much better performance.

Lt is quite likely that the problem is partly related to thestibilizing influence of high frequency modes. These modes
are able to “see” and amplify numerical artifacts which arespnt both in regions around local extrema, where the
derivative of scalar potential exhibits values close tmzand at the grid’s boundaries.
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C.2. Numerical setup for A2390

6, [arcsec]

0, [arcsec]

Figure C.1: Predicted critical curves for an isolated galaxy given by @32): Assuming an aperture mass
of 3.5x 10M,, within a 3’ (~ 11kpc) diameter as well as a lens and source redshifte0.23 andzs = 1,
respectively, we present results for both a high resolytiof.05”, solid line) and a low resolution setting
(~ 1.2”, dashed line) with subsequent interpolation.

C.2 Numerical setup for A2390

In all simulation runs, we set the number of grid points peneatision toN = 896. This yields
a resolution of approximately.2’ (~ 4.5kpc) for our choice ofd = 4Mpc. To improve the
numerical stability of our Fourier solver, we further reguall density components to be centered
within their respective subcube, which can lead to a maxaesiation of 06" from the positions
listed in Tablé 34. In addition, we assume a smoothing petara = 1kpc for the galaxy profile
given by Eq. [(B.2). Once the desired fields and derivativecalculated, we use a cubic spline to
interpolate our results and determine the relevant lengiramtities. For the given specifications,

individual simulation runs typically require 3050 iteration steps to converge, and can last up to
24 hours using 32 processors.

The interpolation approach is justified because the exatiitrés expected to be relatively
smooth. To support this argument, we performed a small nigalegxperiment: Assuming an
aperture mass of.8 x 10**M,, within a 3’ (~ 11kpc) diameter and the parameters from above,

we compared the predicted critical curves of an isolatedxyayiven by Eq. [(B.R2) for low res-
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C.2. Numerical setup for A2390

olution (~ 1.2”) with subsequent interpolation to those calculated forghédii resolution setting
(~ 0.05”). Choosing a lens and source redshifizoE 0.23 andzs = 1, respectively, the results
are shown in Figl_Cl1. While the radial critical curve is netywwell recovered, the radius of the
tangential critical curve, which is relevant for our corsitions on the straight ﬁcis only un-
derestimated by roughly 10% on average. Considering thelfidter model of A2390, however,
galaxies are not isolated, but reside within the clusteaiskground field, which leads to a boost
of their corresponding Einstein radii. Therefore, we exple accuracy of the calculated lensing
properties, including critical curves and caustics, to igaiicantly improved and diicient for

our analysis in this case.

2Although radial caustics can produce straight images, ¢selting orientation (pointing towards the center of the
corresponding lens) is not compatible with the observed arc
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Appendix D

Perturbation equations in TeVeS

D.1 Scalar field evolution during tracking

In the following, we will assume the potential defined in E@.16) and use the notation and

definitions of Ref.|[92]. There it has been found that theascfi¢ld evolves during tracking as

¢ = ¢o + ¢1l0ga, (D.1)
where _
_ do

¢l=dloga (D.2)

is approximately constant. Indeed, following the dermatpresented in Ref._[92], one can show

that
¢1 ﬂ 1+ 3w 2
= -— D.
1+ ¢1 2/10 ( 1-w/’ ( 3)
whereg = +1 denotes the sign of the scalar field’s time derivative, i.e.
B = sgng. (D.4)

To see that the sign in E4._(D.3) is chosen appropriately,uses Eq.[(DI1) and finds that

B= sgn(dug) = sgn¢gy = sgng, (D.5)

where we have assumed that] < 1 for the last equality. Note that this is justified becausthef

requiremenig > 1 for viable cosmological models.
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D.2. Perturbation equations in conformal Newtonian gauge

Here the right-hand side of Ed._(ID.3) deserves specialtaterNaively evaluating the square
root, one obtains the result of Ref. [92]. As the argumerigia sloes depend on the actual choice

of w, however, one has

(D.6)

1+3w)\®  |1+3w
1-w/| |1-w’

which eventually gives the result in Eq._(41.27). During kiag, the fieldu (see Sec["4.3.2]B)

evolves ag: = 2ug(1 + €), where

241+ 3;1(1 + W) log

loge a, (D.7)

and thus 2; + 3(1+ w) > 0 emerges as a condition for stable tracking. For a universarthted
by a cosmological constam, one hasv = —1 and thereforgg = 1. Since the time derivative of
¢ changes its sign when passing from the matter toXtteea (resulting iy momentarily going
to zero) [82], it follows thap = —1 during matter domination. This result is in accordancédawit

previous work [41, 83] where it has been shown thdecreases with time during the matter era.

D.2 Perturbation equations in conformal Newtonian gauge

The fully covariant form of the linear perturbation equadn TeVeS has been derived in Ref.
[97]. Here we will summarize the resulting perturbation &tipns for scalar modes in conformal
Newtonian gauge. Furthermore, we shall assume a spatiigpiicetime geometry and introduce
the fluid’s sound spee@s which is defined as the ratio between the fluid’s pressureigEtion
SP and the corresponding density perturbatiipn i.e. C2 = 6P/sp. As usual, we express the
eguations in Fourier space using the conformal wave véctoraccordance with the coordinate

system specified in Selc. 4.3.

Einstein frame perturbations Instead of using Eq[(4.B4), one may also express pertorzati
in the Einstein frame [82, 97]. In this case, the perturbetsin frame metrig,, may be written

as

oo = —b2e‘45(l +29), (D.8)
8oi = —b?0i, (D.9)
Gij = 0°(1-20)0;;. (D.10)
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D.2. Perturbation equations in conformal Newtonian gauge

In terms of matter frame variables, the Einstein frame phditions are given by the following

relations:

Y=y, (D.11)
O=0D-g, (D.12)
Z=(e*-1)a. (D.13)

To avoid lengthy expressions in the perturbed field equafidnis convenient to make use of

variables from both frames.

Matter fluid equations The density contrast for scalar modes in conformal Newtogiauge
evolves as

S _ 2 : a 2
5 =-1+w)(k 9+3@1>)—3gl (CZ-w)s, (D.14)
where the momentum divergenéebeys

c2 W 2
- 0-KEx + 9 D.15
1+W6 1+w 3 M ( )

b= —Z(l—Bw)9+

the quantityX denotes the shear of the matter fluid dnd- |k|. Note that the equations for

perturbations of the matter fluid remain unaltered comp#rede standard case of GR.

Scalar field equation The perturbed scalar field equation yields

§ =Le e (i + ) - 2205 (36 + K2)
a : 2 (D.16)
~3py+ 8rGae¥p|(1+3C3) 6+ (1+3w) (¥ - 20)]

and

. -
Q= —mae_‘ﬁy + V. (D.17)

Herey denotes the perturbation of an auxiliary field introducedytit the scalar field equation

into two first-order equations [97].

Vector field equation The two first-order equations coming from the perturbedoreetjuation
are

Kg (E + EE) = 81Gap(L+W) (1- &%) (0 - a) - 1 (¢ - bar) (D.18)
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D.3. Approximation for subhorizon scales

and

d:E+lif+($— g)a, (D.19)

where the auxiliary scalar modeis gauge-invariant and related kg, the field strength tensor

of A, which appears in EqL(2.B8) [97].

Generalized Einstein equations From the scalar modes of the perturbed generalized Einstein

eguations, one obtains the Hamiltonian constraint
2 4(;b ~ 2% b ~ b 2 —
- 2k?® — 2¢ D30+ K2Z + 3|+ ae¥ ¢y — Kgk®E = 871Ga2p (6 — 2p) (D.20)
and the momentum constraint equation

§ — fido = anGaeH(1 + W), (D.21)

olo:

O+
Finally, the two propagation equations read

60 + 22 (7 — € P + 26 VKD + o (60 + 3% + 24%Z) + 46 (30 + k)
b

T b b
+37;ae <;>«y—fs(—25+E 4¢p— )‘P 247Gele™ (ca 2wep)

b

o

D.3 Approximation for subhorizon scales

and

¢>) Z] = 87Ga’p(1 + W)X. (D.23)

O-F+

UlO"

In what follows, we will assume the modified Einstein-de &ittosmology introduced in Sec.
(@.3.2.C). The first step is to express the metric potentraterims of matter fluid variables only,
using Egs. [(4.39) and (4.45) together with the perturbagiguations. Starting from Eq_(4]45),

we take its time derivative and after a bit of algebra, we Knairive at B, = const)

a4
— (SKZ‘P 2k?D + k°B ¢¢a + 4—7rGa2p6)
2 Mo
2
+ 9(@5— 9) + (1 - Bug) 9% + —2nGele (D.24)
B, b Ho
2uo~ b
+ 3(B_¢¢ - B) ‘Pd)] (kzg + 127TGaze pé?) O(E)
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D.3. Approximation for subhorizon scales

As can be seen from above, Ef._(D.24) relates the three {gtiavial) fields¥, ® anda, where
a is related toZ through Eq. [D.18), to the matter perturbation variatlemdé. For the next
equation, | eliminate the time derivative dbetween Eqs[{D.19) and {DJ23), which leads to

+(1—e45)E—e45@—4$a+e45(g+5$)2:o. (D.25)

Differentiating the above and eliminating all remaining timevé¢ives by suitable combination
of the perturbation equations, one finds

- 16
1- e4¢¢

N . -2 . . )
_4¢+(1—e4¢)(§—2a—2—4¢_g+5¢+5(;2)]a/
[4e4¢l+ ( SJ) 7

C1-eM) 20 45( 1+e4¢-_ ,a ] (D.26)
+[(1 Ko )B¢¢ e 41 e“‘;q) + 5¢

1+e% ~
lI‘+4¢( T 1](1)

- e4‘;k22 + — 8¢?

877G ap

(o = Buo= b
- e4¢ (B‘p(]ﬁ + B—‘p(]ﬁ - 36)

(1-e)

+l1-3e% -2 4nGEe 0 = O(e).

Finally, the last equation is obtained from eliminatidgpetween Eqs[{D.25) and (D]20). Together
with the relations presented in Séc. 4.3]3 B, one eventealiis up with

(o _Ke )~ 2 Kge® §_ 2 %Ke _a
1-e% - “1_om

ilo(P, 20 _Kg (é 2%
—e¥|2(-+ 22 56 )| K¢

© (b+B¢¢) 1- e4¢( +$) (D.27)

-8

+ ae (47rGa2e p— ﬂq?] (b + @qb)

B, b

X 247G alpl — 81Gaps = O(e).

Since Egs.[(D.24)[(D.26) and (DJ27) form a closed systentHerfields¥, ® and«, the corre-
sponding solution of this system will give the fields as espiens of the matter fluid variables
only. Inserting the logarithmic approximation for the awtibn of ¢ specified in Eq. [[4.31) and

using that for subhorizon scalasi/k < 1, we expand the corresponding equations for the matter

138



D.3. Approximation for subhorizon scales

frame potential$F and® in powers ofaH/k and find to lowest order:

G —A%d (D.28)
i —B%d (D.29)
where s n
i _6uo- 12 (40 + ZBw_) (26 -¢¥ -1 + KeB, (} - +0(e) (D.30)
(Cup +1) 6(2—e4¢—e‘4¢)+KB(294¢+3e_4¢_5)
and — = r n
g Guo—1 o2& 1)+ KeB(H o) (D.31)

(2u0 +1)°6(2 - e# — &%) + Kg (264 + 3e-% - 5)
Note that although we have not presented the resulting ssiores to first order i for clarity,

their contribution is fully taken into account for all calations conducted in Sec. 4.8.4.
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