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Abstract

Widespread availability of geospatial data on movement and context presents opportunities for
applying new methods to investigate the interactions between humans and weather conditions.
Understanding the influence of weather on human behaviour is of interest for diverse applications,
such as urban planning and traffic engineering. The effect of weather on movement behaviour can be
explored through Context-Aware Movement Analysis (CAMA), which integrates movement geometry
with its context. More specifically, we use multi-channel sequence analysis (MCSA) to represent a
person’s movement as a multi-dimensional sequence of states, describing either the type of
movement or the state of the environment throughout time. Similar movement patterns can then be
identified by comparing and aligning mobility sequences. In this paper we apply CAMA and MCSA to
explore weather effects on human movement patterns. Data from a GPS tracking study in a Scottish
town of Dunfermline are linked to weather data and converted into multi-channel sequences which are
clustered into groups of similar behaviours under specific weather typologies. Our findings show that
the CAMA + MCSA method can successfully identify the response of commuters to variations in
environmental conditions. We also discuss our findings on how travel modes and time spent at
different places are affected by meteorological conditions, mainly wind, but also rainfall, daylight
duration, temperature, comfort and relative humidity.

Keywords: context-aware movement analysis, context-aware similarity, human mobility, human
movement, multi-channel sequence analysis, context.

1. Introduction

The spread of geolocated smartphones and the decreasing price of GPS devices have contributed
towards the production of large amounts of data on human movement of unprecedented spatio-
temporal quality (Meekan et al., 2017). New human mobility studies attempt to link such movement
data with contextual information (such as points of interest) to gather insights into, for example,
commuting behaviour (Beecham, Wood, & Bowerman, 2014; Gong, Chen, Bialostozky, & Lawson,
2012), tourist behaviour (Meijles, de Bakker, Groote, & Barske, 2014; Versichele, Neutens,
Delafontaine, & Van de Weghe, 2012), or retail choice decisions and human activities (Sita-Nowicka
et al.,, 2016). However, integrating high resolution GPS trajectories and dynamic spatio-temporal
contextual information remains an underexplored approach for studying the effects of weather on
human movement, despite its relevance for urban planning (Givoni, 1974; Ng, 2012), traffic

engineering (Dunne & Ghosh, 2013), retail planning (Thakuriah, Sila-Nowicka, & Paule, 2016),

1/43



Manuscript accepted to Computers, Environment and Urban Systems, May 2018

40

45

50

55

60

65

tourism (de Freitas, 2003), health (Tucker & Gilliland, 2007), psychology (Nerlich & Jaspal, 2014) and
epidemiology (Horowitz, 2002).

Specific weather conditions often trigger changes in human behaviour, for example, higher
temperatures increase aggressiveness (Anderson, 2001; Carlsmith & Anderson, 1979) and lower
temperatures contribute to irritability and combativeness (Schneider, Lesko, & Garret, 1980; Worfolk,
1997). Different components of weather have different magnitudes of importance, for example, air
temperature, direct solar radiation and wind speed have a more significant influence on human
behaviour than humidity (de Montigny, Ling, & Zacharias, 2012). However, it is challenging to
understand how weather influences human behaviour because the responses are partially a result of
individual preferences (de Freitas, 2015). Some individuals are more responsive to the thermal
component of weather, i.e. the combined effects of air temperature, humidity and solar radiation, while
some are more receptive to physical components like rain, and others are more greatly affected by
the aesthetic components, such as cloud coverage and sunshine. Yet, most individuals do respond to
the combination of all three of these components (de Freitas, 1990).

Traditionally, these interactions have been explored through questionnaires and multidimensional
scaling methods within the field of human biometeorology (Cabanac, 1971; de Freitas, 1990; Manu,
Shukla, Rawal, Thomas, & de Dear, 2016). With the increased availability of tracking and
environmental data we however propose that the effect of weather on movement behaviour can be
explored through Context-Aware Movement Analysis (CAMA), which integrates movement geometry
with its context, i.e. with the surrounding biological and environmental conditions that might be
affecting movement (Andrienko, Andrienko, & Heurich, 2011; Demsar et al., 2015; Dodge et al.,,
2013). More specifically we use multi-channel sequence analysis (MCSA) to represent a person’s
movement as a sequence of states, describing either the type of movement or the state of the
environment throughout time. Similar movement patterns can then be identified (termed context
aware similarity analysis) by comparing and aligning mobility sequences.

Similarity analysis is one of the most common tasks in movement analytics and consists of using
distance measures and grouping methods to split trajectories (Dem3ar et al. 2015) into groups of
elements more similar amongst them than to other groups (Jain et al. 1999), which followed by
clustering allows the identification of spatio-temporal movement patterns that might be linked to

behaviour (Dodge, Weibel, Ahearn, Buchin, & Miller, 2016). Similarity is often established based on

2/43



Manuscript accepted to Computers, Environment and Urban Systems, May 2018

70

75

80

85

90

95

geometry or physical attributes; geometrical similarity solely relies on measures of spatial and
temporal distances, and physical similarity relies on movement attributes such as speed, turning
angle, acceleration and direction (Demsar et al., 2015). Context-aware similarity is based on multiple
attributes (Andrienko et al., 2011; Buchin, Dodge, & Speckmann, 2014; Demsar et al., 2015; Sharif &
Alesheikh, 2017b) describing the conditions within which the movement took place.

Context-awareness is a recent trend (Sharif & Alesheikh, 2017a), as a result there are few context-
aware methods for assessing similarity between trajectories. Sharif & Alesheikh (2017b) generalized
the dynamic time warping (DTW) to develop a context-based dynamic time warping (CDTW) method,
which matches trajectories with contextual similarity even if they are not concurrent. This method is
highly dependent on arbitrary weights for the contextual variables, restricted to numeric context and
disregards changes of context between two points in time. i.e., same contexts are considered similar
even when they are not concurrent. De Groeve et al. (2016) uses single channel sequence
alignments and Hamming Distance to understand the temporal variation of habitat use by roe deer;
the similarity is measured by the cost to transform a sequence of habitat use into another. This
method is able to handle only one contextual variable at time, therefore it is not able to handle the
interactive effect of multiple contextual variables on movement. Buchin et al. (2014) modified existing
similarity measures to make them context-aware, more specifically they defined the distance between
two points as the sum of their contextual and spatial distances. The transition costs between contexts
are defined by the user and the method is restricted to contextual data in the form of polygonal
divisions.

In this paper we propose to use multi-channel sequence analysis (MCSA) to perform context-aware
similarity analysis (CASA) and cluster trajectories into groups of similar behaviour. MCSA is a new
analysis tool for movement data where contextual information can now be readily combined with
detailed tracking datasets. The main advantage of this approach is that it also is possible to consider
as many channels (contextual variables) as desired at once. It is common in movement research to
simultaneously consider multiple environmental variables, which makes MCSA particularly relevant for
studying human mobility, traffic, transportation and wildlife ecology; areas in which movement
behaviour may be contextualised by other dynamic environmental variables such as air temperature,
vegetation indices, humidity, wind speed, air pollution and snow coverage. Single channel analysis

has been used before to explore spatio-temporal patterns on the activity of visitors in Akko’s Old city —
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Israel (Shoval & Isaacson, 2007) and to analyse sequential habitat use by roe deer in North-East Italy
(De Groeve et al.,, 2016). Shoval & Isaacson (2007) focused on sequences of locations, i.e. the
movement itself, while De Groeve et al (2016) emphasized sequences of habitat use classes, i.e. the
context surrounding movement. Horanont et al. (2013) looked at GPS traces from mobile phone users,
coarse scale movement data, hourly temperature, rainfall and wind speed to explore the independent
effects of each variable on people’s activity patterns. We innovate by applying MCSA, for the very first
time, to perform CAMA of fine scale human movement data to simultaneously consider movement
and context by looking at the combined and single effects of six meteorological variables.

Despite the novelty of MCSA in movement research, sequence analysis has been consistently used
in medical and social sciences, particularly within bioinformatics and life courses research (Idury &
Waterman, 1995) Abbott 1995; Abbott & Tsay 2000). In bioinformatics, a sequence represents the
DNA molecule as a string of characters (which stand for specific nucleotides), between a precise start
and end point; the comparison of similarities and differences between those strings allows the
identification of nucleotide sequences related to genetic diseases and traits. We propose that the
same principle can be applied to movement trajectories for identifying groups of people with similar
movement patterns, i.e., clusters of similar behaviour (Billari, 2001). Further, we propose to not only
represent the trajectories with one sequence only, but to use Multi-channel sequence analysis
(MCSA), which allows for comparison of sequences consisting of several dimensions (channels)
(Gauthier et al., 2010). For this, we link data from a GPS tracking study to weather data and convert
the information into multi-channel sequences in a first fully data-driven attempt to explore weather
effects on human movement patterns.

The rest of the paper is structured as follows: first we describe the GPS tracking data and weather
datasets used in our analysis. Next, we explain how the meteorological data sources were combined
and integrated with the GPS tracking data and finally converted into sequences. Next, multi-channel
sequence analysis is applied to identify changes in group movement patterns related to weather. We
conclude with considerations on our findings, the potential of the methodology and ideas for future

research.

2. Methodology
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To study the influence of weather on human mobility behaviour we used a five-step process (Figure

130 1). In Step 1, we integrate trajectories with contextual data by using trajectory annotation to link GPS
points to weather variables, which resulted in contextualized trajectories. In Step 2, we transform

those trajectories into multi-channel sequences by creating alphabets with codes for each weather
variable, travel mode and places. In Step 3, we use optimal matching distances (Abbott & Tsay, 2000)

to calculate a dissimilarity matrix describing the degree of difference between each pair of multi-

135  channel sequences in our dataset. In Step 4, we use Ward’s clustering (Murtagh & Legendre, 2011)
algorithm to partition the sequences into similarity based groups, which represent groups of people
showing similar movement behaviour under particular weather conditions. In Step 5, we perform

statistical test to validate and understand differences between groups.
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Figure 1 — The overview of our framework for identification of groups of similar movement behaviour
under specific weather conditions. The framework has two analyses running in parallel: analysis of
places and analysis of travel modes. Blue shapes marks travel mode, green shapes marks places,
white ellipses represent dataset’s sources, rectangles represent variables, beige arrows represent
processing steps and hexagons derived results in each step.

Trajectory annotation and sequencing were performed using PostgreSQL 9.4 database manager,
VANJU library and its dependencies under Python 2.7, for more details refer to Brum-Bastos, Long,
& Demsar (2016). The MCSA, including optimal matching distances, Ward’s clustering and statistical
tests, was performed using TraMineR 1.8-9 and cluster 1.14.4 libraries under R 3.4.1, for more details

on the equations used by these libraries please refer to Gabadinho, Ritschard, Studer, & Muller (2009)

and Maechler, Rousseeuw, Struyf, Hubert, & Hornik, (2018) respectively.

2.1. Movement data

We analysed a human movement dataset where GPS devices were carried by volunteers from the
Kingdom of Fife — UK (Figure 2a) (Sita-Nowicka et al., 2016). The data were collected between the
28" of September 2013 and the 10" of January 2014 as part of the GEOCROWD project (Sita-
Nowicka et al., 2016), in which 6000 individuals were randomly selected by postcode address from
the voting registry (focusing on the three major towns in this region) and invited via letter to participate
in the study. In total, 206 individuals accepted the invitation and provided useable data whereby they
were tracked for two consecutive weeks within the study time spam. GPS devices recorded
participant positions every five seconds, representing a very high-resolution trajectory of participant
locations. The GPS trackers were coupled with accelerometers, which turned off the GPS when the
individual was not moving Oshan et al. 2014). The aim of the GEOCROWD project was to develop
new movement analytics methods that would allow researchers to find out as much as possible from
the actual GPS data while participants were asked to do as little as possible (i.e. the only task was to
carry a GPS device and mail it back after two weeks). Therefore, very little auxiliary data were
collected and beyond gender and age of the participants, which were sourced from the electoral
register together with the address of each participant, no other demographic or ground truth data were
collected. For more details on data collection refer to Oshan et al. (2014).

In this paper we re-analyse the GEOCROWD data from the town (called Dunfermline; Figure 2a)
with highest number of participants (n=91), of which 23 were female, 41 were male, and 27 did not

declare their gender. Looking at the ages of our participants: 10 were between 21 and 34 years old,
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46 were between 35 and 60 years old, 8 were between 61 and 65 years old, and 27 did not declare
their age. As stated above, apart from their home address, gender, and age; no further information

about participants or their activities were available for our secondary data analysis.
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Figure 2 — a) East coast of Scotland where the GPS data were collected, and trajectories
represented by light blue lines. The green and the red ellipses represent the locations of the Tay and
Forth road bridges respectively. b) Sample of two movement travel modes overlaid by the Thiessen
polygons used to interpolate MIDAS (Met Office Integrated Data Archive System) data and one pixel
of a NIMROD (Met Office's nowcasting system) product for comparison. The frame in the right upper
corner illustrates a trajectory sample classified into movement modes and displayed in a space-time
cube with rainfall data for a one-hour period.

The participant trajectories were classified into movement classes (Walk, Train, Bus and Vehicle,
Traffic Stop, Bus Stop, Train Stop, Fig. 2b) and stop classes (Home, Work, Shopping, Unidentified
Stop) (Sita-Nowicka et al., 2016). The classification achieved 85% accuracy, which was assessed by
comparing a 200 m range from the recorded home addresses with the home location found by the

classification algorithm (for more details on data segmentation and classification refer to Sila-Nowicka

et al. 2016).

2.2. Contextual data and context integration

We linked meteorological data from ground stations and orbital satellites to movement data through
linear dynamic trajectory annotation (DTA-L) (Brum-Bastos et al., 2016), a method that estimates the
contextual variable at the time when the GPS point was collected by interpolating the values

immediately before and after the point chronologically. The DTA-L method accounts for the rate-of-
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change between contextual layers, producing more realistic values for interpolated meteorological
data, and it also deals with the difference between temporal resolutions of the datasets (Brum-Bastos

200 etal. 2017). We collated multiple sources of contextual data on weather (Table 1).

Table 1— Contextual datasets with respective sources and specifications.

Source Variables Data Geometry Tempgral Spat!al
type resolution resolution
Weather Cam . . .
(UK Weather, 2013) Daylight Categoric Point 24 h -
NIMROD . . .
(MetOffice, 2003) Rainfall Numeric Raster 5 min 1-5 km
Temperature
Relative
MIDAS . .
' humidity Numeric Point 1h ---
(Met Office, 2012) Wind speed
Wind
direction

We associated MIDAS data with trajectory points using Thiessen Polygons around each
meteorological station (n = 109, Fig 2b). From the MIDAS meteorological variables we also derived

205 the apparent temperature (AT), which considers the combined effects of temperature, humidity and
wind (Steadman, 1994).

AT =Ta+0.33 xe —0.70 * Ws — 4.00 (1)
Here Ta is the air temperature in °C; e is the water vapour pressure in hPa calculated from the
relative humidity and temperature; and W's is the wind speed in m/s.

210 The Weather Cam data was used to calculate dusk, sunset, sunrise and dawn times (for a central
location in the study area) as at this latitude daylight length varies by approximately 4.5 hours from
September to January. Daylight categories were annotated to trajectories according to the following
rules: Morning Twilight (MT) for fixes recorded in the period between dawn and sunrise, Day Light (DL)
for fixes recorded between sunrise and sunset, Evening Twilight (ET) for fixes recorded between

215 sunset and dusk, Night (NI) for fixes recorded between dusk and dawn.

2.3. Trajectory sequencing

Sequence analysis requires a finite alphabet, in which each letter originally represents genomic
nucleotides (Idury & Waterman, 1995). In single channel sequence analysis, a sequence is a one

220 dimensional ordered list of characters from one alphabet, representing successive states (Abbott &
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Tsay, 2000). However, most phenomena are multidimensional and require multiple alphabets. This
means that each dimension gets its own bespoke alphabet and instead of having the data object
represented as one sequence, the object now has as many different sequences as there are
dimensions, which are called channels (therefore the name Multi-Channel Sequence Analysis). The
alignment, i.e. similarity, then needs to be calculated across all channels along the time axis (Gauthier
et al., 2010). This multi-channel approach is therefore a shift from looking at individual units towards

analysing context, connections and events (Abbott, 1995).

We created several bespoke alphabets, one for movement mode (e.g., walking and driving) and one
for each weather variable in our data. For this, we had to translate the GPS track of each participant
into a multi-channel sequence consisting of time units, to which the characters were assigned (figure
3). Weather conditions were categorized to create weather-based alphabets (Table 2). Rainfall was
classified based on the UK Met Office scale for rainfall intensity, Wind Speed according to an
adaptation of the Beaufort scale (Royal Meteorological Society, 2017), wind direction according to the
cardinal and collateral points, apparent temperature according to the VDI (2008) thermal perception
scale, humidity and temperature according to the 1991-2000 seasonal climate normals for
Dunfermline from Jenkins et al. (2009). Climate normals are a three-decade average of weather
variable commonly used to characterize local climates (Ayoade, 1986).

The multi-channel sequences were then generated for each volunteer and day (illustrated in Figure
3) by taking the modal weather condition (for each variable described in Table 2) and movement
mode for each 1-minute interval for each participant. To each time unit we assigned descriptors for
the weather variables and the respective movement mode, which are linked to the descriptor for the
following time unit building multiple chronologically arranged strips. These sequences can be
analysed alongside strips of contextual variables to understand not only the responses to specific
variables, but also to different combinations of those variables and the identification of patterns
relative for specific age groups, gender or other profiling information. The number of channels in a
MCSA is defined by the number of variables under consideration, in our case eight variables therefore,
eight channels by definition. The use of modal attributes for each 60 second segment (as the data
were collected at a 5 second frequency) filtered out possible noise from the raw data and represents

an appropriate scale of analysis for studying human movement.
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Figure 3 - A multi-channel sequence for a participant over a five-minute period, each channel relates
to one of the meteorological variables and movement modes for that minute of the day.

We calculated the entropy index (El) for the movement mode channel for all sequences of at each
minute (Billari, 2001). The El is a measure of the complexity induced by the distribution of states in a
group of sequences (Gabadinho et al., 2009),which in our case can be used to observe the diversity
of places and travel modes across the week and hours of the day. In our analysis, an El closer to one
indicates an even distribution of a contextual variable across movement modes (alphabet states),
while an El closer to zero indicates a high level of association with one mode. We also looked at the
average time expenditure at home, socialising, shopping, walk, public transport and vehicle by gender
and on each day of the week. The average time expenditure was calculated by first computing the
amount of time spent in each movement mode and dividing it by the total GPS active time for each
participant, keeping in mind that each state in our sequences corresponded to one minute. Following

this, we calculated the mean for the gender of participants (male, female).
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265 Table 2 — Alphabets for meteorological variables used as contextual data with respective ranges and description. Letters in each alphabet are defined based
on standard meteorological classifications (see text for more details).

Thermal perception (°C) Rainfall (mm/h) Wind coming from direction (°)
Letter Description Range Letter Description Range Letter Description Range
VC Very Cold <=-39 DR Dry 0 N North >337.5-225
CD Cold >-39 - -26 VS Very Slight >0-0.5 NE North East >22.5-67.5
CL Cool >-26 --13 SL Slight >0.5-1 E East >67.5-112.5
SC Slightly Cool >-13-0 LM Low Moderate >1-2 SE South East >112.5-157.5
CF Comfortable >0-20 MO Moderate >2-4 S South >157.5-202.5
S Slightly Warm >20 - 26 HV Heavy >4—-10 SW South West >202.5-247.5
w Warm >26 - 32 VH Very Heavy >10 - 50 W West s TS T
H Hot >32-38 \ Violent > 50 NW North West >292.5-337.5
VH Very Hot >38

Humidity (%) Temperature (°C) Wind Speed (m/s)

Letter Description Range Letter Description Range Letter Description Range
EH Extremely High >90 EL Extremely Low <=5 CM Calm <=3
AA Above Average >85 -90 AN Average minimum >5-7 BR Breeze >3-14
AV Average >80 -85 AV Average Average >7 -10 GA Gale >14 - 24
BA Below Average >75 -80 AX Average Maximum >10-13 ST Storm >24
LW Low >70 -75 EH Extremely High >13
EL Extremely Low <70
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2.4. Context-Aware Similarity Analysis (CASA)

2.4.1. Multi-channel Sequence Analysis (MCSA)

We divided our analysis into two streams, by separately analysing travel modes (walk, public
transport and vehicle) and places (home, social places and shopping), since the choice of travel mode
and of staying in a place are not necessarily affected in the same way by weather (Derrick Sewell,
Kates, & Philips, 1968). When the destination is obligatory, such as work, people are more likely to
change their travel mode, for example, driving to work instead of walking under heavy rain; however,
if the destination is linked to leisure, such as shopping, people might simply postpone the task instead
of changing the travel mode to get there (Connolly, 2008; Zivin, 2014). We further split the analysis
into weekdays and weekends to reflect different movement motivations (for example, travel to work
during workdays is usually obligatory regardless of weather conditions while people have more

voluntary choices about their mobility during weekends).

Sequence analysis requires cost matrices, which were computed separately for travel modes and
places and for weekends and weekdays. We used the optimal matching (OM) distance to compute
similarity between sequences as this method has shown potential for identifying groups with matching
movement behaviour (De Groeve et al., 2016). The distance between two sequences is assessed by
quantifying their differences based on a matrix with the costs for substituting, deleting or inserting
letters to transform one sequence into the other. The substitution costs are given by symmetrical
matrices that represent the costs of transitioning between each pair of states in the alphabet
(Gabadinho et al., 2009). In our case, the costs for transitions between the states of travel modes,
places, wind speed and wind direction were computed using transition rates calculated from the

sequences for computing the cost matrices, as shown in Equation 2.

F(i,j)=1=P(@,j) = P3G, D )

Here F(i,)) is the substitution cost, P(i, ) is the transition rate from state i to j.

The costs for transitions between the states of thermal comfort, temperature, humidity, daylight and
rainfall were defined by ordering the classes of each variable (alphabets) by their intensity and

calculating the cost to replace one class by another with Equation 3.

In—(n+1)|
z—1

F(inﬂjn+1) = (3)
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Here F(i,,jn+1) is the cost between the classes i and j with intensity order nand n + 1, and z is the
number of classes for that variable (size of the alphabet). The cost for replacing null values by any
other class (insertion) was zero and likewise to substitute any other class by null (deletion), because
for our study they are related to periods for which we had no information on the participant’s
movement. This procedure resulted in ten cost matrices, one for each weather variable, two for travel

modes and two for places (weekdays and weekend).

The cost matrices are then used to calculate the optimal match (OM) score, for example, given an
alphabet A with size Z, pick sequences I and J based on alphabet A. The sequences are aligned in

time and the OM cost is calculated by summing up the costs of substitutions (Csisj)» deletions and

insertions (d) needed to modify the sub sequences of J, so that it turns into I. The OM is the less
costly and is computed using Equation 4, in which each line defines a possible OM score for two sub
sequences, depending on which of the procedures, insertion, deletion or substitution, is cheaper
(Gauthier et al., 2010).

F(i—1j-1)+Csgs,

F(i,j) = min F(i—1,j)+d 4)
F(i,j—1)+d

Here F(i — 1,j — 1) represents the OM score of a subsequence containing the 1 toi — 1 characters
of sequence I against a subsequence containing 1 toj — 1 in sequence J (Gabadinho et al., 2009;
Gauthier et al.,, 2010). The OM cost is computed for each channel between all multi-channel
sequences and the cost between two multi-channel sequences is the summed costs between their
channels. We calculated the OM distances simultaneously considering three channels for wind:
movement mode, wind speed and wind direction; and two channels for the remaining weather
conditions, where the places or the travel modes were always the first channel and the variables were
considered in turns as the second channel. A k by k dissimilarity matrix, where k is the number of
sequences, represents the level of alignment between each two multi-channel sequences, i.e., a

similarity measure between two moving people.

2.4.2. Cluster analysis & typology
The dissimilarity matrix can be used to find whether people were showing similar movement

behaviour under certain weather conditions. For this we apply a clustering algorithm to the
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dissimilarity matrix for each weather variable for both travel modes and places. We used Ward’s
clustering, a hierarchical bottom-up algorithm that computes dissimilarities between two groups as the
increase in the error sum of squares after merging those groups. The algorithm starts with each
sequence as their own group and successively merges them into clusters based on the minimum
increase in the error sum of squares, until it becomes a single cluster (Murtagh & Legendre, 2011).
For selecting the optimal number of clusters, we used the Calinski-Harabaz Index (CHI) (Calinski &

Harabasz, 1974) that considers the within and between groups dispersion as shown in Equation 5.

CHI = trace (B)
trace (W)

®)

Here W and B are the within and between group dispersion matrices, the trace of W is the sum of
the within cluster variance and the trace of B is the sum of the between cluster variances; a higher
CHI indicates a better data partition (Ahmed, 2012), because it shows that the within group distances
are lower and the between groups distances are higher. We varied the number of clusters from the
number of sequences (i.e. the maximum possible number of clusters, if every sequence is allocated to
its own cluster) to one and used the configuration with highest CHI, except where the maximum CHI
resulted in individuals’ clusters, to assign the multi-channel sequences into their final clusters. The
combination of values of weather and movement modes in each cluster then defined a type of the

group. Note that the types are not consistent between variables, i.e., we found different clusters for

each weather variable, thus the typology is specific for each variable.

We then looked at the distribution of the proportion of time spent in different travel modes and
places for the weather conditions associated with each cluster. We expected this would give insights
into the different behavioural patterns in individuals related to weather (i.e., an overall picture of the
effects of the weather conditions within each cluster on movement modes). We tested the significance
of the differences using Kruskal-Wallis and Levene’s tests and we assumed that a statistically
significant difference between medians or variances of each cluster was enough evidence to support

the existence of different behavioural groups.

We further used discrepancy analysis to verify if and how behavioural groups were related to age
and gender. This method evaluates the strength of the association between the groups of sequences
and a categorical covariate (Studer, Ritschard, Gabadinho, & Miiller, 2011) by calculating the share

of discrepancy according to Equation 6 and looking at its p-value.
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sp =338 (6)

SST

Here SD is the share of discrepancy, SS; is the sum of square distances within the age or gender

groups, and SS; is the total sum of square distances between all sequences (Batagelj, 1988).

3. Results

3.1. Trajectory sequencing

The different movement modes for each participant for each day of the week are shown in Figure 4,
most sequences start between six and eight in the morning and have a minimum of 58% and a
maximum of 98% of missing data, i.e., minutes for which the GPS tracker was off and movement
modes are unknown (white gaps in Figure 4). The entropy index (El) (Figure 5) provides some insight
into participants daily movement behaviour. The El increases between 4:00 am and 7:00 am on
weekdays, but only rises between 8:00 am and 10:00 am on weekends, indicating higher diversity of
movement modes earlier on weekdays. Sunday has the highest El and similarly to Saturday, it drops

and rise between 3:00 pm and 6:00 pm.

The average time spent (AVTS) walking did not change substantially across weekdays and
between genders (Figure 6). The AVTS at home varied throughout the week, being the highest on
Sunday and lowest on Wednesday for both genders (dashed orange lines on Figure 6). The low
values on Wednesday might be related to the higher average time spend socializing in comparison to
other days of the week (dashed red lines on Figure 6). Moreover, women seem to spend more time
socializing and to concentrate social activities on Tuesdays, Wednesdays and Saturdays; while men
socialise very little on Tuesdays and keep a steady, but lower than women, average from Wednesday

to Monday.
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3.2. Context-Aware Similarity Analysis (CASA)

3.2.1. Cluster analysis & typology

Overall the CHI was higher on weekdays for all weather variables for travel modes and places
(Figure 7) indicating the existence of a clear division amongst behavioural groups and a more
homogenous movement behaviour within these groups regarding the weather effects in comparison
to the weekend. This could also be reflective of the higher diversity of activities during the weekends
shown by the higher El; more variety might lead to lower separability between groups and higher
within group distances making more difficult to identify group’s responses to weather. This usually
results in a higher optimum number of cluster, as seen on the weekend chart (Figure 7 right).

On weekdays the CHI followed a similar pattern for travel modes and places for all weather
variables but relative humidity, for which the index was about two times higher for travel modes
(Figure 7 left). This indicates a stronger distinction between the two behavioural groups regarding
travel modes and relative humidity on weekdays, which might be related to people using relative
humidity as a proxy for rainfall to plan their journeys. Relative humidity, rain and comfort showed the
highest discernibility for travel mode differences during the week, while for places the highest

discernibility was associated with temperature, rain and comfort during the weekend.
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Figure 7 - Calinski-Harabaz index (solid line) and optimal number of clusters (dashed line) for MCSA
performed on weather variables for travel modes (green) and places (red) on weekdays and on
weekend. The reported CHI is divide by ten and refers to the number of clusters used to split the
sequences.
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Next, we present some of the more interesting findings while the remaining set of results can be
found in the appendix. The typologies are specific for each variable, i.e., Type 1 for wind is not the
same as type 1 for rainfall. The analysis of shared discrepancy did not show significant correlation
between the behavioural clusters and gender or age groups, all SD were lower than 0.01 with non-
significant p-values (a = 0.1). Significant values for Levene’s (L) and Kruskal-Wallis’ tests (K) are
reported on the heading of each graph on the pictures by the following symbology: *** for a = 0.001, **
fora=0.01, *fora=0.5, . fora=0.1.

3.2.2. Wind

Figure 8 shows the clusters for MCSA on wind on weekdays (Figure 8A) and weekends (Figure 8B).
The top boxplot shows the distribution of the GPS active time spent under wind blowing from each
direction and the middle one shows the distribution of the GPS active time spent under different wind
intensities. Both boxplot panels are divided into Type 1 and Type 2, which refer to the two clusters
found by the MCSA analysis and for which the distribution of the GPS active time in different travel
modes is shown on the boxplot panel at the bottom. This boxplot shows the difference between
groups with different distribution of time spent on travel modes, while the remaining panels describe
the wind conditions encountered within those groups. There were no significant differences on the
average time spent on different travel modes on weekdays under different wind conditions (Figure 8A),
on the weekend however we found significant differences on the average time expenditure in public
transport and vehicle (Figure 8B). CASA clustering showed a significantly lower use of public
transportation with concurrent increase on the use of vehicles under more windy conditions coming

from North-East, North-West and South-West (Type 2).
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Figure 8 — Clusters for MCSA on wind speed, wind direction and travel modes on weekdays (A) and
weekends (B). The four top panels describe the wind conditions within each cluster (Types) and the
respective proportions of GPS active time spent under the classes of wind speed and direction. The
two panels at the bottom show boxplots with the distribution of proportional GPS active time spent on
each travel mode by the wind types described on the panels above. The dashed line on boxplots
show the average and the continuous line the median. L reports significance from Levene’s test and K
from Kruskal-Wallis’ test.

Figure 9 shows the clusters for MCSA on wind on weekdays (Figure 9A) and weekends (Figure 9B).
The top boxplot shows the distribution of the GPS active time spent under wind blowing from each
direction and the middle one shows the distribution of the GPS active time spent under different wind
intensities. Both boxplot panels are divided into five types on weekdays and two types on weekends,
which refer to the clusters found by the MCSA analysis and for which the distribution of the GPS
active time in different activities is shown on the boxplot panel at the bottom. This boxplot shows the
difference between groups with different distribution of time spent on activities, while the remaining
panels describe the wind conditions encountered within those groups. For places, there were
significant differences in the average time expenditure at home and shopping during the week, and in
socialising on the weekend (Figure 9). There were five clusters based on wind during weekdays, but
Type 1, Type 3 and Type 4 are very similar in terms of time spent at places and they do not show any

pattern in terms of wind direction and strength. We are not able to draw conclusions about Type 5
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because of its small number of participants (n = 7); Type 2 however, showed a lower proportion of
time spent at home with concurrent increase of time spent shopping under more windy conditions.
CASA clustering on weekend showed a significant decrease on the proportional time spent socialising
under more windy conditions coming from NE, NW and SW (Type 2). Whereas weekend Type 1 does

not show any prevailing direction and its strength alternates between calm and gale for around 88% of

the time.
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Figure 9 — Clusters for MCSA on wind speed, wind direction and places on weekdays (A) and
weekends (B). The four top panels describe wind conditions within each cluster (Types) and
respective proportions of GPS active time spent under the classes of wind speed and direction. The
two panels at the bottom show boxplots with the distribution of proportional GPS active time spent on
places by the wind types described on the panels above. The dashed line on boxplots show the
average and the continuous line the median. L reports significance from Levene’s test and K from
Kruskal-Wallis’ test.

3.2.3. Rain

Figure 10 shows the clusters for MCSA on rainfall on weekdays (Figure 10A) and weekends (Figure
10B). The top boxplot shows the distribution of the GPS active time spent under different rainfall
intensities. The boxplot panel is divided into three types on weekdays and four types on weekends,

which refer to the clusters found by the MCSA analysis and for which the distribution of the GPS
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active time in different travel modes is shown on the boxplot panel at the bottom. This boxplot shows
the difference between groups with different distribution of time spent on travel modes, while the
remaining panels describe the rainfall conditions encountered within those groups. There were no
significant differences in the average time expenditure for different travel modes on weekends under
different rain conditions (Figure 10), on weekdays however we found significant differences in the
average time spent in public transport (Figure 10). CASA clustering showed that in comparison to
more drier conditions (Type 1 and Type 2), public transport is significantly less used under heavy
rainfall (Type 3) with a concurrent, but not statistically significant, increase on the use of vehicles and

decrease on walking.
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Figure 10 — Clusters for MCSA on rain and travel modes on weekdays (A) and weekends (B). The
two top panels describe the rain conditions within each cluster (Types) and the respective proportions
of GPS active time spent under the rainfall classes. The two panels at the bottom show boxplots with
the distribution of proportional GPS active time spent on each travel mode by the rain type described
on the panel above. The dashed line on boxplots show the average and the continuous line the
median. L reports significance from Levene’s test and K from Kruskal-Wallis’ test.
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Figure 11 shows the clusters for MCSA on rainfall on weekdays (Figure 11A) and weekends (Figure
11B). The top boxplot shows the distribution of the GPS active time spent under different rainfall
intensities. The boxplot panel is divided into three types on weekdays and six types on weekends,

which refer to the clusters found by the MCSA analysis and for which the distribution of the GPS
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active time in different activities is shown on the boxplot panel at the bottom. This boxplot shows the
difference between groups with different distribution of time spent on activities, while the remaining
panels describe the rainfall conditions encountered within those groups. The only significant
difference for places was on the average time expenditure at home on weekends and weekdays
under different rain conditions (Figure 11). On weekdays we found one cluster with predominantly dry
conditions (Type 1), a second cluster with dry conditions but an even distribution of time amongst the
other rain states (Type 2) and a third cluster with violent rain (Type 3). As expected, people spend
more time at home under violent rain (Type 3), but surprisingly people also spend more time at home
under predominantly dry conditions (Type 1) in comparison when there is a mix of dry and different

rain conditions (Type 2).
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Figure 11 — Clusters for MCSA on rain and places on weekdays (A) and weekends (B). The two top
panels describe the rain conditions within each cluster (Types) and the respective proportions of GPS
active time spent under the rainfall classes. The two panels at the bottom show boxplots with the
distribution of proportional GPS active time spent on places by the rain type described on the panel
above. The dashed line on boxplots show the average and the continuous line the median. L reports
significance from Levene’s test and K from Kruskal-Wallis’ test.

On weekends, Type 5 and Type 6 have such a sparse number of members that we considered them
outliers. Under heavy rainfall (Type 3) there is a higher average time expenditure at home, while less

time is spent at home under predominantly dry conditions, even with the remaining time being almost
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evenly distributed amongst the other rain conditions (Type 2 and Type 4); the driest conditions (Type

1) showed the higher time expenditure at home.

3.2.4. Daylight

Figure 12 shows the clusters for MCSA on daylight on weekdays (Figure 12A) and weekends
(Figure 12B). The top boxplot shows the distribution of the GPS active time spent under different light
conditions. The boxplot panel is divided into three types on weekdays and two types on weekends,
which refer to the clusters found by the MCSA analysis and for which the distribution of the GPS
active time in different travel modes is shown on the boxplot panel at the bottom. This boxplot shows
the difference between groups with different distribution of time spent on travel modes, while the
remaining panels describe the daylight conditions encountered within those groups. There were no
significant differences on the average time expenditure for different travel modes on weekends nor on

weekdays under different daylight conditions (Figure 12).
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Figure 12 — Clusters for MCSA on daylight and travel modes on weekdays (A) and weekends (B).
The two top panels describe daylight conditions within each cluster (Types) and respective
proportions of GPS active time spent under the classes of daylight. The two panels at the bottom
show boxplots with the distribution of proportional GPS active time spent on each travel mode by the
daylight type described above. The dashed line on boxplots show the average and the continuous line
the median. L reports significance from Levene’s test and K from Kruskal-Wallis’ test.
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Despite not being statistically significant, less daylight time resulted in less time walking (Type 3)
compared to more time walking under more daylight hours (Type 1 and Type 2). A similar decrease is
observed on the time expenditure in public transport, with a concurrent increase on time expenditure
in vehicles. This trend reverses on weekends, in which walking and public transport are more
prominent than the use of vehicle in a group exposed to more night hours (Type 2), while the use of
vehicles prevails in a group with more daylight hours (Type 1).

Figure 13 shows the clusters for MCSA daylight on weekdays (Figure 13A) and weekends (Figure
13B). The top boxplot shows the distribution of the GPS active time spent under different light
conditions. The boxplot panel is divided into three types on weekdays and two types on weekends,
which refer to the clusters found by the MCSA analysis and for which the distribution of the GPS
active time in different activities is shown on the boxplot panel at the bottom. This boxplot shows the
difference between groups with different distribution of time spent on activities, while the remaining
panels describe the daylight conditions encountered within those groups. The analysis for daylight
and places, was significant for all places both on weekend and weekdays. There are 3 daylight types
on weekdays, Type 1 has more daylight, Type 2 is the one with more night time and Type 3 is an
almost even mix of day and night (Figure 13). Type 1 has less time spent at home than Type 2,
however we are unsure why the time expenditure at home is the lowest for Type 3. There is less
shopping and socialising in the group with more night hours (Type 2). On weekends (Figure 13 B).
more time is spent at home under brighter conditions (Type 2), while under lower light conditions

(Type 1) more time is spent shopping and socialising.
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Figure 13 — Clusters for MCSA on daylight and places on weekdays (A) and weekends (B). The two

585  top panels describe daylight conditions within each cluster (Types) and respective proportions of GPS
active time spent under daylight classes. The two panels at the bottom show boxplots with the
distribution of proportional GPS active time spent on places by the daylight type described above.

The dashed line on boxplots show the average and the continuous line the median. L reports

significance from Levene’s test and K from Kruskal-Wallis’ test.
590

4, Conclusions and discussion

The recent widespread availability and quality of geospatial data on movement and context presents

opportunities for developing new methods to understand the interactions between movement

behaviour and environment. We were interested on how weather affects human movement, in

595 particular the choice of travel mode and time spent on activities. Our methodology was efficient in

identifying groups of specific behaviour under certain weather conditions, and it can be expanded to

other types of movement and contextual data. We investigated the impact of wind (strength and

direction), rainfall, daylight, comfort, relative humidity and temperature, on the proportion of GPS

active time spent on travel modes (walk, public transport, vehicles) and places (home, shopping,
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socialising). Differences were observed between the time expenditure on different travel modes and
places across the day, week and between genders. The analysis of the entropy index (El) showed a
high diversity of movement modes in the early morning on weekdays and weekends, with a positive
shift of three hours on weekends. Horanont et al. (2013) found the same entropy pattern, despite
analysing weekdays and weekends together, when using GPS traces from mobile phone to explore
the effects of weather on daily routine. We found that during weekdays there is a drop with
subsequent rise on the El, which does not exist on weekends because the El is higher from 10 am
throughout the afternoon. Horanont et al. (2013) found a very similar variation for specific extreme
weather conditions, according to meteorological information provided by the authors, which the
authors attributed to the weather conditions. However, we believe it is related to similar differences to
the ones we found between weekdays and weekend, and that it is more likely that the extreme
weather events reported by Horanont et al. (2013) took place on a weekend. Similarly to Ryan et al.
(2010), we found that people have more varied activities on weekends, which was shown by the
highest El on Sunday and Saturday. This happens because people have more scope for freedom of
action on weekends, in contrast to the external controls imposed on weekdays by work and school

(Ryan et al., 2010).

The average time spent (AVTS) walking did not change substantially across weekdays and
between genders (Figure 6). The AVTS at home varied throughout the week, being the highest on
Sunday and lowest on Wednesday for both genders (dashed orange lines on Figure 6). The low
values on Wednesday might be related to the higher average time spend socializing in comparison to
other days of the week (dashed red lines on Figure 6). Moreover, women seem to spend more time
socializing and to concentrate social activities on Tuesdays, Wednesdays and Saturdays; while men
socialise very little on Tuesdays and keep a steady, but lower than women, average from Wednesday

to Monday.

Similarly to Stover et al. 2012, we found that the wind strength and direction exerted considerable
influence on weekends on the use of public transport and vehicles, which is possibly related to traffic
restrictions at the Tay and Forth bridges (See dashed ellipses in Figure 1) under high winds, which
are more likely to come from NW, SW and NE in the Central Belt of Scotland. There were at least ten

occasions during our data collection during which the bridges were either closed or had restrictions on
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the type of vehicle and speed limits because of high winds (Traffic Scotland '@trafficscotland' 2017). It
is possible that these restrictions are reflected in our findings during these windy periods, since the
participants in our study were mostly commuters from Fife to Edinburgh or Dundee (Sila-Nowicka et al.

2016) and therefore typically have to cross one of these two bridges daily.

As opposed to what Guo et al. (2007) found in Chicago, we found that rain during the weekend has
no key role on travel modes, but heavy rain decreases the use of public transport during the week.
This could be explained by th