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Abstract  

Following the debate by empirical finance research on the presence of non-linear 

predictability in stock market returns, this study examines forecasting abilities of non-

linear STAR-type models. A non-linear model methodology is applied to daily returns 

of FTSE, S&P, DAX and Nikkei indices. The research is then extended to long-horizon 

forecastability of the four series including monthly returns and a buy-and-sell strategy 

for a three, six and twelve month holding period using non-linear error-correction 

framework. The recursive out-of-sample forecast is performed using the present value 

model equilibrium methodology, whereby stock returns are forecasted using 

macroeconomic variables, in particular the dividend yield and price-earnings ratio. The 

forecasting exercise revealed the presence of non-linear predictability for all data 

periods considered, and confirmed an improvement of predictability for long-horizon 

data. Finally, the present value model approach is applied to the housing market, 

whereby the house price returns are forecasted using a price-earnings ratio as a measure 

of fundamental levels of prices. Findings revealed that the UK housing market appears 

to be characterised with asymmetric non-linear dynamics, and a clear preference for the 

asymmetric ESTAR model in terms of forecasting accuracy.   
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Chapter 1  
Introduction 

 

The main objective of this research is to investigate methods of econometric forecasting 

and to assess whether non-linear approach can improve forecasting accuracy of 

financial asset returns compared to traditional linear models. Time-series modelling and 

forecasting are important for a wide range of disciplines. A number of researchers have 

demonstrated the importance of accurate time-series forecasts for market participants 

and policy-makers (Granato and Suzuki, 1996; Montgomery et al., 1998; Alexander, 

1999; McMillan, 2002). Thus, McMillan (2002) highlights the importance of 

understanding dynamics within financial markets, especially if these are characterised 

by non-linear adjustments.     

The inability of linear models to successfully explain certain financial phenomena, such 

as leptokurtosis, volatility clustering and the leverage effect (Brooks, 2002) supports the 

application of non-linear methodologies to financial modelling. Furthermore, 

unexpected dramatic changes in the stock market price in the late 1990s and early 2000s 

where the prices significantly diverged from their fundamental values, have influenced 

research to re-examine the standard present value model and the topic of stock market 

predictability. This study will examine forecasting abilities of non-linear models, 

namely smooth transition autoregressive (STAR) models, compared to linear 

alternatives in the form of a random walk model and a linear regression using daily 

stock returns.   
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The assumption of predictability of stock market returns is inconsistent with the 

efficient market hypothesis, however an ample number of research studies have 

confirmed presence of predictability across various financial assets (Fama and French, 

1998; Campbell and Shiller, 2001; Lewellen, 2004; Torous et al., 2004; Campbell and 

Yogo, 2006). In addition, the failure of linear models to validate the present value 

model encouraged the assumption of the presence of non-linear dynamics within the 

relationship between stock prices and their determinants, in particular dividend yield 

(McMillan, 2004; Kanas, 2005; Rapach and Wohar, 2005; Bali et al., 2008). The non-

linear approach confirmed the apparent mean reversion behaviour of stock prices 

characterised with non-linear adjustments to the long-run equilibrium. The presence of 

these non-linear adjustments were attributed to the presence of market frictions, 

including transaction costs and limit to arbitrage, the presence of speculative bubbles, 

and interaction between noise traders and informed arbitrageurs. While it has been 

challenging to prove the presence of bubbles in the financial market due to difficulties 

involved in identifying the bubbles, the market frictions and traders’ interaction have 

been successfully modelled using non-linear models. In particular, McMillan (2004) 

suggests that the exponential STAR (ESTAR) model is able to capture different 

dynamics following the different magnitude of divergences, thus accounting for market 

frictions where arbitrageurs will only engage in trade when a price deviation exceeds a 

certain cost barrier. Similarly, the logistic STAR (LSTAR) accounts for different 

dynamics arising from the sign of disequilibrium, thus capturing traders’ behaviour in 

bullish and bearish markets (McMillan, 2001).  

Thus, the current study intends to apply non-linear models to an error-correction 

framework in order to examine out-of-sample forecasting performance of STAR-type 
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models in the context of monthly stock returns time-series using dividend yield and 

price-earnings ratio. Furthermore, it has been suggested that the stock market 

predictability increases with the horizon, thus forecasts performed on long-horizon data 

suggested to offer more accurate forecasts (Fair and Shiller, 1990; Montgomery et al., 

1998). Hence, further to the investigation of monthly returns predictability, the research 

will consider long-horizon forecasting in the form of three, six, and twelve month 

periods. While previous studies have concentrated on an in-sample long-horizon stock 

return predictability, this investigation will extend the limited research into an out-of-

sample predictability of stock returns.  

Furthermore, extending the type of financial assets examined in this study, the non-

linear error-correction methodology is applied to the housing market. Whereby the 

present value equilibrium framework is applied to the forecasting of house price returns, 

using a real income as a measure of fundamental price levels. The research into non-

linear forecasting of house prices is somewhat limited, compared to an overwhelming 

amount of research into financial market predictability. However, the housing market 

dynamics are of an immense importance for policy-makers as the effects of housing 

market changes might have severe consequences on the economy as a whole 

(Muellbauer and Murphy, 1997; Crawford and Fratatoni, 2003; Fraser et al., 2008; 

Miles, 2008). Thus, Case et al. (2001) found changes in housing market to have a 

greater effect on consumption than changes in the stock market. In addition, Koetter and 

Poghosyan (2009) pointed out that imbalances in the housing market might lead to 

instability in the financial and banking sector, thus highlighting the importance of 

understanding the dynamics of the housing market for policy makers.     
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The approach to forecasting house prices used in this study is based on the methodology 

suggested by Black et al., (2005). However, different from previous research (Black et 

al., 2005; Black et al., 2006; Goodman and Thibideau, 2008), the current study employs 

non-linear tests of stationarity in the addition of non-linear STAR-type models and 

performs an out-of-sample forecast, as opposed to in-sample examination.   

The structure of the thesis is as follows: Chapter 2 offers an extensive review of time-

series modelling and forecasting literature (Section 2.2), with an overview of linear and 

non-linear models and forecasting methodology applied in further empirical chapters 

(Section 2.3). Chapter 3 is an empirical study of daily stock returns predictability in the 

context of non-linear modelling. Chapter 4 applies a non-linear error-correction model 

to examine predictability of monthly stock using dividend yield and price-earnings ratio 

(Section 4.4), extending the research further by considering long-horizon out-of-sample 

forecasting (Section 4.5). Chapter 5 extends the examination to a different type of 

financial assets, and applies a non-linear approach to forecasting UK house prices using 

a price-income ratio. Chapter 6 summarises the empirical results and concludes.  
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Chapter 2  
Review of literature and non-linear 
empirical forecasting techniques 

 

2.1. Introduction  
 

This chapter provides an overview of econometric forecasting with emphasis on non-

linear modelling, followed by a detailed discussion of a methodology which will be 

applied in empirical chapters of the thesis. The literature review will provide an 

evaluation of an informative basis using existing concepts and theories within the 

subject of a non-linear forecasting approach.  

The chapter is organised as follows: Section 2.2 provides a review of time-series 

modelling and forecasting literature, including an overview of non-linear models, topics 

of stationarity and stock return predictability, and issues involved in econometric 

forecasting and assessment of forecasting accuracy. The methodology is included in 

Section 2.3. Section 2.4 concludes.  
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2.2. Literature review  

 

Introduction to econometric modelling  
 

Time-series modelling and accurate forecasts are important for a wide range of 

disciplines. Thus, Granato and Suzuki (1996) demonstrated the use of econometric 

forecasting in political science by applying econometric modelling to voting behaviour. 

Similarly, Montgomery et al. (1998) examined the US unemployment rate and 

emphasised the importance of accurate forecasting of the series for the economy as a 

whole. Correspondingly, McMillan (2002) suggests that non-linear adjustment within 

financial markets presents an important issue for market and policy makers. Thus, while 

small deviations from the fundamental asset pricing equilibrium might remain 

uncorrected by the market participants, significantly larger variations in fundamental 

equilibrium, on the other hand, put an increasing pressure for both market participants 

and policy makers to intervene in order to correct disequilibrium.    

Importantly, Chatfield (1977) opposes the notion of a true model on the basis that any 

econometric model that has been fitted to the data is merely an approximation to the 

truth, and some models are simply more robust to deviations from the selected model 

over time than others. Chatfield (1977) also proposed that models allowing parameters 

and structure to vary over time would have an advantage in suiting a real data over 

constant approximations. 
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Overview of non-linear models 
 

Introduction to non-linear modelling  

Time-series modelling, in particular cointegration methodology, has number of practical 

applications to financial markets. Some of these include spot-futures arbitrage, yield 

curve modelling, and index tracking (Alexander, 1999). Furthermore, the interest in 

non-linear models emerged from empirical observations of financial markets and the 

inability of linear models to explain some frequently occurring phenomena in financial 

data. Such phenomena include leptokurtosis, which is tendency of financial data to 

display fat tails and excess peakedness at the mean in its distribution. Volatility 

clustering is another common occurrence in financial assets returns where volatility has 

the tendency to appear in bunches in such way that large returns regardless of the sign 

follow large returns, whereas small returns follow small returns. In addition, linear 

models cannot account for the tendency of volatility to rise more following large price 

falls than following price rises of the same magnitude, which is known as leverage 

effect. On the contrary, non-linear models can capture these phenomena and 

successfully model financial series behaviour for the further use in forecasting. 

However, non-linear models require different estimation techniques to linear structure 

models, hence a number of researchers disregard the use of non-linear models due to 

their complexity and lack of appropriately valid tools of analysis
1
. For instance, Feige 

and Pearce (1976) point out the optimality of autoregressive moving average (ARMA) 

models in the use of forecasting is due to their low marginal cost which is outperformed 

                                                           
1
 For a detailed review of earlier work and development of non-linear modelling and a full list of 

references refer to Tong (1990). Tong (1990) explores the development of non-linear modelling through 

the first introduction of certain non-linear concepts and models to further development such as 

introduction of special cases and applications to various data sets.  
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by the high marginal benefit of the generated forecast. Evidently, there is a predicament 

of costs and complexity of implementing and interpreting non-linear models over their 

usefulness in modelling financial time-series. Chatfield (1997) suggests that while the 

principals of multivariate models, where a forecasting model of a variable includes 

explanatory variables, are theoretically appealing, there is a danger of inclusion of 

unnecessary explanatory variables which in turn might lead to a reduced forecasting 

ability of the model. Chatfield (1997) mentions that in many case studies simple 

univariate models appear to be more robust to model misspesification than more 

complex models are.  

Further interest in non-linear behaviour in financial markets followed from numerous 

discussions and tests of whether the purchasing power parity (PPP) holds. According to 

Brooks (2002), the theory behind PPP is that the long-run exchange rate between two 

countries equals the ratio of their relative price levels. PPP implies stationarity of the 

real exchange rate. One method of testing PPP is through cointegration. According to 

the theory, the log of the exchange rate between two countries and the logs of the price 

levels in these countries should be cointegrated with the cointegrating vector [1  -1] 

(Brooks, 2002). In addition, the validity of PPP can be assessed by testing whether the 

real exchange rates are mean-reverting (Chortareas et al., 2002). However, the PPP 

hypothesis does not seem to hold when the standard Dickey-Fuller (DF) unit root test is 

applied. Whereas, the PPP hypothesis is supported when alternative panel unit root tests 

are used (MacDonald, 1996). Hence many researchers have suggested that this could be 

due to the fact that exchange rates follow a non-linear process which in fact is 

stationary.  
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Chortareas et al. (2002) also note an increased interest in applying non-linear models to 

modelling real exchange rates (Michael et al., 1997; Sarantis, 1999; Baum et al., 2001). 

These non-linear models include the threshold autoregressive (TAR) and smooth 

transition autoregressive (STAR) models. However, Kapetanios et al. (2003) point out 

that research literature lacks any investigations and attempts to distinguish between non-

stationarity linear systems and stationary non-linear STAR models.  

However, as pointed out by Abhyankar et al. (1995), the presence of non-linear 

structure in financial markets time-series data will be inconsistent with the statement of 

efficient market hypothesis (EMH).  

 

Non-linear dynamics in financial time-series 

The presence of non-linear dynamics in financial time-series is well documented with 

an ample number of studies confirming the presence of non-linearities across different 

types of financial time-series data. Thus, Abhyankar et al. (1995) found clear evidence 

of non-linear dependence in FTSE 100 returns using high-frequency data. Lekkos and 

Milas (2004) applied the STAR model to analyse excess returns predictability of the UK 

government bonds using various risk factors, including the forward premium, the slope 

of the term structure, excess FTSE stock returns and the FTSE index dividend yield. 

The results revealed regime-switching behaviour within the returns and time-varying 

structure of the expected excess returns. Consequently, while the linear autoregressive 

moving average (ARMA) model was the most commonly used model for time-series 

analysis and forecasting since the early 1970s, as De Gooijer and Kumar (1992) point 

out, that occasionally the preference for non-linear models was suggested by theory or 
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data, as linear models seemed to be unable to explain certain phenomena observed in 

financial time-series. 

One of the proposed explanations for such non-linear mean-reverting adjustments in 

real exchange rates, in particular, was the presence of transaction costs. Thus, 

Kapetanios et al. (2003) point out that in the presence of transaction costs in the asset 

market, the profitability of arbitrage when there is a differential between the risk 

adjusted returns on two assets depends on whether this differential is greater than the 

transaction costs involved. Hence, Kapetanios et al. (2003) proposed that there is an 

inverse relationship between the speed of reversion to equilibrium and the size of the 

differential between returns, i.e. the larger the differential between the assets returns, the 

stronger the tendency to reverse back to the equilibrium. This can be explained due to 

the fact that owing to the presence of transaction costs, small deviations from the 

equilibrium price will not be corrected. Consequently, this will be reflected in non-

linear behaviour of speed of reversion to the equilibrium as it will increase with the size 

of the deviation (McMillan, 2001). In other words, the speed of reversion will be close 

to zero in the case of small imbalances of the price hence indicating traders’ inactivity. 

However, the speed of reversion will be increasing rapidly as the price deviations 

become larger creating profitable arbitrage opportunities. In addition, McMillan (2001) 

suggests other market frictions, such as short selling and borrowing constraints, to be 

the cause of non-linear behaviour. Effectively, deviations caused by these factors will 

differ in magnitude and will result in asymmetric dynamics of returns.  

McMillan (2005b), nevertheless, argues that even though many studies in this area 

recognise non-linear dynamics caused by the presence of transaction costs, the speed of 

reversion, however, is modelled to be the same regardless of the sign of the 
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disequilibrium. This is based on the grounds of the behavioural finance approach 

considering the interactions between noise traders and arbitrageurs. McMillan (2001) 

explains the presence of asymmetries in financial market returns due to the interaction 

of informed traders and noise or uninformed traders, whose presence on the market 

ensures profitable arbitrage opportunities. As opposite to noise traders, informed traders 

will only engage in trading activities when price movements around the equilibrium 

price are significantly large for an arbitrage profit to be made exceeding any transaction 

costs. Martens et al. (1998) also pointed out that index-futures arbitrageurs will react in 

a similar way by not entering the market when the price deviation is not sufficient 

enough to compensate for the costs of transaction, thus creating a band of inactivity for 

arbitrage traders around the equilibrium. Martens et al. (1998) demonstrate the effects of 

the magnitude and the sign of mispricing, where the impact of mispricing increases with 

its size and the information effect of negative mispricing errors having a greater impact 

compared to the positive errors, by applying a threshold error-correction approach. 

Another suggested possible explanation of such phenomenon can be explained by the 

presence of bubbles. Conversely, according to Evans (1991), temporary speculative 

deviations in price time series may occur due to periodically collapsing bubbles. There 

have been a number of attempts to model such non-linear dynamics consistent with a 

bubble component (van Norden and Vigfusson, 1998; Bohl and Siklos, 2004). However, 

Campbell et al. (1997) point out the difficulty of identifying and testing bubbles 

empirically. Moreover, there is a lack of theoretical support for the explanation of 

bubbles. McMillan (2009) points out that models based on the bubble approach do not 

contain any information about the dynamics that take place in the period leading to the 

start of the bubble. This issue would also be very important when using models in 
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forecasting as the bubble might be difficult to predict, particularly due to difficulties 

involving identification of initial dynamics leading to the occurrence of the bubble.  

Furthermore, it appears that the theories of behavioural finance offer adequate 

explanation of the initial formation of market bubbles. According to behavioural finance 

theories, traders behave differently in rising and falling markets. Hence, their actions 

will endure different speeds of reversion depending on whether the change in the market 

was positive or negative in the sign. In other words, it is expected that noise or 

uninformed traders have tendency to overreact in a response to good news, i.e. positive 

disequilibrium (deviation from equilibrium). On the other hand, in the case of negative 

news, i.e. negative disequilibrium, noise traders seem to exhibit conservative behaviour 

(Shleifer, 2000). Bullish markets lead to overconfidence, trend-chasing and 

overreaction, whereas bearish markets are characterised by more conservative behaviour 

of traders as they are influenced by fundamental news (McMillan, 2006). If this 

empirical observation holds, then it is apparent that the speed of reversion will depend 

not only on the size but also on the sign of deviation from equilibrium. As a suggestion 

considering the discussed issue, McMillan (2005b) proposes the ESTR model, which 

allows for asymmetry in the sign of the disequilibrium.  

However, West (1988) found little direct evidence of noise trading to have a significant 

effect on stock price determination in the late 1980s. Moreover, West (1988) defined a 

rational bubble as an extraneous event that has an effect on stock prices because it is 

expected to do so by the market participants, and also pointed out that different 

researchers may interpret the term bubble differently. Thus, for instance, bubble might 

be referred to as the explosive process, or it can be seen as any deviation from 

fundamental values due to speculation.   
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However, non-linear modelling poses a number of computational challenges. Thus, 

there is the additional issue of testing for presence of non-linearity, or in other words 

deciding whether a linear specification is sufficient enough to model particular financial 

data and thus which non-linear framework will resolve such matter. De Gooijer and 

Kumar (1992) pointed out that in terms of practical use the main requirement of a non-

linear model is to be general enough in order to be able to capture a wide range of non-

linearities. This criterion also applies to tests of non-linearity, model diagnostic and 

evaluation. Brooks (2002) suggests that the initial choice of linear or non-linear type of 

models considers whether there are any suggestions from financial theory that particular 

variables may have a non-linear relationship. Similarly, Teräsvirta et al. (2005) 

expressed their concerns that incorrect specification of a non-linear model at the model 

building stage could lead to the model producing an inferior forecast. In addition, 

Marmol and Velasco (2004) expressed their concerns about the presence of the spurious 

regression which may occur when applying cointegration analysis. The problem of 

spurious regression arises due to the presence of non-stationarity that can induce 

significant correlations between non-stationary series despite the absence of theoretical 

groundings or justification for any relationship between these series. However, despite 

the difficulties involved in non-linear modelling, the use of non-linear models is 

developing fairly rapidly.  

 

Regime-switching models 

There is a vast number of various non-linear models, however, this paper will 

concentrate on regime-switching type of non-linear models including threshold 
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autoregressive (TAR), standard and extended versions of smooth transition 

autoregressive (STAR), and error-correction model.   

 

TAR and STAR models 

Threshold autoregressive models (TAR) are a class of non-linear time-series 

autoregressive models, which, unlike standard autoregressive models, allow for locally 

linear approximation over different states (Brooks, 2002). TAR models were first 

proposed by Tong (1978) and later developed further by Tong and Lim (1980) and 

Tong (1983). It was initially suggested as an alternative model for describing periodic 

time-series (Tsay, 1989). Tong (1990) describes TAR models as a simplified way of 

presenting a complex stochastic system in terms of decomposing it into a set of smaller 

sub-systems. Tsay (1989) identifies the main features of threshold type models which 

include limit cycles, amplitude dependent frequencies, and jump phenomena. Generally, 

linear time-series models are unable to capture such characteristics of financial time 

series data. The main difference between the TAR type of models and Markov 

switching models is that the state variable, i.e. the variable determining the behaviour of 

the series under a particular state, is assumed to be known or observable, whereas it is 

prone to variation under conditions of Markov switching regimes.  

The threshold autoregressive process is able to capture asymmetric limit cycles, as the 

main motivation for these models was to describe limit cycles of cyclical time-series 

(Tsay, 1989). Applications of TAR models include modelling exchange rates and 

modelling arbitrage opportunities implied by the difference between the spot and futures 

prices for a given market. For instance, Teräsvirta and Anderson (1992) raised an issue 
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of non-linearity in business cycles, as linear models such as ARMA can only be used in 

the case of symmetrical business cycles. Teräsvirta and Anderson (1992), presented 

strong evidence of presence of non-linearity in business cycles which confirmed that 

business cycles exhibit asymmetric behaviour. 

Further, Teräsvirta and Anderson (1992) suggested that any non-linear time-series can 

be represented by a smooth transition autoregressive (STAR) model. Unlike standard 

TAR models, STAR models allow for more gradual transition of the dependent variable 

between regimes. The regime indicator in these models is a continuous function rather 

than an abrupt on-off switch of TAR models (Brooks, 2002). STAR models were first 

proposed by Chan and Tong (1986) as a generalisation of a non-linear two-regime 

univariate self-exciting threshold autoregressive (SETAR) model. Self-exciting 

threshold autoregressive (SETAR) models are a special case of general univariate TAR 

models, where the state-dependent variable is the dependent variable itself.  

As pointed out by McMillan (2001), STAR models are able to capture two types of 

asymmetric adjustments such as the direction and size of the disequilibrium. In other 

words, these models allow for different dynamics depending on whether the value of the 

variable is above or below the threshold parameter, and between periods when the 

variable takes a large or small value. The logistic smooth transition autoregressive 

(LSTAR) model has a logic distribution that approximates to the normal distribution 

and also has an advantage in terms of being able to estimate its parameter using 

analytical derivatives. Luukkonen et al. (1988) also note the LSTAR model as having 

distinct computational advantages over standard TAR. However, the most important 

feature of the LSTAR process is that the model allows for smooth transition when the 

threshold is set to differentiate dynamics between positive and negative values of the 
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dependent variable. Furthermore, exponential STAR (ESTAR), on the other hand, is 

used when modelling the magnitude of the dynamics of the data as the model allows to 

account for different behaviour of the time-series depending on the size of values of the 

dependent variable. These differences in dynamics initiate non-linear adjustments of the 

data and follow theoretical explanations of the presence of non-linearities in the 

financial markets due to market frictions and interaction between informed and noise 

traders.    

In addition, STAR models, by definition, offer a smooth transition between regimes as 

opposed to abrupt switch of TAR and Markov switching models, which seems to be 

more a plausible response in stock markets characterised by a large number of 

participants engaging in trading activities at slightly different times (Sarantis, 2001; 

McMillan, 2002). Moreover, Sarantis (2001) suggested that the differences in timing of 

market participants’ reactions are due to heterogeneous beliefs of individual traders, 

variations in learning speeds and different investment horizons.      

 

Equilibrium-correction systems 

Equilibrium-correction econometric systems have emerged from cointegrating analysis. 

The error-correction mechanism was first introduced by Sargan (1964) and then further 

developed by Engle and Granger (1987). The hypothesis of cointegration is based on a 

notion that certain economic variables do not diverge from each other greatly in the 

long-run. Such variables might drift apart in a short-run due to various reasons, for 

instance seasonality; however, economic forces will intervene to bring them back to the 

equilibrium. Such economic forces include market mechanisms, such as arbitrage 
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trading, and government intervention. The concept of cointegration is closely linked to 

the existence of an error-correction model. In other words, cointegrating variables 

belong to an economic system which converges over time into a long-run equilibrium.  

Cointegration was developed in order to investigate common trends in financial time-

series and had proved to be a compelling technique of modelling long-run and short-run 

dynamics in multivariate economic systems. Furthermore, Alexander (1999) pointed out 

that portfolio risk management assessment techniques involve correlation analysis of 

returns, whereas cointegration analysis is based on raw price data. Hence, when the 

price data is differenced for standard risk-return models, vital information about long-

term trends in the data might be removed. Alexander (1999) highlights the difference 

between the notions of cointegration and correlation which are related, however, are 

different concepts. Correlation mirrors co-movements in returns, whereas cointegration 

measures long-run co-movements in prices. A cointegrating relationship may still be 

present even when correlation between series is low. Hence, Alexander (1999) suggests 

that cointegration methodology generates more effective long-term hedging techniques. 

Similarly, investment management strategies benefit from being based on a 

cointegration approach rather than on standard correlation techniques which are unable 

to account for the presence of long-term trends in the data.          

Harris and Sollis (2003) point out that differencing the variables when estimating 

dynamic models in order to achieve stationarity might result in vital long-run 

information to be lost. Hence, an error correction model is a more suitable approach 

since the model will incorporate both the short-run and long-run characteristics, where 

disequilibrium is in fact a process of adjustment to the long-run equilibrium model.  
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Cointegration techniques are widely used to test the asset pricing model, including 

testing the validity of the present value model, according to which current stock prices 

are discounted values of future dividends with the discount rate being equal to the 

required rate of return. Early studies on the present value model assumed dividends to 

be trend-stationarity, however found prices to be too volatile and inconsistent with the 

theory where rationally expected future dividends are discounted by a constant real 

interest rate (Caporale and Gil-Alana, 2004). Hence, later studies had suggested 

invalidity of trend-stationarity. However, it must be pointed out that the early tests were 

based on standard unit root tests for determining the order of integration. Hence, it can 

be argued that results of previous studies which were inconsistent with the present value 

model might be due to the low power of standard unit root tests. In addition, Caporale 

and Gil-Alana (2004) pointed out that failure to find cointegration could signify the 

presence of speculative bubbles rather than invalidity of the present value model.  

Moreover, Campbell and Shiller (1988a) point out that our understanding of long-run 

equilibrium of cointegrating variables is more efficient in explaining long-run 

tendencies rather than short-run deviations. As a result, long-run equilibrium models, 

such as the error-correction model (ECM), are valid for describing long-run 

relationships between variables while having limited ability to explain slow adjustments 

to the equilibrium after a short-run random shock. Campbell and Shiller (1988a) suggest 

the following factors in an attempt to explain the lack of instantaneous adjustment back 

to the equilibrium including sticky prices, long-term contracts, or costs of adjustments. 

Consequently, there have been a number of various research studies attempting to 

develop an econometric model able to fit the long-run properties of the data as well as 

accommodate the type of short-run deviations. 
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Further extensions of the standard error-correction model include fractional 

cointegration and the Markov error-correction model. Thus, while the standard 

cointegration testing procedure often relies on standard unit-root tests which assume the 

order of integration to be an integer, fractional cointegration methodology allows the 

order of cointegration to be other than an integer. Moreover, it has been suggested that 

slow mean reversion might not be captured by the standard cointegration analysis as 

opposed to the fractional integration. Baillie and Bollerslev (1994) pointed out that 

short-run deviations seem to be highly persistent as a result of the error-correction term 

to react slowly to shocks. Thus, the deviations from the cointegrating relationship can 

be described as following a long memory process, or in other words, the effect of a 

random shock dies out at a slower rate comparing to exponential decay of 

autocorrelation functions, such as the ARMA process. Consequently, Caporale and Gil-

Alana (2004) point out that standard cointegration analysis restricts the equilibrium 

error to be an I(0) process, which might not be consistent with highly persistent 

deviations from equilibrium where errors respond more slowly to shocks.  

A fractionally integrated process first proposed by Granger (1980) is specifically 

intended to capture such long memory-type behaviour. The process allows a fractionally 

integrated process to describe a wider range of mean-reversion behaviour of financial 

variables that are beyond the capabilities of standard cointegration analysis. Similarly, 

Caporale and Gil-Alana (2004) suggest that the reason for empirical evidence 

surrounding studies of the present value model being inconclusive is the use of the 

discrete options I(1) and I(0) applied in a classical cointegration approach, which can be 

argued to be a restrictive condition. Hence, the researchers propose that the process of 

adjustment to the equilibrium might be expressed through a fractional integration I(d). 
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According to Caporale and Gil-Alana (2004), standard cointegrating tests fail to 

recognise slow adjustments of deviations occurring as a result of shocks, thus producing 

results contradicting the present value models theory. Caporale and Gil-Alana (2004) 

provide evidence of the presence of fractional cointegration in relationship between 

stock prices and dividends, thus supporting the validity of the present value models over 

a long horizon. In addition, Cheung and Lai (1993) argue that fractionally integrated 

error-correction terms generate a flexible and parsimonious model that is able to capture 

low-frequency dynamics of short-term disequilibrium movements.  

Another type of error-correction models are known as Markov error-correction (MEC) 

models. These models are characterised by being able to model the different rates of 

adjustment of deviations from the long-run equilibrium (Psaradakis et al., 2004). The 

main advantage of the MEC model is its flexibility allowing for non-stationary 

behaviour of deviations from the long-run equilibrium. This assumption seems to follow 

empirical observational evidence, as adjustments of an economic system after, for 

instance, a dramatic market crash are unlikely to be similar to adjustment following 

normal recession. Psaradakis et al. (2004) state that motivation for this type of 

investigation has emerged from historic observation of the US stock prices in certain 

periods when theory struggled to explain their behaviour in terms of their underlying 

fundamentals. As an attempt to provide reasonable explanations for such phenomenon, 

some researchers have proposed incorporating a time-varying discount factor, while 

others explained it due to the presence of intrinsic rational bubbles. Thus, Psaradakis et 

al. (2004) applied MEC methodology to US stock prices, and demonstrated that MEC 

models are able to identify periods of a short-term disequilibrium which is not corrected 

as a result of presence of either an intrinsic bubble or a time-varying discount factor. In 
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addition, the MEC model can also account for adjustment that are might be non-

continuous or not constant in their strength. In addition, Psaradakis et al. (2004) point 

out that the MEC model is most suitable for cases where the change in the regime is 

caused by a sudden shock, which cannot be modelled by smooth transition or threshold 

models.  

Psaradakis et al. (2004) suggest that while cointegrated relationships between stock 

prices and dividends seems to hold in the long-run, prices may deviate from the 

underlying fundamentals in the short-run. It appears that cointegration relationship fails 

in the short-run. However, it can be suggested that cointegration is still present in the 

short-run, but the adjustments are characterised by different rates, or speeds of 

adjustment. Therefore, further extensions of equilibrium-correction models allow for 

non-linear disequilibrium adjustments (Granger and Swanson, 1996; Balke and Fomby, 

1997; Michael et al., 1997; Siklos and Granger, 1997; Peel and Davidson, 1998) 

  

Applications of non-linear models  

Guidolin and Timmermann (2006) demonstrated that standard linear models were 

unable to capture regime-switching dynamics of joint distribution to US stock and bond 

returns fully, whereas non-linear models provided a much thorough appreciation of the 

complexity of the data series. On the contrary, Brooks (2002) points out that despite the 

fact that switching models are able to fit the data sufficiently, these models do not seem 

to generate superior forecasts than linear models or random walk model. Dacco and 

Satchell (1999) suggest that poor forecasting results are due to the difficulties involved 

in forecasting the actual regime that the time-series will be in. Thus, Clements and 
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Smith (1997) point out that a number of researchers (Diebold and Nason, 1990; De 

Gooijer and Kumar, 1992) describe existing evidence on whether non-linear forecasts 

are superior to linear ones as irregular and are rather unconvincing.  

Moreover, there seems to be much debate regarding forecasting performance of non-

linear models as a whole. Thus, De Gooijer and Kumar (1992) carried out a review of 

development in non-linear time-series forecasting and concluded that there was no 

uniformity in literature to whether non-linear models provide forecasts superior to linear 

alternatives. Despite the disagreement in literature regarding non-linear time-series 

modelling, De Gooijer and Kumar (1992) are optimistic on the subject and suggest that 

non-linear models can be useful in modelling and forecasting certain financial 

phenomena when linear models fail to do so. Clements and Smith (1999), on the other 

hand, carried out an empirical research comparing multi-step forecast performances of 

SETAR and linear autoregressive models, in an attempt to surpass the conclusion made 

by De Gooijer and Kumar (1992) of no uniformity regarding evidence of forecasting 

ability of non-linear models. While Clements and Smith (1999) added to the empirical 

research of multi-step forecasting techniques, their results indicated non-linear models 

to have a forecasting advantage over linear alternatives depending on the regime of 

serial dependence. Overall, Clements and Smith (1999) concluded that non-linear 

models hold a significant potential improvement over linear models in terms of 

forecasting performance.        

Thus, Abhyankar et al. (1995) found evidence of the presence of non-linearity in high 

frequency minute-to-minute FTSE returns, however also found the series to be 

adequately explained by a simple GARCH process. Clements and Smith (1997) 

compared different methods of multi-step ahead forecasting using self-exciting 
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autoregressive (SETAR) models and AR models as a comparative benchmark. The 

study analysed the US gross national product (GNP) data over two time periods, namely 

1973:01 – 1990:04 and 1991:01 – 1994:04. In the first time period the SETAR models 

were found to be outperforming the AR model by 10% at four-steps ahead forecast. 

However, it did not demonstrate any clear preference over longer horizons. Moreover, 

the results from the second period were unclear in terms of the preferred forecasting 

model. Montgomery et al. (1998) compared forecasting performance of a number of 

linear and non-linear models using the US quarterly unemployment rate in order to 

capture asymmetric cyclical behaviour of the data during economic expansions and 

contractions. The univariate linear models including ARIMA were unable to efficiently 

describe cyclical asymmetries of the data, while non-linear models were found to 

produce significantly improved multi-step out-of-sample forecasts during economic 

contractions. Non-linear models used in the study included the threshold autoregressive 

(TAR) model and Markov switching autoregressive models.   

Martens et al. (1998) applies an error-correction model to futures and spot prices where 

futures and index returns are explained by past futures and index returns, with the error-

correction term being represented by mispricing error where deviations from the 

equilibrium are not arbitraged away immediately. The approach by Martens et al. (1998) 

presents the error-correction term as a reflection of the effects of arbitrage, whereby the 

traders’ actions divert prices back to the equilibrium level thus causing the error-

correction term to revert to zero. Moreover, Martens et al. (1998) suggested that mean 

reversion could also be caused by the concept of infrequent trading where mispricing as 

a result of new market information is not followed by a lagged reaction of market 

participants, thus not every trader will engage in the correction of mispricing over the 
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same short period of time. Thus, the effects of arbitrage and infrequent trading create 

somewhat similar patterns in futures prices, causing the mean reversion in a non-linear 

error-correction system, with infrequent trading producing more gradual reversal.       

McMillan (2004) applied a non-linear error-correction model to short- and long-term 

UK interest rates and found the logistic STAR (LSTAR) model to outperform linear and 

non-linear alternatives considered in the study. The presence of market frictions, such as 

transaction costs, borrowing constraints and short-selling, induces non-linear 

equilibrium adjustment, whereby the speed of adjustment varies depending on the 

magnitude of deviation. In addition, actions by policy-makers cause the speed of 

adjustment to vary between positive and negative movements in the inflation rate, 

where the expectation of rising inflation is characterised by a quicker response than 

falling inflation. Similarly, Teräsvirta et al. (2005) found LSTAR models to generate 

more accurate forecasts comparing to linear AR models. Moreover, research found that 

combining forecasts improved the overall accuracy of forecasts. However, Teräsvirta et 

al. (2005) pointed out that it was unclear from the results of an investigation whether the 

difference in forecasting gain was substantial enough to justify application of non-linear 

models and the complex model building required in estimation of non-linear models.    

As Alexander (1999) pointed out, based on a random walk approach, the best forecast 

for the future would be the current value plus a random shock or a drift. Nevertheless, 

since cointegration models contain information about the long-term equilibrium of the 

system, these models might be considered as potentially valid forecasting tools.     
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Stationarity and non-linearity 
 

Testing for the presence of non-linearity 

Naturally, implementation of non-linear models raises an issue of testing for the 

presence of non-linearity, that is, deciding whether a linear specification is sufficient 

enough to model particular financial data and thus which non-linear framework will 

resolve such matter. Brooks (2002) suggests that the initial choice of linear or non-

linear types of models should consider whether there are any suggestions from financial 

theory that particular variables may have a non-linear relationship. Consequently, 

Luukkonen et al. (1988) recommended testing the presence of non-linearity as a first 

step in practical model building before applying a complex non-linear model to the data. 

Early studies concentrated on portmanteau tests to detect non-linearity in time-series 

data. Thus, Davies and Petruccelli (1986) compared two promising tests for time-series 

non-linearity in anticipation that some time-series previously assumed to be a linear 

process might in fact contain non-linearity, and thus benefit from non-linear modelling. 

The tests included variations of a portmanteau test for non-linearity. However, the study 

found no definitive results in support of either of the tests considered. Moreover, Davies 

and Petruccelli (1986) argued that generation of a general statistic able to detect global 

non-linearity will be highly implausible.    

Luukkonen et al. (1988) proposed a STAR model non-linearity test with the test statistic 

following Chi-squared distribution which, according to researchers, compares well to 

the CUSUM test used for testing against SETAR non-linearity. Similar to the Box-

Jenkins procedure, Luukkonen et al. (1988) suggest that the model selection process, 

starting with specifying the correct order of the linear autoregressive model component, 
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could be performed by using an information criterion, such as SBIC (Schwarz, 1978). 

Luukkonen et al. (1988) proposes a number of tests that are more practical than the ones 

suggested by Chan and Tong (1986) and are not restricted to LSTAR non-linearity, and 

find an augmented first-order test procedure to be the most successful in providing a 

good alternative to the CUSUM test.   

Kapetanios et al. (2003) point out that the earlier literature had mainly concentrated on 

assessing linear models, while not focusing on possible existence of non-linear 

dynamics in financial time-series. However, more recent literature has shifted the 

interest to the presence of non-linearities in financial market dynamics. Available 

empirical evidence supports the notion of presence of non-linear behaviour in financial 

variables. For instance, Chortareas et al. (2002) found evidence of non-linear mean-

reversion in real exchange rates for the G7 countries. In addition, Caner and Hansen 

(2001) found the US unemployment rate to follow a stationary threshold autoregressive 

process. 

Abhyankar et al. (1995) identified two main questions to be investigated in non-linear 

econometric modelling. One of these questions is inevitable when addressing the issues 

of the presence of non-linearity. First, whether it is possible to effectively identify the 

presence of non-linearity in financial time-series; and second, if the presence of non-

linearity was detected, is there a suitable time-series model able to explain such non-

linear behaviour. The discussion in this section of the chapter is intended to identify a 

reasonable number of studies that had attempted to answer these questions, however, it 

seems that the literature is unable to provide a clear answer to both of these subjects.     
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Importance of stationarity and the concept of non-linear stationarity 

Many financial series are believed to be non-stationary. However, some researchers 

suggest that in many cases these series can be considered stationary in terms of a non-

linear fashion. Hence, in the presence of non-linear behaviour in the series it is logical 

and reasonable to apply a specially designed non-linear test to detect the presence of 

stationarity. Moreover, De Gooijer and Kumar (1992) pointed out that the stationarity of 

the data should be established and corrected prior to model identification and 

estimation, as non-stationarity overwhelms genuine features and dynamics of the data 

and is not a source of non-linearity on itself.  Davies and Petruccelli (1986) also pointed 

out that the early non-linearity tests required time-series data to be stationary prior to the 

testing. 

Caner and Hansen (2001) suggest that previous studies on non-linear time-series, 

including TAR models, have assumed stationarity of the data used, which made it 

difficult to distinguish between non-stationarity and non-linearity. They also claim that 

early statistical methods are unable to discriminate non-stationarity from non-linearity 

due to the problem of the joint modelling of unit roots and thresholds.  Moreover, many 

researchers were faced with a problem of examining such series since most well known 

methods of analysis are mainly developed exclusively for linear series, making these 

impossible to apply to non-linear dynamics. Consequently, there was an incentive to 

develop new techniques and frameworks suitable for time-series of non-linear nature. 

As a result, a large proportion of literature on non-linear dynamics is concentrating on 

testing for the presence of non-linear behaviours in financial markets. On the other 

hand, researchers who already are convinced that financial markets exhibit non-linear 
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behaviour concentrate on testing specific non-linear models in terms of their ability to 

explain market movements.  

Henry (2006) points out that the non-stationary nature of financial markets is prone to 

structural breaks makes the equilibrium-correction a fairly risky forecasting tool. 

Hendry (2000) showed that the presence of local shifts in the data produced invalid 

forecasts from vector equilibrium-correction models (VEqCMs). Hence, it is evident 

that while VEqCMs generates significant forecast for a stationary series, it becomes 

unreliable should the location shifts occur.  

It is apparent that applying standard linear Dickey-Fuller (DF) unit root test to a non-

linear stationary process can lead to modelling misspecification and, hence, incorrect 

results. As a result there were a number of alternative unit root tests proposed by 

various researchers.  

 

Tests of non-linear stationarity   

Most studies on alternative stationarity tests were motivated by the fact that the standard 

DF test persistently fails to reject the null hypothesis of a presence of a unit root. In 

addition, following numerous studies on purchasing power parity (PPP) (MacDonald, 

1996; Edison and Kloveland, 1987; Chortareas et al., 2002; Lo and Wong, 2006) where 

data exhibited some regime changes, it was found that the unit root can be rejected for 

such data after certain adjustments for regime changing shocks were made. All of these 

factors motivated studies aimed at finding an alternative procedure to standard unit root 

tests, namely the DF test.    
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Balke and Fomby (1997) have applied Monte Carlo simulations to the threshold 

autoregressive model with three regimes, thus intending to analyse non-stationarity and 

non-linearity jointly in terms of threshold cointegration. As a result, Balke and Fomby 

(1997) found that for threshold parameters the power of the DF test falls considerably. 

Similarly, Michael et al. (1997) suggest that standard unit root test and cointegration do 

not account for the effects of STAR non-linearity and hence can lead to biased results. 

Enders and Granger (1998) also developed a unit root test with the alternative 

hypothesis of stationarity with asymmetric adjustment. These tests were based on the 

threshold autoregressive (TAR) and the momentum threshold autoregressive (M-TAR) 

models. According to Enders and Granger (1998), M-TAR models are able to capture 

sharp or deep movements in the time-series sequence. Enders and Granger (1998) 

applied their test to term structure of interest rates and found that in the case of 

approximate symmetric adjustment the standard DF test is more powerful compared to 

the TAR and M-TAR models. However, the results are contrary when adjustment is 

asymmetric. In this case TAR and M-TAR models are significantly more powerful over 

the DF test.  

Caner and Hansen (2001) developed a new asymptotic theory for an unrestricted two-

regime threshold autoregressive (TAR) model with a possible unit root, which allows to 

distinguish a non-linear process from a non-stationary one. The methodology involved 

using asymptotic and bootstrap-based tests. Caner and Hansen (2001) found that in the 

cases where the true process is non-linear the standard DF test and ADF test are much 

less powerful than the suggested alternative test based on the TAR model. Furthermore, 

Chortareas et al. (2002) have proposed a unit-root test procedure against a stationary 

non-linear STAR building on a combination of works by Kapetanios et al. (2001) and 
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Schmidt and Phillips (1992). Chortareas et al. (2002) applied the test to the real 

exchange rates and found that for the majority of cases studied the null of unit root was 

rejected against the non-linear stationary STAR model. The DF test, on the other hand, 

was unable to reject the null. These results confirm that there is strong evidence of non-

linear mean-reversion in the real exchange rates.   

Kapetanios et al. (2003) argue that the presence of transaction costs in financial assets 

markets results in non-linear adjustments of rates of return to equilibrium thus 

exhibiting apparent non-stationarity. In other words, processes might only appear non-

stationary when in fact they are stationary but non-linear. As a result, the standard DF 

and augmented DF (ADF) tests are not powerful enough against such dynamics. 

Kapetanios et al. (2003) introduced an easy to apply procedure for testing the presence 

of non-stationarity in time-series data using exponential smooth transition 

autoregressive (ESTAR) processes, applied their testing procedure to the real interest 

rates and real exchange rates from the 11 major OECD countries, and as a result have 

developed unit root test framework resistant against the ESTAR stationary process. The 

proposed test was found to have better power comparing to the standard DF test. 

Kapetanios et al. (2003) also found evidence of non-linear mean-reversion in both 

series.  

Furthermore, on the basis of the test by Kapetanios et al. (2003), Sollis et al. (2002) 

proposed an asymmetric STAR-type unit root test by introducing asymmetry to mean 

reversion adjustment of real exchange rates. The test was further developed by Sollis 

(2009) as a stationarity test against asymmetric STAR process non-linearity. Similarly, 

Pascalau (2007) proposed a stationarity test framework, which allows to test the LSTAR 

process non-linear stationarity as well as testing for general STAR-type stationarity.  
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The group of non-linear stationarity tests based on works of Kapetanios et al. (2003) 

have proved to be robust and are characterised by the ease of application. These tests 

will be applied in empirical chapters of this paper and will be discussed in more 

technical detail in Section 2.3.    

 

 

Stock returns predictability  
 

As indicated by numerous researchers, the main application of econometric modelling is 

its application in forecasting (Chong and Hendry, 1986; Granger and Newbold, 1986; 

Diebold and Mariano, 1995; Montgomery et al., 1998; Pindyck and Rubinfeld, 1998; 

Brooks, 2002). The forecasting of financial variables, such as price series, based on the 

detection of patterns in the past values of the variable is usually referred to as technical 

analysis. Nevertheless, the research into stock market returns predictability produced 

rather extensive debate whether it is feasible to predict stock market behaviour using 

statistical measures of econometric modelling and as to whether technical analysis has 

any solid theoretical grounds and, hence, whether it is viable enough to use in practice. 

The issue received newly deserved attention when the hypothesis of market efficiency 

came under examination, since a number of studies suggested that the stock market 

returns do not fully reflect the market risks as proposed by the efficient market concept. 

Hence, as pointed out by Brock et al. (1992), the presence of predictability in stock 

market returns could be explained either by market inefficiency or time-varying 

equilibrium returns. Brock et al. (1992) found that the simplest trading rules used in 
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their study have confirmed their predictive power, however, the researchers have 

warned against data snooping and also suggested that the returns generating process for 

the stocks might be more complex than is anticipated by the linear models. This 

statement might be considered as an implication of non-linear dynamics of stock prices. 

Allen and Karjalainen (1999) avoid the problem of data snooping that occurs due to the 

ex post specification by using a learning generic algorithm which is generated using the 

data prior to the start of the test period. However, their results are consistent with the 

view that markets are efficient in the sense that the technical trading rule implemented 

in their study was unable to generate profit after transaction costs.  

However, contrary to the implication of the efficient market hypothesis, evidence from 

numerous empirical investigations provides sufficient evidence of stock market returns 

predictability (Pesaran and Timmermann, 1995, 2000; McMillan, 2001; Rapach et al., 

2005). Thus, Pesaran and Timmermann (1995, 2000) supported the presence of 

predictability of US and UK stock returns using a linear recursive forecasting approach. 

Moreover, Pesaran and Timmermann (1995) suggest that stock returns predictability 

seems to hold across international markets as well as different time horizons. Moreover, 

Abhyankar et al. (1997) suggested that early studies have doubted the possibility of 

stock market prices being described by a deterministic process due to the market 

movements being mainly triggered by the random flow of news. However, as the 

researchers pointed out, further profound understanding of non-linear systems and 

development of non-linearity detection tests supplemented further enquiry into the 

forecastability of market returns. 

Pesaran and Timmermann (1995) pointed out that stock returns predictability could be 

explained maintaining the validity of an efficient market by the time-varying expected 
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returns. The researchers also suggested that while returns predictability could be a 

supporting evidence of market efficiency on the condition of constant expected returns, 

the predictability of excess returns, nonetheless, does not imply that the stock market is 

inefficient. Pesaran and Timmermann (1995) reference the concept of an intertemporal 

equilibrium model of the economy, which can explain stock predictability in 

conjunction with market efficiency, however attempts to substantiate the theory were 

proven to be inconclusive.       

Rapach et al. (2005) suggests that the preference for macroeconomic variables comes 

from the fact that these are most likely to influence investments, consumption levels and 

expected cash flows, and hence are important variables of asset-pricing models. In 

addition, Rapach et al. (2005) also point out that due to mixed results of various 

empirical investigations there is no clear conformity to a particular macro variable as 

the most reliable in terms of stock returns predictability. Rapach et al. (2005) found 

interest rates to be the most reliable and consistent macro variable for forecasting stock 

returns.   

Pesaran and Timmermann (1995) carried out an investigation into predictability of US 

stock returns and found evidence of stock predictability, however did not succeed in 

establishing a robust forecasting model. The results also revealed that the level of 

predictability is related to the patterns of business cycles and magnitude of the shocks. 

Moreover, periods of high levels of excess returns predictability seemed to correspond 

with periods of high volatility. Thus the study found that predictability of excess returns 

was higher during volatile period in the 1970s, compared to calmer periods of the 1960s 

and 1980s which were characterised by much smaller forecasting gains. Pesaran and 
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Timmermann (2000) also found presence of predictability when repeating their 

approach using UK stock returns data. 

Fang and Xu (2003) carried out an empirical study into predictability of asset returns 

using daily data on the Dow Jones Industrial Average by combining a technical analysis 

approach and time-series forecasts. They claimed that since the asset returns were 

correlated, it was possible to capture predictability of the data, and as a result confirmed 

their suspicions. Moreover, Fang and Xu (2003), using a rolling out-of-sample 

forecasting technique, found that while both the technical trading approach and time-

series models could both be successful in predicting the series, these two approaches 

seem to predict different components of the data. Thus, the trading rule approach 

captures positive movements in returns and performs well in a bull market, while the 

time-series approach identifies the negative movements performing well in a bear 

market. Hence, they suggest that the combination of the two approaches is far superior 

to either technical trading rules or time series modelling forecasts when used on their 

own.  

As Brock et al. (1992) point out, the presence of stock returns predictability could be 

explained by either market inefficiency where the market prices deviate from their 

fundamental values, or by time-varying equilibrium returns in efficient markets. 

However, there is a lack of evidence support either of these two theories. Thus, Shively 

(2007) supports the efficiency of the stock market by providing evidence of time-

variation in expected returns using the link between excess volatility and asymmetric 

volatility in stock prices, where the latter is explained by the leverage effect.   
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Non-linear dynamics in stock returns  

 

Initial interest in the application of non-linear models has emerged from characterising 

cyclical behaviour of many of economic time-series (Sarantis, 2001). Furthermore, 

ample research revealed presence of non-linearities in stock prices (Tong 1990; De 

Gooijer et al., 1992; Abhyankar et al., 1997; McMillan, 2001; McMillan, 2002; 

Guidolin et al., 2008)
2
. Thus, Abhyankar et al. (1997) offer an extensive review of 

empirical studies testing the presence of non-linear dependence in real-time returns, 

with an overwhelming number of studies providing supporting evidence of presence of 

non-linearity. Abhyankar et al. (1997) analysed real stock data of four major indices 

including S&P 500, DAX, Nikkei 225 and FTSE 100, and was unable to reject the 

hypothesis of independence, thus providing evidence supporting non-linear structure of 

the considered data. The researchers, however, noted that some degree of observed non-

linear dependence could be attributed to volatility clustering, which nevertheless is 

unlikely to explain non-linearity entirely. Similarly, Sarantis (2001) investigated 

presence of non-linearities in stock prices of the G-7 countries using the STAR model, 

and found linearity to be rejected for all time-series considered in the study and for the 

data to exhibit asymmetric cycle patterns. Moreover, the results of out-of-sample STAR 

model forecasts, namely logistic STAR (LSTAR) and exponential STAR (ESTAR), 

proved to be favourable in terms of forecasting gains. He and Modest (1995) point out 

that asset pricing models in general are based on the principal of fundamental 

equilibrium where the current asset price equals to its fundamental value. Linear models 

fail to satisfy restrictions imposed by the equilibrium condition. Moreover, Abhyankar 

                                                           
2
 For further references to earlier literature on non-linear modelling refer to Taylor et al. (2001).  
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et al. (1997) suggests that predictability of market returns could be consistent with 

market efficiency on the condition of short-term occurrence thus not allowing for 

speculative profit opportunities. 

While extensive research provides supporting evidence of the presence of non-linear 

dynamics in the financial markets, further examinations of stock market behaviour 

attempt to offer adequate explanations of such phenomena. Thus, market frictions, such 

as transaction costs, limits to arbitrage, short selling and borrowing constraints were 

found to cause asymmetric adjustments to the fundamental equilibrium of asset pricing 

and thus causing non-linearities within the financial market (He and Modest, 1995; 

McMillan, 2002). In addition, there is a number of studies suggesting that temporary 

deviations of stock prices from their fundamentals, or in other words, from the long-run 

equilibrium relationship between stock prices and dividends, may be caused by the 

presence of speculative bubbles. Psaradakis et al. (2004) points out that there are two 

distinguishable types of bubble including periodically collapsing bubbles (Evans, 1991) 

and intrinsic bubbles (Froot and Obstfeld, 1991). According to Evans (1991), 

periodically collapsing bubbles are characterised by explosive conditional means, 

however do appear to follow a stationary process when tested using standard unit-root 

procedures. Froot and Obstfeld (1991), on the other hand, argued that intrinsic bubbles 

are responsible for short-term deviations from the long-run equilibrium. Moreover, an 

interaction between informed and noise traders is suggested as one of the reasons for 

observed non-linearity of financial markets (McMillan, 2001; McMillan, 2002).  

Montgomery et al. (1998) compared forecasting performance on a number of linear and 

non-linear models using the US quarterly unemployment rate in order to capture 

asymmetric cyclical behaviour of the data during economic expansions and 
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contractions. The univariate linear models including ARIMA were unable to efficiently 

describe cyclical asymmetries of the data, while non-linear models were found to 

produce significantly improved multi-step out-of-sample forecasts during economic 

contractions. Abhyankar et al. (1995), on the other hand, found evidence of the presence 

of non-linearity in high frequency minute-to minute FTSE returns, however also found 

the series to be adequately explained by a simple GARCH process. Similarly, McMillan 

(2001) found presence of non-linearity in S&P monthly index returns and a non-linear 

smooth transition threshold type model to outperform the linear regression alternative in 

producing an out-of-sample forecast by only a marginal, however, nonetheless 

statistically significant difference.  

Ready (2002) carried out an investigation into numerous research, often with 

contradicting conclusions on the predictability of daily returns using the example of US 

stock indices. In spite of arguments of the traditional view in finance literature, Ready 

(2002) claims that the actions of financial companies such as investment and financing 

are not responsive enough to short-term changes in the market as their activities are too 

cumbersome in order to react and adopt quickly. Hence, generally small market 

imperfections might be too costly to consider and take advantage of after taking into 

account transaction and processing costs. However, as Leitch and Tanner (1991) 

pointed out, in practice numerous companies pay extensive fees to professional 

forecasters in an attempt to account for those changes in the market. Moreover, Baker 

and Wurgler (2002) suggest that an activity of any company, and most importantly its 

capital structure, is a reflection of its cumulative attempts to design their actions in time 

with the equity market, whereby firms issue equity when their market values are high, 

and repurchase it when the market values are low. Equity market timing and its 
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significant effect on capital structure are strongly supported by Baker and Wurgler 

(2002). Moreover, they point out that the earnings forecasts related to the issue of equity 

generally tend to have an effect on investors anticipating prospective earnings. This 

evidence is one of a few examples of the importance and effect of forecasting in 

financial markets. In addition, Baker and Wurgler (2002) provide supporting evidence 

of predictability of the capital structure based on past values, such that they find a 

strong link between the current capital structure and the variation in the market-to-book 

ratio from previous years, going as far as ten years, maintaining the view that 

fluctuations in the market have a long term effect on capital structure. The basis for this 

evidence provided by Baker and Wurgler (2002) were drawn from analysis of actual 

financial decisions, analysis of equity issues following equity repurchases over a 

considerable period of time, and analysis of realised and forecasted equity earnings, as 

well as qualitative supporting evidence based on managerial surveys. There is no doubt 

that forecasting procedures play an important role in capital structure managing.            

While Brock, Lakonishok and LeBaron (1992) found that the simple trading rules based 

on moving averages performed well in achieving a realistic profit, Ready (2002) 

criticised findings of the study for being a result of data snooping. Ready (2002) argues 

that the fact that such trading rule approach could generate after transaction costs profit, 

would either be an indication of market inefficiency or that there is a presence of time 

variation in stock returns. This is due to the fact that Brock et al. (1992) have employed 

the moving average style trading rules on the basis of their popular use amongst 

practitioners in the late 1980’s. This popularity clearly came from the effectiveness of 

such approach in practice, however, in terms of academic theory and financial 

modelling methodology these findings can be considered spurious. Instead, Ready 
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(2002) supports the procedure proposed by Allen and Karjalainen (1999) which is 

resistant to the spurious data snooping results as shown in Brock et al. (1992) as it is 

based purely on the patterns of past data. Furthermore, Ready (2002) suggests that even 

in the case of presence of predictability in stock return data, methodology by Brock et 

al. (1992) does not seem sufficient enough to exploit this possibility to its full potential. 

However, when compared in an empirical study, all promising approach by Allen and 

Karjalainen (1999) fails to outperform the moving average trading rule by Brock et al. 

(1992). Since both studies used a different data set and different time periods, Ready 

(2002) suggests a possibility that the success of one approach and failure of the other 

might be explained due to the difference in market behaviour, and in particular the 

presence on non-linearity, during different time periods. This is further supported by 

Ready’s (2002) own attempt to use Brock’s et al. (1992) approach using a different time 

set and finding it to perform poorly. Finally, after providing empirical evidence against 

usefulness of Brock’s et al. (1992) trading rule based on simple moving average in 

predicting daily returns, Ready (2002) is still unable to confirm that earlier results were 

due to data snooping as well as to reject the null hypothesis of no predictability. This 

study anticipates that the consideration of STAR-type non-linearity in comparison with 

linear ARIMA models, as well as the simple random walk, will shed light on possible 

improvement in assessing presence of predictability in daily returns.   
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Econometric forecasting and forecasting accuracy 
 

Introduction to econometric forecasting  

Forecasting in econometrics can be described as an attempt to predict the future, with an 

intention to improve the effectiveness of decision-making mechanisms (Holden et al., 

1990). Forecasts are relevant and required due to the uncertainty of the future. The 

effect of uncertainty is especially evident in the case of decisions taken at a present time 

but the impact of which is experienced later in the future. In other words, the essential 

reason for forecasts is their usefulness. This is important as financial decisions often 

require long-term investment of resources; the outcome of which will heavily depend on 

future events. Hence, the accuracy of the forecast is directly linked with the overall 

utility, effectiveness and in most cases profitability. Doran (1999) describes forecasts as 

predictions, sometimes expressed as a probability, based on the knowledge of past 

behaviour where the extent of past trends consistency in future depends upon the 

forecaster’s judgement. Hence, any forecast is in fact a statement of likelihood that an 

outcome will occur.  

Montgomery et al. (1998) prompt that forecasting is the main application of many 

econometric models. Diebold and Mariano (1995) pointed out the importance of 

forecasts and, hence, forecasting accuracy in practical uses in science, which includes 

economics and finance. In addition, time-series modelling and forecasting accuracy are 

important for a wide range of disciplines including political science. Thus, Granato and 

Suzuki (1996) discuss the use of forecast encompassing methodologies in assessing 

issues of political behaviour and in particular voting behaviour. The researchers also 

highlighted the importance of explanatory accuracy of time-series models in the context 
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of political behaviour. Montgomery et al. (1998) carried out research into forecasting 

the US unemployment rate with displayed asymmetric cyclical behaviour during 

periods of economic contractions, highlighting the importance of accurate forecasts of 

this important social and political element of the economy. In the financial industry 

forecasts are needed for financial and investment planning, control of companies in 

terms of operational procedures, and other aspects of day-to-day activities of a 

company. Holden et al. (1990) point out that the careful planning of a company’s 

operation depends on the accuracy of the forecast of the economy and related industry, 

thus denoting the importance of forecasting. Financial agents and industry members as 

well as governments extensively use macroeconomic forecasts in an attempt to make an 

informed, and thus the most acceptable, decision in a particular situation. Participants in 

the financial markets use forecasts in profit maximising activities when determining 

differences between the present and future values of assets. Practical uses of forecasting 

in financial markets include forecasting returns on various assets, risk assessment 

techniques such as value at risk (VaR)
3
, volatility of returns or correlation between 

different stock market movements. Forecasting techniques are also heavily used in 

trading and hedging. Diebold and Mariano (1995) also suggested the forecasts should be 

used to guide decision makers rather than to rely on the results solely, since the test 

statistics of any forecast does not fully reflect its economic loss.  

 

 

                                                           
3
 Value at Risk (VaR) is usually used in portfolio risk assessment in an attempt to summarise the total risk 

of a portfolio in a single number to assist senior management. VaR is expressed as a percentage and 

represents a potential loss that will not exceed a specified level of confidence over a specified time 

period. For a more detailed description see Hull (2003).        
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Types of forecasting models 

There are two main types of forecasting models: univariate time-series models and 

causal or structural models. Time-series models evaluate historical data of the 

underlying variable using statistical analysis. Whereas, causal models involve statistical 

examination of other explanatory variables that constitute an economic model used to 

explain the behaviour of the variable under consideration. More specifically, a 

univariate time-series model forecast is an attempt to model and predict financial 

variables based on the information contained within their own past values and past 

values of an error term. Structural models, on the other hand, are multivariate in nature 

and attempt to predict the behaviour of financial variables based on movements in the 

current and past values of the other explanatory variables. Or to put it differently, 

structural forecasting models simply attempt to predict future values by relating a 

dependent variable to one or more independent variables. Unlike univariate time series 

models, structural models have an underlying theoretical explanation of the variable’s 

behaviour. Whereas time-series models intend to capture and model empirically 

observed features in the behaviour of the variable.  

Pindyck and Rubinfeld (1998) state that the primary purpose of single-equation 

regression models, such as univariate time series, is forecasting, which allows the 

making of inferences about the likelihood of future events based on current and past 

observations. Univariate time series models are considered to be fast, cost effective and 

simple to apply. The information input required for this approach includes historical 

data of the underlying variable obtained at equal intervals. Although this type of model 

does not offer an explanation of the behaviour of the variable, it eliminates problems 

associated with the complexity of causal models. Moreover, univariate time series 
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models are considered to be the most popular type of economic model used for 

forecasting. These include such models as autoregressive (AR) and autoregressive 

moving average (ARMA) models, which can be used to produce forecasts by applying 

the standard Box and Jenkins procedure (Box and Jenkins, 1970).  

As an alternative to univariate time-series models, there is another popular time-series 

forecasting technique known as a method of exponential smoothing and forecasting. 

According to Wagle (1965), the exponential smoothing method uses a weighted average 

of actual values from the current period and the previous periods in order to forecast 

expected values of the variable in the next period. It also uses the weighted sum of 

squared errors in order to award less weight to more distant values in the past periods 

since these will have less effect on the current and future values of the variable. The 

method of exponential smoothing can also account for seasonality and the presence of 

trend in the series. The weights used when implementing the exponential approach are 

selected using the mean square error (MSE) of prediction. Thus, the less the value of the 

MSE the better the weight is assigned. However, Wagle (1965) states simplicity as one 

of the major disadvantages of the exponential smoothing forecasting methodology, 

suggesting that critical economic variables that may explain the behaviour of the series 

are omitted from the model. In addition, Harvey et al. (1998) defines the exponential 

smoothing forecasting technique as ad hoc, claiming that these models are implemented 

without reverence to a defined statistical model therefore not taking into account any 

economic or historical issues involved in the formation of the series. In other words, the 

method of exponential smoothing can be criticised for its poor explanatory power, since 

it does not have any explicit statistical foundation.    
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On the contrary to the exponential smoothing methodology, Granger and Newbold 

(1986) pointed out the main advantages of the univariate forecast as these being quick 

and inexpensive to apply. They also advised that the forecasting errors, which are in 

essence indicators of the accuracy of the forecast, should be balanced with the costs of 

producing the forecast. In other words, it is not worth spending large resources, such as 

time and financial costs, on a payoff which is only a small increase in forecasting 

accuracy. Hence, the payoff has to be more than only marginally beneficial to justify a 

higher cost of the forecast. In addition, Harris and Sollis (2003) draw attention to the 

fact that forecasts made using simple linear univariate models are often sufficiently 

accurate, with more complex models being only marginally more accurate. Moreover, 

Brooks (2002) points out that time-series models can be used in situations when 

structural models are inappropriate. This is due to a number of reasons and can be 

viewed as a few advantages of time-series approach over structural models. These 

points include the possibility that the explanatory variable that is thought to influence 

the movements of the underlying variable might be unobservable or unmeasurable. In 

addition, the data for the explanatory variable and the underlying variable could be 

measured at a different frequency of observations. This is often the case when for the 

financial series of daily frequency the possible explanatory variable is thought to be a 

macroeconomic variable which is usually measured on a monthly basis. Additionally, 

Harris and Sollis (2003) point out further concerns regarding different issues involved 

in analysing financial time-series and macroeconomic time-series. One of these matters 

involves the differences in data frequency. Thus, financial time-series tend to have 

higher frequencies compared to the macroeconomic data. The financial time-series are 

also characterised by so-called ‘long-memory’ (Harris and Sollis, 2003) which implies 
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the dependency of the variables on the past observations over the long time horizon. In 

addition, the financial time-series is more prone to time-varying volatility than the 

macroeconomic series, creating volatility clusters in the series when presented 

graphically. If the data contains changing variance it is said to be heteroscedastic 

(Pindyck and Rubinfeld, 1998). There are various tests and methods for correction of 

heteroscedasticity of the data, however, these will not be considered in this chapter.      

Moreover, the concern of differences between linear and non-linear models in 

forecasting encouraged examination into comparative performance of linear and non-

linear forecasts. Thus, Montgomery et al. (1998) claimed non-linear models to 

outperform linear alternatives in predicting quarterly US unemployment rate on the 

basis of values of MSE, whereby the most sufficient statistical reduction in MSE was an 

indication of the most improved forecasting result. Montgomery et al. (1998) carried out 

research into the application of non-linear forecasting models performance during 

economic expansions and contractions, or in other words, an investigation whether non-

linear models react to conditions during the economic boom and recession, using the 

example of the quarterly US unemployment rate. The results of the study show that the 

use of non-linear models significantly improve forecasting performance for the data 

series during economic contraction.   

Clements and Smith (2001) carried out research into assessing the forecasting 

performance of SETAR models in comparison to the linear random walk model. The 

researchers are accepting the fact that there is clear evidence of the presence of non-

linearities in the market variables, and apply a non-linear SETAR model to exchange 

rate forecasting. As a result, Clements and Smith (2001) find significant improvement 

in forecasts produced by the SETAR models over the simple random walk, however, 
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they point out that the use of traditional forecasting accuracy measures, such as root 

mean squared forecast errors, may significantly diminish these differences in models’ 

performance and thus the superiority of a non-linear approach.  

In addition, as a possible reason for frequent failure of linear forecasts Doran (1999) 

suggests the possibility of a non-linearity break, or in other words, discontinuity from 

the past trend. With some types of dynamic analysis it is possible to predict that certain 

non-linearity will occur, however such analysis cannot forecast when it will occur.  

 

In-sample and out-of-sample forecasts   

In order to avoid the problem of overfitting, Rapach et al. (2005) employ a variation of 

the forecast encompassing test in order to determine the best in-sample model before 

applying to the out-of-sample forecasting exercise, which is then subjected to the same 

test procedure. However, it has to be pointed out that in-sample fit, as well as an in-

sample predictive ability of a model, does not necessarily imply out-of-sample 

predictive ability. Clark and McCracken (2005) suggest structural breaks as a possible 

explanation of differences between in-sample and out-of-sample forecasting ability. As 

a result, Clark and McCracken (2005) suggested in- and out-of-sample tests of 

forecasting ability in the presence of structural breaks. In addition, Clements and Smith 

(2001) advocate the use of non-parametric modelling in forecasting as this illuminates 

the possibility of model failure due to incorrect function form specification. In addition, 

Clements and Hendry (1998) suggest the assumption of constant parameters, as opposed 

to time varying, as one of the main reasons for macroeconomic forecasts to be 

characterised by a good in-sample fit while producing poor out-of-sample forecasts. 
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Thus, the researchers suggest that when the assumption of constancy of parameters 

fails, the in-sample fit provides a poor guide to out-of-sample forecasting performance, 

consequently recommending empirical models being able to account for structural 

breaks. Van Dijk and Franses (2003), on the other hand, advised that these results could 

be due to non-linearity detected in the data series being spurious, suggesting that other 

features of the data, such as heteroscedasticity, structural breaks and outliers, could have 

been mistaken for the presence of non-linearity. Moreover, non-linear models might 

demonstrate less successful forecasting results due to pure coincidental possibility that 

the forecasting period is not described by the non-linear regime. However, Van Dijk and 

Franses (2003) suggest that the main reason for poor performance of out-of-sample non-

linear forecasts is an inappropriate forecast evaluation criteria.   

 

Combining forecasts 

Newbold and Granger (1974) carried out an investigation into univariate forecasting 

methods and found while all the models performed reasonably well, a combination of 

these generated far more accurate forecasting results. However, the researchers warned 

that a poorly constructed combined forecast might result in worse output than that of an 

individual forecast, hence, the performance of these should be carefully monitored. The 

study used the mean squared error as a measure of forecasting performance. The paper 

offered a view of combining forecasts as a useful tool used to increase the efficiency of 

a set of forecasts. However, the equal weighting approach used in the study was 

criticised for treating all the forecasts included in the combination as having equal 

informational content. Since the very early stages of the introduction of the equal 



48 

 

weighting method used in combining forecasts, heavy criticism was expressed by 

academics due to having major flaws in its theoretical grounds, however the method 

remains the most commonly used approach for combination of forecasts.    

To the contrary of equal weighting technique, Guidolin and Timmermann (2009) 

applied a flexible forecast combination to US interest rates where the methodology 

allows for variable weights to be assigned to different models included in the forecast. 

The study confirmed combined regime-switching forecasts to outperform individual 

univariate forecasts on the basis of the RMSE statistic predominantly at short horizons.    

Fang and Xu (2003) carried out a research into asset returns predictability by combining 

technical trade rule analysis and time-series forecasts. Using the rolling out-of-sample 

approach the study demonstrated the combination approach of two methodologies to 

produce a superior forecasting result compared to forecasts achieved by each approach 

individually. This effect, according to the researcher, is achieved due to both approaches 

being asymmetric during buy and sell periods, thus being able to capture different 

dynamics of the data’s predictability. Thus, the trading rule approach performed better 

during the rising market, whereas time-series models performed better in falling 

markets. 

 

Forecasting accuracy 

The usefulness of a forecast is determined by such factors as its accuracy, or in other 

words, the difference between the forecasted and actual values, ease of application of 

the output and time required to produce the forecast as well as the cost of 

implementation. Consequently, forecasting accuracy is also assessed as means of a 
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comparison between competing forecasting models. Chatfield (1997) argues that the 

best method of comparison of forecasting accuracy depends on a range of factors 

including the context of the forecast, type of data considered and availability of 

analytical expertise. Moreover, Chatfield (1997) points out that the meaning of forecast 

superiority could be assessed differently, which might not necessarily be the least 

forecasting errors or forecast’s ability to generate profit.      

Doran (1999) also highlighted the importance of noise as a limit of forecasting. Noise in 

this instance is defined as a measure of error which in effect is the variance around the 

trend-line. Consequently, the greater the noise, the greater is the uncertainty in the 

accuracy of the forecast. There are various techniques of assessing the accuracy of 

forecasts, including measures of minimising the mean of forecasted errors, such as mean 

square error (MSE); Akaike’s information criteria (AIC); Schwartz criteria; Diebold and 

Mariano (1995) test of equal forecast accuracy, and many others. However, none of 

these methods are considered to be the solely preferred technique, thus enforcing 

researchers to use a few different tests when comparing forecasting outputs.   

Chatfield (1997) suggests that comparing competing forecasts should be performed on 

the results of out-of-sample forecasts as opposed to in-sample estimations. Moreover, 

Diebold and Mariano (1995) pointed out that the forecasting superiority of any model 

over alternatives on the basis of statistical measures does not necessarily imply that 

other models do not contain any additional information. Hence, Diebold and Mariano 

(1995) proposed a forecasting accuracy comparison test which is based on predictive 

performance unlike tests that assess the deviation between the forecasting model and the 

data. Their test of equal forecast accuracy proved to be applicable to a wide range of 

forecasting models. However, the researchers advised for the test to be used in 
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conjunction with other statistical measures and diagnostics for comparing models’ 

forecasting performance.  

Moreover, Van Dijk and Franses (2003) explain the apparent good in-sample fit 

combined with unsatisfactory out-of-sample forecast of non-linear models compared to 

linear models due to unsuitable model selection criteria and forecast evaluation 

techniques. As a result researchers recommend the weighted Diebold-Mariano test of 

equal predictive accuracy, which is based on a concept that different observations have 

different weights of importance within the dynamics of the time-series. Subsequently, 

according to Van Dijk and Franses (2003), an accurate forecast of extreme observations, 

or outliers, is essential as these data points could be important indicators of major 

changes in economic behaviour. Linear models are likely to forego these changes, while 

non-linear models are able to capture these extreme data points.  

Makridakis et al. (1979) carried out an extensive research into forecasting accuracy 

measurement techniques. In order to minimise any bias potentially arising from using a 

single data set, the researchers employed 111 time-series obtained from different 

sources across different countries and industries, and different time periods as well as at 

different data frequencies. However, researchers themselves pointed out that since the 

majority of the time-series data was monthly, during the 1970s and came from French 

sources, it was not a random data set. After generating twelve points of forecast for each 

series, Makridakis et al. (1979) found that when employing a single forecasting method 

the accuracy results differ depending on the choice of the loss function. Makridakis et 

al. (1979) differentiate between model fitting and forecasting, suggesting that these will 

require different loss functions. Thus, while naïve and exponential smoothing model 

forecasts result in smaller forecasting errors due to these methods hedging forecasts 
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towards the mean, ARMA models follow data patterns more closely, however resulting 

in larger forecasting errors when the forecast fails.     

Overall, Martens et al. (1998) pointed out the lack of appropriate evaluation criteria for 

non-linear time-series models. Clements and Smith (1999) mention that the majority of 

the studies comparing forecasting performances of linear and non-linear models base 

their conclusions on the results of forecasting error magnitude style tests, such as mean 

squared error (MSE). Extensive literature of assessment of forecasting accuracy is 

somewhat limited in considering non-linear forecasting techniques and appropriate tests 

of accuracy for such models.    

 

Quantitative and subjective forecasting approaches  

Makridakis et al. (1979) provide a comprehensive review of literature on the subject of 

comparative accuracy of quantitative methods of forecasting against judgemental 

forecasts. Subjective forecasts sometimes might outperform the statistical type 

forecasts, nonetheless, such forecasts are rare and less accessible than econometric 

forecasting. While there is a lack of studies supporting superiority of judgemental 

forecasts over quantitative methods, with an overwhelming number of studies 

supporting the latter approach, there is still a debate over a single preferred quantitative 

forecasting approach. Moreover, Andersen (1977) argues that despite the fact of 

numerous techniques being used for forecasting, including various computer packages, 

it is evident that sometimes a subjective forecast by a dealer or a trader may be more 

accurate than that produced by a statistical method. Anderson (1977) contributes this 

phenomenon to the fact that a dealer (salesman, broker, entrepreneur, etc.) will usually 
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include additional information when carrying out a forecast. This information might be 

vital in a particular case, however, it might be too specific to an individual situation or 

industry to be known to a forecaster when carrying out a theoretical prediction. It also 

might be the case that it is too difficult to include such information in the mathematical 

model due to, for instance, measurement difficulties. Wagle (1965) also suggests that 

statistical forecasting models should be considered as a supplementary aid to policy-

makers, rather than a sole tool, given that personal experience and subjective judgement 

have proved to be good methods of forecasting outperforming purely mathematical 

models. Moreover, Clements and Hendry (1998) point out that the failure to correctly 

predict major dramatic economic changes in the UK followed by the recession in the 

1990s, consumer boom in the late 1980s and patterns of post-war consumption, has lead 

to overall reduced levels of confidence in macro-economic forecasting methods.    

The supporting argument of subjective forecasts over statistical forecasts is consistent 

with the fundamental approach as opposed to pure technical analysis of financial 

markets. Technical analysis is based on the assumption that stock markets move in 

persistent trends, and thus examine past market data with the purpose of estimating 

future trends. Fundamental analysis, on the other hand, uses economic data rather than 

financial market values, and hence will base the predictions of market movements using 

a subjective form of forecasts. Most criticism of these techniques come from studies 

considering trading rules in order to examine the presence of predictability in stock 

market prices. This section of the chapter will offer a glance at the literature concerned 

with stock market predictability and, thereof, uses and applications of non-linear models 

in these investigations.      
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Newbold and Granger (1974) advised that more complex forecasting models with 

abilities to incorporate qualitative and quantitative information about the data as well as 

the past and current values are preferred theoretically, however these might not be 

readily available and it might still be a difficult task to incorporate such information into 

a forecasting model. Univariate time-series forecasting models, on the other hand, are 

quick and inexpensive to implement and, besides being often used as a benchmark, may 

produce forecasts of sufficient accuracy. Allen and Karjalainen (1999) suggest that the 

majority of empirical investigations into technical trade rules found this technique 

unable to generate profit. The researchers arrive at the same conclusion. After 

employing a genetic learning algorithm using the daily S&P 500 index data and 

accounting for transaction costs, the results of the study suggest that it is not possible to 

achieve after transaction costs profits by means of technical trading approach thus 

implying efficiency of the stock market.    

Leitch and Tanner (1991) questioned the reasoning behind many profit-maximising 

firms investing in economic forecasts while conventional error average measures 

indicate naïve forecasts to perform as well as or better than professional forecasts. The 

researchers carried out an investigation into the relationship between profitability of 

forecasts and conventional error measurements of forecasting performance using 

interest rate data. In addition, Leitch and Tanner (1991) pointed out that there is a 

possibility that the firms employing professional forecasters might not be using the 

lowest mean of absolute forecasting error as an indication of the preferred forecast, 

which is most likely due to the absence of a consistent relationship between forecast 

profitability and statistical error-magnitude measurement. However, researchers did find 
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a strong statistical association between the directional accuracy and profitability of a 

forecast.  

Makridakis et al. (1979) state that besides research proving that quantitative forecasts 

are less cost and time consuming than the judgemental approach, the subjective 

forecasts pose a number of difficulties. These include the lack of application of valid 

principles and solid theoretical bases, which in turn translate into basing forecasts on 

irrelevant information, anchoring effect, where decision makers base their evaluations 

on pre-existing perceptions instead of logical relevance and facts, and perception biases, 

where specific cases tend to be generalised. All of these factors contribute towards 

judgemental forecasts to be highly unreliable. Chatfield (1977) suggested that in 

practical terms successful forecasting implementation could be achieved when 

forecasting is considered in coalition with the management process and be constantly 

revised and corrected. 

 

 

2.3. Methodology  
 

Introduction 

 

Time-series data represents a sequence of observations on a single variable obtained 

over time. In the case of time-series analysis the order of the data becomes an important 

issue. Granger and Newbold (1986) argue that the main objective of time-series analysis 
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involves construction of a model which exhibits similar properties to the observed series 

allowing the researcher to make inferences about the behaviour of a series for the main 

purpose of hypothesis testing and forecasting. The main practical application of time-

series models is their use in forecasting as well as explaining the behaviour of the 

underlying variable.   

As a first step in time-series analysis Chatfield (1977) recommended to plot the data 

against time, since this could provide a useful visual confirmation of certain features of 

the data such as trend, seasonality, discontinuities and outliers. Moreover, Chatfield 

(1977) pointed out that different technical approaches are required to analyse different 

types of data, thus suggesting that analysis for short-run non-stationary data financial 

time-series, for instance, would be different to analysis required for long-run stationary 

economic series. Finally, Chatfield (1977) emphasised the use of common sense when 

applying time-series analysis, since a considerable degree of subjective judgement is 

invaluable in statistic investigations. Similarly, in a later paper, Chatfield (1997) advises 

clarification of objectives and potential purpose of the forecast as starting points of any 

forecasting exercise, followed by plotting the time-series data against time as the time 

plot might assist in choosing an appropriate model for fitting and forecasting the data. 

This section of the chapter will concentrate on presenting methodologies involved in 

time-series analysis applied in the subsequent empirical chapters: Chapter 3, Chapter 4 

and Chapter 5. Thus this chapter will consider approaches involved in estimating linear 

and non-linear models including an error-correction model, testing for stationarity using 

the standard unit root tests as well as stationarity tests in the context of non-linearity. 

Furthermore, econometric forecasting methodology will be discussed, followed by tests 

of time-series forecasting accuracy including statistical and economic loss functions.   
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Linear models 

 

Linear models discussed in this paper include a random walk process, time-series 

regression and ARMA-type processes.  

 

Random walk model  

The notion of a stochastic process is an important issue in time-series analysis. Gujarati 

(2003) defines random, or stochastic, process as a collection of random variables 

ordered in time. An example of a random process is a random walk model, which can be 

described by the following equation:  

 

�� = ���� + �� (2.1)  

 

or by a random walk model with a drift (�):  

 

�� = � + ���� + �� (2.2)  

 

where, �� and ���� are the dependent variables at time 	 and 	 − 1 respectfully, and �� 

is a random disturbance term. In the context of financial markets the random walk 

model simply states that a price of a stock, for instance, today (��) is equal to its price 
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yesterday ( ����) plus a random shock today (��).  It is also worth noting that a random 

walk model is an example of a non-stationary stochastic process.  

 

Linear regression  

Simple linear regression models the degree of linear association between variables 

(Brooks, 2002), which can be extended to use in time-series:  

 

�� = � + ����� + ����� + ⋯ + ����� + �� (2.3)  

 

where the dependent variable (��) is regressed on the explanatory variable (��), with i 

number of observations, � …  �� are regression coefficients and �� is the error term.  

  

ARMA process  

According to Pindyck and Rubinfeld (1998), time-series models, such as autoregressive 

process, AR(p), and moving average process, MA(q), where p and q represent lag 

lengths, are designed to describe the movement of a time-series by relating the series to 

its own past values while attempting to minimise the weighted sum of current and 

lagged random disturbance terms.  

Thus, the moving average process is described in terms of weighted sum of current and 

lagged random disturbances, where each observation ty  of the moving average process 
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of order q, MA(q), is generated by weighted average of random disturbance terms going 

back q periods: 

 

�� = � + �� + ������ + ������ + ⋯ + ������ (2.4)  

 

where ��, … , �� are the parameters of the moving average model and �� is a disturbance 

term assumed to be identically independently distributed (i.i.d.), in other words, the 

disturbances follow the white noise process. A moving average process, MA(q), has a 

memory only of length q, thus limiting the time horizon of a forecast up to the step q, as 

all forecasts of more than q steps ahead have a tendency to collapse to the intercept or to 

zero in the case of no constant in the moving average process.  

Distinct from the moving average process, an autoregressive process has infinite 

memory, thus allowing for the forecasts to be made for long-time horizons. In the form 

of an equation the autoregressive process of order p, AR(p), can be described as a 

process where the current observation �� is the result of a weighted average of past 

observations going back p periods including a current random disturbance term, ��:  

 

�� = � + ������ + ������ + ⋯ + ������ + �� (2.5)  

 

where � is a constant term accounting for the mean of the stochastic process. The 

autoregressive models are also based on the assumption of the disturbance terms being a 

white noise process.  
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The autoregressive moving average (ARMA) process can be described as a combination 

of moving average and autoregressive processes as it combines deterministic 

characteristics of both processes. Hence, an ARMA process is a function of its past 

values and lagged random disturbance terms, thus incorporating the AR process 

component, as well as a current disturbance term, thus including the MA process 

component. The general form of the ARMA (p, q) model is as follows (Brooks, 2002): 

 

�� = � + ������ + ������ + ⋯ + ������ + ������ + ������ + ⋯+ ������ + �� 

(2.6)  

 

The integrated autoregressive moving average (ARIMA) models are used in order to 

model non-stationary time-series. The order of the integration in integrated 

autoregressive moving average models specifies the number of times the series should 

be differenced in order to achieve stationarity. ARIMA models are extensively used 

when analysing time-series due to its relative flexibility.  

Box and Jenkins (1970) proposed an approach to time-series analysis whereby the 

procedure is developed for univariate forecasting based on the ARMA process. 

Chatfield (1977) points out that while AR, MA and ARMA models have been studied 

extensively, the Box-Jenkins procedure provided a systematic approach to modelling 

and forecasting these types of models, offering a comprehensive methodology of model 

identification and checking with a possibility to extend the approach to non-stationarity 

and seasonal data. The ease of application and reliability of the methodology secured 

the Box-Jenkins approach as the most widely accepted method of ARMA modelling. 
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The procedure involves three steps determining the of order of the model (p, d, q), 

where p is the order of the AR component and indicates the number of autoregressive 

parameters (�), d is the number of times the data series is differenced in order to 

achieve stationarity, and q is the MA order indicating the number of parameters of the 

moving average component (�). The three stages involve identification, where values of 

p, d, and q are chosen; estimation, where coefficients of the model are obtained by 

employing standard statistical methods; and diagnostic checking of model adequacy, 

where the residuals of the model that was estimated at stage two of the procedure are 

tested for significance.  A requirement of an estimation of a correct model is complete 

when the analysis of the residuals certifies that errors of the estimated model are 

independent and identically distributed, or, in other words, the error term is random and 

follows a white noise process. Should the diagnostic check reveal inadequacy of the 

estimated model, the whole procedure of model building is reiterated starting from the 

first stage until an adequate model is estimated. 

However, while the Box-Jenkins approach allows a degree of flexibility in the choice of 

a model, Chatfield (1977) suggested that the flexibility also allows for a possibility to 

choose a misspecified model. Moreover, while original procedure required analysis of 

an autocorrelation function (ACF) and a partial autocorrelation function (PACF) at the 

identification stage, in practice it appeared to be difficult to identify the behaviour of 

ACF and PACF of the series by comparing these plots to theoretical functions. Cho 

(2002) pointed out that parameters estimated by observing the ACF and PACF can be 

subjective and hence lead to an unreliable and inaccurate estimation. Similarly, early 

studies, such as Wagle (1965) considered ARMA modelling a poor forecasting tool due 

to a complex estimation procedure. However, significant improvements were made ever 
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since in order to improve and expand the original Box-Jenkins methodology.  Thus, the 

coefficients at the identification and estimation stages of the procedure are estimated 

using the Akaike’s information criteria (AIC) or Schwarz’s Bayesian criterion (SBC), 

which provides more reliable statistical reference and avoids the subjectivity of the ACF 

and PACF interpretation. According to Brooks (2002), information criteria are a 

function of the residual sum of squares and accounts for the loss of degrees of freedom 

that occurs when extra parameters are added to the model. In the context of ARMA 

models specification, parameters which minimise the value of the information criteria 

are considered to be the correctly specified.  

 

��� = �� !"�# + 2%&  
(2.7)  

 

'(�� = �� !"�# + %& ��& 
(2.8)  

  

where !"�  is the residual variance, % is the total number of parameters estimated, which 

in the context of ARMA model is the sum of lag lengths for the AR and MA 

components and unity ( % = ) + * + 1), and & is the sample size.      

Models described above are examples of the most commonly used linear models. 

However, according to Campbell, Lo and MacKinlay (1997), the payoffs to options as 

well as investors’ willingness to trade off returns and risk are characterised by non-

linear functions. Similarly, it can be argued that most financial data can be described by 

non-linear functions rather than linear models.  
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Non-linear models 
 

According to Gujarati (2003), non-linear models are such models that are non-linear in 

parameters regardless of whether the variables are linear or not. In addition, genuine 

non-linear models cannot be linearised in its parameters unlike most linear models that 

only appear to be non-linear. Hence, Gujarati (2003) entitles such models as 

intrinsically non-linear regression models. Gujarati (2003) points out that estimation of 

non-linear regression models is often an interactive process or, to put it differently, 

involves a trial-and-error method. In other words, initial estimation of values for model 

parameters are based on prior experiences or prior empirical work as opposed to simple 

fitting of a linear model using OLS.   

 

TAR model 

Threshold autoregressive (TAR) models are a class of non-linear time-series 

autoregressive models. Unlike standard autoregressive models, TAR models allow for 

locally linear approximation over different states (Brooks, 2002). The TAR model 

contains a first order autoregressive process in each of the specified regimes. The 

number of thresholds for a model will always be the number of regimes minus unity. 

For instance, a model containing only one threshold will have two regimes. Naturally, 

general TAR models allow for more than two regimes and more than one lag in the 

autoregressive process. However, for the ease of illustration of the process of TAR 

models, one threshold TAR will be considered here. 
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Tsay (1989) explains the TAR model as a process with at least two regimes with 

different linear autoregressive models under each regime. In this model, the threshold 

value + acts as a point of reference whereby the state-determining variable lagged % 

periods and denoted ,��- can take values that are either below or above the threshold 

value. Thus, the dependent variable �� is specified to follow a first order autoregressive 

process with an intercept coefficient �� and autoregressive coefficient �� if the value of 

the state-determining variable is below the threshold value. If the value of the state-

determining variable is greater or equal to the value of the threshold, then �� is specified 

to follow an autoregressive process with the intercept �� and the autoregressive 

coefficient �� (Brooks, 2002).  

 

�� = .�� + ������ + ����� + ������ + ��� / 01 ,��- < + 01 ,��- ≥ + 

(2.9)  

 

where ��� and ��� are the error terms for each autoregressive process.  

The state-dependent variable (,��-) is the variable that is thought to influence the 

dependent variable (��) to shift from one type of behaviour to another, i.e. from one 

regime to another. This variable is determined by considering issues of financial and 

economic theory.  

SETAR, or self-exciting TAR model, is the case where the state-determining variable is 

the variable under consideration, i.e. the dependent variable itself, ,��- = ���-. In this 

case, it is the lag of �� itself that determines the current regime this variable is in.  
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�� = .�� + ������ + ����� + ������ + ��� / 01 ���- < + 01 ���- ≥ + 

(2.10)  

 

In general, threshold models can be extended to models with higher number of lags of 

the dependent variable as well as the number of states. Also, the number of lags in each 

regime can be different. Hence, the general formula for the TAR model is as follows 

(Brooks, 2002):  

 

�� = 4 �� 5# 6� �# + 4 �� 5#���� + �� 5#78
�9� :;

59�      ,   +5�� ≤ ,��- ≤ +5 

(2.11)  

 

where  

�� 5#
 = indicator function for the j-th regime. The indicator takes the value of    

unity if the underlying variable is in state j, and the value of zero otherwise. 
 

,��- = observed variable that determines the switching point.  

�� 5#
 = a zero mean i.i.d. error process. 

 

TAR models are characterised by discrete transitions between regimes. In other words, 

under a TAR model the dependent variable is either in one regime or the other. This is 

on contrary to Markov switching models where the dependent variable is in all of the 

states with different probability of being in either one at each point in time.   
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When applying model building in practice, the data should be tested for the presence of 

non-linearity, or in other words, testing linear models against a simple non-linear 

alternative before applying more complex non-linear models. Chan (1990) points out 

that the main discussion involving TAR models is built around limited availability to 

test whether a TAR model fits a given data better than linear autoregressive (AR) 

model. There are a number of tests for detecting the presence of threshold 

autoregressive non-linearity in time-series data. Petruccelli and Davies (1986) 

introduced a portmanteau test to detect a specific class of state dependent models, 

namely a self-exciting threshold autoregressive structure. A portmanteau test is based 

on examining autocorrelations of squared residuals from a linear fit, where the levels of 

significance are based on the asymptotic Chi-squared (
2χ ) distribution of the test 

statistic for the linear process (McLeod and Li, 1983). Tsay (1989) also proposed a test 

for threshold non-linearity which is based on arranged autoregression and predictive 

residuals, similar to the portmanteau test by Petruccelli and Davies (1986). In essence, 

the test is a combination of non-linearity tests by Keenan (1985), Tsay (1986), and 

Petruccelli and Davies (1986). In the advantage of the proposed test it is a very simple 

procedure allowing wide practical applications, as its asymptotic distribution 

approximates to the F-distribution. Tsay (1989) found the F-statistic more dominant 

than the portmanteau test in assessing data for non-linearity in most of the cases, but not 

universally. Tsay (1989) points out that there is still a debate over finding the optimal 

test.   

Estimation of TAR models involves estimation of model parameters =��, +5, >, )5?.
 
This 

is a difficult process mainly due to the fact that the parameters cannot be determined 

simultaneously, hence the values chosen for one of the parameters are most likely to 
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influence the estimates for the other parameters. Initially, Tong (1983; 1990) proposed a 

complex non-parametric lag regression procedure for estimating thresholds =+5? and a 

delay parameter d. The most valid method of estimation is to estimate threshold values 

using the non-linear least squares (NLS) optimisation procedure. Nevertheless, this 

method is not feasible as the relationships between the variables are discontinuous in the 

thresholds and, hence, cannot be estimated at the same time with other parameters of the 

model. On the contrary, Tsay (1989) suggests using ordinary least squares techniques 

since TAR models on the whole consist of a set of linear models. Hence, modelling 

procedure for threshold models proposed by Tsay (1989) involves four steps and is 

based on simple linear regression techniques. A further method suggests using a grid 

research procedure that intends to minimise residual sum of squares over a range of 

values of the threshold(s) for the model under consideration.  

Nevertheless, Tsay (1989) points out that the TAR model was not widely applied due to 

the issues concerning modelling procedure and difficulties in identifying the threshold 

variable and estimation of the threshold values. The model estimation procedure drawn 

by Tong and Lim (1980) is very complex involving intense computing stages. This 

procedure also does not provide the diagnostic statistic necessary to ensure the need of a 

threshold model for a given data set. Hence, Tsay (1989) proposed a model-building 

procedure for TAR models that could be applied in practice, including a test statistic for 

testing threshold non-linearity which is derived by a simple linear regression. Tsay 

(1989) also used supplementary graphic devices for an identification of the number of 

potential thresholds.  

Further, estimation of TAR models required determining the threshold order, i.e. the lag 

length. The simplest method of determining the lag length for the autoregressive 
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component for each of the regimes is to assume that the same number of lags for each of 

the regimes. The lag length itself in this case will be chosen using a standard approach 

for determining the lag length for a linear autoregressive model.  However, despite the 

simplicity of implication, it is unlikely that the same number of lags for each regime 

would be sufficient in describing the data which is drawn from different regimes. 

Moreover, this method undermines the whole concept of threshold models whereby the 

data has different behaviour in different states. An alternative method involves 

simultaneous selection of the lag length for each regime using the information criterion. 

However, Franses and van Dijk (2000) pointed out that in practice it is likely that the 

model will be resident in one particular regime for a considerably longer period of time 

compared to other regimes. For this reason the information criterion will be able to 

accommodate and consider such behaviour. Consecutively, Tong (1990) suggested 

modified Akaike’s information criteria (AIC) that weights the residual variance for each 

regime by the number of observations in that regime hence avoiding the dilemma 

described above.   

In addition, the delay parameter, d, can be determined in the same principal as the lag 

length for each regime using an information criterion. However, the addition of this new 

dimension to parameters estimation will result in the increased number of potential 

models to be estimated. Hence, in practice the value of the delay parameter is normally 

set to unity due to theoretical explanations. Thus, Kräger and Kugler (1993) suggested 

that in financial markets the recent past value of the state-dependent variable is more 

likely to influence the current state than the value from two, three, etc. periods ago. 

 



68 

 

STAR models 

Teräsvirta and Anderson (1992) in their paper assumed that any non-linear time-series 

can be represented by a smooth transition autoregressive (STAR) model. STAR models, 

unlike standard TAR models, allow for a more gradual transition of the dependent 

variable between regimes. The regime indicator in these models is a continuous function 

rather than an on-off switch (Brooks, 2002).  Extensions of the STAR model considered 

in this paper include logistic STAR (LSTAR), exponential STAR (ESTAR) and 

asymmetric exponential STAR (AESTAR) models. The general STAR model for the 

dependent variable +� and ���� as an explanatory variable is represented as follows:  

 

+� = @ + 4 @����� + A� + 4 ������
�

�9� B C ,��D#+��
�

�9�  

(2.12)  

 

where C ,��D# is the transition function with ,��D as the transition variable which 

determines the switching point, d is the delay parameter and �� is an error term. @� and 

�� are the autoregressive components of the model.  

The exponential STAR (ESTAR) is an extension of the standard STAR model which 

allows the differentiation between dynamics of the time-series caused by the different 

magnitude of the explanatory variable utilising the following transition function:   

 

C ,��D# = 1 − E�) −F ,��D − G#� !� ,��D#⁄ # , F > 0 (2.13)  
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where F is the smoothing parameter, G is the transition parameter and ! is the variance 

of the transition variable.   

Further extension of the STAR model, the logistic STAR (LSTAR) model, on the other 

hand, captures time-series dynamics that occur as a result of different signs of the 

determinant, i.e. positive or negative values of the explanatory variable:    

 

C ,��D# = =1 + E�) −F  ,��D − G# ! ,��D#⁄ #?��
 , F > 0 (2.14)  

 

With regard to the LSTAR model the delay parameter d is assumed to be unknown, 

whereas the autoregressive order is known (Luukkonen et al, 1988). However, in 

practice, the order of the autoregressive part of the model is often unknown and has to 

be estimated.  Thus it is suggested that when attempting model building the appropriate 

order of the linear AR model should be specified first. This can be achieved by applying 

usual model selection techniques, such as information criteria, including AIC and SBIC. 

 

Similarly, asymmetric ESTAR (AESTAR) process proposed by Sollis et al. (2002) 

models different speeds of adjustment within the mean reversion system, so that the 

AESTAR model for time-series variable ��, at & number of observations, reverts to the 

mean �, which can be described in the form of variables’ deviations from the mean 

(K� = �� − �) as follows:  
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∆K� = �'� F�, F�, K���# + 4 M�∆K���
-

�9� + �� 

(2.15)  

 

where the asymmetry is described by the logistic transition function '� F�, F�, K���#, 

which allows for different speeds of mean reversion, F� and F�, using the Heaviside 

indicator, ��, with % lagged differences: 

 

'� F�, F�, K���# = N1 + E�)O−F��K���� �� − F��K����  1 − ��#PQ�� − 0.5 (2.16)  

�� = 1 01 K��� > 0 (2.17)  

�� = 0 01 K��� ≤ 0 

 

Naturally, the asymmetric function (2.16) collapses to the symmetric model when 

F�� = F��. 

Davies et al. (1988) outlines two main methods of identifying and fitting STAR models. 

One method is based on CUSUM (cumulative sum) tests, whereas the other method is 

based on a likelihood ratio test (LRT). The analysis procedure for identifying non-

linearity based on the CUSUM test contains four steps (Petruccelli and Davies, 1986). 

The first step of the procedure involves carrying out the actual CUSUM test in order to 

select values of k (lag length) and d (delay parameter). The series will be said to be 

linear if none of the values are selected. Vmask and runs tests are used in the second 

stage of the procedure to locate initial threshold estimates. The third step involves 

fitting the selected models and computing their SBIC. The last stage of the process 
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involves assessing the threshold values and returning to the third stage if the local 

minimum of SBIC has not been achieved.  

Test procedures based on a likelihood ratio test are more time consuming compared to 

the CUSUM test. Due to such complication Davies et al. (1988) suggest to use only one 

threshold with this procedure. The procedure consists of three stages and involves 

obtaining the least squares estimate of the threshold value at first. The first stage of the 

process also involves fitting the model and calculating the value of its mean squared 

error (MSE), i.e. MSE (k, d). The second step involves choosing the parameter 

estimates for k0 and d0 such that MSE (k0, d0) is the minimum MSE for all k and d found 

in stage one. Once estimates are found the likelihood ratio statistic can be determined 

for this model against the null model, which in this case is AR (k0). The last stage of the 

procedure consists of assessing the significance of the likelihood ratio test statistic by 

simulating n number of observations from the null AR (k0) model and repeating the 

process from stage one.   

However, none of these proposed procedures seem to be flawless and a number of 

researchers have suggested various alternatives. For instance, Luukkonen et al. (1988) 

proposed three tests for testing linearity against STAR models which seem to be more 

powerful than the CUSUM tests, especially in the case of testing against SETAR 

models. Chan and Tong (1986) suggest a likelihood ratio test statistic for testing 

linearity of SETAR models. However, as pointed out by Luukkonen et al. (1988), due to 

irregularity of the likelihood function the statistic should be determined separately for 

each application. As a suggestion to this problem, Luukkonen et al. (1988) proposed a 

set of tests which allows to test for non-linearity in a whole class of STAR models. 
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These tests are based on the asymptotic T� distribution and seem to have realistic 

power.  

Petruccelli and Davies (1986) used a portmanteau test, which is a CUSUM-type test, for 

testing threshold autoregressive non-linearity. This type of test is based on the 

predictive residuals of ordered autoregressions. However, Luukkonen et al. (1988) have 

compared three tests developed in their paper to the CUSUM test by Petriccelli and 

Davies (1986). As a result the so called third-order test procedure proposed in the paper 

was found to be a reasonable alternative with significant computational advantage. This 

test can also be applied to STAR models in general, including LSTAR. In addition, 

these tests were found to be more practical compared to the one developed by Chan and 

Tong (1986). Luukkonen et al. (1988) also proposed designing a simulation experiment 

in order to observe behaviour in small samples.  

Luukkonen et al. (1988) suggested Lagrange multiplier (LM) tests that can be used 

when considering non-linear smooth transition autoregressive models. However, Chan 

(1990) pointed out that the Lagrange multiplier test cannot be used in the case of TAR 

models due to the discontinuous nature of its autoregressive function.  

Chan (1990) proposes a test statistic U which approximates to the (conditional) 

likelihood ratio test when the noise term follows normal distribution. In essence, the U 

statistic is the normalised reduction in the sum of squares due to the partial linearity of 

the set of autoregressive functions. Chan (1990) has found the U statistic in general to be 

more powerful comparing to Petruccelli and Davies’ (1986) portmanteau test.  

 



73 

 

Error-correction model  

The concept of cointegration is based on the fact that certain economic variables appear 

to move together and do not diverge from each other dramatically in the long-term thus 

forming a cointegration relationship. These variables may drift apart in the short-run, 

however will be pulled back to the long-term equilibrium by the economic forces within 

the market mechanism. The concepts of the cointegration and error-correction model are 

very closely linked, whereby cointegrating variables belong to an economic system with 

a long-run equilibrium, which in its turn can be described by the error-correction model, 

so that the model must exist if two variables are cointegrated. Similarly, the ECM 

generates series and is used in the testing stage of the Engle-Granger cointegration 

procedure. The definition by Engle and Granger (1987) states that two variables are 

cointegrated if each of these individual variables have the same order of integration, i.e. 

they need to be differenced the same number of times to achieve stationarity, and a 

linear combination of these variables is stationary, I(0). Whenever two cointegrating 

variables diverge from each other the economic forces will tend to correct the 

equilibrium error, and the adjustment back to the equilibrium is described by the error-

correction model. The non-linear error-correction model is able to describe the different 

dynamics that are characteristic for the long-run and short-run horizons, or in other 

words the process of adjustment to the long-run equilibrium. The original paper by 

Engle and Granger (1987) introduced the definition of a cointegrating process, and since 

then was extensively referenced and extended.  

The standard error-correction model (ECM) models long-run equilibrium relationship 

between first differenced and lagged cointegrating variables in the following form:    
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Δ�� = M�Δ�� + M� ���� − F����# + �� (2.18)  

 

where  ���� − F����# is the error-correction term, which should follow the I(0) process 

if  �� and �� are cointegrated with cointegrating coefficient F. In other words, in the 

presence of a valid long-run equilibrium relationship the error-correction term will be 

stationary. In the above equation the cointegrating coefficient F in fact defines the long-

term relationship between � and �. M� describes the short-run relationship between 

changes in the � and changes in the �, whereas M� represents the speed of adjustment 

back to the equilibrium. The model can be estimated using the OLS procedure and can 

have an intercept in the cointegrating term and/or in the model. In addition, Brooks 

(2002) reminds that ECM can be estimated for more than two variables.  

The definition of the cointegration process given in the seminal paper by Engle and 

Granger (1987) is far more complex, however, definition given above is adequate for 

understanding the basics of the concept and sufficient for the purpose of the present 

study.  

As it was demonstrated earlier in the chapter, Section 2.2, cointegration techniques are 

used in context of the present value model. Moreover, this study intends to apply non-

linear error-correction model techniques to the forecasting exercise of the stock returns 

using the dividend yield and the price-earnings ratio as determinant variables. The 

simple error-correction model would take the following form (McMillan, 2004): 

 

+� = �� )��� − M − M�>���# + �� (2.19)  
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where +�, )�, >� represent returns, prices and dividend yield respectively,  )��� − M −
M�>���# = K��� is the error-correction term, coefficient  �� is the speed of adjustment to 

the equilibrium and �� is an error term.  

A threshold autoregressive (TAR) error-correction model is a non-linear extension of 

the original Engle and Granger’s (1987) model used in order to capture a non-linear 

adjustment mechanism (Enders and Granger, 1998; Enders and Siklos, 2001; McMillan 

2004).   

Δ+� = ��W�+��� +  1 − ��#W�+��� + ε�      , �� = 1 01 +��� ≥ G (2.20)  

 

where c is the threshold value and the Heaviside indicator function �� is defined as 

�� = 1 if +��� ≥ G, or zero otherwise 

Furthermore, ESTAR error-correction model allows for smooth transition between 

regimes and thus represents a more realistic economic model of the dividends-prices 

relationship.  

 

+� =  @ + @�,���# +  � + ��,���#=1 − E�) −F ,��D − G#� !� ,��D#⁄ #?+ �� 

(2.21)  

 

where the parameters and the transition variable ,��D change symmetrically with the 

threshold value G, so that if � → ∞ or F → 0, the equation becomes linear.  

The LSTAR error-correction model also allows for smooth transition and captures the 

asymmetry in the adjustment process followed by the different sign of the determinant:   
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+� =  @ + @�,���# +  � + ��,���#=1 + E�) −F ,��D − G# ! ,��D#⁄ #?��+ �� 

(2.22)  

 

The AESTAR error-correction model allows smooth transition between regimes 

characterised by different speeds of adjustment to the equilibrium:  

 

+� =  @ + @�,���#+  � + ��,���# Z1 + E�)=−F��,���� �� − F��,����  1 − ��#?[��
+ �� 

(2.23)  

 

where F�� and F�� are speeds of mean reversion, and �� is the Heaviside indicator:  

�� = 1 01 ,��� > 0 (2.24)  

�� = 0 01 ,��� ≤ 0 

 

 

Unit root tests 

 

In order to apply the framework and to carry out a forecasting exercise, the relevant data 

is required to be tested for presence of stationarity. Linear stationarity can be tested 

using the Dickey-Fuller test or augmented Dickey-Fuller test, whereas non-linear 

stationarity is tested using tests specially modified for these purposes.  
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Linear unit root tests  

The standard Dickey-Fuller (DF) unit root test is sufficient enough to test linear 

stationarity and takes on the following form:  

 

∆�� = \���� + �� (2.25)  

 

where ∆ is the difference operator, \
 
is the test statistic, and �� is a white noise error 

term. The null hypothesis of unit root (]: \ = 0) is tested against the alternative of 

stationarity (]�: \ < 0). Since the statistic ratio does not follow the standard F-

distribution under the null hypothesis the test statistic is compared to specially tabulated 

Dickey-Fuller critical values.  

The augmented Dickey-Fuller (ADF) unit root test accounts for autocorrelated error 

terms, since the standard DF test is only valid if the disturbance term follows a white 

noise process. In these circumstances the ADF test is preferred as a more general 

procedure for testing presence of linear non-stationarity. Similarly to the standard DF 

test, the ADF test statistic follows a non-standard distribution and thus Dickey-Fuller 

critical values are used. A standard equation for the ADF unit root test as follows:    

 

∆�� = \���� + 4 ��∆���� + ��
�

�9�  

(2.26)  
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where \ is the test statistic, ) is the number of lags of the dependent variable and ��  is 

an error term. Test lags of the dependent variable or the augmented test are chosen on 

the basis of frequency of data combined with a previous knowledge from similar 

studies. The procedure is testing a null hypothesis of unit root against an alternative of 

stationarity.  

 

]: \ = 0, ,E+0E, G_�	`0�, ��0	 +__	 

]�: \ < 0, ,E+0E, 0, ,	`	0_�`+� 

 

The DF and ADF tests are the most commonly used unit root tests, however, these are 

unable to detect non-linear stationarity and can lead to misspecified modelling and 

hence incorrect results. Consequently, the tests will fail to reject the null hypothesis of 

the unit root for time-series displaying STAR-type non-linearity which in reality might 

be globally stationary. As a result, a number of alternative unit root tests were 

developed in order to account for non-linear stationarity.  

 

Non-linear unit root tests 

Kapetanios et al. (2003) developed a relatively easy to apply procedure for testing the 

presence of non-stationarity in time-series data using exponential smooth transition 

autoregressive (ESTAR) processes, and the proposed test was found to have better 
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power comparing to the standard DF test. The test is based on the following form of the 

ESTAR model: 

�� = M���� + F����N1 − E�) −����D� #Q + �� (2.27)  

 

which can be further reparameterised as: 

 

∆�� = ����� + F����N1 − E�) −����D� # + ��Q (2.28)  

 

where � = M − 1.  

The procedure developed by Kapetanios et al. (2003) is based on a specific ESTAR 

model where � equals to zero (� = 0) and the delay parameter d  is set to unity (> =
1).  

Δ�� = F����O1 − E�) −������ #P + �� (2.29)  

 

Hence, the procedure involves testing the null hypothesis of parameter �  being equal to 

zero against the alternative of � being positive. However, since it is not possible to test 

the null directly due to the fact that the speed of reversion F is not identified, Kapetanios 

et al. (2003) propose a t-type test statistic following the work of Luukkonen et al. 

(1988), which is in fact a first-order Taylor series approximated to the ESTAR model.  

 

∆�� = M����a + �� (2.30)  
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Hence, the t-statistic is obtained for ]: M = 0 against ]�: M < 0 as follows:  

 

	bc = Md ,. E. =Md?e  (2.31)  

 

where Md  is the OLS estimate of M and ,. E. =Md? is the standard error of Md . Asymptotic 

critical values of the 	bc statistic are different for different types of data, such as raw 

data, de-meaned data and de-trended data (Kapetanios et al., 2003).  

 

Table 2.1. Critical values for ESTAR stationarity test. 

Fractile (%)  Raw data De-meaned data De-trended data 

1 

5 

10 

-2.82 

-2.22 

-1.92 

-3.48 

-2.93 

-2.66 

-3.93 

-3.40 

-3.13 

 

Sollis et al. (2002) introduced the idea of asymmetry in mean reversion adjustments in 

the time-series of real exchange rates and the effects of such asymmetry on unit root 

tests. Sollis (2009) extended the research by further development of the unit root test to 

allow asymmetry within ESTAR-type non-linear dynamics. The null hypothesis of the 

unit root is tested against the alternative of globally stationary ESTAR non-linearity 

which can be then further assessed in terms of exhibiting either symmetric or 

asymmetric behaviour. The test is based on the ESTAR unit root test by Kapetanios et 

al. (2003).   
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∆�� = M����a + �����f + �� (2.32)  

 

The null hypothesis of the unit root is tested as coefficients M and �, which are equal to 

zero  ]: M = � = 0#. The critical values for the test for the zero mean, non-zero mean 

and deterministic trend are in the table below, where & is the sample size.  

  

Table 2.2. Critical values for asymmetric ESTAR stationarity test. 

T Zero mean Non-zero mean Deterministic trend 

10%      5%        1% 10%      5%       1% 10%      5%       1% 

50 

100 

200 

Asymptotic 

3.577    4.464    6.781 

3.527    4.365    6.272 

3.496    4.297    6.066 

1.837    2.505    4.241 

4.009    4.886    6.891 

4.157    4.954    6.883 

4.173    4.971    6.806 

3.725    4.557    6.236 

5.415    6.546    8.799 

5.460    6.463    8.531 

5.590    6.597    8.954 

5.372    6.292    8.344 

 

Furthermore, based on the test by Kapetanios et al. (2003), Pascalau (2007) developed a 

framework for testing general STAR-type stationarity (2.31) and a unit root test which 

considers a logistic smooth transition (LSTAR) process non-linear stationarity in 

particular (2.32), where the null hypothesis of unit root is tested against the alternative 

of ESTAR and LSTAR stationarity for the general STAR test, and against LSTAR 

stationarity for the LSTAR unit root test.    

 

]: F = M = � = 0 

]�: F + M + � < 0 
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∆�� = F����� + M����a + �����f + �� (2.33)  

 

∆�� = F����� + �����f + �� (2.34)  

 

The hypotheses are tested using the F-tests, and similar to the study by Kapetanios et al. 

(2003), Pascalau (2007) offers tabulated critical values associated with the test for 

models with raw data, de-meaned and de-trended data, where Cbc is the statistic for the 

general STAR unit root test and Cgbc is the statistic for the LSTAR test.  

 

Table 2.3. Critical value for the general STAR and LSTAR stationarity tests.  

Fractile (%)  Raw data De-meaned data De-trended data hij    

1 

5 

10 

4.92 

3.64 

3.05 

5.16 

3.87 

3.30 

6.08 

4.72 

6.08 

 hkij    

1 

5 

10 

4.92 

3.64 

3.05 

5.16 

3.87 

3.30 

6.08 

4.72 

6.08 

 

 

Econometric forecasting  
 

Point forecasts predict a single value of the variable under consideration, whereas 

interval forecasts attempt to predict a range of values in which the future value of the 

variable is expected to lie. Interval forecasts are usually given with a specified 
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confidence level. Harris and Sollis (2003) suggested that since the forecast and forecast 

error are random values, the interval forecasts would be more appropriate and useful. 

Furthermore, most financial trading schemes are based on a limit barrier and thus will 

benefit from knowing the possible range of values which can be given by an interval 

forecast. Granger et al. (1989) points out the importance of interval forecasting for 

various economic variables such as GNP growth, prices and unemployment rates. In 

addition, Value-at-Risk (VaR) and risk management are widely used practical 

applications of interval forecasting.  

A related technique, density forecasts, on the other hand, provides an estimate of the 

probability distribution of possible future values of the forecasted variable (Wallis, 

2003). Thus, allowing for full information about the forecasted density, such as 

dispersion or tails of the distribution (Mitchell and Hall, 2005). 

Interval and density forecasts produce more informative predictions compared to point 

forecasts (Clements and Taylor, 2003). Both, interval and density forecasts supplement 

point forecast with a description of uncertainty. While interval forecasting specifies the 

probability of the forecasted outcome to fall within a specified interval of an upper and 

lower bound, density forecast offers a complete probability distribution of future 

outcome (Mitchell and Hall, 2005).  

Christoffersen (1998) pointed out that while point forecasts are easy to compute and 

evaluate, interval forecasts and indeed density forecasts have an advantage over point 

forecasts in terms of their versatility in practical uses allowing for contingency planning 

as, by definition, interval forecasts indicate the range of likely outcomes. However, 

Diebold et al. (1998) point out computing difficulty, lack of demand for this type of 
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forecasts and lack of evaluation techniques as the reasons for limited research into 

density forecasts. While the former two points have changed in time with improved 

availability of computing technology and the fact that financial risk management has 

increased the requirement of density forecasts, density forecast evaluation methodology 

on the other hand is the topic for an improved methodology with many studies 

suggesting various methodology approaches (Diebold et al., 1998; Berkowitz, 2001).  

The main body of literature focuses on evaluation of point forecasts awarding a 

relatively small proportion of research to interval (Chatfield, 1993; Christoffersen, 

1998) and density (Diebold et al., 1998; Berkowitz, 2001) forecasts. The basis of 

interval and density forecasts evaluation involves comparing the forecasted coverage to 

the true coverage of the data (Baillie and Bolerslev, 1992; McNees and Fine, 1996). A 

number of researchers have attempted to formulate a single method of evaluation of 

interval and density forecasts similar to RMSE commonly used to evaluate and compare 

point forecasts. Christoffersen (1998) proposes a likelihood ratio as means of evaluation 

of interval forecasts as a model free forecast testing criterion similar to the works of 

Diebold and Mariano (1995).   

Similarly, Mitchell and Hall (2003) proposed the Kullback-Leibler information criterion 

(KLIC) as a unified statistical tool for evaluation, comparing and combining density 

forecasts and which offers operational convenience in terms of practical use. The 

methodology is based on the likelihood ratio proposed by Berkowitz (2001) for 

evaluation of density forecasts. Mitchell and Hall (2003) suggest KLIC as a statistical 

method of evaluating density forecast in a similar fashion as root mean squared error 

(RMSE) is used to statistically evaluate and compare point forecasts.  
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In addition, Wallis (2005) carries out research into the combining of interval and 

density forecasts on the suggestion that different forecasts containing different 

information sets are possible to produce superior combined forecast, which is a similar 

approach taken for point forecasts in previous literature. However, the researchers 

suggested further development into the rules of combination and in particular optimal 

weight methodology of the density and interval forecasts for future research. Hall and 

Mitchell (2007) continue the research into combining density forecasts with an 

application of their methodology to UK inflation and find that their methodology of 

combining weights delivers encouraging results in terms of forecasting performance. 

Unlike the previous study by Wallis (2005) which used equally weighted forecast 

combination, Hall and Mitchell (2007) implement the Kullback-Leibler information 

criterion in order to determine the combination weights by minimizing the distance 

between the forecasted and the true unknown density. However, the best combined 

forecast failed to outperform the best individual forecast, thus suggesting density 

forecast combination as a topic for further research. The possible reason for research 

findings confirming individual density forecasts to outperform combined forecasts 

could be lack of research into techniques and rules of combination and optimal weights 

allocation. The emergent research into the topic of combined density forecasts yet lacks 

a firm explanation of whether the poor performance of combined density forecasts is 

due to incorrect combining procedures or due to theoretical underlining.  

An interval forecast consists of upper and lower limits, or prediction intervals, between 

which a future expected value of the forecasted series is expected to lie with certain 

assigned probability. In relation to computation of the prediction intervals, Chatfield 
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(1993) distinguishes between conditional and true forecast errors, as well as the 

importance of forecast error variance in terms of quality of the interval forecast. 

An observed time-series (��, ��, … , �l), where � is the number of observations, follows 

a stochastic process m�, at time 	. The %-step-ahead point forecast conditional on data up 

to time � is denoted as mnl %# when regarded as a random variable and �"l %# when it is 

a particular value. Thus the forecast error conditional on data up to time � is the 

difference between the actual value of the random variable and the point forecast value, 

which can be expressed as follows: 

 

El %# = mlo- − �"l %# (2.35) 

  

Since the observed value of El %# becomes available at time � + %, the out-of-sample 

conditional forecast errors are the true forecast errors, while in-sample forecast errors 

are the residuals from the fitted model. Calculation of interval forecasts involves 

computing of the expected mean squared prediction error, or PMSE (pNEl %#�Q), in 

order to set the prediction intervals. Unbiased forecast where the point forecast is the 

mean of predictive distribution would thus be characterised with a zero prediction error 

(pNEl %#Q = 0) and variance (pNEl %#�Q = q`+NEl %#Q). Chatfield (1993) point out 

that the evaluation in terms of forecast uncertainty relies on the evaluation of the 

variance of the forecast errors rather than the forecast.    

Granger et al. (1989) propose a practical approach of obtaining interval forecast for 

estimated time-series models, which also allows for possible presence of non-linearity 

in the series. Further, Chatfield (1993) suggests a general procedure for calculating 
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prediction intervals whereby a 100 1 − �#% prediction interval for mlo- is given in the 

following form: 

 

�"l %# ± Kt �⁄ uq`+NEl %#Q 
 

(2.36) 

Where Kt �⁄  indicates the appropriate percentage point of a standard normal distribution. 

Eq. 0.02 holds assuming that the forecast is unbiased and that the forecast errors follow 

normal distribution. However, in practice, Kt �⁄  sometimes is assumed to follow a t-

distribution.    

While both interval and density forecasts compared to point forecasts provide likelihood 

of accuracy and more thorough understanding and comparison opportunities of 

forecasts, these types of time-series forecasts have been characterised with a number of 

drawbacks. Thus, for interval and for density forecasts, in particular, problems occur 

when error distribution is not normal. Estimation techniques for both types of forecasts 

assume normally distributed error term. This assumption does not consider the common 

presence of outliers in the time-series data, which result in associated asymmetry and 

heavy tails of the distribution. Moreover, as with any econometric forecasts, the results 

depend heavily on an identification of a fitted model and dangers of estimating the 

wrong model. This remains true for interval and density forecasts, nonetheless, most 

approaches of computing prediction intervals are based on the assumption that the 

correct model was fitted. Furthermore, changing structure of the underlying model due 

to either slow changes in the dynamics of the data or sudden shocks, bears a significant 

impact on the estimation and hence the performance of interval forecast. In addition, 

Tay and Wallis (2000) point out the importance of correct presentation of density 
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forecasts as inappropriate presentation might significantly reduce the practical 

usefulness of the forecast as a whole by leading to misinterpreted or misleading results. 

The topic of interval and density forecasts is still a rather sparse subject in academic 

literature and research, thus resulting in a lack of generally accepted methods of 

calculating and evaluating the forecasting results. 

Furthermore, the notion of a one-step ahead forecast as well as a multi-step ahead 

forecast should be mentioned. It is evident from the terminology, that the former 

forecast is generated for the next observation only, while multi-step-ahead forecast is 

generated for a particular number of forecasts for the future time period. The number of 

steps of the forecast depends on the type and purpose of the forecast. In addition, when 

deciding on the forecasting horizon one should appreciate that different models might 

be superior in producing forecasting for short horizons up, to one or two steps ahead, 

while producing poor forecasts further ahead, and vice versa.  

Moreover, estimation and forecasting periods are different in in-sample and out-of-

sample forecasts. According to Brooks (2002), in-sample forecasting involves 

estimating fitted values using the same data that was used to estimate the model. 

Naturally, models are expected to produce relatively accurate in-sample forecasts. 

Hence, for model evaluation purposes and examination of forecast accuracy, the latter 

sample of observations is withheld from the estimation sample for the purpose of using 

this so called holdout sample to generate an out-of-sample forecast. Thus, the holdout 

sample then can be used to assess the accuracy of the forecast by comparing fitted with 

actual values.  
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                                                                                                      Out-of-sample 

                     In-sample estimation period                                   evaluation period  

 

  Jan 2000                                                            Dec 2005 Jan 2006               Dec 2006  

 

For the purpose of illustration, assume the current data of interest ranges from 1
 
January 

2000 to 31 December 2006. With an intention of carrying out an out-of-sample forecast 

a researcher may estimate an appropriate time-series model using in-sample estimation 

from the period of 1 January 2000 to 31 December 2005, withholding the sample from 1 

January 2006 to 31 December 2006. The out-of-sample forecast is then estimated for the 

period from 1 January 2006 to 31 December 2006 and consequently compared with the 

actual values available as a holdout sample. Note that the number of observations in the 

out-of-sample forecast and the holdout period is the same since these are using the same 

data period.  

In addition, forecasts can be performed using either recursive or rolling window 

forecasting techniques. When applying a recursive method, the initial estimation date is 

fixed and additional observations are added one by one to the whole of the estimation 

period. While a rolling window technique implies the length of the in-sample period to 

be fixed, thus the start and the end dates increase with addition of each new observation.  

While in-sample forecasts provide a good evaluation of a model in terms of goodness of 

fit, out-of-sample forecasts provide more accurate assumptions regarding the forecasting 

accuracy of econometric models. Similarly, recursive forecasts tend to utilise the 

dynamic patterns of data through constant re-estimation. Furthermore, one-step 

forecasts are preferred due to the simplicity of estimation and evaluation techniques, as 
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opposed to a limited evidence of adequate performance of the multi-step forecast. 

Consequently, empirical chapters in this paper concerned with forecasting 

methodologies will consider one-step ahead point recursive out-of-sample forecasts.   

 

 

Tests of forecasting accuracy 
 

As Ericsson (1992) pointed out, the success of any empirical economic model is 

assessed on the basis of how well it is able to explain significant features of the data 

thus capturing its true dynamics. In addition, models are tested on their abilities to 

deliver reliable predictions of the future behaviour of the data, or in other words, 

forecasting accuracy of the model. Moreover, tests of forecasting accuracy are also used 

when comparing competing models in order to determine which model generates the 

superior forecast.  

Granger and Newbold (1977) proposed a notion of a cost function as a criterion of 

optimising of a point forecast. It is based on the assumption that forecast errors have a 

high probability of occurrence in connection with a random process. Granger and 

Newbold (1977) suggested the notion of the cost of an error � E#, where the error E is 

defined as El,v = �lov − 1l,v , where 1l,v is the forecast for �lov based on the 

information set �l. Thus the cost of a zero error will equal to zero,  0# = 0 , while 

forecast based on not optimal decisions will result in cost of �=El,v?. To reduce a cost 

function the point forecast 1l,v is chosen so that the expected cost of forecasting errors 
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pwx�=El,v?y is minimised. Thus the optimal forecast is the forecast function that 

minimises the error cost function
4
: 

 

1l,v = pwO�lovP    (2.37)  

 

 There are numerous tests that can be performed to assess accuracy of a time-series 

forecast. In the case of out-of-sample forecasts the actual values from the holdout 

sample are compared to the forecasted values and the differences between those values 

are analysed using various tests of forecasting accuracy appropriate to the specific type 

of forecast. Brooks (2002) defines a forecast error as the difference between the value of 

an observation and the value of the forecast made for this observation. Hence, the 

forecast error can be either positive, when the forecasted value was too low, or negative, 

when the forecast was too high. Due to this fact, the forecast errors are usually squared 

or the absolute value is taken to prevent mathematical cancelling out when summed to 

provide a forecast error value for the whole series. Techniques that assess forecasting 

errors in such way are usually referred to as statistical loss function tests.    

The most commonly known statistical loss function tests include mean squared error 

(MSE) and mean absolute error (MAE). These tests are used when comparing forecasts 

from different models performed on the same data and over the same forecasting period. 

As in most similar loss function tests the model producing the lowest value of MSE or 

MAE is considered to be more accurate. However, as Harris and Sollis (2003) pointed 

out, a lower MSE of one forecasting model in comparison to another does not 

necessarily indicate superiority of the first model for the simple reason that the 

                                                           
4
 For further detailed discussion of theory of forecast optimisation and loss functions refer to Granger and 

Newbold (1977).  
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difference between their MSEs may not be significant enough to support that claim. 

They recommend that the test of equal forecast accuracy developed by Diebold and 

Mariano (1995) is used to assess whether the difference between MSEs of competing 

forecasts is statistically significant from zero. Monte Carlo simulations showed the test 

to be a valuable tool, however, it was found to be over-sized for small forecasts of two 

or more steps ahead. Consequently, Harvey, Leybourne and Newbold (1997) modified 

the original Diebold-Mariano test in order to improve its performance. As a result, the 

new statistic exhibits a much higher performance and is robust for different forecast 

horizons, as well as autocorrelated and non-normally distributed errors.   

Furthermore, Ericsson and Marquez (1993) point out that when presented with few 

competing forecasting models it should be taken into account that different models may 

perform well individually in capturing different features of the data’s behaviour. Chong 

and Hendry (1986) proposed the concept of forecast encompassing which relates to the 

model’s informational content. The test allows investigation of whether the forecasts of 

one model can explain the forecast errors of another, or whether competing models 

contain no additional information, thus assuring the superiority of the original model.  

On the contrary, some researchers argue that regardless of whether the forecasting 

accuracy tests indicate the superiority of one model over the other, the main indication 

of a successful forecast is whether it can convey any practical gains in terms of a 

generated profit when using the forecasting model. Trading rule style tests are very 

popular and are a relatively easy way to compare performances of different forecasts. 

These are known as economic loss functions.  
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While the traditional statistical measures have their drawbacks and are mostly not 

equipped to deal with non-linear time-series, these are very easy to implement and 

interpret, and as some researchers would argue, provide a clear overview and enough 

information to draw conclusive assumptions. Hence, this study will by no means 

dismiss these techniques, and nevertheless will consider other methods of comparative 

measurement. This section describes traditional statistical tests of forecasting accuracy 

as well as some alternative procedures highlighting benefits and drawbacks on each test 

before applying these to the forecasted series considered in this study.   

 

Statistical loss function tests  

 

The following test procedures are the most commonly used statistical loss function tests 

that can be applied to evaluating forecasting accuracy of time-series models. These tests 

are also often used to evaluate econometric models at the estimation stage of model 

building, where the selection criteria is based on minimising the value of these statistics. 

Due to the simplicity and relative ease of interpretation a number of these tests are run 

by researchers as standard practice when attempting a forecasting exercise and are 

included in most software modelling packages, thus providing readily availability of the 

tests.  

All the tests of forecasting accuracy considered here are applicable to out-of-sample 

forecasts and will be performed by creating what is known as a dynamic simulation 

(Pindyck and Rubinfeld, 1998) where forecasted values are compared to the actual 

values withheld in the holdout sample period. This approach allows researchers to 
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determine how close the predictive values mimic the corresponding actual data series. 

Different tests interpret the comparison between forecasted and actual values in 

different ways although are based around the same principle.  

 

Error magnitude tests 

Mean error (ME) is one of the simplest statistical loss function tests measuring the 

forecasting performance in terms of the magnitude of the forecasting errors, and 

involves taking the mean value of the sum of differences between actual and forecasted 

values.  

 

zp = �{�� ∑=��o} − 1�,}?    (2.38)  

 

where �� is the actual value of the variable at time t, and T is the sample size including 

the out-of-sample observations.  

Thus, mean squared error (MSE) is the sum of residuals, or forecast errors, divided by 

the number of degrees of freedom, which in essence provides a measurement of residual 

variance. MSE of forecast error for s-step ahead forecast at time t, 1�,} : 

 

z'p = 1& − 1 4=��o} − 1�,}? 
(2.39)  
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Similarly, mean absolute error (MAE) measures the average absolute of forecast errors 

for the forecast 1�,}: 

 

z�p = 1& − 1 4~��o} − 1�,}~{
�9{8

 

(2.40)  

 

Mean absolute percentage error (MAPE): 

 

z��p = 100& − 1 4 ���o} − 1�,}��o} �{
�9{8

 

(2.41)  

 

Adjusted MAPE (AMAPE) is also known as a symmetric MAPE (Brooks, 2002), which 

corrects for the asymmetry between the actual and forecasted values by dividing the 

forecast error by the average of actual and forecasted values twice.  

 

�z��p = 100& − 1 4 ���o} − 1�,}��o} + 1�,}�{
�9{8

 

(2.42)  

 

Statistics like ME, MSE and MAE can be used for comparisons between different 

models as long as these are estimated using the same data and forecasting period. 

Generally, the model with the lowest value of ME, MSE or MAE statistic is regarded as 
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the more accurate one. The MSE statistic is also tolerant towards models where there 

are significantly more much larger forecast errors than smaller errors. However, MSE is 

scale dependent, which means it requires forecasts to be made using the same data and 

forecasting period in order to carry out a valid comparison. Both MAPE and AMAPE, 

on the other hand, can be used to compare a wider range of forecasts as these statistics 

are interpreted as a percentage. However, MAPE and AMAPE statistics cannot be used 

when the forecast values and the series can take opposite signs, as in the case of forecast 

returns, for instance. This is due to a chance that the values can cancel each other out, 

which in turn will result in extremely large and erratic values of these statistics (Brooks, 

2002). Moreover, if absolute values of the series are less than unity, the MAPE statistic 

becomes unreliable (De Gooijer and Hyndman, 2006).    

Another useful comparison measure commonly used by forecasters is root mean square 

forecast error (RMSE). Pindyck and Rubinfeld (1998) defined RMSE as a measure of 

deviation of the forecast from the actual variable over time. As ME, MSE and MAE 

statistics, RMSE is only a comparison measure and can only be used when assessing 

similar constructed data sets.  

 

�z'p = �1& 4=1�,} − ��o}?�{
�9�  

(2.43)  

 

To overcome the comparison constraint and measure RMSE in relative terms, there is a 

similar technique statistic known as Theil’s U inequality coefficient, where the 
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numerator is the RMSE and the denominator scales the whole statistic so that the values 

of U will fall between 0 and 1.  

 

� = �1& ∑ =1�,} − ��o}?�{�9�
�1& ∑ =1�,}?�{�9� +  �1& ∑  ��o}#�{�9�

 

(2.44)  

 

Evidently, when the statistic’s value equals zero it signifies that the forecasted and 

actual values are equal, hence indicates the best accuracy of the forecast. Value of unity, 

on the other hand, signifies that the forecasting model is as inaccurate as it can be. 

However, even though the Theil’s inequality coefficient is a very useful statistic, 

similarly to MSE, it is too influenced by outliers and extreme data points (Brooks, 

2002).     

Empirical chapters of this dissertation apply different forecasting methodologies to 

time-series financial data with an intention to determine the preferred superior 

forecasting model for each data set. Due to the nature of the forecasting exercise 

employed here, the statistical loss functions will be compared to the same series of data 

across the forecasting exercise, thus this paper will apply ME, MAE and RMSE 

statistics for comparative measure.      
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Diebold-Mariano test of equal forecast accuracy  

Diebold and Mariano (1995) introduced a test of equal forecasting accuracy which tests 

whether the differences in MSEs of competing forecast models are statistically 

significant. The test is based on the idea that if one of the competing models displays a 

lower MSE value than the other model it does not necessarily mean that it produces a 

superior forecast, as the difference between values of MSEs might not be statistically 

significant. The test is intended for comparing results of competing forecasts of the 

same quantitative value. The Diebold-Mariano test takes into account two sets of 

forecasting errors from two forecasting models, E�� and E��, and runs the hypothesis 

represented by the expectations operator, p, such that pN>�Q = 0, where >� is the 

difference between the squared forecast errors, >� = E��� − E��� . The mean of this 

difference can be expressed as >̅ = ��� ∑ >�l�9�  with the variance of �=>̅? ≈
����F + 2 ∑ F--��-9� �, where F- is the %-th autocovariance of >�, which is estimated as 

following:  

 

F"- = ��� 4 =>� − >̅?=>��- − >̅?l
�9-o�  

(2.45)  

 

The statistic for the Diebold and Mariano (1995) test is testing the null hypothesis of 

equal forecast accuracy:  
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'� = ��n=>̅?����>̅ 
(2.46)  

 

Diebold and Mariano (1995) have reported good test results using Monte Carlo 

simulations. The test performed well for small samples and when forecast errors 

displayed autocorrelation and non-normal distributions. However, the test was found to 

be over-sized for two or more steps ahead forecasts.  

Harvey, Leybourne and Newbold (1997) reviewed the original test proposed by Diebold 

and Mariano (1995) amongst a few other similar tests, in order to assess and possibly 

improve performance of the test. Similarly to Diebold and Mariano (1995), Harvey et 

al. (1997) questioned whether one forecast being more successful than the other by a 

small amount was significant enough to make a claim of forecast superiority or if it was 

due to chance. Harvey et al. (1997) modified the original Diebold-Mariano test in order 

to address the test being over-sized for two or more steps ahead forecasts. By modifying 

the test statistic and considering the Student’s t critical values instead of the standard 

normal distribution, Harvey et al. (1997) have significantly improved the original test 

making the modified Diebold-Mariano test the best available procedure for comparing 

forecasts in terms of equal forecasting accuracy. The test demonstrated a very powerful 

performance and proved to be simple to compute.      

The modified Diebold-Mariano statistic by Harvey et al. (1997) is as follows:  

 

'�∗ = �	 + 1 − 2ℎ + 	��ℎ ℎ − 1#	 ��� '� 

(2.47)  
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where '� is the original Diebold-Mariano test statistic for ℎ-steps ahead forecast for 

time t. Critical values for the modified test are taken from the Student’s t-distribution 

with ( )1−t  degrees of freedom.  

 

 

Forecast encompassing test  

The aim of the forecast encompassing test is to assess whether a forecast from a 

competing model contains any information that is absent from the original model. If it 

does not, the forecast from the competing model is said to be encompassed by the 

forecast from the original model (Harris and Sollis, 2003). Hence, it will be unnecessary 

to combine these two models in anticipation that it would produce a forecast of a 

superior quality.     

Fang (2003) carried out an extensive research on whether competing individual 

forecasts can be successfully combined into one which in turn would be much superior. 

The assessment of forecast superiority was performed using the forecast encompassing 

tests. As a result, Fang (2003) found that in that particular case each individual forecast 

contained independent information necessary for forecasting the dependent variable, in 

other words, neither forecast encompassed the other. However, Fang (2003) did 

establish that the forecast encompassing test is a complimentary and a necessary tool to 

such criteria as RMSE and MAE.       

The test is carried out by regressing actual levels or change in the dependent variable �� 

on the forecasted values ��, (Fang, 2003). The same principle can be applied when 
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comparing values from two different forecasts. In this case the predicted values of a 

benchmark forecast are regressed on the predicted values of the alternative forecast.   

 

�� = ���n��},� �# + ���n��},� ��# + �� (2.48)  

  

This simple version of the forecast encompassing tests ] of �� = 0 against ]� of 

�� = 0. Hence, the first model forecast encompasses the second model when �� ≠ 0, 

�� = 0; in the case of the first model forecast being encompassed in the second model 

forecast �� ≠ 0, �� = 0. Any other outcome will indicate that neither model 

encompasses the other. Moreover, if both forecasts contain independent information for 

forecasting the ��, than both �� and �� should be non-zero (�� ≠ 0, �� ≠ 0); whereas if 

neither model contains any information required for forecasting the �� both �� and ��  
should be zero.  

In their original research Chong and Hendry (1986) have used the above regression with 

a restriction of �� + �� = 1. However, Fair and Shiller (1990) adopted a slightly 

different approach.   

 

�� − ���} = � + M�Z�n��} �# − ���}[ + M�Z�n��} ��# − ���}[ + �� (2.49)  

 

]: M� = 0 ,  ]�: M� = 0 
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where �n��} �#
 is the forecast of �� made from the forecasting model (I), and �n��} ��#

 is the 

forecast of �� from the forecasting model (II). Fair and Shiller (1990) are testing similar 

hypothesis that the forecasts made by model (I) contain no relevant information for 

forecasting the �� ]# against the hypothesis that model (II) contains no relevant 

information (]�).  

Fair and Shiller (1990) do not put a constraint on M and F to sum to unity on the 

argument that if the forecasts from both models are just noise, they expect both 

estimates to be zero. Furthermore, in the case of �� being a result of two independently 

distributed processes each of the competing forecast models could specify each of those 

processes individually, thus having both coefficient estimates equal to unity, which 

would sum up to two. Similarly, Fair and Shiller (1990) do not restrict the constant term 

� to be equal to zero, since in the case of both models being a noise and the estimates of 

M� and M� equal zero, the constant is required to account for the non-zero mean of the 

dependent variable. It is also suggested that the �� is likely to be heteroscedastic and 

can be treated as a general forecast error term. 

Similarly, Ericsson and Marquez (1993) also pointed out that the original forecast 

encompassing test by Chong and Hendry (1986) was designed for static linear models 

and assumed i.i.d. forecast errors. Ericsson and Merquez (1993) thus generalised the test 

to accommodate these points as well as to include a constant term. This allowed for the 

test to be performed for multi-step ahead forecasts on several competing models at the 

same time and allowed the uncertainty from estimating model coefficients, in the cases 

when these are unknown. As a result, their test consists of GLS estimation of the 

following equations using �Φ v#����, where Φ v# is an approximately diagonal matrix.  
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�{o} v# = %��{o} �# + E{o} v#
   

 

 (2.50) 

�{o} v# = % + 4 %��{o}� + E{o} v#
��v  , = 1, … , ,  (2.51)  

 

Where �{o} v# Z≡ � ∙ �{o} − �{o} v# [ is the actual forecast error of model ℎ, �{o} v#
 is the 

forecast of model � (� ≠ ℎ), E{o} v#
 is the error term of the regression. Equation 2.51 

contains a non-zero constant term %. The procedure is to test % = 0 and %� = 0 as a 

joint hypothesis; and % = 0 given %� = 0. GLS estimation is used to account for any 

autocorrelation in the forecast errors that will most likely be present in non-linear as 

well as linear models due to coefficient uncertainty. Ericsson and Marquez (1993) also 

cautioned that non-linearity of a model might produce non-normality in the forecast 

errors, though according to the researchers, it should not affect the forecast 

encompassing test statistic.    

On the contrary, Harvey and Newbold (2000) consider the forecast encompassing test to 

lack robustness due to forecast error non-normality and recommend their modification 

of Diebold-Mariano-type test for forecast encompassing used on multiple models. They 

found the modified test to be a preferred option, especially in large samples, however, to 

have limitations when applied to small samples. In their argument, Harvey and 

Newbold (2000) suggest that the test’s drawback is not significant when considering its 

reliability for the large size samples. Harvey and Newbold (2000) considered the 

forecast encompassing process in terms of a weight average linear forecast combination 

where in the case of the inferior forecast to be encompassed in the other model, the 

optimal weight of the inferior forecast is zero. In addition, the forecast encompassing 



104 

 

test besides its direct use in forecast comparisons may also be used as an indicator of 

misspecification of a model and hence suggest further improvement of that particular 

model (Ericsson and Marquez, 1993).    

This study will apply the standard Diebold-Mariano (Diebold and Mariano, 1995) test, 

as well as the modified Diebold-Mariano (Harvey and Newbold, 2000) test to the 

forecasts generated using linear and non-linear models, as well as forecasting errors of 

those models (Fair and Shiller, 1990).  

 

 

Combined forecast test  

Winkler and Clemen (1992) suggest that the basis for combining forecasts is very 

intuitive as such approach intends to reduce the risk of a particularly poor forecast. 

However, this risk might be counteracted if the approach results in weights allocated to 

each individual forecast that are too sensitive or extreme. Hence, they advise on 

methods that reduce weights variabilities, including a simple average and 

outperformance measurement (Gupta and Wilton, 1987). However, the simplest and 

thus most commonly used method of selecting the combining weights is the simple 

arithmetic average. This method has proven to be robust and relatively accurate. It is 

usually used as a benchmark and was often found to perform better than alternative 

more complex methods (Clemen and Winkler, 1986).  

Assuming that 1�, 1�, … , 1- are the forecasts for the variable in question, �, the combined 

forecast 1w �# using the equal weighting method can be expressed as follows:  
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1w �# = 1% 4 1�
-

�9�  

(2.52)  

 

This approach does not take into account differences between combined forecasts in 

terms of their accuracy, as the logical choice would be to allocate a stronger weight to a 

more accurate forecast. In other words, this approach implies that the forecasts are 

exchangeable (Clemen and Winkler, 1986; Gupta and Wilton, 1987). Hence, it is 

evident that regardless of its practical usefulness this method lacks theoretical 

justification, as it does not utilise information contained in the past data patterns, and, as 

pointed out by De Gooijer and Hyndman (2006), does not take into account the 

dependence among the forecasts’ errors. The simple equal weighting approach was 

further criticised by Gupta and Wilton (1987) for not accommodating for any additional 

information available to a researcher or a decision maker, including correlation between 

forecast errors and different functional structures of each model. Despite the downfalls 

of this approach, it performs well in empirical studies. Gupta and Wilton (1987) explain 

this due to the models used in the combination forecast having similar variances. 

Approaches that, on the other hand, have a solid theoretical base, such as minimum 

variance approach (see Gupta and Wilton, 1987), perform poorly in empirical studies, 

not robust enough and generally too sensitive to data non-stationarity and are 

outperformed by the equal weighting method.  

Gupta and Wilton (1987) also dismissed the possibility of a judgemental method on 

allocating weights on the basis that such approach will be too complex to implement 

and thus might not use all the available information efficiently. Instead Gupta and 

Wilton (1987) proposed the Odds-Matrix method for weight allocation of combined 
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forecast and found it to address all the necessary properties that are desired for this 

purpose. They found the method is flexible enough to adopt weights should new 

information about the data become available. Gupta and Wilton (1987) attempted to 

provide a procedure for allocating weights for combined forecasts such that the weights 

will be intuitively meaningful and not dependent upon large amounts of data. They have 

tested the proposed approach against previous procedures and found that the new 

methods perform equally well when used on large data and significantly better when 

used on sparse data. More so, as one of the methods to deal with the problem of non-

stationarity when combining forecasts Clemen and Winkler (1986) suggested allocation 

of heavier weights to most recent observations.  

In addition, Fang (2003) warned against simple combining of multiple linear forecasts 

in order to achieve lower values of RMSE than that of an individual forecast. Combined 

forecasts will inevitably have lower RMSE values due to greater sample variability 

from the combined forecasts. Fang (2003) doubted whether smaller RMSE does indeed 

signify superiority of a forecast. Due to these factors forecast combination might appear 

challenging and difficult to interpret. Moreover, combined forecast weights can also be 

determined by OLS, however, since there is a possibility of serial correlation in the 

combined forecast errors, the weights are inefficient. The forecast encompassing test, on 

the other hand, can be a valuable tool in model specification and forecasting accuracy 

assessment. Nonetheless, despite the criticism and clear downfalls of the simple 

average, equal approach seems to perform consistently well in empirical studies and 

investigations. Hence, one might question whether it is worth an effort to determine a 

more theoretically robust approach which will still offer the same results and the same 

ease of application. Therefore, this paper will employ forecast combination in 
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conjunction with the results of forecast encompassing tests using a simple equal 

weighing method.   

 

Economic loss function tests 

 

Some researchers argue that since the main objective of time-series models is practical 

forecasting it makes logical sense to assess these models on the basis of their potential 

profitability. However, Leitch and Tanner (1991) draw the attention to the fact that most 

economic forecasts completely overlook their profitability. Some researchers point out 

that forecasting models that might perform poorly as indicated by the statistical base 

criteria may yet prove to be very useful in yielding a profit when used for trading. 

Hence, real life practitioners will value models that accurately predict the sign of returns 

or turning points in a series, rather the ones that have the lowest statistics. Furthermore, 

there are tests that assess the ability of a forecasting model to predict the direction of 

changes of future values, and correct magnitude or percentage change in values of those 

predictions.     

Leitch and Tanner (1991) support a similar argument that the conventional statistical 

methods of forecast evaluation have little to do with the forecasts’ profitability. In their 

study, the researchers compared the standard statistics, such as average absolute error 

(AAE), the root mean squared error (RMSE) and the Theil’s U statistic, which all assess 

the magnitude of the forecast error, and found that none of these criteria relate to 

profitability of the forecast in question. Hence, considering their argument, Leitch and 

Tanner (1991) question whether standard conventional error measuring criteria justifies 
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payment to professional forecasting bodies allocated by companies, which presumably 

are profit maximising. Further investigation by Leitch and Tanner (1991) of the quality 

of interest rate forecasts and relation of criteria of forecasting accuracy to profitability 

have established that while error measuring criteria is not related to the profitability of 

the forecast, relation between profitability and directional accuracy forecasts seem to be 

more reasonable. The results suggest that in practice the preference will be given to the 

directional accuracy forecast as it demonstrates strong statistical association while error 

measuring tests relate to profitability merely marginally.        

A number of studies were undertaken to investigate the results behind research into the 

presence of predictability, based on the paper by Brock et al. (1992). However, while 

most of these are enquiring whether there is any predictability in the data patterns, 

Ready (2002) is apprehensive as to whether any predictability present in the data is 

sufficient enough to generate profit after transaction costs. Furthering the argument, 

Ready (2002) points out that it is not always essential to consider the profitability of 

trading rule net transaction costs, as an investigation into profitability generating 

abilities of any financial modelling will be beneficial to practitioners in terms of deeper 

understanding of market dynamics.  

The aim of this exercise is to test whether it is possible to create a technical analysis on 

the basis of modelling patterns uncovered in past data and to exploit these in order to 

generate profitability in terms of excess returns, and whether certain types of models 

have beneficial advantage in doing so. However, since the purpose of this exercise is to 

use the trading rule approach as merely a test of accuracy of forecasting models 

considered earlier rather than a realistic trading strategy, there is no need to address the 

issue of transaction costs here. This study will use method of profit calculation for the 
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trading rule approach loosely based on procedure suggested by Leitch and Tanner 

(1991) where the profit is calculated on the basis of whether the forecasting error, or in 

essence, return, is positive or negative. Hence, it will be assumed that if the forecast 

error is positive, i.e. the forecasted value is above the actual value, the long position 

(buy) will be taken on the contract; and the short position (sell) if the forecast error is 

negative, in other words, the forecasted value is below the actual value.  

The trading rule methodology considered in empirical chapters of this paper should not 

be mistaken with the practical approach of creating a successful trading procedure 

aimed at generating profit thus implying its use by traders. This investigation 

implements the trading rule technique to assess the accuracy of the forecasts drawn 

earlier in this chapter as an additional variation of forecasting accuracy tests. Hence, the 

so called profit calculated here using the trading rule method will be an indicator of 

comparative success of each forecasting model, and by no means is an implication of 

profitability of such forecast, as this is a completely different concept to what is 

considered in this study. While some researchers are concerned with investigating a 

presence of predictability in daily returns patterns, intention of other researchers, for 

instance Ready (2002), is to realise predictability sufficiently strong to generate profit 

substantial enough to account for transaction costs. The latter approach may seem very 

practical and clearly a logical choice, however, on closer inspection such tactic requires 

much detailed and complex consideration of particular needs and requirements of 

different types of practitioners it is aimed at. For instance, certain types of investors 

might only be interested in seasonal directional changes of the market over a long-term 

period, rather than short term profitability based on the magnitude of market changes. 

Similarly, daily market activities might present little interest to policy makers concerned 
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with general market behaviour whether these are profitable or not. In addition, to find 

suitable levels of profitability in a particular data set one will have to consider 

transaction costs very specific to certain contracts presented in that data, which in turn 

implies an individual approach to a forecasting exercise, rather than a general 

investigation intended in this study.     

 

        

2.4. Conclusion    

 

Time-series forecasting models may grant a deeper understanding of a series as it 

examines behaviour patterns which in turn may spark a new found interest for certain 

extraneous factors that might offer an explanation of the series dynamics (Newbold and 

Granger, 1974). It is evident that econometric modelling and forecasting is important 

across a wide range of disciplines (Holden et al., 1990; Diebold and Mariano, 1995; 

Granato and Suzuki, 1996; Montgomery et al., 1998). A wide range of models provides 

extended flexibility and a variety of approaches for modelling different characteristics 

of the data, however, at the same time such a broad array creates additional challenges 

in terms of correct model specification, danger of overfitting the data and basing the 

model on spurious assumptions. Thus, Chatfield (1997) recommends comparing of out-

of-sample forecasting performances of fitted models as opposed to only an in-sample 

comparison. Nonetheless, the univariate time-series models seem to be the predominant 

choice for forecasting due to ease of computation and interpretation of the results.         



111 

 

Furthermore, issues of econometric forecasting also include a component of real life 

practitioners and market participants, and thus challenges associated with practical 

modelling, forecasting and forecast accuracy assessment. Chatfield (1997) brought 

attention to the fact that forecasts are used in different ways by practitioners, thus sales 

forecasts are used as a target setting technique and that judgemental forecasts are still 

used extensively despite the lack of theoretical support of accurate forecasting 

performance. Chatfield (1997) also pointed out that while companies rate accuracy as 

the most important rating criterion of a forecast, there is no clear definition of how 

exactly it is measured in practice. Moreover, while the extensive range of forecasting 

computer software allows flexibility of the modelling and forecasting process, satisfying 

an array of users and providing easy-to-use packages, it also presents an increased 

possibility of estimating an incorrect model and misinterpretation of the result due to 

misuse of the forecasting package (Chatfield, 1997). Chatfield (1997) points out that the 

availability of computational advantages could also result in overfitting, whereby an 

econometric model could be fitted to data to produce relatively satisfying forecasting 

results, however, there is a danger of fitting certain models when they are not 

appropriate by ignoring the theoretical and logical reasoning of why a particular model 

should be applied to particular data. Chatfield (1997) also reminds that any econometric 

forecast is based on an assumption and comparing of competing forecasts should be 

performed on the results of out-of-sample forecasts as opposed to in-sample 

estimations. Summarising the review of forecasting methods in the 1990s Chatfield 

(1997) concludes that forecasting is very much the same as in previous decades in terms 

of difficulties and challenges faced by forecasters, only characterised by a wider range 

of models and extensive availability of software.   
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Chapter 3 
Daily stock returns forecasting 

 

3.1. Introduction  
 

This chapter intends to apply time-series non-linear framework to daily returns of four 

leading stock indices, namely FTSE 100, S&P, DAX and Nikkei, with the purpose of 

recursive out-of-sample forecasting. In view of the fact that the main purpose of 

econometric modelling appears to be application of these models to forecasting, this 

paper is concentrating on fulfilling this objective and extending research into non-linear 

model forecasting.  

Given that a number of studies highlight the importance of forecasts in general (Brooks, 

2002), in planning and operations of companies (Holden et al., 1990), political science 

(Granato and Suzuki, 1996) and for economic policy-makers (Montgomery et al., 1998), 

there is no doubt that forecasts are required in a wide range of disciplines. The main 

focus of this chapter is daily stock return forecasts which are also required by a broad 

spectrum of market practitioners. Moreover, the degree of sensitivity of non-linearity to 

the frequency of data is still not entirely clear. For instance, according to Abhyankar et 

al. (1995) who suggest the use of high-frequency data, microstructural dynamics in the 

financial time-series are more apparent at higher frequencies. In addition, high-

frequency data provides a large sample size for empirical investigation.      
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Daily stock returns predictability has been much debated over the years. The reason for 

this is inconsistency of returns stock predictability with efficient market hypothesis 

(EMH), which states that the stock price incorporates all publicly available information. 

Cuthbertson and Nitzsche (2004) describe efficient markets being driven by simple 

supply and demand mechanism of a competitive market where rational traders react and 

consequently adjust the stock prices according to the available information relevant to 

the determination of fundamental asset prices. According to the theory, due to any 

relevant information being costless and publicly available while new information, such 

as news, being unpredictable by definition, there is no opportunity to accumulate excess 

profit in a perfectly efficient market. Thus, Abhyankar et al. (1995; 1997) point out that 

returns stock predictability is inconsistent with the theory of efficient markets, however, 

find evidence of predictability and non-linear dependence in high-frequency FTSE 

returns and daily returns of S&P 500, DAX, Nikkei 225 and FTSE 100. Attempts to 

explain the stock market predictability suggested market inefficiency or time-varying 

expected returns (Brock et al., 1992; Pesaran and Timmermann, 1995).  Furthermore, 

the presence of cyclical behaviour and asymmetric adjustments in economic and 

financial series implied the presence of non-linear predictability (Tong 1990; De 

Gooijer et al., 1992; Abhyankar et al., 1997; McMillan, 2001; Sarantis, 2001; 

McMillan, 2002; Bali et al., 2008; Hartmann et al., 2008; Guidolin et al., 2008). The 

presence of these non-linearities could be attributed to the presence of market frictions, 

including transaction costs, borrowing and short selling constraints, limit to arbitrage 

(He and Modest, 1995; Kilian and Taylor, 2003; McMillan, 2005), as well as the 

presence of speculative bubbles (Evans, 1991; Froot and Obstfeld, 1991; Bohl, 2003; 

Psaradakis et al., 2004) and interaction between noise traders and informed arbitrageurs 
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(Kirman, 1991, 1993; Shleifer, 2000; McMillan, 2002, 2005; McMillan and Speight, 

2006).   

Section 3.2 of this chapter contains a brief reminder of the methodology discussed in 

Section 2.3 of Chapter 2, with further discussion of the STAR-type model estimation 

procedure in more technical detail. Empirical results in Section 3.3 contain plots and 

diagrams with descriptive statistics for each time-series considered in this chapter, as 

well as the results of the non-linearity tests. The estimated models then are tested for 

goodness of fit and the results are presented in the view of the forecasting exercise. 

Linear and non-linear forecasts are compared in terms of forecasting performance using 

a number of tests of forecasting accuracy, including the tests of forecasting error 

magnitude, the Diebold and Mariano test of equal forecasting accuracy, forecast 

encompassing and trade rule tests. Moreover, the same tests are then applied to the 

combinations of linear and non-linear forecasts. Section 3.4 summarises the results and 

concludes.  

 

 

3.2. Methodology 
 

A simple random walk model and linear ARIMA models will be estimated as 

benchmarks for the STAR-type models. Forecasting abilities of all linear and non-linear 

models will then be compared using forecasting accuracy tests. A random walk model 

with a drift (�) is applied in this chapter:   
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�� = � + ���� + �� (3.1)  

 

where �� is the price returns level at time t, ���� is the price returns level at time t-1 and 

tε is an error term. 

The autoregressive integrated moving average process, ARIMA (p, d, q), is a 

combination of an autoregressive process of order p, AR (p), and a moving average of 

order q, MA (q), where d is the order of integration, or in other words, the number of 

times the series has to be differenced in order to achieve stationarity. For stationary 

series d equals zero, thus ARIMA (p, d, q) becomes ARMA (p, q). The general form for 

the ARIMA (p, d, q) process is as follows: 

 

�� = � + ������ + ������ +  … + ������ + �� − ������ − ������ −  … 
− ������ + �� 

(3.2)  

 

where �� are the coefficients of the AR process component and �� are coefficients of 

the MA process component, and �� is an error term. ARIMA models are estimated 

using the Box and Jenkins approach introduced by Box and Jenkins (1976) and involves 

three stages of model building: identification, estimation and diagnostic checking. The 

first stage of model identification involves determining the order of the model, i.e. the 

values of p and q. The value of integrating order, d, is determined following the results 

of the stationarity test. After parameters estimation, the adequacy of the estimates is 
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tested with diagnostic checking of the model using an information criteria approach. 

Akaike’s information criteria (AIC) and Schwarz’s Bayesian information criteria 

(SBIC) are the most commonly used procedures in ARIMA modelling. In addition, 

residual tests such as tests for remaining autocorrelation and ARCH-LM test are 

performed as model misspecification tests.  

Further to linear alternatives this paper will estimate smooth transition-type models for 

price returns series for the data considered. The formulae for a standard smooth 

transition (STR) model is as follows: 

  

�� = �′K� + � ′K�� F, G, ,�# + �� , ��~00> 0, ��# (3.3) 

 

� F, G, ,�# = A1 + E�) �−F � ,� − G�#�
�9� �B��

 

, ��~00> 0, ��# (3.4) 

 

where � is a parameter of the linear part of the equation and � ′ is a parameter of the 

non-linear part. �  F, G, ,�# is the transition function which depends on the transition 

variable, ,�, the slope parameter, F, and the vector of location parameters, G. The 

transition variable, ts , can be either part of tz , which in the case of SETAR (self-

exciting threshold autoregressive) will be the dependent variable itself, ty , or the 

transition variable can be represented by another variable, such a trend, for instance. 

The term   can be set either to unity (  = 1) to attain an LSTAR (logistic STAR) 
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model, or it can be set to be equal to two (  = 2) for an ESTAR (exponential STAR) 

model.  

There are three stages in smooth transition modelling, which include specification, 

estimation and evaluation. The initial stage of specification involves testing the time-

series for the presence of STAR-type non-linearity and choosing the transition variable. 

The results will suggest whether LSTAR, ESTAR or a linear model should best fit the 

data. Furthermore, the estimation phase involves finding the starting values for non-

linear estimation through a grid search and estimating the model based on those starting 

values. Results are then evaluated using a number of tests, such as misspecification 

tests, autocorrelation of the disturbance term, test for remaining non-linearity, ARCH 

test and test of non-normality. There are also graphical tests that might give an 

indication of whether the model was estimated correctly.  

Once the significant non-linearity is reported and either ESTAR or LSTAR models are 

chosen, a non-linear optimisation routine known as a grid search is applied in order to 

estimate the starting values of STAR model parameters. The grid search requires the 

transition variable, ,�, to be known, which is accomplished in the first stage of the 

specification. The procedure involves creating a linear grid within a vector of location 

parameters, G, and a long-linear grid in the slope parameter, F, and calculating the 

residual sum of squares for each of those values. The values that offer the minimum 

residual sum of squares are chosen as starting values for model estimation.  

After the starting values have been established the Newton-Raphson algorithm is 

applied to maximise the likelihood function which estimates the remaining parameters 

of the model. Further misspecification tests are carried out on the estimated model 
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including a test for remaining residual autocorrelation, a test of parameter constancy, the 

ARCH-LM test and the Jarque-Bera normality test. In addition, the model can be tested 

for any remaining additive STAR-type non-linearity. The parameter constancy test, in 

its turn, tests whether parameters are constant or continuously change. In addition, 

graphical analysis may serve as a good indication tool. Thus, the tests that allow to 

determine validity and the goodness of fit of the estimated models used in this chapter 

include a test of no error autocorrelation, a test of no remaining non-linearity, and the 

ARCH-LM test.  

The test of no error autocorrelation used in this study is based on the test commonly 

known as the Breusch-Godfrey test. In the case of STAR modelling this particular test is 

preferred over the more popular Durbin-Watson autocorrelation test. The reason for this 

is that the Durbin-Watson test is constructed in a way that tests relationship only 

between an error and its immediate previous value. In other words, it is only valid if 

autocorrelation is present in the first lag. The Breusch-Godfrey test, on the other hand, 

examines the relationship between an error and several lagged error values at the same 

time. Another reason for not choosing the Durbin-Watson test is that for the test to be 

valid there are certain conditions that have to be fulfilled, including a constant term in 

the regression and non-stochastic regressors. In addition, the regression must not 

contain lags of dependent variable. In other words, the regression should be static in 

nature, as opposed to dynamic. These conditions defy the very essence of the STAR-

type modelling and thus a different approach is required.   

However, Brooks (2002) points out that the Breusch-Godfrey test presents some 

difficulty in its conduct in terms of determining the appropriate value of the number of 

lags of residuals, +. As there is no particular rule or procedure for choosing the correct 
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value, it is usually down to a researcher to employ a trial-and-error approach. The 

frequency of data might give an initial idea about the number of lags. The test is a joint 

hypothesis test with a critical value following a Chi-squared distribution. The Breusch-

Godfrey test for autocorrelation of r
th

 order involves regressing residuals �� estimated 

using OLS:  

 

�� = )����� + )����� + )a���a + ⋯ + )¡���¡ + �� ,  ��~¢ 0, !£�# (3.5) 

 

where the error term follows normal distribution, ��~¢ 0, !£�#. The test statistic 

following Chi-square distribution is:  & − +#��~T¡�, where & is the number of 

observations and �� is obtained from the above regression (3.5). The null hypothesis of 

no serial correlation to the order of + is tested against the alternative of autocorrelation.  

 

]: )� = 0 `�> )� = 0 `�> … )¡ = 0 

]�: )� ≠ 0 _+ )¡ ≠ 0 _+ … )¡ ≠ 0 

 

] of no serial correlation is rejected if the test statistic is greater than the value of the 

critical value from the Chi-squared statistical tables.  

Another test considered here is a test of no remaining non-linearity, which is based on 

the account that in the case of a correctly fitted model the residuals should contain no 
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remaining non-linear structure. The test naturally assumes that the remaining non-

linearity is a STAR-type non-linearity.  

 

�� = �′K� + � ′K�� F�, G�, ,��# + \′K�] F�, G�, ,��# + �� (3.6)  

 

where ��~00> 0, !�# and ] is a transition function for that regression, i.e. different 

from the one used in the main model. The alternative hypothesis is defined as:  

 

�� = M′ K� + � ′K�� F�, G�, ,��# + 4 M5′ K̃�,��5 + ��∗
a

59�  

(3.7)  

 

The following auxiliary model is used to test the above model, where �"� is regressed on 

=K̂�′ ,��, K̂�′ ,��� , K̂�′ ,��a ?′ and the partial derivatives of the log-likelihood function with 

respect to the parameters of the alternative model. The null hypothesis for this test of no 

remaining non-linearity is that M� = M� = Ma = 0. The test statistic follows F-

distribution and is treated in the same fashion as a standard non-linearity test. 

The ARCH-LM test is used to test for presence of ARCH in the residuals (Engle, 1982). 

The residuals, �"�, of a regression in question are squared and regressed on their own 

lags. The number of lags signifies the order of ARCH the test is run for. Hence, the 

regression for the ARCH test of order * will be as follows:   
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�"�� = F + F��"���� + F��"���� + ⋯ + F��"���� + �� (3.8)  

 

where * is number of lags and ¦� is an error term. The value of �� obtained from this 

regression forms the test statistic, &��, where & is the number of observations. &�� is 

compared to a critical value obtained from the Chi-squared distribution table T� *# to 

test the following hypotheses:  

 

]: F� = 0 `�> F� − 0 `�> Fa = 0 `�> … `�> F� = 0 

]�: F� ≠ 0 _+ F� ≠ 0 _+ Fa ≠ 0 _+ … _+ F� ≠ 0 

 

If test statistic is greater than the critical value, the null hypothesis of no ARCH is 

rejected.  

 

 

3.3. Empirical results 
 

This study will analyse daily time-series data over a twenty year period from 1
st
 January 

1988 to 31
st
 December 2007, which consists of 5217 observations. The data consists of 

four price indices of major world economies. These include FTSE 100 for UK; S&P 
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500 Composite for US; DAX 30 Performance for Germany; and Nikkei 225 Stock 

Average for Japan.
5
 

 

Descriptive statistics  

 

Descriptive statistics are carried out to give an initial indication of the nature of the data 

and include plots of the data against time, histograms, measures of central tendency and 

dispersion, and normality tests. A histogram provides a good insight into the shape of 

the distribution of the data, while skewness and kurtosis indicate the symmetry and 

thickness of the tails of a distribution respectively. The Jarque-Bera statistic is generally 

regarded as a good measure of normality of the distribution. It follows a chi-square 

distribution with two degrees of freedom.   

The diagram below (Figure 3.1) illustrates the FTSE 100 index plotted against time. The 

observation shows that the values for the index have increased dramatically in the late 

1990s with a decline over early 2000s, following less dramatic increase toward the end 

of the sample. Moreover, up to late the 1990s it is seems to be less volatile compared to 

the early 2000s, and again displaying less volatile behaviour between 2003 and the 

beginning of 2007.   

The period of 1995 – 2001 is of a particular interest, as can be seen on the diagram 

below. The period is known as the dot-com bubble or the IT bubble. During this period 

stock markets of Western economies showed a rapid growth in the Internet sector and 

                                                           
5
 All the data was obtained from the Datastream database. All estimations and tests were 

performed using EViews 3.1, PCGive 10 and JMulTi software. 
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similar or related industries. The IT bubble was created when speculators started to buy 

stocks which showed a fast increase in value in the expectation that the stock price will 

increase even further. However, for most of these shares, the price did not reflect their 

true value, and as a result large number of companies’ stock prices became overvalued. 

Subsequently, the bubble burst, causing the share prices to fall dramatically and many 

businesses thus endured bankruptcy. The effects of the dot-com bubble can also be seen 

on the S&P and DAX indices. In addition, for all time-series the period of the dot-com 

bubble is accompanied by a number of outliers or extreme data points.      

 

Figure 3.1. FTSE index time-series data.  
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According to the plot of data in Figure 3.2, the US price index has a similar pattern as 

seen in the FTSE 100 index.    

 

Figure 3.2. S&P index time-series data. 

 

The German DAX price index displays once again a similar pattern seen in UK and US 

indices. However, even though the index seems to be affected analogously with the UK 

and US, the rapid falls in values appear to be sharper than those of previous time-series.  
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Figure 3.3. DAX index time-series data. 

 

The Japanese price index somewhat appears to be very different to the UK, US and 

German indices. It corresponds with other series in some dramatic movements, however 

it seems to react to those outliers differently. In addition, the overall pattern diverges 

from the common outline of the other three time-series. The index has a sequence of 

fairly high values in the beginning of the sample, which eventually descends in very 

rapid fragments maintaining the rate throughout, with the exception of the early 2000s.    

Historically, Japan is an industrial-based economy focusing on manufacturing and 

processing industries due to the deficiency of natural resources, which in turn explains 

the lack of agricultural industry. The economy is characterised by being very efficient 

and competitive, however is limited to international trade in some sectors. The 
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remarkable economic performance in the post-war period accelerated Japan into 

becoming one of the most successful developed economies, continuing into the 1980s 

with high growth of high-technology industries. However, the economic bubble of the 

1980s resulted in over-investment coupled with banks allowing risky loans, 

consequently culminating to the Tokyo Stock Exchange crash in 1989. This event is 

clearly visible on the time-series plot as a sharp drop in the index after reaching its all-

time high. Subsequent to the lowest value of the Nikkei index in 2003, the Japanese 

economy seems to undergo a sustained recovery up to the end of the sample. For more 

detailed discussion of Japanese economy cycles refer to Chakraborty (2009). 

 

Figure 3.4. Nikkei index time-series data. 

 

5000

10000

15000

20000

25000

30000

35000

40000

88 90 92 94 96 98 00 02 04 06

Nikkei



127 

 

Figure 3.5 represents histograms and main descriptive statistics for real data for all four 

indices. The values of skewness for FTSE, S&P, DAX and Nikkei indices are all 

positive and close to zero, which indicates the thickness of the upper tail of distribution, 

meaning that the distribution seems to be skewed to the right. This suggests that all 

distributions are characterised by comparatively few high values. In addition, the 

kurtosis value for FTSE, S&P and DAX indicates a thin tail, which can easily be seen 

on the diagram. The Nikkei index, on the other hand, has a distribution with thicker than 

normal distribution tails. For all four series considered here the Jarque-Bera statistic was 

greater than the critical value hence, the hypothesis of normality was rejected for all 

four time-series.  

Nevertheless, the above descriptive statistics were performed on the actual levels of the 

time-series, i.e. prices, as opposed to the returns series. Hence, while the analysis of the 

real data provides an overview of the series, it is normally not expected to draw any 

strong conclusions from such results due to high volatility and strong probability of 

non-stationarity of the data. Moreover, this investigation is concerned with 

predictability of the stock price returns.   
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Figure 3.5. Real time-series data histograms: FTSE, S&P, DAX, Nikkei.  
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There are a number of ways the returns can be calculated, however, for the purpose of a 

forecasting exercise, which is the main intent of this chapter, the returns are calculated 

as a first difference of the logarithm of the original data. The returns data tends to be 

more stable and stationary compared to the price series. Diagrams and histograms are 

provided in figures below (Figure 3.6 – 3.7). It is evident from the returns diagrams that 

high volatility in prices corresponds with high volatility in returns with economic 

bubbles characterised by extreme outliers in returns series. For most indices the widest 

spread of stock returns is during the bubble of the late 1990s and early 2000s. For the 

Japanese index, on the other hand, high volatility is observed throughout the sample in a 

fairly consistent pattern with a distinctive outlier in 1989 which equates to the Tokyo 

Stock Exchange crash. For all returns series, with the exception of Japan, negative value 

for skewness and excess kurtosis indicate distributions to have thick tails and to be 

skewed to the left, suggesting that all series have relatively few low values. This effect 

can easily be observed on the diagrams. The distribution of the Nikkei index seems to 

be closer to the shape of the normal distribution with it being slightly skewed to the 

right. However, similarly to the result of the price series analysis, as expected, the 

hypothesis of normality is still rejected for all of the time-series returns.  

 

129 
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Figure 3.6. Returns series: FTSE, S&P, DAX, Nikkei.  
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Figure 3.7. Returns time-series data histograms: FTSE, S&P, DAX, Nikkei. 
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Unit root tests 
 

The augmented Dickey-Fuller (ADF) test is the most commonly used unit root test due 

to its simplicity and ability to account for autocorrelated error term. The ADF test 

statistic follows a non-standard distribution, hence, a set of special critical values are 

used. Brooks (2002) offers a standard equation for ADF unit root test as follows:    

 

∆�� = \���� + 4 ��Δ���� + ��
�

�9�  

(3.9)  

 

where ∆ is the difference operator which indicates how many times the series has to be 

differenced in order to achieve stationarity, \ is the test statistic, ) is the number of lags 

of the dependent variable and �� is an error term. There is no strict rule on choosing the 

number of lags of the dependent variable, hence augmented test lags are chosen on the 

basis of frequency of data combined with a previous knowledge from similar studies, 

whilst ensuring white noise residuals. The procedure tests a null hypothesis of unit root 

against an alternative of stationarity.  

 

]: \ = 0, ,E+0E, G_�	`0�, ��0	 +__	 

]�: \ < 0, ,E+0E, 0, ,	`	0_�`+� 
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For all price indices the null hypothesis of unit root could not be rejected (Table 3.1). 

As expected, since all the test statistics were more negative than the critical values, the 

null hypothesis of unit root was rejected for all returns series, hence implying 

stationarity for all returns. The result was the same for all three variations of the ADF 

test where the dependent variable is a random walk, a random walk with a drift 

(intercept), or a random walk with a drift around a stochastic trend (intercept and trend) 

(Gujarati, 2003).   

 

Testing the presence of non-linearity 

 

The initial stage of STAR model specification involves testing the time-series for the 

presence of STAR-type non-linearity and choosing the appropriate transition variable. 

The transition variable, ts , can be either part of tz , the dependent variable itself ( ty ), 

or the transition variable can be represented by a trend. The results of the non-linearity 

test will also suggest whether the LSTAR, ESTAR or a linear model should best fit the 

data. The following auxiliary regression is applied if the transition variable ,� is an 

element of K�: 

 

�� = M§ K� + 4 M5§K̃�,�5 + ��∗
a

59�  

(3.10)  
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Table 3.1. ADF test results for price series and returns data series.  

PRICES 

ADF test statistic FTSE S&P DAX Nikkei Critical value 

at 1% 

Critical value 

at 5% 

Critical value 

at 10% 

Conclusion 

Intercept  -1.1701 -0.7453 -0.2110 -1.3593 -3.4348 -2.8626 -2.5674 non-stationary 

Intercept and trend -1.9945 -1.9467 -1.4375 -2.1952 -3.9654 -3.4134 -3.1284 non-stationary 

None 0.9298 1.2645 1.4673 -0.7688 -2.5662 -1.9394 -1.6156 non-stationary 

 

RETURNS   

ADF test statistic FTSE S&P DAX Nikkei Critical value 

at 1% 

Critical value 

at 5% 

Critical value 

at 10% 

Conclusion 

Intercept -52.4203 -52.6816 -52.1287 -53.9532 -3.4348 -2.8626 -2.5674 stationary 

Intercept and trend -52.4217 -52.6873 -52.1250 -53.9486 -3.9654 -3.4134 -3.1284 stationary  

None -52.3757 -52.5911 -52.0641 -53.9564 -2.5652 -1.9394 -1.6156 stationary 

 

  

1
3

4
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where K� =  1, K̃�#§, M§  is a linear parameter, and M5§ is a non-linear parameter.  

The following regression is applied when  ,� is not an element of K�: 

 

�� = M§ K� + 4 M5§K�,�5 + ��∗
a

59�  

(3.11)  

 

Thus, the null hypothesis of non-linearity (]: M� = M� = Ma = 0) is tested by applying 

an F-test. The p-values of the F-test results for the transition variables are represented in 

the table below (Table 3.2).  

 

Table 3.2. STAR non-linearity tests results.  

  Transition 

variable 

p-values of F-test Suggested 

model 

  ¨© ¨ª ¨« ¨¬  

       

FTSE Returns 0.0000 0.0004 0.1522 0.0053 LSTAR 

  Trend 0.0002 0.5185 0.0930 0.0000 LSTAR  

       

S&P Returns 0.0000 0.9989 0.0000 0.0000 ESTAR 

  Trend 0.1219 0.6641 0.1352 0.0726 Linear 

       

DAX Returns 0.0000 0.4678 0.0000 0.0001 ESTAR 

  Trend 0.2936 0.2912 0.1094 0.8139 Linear 

       

Nikkei Returns 0.0032 0.0868 0.0083 0.0482 ESTAR  

  Trend 0.0360 0.5169 0.0078 0.2906 ESTAR 
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Linear and non-linear model estimation  
 

Following the methodology in Section 3.2, a random walk model with a drift (�) was 

estimated for all four price returns series.  

 

�� = � + ���� + �� (3.12)  

 

where stock returns, ��, are regressed on their own previous values, ����, and a random 

disturbance term, ��.  

Subsequent to that, ARIMA (), >, *) models were estimated using the Box-Jenkins 

approach: 

 

�� = � + ������ + ������ + ⋯ + ������ + ������ + ������ + ⋯+ ������ + �� 

(3.13)  

 

where the current stock return, ��, is depended on the weighted average of the variable’s 

past values (AR component) and past random disturbance terms (MA component)  

going back ) and * periods, respectively, and an i.i.d. error term, ��. Thus, �� are the 

autoregressive coefficients, while �� are the coefficients of the moving average process.  

The integration order, d, was set to zero due to stationarity of the returns, thus 

suggesting an ARMA (), *) model for price returns. The optimal order of each model 
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was determined at the diagnostic checking stage of the procedure using the Akaike’s 

information criteria (AIC). The results of the Box-Jenkins procedure confirmed the 

following models: ARMA (1,3) for FTSE returns series, ARMA (2,1) for S&P, ARMA 

(3,2) for DAX, and ARMA (0,3) for Nikkei index.  

The results of STAR model estimation for all four time-series are represented in tables 

below (Table 3.3 – 3.8). For each time-series both variable itself, i.e. the return series, 

and the trend were considered as a transition variable. At the specification stage either 

LSTAR, ESTAR or a linear model were chosen for each series on the basis of a non-

linearity test. Whenever a linear model was suggested, the particular model was 

disregarded in this particular instance as linear models were already estimated for all 

series as benchmarks regardless of the non-linearity test. As a result, the LSTAR model 

was only suggested for the FTSE series with the variable itself and the trend as 

transition variables, while all other series were estimated using the ESTAR model.  

In addition, a test of no error autocorrelation, a test of no remaining non-linearity, and 

the ARCH-LM test were performed as tests of goodness of fit for each of the estimated 

non-linear models (Table 3.9). In the no error autocorrelation test for all time-series, the 

null hypothesis of no autocorrelation could not be rejected suggesting presence of 

autocorrelation in the errors of the estimated models. The test for no remaining non-

linearity demonstrated that the models were estimated correctly as there was no 

evidence of STAR-type non-linearity present in the residuals. The null hypothesis of no 

ARCH effect was rejected for all of the time-series, thus assuming the presence of 

ARCH, which is an expected result for the daily returns series.  
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Table 3.3. FTSE; Transition variable FTSE returns  	 − 1#; Suggested model LSTAR. 

Variable  Estimate SD t-statistic 

Linear part  

Constant  0.0088 0.0000 0.0000 

FTSE returns (t-1) -4.1186 0.0000 -0.0000 

Non-linear part  

Constant -0.0087 0.0000 -0.0000 

FTSE returns (t-1) 4.1513 0.0000 0.0000 

Gamma (F) 0.7369 0.0000 0.0000 

C1 -0.0894 0.0000 0.0000 

 

 

Table 3.4. FTSE; Transition variable TREND; Suggested model LSTAR. 

Variable  Estimate SD t-statistic 

Linear part  

Constant 0.0003 0.0002 1.7431 

FTSE returns (t-1) 0.0805 0.0219 3.6718 

Non-linear part  

Constant -0.0002 0.0003 -0.6196 

FTSE returns (t-1) -0.1869 0.0439 -4.2553 

Gamma (F) 6.9113 3.9482 1.7505 

C1 3499.7574 218.3356 16.0292 
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Table 3.5. S&P; Transition variable S&P returns  	 − 1#; Suggested model ESTAR. 

Variable  Estimate SD t-statistic 

Linear part  

Constant -0.0007 0.0014 -0.5400 

S&P returns (t-1) -0.0311 0.0329 -0.9469 

Non-linear part  

Constant 0.0150 0.0058 2.6237 

S&P returns (t-1) -0.3434 0.1027 -3.3438 

Gamma (F) 0.1917 0.1128 1.6999 

C1 -0.0582 0.0075 7.7640 

C2 0.0237 0.0050 4.7520 

 

 

Table 3.6. DAX; Transition variable DAX returns  	 − 1#; Suggested model ESTAR.   

Variable  Estimate SD t-statistic 

Linear part  

Constant 0.0003 0.0002 1.8172 

DAX returns (t-1) 0.0220 0.0169 1.3053 

Non-linear part  

Constant 0.0088 0.0016 5.5283 

DAX returns (t-1) -0.2562 0.0381 -6.7278 

Gamma (F) 2.4211 1.6129 1.4862 

C1 -0.0561 0.0014 40.1357 

C2 0.0265 0.0037 7.1675 
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Table 3.7. Nikkei; Transition variable Nikkei returns  	 − 1#; Suggested model ESTAR. 

Variable  Estimate SD t-statistic 

Linear part  

Constant -0.0094 0.0056 -1.6880 

Nikkei returns (t-1) -0.3853 0.1885 -2.0442 

Non-linear part  

Constant 0.0095 0.0057 1.6670 

Nikkei returns (t-1) 0.3734 0.1832 2.0384 

Gamma (F) 0.8411 0.6750 1.2461 

C1 -0.0677 0.0103 6.5737 

C2 -0.0162 0.0074 2.1972 

 

 

Table 3.8. Nikkei; Transition variable TREND; Suggested model ESTAR. 

Variable  Estimate SD t-statistic 

Linear part  

Constant -0.00128 0.0021 -0.5997 

Nikkei returns (t-1) -0.29646 0.4505 -0.6581 

Non-linear part  

Constant 0.0040 0.0000 0.0000 

Nikkei returns (t-1) 0.9613 0.0000 0.0000 

Gamma (F) 0.2491 0.3771 0.6605 

C1 -273.3744 0.0000 0.0000 

C2 6090.2297 0.0000 0.0000 
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Table 3.9. Goodness of fit tests results.   

 

 
FTSE 

(LSTAR) 

FTSE 

Trend 

(LSTAR) 

S&P 

(ESTAR) 

DAX 

(ESTAR) 

Nikkei 

(ESTAR) 

Nikkei 

Trend 

(ESTAR) 

 

Test of no error autocorrelation  

 

F-value  5.7465 2.6071 0.0258 1.1503 35.1559 0.0724 

Critical 

value  

254 254 254 254 254 254 

 

Test of no remaining non-linearity  

 

Transition 

variable 

FTSE 

returns  

FTSE 

returns  

S&P 

returns  

DAX 

returns  

Nikkei 

returns  

Nikkei 

returns  

F-value 0.0074 0.0003 0.5766 0.2849 0.9689 0.0024 

Critical 

value 

254 254 254 254 254 254 

 

ARCH-LM test  

 

Test 

statistic  

850.9093 864.8856 322.0965 449.7600 305.5739 289.8454 

Critical 

values 

146.57 146.57 146.57 146.57 146.57 146.57 

 

F- statistic 203.4019 207.4078 68.6643 98.4509 64.9226 61.3840 

Critical 

values 

4.37 4.37 4.37 4.37 4.37 4.37 
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Forecasting  
 

Subsequent to the estimation and testing procedures, the following models are used to 

carry out an out-of-sample one-step ahead recursive forecast, where STAR-trend models 

refer to STAR-type models with the trend being estimated as the transition variable, as 

opposed to the returns series itself:  

 

Table 3.10. Linear and non-linear models of daily stock returns.  

 Linear forecast Non-linear forecast 

 

FTSE Random walk model LSTAR 

 ARMA (1,3) LSTAR-trend 

 

S&P Random walk model ESTAR 

 ARMA (2,1)  

 

DAX Random walk model ESTAR 

 ARMA (3,2)  

 

Nikkei Random walk model ESTAR 

 ARMA (0,3) ESTAR-trend 

 

 

The twenty year period data from 1
st
 January 1988 to 31

st
 December 2007, which 

consists of 5217 observations, is divided into in- and out-of-sample, where the seven 

year holdout, or evaluation sample, is set to be in the range from 28
th

 December 2000 to 

31
st
 December 2007, thus including 1825 observations. This study anticipates that the 

sample of nearly thirteen years of daily data combined with a recursive approach and 

allowing for non-linear applications will be sufficient to elevate the behaviour patterns 
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in the data and hence produce a relatively accurate forecast. The results of the forecasts 

are then further assessed by comparing the forecasting ability of each model using 

various methods of forecast accuracy measures including statistical loss functions and 

the technical trading rule approach.  

 

 

Forecasting accuracy tests 

 

All the forecasts generated in this chapter are assessed and compared in terms of their 

forecasting accuracy in expectation of determining which of the models produces a 

superior forecast. Each forecast will be assessed using a range of measures of 

forecasting accuracy including conventional statistical measures, such as ME, MAE and 

RMSE; Diebold and Mariano tests of equal forecast accuracy; forecast encompassing 

tests; statistical measures of combined forecasts; and trading rule style forecasting 

accuracy tests. Since the aim of this exercise is to determine whether any specific model 

demonstrates considerable superiority over other models, all the forecasts will be 

assessed and compared within each separate time-series, as opposed to inter-comparison 

across all the data sets.   

 

ME, MAE, RMSE 

Table 3.11 includes the results of standard statistical measurements for each single 

forecast. It is evident from the table that the random walk model for all series seems to 

have the best value for almost all statistics. However, the differences between the values 
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are extremely diminutive and, thus, it is difficult to determine any definite conclusions 

at this point whether these differences are statistically significant.     

 

Table 3.11. ME, MAE and RMSE statistics for daily returns data forecasts. 

FTSE Random Walk Linear LSTAR LSTAR 

(Trend) 

ME 0.00002* -0.0002 -0.0002 -0.0002 

MAE 0.0077* 0.0077* 0.0077* 0.0077* 

RMSE 0.0111* 0.0111* 0.0112 0.0111* 

 

S&P Random Walk Linear ESTAR   

ME 0.00005* -0.0003 -0.0002  

MAE 0.0073*  0.0073*  0.0074  

RMSE 0.0104*  0.0104*  0.0105  

 

DAX Random Walk Linear ESTAR  

ME 0.0001* -0.0002 -0.0002  

MAE 0.0106*  0.0106*  0.0106*  

RMSE 0.0154*  0.0154*  0.0154*  

 

NIKKEI Random Walk Linear ESTAR ESTAR 

(Trend) 

ME 0.00005*  0.0002  0.0002  0.0001 

MAE 0.0096*  0.0096*  0.0096*  0.0096* 

RMSE 0.0132*  0.0133  0.0132*  0.0133 

 

Note: * indicates the best statistic  

 

 

Diebold – Mariano test 

The Diebold-Mariano test of equal forecasting accuracy (Diebold and Mariano, 1995) 

assesses whether the differences in MSEs of competing forecasts are statistically 

significant. According to the theory of the test, lower values of MSEs of one forecast in 
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comparison to the alternative do not necessarily translate into the superiority of this 

forecast. The test statistic follows standard normal distribution and tests the null 

hypothesis of equal forecast accuracy against the alternative: 

 

'� = ��n=>̅?����>̅ 
(3.14)  

 

where >̅ is the mean of the coefficient >�, which is the difference between the sets of 

squared forecast errors from two competing models, >� = E��� − E��� ; and �n=>̅? is an 

estimate of the variance of >̅. 

The modified Diebold-Mariano (Harvey et al., 1997) test statistic follows the t-

distribution with  	 − 1# degrees of freedom. 

 

'�∗ = �	 + 1 − 2ℎ + 	��ℎ ℎ − 1#	 ��� '� 

(3.15)  

 

where '� is the original Diebold-Mariano test statistic for ℎ-steps ahead forecast for 

time t. Critical values for the modified test are taken from the Student’s t-distribution  

Table 3.12 includes results of the standard Diebold-Mariano and modified Diebold-

Mariano tests. All test statistics following the modified Diebold-Mariano test are 

insignificant at 1%, 5% and 10% levels of significance, which according to the test, 
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implies that none of the differences between the MSEs of forecasting models considered 

here are statistically significant.   

 

Table 3.12. Diebold-Mariano test results for daily returns data forecasts. 

 DM test statistic Modified DM test 

statistic 

FTSE   

Random walk – ARMA (1,3) - 0.01379 - 0.01376 

Random walk – LSTAR - 0.05079 - 0.05067 

ARMA (1,3) – LSTAR - 0.03064 - 0.03057 

Random walk – LSTAR trend - 0.04415 - 0.04405 

ARMA (1, 3)  – LSTAR trend - 0.00728 - 0.00726 

 

S&P   

Random walk – ARMA (2, 1) - 0.01739 - 0.01735 

Random walk – ESTAR - 0.05240 - 0.05228 

ARMA (2, 1) – ESTAR - 0.02578 - 0.02572  

 

DAX   

Random walk – ARMA(3, 2) - 0.04116 - 0.04106 

Random walk – ESTAR - 0.01629 - 0.01625 

ARMA (3, 2) - ESTAR   0.02169   0.02164 

 

Nikkei   

Random walk – ARMA (0, 3) - 0.00496 - 0.00494 

Random walk – ESTAR   0.01000   0.00997 

ARMA (0,3) – ESTAR   0.00984   0.00982 

Random walk – ESTAR trend   - 0.02311   - 0.02306 

ARMA (0,3) – ESTAR trend   0.0000535   0.0000534 
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Forecast encompassing test  

This study will use two types of forecast encompassing tests. The first considers 

whether one forecast encompasses the other, whereas the second test considers whether 

the forecast errors of one model can explain the forecast errors of the other model. 

Hence, the first forecasting encompassing test implemented here tests whether the 

forecasts from a simple linear random walk model encompasses STAR-type model 

forecasts for each series. The STAR-type models will also be tested against linear 

ARMA models. The following equation is a variation of model used by Fang (2003) 

and is considered for the former type of encompassing test:  

 

��o} = � + M�1�,}® + M�1�,}̄{° + ��  (3.16)  

 

where 1�,}® is the forecast obtained from a random walk model and 1�,}̄{° is the forecast 

generated by the STAR model. The forecast encompassing test used in this study also 

allows for a constant and an error term. Moreover, the hypothesis testing procedure is 

based on the encompassing test methodology applied by Clements and Harvey (2007), 

where the null hypothesis of M� = 0 is tested against a one-sided alternative of  M� > 0. 

Thus, the statistical significance of the  M� coefficient will signify the first forecasting 

model encompassing the alternative forecast, and the positive statistical significance of 

the M� coefficient will indicate the first model being encompassed by the alternative 

forecast. Since this paper does not impose the restriction of unity of the sum of the 

coefficients, the statistical significance of both coefficients will imply that both 
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forecasting models contain independent information required for the forecasting of the 

dependent variable.  

Results in Table 3.13 present the forecast encompassing test results for all the daily data 

returns forecasts. As a result, M�  coefficients for all the data sets and models were found 

to be insignificant at 5% level of significance. M� coefficients were found to be 

significant at 5% level of significance for the random walk model for FTSE and S&P 

series, and for the linear model for FTSE series. Thus, the results suggest that the 

random walk model encompasses LSTAR and LSTAR-trend models for FTSE, and 

ESTAR for S&P; while the linear ARMA model encompasses LSTAR-trend for FTSE 

series and ESTAR model for DAX. Moreover, for the Nikkei series it seems that neither 

of the forecasts, including random walk, ARMA model and STAR-type models, are 

able to contribute significant independent information for returns series forecasting, as 

insignificance of the coefficients suggest that all of the forecasts are very noisy.  
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Table 3.13. Forecasting encompassing test. 

 t-statistic for ±ª  t-statistic for ±«  

FTSE   

Random walk - LSTAR - 3.0138*   0.1244 

Random walk – LSTAR trend - 2.1510*   0.8706 

ARMA – LSTAR   0.7117 - 0.3401 

ARMA – LSTAR trend   2.3302* - 3.2003 

 

S&P   

Random walk - ESTAR   2.1118* - 0.4816 

ARMA – ESTAR   0.8332 - 0.9730 

 

DAX   

Random walk - ESTAR   1.8837   0.7870 

ARMA - ESTAR - 2.1991*   0.7226 

 

Nikkei   

Random walk - ESTAR   0.5114   1.4106 

Random walk – ESTAR trend   1.6505 - 1.3909 

ARMA – ESTAR   0.9957   1.5028 

ARMA – ESTAR trend   1.1227   0.1015 

   

Note: * indicates statistical significance at 5%. 

  

 

The second forecast encompassing test used in this study is based on the approach 

suggested by Fair and Shiller (1990), whereby the regression coefficients are not 

restricted to equal unity, there is no constraint on the constant term � and the error term 

is not assumed to be independent and identically distributed (i.d.d.). The general 

equation used in this exercise to implement the forecast encompassing test is as follows:    

 

��o} = � + M�=1�,}® − ��,}? + M�=1�,}̄{° − ��,}? + ��  (3.17)  
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where ��o} is the actual returns series at the time t, 1�,}® is the random walk forecast for 

s steps ahead for ��o}, and 1�,}̄{°, consequently, is the STAR model forecast for the 

same variable and time period. The same method is applied when carrying out forecast 

encompassing test for linear and STAR models, where 1�,}® is replaced with the forecast 

generated by the ARMA model, 1�,}°²°. The regression is testing the null hypothesis 

(]: M� = 0) of forecasts made by the random walk model to be encompassed by the 

forecast made with a STAR, and hence containing no relevant information for 

forecasting the returns series ��; against an alternative hypothesis (]�: M� > 0) of a 

STAR model forecast being encompassed by the random walk model forecast. In order 

to test the hypotheses, both coefficients, M� and M�, are tested for significance using a 

standard t-test.  

The test results (Table 3.14) show that all the M� coefficients for forecast models are 

statistically significant at 5% level of significance, with the exception of linear models 

in the combination with ESTAR-trend for the Nikkei index. Thus, the linear ARMA 

model encompasses LSTAR and LSTAR-trend models for FTSE index; LSTAR for 

S&P; ESTAR for DAX; and ESTAR for the Nikkei series. While the random walk 

model encompasses ESTAR model for S&P; ESTAR for DAX series; and the ESTAR 

model forecast for Nikkei. However, M� coefficients were found to be significant for a 

few non-linear models together with significant coefficients for linear forecasts, 

suggesting that both linear and non-linear models contain independent information 

required for forecasting the price returns series. These combinations include the random 

walk model and LSTAR model, as well as random walk and LSTAR-trend models for 

FTSE; and a combination of a random walk and ESTAR-trend models for the Nikkei 

series.   
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Table. 3.14. Forecasting errors encompassing test.   

 t-statistic for ±ª  t-statistic for ±«  

FTSE   

Random walk - LSTAR - 695.0298* 2.7810* 

Random walk – LSTAR trend - 421.6723* 66.0126* 

ARMA – LSTAR - 60.2214* - 22.7316 

ARMA – LSTAR trend   2.5180* - 73.0253 

 

S&P   

Random walk - ESTAR - 209.4365* - 18.5475 

ARMA – ESTAR - 48.4028* - 34.6721 

 

DAX   

Random walk - ESTAR - 115.8646* - 15.6294 

ARMA - ESTAR - 71.9033* - 27.0736 

 

Nikkei   

Random walk - ESTAR - 98.5322* - 3.7355 

Random walk – ESTAR trend - 21.8602*   5.5050* 

ARMA – ESTAR - 25.1779* - 53.5528 

ARMA – ESTAR trend - 0.3136 - 125.6118 

   

Note: * indicates statistical significance at 5%. 

 

 

ME, MAE, RMSE of a combined forecast  

Furthermore, following the results of the forecast encompassing test, a combination of 

linear and non-linear forecasts was performed using a simple weighted average 

approach. Combination of the forecasts involved running a regression for each data set 

combining the appropriate linear and non-linear models specified earlier. Thus, each 

combined forecast involved regressing actual returns (��o}) on a combination consisting 

of forecasted series for s steps ahead at time t obtained from a random walk model 

(1�,}®), linear ARMA model (1�,}°²°) and the STAR model (1�,}̄{°). The following is a 
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general equation for the combined forecasts procedure (3.18), while Table 3.15 offers 

individual equations for each series. In addition, Table 3.16 represents the standard 

statistics drawn for each of the combined forecasts as an indication of forecasting 

success.  

��o} = � + M�1�,}® + M�1�,}°²° +  1 − M� − M�#1�,}̄{° + ��  (3.18)  

 

Table 3.15. Individual combined forecast equations for daily returns data series.  

Time series Individual combined forecast equation  

 

FTSE  ��o}³{¯´ = � + M�1�,}® + M�1�,}°²° �,a# +  1 − M� − M�#1�,}c¯{° + �� 

 

 ��o}³{¯´ = � + M�1�,}® + M�1�,}°²° �,a# +  1 − M� − M�#1�,}c¯{° �¡µlD# + �� 

 

Nikkei  ��o}b�--µ� = � + M�1�,}® + M�1�,}°²° ,a# +  1 − M� − M�#1�,}́̄ {° �¡µlD# + �� 

 

 

Table 3.16. Statistics results for combination forecasts of daily returns data series.  

FTSE Combination  Combination trend  

ME  0.00003*  0.0002 

MAE  0.0077*  0.0077* 

RMSE  0.0111*  0.0111* 

 

NIKKEI  Combination trend 

ME  -0.0001* 

MAE   0.0096* 

RMSE   0.0132* 

 

Note: * indicates the best statistic 
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When the above statistical results are compared with the results from Table 3.11, it is 

apparent that statistics for random walk model forecasts and for combined forecasts 

mostly have the smallest statistical values and hence indicating a possible preference for 

these models.     

 

Trade rule  

In addition to the previous comparative measure, the forecasts were also assessed using 

the trade rule approach. The trading trigger in this case is whether the forecast level for 

each data point is above or below zero. Hence, a positive forecast will be a signal to buy 

(long), and a negative forecast will be a signal to sell (short). The trade rule is run for all 

the forecasts, including random walk models and linear model forecasts. The results in 

the table below demonstrate an average return per day for each individual forecasting 

model using the trading rule. Essentially, the negative return indicates an overall loss, 

and consequently, a positive value is a result of profit gain.     

 

Table 3.17. Trade rule test results for daily returns forecasting series.  

 FTSE S&P DAX Nikkei 

Random walk - 0.0004   0.0007*   0.0006*   0.00007 

Linear ARMA   0.0002   0.0002   0.0001   0.00007 

ESTAR / LSTAR - 0.0002 - 0.0004 - 0.0002   0.0002 

ESTAR / LSTAR trend - 0.0001     0.00002 

Combination RW and LSTAR   0.0044    

Combination RW and LSTAR-

trend  

  0.0045*    

Combination RW and ESTAR-

trend 

     0.0064* 

Note: * indicated the best statistic  

          RW – random walk 
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Linear ARMA model forecasts produce positive results for all data sets, followed 

closely by the random walk model forecast, which generates a loss only for one of the 

data sets, namely FTSE. The Nikkei index generates positive trade values in all 

forecasts, with the highest value belonging to the combination forecast of random walk 

and ESTAR-trend, thus suggesting the most stable result across the four series. 

Moreover, combination forecasts for FTSE and Nikkei generate the best result in terms 

of the highest average profit per trading day. However, as it was mentioned before, the 

trading rule approach considered here should not be treated as a realistic profit 

generating procedure, as it is merely an extensive test of forecasting accuracy. 

Moreover, the total magnitude of these hypothetical profit gains and losses is somewhat 

to be desired better, as the comparative difference between those does not seem 

significant enough to draw strong conclusions. These results are to be expected for daily 

stock market data, as it is characteristically very noisy. Therefore, it is also expected 

that longer term data series, for instance, monthly data or long-horizon data, will 

produce much more reasonable and conclusive results based on the trade rule 

methodology.  

Drawing from the results of the forecasting accuracy tests and taking into account 

specific behaviour and characteristics of daily data, it can be concluded that the best 

forecasting model in terms of combination of forecasting accuracy and ease of 

implementation, the random walk model seems to be the best choice for the purpose of 

a forecasting exercise. However, there is no clear evidence of the random walk model 

significantly outperforming the linear and STAR model in terms of forecasting 

accuracy. The random walk model is preferred in this instance due to the ease of 

implementation and interpretation.   
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Interval forecasts for daily data6 

 

Interval forecasts provide a prediction of a range of values in which the future value of 

the variable is expected to lie. This study will apply a technique based on a study by 

Christoffersen (1998) in order to carry out interval forecasts on the linear and non-linear 

models considered in this chapter. The methodology involves setting interval prediction 

barriers in the form of upper and lower limits each with assigned certain probability, 

with further evaluation of goodness of fit of the forecast using a success ratio approach.  

The upper and lower limits are set as a time-series of forecasted values plus or minus 

respectively the standard error term at the 95% level of confidence assuming normal 

distribution (Figures 3.8 – 3.11). The goodness of fit test will determine the success rate 

of the forecast value falling inside the set limits.  

 

 

 

 

 

 

                                                           
6
 The main objective of this thesis is an investigation of point forecasting with non-linear models and 

does not include a thorough examination into interval forecasts. The subject of interval forecasts is an 

important area of time-series research that lacks extensive empirical examination in the literature. I would 

like to thank my examiners for their valuable comments and recommendations for further research within 

the field of forecasting. 
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Figure 3.8. FTSE interval random walk.  

 

Figure 3.9. FTSE interval linear forecast.   
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Figure 3.10. FTSE interval LSTAR forecast.  

 

Figure 3.11. FTSE interval LSTAR trend forecast.  
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The success rate of the interval forecast can be easily seen on the graphical 

representation, where the actual returns will be either within or outside the set limit 

barriers, thus indicating success or failure of the forecast respectively. Naturally, the 

upper and lower limits for the random walk interval forecast are characterised by a 

somewhat less volatile line as opposed to limit barriers of the linear and non-linear 

interval forecasts which mimic the movements of the actual returns series. Moreover, all 

the interval forecasts share a characteristic of a common trend level. As expected, while 

the most of actual returns series values lie within the interval forecast, the outliers and 

extreme points rest outside the prediction barriers. The most successful forecast based 

on graphical representation in terms of following outliers is the LSTAR forecast (Figure 

3.10), where the model attempts to correct for extreme value in the beginning of the 

sample characterised with high volatility. 

The out-of-sample goodness of fit evaluation of interval forecast applied in this chapter 

is based on assessing the success ratio of the indicator variable, ��, for a given interval 

forecast, Z¶�|��� )#, ��|��� )#[ for time t, made at time t-1, with the coverage 

probability, p, for a time-series of a random variable, ��, which is defined as follows:  

 

�� = ¸1, 01  �� ∈ �¶�|��� )#, ��|��� )#�0, 01  �� ∉ �¶�|��� )#, ��|��� )#�/ (3.19)  

 

Where, ¶�|��� )# and ��|��� )# are lower and upper limits respectively.  In other words, 

zero value is assigned to every forecasted value outside the prediction barriers, while 

forecasts within the range are assigned a value of unity. The mean of the indicator 
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variable is the success ratio of the interval forecast. The results (Table 3.18) suggest that 

none of the interval forecasts performed in this section surpassed the limit required by 

the 95% confidence interval.  

 

Table 3.18. Interval forecast success ratio results.   

 Success Ratio 

FTSE  

Random walk  0.9243 

ARMA (1, 3) 0.9183 

LSTAR  0.9178 

LSTAR-trend 0.9210 

  

S&P  

Random walk  0.9287 

ARMA (2, 1) 0.9276 

ESTAR 0.9265 

  

DAX  

Random walk  0.9216 

ARMA (3, 2) 0.9205 

ESTAR 0.9227 

  

Nikkei  

Random walk 0.9468 

ARMA (0, 3) 0.9484 

ESTAR 0.9490 

ESTAR-trend  0.9473 

  

 

These results could be explained by the fact that the goodness of fit evaluation 

procedure was based on the assumption of normal t distribution. Generally the 

distribution of financial daily data is characterised with fat tails due to daily data being 

very noisy and containing extreme values. Similarly to the results of the point forecast 
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in this chapter it seems that the argument of the daily data lacking defined patterns still 

holds when applying interval forecasting techniques. Therefore, the suggestion that the 

less noisy monthly data will demonstrate more clearly defined forecasting performance 

of non-linear as well as linear models is also applicable to interval forecast.      

 

 

3.4. Conclusion  
 

This chapter intended to assess the forecasting abilities of non-linear STAR-type models 

using daily stock price data over the period of twenty years between 1988 and 2007 

using four price indices of four major world economies, including FTSE 100, S&P 500 

Composite, DAX 30 Performance and Nikkei 225 Stock Average.   

Results of the empirical investigation suggest the presence of stock returns 

predictability and presence of STAR-type non-linearity. These results are consistent 

with extensive literature on the issue of forecastability of stock returns and successful 

use of STAR-type models in forecasting these dynamics (Abhyankar et al., 1995; 

Clements and Smith, 1999; Clements and Smith, 2001; McMillan, 2001; Lekkos and 

Milas, 2004; McMillan, 2004; Teräsvirta et al., 2005). Moreover, in parallel with notion 

of traders interaction in financial markets suggested by McMillan (2001) and the 

presence of market frictions including transaction costs, limits to arbitrage, short selling 

and borrowing constraints (Martens et al., 1998; Kapetanious et al., 2003; McMillan, 

2005b), it can be argued that small changes in pricing equilibria can be foregone and not 
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corrected immediately, thus, displaying non-linear dynamics within the series. STAR 

models produce reasonably accurate results in comparison with linear alternatives, 

however, any additional gains achieved by non-linear framework are only marginal to 

the results of a random walk and ARMA models. Hence, drawing from the results of the 

forecasting accuracy tests and taking into account specific behaviour and characteristics 

of daily data, and combining aspects of forecasting accuracy and ease of 

implementation, it can be concluded that the random walk model seems to be the most 

superior model for the purpose of forecasting daily stock returns. It has to be noted, 

however, that there is no clear evidence of exceeding superiority of the random walk 

model compared to other linear and non-linear approaches. Nevertheless, it is assumed 

that for forecasting high-frequency data on a daily level it is vital that the model is fast 

and easy to apply in addition to clear interpretation of results, which the random walk 

models appears to provide. The conclusion of these results is similar to those of an 

empirical study of high-frequency stock returns by Abhyankar et al. (1995), where the 

researchers confirmed the presence of non-linearity, however found the time-series to be 

adequately explained by a simple alternative, namely the GARCH (generalised 

autoregressive conditional heteroskedasticity) model process. Thus, while Abhyankar et 

al. (1995) encourage the use of high-frequency data due to the fact that it allows for a 

larger sample and thus increases the likelihood of better understanding the underlying 

process, there is also a possibility that small changes in high-frequency time-series 

returns might be too noisy and would not fully reflect the long-run dynamics.  

Moreover, Fair and Shiller (1990) pointed out the fact that a specific model displays 

either good or poor forecasting abilities for one sample period might not necessarily 

mean it will have the same results for a different forecasting period. One of the reasons 
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for this could be a change in economic structure or other events that will change the 

behavioural dynamics of the data. Furthermore, Montgomery et al. (1998) found that in 

their study of US unemployment rate with the aid of non-linear forecasting models, the 

quarterly series is much smoother comparing to a more frequent monthly series. Both 

series shared similar cyclical and trend characteristics, however it is evident that there is 

a strong possibility that the long-horizon data might utilise the benefits of the non-linear 

forecasting much more efficiently than data sets with much higher frequency. Hence, 

this chapter will be concluded on the notion that the results obtained here suggest the 

use of the random walk model as the best forecasting model for daily stock returns in 

terms of the ease of implementation and relative forecasting accuracy it provides. 

However, it is not to suggest that the non-linearity should be disregarded and that 

researchers should consider its presence. This study further anticipates that an 

investigation of non-linear forecasting models should be extended to long-horizon data, 

as a non-linear approach seems to be more appropriate in this case.      

 

 

 

 

 

 

 

 

 

 



163 

 

Chapter 4 
Long-horizon forecasting 

 

4.1. Introduction  
 

This chapter will concentrate on the topic of long-horizon stock predictability, in 

particular, the possibility of predicting stock market returns using price-dividend and 

price-earnings ratios. Based on the present value model introduced by Campbell and 

Shiller (1987), there has been a debate amongst researchers whether it is possible to use 

the current dividend-price ratio, or dividend yield, as a reliable enough measure of the 

expected stock returns in order to predict future stock returns. Literature on the out-of-

sample forecasting ability of the dividend yield for stock returns is somewhat limited, 

with previous studies concentrating on stock returns in-sample predictability in order to 

examine the validity of the present value model. Thus, this chapter will apply non-linear 

STAR-type modelling to a present value framework with the intention to extend 

research into out-of-sample stock returns predictability by examining whether a 

forecasting exercise can be improved with a non-linear error-correction approach.  

 

The introduction of the present value model raised research interest with numerous 

studies extending Campbell and Shiller’s (1987) original work, including an 

introduction of a time-varying discount rate. Furthermore, unexpected significant rise in 

stock prices and subsequent fall in late 1990s and early 2000s as a result of the dot-com 

bubble have raised new interest in the present value model and forced academics to 
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focus on re-examining its validity and relationships between stock prices and dividends. 

In addition, an extensive research into returns stock predictability is to some extent 

fairly confusing with numerous studies offering various testing procedures and 

eventually different conclusions (Campbell and Shiller, 1987; Goetzmann and Jorion, 

1993; Torous et al., 2004; Campbell and Yogo, 2006; Cochrane, 2008).  

 

A number of studies that consider the dynamics in the dividend-price relationship assess 

the validity of the present value model in terms of testing for the presence of linear 

cointegration between stock returns and determinants. However, this approach assumes 

a constant discount rate, whereas non-linear modelling allows for a time-varying 

discount rate. The results are somewhat mixed with more recent studies suggesting non-

linear dynamics in the relationship between stock market returns and dividend yield 

(McMillan, 2004; Kanas, 2005; Rapach et al., 2005; Bali et al., 2008). Researchers 

proposing a non-linear approach to the validity of the present value model suggest that 

market fundamentals still support stock return predictability with a long-term 

equilibrium but with non-linear adjustments. These non-linearities in the stock market 

returns-dividends relationship are suggested to be explained by the presence of 

transaction costs in a trading market and an interaction between informed and 

uninformed or noise traders. Moreover, McMillan (2001) pointed out that these non-

linear adjustments to the fundamental equilibrium characterised by the presence of 

transaction costs and traders’ interaction are persistent and exhibit slow mean reversion, 

which in turn implies the presence of market inefficiencies. In addition, Kanas (2005) 

suggests that when applying a non-linear approach to the dividend-price relationship 

empirical tests and methods of assessment of such modelling should be tailored 
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specifically for non-linear purposes as the results obtained with conventional linear 

techniques may be spurious. 

The present value model is supported by strong theoretical analysis, however, the model 

has been challenging to validate using real life stock market returns. Some researchers 

attribute this to the presence of transaction costs in financial markets thus creating non-

linear dynamics in the stock prices time series. Due to arbitrage opportunities arising 

from large deviations from long-run equilibrium it will be ensured that these deviations 

will be corrected, however small deviations that are below the transaction costs trading 

barrier will remain uncorrected. Hence, the different speed of adjustment depending on 

the size of price deviations is better to be described by a non-linear model, and in 

particular STAR-type models.    

This empirical chapter will examine price returns of four stock market indices including 

FTSE All Share, S&P, DAX and Nikkei. However, developing on the results and 

conclusions of the previous chapter (Chapter 3), the emphasis is on long-horizon data, 

namely monthly stock returns. Furthermore, developing the investigation of long-

horizon time-series data, the methodology will be applied to the monthly data in periods 

of three, six and twelve months in a form of a buy-and-hold strategy. The stock price 

returns are modelled using error-correction methodology with the dividend yield and 

price-earnings ratio as determinant variables. Recursive out-of-sample forecasting is 

then applied to all time periods of the four time-series in non-linear as well as linear 

framework, followed by the assessment using tests of forecasting accuracy.    

This chapter will discuss the progression of the theory of stock returns predictability in 

a form of a literature review, highlighting various explanations of dynamics between 

stock prices and dividends, as well as empirical attempts to validate the present value 
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model (Section 4.2). Section 4.3 outlines the methodology applied in this chapter. 

Section 4.4 on monthly returns empirical results discusses statistical characteristics of 

the data including non-linear unit root tests, completing with the forecasting exercise 

and implementation of forecasting accuracy tests. Long-horizon buy-and-hold strategy 

is applied in Section 4.5. Section 4.6 concludes the chapter.    

 

 

4.2. Literature review 
 

Introduction to the present value model  

 

The efficient market hypothesis (EMH) implies a relationship between stock market 

prices and dividends in terms that according to the theory, current prices reflect all 

available information, including dividends. Consistent with the concept of the efficient 

markets, the long-horizon equity stock returns were believed to be unforecastable. 

However, Campbell and Shiller (1987) introduced the present value model which 

relates the stock price to discounted future dividends and, thus, represents the 

fundamental values for the stock prices. Numerous research studies have been carried 

out into the validity of the present value model which in turn will support the possible 

predictability of stock returns. The present value model is in essence a simple stochastic 

model. Campbell and Shiller (1988b) point out that the dividend-price ratio can be 

interpreted as expectations about future dividends, or in other words, as a reflection of 

expectations for future dividends in current stock prices. The dividend-price ratio will 
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be high when, in the former case, dividends are predicted to decrease, or, in the latter 

case, when discount rates are high. Campbell and Shiller (1988b) attempted to 

investigate whether these interpretations could explain time variation in price-dividend 

ratio assuming rational market expectations. They also put large emphasis on the 

importance of log dividends and discount rates in reflecting the state of economy.  

Campbell and Shiller (1988b) proposed that the present value model suggests the 

variations in expected stock returns to be captured by the dividend-price ratio. 

Assuming constant dividend growth, the present value model can be used to price 

stocks, hence, dividend yields, by definition, have been used to evaluate expected future 

returns. Subsequently Campbell and Shiller (1988b) extended their previous research to 

include time-varying discount rate in the dividend-price ratio, as opposed to constant 

discount rate considered previously, and proposed a model of a linear approximation of 

a relationship between stock prices, stock returns and dividends which allowed for the 

discount rate to vary over time. Campbell and Shiller’s (1987, 1988a) research was 

closely related to cointegration and error-correction concepts introduced by Engle and 

Granger (1987), on the basis of which Campbell and Shiller (1987, 1988a) proposed a 

test to confirm the validity of the present value model on a condition of stationarity of 

the variables in the first difference. The tests involved examining bonds and stocks in 

the context of the present value model using a single-equation regression based on the 

cointegration procedure by Engle and Granger (1987). Thus, the validity of the present 

value model can be tested with an error-correction model, which relates the changes in a 

time-series variable to the changes in the variable’s own lags multiplied by a 

cointegration vector. With the assumption of a constant discount rate the stock prices 

and dividend levels are theoretically cointegrated, or in other words, follow an 
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integrated process of order of one, i.e. I(1) (Campbell and Shiller, 1987). Similarly, if 

the present value model is valid, assuming a time-varying discount rate instead of a 

constant one, the log difference between dividends and prices follows a stationary 

process (Campbell and Shiller, 1988a, 1988b).  

While error-correction models are usually used to model adjustment of cointegrated 

variables, Campbell and Shiller (1988a) suggested its use when one variable forecasts 

another and thus applied both concepts to stock price dividend relationship. Campbell 

and Shiller (1988a) pointed out that even though market participants, such as managers, 

responsible for setting dividend levels, they do not directly influence dividends, but do 

behave in the manner of a structural error-correction model. Campbell and Shiller 

(1988a) called this phenomenon a reduced-form error-correction behaviour.   

Part of the debate provoked by the present value model was the fact that the presence of 

return stock predictability can be interpreted as evidence of market inefficiency. The 

alternative interpretation would be evidence of time-variation in expected returns 

(Torous et al., 2004). Consequently, McMillan (2001) points out that consistent with 

Campbell and Shiller’s (1988a) extended version of the present value model it has been 

assumed that the linear stock predictability occurs from time-varying returns. Indeed, 

numerous studies have supported the presence of stock predictability when accounting 

for time-varying discount rate. However, despite structural simplicity, the present value 

model raised much controversy through empirical evidence of its validity being mixed 

with some researchers providing supporting evidence (Fama and French, 1988; 

Campbell and Shiller, 2001; Lewellen, 2004; Torous, Valkanov and Yan, 2004; 

Campbell and Yogo, 2006) while others do not find return stock predictability (Wolf, 
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2000; Lanne, 2002; Ang and Bekaert, 2007, Valkanov, 2003, Campbell and Yogo, 

2006).  

 

Stock predictability  
 

The earlier studies that found evidence of market returns to be predictable were 

criticised for presence of biases, which further research tried to correct for. Stambaugh 

(1999) reports a bias in the OLS slope coefficients in a standard predictive regression 

when investigating dividend yield as a stochastic regressor for stock returns. Also, 

Campbell and Yogo (2006) drew attention to the fact that predictor variables such as the 

dividend-price and price-earnings ratios are highly persistent and might contain a unit 

root thus leading to over-rejection of the null hypothesis of no predictability when 

employing standard conventional statistics. After modifying testing procedure to 

account for this fact, researchers found evidence of presence of predictability in US 

stock returns. Campbell and Yogo (2006) based their approach on methodology used by 

Lewellen (2004) who found strong evidence of returns stock predictability. Lewellen 

(2004) provides evidence of stock predictability using dividend yield in the post-war 

period of 1946-2000. Similarly, after finding reliable evidence of predictability for 

returns over horizons less than one year, Torous et al. (2004) suggest that previous 

studies have not accounted for persistent behaviour of the explanatory variables and 

thus suffered from over-rejection of the null hypothesis of no predictability when using 

standard statistics. In addition, the type of regression used by the present value model is 

known as a predictive regression, which assumes stationarity of the explanatory 

variables. However, following most recent research into financial market variables, it is 
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evident that such an assumption seems unrealistic for most explanatory variables used 

in predictive regressions (Torous et al., 2004).    

Wolf (2000) suggested that some studies on return stock predictability suffer from 

statistical pitfalls and structure dependency in model building. Hence, Wolf (2000) 

employed a new statistical method of subsampling, which allows avoiding the need to 

fit a structural model to fit the data. As Wolf (2000) pointed out, while generalised 

method of moments (GMM) and vector autoregression (VAR) are common methods 

used in approaching stock predictability, a bootstrap approach, on the other hand, does 

not rely on model estimation hence avoiding any possible model misspecifications. 

However, assumptions drawn by the bootstrap method in the context of stock 

predictability seem to lack asymptotic consistency. As a solution Wolf (2000) proposed 

the use of a subsampling approach which is completely model free and more 

asymptotically consistent comparing to bootstrap methodology. Wolf (2000) found the 

subsampling method to be superior to bootstrap, VAR and GMM methods, however 

found evidence of stock return predictability only for the long horizon data. Moreover, 

due to the fact that there was no support for predictability for short- and medium-

horizon data, and presence of strong dependency in long-horizon residuals, the study 

concluded that there was no convincing evidence of stock return predictability when 

using dividend yields. Similarly Lanne (2002) also pointed out that there are clearly 

problems in testing stock return predictability employing simple regression model 

framework as it requires the use of standard t- and F-tests leading to spurious results. 

Lanne (2002) argues that most previous studies on stock returns predictability using 

strongly autocorrelated variables have ignored near unit root problem and hence their 

findings will be spurious. As a solution, Lanne (2002) developed a substitute to a 
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standard t-test, but found no predictability in US stock return data between 1928 and 

1996.  

Goetzmann and Jorion (1993) re-examined long-horizon stock returns predictability 

when using dividend yields. Researchers criticized previous studies for applying bias 

methods and, similarly to Wolf (2000), proposed the use of a non-parametric technique 

known as the bootstrap approach which implements the observed distribution of the 

data in order to model the distribution of a test statistic. Goetzmann and Jorion (1993) 

agreed that the bootstrap approach has certain limitations, mainly poor standard error 

distribution approximation for small samples, which can lead to underestimation of 

confidence intervals. However, in the case of large samples, on the other hand, the 

bootstrap methodology allows for the control of potentially bias factors such as using 

overlapping return intervals, the lagged correlation between independent and dependent 

regression variables, and their idiosyncrasies in the returns distribution or in the error 

structure. The outcome of the study, however, produced misleading regression 

coefficients, t-statistic and R
2
, confirming the null hypothesis of no returns 

predictability.  

Valkanov (2003) pointed out that using standard statistics in long-horizon regressions 

leads to spurious results due to non-standard asymptotic properties of the t-statistic of 

the least square estimator of the slope coefficient and the R
2
. While Valkanov (2003) 

found weak predictability of returns using dividend yield for the data of the pre-war 

period, the post-war period was characterised by evidence of predictability which, 

disappointingly, was described as somewhat unimpressive. Moreover, Ang and Bekaert 

(2007) find stock returns predictable over short-horizons, however results also 

demonstrated that predictability by the dividend yield was not statistically significant. In 
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addition, Ang and Bekaert (2007) did not find excess return predictability when using 

the earnings yield as a determining variable. As suggested by the researchers, weak 

evidence of returns predictability could be a consequence of using univariate linear 

models which lack the ability to capture complex dynamics of stock returns. Hence, it 

was suggested that a predictability model incorporating structural break and regime 

shifts might produce different results.        

Moreover, Cochrane (2008) suggested an entirely different approach for testing the 

presence of predictability in stock returns by examining whether it is possible that 

returns are not predictable. Cochrane (2008) argues that the logic behind the present 

value model suggests that if returns are not forecastable for cointegration relationship to 

hold, either the dividend growth has to be forecastable or for the dividend-price ratio to 

be constant. However, while observation of the dividend-price ratio variation in the 

financial market confirms that the later scenario is not plausible, Cochrane (2008) does 

not find any evidence to support dividend growth predictability to confirm the former 

argument. Dividend growth and expected returns are the most promising determining 

variables for stock prices. Hence, according to Cochrane (2008), the observed variation 

of dividend-price ratio and the absence of dividend growth predictability are strong 

evidence of predictability of stock returns.  

On the contrary, Chen (2009) felt that while there has been a number of extensive 

research studies carried out into aggregate stock returns predictability using a dividend 

yield, there is still limited research done into dividend growth predictability. Chen 

(2009) suggests that since, by definition, the dividend yield is a sum of future expected 

dividend growth, it is implied that dividend yield variations will be reflected in similar 

variations in expected returns and the expected dividend growth. Since movements of 
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these variables are of a great importance and have major economic implications, Chen 

(2009) carries out an empirical study into stock return and dividend growth 

predictability. Similar to Lewellen (2004), Chen (2009) finds structural differences in 

different historical time periods, so that the null of no returns predictability cannot be 

rejected for the period before 1926, whereas it is strongly rejected for the post-war 

period after 1945. Results for the period between 1926 – 1945 generate mixed outputs. 

Hence, Chen (2009) suggests that evidence of returns predictability is mainly a post-war 

phenomenon. Possible explanations of such dramatic changes in returns predictability in 

the post-war period include increased number of firms, and thus the market index 

containing greater diversity of firms, implementation of different dividend policies by 

different firms, and a general decrease of dividend volatility. However, Chen (2009) 

struggles to find sufficient evidence in support of any of the above explanations of the 

reversal of predictability. Consequently, the topic raises many questions, and Chen 

(2009) suggests further investigation into the issue.    

 

 

Non-linear tests of stock predictability  

 

Conversely, growing evidence of the presence of non-linear dynamics in financial time-

series, together with the failure of the linear present value model to explain stock prices 

dynamics suggests a non-linear approach to the price-dividend relationship. 

Furthermore, an increasing discrepancy between stock and fundamental prices evident 

in the late 1990s casts a final doubt that the stock prices follow linear stationary 

perfectly cointegrated behaviour implied by the present value model. Campbell and 
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Shiller (2001) report an unusually bearish behaviour within the US stock market in 1998 

which resulted in a shift in stock prices from the fundamental values and historical 

averages. However, Lewellen (2004) reports finding strong evidence of stock returns 

predictability even during the period of the unusual price dynamics. Bohl and Siklos 

(2004) propose a more plausible approach by taking an assumption that the present 

value model is valid as a long-run framework for the US stock prices, and recognising 

the presence of asymmetries in the short-run. As pointed by Bohl and Siklos (2004), 

there are a number of possible reasons for mixed empirical evidence of the long-term 

validity of the present value model including the presence of non-linearities, structural 

breaks and outliers. It is indeed possible to integrate crashes and non-fundamental stock 

price behaviour that occurred during the 1990s by not including the transversality 

condition of the standard present value model. Numerous studies were carried out in 

order to explain stock price behaviour as a function of dividends. An increasing number 

of researchers conclude that the prices and dividends are in fact cointegrated, however 

the mean reversion processes is characterised in a non-linear fashion. McMillan (2007), 

for instance, observed that some researchers argued that the deviation from the 

fundamentals in the 1990s was a result of an extended bubble that eventually burst, and 

were concentrating on determining a technique which would allow to capture this type 

of stock price behaviour. Non-linearities in the present value model are usually 

explained by the presence of non-fundamental components. In addition, Psaradakis et 

al. (2004) identified the presence of a time-varying discount factor and the presence of 

bubbles as possible explanations for short-term deviations of prices from the 

fundamental values and long-term price-dividend relationship. The most promising 

theoretical justifications of such dynamics include the presence of speculative bubbles 
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(Blanchard and Watson, 1982; West, 1988; Evans, 1991); noise traders’ models 

(Kirman, 1991, 1993; Shleifer, 2000) and the theory on booms and slumps in economic 

activity (Phelps, 1994; Phelps and Zoega, 2001).  

Besides the debate on the presence of stock returns predictability, there is an ongoing 

discussion concerning the predictability in short- and long-horizons. Rapach et al. 

(2005) investigated the presence of long-horizon predictability in real stock prices using 

a predictive regression model with price-dividend and price-earnings ratios as 

fundamental valuation ratios following previous research that seemed to detect 

predictability in the long-horizons, but not in the short-horizons (e.g. Campbell and 

Shiller, 1998). Possible explanation of such pattern of stock price predictability could be 

attributed to presence of non-linearity. The argument was based on the work by 

Berkowitz and Giorgianni (1996) who addressed long-horizon predictability of nominal 

exchange rates using monetary fundamentals as valuation ratios. The researchers argued 

that a linear framework does not provide sufficient justification for the stock 

predictability as it implies that the stock predictability is for all horizons or for no 

horizons. This contradicts with numerous findings of long-horizon predictability and the 

lack of such in the short-horizons. Using their approach Rapach et al. (2005) adopted 

the methodology in order to implement the Monte Carlo simulations to the long-horizon 

stock price predictability. While results from a linear predictive regression demonstrated 

the ability of both price-dividend and price-earnings ratios to predict stock price in the 

long- but not short-horizons, the parsimonious exponential smooth transition 

autoregressive (ESTAR) model proved not only to fit the data sufficiently well, but also 

to allow for non-linear mean reversion, thus providing plausible explanation for the 

long-horizon predictability pattern. As a result, Rapach et al. (2005) agree that a non-
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linear framework provides a sufficient explanation for the pattern of stock price 

predictability for at least the dividend-price ratio. Moreover, Kilian (1999) argues that 

the observed pattern of long-horizon predictability together with the absence of 

predictability in the short-horizon can be interpreted as indirect evidence of the presence 

of non-linearity in the data generating process.  

Kanas (2005) employed a non-linear cointegration approach to confirm the presence of 

non-linearities in the stock price and dividend relationship and thus validated the 

present value model in non-linear fashion. Bali et al. (2008) also found evidence of 

stock returns predictability by employing a non-linear test of mean reversion. Hartmann 

et al. (2008) find evidence of predictability of stock returns using macroeconomic 

variables and incorporating structural breaks by assessing publicly available and easily 

accessible information on economic and financial crises.  

 

 

Reasons for non-linear behaviour  
 

The idea behind non-linear dynamics within the stock market time-series caused by the 

interaction between informed and uninformed traders is that the deviation from the 

fundamental values has to be sufficiently large for the arbitrage traders to participate in 

the market trading, thus correcting the values to the long-term equilibrium. Similarly, 

the presence of transaction costs will ensure that the arbitragers will only engage in 

trading if the return exceeds the required limit. Hence, the stock returns time-series will 

be characterised by bounds of inactivity around the equilibrium which, in turn, causes 

small and large returns to exhibit different dynamics (McMillan, 2001).  
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However, according to the theories of behavioural finance, investors will exhibit 

different assets trading behaviour following different states of the market. Thus, great 

importance is placed on the phenomenon of the market sentiment where noise traders 

will demonstrate a positive response in rising markets by overreacting to positive news 

and hence overvaluing stocks bringing the prices up in the excess of what is required by 

the news, otherwise known as trend-chasing (McMillan, 2005; McMillan and Speight, 

2006). The arrival of bad news will, on the other hand, result in noise traders showing 

bearish, more conservative behaviour that is close to the characteristics of fundamental 

traders. As a result, the fundamental traders are trying to take advantage of these known 

noise traders’ strategies by recognising the market triggers that set off the noise traders 

and engaging in the trade by taking long positions in order to drive the asset prices even 

further before short selling. In other words, fundamental traders purposefully de-

stabilise the market in the process of a profit gain. In the light of these practises, 

McMillan and Speight (2006) suggest that the predictability implied by the present 

value model will be weaker in the rising market due to the market sentiment, while 

observing a stronger connection of stock returns to the fundamentals in the falling 

markets. Thus, when the prices are undervalued market forces readjust these back to the 

equilibrium more quickly. Whereas adjustments to the fundamental values of 

overvalued prices will happen at a slower rate due to trend-chasing and interaction 

between noise and arbitrage traders. Furthermore, this demonstrates the asymmetry in 

returns predictability following positive and negative dividend yield values. In other 

words, prices being below or above the fundamental values, where the predictability 
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will be stronger in the periods when the prices are close to the fundamentals while the 

overvalued market will be characterised with a weaker predictability.  

In addition, McMillan (2004) suggests that since the arbitrage traders will not engage in 

trading unless the deviation from the fundamental values exceeded arbitragers’ trading 

barrier, the behaviour of the stock returns will differ depending on the size of the 

disequilibrium. Thus small deviations may be foregone uncorrected due to the presence 

of transaction costs and fundamental traders not engaging in the trade. Deviations 

exceeding transaction costs, but still considered to be of small return deviation, will be 

corrected at a faster rate as a result of an increased number of market arbitrage 

participants due to possible profit opportunities. Fundamental traders will only engage 

in trading activities when returns disequilibrium is sufficient enough to produce a profit 

(McMillan, 2005). However, large return deviations will then be characterised by a slow 

mean reversion as noise traders engage in trend-chasing and the arbitrage trades are 

reluctant to act upon the mispricing due to greater risk from adverse market movements. 

Consequently, difference in sizes of price deviations will result in different rates of 

adjustments to the equilibrium, hence suggesting non-linear dynamics in the process of 

reversion to the equilibrium. Furthermore along the lines of the behavioural finance 

argument, Bali et al. (2008) points out a time-varying or state-dependent nature of the 

investors’ relative risk aversion, such that it increases in falling markets due to short 

sale, liquidity, or financing constraints. Bali et al. (2008) provides evidence of 

significantly increased speed of mean reversion during falling markets as a result of an 

increased investors’ risk aversion.  

McMillan (2004) demonstrates the preference of a non-linear error-correction model 

over a linear alternative, as the regimes presented by the ESTAR model capture 
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different dynamics resulting from small and large price divergences as well as allowing 

for the smooth transition between these regimes. McMillan (2003) also supports the 

view that the interaction of noise traders and informed arbitrage traders is one of the 

reasons for different dynamics in the stock prices associated with small and large 

returns, thus partially being the reason for linear predictability to be rejected for stock 

market returns in the light of the present value model.  

 

Market bubbles 

Similarly, numerous studies have concentrated on investigating periodically collapsing 

and speculative bubbles in the context of the stock returns predictability. The presence 

of bubbles would explain the deviation of stock prices from fundamentals since the 

absence of bubbles would be indicated by the stock prices and dividends to be 

cointegrated in a linear fashion as suggested by the present value model. Evans (1991) 

found no evidence of periodically collapsing bubbles. However, Bohl (2003) suggests 

that the results obtained by Evans (1991) were based on using inappropriate testing 

techniques that are not suitable for non-linear processes in cointegration systems. One 

of the practical difficulties when faced with a periodically collapsing bubble is that the 

bubble component follows a non-linear process and thus naturally falls outside the 

alternative hypothesis of the standard unit root test (Bohl, 2003). Hence, Bohl (2003) 

applied the momentum threshold autoregressive (MTAR) model in order to capture 

distinctive asymmetric non-linear long-run relationships between real stock prices and 

dividends and thus examine the presence of periodically collapsing bubbles in stock 

prices by implementing a non-linear cointegration framework. As a result, Bohl (2003) 

finds no evidence of the presence of periodically collapsing bubbles in the US stock 
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market during the sample of 1871 – 1995. However, after extending the sample period 

to 1871 – 2001 and thus including the period of rapid increases in share prices in the 

1990s, Bohl (2003) is able to report the presence of periodically collapsing bubbles, 

hence implying that the phenomena are period specific. In addition, besides theoretical 

doubts and obvious difficulties of identifying and modelling the bubbles in the stock 

market prices, Bohl (2003) reminds that it is practically impossible to prove the 

existence of bubbles.  

Bohl (2003) used a momentum threshold autoregressive (MTAR) model in order to 

utilise a cointegration framework with asymmetric adjustment while investigating the 

presence of periodically collapsing bubbles in the stock market. The MTAR model was 

developed by Enders and Siklos (2001) in order to empirically capture and investigate 

periodically collapsing bubbles within a cointegration framework. The evidence of 

asymmetry in deviations from the equilibrium would indicate the presence of 

periodically collapsing bubbles. Results obtained from the study by Bohl (2003) showed 

that there was no asymmetry revealed in the US stock market residuals in the subsample 

prior to the rapid share price increase from 1995. However, the presence of periodically 

collapsing bubbles in the late 1990s in the US stock prices is confirmed by the MTAR 

model once the sample is extended to 1871 – 2001. Further on, Bohl and Siklos (2004) 

also consider the MTAR model as standard linear cointegration methods evidently 

would be inappropriate in this instance. Whereas the MTAR model is able to 

accommodate asymmetric price adjustments to the equilibrium in short-run, or in other 

words, a non-linear error correction mechanism, while preserving the linear long-run 

relationship between stock prices and dividends. In addition, the researchers claim ease 

of implementation of the model, which is to be suggested for use by market 
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practitioners. Bohl and Siklos (2004) applied their approach to US stock market data 

between 1871 and 2001, and found that for most of the data the log dividend-price ratio 

followed a stationary process with asymmetric short-run adjustments. Bohl and Siklos 

(2004) argue that by allowing time-varying expected returns, which seems to be a more 

realistic assumption in the first place, it also results in a much simpler model. Since this 

methodology allows for non-linear short-run adjustments, it seems that in comparison to 

conventional unit root and cointegration techniques Bohl and Siklos’ (2004) approach 

provides a better method of capturing properties of the log dividend-price ratio.   

Brooks and Katsaris (2003) draw parallels between the market behaviour in the late 

1990s and financial crashes known as ‘Black Thursday’ in 1929 and ‘Black Monday’ in 

1987. Researchers suggest that the market behaviour observed during the two market 

crashes share similar development characteristics between the peak and the market 

collapse. While the significance of fundamental values can be questioned as a result of 

these occurrences, some researchers explain it with irrational investor behaviour or 

presence of speculative bubbles, which in turn can be created by informational 

asymmetry and inaccurate estimation of market fundamentals (Brooks and Katsaris, 

2003). Hence, Brooks and Katsaris (2003) proposed an idea of a speculative bubble as a 

determinant variable for stock prices during the 1990s when the long-run relation 

between dividends and stock prices did not hold. However, due to a bubble component 

being a random variable it is extremely difficult to detect. Brooks and Katsaris (2003) 

employed three different techniques of identifying presence of bubbles with 

cointegration methodology producing most promising results. The technique involves 

testing dividends and price series for stationarity and long-run cointegration 

relationships, where the absence of such relationship could be attributed to the presence 
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of a speculative bubble. While Brooks and Katsaris (2003) agree that the methodology 

has its flaws such as not being able to identify all types of bubbles and relying on theory 

of market prices being determined by these fundamental values, the cointegration 

system testing is described as the best available tool for identifying presence of 

speculative bubbles as it is responsive to small samples and model misspecification. 

Results obtained in the study showed cointegrating relationship between dividends and 

prices to exist until 1993 for the FTSE All Share index suggesting presence of a 

speculative bubble after 1993. However, as mentioned by Johansen (1991), the absence 

of cointegration does not necessarily mean the presence of bubbles. Moreover, as 

Brooks and Katsaris (2003) pointed out, these results could also be interpreted as a 

result of a structural change in the long-run relationship between the prices and 

dividends, thus suggesting models are able to account for structural or regime changes 

for further investigations of the issue. In addition, the imperfection of the identification 

technique could also imply that the FTSE index series is characterised with speculative 

bubbles prior 1993, however the presence of which have not been detected by the 

methodology. Despite the fact that Brooks and Katsaris’ (2003) investigation provides 

evidence that comply with the presence of bubbles in financial price series, the null 

hypothesis of absence of bubbles cannot be truly rejected as there is a possibility of non-

observable variables, such as investors’ expectations and market sentiment, that might 

cause the dramatic changes in the fundamental price-dividend relationship. In addition, 

Brooks and Katsaris (2003) suggested investor irrationality or shifts in investors’ 

preferences as possible reasons for divergence from the fundamentals. As a result, the 

standard present value model in its linear form is insufficient to explain complex 

dynamics of price movements. Similarly, Kilian and Taylor (2003) suggest that the 
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market dynamics and market price movements due to the presence of noisy, or 

uninformed, and arbitrage, or informed, traders are better explained by the means of a 

non-linear mean reversion approach.   

Psaradakis, Sola and Spagnolo (2004) proposed a two-state Markov error-correction 

model in order to accommodate different rates of adjustments to the long-run 

equilibrium of US stock prices and dividends and found evidence in favour of these 

types of models. The researchers argued that dynamic adjustment of Markov error-

correction models allows to explain the evolution of stock prices in periods when long-

run cointegration processes between stock prices and fundamental values seems to fail 

or deviations from the equilibrium are corrected at a different speed. Psaradakis et al. 

(2004) chose Markov-type models as these are adequate for modelling an abrupt change 

in regime caused by a sudden shock rather than smooth adjustment to a new regime. In 

addition, Markov error-correction framework was chosen on the basis that it is able to 

identify periods of unusually high dividend-price ratios which correspond to periods of 

occurrence of an intrinsic bubble which, according to Psaradakis et al. (2004), indicates 

the prices divergence from fundamentals. However, while the results of the 

investigation demonstrated the ability of the Markov switching process to successfully 

identify periods of disequilibrium, it is unclear whether the identified deviations are 

caused by an intrinsic bubble or time-varying discount factor. Moreover, research has 

found no consistent evidence of the presence of periodically collapsing bubbles.  

 

Market frictions and traders interaction  

Non-linear dynamics, as suggested to arise from the presence of transaction costs and 

the interaction between arbitrage and noise traders, require a versatile type of model 
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able to capture these non-linear adjustments. STAR-type models are very adaptable in 

terms that these allow for gradual adjustment between the regimes, which are consistent 

with slow mean reversion and are able to capture two types of asymmetry. Sollis et al. 

(2002) also argue in support of the smooth transaction between regimes as opposed to 

abrupt change of TAR models in the context of exchange rates. STAR models are 

capable of capturing market behaviour dynamics which vary when returns differ in sign, 

i.e. positive and negative returns. In other words, the market will behave differently 

depending on its state. McMillan (2001) points out that investors’ psychology and, thus, 

their behaviour will depend on whether the market is falling or rising, and hence if 

investors’ are bullish or bearish. Therefore, the logistic STAR (LSTAR) model can 

capture the direction of disequilibrium where the model parameters change depending 

on whether returns are above or below the threshold value, which in the case of returns 

predictability would be negative or positive returns. Whereas, the exponential STAR 

(ESTAR) model captures different dynamics when the returns are large or small, in 

other words, it describes the size of disequilibrium (McMillan, 2001). McMillan (2003) 

carried out research into non-linear stock predictability using ESTAR modelling on the 

example of US stock market data. The study found that the ESTAR model performed 

well thus confirming the view that the market participants’ behaviour differs between 

large and small returns.  

McMillan (2005) applied the quadratic-logistic smooth transition autoregressive model 

(QLSTAR), first suggested by Jansen and Teräsvirta (1996), to international daily 

market index data. This smooth regime transition model is able to capture non-linear 

dynamics consistently with the noise trader behaviour where the mean reversion rate 

differs resulting from large and small returns, while accounting for different variations 
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following positive and negative returns. Results confirmed the noise traders’ interaction 

theory, whereby the speed of transition differs between rising and falling markets due to 

cognitive biases resulting in slow mean reversion. McMillan (2005) found the non-

linear QLSTAR model to outperform the linear model in in-sample as well as out-of-

sample forecast, and to provide evidence of the presence of return stock predictability 

and non-linearity in the price dividends relationship. In addition, McMillan (2005) 

found that the returns predictability occurs only in the outer regimes characterised by 

the large returns, while the inner regime of small returns exhibits random walk patterns 

with a drift.   

Due to the presence of transaction costs and cognitive biases of noise traders, the 

equilibrium of fundamental price dividends mean reversion relationship is characterised 

by the presence of a barrier band that the prices deviations have to surpass before 

arbitrage traders engage in active trade. Moreover, according to McMillan (2005), the 

band displays a non-symmetric quality for positive and negative returns deviations due 

to short-selling constraints that restrict arbitrage trades to sell overpriced assets, and due 

to the noise traders tendency to become over-confident and exhibit bullish behaviour in 

rising markets while acting more conservative during falling markets. Thus this will 

result in negative deviations being corrected sooner than positive deviation, which, in its 

turn, will follow slow reversion to the equilibrium, thus leading to a greater mispricing 

during up markets (positive returns) than in down markets (negative returns). Kilian and 

Taylor (2003) point out that while the limits to arbitrage and other market frictions 

prevent fundamental traders from correcting market mispricing immediately, 

progressively over- or undervalued assets reduce the risk to arbitrage, thus encouraging 

fundamental traders to engage in the trade. Hence, as asset prices deviate further from 
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the fundamentals, the speed of reversion will become unevenly faster producing an 

asymmetry in the adjustments to the equilibrium. Faster speed of mean reversion during 

the falling markets is also confirmed by Bali et al. (2008). Considering that the noise 

traders are more likely to overreact to good news in the rising market and consequently 

overvalue the stock via trend chasing, while they tend to behave bearish in the falling 

markets, it is evident that these different reactions will result in different stock price 

dynamics depending of the sign of disequilibrium. While the logistic STAR (LSTAR) 

models are able to accommodate for sign asymmetry between rising and falling 

markets, McMillan (2007) suggests asymmetric ESTAR model in order to allow for the 

asymmetry in the sign of the deviation as well as the differences in behaviour following 

large and small deviations.      

 

 

Conclusion  
 

 

More researchers turned to investigate possible asymmetries within the mean reversion 

relationship between stock prices and dividends, as well as other financial time-series. 

Thus, in the light of validity of the stock market predictability, Bali et al. (2008) 

proposed a test for non-linear mean reversion. In addition, Sollis et al. (2002) carried 

out a study into purchasing power parity of the exchange rates where they have 

proposed a test for time-series mean reversion based on smooth transition 

autoregressive models. In the study, one of the tests used forced mean reversion to be 

symmetric while the other test allowed asymmetry in the adjustment. As a result, the 

proposed test displayed stronger evidence against the unit root hypothesis compared to 

the standard Dickey-Fuller test. 



187 

 

In addition, a vast majority of studies into the price-dividend relationship assessment 

consider US market data, thus creating a vulnerable point for criticism of data specific 

results. Hence, while a considerable majority of empirical studies into return stock 

predictability concentrate on the US market data, a number of researchers have 

attempted to extend their examinations to different economic markets in order to 

perceive whether the predictability phenomena is market specific, including Brooks and 

Katsaris (2003) adopting a bubble hypothesis to UK data; Kanas (2005) accessing non-

linear dynamics of US, UK, Germany and Japan; Kapetanios et al. (2006) examining 

international indices; and McMillan (2007) applying asymmetric ESTAR models to 

thirteen countries including South East Asia markets. McMillan and Speight (2006) 

found evidence of long-horizon predictability for all six South East Asia markets 

considered. Their findings are supportive of the noise traders’ behaviour theory in the 

sense that there is evidence of different signs of a de-meaned dividend yield having 

different effects on the levels of predictability of stock returns. They also found that the 

forecasting power increases with the horizon based on R
2
 values, thus the most efficient 

horizon being between twelve and 48 months of monthly data for six South-East Asia 

financial markets. McMillan (2005) found that different limits to arbitrage and 

differences in fundamental traders’ knowledge in different countries may be the reason 

for differences in forecasting advantages of various non-linear models since the Asia-

Pacific economies, which are still considered to be evolving, demonstrated greater 

forecasting power when compared to the more established European economies. In 

addition, McMillan and Speight (2006) found no common pattern of non-linearity in 

their international data sets. Hartmann et al. (2008) observed that the structural changes 

as a result of economic and financial crises are more frequent in emerging market 
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economies compared to economically developed and mature industrialised countries, 

thus suggesting different implications for stock market dynamics. 

The current investigation aims to find the best non-linear framework of the STAR-type 

models to suit monthly stock market data. For these reasons and in order to avoid any 

ambiguity caused by unanticipated irregularities of a developing market, this study will 

be applying non-linear methodology to well established developed financial markets, 

including the UK, US, Germany and Japan. While other studies have attempted to 

provide a wide sample of different economies, this study is inclined to focus on 

examining the forecasting properties of different non-linear STAR-type models on the 

cross section of four established and developed markets of the US, UK, Germany and 

Japan.        

 

 

4.3. Methodology 
 

The methodology for this chapter relies on methods described in Section 2.3 and 

includes additional discussion of the STAR-type error-correction model in the context 

of the present value approach.    

The fundamental value for prices as suggested by the original present value model can 

be described in the following form:  
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�� = 4 ��p�»�o�
∞

�9�  

(4.1)  

  

Thus, the stock price, ��, is a function of expected dividends, »�o�, and the time-varying 

discount rate,  ��, where p� is the expectations factor at the time t.  

The standard present value model can be further re-written in terms of the dividend-

price ratio. The real one-period return, +�o�, which is determined by the capital gain of 

(��o� ��⁄ ) and the dividend yield (»�o� ��⁄ ), can be defined as:  

 

+�o� ≡ �� 1 + ��o�# = ��N ��o� + »�o�# ��⁄ Q (4.2)  

 

Where �� is the stock price at time 	, »�o� is the dividends paid during the period 	 + 1, 

and ��o� is one-period holding period return. The equation 4.2 can be linearised:  

 

+�o� ≈ W)�o� − )� +  1 − W#>�o� + % (4.3)  

 

Where ), >, + are the logarithms of prices, dividends and the discount rate respectively, 

W is the linearisation parameter and % is the linearisation constant.  

By defining the log dividend-price ratio as:  
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�� = >� − )�  (4.4)  

  

the linearised equation 4.3 is expressed as follows:  

 

+�o� = �� − W��o� + ∆>�o� + % (4.5)  

 

The above equation (4.5) implies that the one-period returns can be forecasted by 

forecasting the dividend-price ratio (��o�) and the change or growth in dividends. This 

equation can be solved to generate the expression for the price level of the stock, which 

is the original log-linear approximation allowing for a time-varying rate proposed by 

Campbell and Shiller (1988a; 1988b): 

 

)� =  % 1 − W⁄ # + p� ¼ 1 − W# 4 W�>�o�o� − 4 W�+�o�o�
∞

�o
∞

�9 ½ 

(4.6)  

 

Further, imposing the transversality condition (�0¾ �lp�»�ol# = 0, `, � → ∞), 

equation (4.6) can be re-written in terms of the log dividend yield or dividend-price 

ratio so that the ratio depends on expectations of future changes in dividends and the 

discount rate: 
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>� − )� =  % 1 − W⁄ # + p� 4 W� −∆>�o�o� + +�o�o�#∞

�9  

(4.7)  

 

If the present value model holds, log  prices and log dividends would be cointegrated 

with a cointegration vector (1, -1). Thus, the testing of the present value model involves 

testing the dividend-price ratio for stationarity and for the presence of cointegration 

relationship between log prices and log dividends.  

For testing predictability of stock returns using the dividend yield, which is the main 

intention of this chapter, the above equation 4.7 can be re-written to express the 

relationship between stock returns and dividends as following:   

 

+� = � + M >��� − )���# + �� (4.8)  

 

Where � and M are equation coefficients.  

Furthermore, the STAR-type models, namely exponential STAR (ESTAR) (4.9), 

logistic STAR (LSTAR) (4.10) and asymmetric ESTAR (AESTAR) (4.11), will be 

applied in this chapter to the forecasting of price returns series using dividend-price or 

price-earnings ratios in the form of an error-correction system:  

 

+� =  @ + @�,���# +  � + ��,���#=1 − E�) −F ,��D − G#� !� ,��D#⁄ #?+ �� 

(4.9)  
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+� =  @ + @�,���# +  � + ��,���#=1 + E�) −F ,��D − G# ! ,��D#⁄ #?��+ �� 

 

(4.10)  

+� =  @ + @�,���#+  � + ��,���# Z1 + E�)=−F��,���� �� − F��,����  1 − ��#?[��
+ ��  

(4.11) 

 

where the returns, +�, are regressed using the transition variable ,��D with the threshold 

value G, so that if � → ∞ or F → 0, the equation becomes linear, @ and � are 

autoregression coefficients, and �� is the error term. The AESTAR function (4.11) 

becomes a symmetric model when speeds of adjustments are identical (F�� = F��), and �� 

is the indicator function for the AESTAR model which depend on whether the transition 

variable above or below zero:  

 

�� = 1 01 ,��� > 0 (4.12)  

�� = 0 01 ,��� ≤ 0 

 

The dividend yield or the dividend-price ratio and price-earnings ratio are used as a 

currency free comparative measure of financial assets. Thus, dividend yield (��), or 

dividend-price ratio, measures annual dividend payout (»�) as a percentage of the assets 

stock price (��) in the following form: �� = »� ��⁄  . The terms dividend yield and 

dividend-price ratio will be used interchangeably in this paper. For more details see 
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Hull (2003), and Reilly and Brown (2003). The dividend yield and price-earnings ratio 

will be used as a transition variable (,��D) in the error-correction framework in order to 

access stock returns predictability and forecasting performance of STAR models.   

 

 

4.4. Empirical results for monthly returns  
 

This chapter will analyse time-series monthly data over a thirty six year period from 

January 1973 to February 2009. The data consists of four price indices including FTSE 

All Share, S&P 500, DAX 30 Performance, and Nikkei 225 Stock Average; dividend 

yield series and price-earnings ratio for each index over the same time period. 

 

 

Descriptive statistics  
 

A graph below (Figure 4.1) illustrates diagrams for all four monthly price indices 

considered here plotted against time. The observation shows that the values for the 

indices are slightly less volatile in comparison to the daily data plots of the same series 

in Chapter 3. The data follows the same pattern characterised by a dramatic increase 

during the late 1990s and subsequent decline in early 2000s, with the exception of the 

Nikkei series which appears to react somewhat differently to common global market 

influences. The lack of responsiveness of the Japanese index to the global market could 

be explained by prolonged recession. Moreover, the effects of the financial crisis in 
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2007 are clearly seen in all fours series in a form of a significant decline up to the end of 

the sample in 2009.    

Histograms of the four price series exhibit similar statistics to the daily data discussed in 

Chapter 3. The null hypothesis of normality was rejected for all four series on the basis 

of the Jarque-Bera statistic. Positive skewness and kurtosis values in the non-symmetric 

distribution indicate that the upper tail is thicker than the lower tail and that the tails in 

general are thinner than those of a normal distribution, suggesting that the main mass of 

the distribution is concentrated on the right of the distribution having fewer high values.     

An augmented Dickey-Fuller (ADF) unit root test performed on the monthly price 

indexes reveals expected non-stationarity of the price time series for all four data sets 

(Table 4.1). 

 

Table 4.1. Price time-series ADF test results. 

 

ADF critical values Test statistics 

 

1 % critical value -3.4617 FTSE -1.9011 

5 % critical value -2.8748 S&P -1.7024 

10 % critical value -2.5738 DAX  -1.6253 

 Nikkei -2.0375 

 

Returns are calculated as first difference logarithms for all data series (Figure 4.2 – 4.5). 

Returns exhibit different distribution characteristics to the prices series. The null 

hypothesis of normality is still rejected for all four returns series using the Jarque-Bera 

statistic. Kurtosis values are all slightly larger indicating excess peakedness and, hence, 

suggesting low number of fairly extreme deviations rather than more size distributed 
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moderate values. Skewness is positive only for the FTSE returns suggesting that the 

upper tail of distribution is thicker, whereas negative skewness for S&P, DAX and 

Nikkei returns implies thicker lower tail and thus a larger number of higher value 

returns (Figure 4.6). Figures 4.7 and 4.8 represent plots of the price-dividend ratio, or 

dividend yield, and price-earnings ratio. 
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 Figure 4.1. Monthly price indices: FTSE, S&P, DAX, Nikkei.  
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Figure 4.2. Price returns, FTSE.  

 

Figure 4.3. Price returns, S&P.  
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Figure 4.4. Price returns, DAX. 

 

Figure 4.5. Price returns, Nikkei.  
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Figure 4.6. Returns histograms: FTSE, S&P, DAX, Nikkei. 

        

 

  

        

0

20

40

60

80

100

120

-0.25 0.00 0.25

Series: FTSE, returns series
Sample 1973:02 2009:01

Observations 432

Mean       0.005914

Median   0.012367

Maximum  0.400545

Minimum -0.318231

Std. Dev.   0.056036

Skewness   0.133535

Kurtosis   11.32726

Jarque-Bera  1249.464

Probability  0.000000
0

20

40

60

80

100

120

-0.2 -0.1 0.0 0.1

Series: S&P, returns series
Sample 1973:03 2009:02

Observations 432

Mean       0.004777

Median   0.007982

Maximum  0.158126

Minimum -0.241021

Std. Dev.   0.045269

Skewness  -0.784885

Kurtosis   6.345435

Jarque-Bera  245.8101

Probability  0.000000

0

20

40

60

80

100

-0.2 -0.1 0.0 0.1

Series: DAX, returns series
Sample 1973:02 2009:02

Observations 433

Mean       0.003717

Median   0.006693

Maximum  0.147495

Minimum -0.268245

Std. Dev.   0.052426

Skewness  -0.810272

Kurtosis   5.567112

Jarque-Bera  166.2761

Probability  0.000000
0

20

40

60

80

100

-0.2 -0.1 0.0 0.1

Series: Nikkei, returns series
Sample 1973:02 2009:02

Observations 433

Mean       0.002034

Median   0.004871

Maximum  0.174454

Minimum -0.244309

Std. Dev.   0.053174

Skewness  -0.406589

Kurtosis   5.186912

Jarque-Bera  98.21600

Probability  0.000000

1
9

9
 



200 

 

Figure 4.7. Dividend yield: FTSE, S&P, DAX, Nikkei.  
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Figure 4.8. Price-earnings ratio: FTSE, S&P, DAX, Nikkei. 
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Unit root tests 
 

Linear as well as non-linear unit root tests are performed on stock price returns, 

dividend yields and price-earnings ratios for each time-series data set. Furthermore, 

three types of data modification were performed on each series, hence, the tests are 

performed on logs of each time-series as the main data set, de-meaned logs and de-

trended logs. The latter two adjustments to the data were performed in order to centre 

the long-run equilibrium around zero. The augmented Dickey-Fuller (ADF) test is 

applied as a linear stationarity test. Non-linear unit root tests performed in this chapter 

include the ESTAR non-linearity test by Kapetanios et al. (2003), the asymmetric 

ESTAR stationarity test by Sollis (2009), the LSTAR non-linearity and general STAR 

non-linearity tests by Pascalau (2007). 

The augmented Dickey-Fuller (ADF) test was performed as a linear unit root test by 

testing the null hypothesis of unit root against the alternative of stationarity. Following 

the results of the ADF test, price returns for all four series were found to be stationary 

as well as de-trended dividend yield for FTSE series, and log price-earnings ratio, de-

meaned and de-trended price-earnings ratios for DAX series; whereas the null 

hypothesis of unit root could not be rejected for the rest of dividend yield and price-

earnings ratio series (Table 4.2).  
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Table 4.2. ADF unit root test result.  

 

ADF critical values 1 % 5 % 10 % 

-3.4477 -2.8685 -2.5705 

 

 FTSE S&P DAX Nikkei 

Price returns -14.9869* -14.1755* -13.5948* -13.5123* 

Log prices -1.8553 -0.7460 -0.9531 -1.5517 

Dividend yield -3.3907* -1.2499 -1.1347 -0.0966 

Log dividend yield -2.4873 -1.0158 -1.4904 -0.9696 

De-meaned dividend yield -2.4873 -1.0158 -1.4904 -0.7154 

De-trended dividend yield -3.9341* -1.8956 -0.9245  0.0317 

Price-earnings ratio -1.6204 -1.5232 -3.2549** -1.7350 

Log price-earnings ratio -1.8553 -1.5048 -2.9471* -1.2599 

De-meaned price-earnings ratio -1.8553 -1.5048 -2.9417* -1.1340 

De-trended price-earnings ratio -2.3628 -2.3337 -2.9959* -0.4797 

 

Note: * indicates a statistically significant result of stationarity 

        ** indicates a statistically significant stationarity at 5%, 10% 

 

The unit root test for non-linear ESTAR process (4.13) by Kapetanios et al. (2003) is 

characterised by testing the null hypothesis of unit root (]: M = 0) against the 

alternative of stationarity (]�: M < 0) using a t-type statistic (4.7):  

 

∆�� = M����a + �� 

 

(4.13)  

	bc = Md ,. E. =Md?e  (4.14)  

 

where Md  is the OLS estimate of M and ,. E. =Md? is the standard error of Md . Asymptotic 

critical values of the  	bc statistic are given in Table 4.3. 

ESTAR non-linearity tests by Kapetanios et al. (2003) suggests non-linear stationarity 

for de-meaned dividend yield and price-earnings ratio of the FTSE index, and de-
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meaned price-income ratio and de-trended price-earnings ratio for the DAX index 

(Table 4.4).  

 

Table 4.3. ESTAR non-linearity critical values.  

 

Fractile (%) Raw data De-meaned data De-trended data 

1 -2.82 -3.48 -3.93 

5 -2.22 -2.93 -3.40 

10 -1.92 -2.66 -3.13 

 

 

 

Table 4.4. ESTAR non-linearity unit root test results. 

 

 FTSE S&P DAX Nikkei 

Log dividend yield -1.1711 -0.6970 -0.3884 -0.4482 

Log price-earnings ratio -1.1530 -1.0652 -1.1724 -0.6931 

De-meaned dividend yield -3.6232* -1.3839 -1.8163 -0.8699 

De-meaned price-earnings ratio -2.6301 -1.8136 -3.3911** -1.3323 

De-trended dividend yield -5.2398* -2.2500  1.1080  1.3497 

De-trended price-earnings ratio -2.2859 -2.6156 -3.7893**  0.5142 

 

Note: *indicates a statistically significant result of stationarity.  

        ** reject H0 at 5%, 10% 

 

 

The unit root test proposed by Sollis (2009) is based on the test by Kapetanios et al. 

(2003) and tests the null hypothesis of unit root  ]: M = � = 0# against the alternative 

of stationary asymmetric ESTAR process (4.15) using specially tabulated critical values 

(Table 4.5): 

 

∆�� = M����a + �����f + �� (4.15)  
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Table 4.5. Asymmetric STAR non-linearity critical values.  

 

Fractile (%) Zero mean data Non-zero mean 

data 

Deterministic 

trend 

1 4.241 6.236 8.344 

5 2.505 4.557 6.292 

10 1.837 3.725 5.372 

 

 

Table 4.6. Asymmetric STAR non-linearity unit root test results.  

 

 FTSE S&P DAX Nikkei 

Log dividend yield 6.2301* 1.0976 0.1368 0.5038 

Log price-earnings ratio 0.8279 0.9066 4.8183*** 0.5038 

De-meaned dividend yield 6.7930* 1.0752 2.1091 0.7078 

De-meaned price-earnings ratio 3.4935 1.6421 6.8295* 0.7034 

De-trended dividend yield 13.8694* 3.0476 3.5921 1.0075 

De-trended price-earnings ratio 4.7059 3.5936 8.9656* 3.4536 

 

Note: * indicates a statistically significant result of stationarity.  

        ** reject H0 at 5%, 10% 

      *** reject H0 at 1% 

 

 

The results of the asymmetric ESTAR stationarity test (Sollis, 2009) in the table above 

(Table 4.6) suggest that there is a presence of asymmetric ESTAR non-linearity in 

dividend yield, de-meaned and de-trended dividend yield for FTSE data, and in price-

earnings ratio, de-meaned and de-trended price-earnings ratio of DAX series.  

Similarly, the general STAR-type (4.16) and logistic STAR (LSTAR) (4.17) unit root 

tests (Pascalau, 2007) are described as follows:  

 

∆�� = F����� + M����a + �����f + �� (4.16)  

 

∆�� = F����� + �����f + �� (4.17)  
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Table 4.7. LSTAR non-linearity critical values.  

 

Fractile (%) Raw data De-meaned data De-trended data 

1 6.40 5.06 3.73 

5 4.51 3.42 2.46 

10 3.67 2.66 1.90 

 

 

Table 4.8. LSTAR non-linearity unit root test results. 

 

 FTSE S&P DAX Nikkei 

Log dividend yield 5.9317** 1.0409 0.1348 1.5479 

Log price-earnings ratio 0.8538 0.9385 4.7471** 0.6693 

De-meaned dividend yield 5.9711* 0.5265 0.4805 1.1305 

De-meaned price-earnings ratio 4.4617** 0.19845 0.3854 0.4536 

De-trended dividend yield 15.7045* 3.2343** 3.9210* 3.7569* 

De-trended price-earnings ratio 7.8908* 3.8516* 1.1178 1.9419 

 

Note: *denotes a statistically significant result of stationarity.  

        ** reject H0 at 5%, 10% 

 

 

On the basis of the test by Pascalau (2007), LSTAR non-linearity is suggested for 

dividend yield, de-meaned and de-trended dividend yield, de-meaned and de-trended 

price-earnings ratio of FTSE data; S&P de-meaned and de-trended price-earnings ratio; 

DAX price-earnings ratio and de-trended dividend yield; and Nikkei de-trended 

dividend yield (Table 4.8).  

 

Table 4.9. General STAR non-linearity critical values.  

 

Fractile (%) Raw data De-meaned data De-trended data 

1 4.92 5.16 6.08 

5 3.64 3.87 4.72 

10 3.05 3.30 6.08 
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Table. 4.10. General STAR non-linearity unit root test results.  

 

 FTSE S&P DAX Nikkei 

Log dividend yield 4.2219* 0.7432 0.0910 1.1125 

Log price-earnings ratio 0.6755 0.7036 3.2674*** 0.6163 

De-meaned dividend yield 4.6281** 0.7733 1.5667 1.0386 

De-meaned price-earnings ratio 3.0388 1.1967 4.5477** 0.8590 

De-trended dividend yield 11.9216* 2.5831 3.0433 3.1580 

De-trended price-earnings ratio 6.3906* 4.0890 5.9904**** 1.3089 

 

Note: * denotes a statistically significant result of stationarity.  

        ** reject H0 at 5%, 10% 

      *** reject H0 at 10% 

   ****  reject H0 at 5% 

 

 

The test for general STAR non-linearity by Pascalau (2007) detected the presence of 

non-linearity in dividend yield, de-meaned dividend yield and de-meaned and de-

trended price-earnings ratio for FTSE data; and price-earnings ratio, de-meaned and de-

trended price-earnings ratio for DAX index (Table 4.10).   

 

 

Linear and non-linear model estimation and forecasting  
 

Following the unit root tests above, appropriate non-linear STAR models as well as 

linear alternatives were estimated for all series confirmed to be stationary. The linear 

benchmark models estimated in this chapter included the random walk model for stock 

price returns time-series for all four data sets, a simple linear regression for price returns 

with dividend yield as a regression variable, and a simple linear regression with price-

earnings ratio as a regression variable (4.18).  
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�� = � + ����� + ����� + ⋯ + ����� + �� (4.18)  

  

Where the price returns, ��, are regressed on the explanatory variable, ���, which is 

either the dividend yield or price-earnings ratio.   

A non-linear STAR model applied in this chapter follows a general form:  

 

+� = @ + 4 @����� + A� + 4 ������
�

�9� B C ,��D#+��
�

�9�  

(4.19)  

 

where the dependent variable +� is determined by the explanatory variable ����,  ,��D is 

the transition variable, d is the delay parameter and �� is an error term. @� and  �� are the 

autoregressive components of the model. The transition function, C ,��D#, is different 

for ESTAR (4.20) and LSTAR (4.21) specifications: 

 

C ,��D# = 1 − E�) −F ,��D − G#� !� ,��D#⁄ # , 

 

F > 0 (4.20)  

C ,��D# = =1 + E�) −F  ,��D − G# ! ,��D#⁄ #?��
 , F > 0 (4.21)  

 

Moreover, the asymmetric ESTAR (AESTAR) model captures different speeds of 

adjustment, F� and F�, following the indication function ��:  
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'� F�, F�, K���# = N1 + E�)O−F��K���� �� − F��K����  1 − ��#PQ�� − 0.5 

 

(4.22)  

�� = 1 01 K��� > 0 (4.23)  

�� = 0 01 K��� ≤ 0  

 

Table 4.11 represents a list of estimated non-linear STAR models in this chapter for 

each time-series.  

 

Table 4.11. List of STAR models for FTSE, S&P, DAX and Nikkei.  

 STAR models 

 

FTSE ESTAR de-meaned dividend yield 

ESTAR de-trended dividend yield 

AESTAR log dividend yield 

AESTAR de-meaned dividend yield 

AESTAR de-trended dividend yield 

LSTAR log dividend yield 

LSTAR de-meaned dividend yield 

LSTAR de-trended dividend yield 

LSTAR de-meaned pe ratio 

LSTAR de-trended pe ratio 

  

S&P LSTAR de-trended dividend yield 

LSTAR de-trended price-earnings ratio 

  

DAX ESTAR de-meaned pe ratio 

ESTAR de-trended pe ratio 

AESTAR de-meaned price-earnings ratio 

AESTAR de-trended price-earnings ratio 

LSTAR de-trended dividend yield 

LSTAR log pe ratio 

  

Nikkei LSTAR de-trended dividend yield 
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The forecasting exercise is performed by incorporating the STAR models into the error-

correction model. The specifications for each STAR model, ESTAR (4.24), LSTAR 

(4.25) and AESTAR (4.26) in particular, are as follows:  

 

+� =  @ + @�,���# +  � + ��,���#=1 − E�) −F ,��D − G#� !� ,��D#⁄ #?+ �� 

 

(4.24)  

+� =  @ + @�,���# +  � + ��,���#=1 + E�) −F ,��D − G# ! ,��D#⁄ #?��+ �� 

 

(4.25)  

+� =  @ + @�,���#+  � + ��,���# Z1 + E�)=−F��,���� �� − F��,����  1 − ��#?[��
+ �� 

(4.26)  

  

Thus, further to model estimation, a recursive one-step-ahead out-of-sample forecast is 

carried out. For the purpose of a forecasting exercise the main sample of thirty six years 

of monthly data ranging from 1973:01 to 2009:02 with the total of 434 observations is 

split into an in-sample of eighteen years from 1973:01 to 1990:12, and an out-of-sample 

of eighteen years from 1991:01 to 2009:02.  

 

Forecasting accuracy tests 
 

In order to establish the most successful forecasting model, all forecasted series are 

assessed using forecasting accuracy tests including the standard statistical loss functions 

such as ME, MAE and RMSE, as well as the Diebold-Mariano test of equal forecast 

accuracy, the forecast encompassing test, combined forecast tests; and a trade rule 
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technique as an economic loss function test. Refer to Section 2.3 of Chapter 2 for 

detailed discussion and full methodology of forecast accuracy tests. 

 

ME, MAE, and RMSE 

Table 4.12 below includes the accuracy tests results for ME, MAE and RMSE; and a 

trade rule approach. It is evident from these results that the random walk model for each 

series is described with the lowest value of statistics, indicating consistent accuracy of 

forecasts. However, while most models considered produce a positive trade value, as a 

potential profitability indicator, the highest values within each series are produced by 

STAR-type models, with the exception of five forecasting series which generate 

negative trade rule result: linear dividend yield model for FTSE series, random walk for 

S&P, and random walk and both linear models for Nikkei. The only model to produce a 

positive trade value for Nikkei series is LSTAR de-trended dividend yield, which is also 

indicated by the best values of MAE and RMSE for the Japanese index.   
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Table 4.12. Forecasting accuracy tests results. 

 
 ME MAE RMSE Trade 

FTSE     

ESTAR de-meaned dy 0.0003 0.0389 0.0547 0.0065 

ESTAR de-trended dy 0.0007 0.0384 0.0540 0.0095 

AESTAR log dy -0.0121 0.0339 0.0442 0.0063 

AESTAR de-meaned dy -0.0116 0.0347 0.0446 0.0057 

AESTAR de-trended dy 0.0048 0.0325 0.0413* 0.0038 

LSTAR log dy 0.0000* 0.0389 0.0548 0.0060 

LSTAR de-meaned dy 0.0000 0.0377 0.0511 0.0077 

LSTAR de-meaned pe ratio -0.0000 0.0386 0.0544 0.0077 

LSTAR de-trended dy 0.0000 0.0382 0.0540 0.00991 

LSTAR de-trended pe ratio 0.0000** 0.0375 0.0510 0.0104* 

Random walk -0.0039 0.0319* 0.0432** 0.0039 

Linear dy 0.0070 0.0341 0.0438 -0.0036 

Linear pe ratio 0.0032 0.0331** 0.0436 0.0005 

 

S&P     

LSTAR de-trended dy -0.0000*  0.0323**  0.0439  0.0078* 

LSTAR de-trended pe ratio -0.0000**  0.0328  0.0444  0.0071 

Random walk -0.0014  0.0320*  0.0434* -0.0030 

Linear dy 0.0027  0.0334  0.0442  0.0014 

Linear pe ratio 0.0019  0.0329  0.0438**  0.0049 

 

DAX     

ESTAR de-meaned pe ratio  0.0003  0.0384**  0.0518**  0.0066 

ESTAR de-trended pe ratio  0.0009  0.0384  0.0520  0.0036 

AESTAR de-meaned pe  0.0063  0.0443  0.0566 0.0113* 

AESTAR de-trended pe  0.0046  0.0443  0.0562 0.0074 

LSTAR de-trended dy -0.0000**  0.0381*  0.0517*  0.0047 

LSTAR log pe ratio  0.0000*  0.0384  0.0521  0.0061 

Random walk -0.0017  0.0411  0.0549  0.0032 

Linear dy -0.0020  0.0411  0.0550  0.0032 

Linear pe ratio -0.0009  0.0412  0.0551  0.0003 

 

NIKKEI     

LSTAR de-trended dy  0.0000*  0.0381*  0.0510*  0.0074* 

Random walk -0.0075  0.0429  0.0554** -0.0030 

Linear dy -0.0064  0.0428**  0.0554** -0.0030 

Linear pe ratio -0.0066**  0.0428  0.0555 -0.0030 

 

Note: * indicates the best statistic 

** indicates the second best statistic 

dy – dividend yield; pe –price-earnings  
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Diebold-Mariano tests 

The Diebold-Mariano test of equal forecasting accuracy (Table 4.13 – 4.16), where the 

hypothesis of equal forecast accuracy is tested using standard normal distribution 

critical values, produced insignificant test statistics for all competing forecasts 

suggesting that the differences in values of MEs between those forecasts are not 

statistically different, thus suggesting that it is not possible to draw valid conclusions on 

the basis of these tests. Similarly, the modified Diebold-Mariano test failed to identify 

any statistically significant differences between these values.   
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Table 4.13. Diebold-Mariano test results, FTSE. 

FTSE DM statistic DM modified 

 RW/ linear dy   -0.0509 -0.0508 

RW/ linear pe ratio -0.0493 -0.0492 

RW/ ESTAR de-meaned dy  0.0454 0.0453 

RW/ ESTAR de-trended dy  0.0023 0.0023 

RW/ AESTAR log dy -0.0915 -0.0913 

RW/ AESTAR de-meaned dy -0.0767 -0.0765 

RW/ AESTAR de-trended dy 0.1081 0.1078 

RW/ LSTAR log dy 0.0366 0.0365 

RW/ LSTAR de-meaned dy  0.0466 0.0464 

RW/ LSTAR de-meaned pe ratio 0.1026 0.1023 

RW/LSTAR de-trended dy  0.0295 0.0294 

RW/ LSTAR de-trended pe ratio 0.0852 0.0850 

   

Linear dy/ linear pe 0.0234 0.0234 

Linear dy/ ESTAR de-meaned dy 0.1333 0.1330 

Linear dy/ ESTAR de-trended dy 0.0499 0.0498 

Linear dy/ AESTAR log dy -0.0651 -0.0650 

Linear dy/ AESTAR de-meaned dy -0.0507 -0.0506 

Linear dy/ AESTAR de-trended dy 0.1408 0.1405 

Linear dy/ LSTAR log dy 0.1232 0.1229 

Linear dy/ LSTAR de-meaned dy 0.1318 0.1315 

Linear dy/ LSTAR de-meaned pe 0.1650 0.1646 

Linear dy/ LSTAR de-trended dy 0.0858 0.0857 

Linear dy/ LSTAR de-trended pe 0.1137 0.1134 

   

Linear pe/ linear pe -0.0234 -0.0234 

Linear pe/ ESTAR de-meaned dy 0.0924 0.0922 

Linear pe/ ESTAR de-trended dy 0.0321 0.0320 

Linear pe/ AESTAR log dy -0.0939 -0.0937 

Linear pe/ AESTAR de-meaned dy -0.0709 -0.0707 

Linear pe/ AESTAR de-trended dy 0.1405 0.1402 

Linear pe/ LSTAR log dy 0.0830 0.0828 

Linear pe/ LSTAR de-meaned dy 0.0977 0.0974 

Linear pe/ LSTAR de-meaned pe 0.1440 0.1437 

Linear pe/ LSTAR de-trended dy 0.0624 0.0622 

Linear pe/ LSTAR de-trended pe 0.1060 0.1058 

 

* indicates statistical significance at 5%  
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Table 4.14. Diebold-Mariano test results, DAX.  
 

DAX DM statistic DM modified 

RW/ linear dy -0.0709 -0.0707 

RW/ linear pe -0.0971 -0.0969 

RW/ ESTAR de-meaned pe 0.0427 0.0426 

RW/ ESTAR de-trended pe 0.0259 0.0259 

RW/ AESTAR de-meaned pe 0.1657 0.1653 

RW/ AESTAR de-trended pe 0.1644 0.1640 

RW/ LSTAR de-trended dy 0.0691 0.0690 

RW/ LSTAR log pe 0.0333 0.0332 

   

Linear dy/ ESTAR de-meaned pe 0.0477 0.0476 

Linear dy/ ESTAR de-trended pe 0.0357 0.0356 

Linear dy/ AESTAR de-meaned pe 0.1709 0.1705 

Linear dy/ AESTAR de-trended pe 0.1710 0.1706 

Linear dy/ LSTAR de-trended dy 0.0736 0.0734 

Linear dy/ LSTAR log pe  0.0445 0.0444 

   

Linear pe/ ESTAR de-meaned pe 0.0609 0.0607 

Linear pe/ ESTAR de-trended pe 0.0497 0.0496 

Linear pe/ AESTAR de-meaned pe 0.1639 0.1635 

Linear pe/ AESTAR de-trended pe 0.1625 0.1621 

Linear pe/ LSTAR de-trended dy 0.0822 0.0820 

Linear pe/ LSTAR log pe  0.0611 0.0610 
 

Table 4.15. Diebold-Mariano test results, S&P. 
 

S&P DM statistic DM modified 

RW/ linear dy  -0.1954 -0.1949 

RW/ linear pe -0.1343 -0.1340 

RW/ LSTAR de-trended dy 0.0704 0.0703 

RW/ LSTAR de-trended pe 0.0834 0.0832 

   

Linear dy/ linear pe 0.1847 0.1843 

Linear dy/ LSTAR de-trended dy 0.0918 0.0916 

Linear dy/ LSTAR de-trended pe 0.1201 0.1198 

   

Linear pe/ LSTAR de-trended dy 0.0813 0.0811 

Linear pe/ de-trended pe 0.1006 0.1003 

 

 

Table 4.16. Diebold-Mariano test results, Nikkei. 
 

Nikkei DM statistic DM modified 

RW/ linear dy      -0.0000  -0.0000 

RW/ linear pe -0.0242 -0.0241 

RW/ LSTAR de-trended dy 0.1148 0.1145 

   

Linear dy/ linear pe -0.0538 -0.0537 

Linear dy/ LSTAR de-trended dy 0.1106 0.1104 

   

Linear pe/ linear dy 0.0538 0.0537 

Linear pe/ LSTAR de-trended dy 0.1133 0.1131 
 

  

2
1

5
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Forecast encompassing test 

 

For the forecast encompassing test, appropriate STAR models are to be considered 

against random walk and linear models respectively. In addition, two types of 

encompassing tests are applied whereby the first test assesses whether one model’s 

forecast encompasses the forecast of the other model.  

 

��o} = � + M�1�,}® + M�1�,}̄{° + ��  

 

(4.27)  

��o} = � + M�1�,}c�lµ¿¡ + M�1�,}̄{° + �� (4.28)  

 

where 1�,}® , 1�,}c�lµ¿¡, 1�,}̄{° are the forecasts obtained from a random walk model, 

linear regression and STAR model respectively. The null hypothesis of the first model 

encompassing the forecast of the second (]: M� = 0) is tested against the alternative of 

the first model forecast being encompassed by the second model (]�: M� > 0). 

 

The second test of the forecast encompassing uses the same hypotheses and determines 

whether forecast errors of one forecast can explain the forecasting errors of the other 

forecast. 

 

��o} = � + M�=1�,}® − ��o}? + M�=1�,}̄{° − ��o}? + ��  

 

(4.29)  

��o} = � + M�=1�,}c�lµ¿¡ − ��o}? + M�=1�,}̄{° − ��o}? + �� (4.30)  
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where (1�,}® − ��o}), (1�,}c�lµ¿¡ − ��o}), (1�,}̄{° − ��o}) are the forecasting errors from 

the random walk model, linear regression, and STAR model respectively.  

Results in Tables 4.17 – 4.20 demonstrate statistical significance for most of the M� 

coefficients for all of the four series, thus implying that the STAR models are not 

encompassed by the linear alternatives and contain independent information for 

forecasting of the dependent variable. However, the M� coefficients are not significant 

for two models for FTSE index including LSTAR log dividend yield and LSTAR de-

meaned dividend yield, suggesting that the both models are encompassed by the price-

earnings ratio linear regression. In addition, ESTAR de-meaned and de-trended price-

earnings ratio models for DAX index are seem to be encompassed by the linear 

alternatives. The forecast errors encompassing test, on the other hand, reveals 

significant M� coefficients for all series with only a few significant M� coefficients, 

including AESTAR de-trended dividend yield not being encompassed by the random 

walk model, and AESTAR log dividend yield and AESTAR de-meaned dividend yield 

not encompassed by the price-earnings linear regression for FTSE series; AESTAR de-

meaned price-earnings ratio not encompassed by the random walk model, and AESTAR 

de-trended price-earnings ratio not encompassed by neither the random walk model nor 

dividend yield linear regression for the DAX index. The results of the forecasting errors 

encompassing test suggest that the forecasting errors from other STAR models are 

explained by the linear alternatives. Overall, the STAR models seem to encompass 

random walk and linear regression models with the exception of nine forecasts where 

both non-linear and linear models contain independent information for forecasting the 

price returns series. However, according to the second forecast encompassing test, it 
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seems that the STAR models forecasting errors are mostly explained by the linear 

alternatives.   

 

Table 4.17. Forecast encompassing test results, DAX.  

 

 Forecasting encompassing  Forecasting errors 

encompassing  

 t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

DAX     

RW/ ESTAR de-meaned pe ratio -0.1894 1.7479 -191.0603* -7.6227 

RW/ ESTAR de-trended pe ratio -0.6849 1.1246 -133.2827* -5.0151 

RW/ AESTAR de-meaned pe ratio -2.3542* 6.3269* -281.4411* 3.0653* 

RW/ AESTAR de-trended pe ratio -4.1589* 7.4034* -368.1000* 7.5680* 

RW/ LSTAR de-trended dy -0.5541 2.3114* -159.2983* -3.8452 

RW/ LSTAR log pe ratio -0.7397 1.0783 -106.6783* -4.8778 

     

Linear dy/ ESTAR de-meaned pe ratio 0.0481 1.7687 -79.8332* -11.6764 

Linear dy/ ESTAR de-trended pe ratio -0.6354 1.1427 -51.5763* -7.7702 

Linear dy/ AESTAR de-meaned pe ratio -2.0484* 6.2126* -102.1599* 1.1466 

Linear dy/ AESTAR de-trended pe ratio -3.6694* 7.1054* -129.1773* 5.3742* 

Linear dy/ LSTAR de-trended dy -0.0352 2.2667* -67.2414* -9.4780 

Linear dy/ LSTAR log pe ratio -0.6993 1.1004 -41.1691* -8.1833 

     

Linear pe/ ESTAR de-meaned pe ratio -1.2434 1.7797 -60.1919* -5.7994 

Linear pe/ ESTAR de-trended pe ratio -1.9080 1.7406 -40.5962* -1.3071 

Linear pe/ AESTAR de-meaned pe ratio 4.0102* 7.1074* -155.8963* -19.6729 

Linear pe/ AESTAR de-trended pe ratio 1.7662 6.0578* -138.4680* -11.1558 

Linear pe/ LSTAR de-trended dy -0.5382 1.9750* -64.4797* -11.2415 

Linear pe/ LSTAR log pe ratio -1.7124 1.4636 -32.8459* -4.1130 

Note : * statistically significant at 5% 

          RW – random walk; dy – dividend yield; pe – price-earnings   
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Table 4.18. Forecast encompassing test results, FTSE. 

 

 Forecasting encompassing  Forecasting errors 

encompassing  

 t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

FTSE     

RW/ ESTAR de-meaned dy 0.4950 2.5312* -134.8471* -1.4139 

RW/ ESTAR de-trended dy 1.4402 2.3565* -241.4808* -7.6584 

RW/ AESTAR log dy 1.7543 3.0338* -434.3917* -7.4635 

RW/ AESTAR de-meaned dy  1.9400 3.6377* -453.9381* -7.0945 

RW/ AESTAR de-trended dy -2.2942 6.9683* -211.9156* 5.7580* 

RW/ LSTAR log dy 0.5001 2.1874* -139.4642* -1.3610 

RW/ LSTAR de-meaned dy 0.4585 2.1426* -121.2643* -1.3012 

RW/ LSTAR de-meaned pe ratio 1.8523 3.6254* -166.3697* -7.6874 

RW/ LSTAR de-trended dy 1.6673 3.0554* -256.4971* -7.2494 

RW/ LSTAR de-trended pe ratio 1.5309 4.6814* -335.8900* -4.0968 

     

Linear dy/ ESTAR de-meaned dy -0.6484 2.5686* -13.5383* -5.4864 

Linear dy/ ESTAR de-trended dy -0.7167 1.9944* -25.9425* 1.6933 

Linear dy/ AESTAR log dy 1.0846 2,6965* -58.3128* -6.7971 

Linear dy/ AESTAR de-meaned dy 1.0923 3.2515* -60.4339* -5.9897 

Linear dy/ AESTAR de-trended dy 6.1199* 9.3377* -50.4793* -23.3327 

Linear dy/ LSTAR log dy -0.4638 2.1816* -14.3159* -5.1683 

Linear dy/ LSTAR de-meaned dy -0.3276 2.1204* -12.0460* -7.5843 

Linear dy/ LSTAR de-meaned pe ratio -0.5951 3.1525* -16.2422* -5.5821 

Linear dy/ LSTAR de-trended dy -1.1740 2.8109* -28.6574* 2.3281 

Linear dy/ LSTAR de-trended pe ratio -0.0495 4.4013* -42.9094* -2.4896 

     

Linear pe/ ESTAR de-meaned dy -0.2355 2.3188* -34.3979* -12.8588 

Linear pe/ ESTAR de-trended dy -1.4226 2.1609* -42.4192* -1.8923 

Linear pe/ AESTAR log dy -4.6297* 5.1483* -120.2249* 16.4189* 

Linear pe/ AESTAR de-meaned dy -5.0127* 5.8230* -116.7414* 13.9952* 

Linear pe/ AESTAR de-trended dy -2.3142* 6.8524* -41.6223* -5.7271 

Linear pe/ LSTAR log dy -0.3677 1.9591 -35.2051* -12.4487 

Linear pe/ LSTAR de-meaned dy -0.3765 1.9215 -31.3458* -13.6364 

Linear pe/ LSTAR de-meaned pe ratio -1.3328 3.2495* -29.2816* -5.3969 

Linear pe/ LSTAR de-trended dy -1.2779 2.7039* -46.4709* -2.8864 

Linear pe/ LSTAR de-trended pe ratio -1.6684 4.6366* -65.6892* -0.6592 

Note : * statistically significant at 5% 

          RW – random walk; dy – dividend yield; pe – price-earnings   
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Table 4.19. Forecast encompassing test results, S&P. 

 

 Forecasting encompassing  Forecasting errors 

encompassing  

 t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

S&P     

RW/ LSTAR de-trended dividend yield -1.0534 5.1553* -248.4476* 0.7505 

RW/ LSTAR de-trended pe ratio -0.3894 4.0980* -147.3711* -2.0113 

     

Linear dy/ LSTAR de-trended dy -0.5272 4.8332* -48.5960* -7.5068 

Linear dy/ LSTAR de-trended pe ratio -0.0635 3.7991* -33.9624* -14.0695 

     

Linear pe/ LSTAR de-trended dy -0.1819 4.8326* -69.0613* -7.1047 

Linear pe/ LSTAR de-trended pe ratio 0.2361 3.8398* -47.4371* -12.7020 

Note : * statistically significant at 5% 

          RW – random walk; dy – dividend yield; pe – price-earnings   

 

Table 4.20. Forecast encompassing test results, Nikkei. 

 Forecasting encompassing  Forecasting errors 

encompassing  

 t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

Nikkei     

RW/ LSTAR de-trended dy -1.0015 5.8361* -240.1669* 0.8731 

Linear dy/ LSTAR de-trended dy -0.0766 5.4924* -205.8363* -5.0758 

Linear pe/ LSTAR de-trended dy -0.9466 5.5894* -169.7870* -2.6617 

     

Note : * statistically significant at 5% 

          RW – random walk; dy – dividend yield; pe – price-earnings   

 

 

 

Forecasting accuracy tests for a combined forecast 

Statistical loss function tests were performed on forecast combinations consisting of 

random walk, linear regression and STAR models. Following results of forecast 

encompassing tests, it is expected for forecast combinations to demonstrate lower 

values of ME, MAE and RMSE statistics. Overall these expectations are confirmed. In 

the case of individual forecasts, the statistics delivered by random walk and linear 

regressions seemed to dominate over the STAR models’ results. Although by a marginal 

amount, combined forecasts, on the other hand, seem to produce better statistics than 



221 

 

individual linear alternatives. Moreover, all the forecast combinations generate positive 

values for the trade rule approach.    

 

Table 4.21. Combination forecasts test results. 

 ME MAE RMSE Trade 

FTSE     

RW/linear dy/ ESTAR de-meaned dy   0.0003  0.0319  0.0424  0.0081 

RW/ linear dy/ ESTAR de-trended dy  -0.0013  0.0318  0.0427  0.0094** 

RW/ linear dy/ AESTAR log dy  0.0005*  0.0317  0.0424  0.0107 

RW/ linear dy/ AESTAR de-meaned dy  0.0005  0.0316  0.0421  0.0119 

RW/ linear dy/ AESTAR de-trended dy  0.0053  0.0315  0.0407  0.0084 

RW/ linear dy/ LSTAR log dy  0.0001  0.0320  0.0425  0.0088 

RW/ linear dy/ LSTAR de-meaned dy  0.0002  0.0320  0.0426  0.0088 

RW/ linear dy/ LSTAR de-meaned pe ratio -0.0008  0.0315  0.0421  0.0083 

RW/ linear dy/ LSTAR de-trended dy -0.0018  0.0312  0.0424  0.0096* 

RW/ linear dy/ LSTAR de-trended pe ratio -0.0004  0.0311**  0.0427  0.0082 

     

RW/ linear pe/ ESTAR de-meaned dy  0.0004  0.0320  0.0424  0.0078 

RW/ linear pe/ ESTAR de-trended dy -0.0024  0.0317  0.0427  0.0088 

RW/ linear pe/ AESTAR log dy -0.0051  0.0314  0.0424  0.0078 

RW/ linear pe/ AESTAR de-meaned dy -0.0054  0.0312  0.0420  0.0130 

RW/ linear pe/ AESTAR de-trended dy  0.0030  0.0309  0.0399  0.0128 

RW/ linear pe/ LSTAR log dy  6.54E-05  0.0321  0.0425  0.0078 

RW/ linear pe/ LSTAR de-meaned dy  6.52E-05  0.0321  0.0426  0.0082 

RW/ linear pe/ LSTAR de-meaned pe ratio -0.0017  0.0314  0.0420**  0.0076 

RW/ linear pe/ LSTAR de-trended dy -0.0023**  0.0311**  0.0424  0.0091 

RW/ linear pe/ LSTAR de-trended pe ratio -0.0023**  0.0309*  0.0411*  0.0087 

     

S&P     

RW/linear dy/ LSTAR de-trended dy -0.0006*  0.0304*  0.0410*  0.0096* 

RW/ linear dy/ LSTAR de-trended pe ratio -0.0003**  0.0312  0.0417**  0.0086 

     

RW/ linear pe/ LSTAR de-trended dy  0.0001  0.0305**  0.0410*  0.0096* 

RW/ linear pe/ LSTAR de-trended pe ratio  0.0002  0.0312  0.0417**  0.0080 

     

DAX     

RW/ linear dy/ ESTAR de-meaned pe ratio  0.0004  0.0414  0.0541**  0.0047 

RW/ linear dy/ ESTAR de-trended pe ratio  0.0005  0.0412**  0.0542  0.0060 

RW/ linear dy/ AESTAR de-meaned pe ratio  0.0057  0.0395  0.0509  0.0128 

RW/ linear dy/ AESTAR de-trended pe ratio  0.0064  0.0391  0.0501  0.0108 

RW/linear dy/ LSTAR de-trended dy  0.0002  0.0411*  0.0540*  0.0070 

RW/ linear dy/ LSTAR log pe ratio  0.0005  0.0413  0.0543  0.0065 

     

RW/ linear pe/ ESTAR de-meaned pe ratio -0.0007**  0.0414  0.0541**  0.0059 

RW/ linear pe/ ESTAR de-trended pe ratio -0.0008*  0.0412**  0.0542  0.0078 

RW/ linear pe/ AESTAR de-meaned pe ratio  0.0124  0.0389  0.0498  0.0142* 

RW/ linear pe/ AESTAR de-trended pe ratio  0.0087  0.0395  0.0501  0.0082 

RW/ linear pe/ LSTAR de-trended dy -8.97E-05  0.0411*  0.0540*  0.0061 

RW/ linear pe/ LSTAR log pe ratio -0.0008*  0.0413  0.0543  0.0064 
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Nikkei     

RW/ linear dy/ LSTAR de-trended dy -0.0009**  0.0396*  0.0510*  0.0074 

     

RW/ linear pe/ LSTAR de-trended dy -0.0028*  0.0397**  0.0512**  0.0050 

     

Note : * indicates the best statistic 

** indicated the second best statistic  

RW – random walk; dy – dividend yield; pe – price-earnings  

 

Taking into consideration all of the above tests of forecasting accuracy it seems that 

while linear models produce the best comparison statistics, STAR models generate the 

highest profits according to the trade rule test. Moreover, combined forecasts seem to 

outperform both linear and non-linear models individually.  

The combinations for the FTSE series of random walk, dividend yield linear regression 

and LSTAR de-trended dividend yield and a combination of random walk, price-

earnings ratio linear regression and LSTAR de-trended dividend yield, both produce the 

best combination of test statistics including the trade rule profit. However, according to 

the forecast errors encompassing test, the forecasting errors for both LSTAR models are 

encompassed by dividend yield linear regression, suggesting that the combination of 

random walk and linear regression might be responsible for superior statistics. 

Similarly, a combination of random walk, dividend yield linear regression and LSTAR 

de-trended dividend yield for DAX series generates the best statistical combination, 

while the forecasting errors of the LSTAR model are encompassed by price-earnings 

ratio linear regression. The combination of the random walk model, linear dividend 

yield regression and STAR de-trended dividend yield; and a combination of a random 

walk model, linear price-earnings ratio regression and LSTAR de-trended dividend 

yield for S&P returns, both generate good statistics and the highest value for the trade 

rule. Moreover, according to the encompassing test, the LSTAR model is not 

encompassed by either linear alternatives. Out of two forecast combinations for the 
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Nikkei index, the random walk, dividend yield linear regression and LSTAR de-trended 

dividend yield combination, seem to be superior to the other combination, however the 

forecasting errors of the LSTAR model in this forecasting arrangement are indicated to 

be encompassed by the random walk model, while containing independent information 

according to the simple forecast encompassing test. On the basis of results of the 

forecast encompassing test, combinations containing the STAR model encompassed in 

one of the linear alternatives were dismissed.  

For the FTSE index LSTAR de-trended price-earnings ratio produced the highest trade 

value of 0.0104, closely followed by its combined forecast with random walk and 

dividend yield linear regression with trade value of 0.0096. The random walk model 

forecast produces the best ME, MAE and RMSE statistics. While LSTAR de-meaned 

price-earnings ratio and a combination of random walk, price-earnings ratio linear 

regression and LSTAR de-meaned price-earnings ratio both generate forecasts with 

relatively low statistics and reasonable positive trade values.      

Combinations of random walk, dividend yield linear regression and LSTAR de-trended 

dividend yield, and random walk, price-earnings linear regression and LSTAR de-

trended dividend yield forecasts for the S&P index generate very good low statistics as 

well as the highest value for the trading rule test of 0.0096. The best individual 

forecasting model for S&P is LSTAR de-trended dividend yield, while the random walk 

model is the only forecast to produce negative value for the trade rule for the US series.  

For the DAX series AESTAR de-meaned price-earnings ratio model is characterised by 

good statistical results and possesses the highest value of the trade test among the 

individual forecasts. Both the random walk and dividend yield linear regression while 

having the lowest statistics, do not demonstrate strong trade test value. The best forecast 
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for the DAX index appears to be a combined forecast of random walk, price-earnings 

ratio linear regression and ESTAR de-trended price-earnings ratio with the best 

statistics for this series and the highest trade test value, followed by other two 

combinations of random walk, price-earnings ratio linear regression with LSTAR de-

trended dividend yield, and LSTAR log price-earnings ratio respectively.    

The Nikkei index was the only series to have all individual linear models produce 

negative trading rule test results. A combined random walk, dividend yield linear 

regression and LSTAR de-trended dividend yield generated very promising results, 

however the LSTAR forecast appears to be encompassed by the random walk model 

both in forecast combination and individually. However, the same model produces the 

best forecasting model for Nikkei series is the combination with random walk and price-

earnings ratio linear regression generating relatively low statistics and a positive trade 

rule test value. Table 4.22 summarises all the best forecasting models for each of the 

four series with the results of statistical results for each forecast.  
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Table 4.22. Test statistics results for best forecasting models.  

 

 ME MAE RMSE Trade 

FTSE     

LSTAR de-meaned pe ratio 0.0000  0.0386  0.0544  0.0077 

RW/ linear pe/ LSTAR de-meaned pe ratio -0.0017  0.0314  0.0420  0.0076 

     

S&P     

RW/linear dy/LSTAR de-trended dy -0.0006  0.0304  0.0410  0.0096 

RW/linear pe/ LSTAR de-trended dy  0.0001  0.0305  0.0410  0.0096 

     

DAX     

RW/linear pe/ ESTAR de-trended pe ratio -0.0008  0.0412  0.0542  0.0078 

     

Nikkei     

RW/ linear pe/ LSTAR de-trended dy -0.0028  0.0397  0.0512  0.0050 

     
Note: RW – random walk  

 dy – dividend yield  

 pe – price-earnings  

 

 

 

4.5. Empirical results for 3-, 6-, and 12-month 

returns 
 

Introduction 
 

While Fair and Shiller (1990) suggested that changes in economic structure and changes 

in the behaviour of data dynamics are more evident in long-horizon data, Montgomery 

et al. (1998) demonstrated that forecasting models performed on less frequent data 

series displayed smoother trends and generated better forecasting performance while 

still capturing cyclical and trend characteristics of the data. Hence, expanding the topic 

of long-horizon returns predictability and building on research by Montgomery et al. 

(1998) in an attempt to investigate whether non-linear models could be utilised to 
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generate more efficient forecasts in long-horizon frequency data, this section of the 

chapter will consider extending the investigation of monthly returns forecast to three, 

six and twelve month forecasts.  

The methodological approach to the investigation of long-horizon price returns will be 

based on the methodology applied in the empirical study of monthly returns using a 

dividend yield and price-earnings ratio. The time-series for long-horizon returns is 

designed as a straightforward buy-and-hold strategy, where the stock is assumed to be 

held for three, six, or twelve months before selling. The strategy is repeated recursively 

for the duration of the data set. The stock price return at the end of each period is 

forecasted using the predictive variables, namely the dividend yield and price-earnings 

ratio, for the same period as opposed to values from the previous period in the monthly 

forecasting framework. In addition to non-linear STAR models, linear alternatives, 

specifically the random walk model and simple linear regression, will be estimated to 

provide comparative benchmarks of forecasting performance.     

 

Unit root tests, model estimation and forecasting 
 

The linear benchmark in the form of a random walk model and a linear regression with 

either dividend yield or price-earnings ratio as the determinant variable, as well as 

STAR models, were estimated for each long-horizon period of three, six and twelve 

months. The choice of appropriate STAR models for this section is based on the non-

linear unit root tests performed in the previous section (Section 4.4) and selected at a 

limitation of a 5% level of significance (Table 4.23).   
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Further to model estimation, a recursive one-step-ahead out-of-sample forecast is 

carried out. The in-sample and out-of-sample periods are the same as in Section 4.4. 

Thus, the main sample of 36 years of monthly data ranging from 1973:01 to 2009:02 

with a total of 434 observations is split into an in-sample of eighteen years from 

1973:01 to 1990:12, and an out-of-sample of eighteen years from 1991:01 to 2009:02.  

 

Table 4.23. List of estimated STAR models.  

 

 STAR models 

 

FTSE AESTAR log dividend yield 

AESTAR de-meaned dividend yield 

AESTAR de-trended dividend yield 

ESTAR de-meaned dividend yield 

ESTAR de-trended dividend yield 

LSTAR de-meaned dividend yield 

LSTAR de-trended dividend yield 

  

S&P LSTAR de-trended price-earnings ratio 

  

DAX AESTAR de-meaned price-earnings ratio 

AESTAR de-trended price-earnings ratio 

LSTAR de-trended dividend yield 

  

Nikkei LSTAR de-trended dividend yield 

 

 

Forecasting accuracy tests 
 

Results of the standard forecasting accuracy tests on the basis of forecast error 

magnitude (Tables 4.24 – 4.26) suggest that the lowest, and thus the best, statistics are 

generated by the STAR-type models, in particular the asymmetric ESTAR (AESTAR) 

model. Whereas, the highest value of a trading rule test is produced consistently by the 

random walk model for all three holding periods.  
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The standard and modified Diebold-Mariano tests of equal forecasting accuracy for 

long-horizon data reveal significant statistical differences between MSEs of most 

random walk and STAR models for all time periods and for all series, with the 

exception of the Nikkei index, where all test statistics were found to be 

insignificant(Tables 4.27 – 4.29).   

Forecast encompassing tests (Tables 4.30 – 4.32) were performed on the forecasts and 

forecasting errors of a random walk model, linear regressions with dividend yield and 

price-earnings ratio as determinants, and a STAR model for all indices over three long-

horizon periods. The results suggest statistical significance of the linear models 

forecasts and forecasting errors for all series across all time periods, with the exception 

of the linear price-earnings ratio model for FTSE at three and twelve months holding 

period in a combination with AESTAR log dividend yield; both linear regressions for 

Nikkei at all holding periods, and the random walk model at three and six months 

periods. Moreover, the Nikkei index dividend yield linear regression is characterised by 

an insignificant coefficient for forecasting errors at six and twelve month periods; and 

insignificant coefficients for linear price-earnings regression for all time periods. These 

results suggest that for most of the series a random walk model and linear regressions 

contain independent information required in forecasting long-horizon returns series.  

Non-linear models demonstrate significant results in the forecast encompassing tests for 

all series, especially for S&P and DAX, across all horizons. While AESTAR models 

seem to perform best for FTSE series, results for S&P and DAX series forecasts 

demonstrate consistent significant performance of AESTAR and LSTAR models, 

suggesting that these non-linear forecasts contain independent forecasting information 

in addition to linear alternatives. The forecast encompassing test results for Nikkei 
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index forecasts, on the other hand, demonstrate an improved performance of non-linear 

models over linear alternatives in terms of informational content.        

 

Table 4.24. Forecasting accuracy tests results for a three month holding period.  

3 month holding period ME MAE RMSE Trade 

 

FTSE     

AESTAR log dividend yield  0.0001*  0.0013*  0.0021* -0.0072 

AESTAR de-meaned  dividend yield -0.0008  0.0040  0.0047  0.0019 

AESTAR de-trended dividend yield -0.0001**  0.0023**  0.0027**  0.0014 

ESTAR de-meaned dividend yield -0.0041  0.0043  0.0051  0.0024 

ESTAR de-trended dividend yield -0.0002  0.0033  0.0037  0.0024 

LSTAR de-meaned dividend yield -0.0072  0.0073  0.0085  0.0016 

LSTAR de-trended dividend yield -0.0020  0.0035  0.0041  0.0011 

Random walk  0.0098  0.0103  0.0103  0.0028* 

Linear dividend yield  0.0008  0.0039  0.0050  0.0019 

Linear price-earnings ratio  0.0007  0.0054  0.0061  0.0019 

 

S&P     

LSTAR de-trended price-earnings ratio  0.0127  0.0128**  0.0138*  0.0024 

Random walk  0.0236  0.0263  0.0264  0.0095* 

Linear dividend yield  0.0066*  0.0142  0.0163  0.0095* 

Linear price-earnings ratio  0.0073**  0.0126*  0.0138**  0.0094 

 

DAX     

AESTAR de-meaned price-earnings ratio  0.0015*  0.0029*  0.0035* -0.0134 

AESTAR de-trended price-earnings ratio  0.0016**  0.0029**  0.0035**  0.0128 

LSTAR de-trended dividend yield  0.0016  0.0043  0.0052  0.0127 

Random walk  0.0189  0.0217  0.0219  0.0131* 

Linear dividend yield  0.0066  0.0142  0.0163  0.0131* 

Linear price-earnings ratio  0.0150  0.0231  0.0242  0.0131* 

 

NIKKEI     

LSTAR de-trended dividend yield -0.0022*  0.0034*  0.0064*  0.0151* 

Random walk  0.0122  0.0122  0.0125**  0.0151 

Linear dividend yield  0.0055  0.0116**  0.0137  0.0151 

Linear price-earnings ratio  0.0038**  0.0137  0.0156  0.0151 

 

Note: * indicates the best statistic 

** indicates the second best statistic 

In the case of trade rule: * the largest positive value.  
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Table 4.25. Forecasting accuracy tests results for a six month holding period.  

 

6 month holding period ME MAE RMSE Trade 

 

FTSE     

AESTAR log dividend yield -0.0005  0.0038  0.0044*  0.0018 

AESTAR de-meaned dividend yield -0.0005  0.0038  0.0044**  0.0018 

AESTAR de-trended dividend yield  0.0000*  0.0023*  0.0028  0.0016 

ESTAR de-meaned dividend yield -0.0035  0.0036  0.0043  0.0024 

ESTAR de-trended dividend yield -0.0003  0.0031**  0.0036  0.0007 

LSTAR de-meaned dividend yield -0.0025  0.0109  0.0163  0.0017 

LSTAR de-trended dividend yield -0.0008  0.0031  0.0036  0.0010 

Random walk  0.0090  0.0104  0.0104  0.0028* 

Linear dividend yield  0.0005  0.0038  0.0048  0.0019 

Linear price-earnings ratio  0.0004**  0.0051  0.0057  0.0017 

 

S&P     

LSTAR de-trended price-earnings ratio  0.0161  0.0161  0.0171  0.0024 

Random walk  0.0238  0.0266  0.0266  0.0096* 

Linear dividend yield  0.0010*  0.0070*  0.0083*  0.0070 

Linear price-earnings ratio  0.0070**  0.0119**  0.0130**  0.0095 

 

DAX     

AESTAR de-meaned price-earnings ratio  0.0013*  0.0030*  0.0035*  0.0129 

AESTAR de-trended price-earnings ratio  0.0013**  0.0030**  0.0035**  0.0129 

LSTAR de-trended dividend yield -0.0162  0.0268  0.1579  0.0129 

Random walk  0.0189  0.0219  0.0221  0.0132* 

Linear dividend yield  0.0062  0.0130  0.0148  0.0132* 

Linear price-earnings ratio  0.0149  0.0229  0.0240  0.0132* 

 

NIKKEI     

LSTAR de-trended dividend yield -0.0009*  0.0031*  0.0058*  0.0151* 

Random walk  0.0124  0.0126  0.0129  0.0150 

Linear dividend yield  0.0052  0.0108**  0.0128**  0.0150 

Linear price-earnings ratio  0.0036**  0.0133  0.0151  0.0150 

 

Note: * indicates the best statistic 

** indicates the second best statistic 

In the case of trade rule : * the largest positive value. 
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Table 4.26 Forecasting accuracy tests results for a twelve month holding period.  

 

12 month holding period ME MAE RMSE Trade 

 

FTSE     

AESTAR log dividend yield  0.0004  0.0011*  0.0013*  0.0023 

AESTAR de-meaned dividend yield -0.0003  0.0037  0.0043  0.0018 

AESTAR de-trended dividend yield  0.0003  0.0022**  0.0027**  0.0017 

ESTAR de-meaned dividend yield -0.0029  0.0030  0.0036  0.0023 

ESTAR de-trended dividend yield -0.0001**  0.0031  0.0035  0.0007 

LSTAR de-meaned dividend yield -0.0007  0.0115  0.0185 -0.0079 

LSTAR de-trended dividend yield -0.0003  0.0029  0.0033  0.0010 

Random walk  0.0100  0.0106  0.0106  0.0029* 

Linear dividend yield  0.0001  0.0037  0.0046  0.0018 

Linear price-earnings ratio -0.0000*  0.0046  0.0051  0.0015 

 

S&P     

LSTAR de-trended price-earnings ratio  0.0157  0.0157  0.0168  0.0029 

Random walk  0.0240  0.0269  0.0270  0.0098* 

Linear dividend yield  0.0005*  0.0069*  0.0082*  0.0071 

Linear price-earnings ratio  0.0065**  0.0113**  0.0124**  0.0096 

 

DAX     

AESTAR de-meaned price-earnings ratio  0.0014*  0.0029**  0.0034*  0.0131 

AESTAR de-trended price-earnings ratio  0.0014**  0.0029*  0.0035**  0.0131 

LSTAR de-trended dividend yield  0.0047  0.0061  0.0073  0.0130 

Random walk  0.0191  0.0221  0.0223  0.0135* 

Linear dividend yield  0.0057  0.0111  0.0124  0.0135* 

Linear price-earnings ratio  0.0148  0.0226  0.0237  0.0135* 

 

NIKKEI     

LSTAR de-trended dividend yield -0.0005*  0.0021*  0.0035*  0.0151* 

Random walk  0.0127  0.0130  0.0133  0.0151 

Linear dividend yield  0.0048  0.0095**  0.0112**  0.0151 

Linear price-earnings ratio  0.0032**  0.0126  0.0144  0.0151 

 

Note: * indicates the best statistic 

** indicates the second best statistic 

In the case of trade rule : * the largest positive value. 
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Table 4.27. Diebold-Mariano test results for a three month holding period. 

UK, 3 month holding period DM statistic DM modified 

 RW/ linear dividend yield  1.8445 1.8402 

RW/ linear price-earnings ratio 1.9014 1.8970 

RW/ ESTAR de-meaned dividend yield  1.7922 1.7880 

RW/ ESTAR de-trended dividend yield  1.6428 1.6390 

RW/ AESTAR log dividend yield 3.3273* 3.3196* 

RW/ AESTAR de-meaned dividend yield  2.0124* 2.0077* 

RW/ AESTAR de-trended dividend yield 3.3320* 3.3243* 

RW/LSTAR de-meaned dividend yield 0.6680 0.6665 

RW/ LSTAR de-trended dividend yield 1.9200 1.9155 

   

Linear dy/ linear pe 0.2384 0.2378 

Linear dy/ ESTAR de-meaned dividend yield 0.2072 0.2068 

Linear dy/ ESTAR de-trended dividend yield 0.1414 0.1411 

Linear dy/ AESTAR log dividend yield 0.6581 0.6565 

Linear dy/ AESTAR de-meaned dividend 

yield 0.2864 0.2857 

Linear dy/ AESTAR de-trended dividend 

yield 0.5340 0.5328 

Linear dy/ LSTAR de-meaned dividend yield -0.3196 -0.3189 

Linear dy/ LSTAR de-trended dividend yield 0.2067 0.2062 

   

Linear pe/ ESTAR de-meaned dividend yield -0.0281 -0.0281 

Linear pe/ ESTAR de-trended dividend yield -0.1626 -0.1623 

Linear pe/ AESTAR log dividend yield 0.6979 0.6962 

Linear pe/ AESTAR de-meaned dividend 

yield 0.4048 0.4038 

Linear pe/ AESTAR de-trended dividend 

yield 0.3684 0.3675 

Linear pe/ LSTAR de-meaned dividend yield -0.7139 -0.7123 

Linear pe/ LSTAR de-trended dividend yield -0.0614 -0.0612 
 

S&P, 3 month holding period DM statistic DM modified 

 RW/ linear dividend yield  1.1851 1.1824 

RW/ linear price-earnings ratio 2.7383* 2.7320* 

RW/ LSTAR de-trended price-earnings ratio  2.3404* 2.3350* 

   

Linear dy/ linear price-earnings ratio  0.395 0.3940 

Linear dy/ LSTAR de-trended price-earnings ratio 0.2403 0.2397 

Linear pe/ LSTAR de-trended price-earnings ratio -0.3200 -0.3192 

 

DAX, 3 month holding period DM statistic DM modified 

RW/ linear dividend yield 1.0284 1.0260 

RW/ linear price-earnings ratio 0.2171 0.2166 

RW/ AESTAR de-meaned price-earnings ratio 3.6886* 3.6800* 

RW/ AESTAR de-trended price-earnings ratio 3.6781* 3.6696* 

RW/ LSTAR de-trended dividend yield 3.7282* 3.7196* 

   

Linear dy/ linear price-earnings ratio -0.9138 -0.9117 

Linear dy/ AESTAR de-meaned pe ratio 0.5020 0.5008 

Linear dy/ AESTAR de-trended pe ratio 0.5005 0.4993 

Linear dy/ LSTAR de-trended dividend yield 0.4735 0.4724 

   

Linear pe/ AESTAR de-meaned pe ratio 1.0219 1.0196 

Linear pe/ AESTAR de-trended pe 1.0219 1.0196 

Linear pe/ LSTAR de-trended dividend yield 0.9926 0.9903 

 

Nikkei, 3 month holding period DM statistic DM modified 

RW/ linear dividend yield 0.5291 0.5278 

RW/ linear price-earnings ratio 0.3186 0.3179 

RW/ LSTAR de-trended dividend yield 1.0143 1.0120 

   

Linear dy/ linear pe -0.5402 -0.5389 

Linear dy/ LSTAR de-trended dividend yield 0.6289 0.6274 

Linear pe/ LSTAR de-trended dividend yield 0.7585 0.7568 

Note: * indicates statistical significance at 5%. 
 

2
3

2
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Table 4.28. Diebold-Mariano test results for a six month holding period. 

UK, 6 month holding period DM statistic DM modified 

 RW/ linear dividend yield  1.8720 1.8676* 

RW/ linear price-earnings ratio 2.2043* 2.1991* 

RW/ ESTAR de-meaned dividend yield  2.3251* 2.3197* 

RW/ ESTAR de-trended dividend yield  2.0522* 2.0474* 

RW/ AESTAR log dividend yield 3.9833* 3.9741* 

RW/ AESTAR de-meaned dividend yield  2.3104* 2.3050* 

RW/ AESTAR de-trended dividend yield 3.3909* 3.3831* 

RW/LSTAR de-meaned dividend yield 0.7554 0.7537 

RW/ LSTAR de-trended dividend yield 2.4664* 2.4607* 

   

Linear dy/ linear pe 0.2706 0.2700 

Linear dy/ ESTAR de-meaned dividend yield 0.3310 0.3302 

Linear dy/ ESTAR de-trended dividend yield 0.2271 0.2266 

Linear dy/ AESTAR log dividend yield 0.3211 0.3204 

Linear dy/ AESTAR de-meaned dividend 

yield 0.3211 0.3204 

Linear dy/ AESTAR de-trended dividend 

yield 0.5215 0.5202 

Linear dy/ LSTAR de-meaned dividend yield -0.2714 -0.2708 

Linear dy/ LSTAR de-trended dividend yield 0.2739 0.2733 

   

Linear pe/ ESTAR de-meaned dividend yield 0.1661 0.1657 

Linear pe/ ESTAR de-trended dividend yield -0.0771 -0.0769 

Linear pe/ AESTAR log dividend yield 0.4000 0.3990 

Linear pe/ AESTAR de-meaned dividend 

yield 0.3977 0.3968 

Linear pe/ AESTAR de-trended dividend 

yield 0.4166 0.4157 

Linear pe/ LSTAR de-meaned dividend yield -0.6816 -0.6800 

Linear pe/ LSTAR de-trended dividend yield -0.0294 -0.0293 
 

S&P, 6 month holding period DM statistic DM modified 

 RW/ linear dividend yield  6.0470* 6.0330* 

RW/ linear price-earnings ratio 3.0503* 3.0432* 

RW/ LSTAR de-trended price-earnings ratio  2.4560* 2.4503* 

   

Linear dy/ linear price-earnings ratio  -0.2882 -0.2875 

Linear dy/ LSTAR de-trended price-earnings ratio -0.4942 -0.4931 

Linear pe/ LSTAR de-trended price-earnings ratio -0.4295 -0.4285 

 

DAX, 6 month holding period DM statistic DM modified 

RW/ linear dividend yield 1.2966 1.2936 

RW/ linear price-earnings ratio 0.2341 0.2335 

RW/ AESTAR de-meaned price-earnings ratio 3.6400* 3.6316* 

RW/ AESTAR de-trended price-earnings ratio 3.6363* 3.6279* 

RW/ LSTAR de-trended dividend yield 3.6477* 3.6393* 

   

Linear dy/ linear price-earnings ratio -0.9138 -0.9117 

Linear dy/ AESTAR de-meaned pe ratio 0.5503 0.5490 

Linear dy/ AESTAR de-trended pe ratio 0.5477 0.5464 

Linear dy/ LSTAR de-trended dividend yield 0.5182 0.5170 

   

Linear pe/ AESTAR de-meaned pe ratio 1.0072 1.0049 

Linear pe/ AESTAR de-trended pe 1.0072 1.0049 

Linear pe/ LSTAR de-trended dividend yield 0.9889 0.9866 

 

Nikkei, 6 month holding period DM statistic DM modified 

RW/ linear dividend yield 0.6606 0.6590 

RW/ linear price-earnings ratio 0.3851 0.3842 

RW/ LSTAR de-trended dividend yield 0.9863 0.9841 

   

Linear dy/ linear pe -0.6097 -0.6083 

Linear dy/ LSTAR de-trended dividend yield 0.6026 0.6012 

Linear pe/ LSTAR de-trended dividend yield 0.6929 0.6913 

Note: * indicates statistical significance at 5%. 
 

 

2
3

3
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Table 4.29. Diebold-Mariano test results for a twelve month holding period 

UK, 12 month holding period DM statistic DM modified 

 RW/ linear dividend yield  1.8136 1.8093 

RW/ linear price-earnings ratio 2.6322* 2.6261* 

RW/ ESTAR de-meaned dividend yield  2.9805* 2.9736* 

RW/ ESTAR de-trended dividend yield  2.0223* 2.0176* 

RW/ AESTAR log dividend yield 4.4419* 4.4316* 

RW/ AESTAR de-meaned dividend yield  2.6716* 2.6654* 

RW/ AESTAR de-trended dividend yield 3.5992* 3.5908* 

RW/LSTAR de-meaned dividend yield 0.9681 0.9659 

RW/ LSTAR de-trended dividend yield 2.6867* 2.6804* 

   

Linear dy/ linear pe 0.3364 0.3356 

Linear dy/ ESTAR de-meaned dividend yield 0.4536 0.4526 

Linear dy/ ESTAR de-trended dividend yield 0.2296 0.2291 

Linear dy/ AESTAR log dividend yield 0.6733 0.6718 

Linear dy/ AESTAR de-meaned dividend 

yield 0.3791 0.3782 

Linear dy/ AESTAR de-trended dividend 

yield 0.5359 0.5347 

Linear dy/ LSTAR de-meaned dividend yield -0.1764 -0.1760 

Linear dy/ LSTAR de-trended dividend yield 0.3027 0.3020 

   

Linear pe/ ESTAR de-meaned dividend yield 0.2464 0.2459 

Linear pe/ ESTAR de-trended dividend yield -0.1130 -0.1127 

Linear pe/ AESTAR log dividend yield 0.7087 0.7071 

Linear pe/ AESTAR de-meaned dividend 

yield 0.3752 0.3743 

Linear pe/ AESTAR de-trended dividend 

yield 0.4837 0.4826 

Linear pe/ LSTAR de-meaned dividend yield -0.5720 -0.5707 

Linear pe/ LSTAR de-trended dividend yield -0.0442 -0.0441 
 

S&P, 12 month holding period DM statistic DM modified 

 RW/ linear dividend yield  6.6963* 6.6807* 

RW/ linear price-earnings ratio 3.2307* 3.2232* 

RW/ LSTAR de-trended price-earnings ratio  2.9141* 2.9073* 

   

Linear dy/ linear price-earnings ratio  -0.2250 -0.2244 

Linear dy/ LSTAR de-trended price-earnings ratio -42.800* -42.7008* 

Linear pe/ LSTAR de-trended price-earnings ratio -0.3756 -0.3747 

 

DAX, 12 month holding period DM statistic DM modified 

RW/ linear dividend yield 1.6666 1.6628 

RW/ linear price-earnings ratio 0.2667 0.2661 

RW/ AESTAR de-meaned price-earnings ratio 3.5242* 3.5161* 

RW/ AESTAR de-trended price-earnings ratio 3.5242* 3.5161* 

RW/ LSTAR de-trended dividend yield 3.4038* 3.3959* 

   

Linear dy/ linear price-earnings ratio -1.0149 -1.0125 

Linear dy/ AESTAR de-meaned pe ratio 0.6396 0.6381 

Linear dy/ AESTAR de-trended pe ratio 0.6358 0.6343 

Linear dy/ LSTAR de-trended dividend yield 0.5923 0.5909 

   

Linear pe/ AESTAR de-meaned pe ratio 0.9927 0.9904 

Linear pe/ AESTAR de-trended pe 0.9890 0.9867 

Linear pe/ LSTAR de-trended dividend yield 0.9776 0.9753 

 

Nikkei, 12 month holding period DM statistic DM modified 

RW/ linear dividend yield 0.9027 0.9006 

RW/ linear price-earnings ratio 0.4941 0.4929 

RW/ LSTAR de-trended dividend yield 1.5596 1.5560 

   

Linear dy/ linear pe -0.7081 -0.7065 

Linear dy/ LSTAR de-trended dividend yield 0.5919 0.5905 

Linear pe/ LSTAR de-trended dividend yield 0.7508 0.7491 

Note: * indicates statistical significance at 5%. 
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Table 4.30. Forecast encompassing test for a three month holding period.   

 Forecasting 

encompassing  

Forecasting errors 

encompassing  

 t-statistic 

for M� 

t-statistic 

for M� 

t-statistic 

for M� 

t-statistic 

for M� 

FTSE, 3 month holding period     

RW/ ESTAR de-meaned dividend yield  21.4447* 3.6684* 3.4209* -6.5781 

RW/ ESTAR de-trended dividend yield 20.4517* 3.5416* 2.5763* -7.3832 

RW/ AESTAR log dividend yield 31.0697* 8.4510* 9.4589* 0.2853 

RW/ AESTAR de-meaned dividend yield 40.3024* 15.6497* 17.3163* 9.5077* 

RW/ AESTAR de-trended dividend yield 23.8373* 1.8466 6.9826* -5.5789 

RW/ LSTAR de-meaned dividend yield 22.4105* 3.3577* 6.1550* -3.7878 

RW/ LSTAR de-trended dividend yield 15.7205* -5.6840 4.8633* -14.7307 

     

Linear dy/ ESTAR de-meaned dividend yield 28.7347* -16.8660 23.8247* -21.3634 

Linear dy/ ESTAR de-trended dividend yield 29.4429* -18.3275 24.4527* -23.0248 

Linear dy/ AESTAR log dividend yield 29.3283* -12.5341 28.4099* -18.0151 

Linear dy/ AESTAR de-meaned dividend yield 34.4606* -16.9364 33.2304* -19.2401 

Linear dy/ AESTAR de-trended dividend yield 23.6860* -9.6321 19.0467* -13.7937 

Linear dy/ LSTAR de-meaned dividend yield 24.0300* -11.8437 19.8312* -14.1212 

Linear dy/ LSTAR de-trended dividend yield 16.3470* -12.3400 12.2832* -16.8797 

     

Linear pe/ ESTAR de-meaned dividend yield 15.0532* -19.9163 14.5767* -24.2417 

Linear pe/ ESTAR de-trended dividend yield 16.3117* -22.1914 15.6152* -26.5719 

Linear pe/ AESTAR log dividend yield 0.75060 -0.4545 4.5297* -7.5410 

Linear pe/ AESTAR de-meaned dividend yield -13.7904* 14.2894* -13.3576* 12.9593* 

Linear pe/ AESTAR de-trended dividend yield 7.2545* -9.4826 7.6317* -14.2367 

Linear pe/ LSTAR de-meaned dividend yield 9.22387* -13.1059 7.1769* -13.4429 

Linear pe/ LSTAR de-trended dividend yield 6.81167* -18.8641 5.3846* -22.6186 

     

S&P, 3 month holding period     

RW/ LSTAR de-trended price-earnings ratio 7.8357* 4.4561* -7.5815* 16.0446* 

     

Linear dy/ LSTAR de-trended price-earnings ratio 8.6308* 31.5879* 2.3790* 12.4414* 

     

Linear pe/ LSTAR de-trended price-earnings ratio 29.9012* 51.2135* 18.0172* 26.2280* 

     

DAX, 3 month holding period     

RW/ AESTAR de-meaned price-earnings ratio 22.0262* 63.7839* 5.7380* 20.5242* 

RW/ AESTAR de-trended price-earnings ratio 21.0902* 64.7524* 5.9527* 22.1843* 

RW/ LSTAR de-trended dividend yield 36.0556* 38.7904* -8.9642* -3.7014 

     

Linear dy/ AESTAR de-meaned pe ratio -6.22457* 62.2631* -7.9954* 28.8331* 

Linear dy/ AESTAR de-trended pe ratio -6.16879* 65.1334* -7.9168* 30.5160* 

Linear dy/ LSTAR de-trended dividend yield -12.4466* 29.9361* -10.6958* 12.4755* 

     

Linear pe/ AESTAR de-meaned pe ratio -19.3174* 100.2960* -22.1308* 48.3467* 

Linear pe/ AESTAR de-trended pe ratio -18.3400* 101.4949* -21.0942* 49.1424* 

Linear pe/ LSTAR de-trended dividend yield -11.4457* 29.9657* -11.8742* 12.9938* 

     

NIKKEI, 3 month holding period     

RW/ LSTAR de-trended dividend yield 1.7852 9.2241* -19.9695* -5.0492 

Linear dy/ LSTAR de-trended dividend yield -1.8830 7.3130* -2.2343* 2.8523* 

Linear pe/ LSTAR de-trended dividend yield -0.7049 8.2190* -0.5460 1.7830 

     

Note : * significant at 5%; RW – random walk; dy – dividend yield; pe – price-earnings.   
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Table 4.31. Forecast encompassing test for a six month holding period.   

 Forecasting 

encompassing  

Forecasting errors 

encompassing  

 t-statistic 

for M� 

t-statistic 

for M� 

t-statistic 

for M� 

t-statistic 

for M� 

FTSE, 6 month holding period     

RW/ ESTAR de-meaned dividend yield  22.2342* 3.7998* 3.6369* -6.4768 

RW/ ESTAR de-trended dividend yield 16.2063* -3.2009 4.0247* -12.2514 

RW/ AESTAR log dividend yield 39.8684* 15.6508* 17.5109* 9.7649* 

RW/ AESTAR de-meaned dividend yield 39.7505* 15.5703* 17.2353* 9.6188* 

RW/ AESTAR de-trended dividend yield 24.8001* 2.7911* 7.3192* -4.3960 

RW/ LSTAR de-meaned dividend yield 21.8398* 3.0435* 5.7019* -4.3045 

RW/ LSTAR de-trended dividend yield 15.2724* -6.7206 4.8082* -16.4615 

     

Linear dy/ ESTAR de-meaned dividend yield 27.8023* -14.1554 22.5885* -18.6677 

Linear dy/ ESTAR de-trended dividend yield 18.3909* -11.1889 13.9253* -15.2541 

Linear dy/ AESTAR log dividend yield 33.0973* -15.0027 32.0888* -17.2022 

Linear dy/ AESTAR de-meaned dividend yield 33.1069* -15.0047 32.0912* -17.2040 

Linear dy/ AESTAR de-trended dividend yield 25.4880* -9.3721 20.8540* -13.2211 

Linear dy/ LSTAR de-meaned dividend yield 24.7650* -11.6003 20.3543* -13.9173 

Linear dy/ LSTAR de-trended dividend yield 14.6761* -10.5727 10.3383* -15.4868 

     

Linear pe/ ESTAR de-meaned dividend yield 12.8157* -16.7817 12.7670* -21.8794 

Linear pe/ ESTAR de-trended dividend yield 10.0098* -19.6267 8.5520* -22.9769 

Linear pe/ AESTAR log dividend yield -15.2823 15.9981* -14.8242* 14.4398* 

Linear pe/ AESTAR de-meaned dividend yield -15.0042 15.7140* -14.5604* 14.1762* 

Linear pe/ AESTAR de-trended dividend yield 6.9830* -8.4606 7.6365* -13.0551 

Linear pe/ LSTAR de-meaned dividend yield 9.9264* -13.9869 7.8304* -14.3826 

Linear pe/ LSTAR de-trended dividend yield 6.2704* -19.5185 4.8628* -24.0491 

     

S&P, 6 month holding period     

RW/ LSTAR de-trended price-earnings ratio 7.3357* 5.5356* -7.5225* 16.6420* 

     

Linear dy/ LSTAR de-trended price-earnings ratio 23.6058* 34.1870* 18.5604* 22.1656* 

     

Linear pe/ LSTAR de-trended price-earnings ratio 29.2106* 51.8031* 18.0827* 26.9989* 

     

DAX, 6 month holding period     

RW/ AESTAR de-meaned price-earnings ratio 20.2291* 60.7634* 4.4671* 18.8852* 

RW/ AESTAR de-trended price-earnings ratio 19.4477* 61.9013* 4.7312* 20.4825* 

RW/ LSTAR de-trended dividend yield 35.5893* 39.7696* -9.5794 -4.04672 

     

Linear dy/ AESTAR de-meaned pe ratio -5.7620* 59.5773* -7.5924* 28.2812* 

Linear dy/ AESTAR de-trended pe ratio -5.7605* 62.3681* -7.5650* 29.9759* 

Linear dy/ LSTAR de-trended dividend yield -11.8435* 28.8922* -10.4480* 12.4541* 

     

Linear pe/ AESTAR de-meaned pe ratio -18.8853* 98.6283* -21.6262* 47.3911* 

Linear pe/ AESTAR de-trended pe ratio -17.9988* 99.9993* -20.6914* 48.2963* 

Linear pe/ LSTAR de-trended dividend yield -13.2009* 32.8941* -13.1978* 14.4983* 

     

NIKKEI, 6 month holding period     

RW/ LSTAR de-trended dividend yield 1.2380 7.2703* -21.1985* -6.2539 

Linear dy/ LSTAR de-trended dividend yield -0.1536 4.9730* -1.5427 1.0267 

Linear pe/ LSTAR de-trended dividend yield -0.0328 6.3715* -0.1393 -0.0553 

     

Note : * significant at 5%; RW – random walk; dy – dividend yield; pe – price-earnings.   
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Table 4.32. Forecast encompassing test for a twelve month holding period.   

 Forecasting 

encompassing  

Forecasting errors 

encompassing  

 t-statistic 

for M� 

t-statistic 

for M� 

t-statistic 

for M� 

t-statistic 

for M� 

FTSE, 12 month holding period     

RW/ ESTAR de-meaned dividend yield  22.0040* 3.4140* 3.7128* -6.6043 

RW/ ESTAR de-trended dividend yield 15.6190* -3.3469 3.6542* -12.4904 

RW/ AESTAR log dividend yield 30.9257* 9.5043* 7.4963* -0.8863 

RW/ AESTAR de-meaned dividend yield 37.9346* 15.3303* 16.1557* 9.3017* 

RW/ AESTAR de-trended dividend yield 25.3393* 3.9243* 7.5516* -2.9869 

RW/ LSTAR de-meaned dividend yield 19.7866* 1.7599* 4.6998* -5.8168 

RW/ LSTAR de-trended dividend yield 14.5415* -5.9115 3.8770* -16.0272 

     

Linear dy/ ESTAR de-meaned dividend yield 27.1283* -10.4976 21.2830* -14.6224 

Linear dy/ ESTAR de-trended dividend yield 19.5538* -9.8390 14.6450* -13.5880 

Linear dy/ AESTAR log dividend yield 28.2820* -8.3032 26.8400* -14.1830 

Linear dy/ AESTAR de-meaned dividend yield 32.7294* -12.7069 31.7213* -14.7288 

Linear dy/ AESTAR de-trended dividend yield 27.6981* -8.0654 23.0998* -11.4729 

Linear dy/ LSTAR de-meaned dividend yield 25.3347* -10.4724 20.5357* -12.8082 

Linear dy/ LSTAR de-trended dividend yield 16.0780* -8.9715 11.1677* -13.5533 

     

Linear pe/ ESTAR de-meaned dividend yield 10.3755* -13.4042 10.2606* -18.7459 

Linear pe/ ESTAR de-trended dividend yield 10.6121* -19.8314 8.9945* -23.3013 

Linear pe/ AESTAR log dividend yield 0.2298 0.6045 7.8501* -11.1803 

Linear pe/ AESTAR de-meaned dividend yield -12.1355 12.9494* -11.6421* 11.4258* 

Linear pe/ AESTAR de-trended dividend yield 6.1478* -6.5309 7.1944* -11.1519 

Linear pe/ LSTAR de-meaned dividend yield 11.0671* -15.5469 8.8883* -16.2980 

Linear pe/ LSTAR de-trended dividend yield 7.4057* -19.5067 5.9024* -24.3077 

     

S&P, 12 month holding period     

RW/ LSTAR de-trended price-earnings ratio 8.5906* 5.1625* -6.7776* 13.7280* 

     

Linear dy/ LSTAR de-trended price-earnings ratio 21.2295* 28.1110* 16.4845* 17.2084* 

     

Linear pe/ LSTAR de-trended price-earnings ratio 26.5920* 44.1517* 15.3737* 21.3363* 

     

DAX, 12 month holding period     

RW/ AESTAR de-meaned price-earnings ratio 16.5358* 57.9356* 2.6347* 17.6765* 

RW/ AESTAR de-trended price-earnings ratio 16.2452* 61.3289* 3.3402* 20.0362* 

RW/ LSTAR de-trended dividend yield 29.1100* 38.9549* -8.0891* -1.7836 

     

Linear dy/ AESTAR de-meaned pe ratio -5.1076* 56.8411* -6.7979* 28.4178* 

Linear dy/ AESTAR de-trended pe ratio -5.3338* 61.1570* -6.9824* 31.1575* 

Linear dy/ LSTAR de-trended dividend yield -7.5867* 25.5573* -7.7694* 11.3989* 

     

Linear pe/ AESTAR de-meaned pe ratio -14.5169* 86.9323* -16.8217* 41.1735* 

Linear pe/ AESTAR de-trended pe ratio -15.0160* 94.5118* -17.3269* 45.3590* 

Linear pe/ LSTAR de-trended dividend yield -12.6846* 35.9116* -13.1555* 15.9334* 

     

NIKKEI, 12 month holding period     

RW/ LSTAR de-trended dividend yield 3.0636* 14.1445* -22.6537* -6.3218 

Linear dy/ LSTAR de-trended dividend yield -1.4011 11.0539* -1.1947 0.1453 

Linear pe/ LSTAR de-trended dividend yield -1.6253 12.8942* 0.1052 -0.6939 

     

Note : * significant at 5%; RW – random walk; dy – dividend yield; pe – price-earnings.   
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Combined forecast  

 

On the basis of forecast encompassing test results, the most successful, in terms of the 

information content across all long-horizon period, the single non-linear model is 

chosen for each of the indices in order to incorporate these models into a combined 

forecast. The combination will include a random walk model to account for a random 

component of the stock price time-series and a preferred STAR model. Hence, the 

following STAR models were chosen for each series across three long-horizon holding 

periods.  

 

Table 4.33. Combined forecast models.  

Series Non-linear model  

FTSE AESTAR de-meaned dividend yield 

S&P LSTAR de-trended price-earnings ratio 

DAX AESTAR de-meaned price-earnings ratio 

Nikkei LSTAR de-trended dividend yield  

 

In addition, the forecast encompassing test for the DAX series revealed two non-linear 

models to have the same informational content, thus the final decision was based on the 

results of the standard error magnitude tests.   

The equal weighting method of forecast combination takes the following form: 
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1w �# = 1% 4 1�
-

�9�  

(4.31)  

 

where 1w �# is the combined forecast of individual forecasts  1�, 1� … 1-, and k is the 

number of forecasts. Similarly, the combined forecast methodology employed in this 

section will apply the following regression: 

 

��o} = M1�,}® +  1 − M#1�,}̄{° + �� (4.32)  

 

where  1�,}® is the random walk model forecast,  1�,}̄{° is the STAR model forecast and  

�� is the error term.  

Figures below (Figure 4.9 – 4.12) represent plots of the actual and fitted values, along 

with the residuals, of the combined twelve month models for each of the four time-

series. All the combined models seem to fit the data rather well, with the Nikkei index 

having the smallest variation in the residuals throughout with the exception of extreme 

values at the end of the sample.    
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Figure 4.9. FTSE combined model, 12 month holding period.  

 

Figure 4.10. S&P combined model, 12 month holding period.  
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Figure 4.11. DAX combined model, 12 month holding period  

 

Figure 4.12. Nikkei combined model, 12 month holding period. 
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The results of ME, MAE, RMSE and trade rule tests of forecasting accuracy of 

combined forecasts for each long-horizon period are presented in the table below (Table 

4.34) 

 

Table 4.34. Combined forecast accuracy tests.   

 ME MAE RMSE Trade 

FTSE – AESTAR de-meaned dy     

3 month holding period -0.001769 0.003163 0.003869 0.002373 

6 month holding period -0.001620 0.003104 0.003722 0.002341 

12 month holding period  -0.001462* 0.003003* 0.003560* 0.002383* 

     

S&P – LSTAR de-trended pe     

3 month holding period -0.000493 0.003574 0.004086 0.008284 

6 month holding period -0.000458 0.003405 0.003908 0.008508 

12 month holding period  -0.000408* 0.003150* 0.003688* 0.009013* 

     

DAX – AESTAR de-meaned pe     

3 month holding period -0.000910 0.002912 0.003294 0.013147 

6 month holding period -0.000916 0.002908 0.003297 0.013238 

12 month holding period  -0.000906* 0.002880* 0.003261* 0.013482* 

     

Nikkei – LSTAR de-trended dy     

3 month holding period -0.001927 0.002116 0.004402 0.015139* 

6 month holding period -0.001975 0.002158 0.004647 0.015102 

12 month holding period  -0.000697* 0.001366* 0.002710* 0.015130 

 

Note: * indicates the best statistic  

          dy – dividend yield 

          pe – price-earnings  

 

According to the results of the forecasting accuracy tests, the longest holding period of 

twelve months seems to produce the best forecast for all series, as well as generating the 
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highest value of the trade rule test, with the exception of the Nikkei index where the 

highest trade rule value is produced by the three month period combination forecast.   

Overall, the combination of a random walk model and a STAR model over the long-

horizon period of three, six and twelve months seem to produce better statistics and 

trade rule results compared to all the linear and non-linear forecasts considered in this 

chapter, including forecasts of monthly returns (Section 4.4), and long-horizon 

individual forecasts. Moreover, the twelve month holding period combined forecasts 

performs best out of all the long-horizon forecast combinations, and hence can be 

suggested as a superior forecast model.  

 

 

4.6. Interval forecasts for monthly data7  
 

The methodology for carrying out an out-of-sample interval forecast for monthly data is 

similar to one used on daily data in Chapter 2 and based on the technique suggested by 

Christoffersen (1998). The interval prediction barriers are set as upper and lower limits 

with certain probability and level of confidence. This study will apply standard 

distribution t-statistic value at 95% level of confidence. Figure 4.13 illustrates the 

interval forecast upper and lower barriers on the example of FTSE returns series.  

                                                           
7
 The main objective of this thesis is an investigation of point forecasting with non-linear models and does 

not include a thorough examination into interval forecasts. The subject of interval forecasts is an 

important area of time-series research that lacks extensive empirical examination in the literature. I would 

like to thank my examiners for their valuable comments and recommendations for further research within 

the field of forecasting. 
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Figure 4.13.Interval forecast of FTSE AESTAR log dividend yield. 

 

 

The goodness of fit of the forecast is tested using a success ratio of the indicator 

variable, ��, which determines how accurate the interval forecast values are.  

 

�� = ¸1, 01  �� ∈ �¶�|��� )#, ��|��� )#�0, 01  �� ∉ �¶�|��� )#, ��|��� )#�/ (4.33)  
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Where, ¶�|��� )# and ��|��� )# are lower and upper limits respectively, for a given 

interval forecast, Z¶�|��� )#, ��|��� )#[ for time t, made at time t-1, with the coverage 

probability, p, for a time-series of a random variable, ��. Thus, zero value is assigned to 

every forecasted value outside the prediction barriers, whereas unity value is assigned to 

every forecast within the range of the set interval.   

Table 4.35 contains the success ratio of linear and non-linear forecasts estimated for 

monthly data considered in this chapter. The results suggest that most interval forecasts 

performed in this section surpassed the limit required by the 95% confidence interval. 

Overall, the general forecasting performance is higher compared to the results of the 

daily interval forecast results. These results confirm the suggestion that while daily data 

is characterised by a large number of extreme values described by the fat tails of the 

normal distribution, monthly data is less noisy and characterised by well defined trends 

and patters. Moreover, similar to the results of the point forecasts of monthly returns 

carried out in this chapter, interval forecast results suggest stronger statistics for non-

linear models in the form of the success ratio compared to the linear benchmarks. These 

results confirm the suggestion that non-linear models demonstrate superiority to linear 

models in producing out-of-sample forecasts for the long-horizon data.     
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Table 4.35. Interval forecast success ratio results.  

 Success ratio 

FTSE  

AESTAR log dividend yield 0.9767* 

AESTAR de-meaned  dividend yield 0.9907* 

AESTAR de-trended dividend yield 0.9861* 

ESTAR de-meaned dividend yield 0.9814* 

ESTAR de-trended dividend yield 0.9722* 

LSTAR de-meaned dividend yield 0.9814* 

LSTAR de-trended dividend yield 0.9722* 

Random walk 0.9768* 

Linear dividend yield 0.9722* 

Linear price-earnings ratio 0.9629* 

  

S&P  

LSTAR de-trended price-earnings 

ratio 

0.9585* 

Random walk 0.9400 

Linear dividend yield 0.9400 

Linear price-earnings ratio 0.9400 

  

DAX  

AESTAR de-meaned price-earnings 

ratio 

0.9814* 

AESTAR de-trended price-earnings 

ratio 

0.9814* 

LSTAR de-trended dividend yield 0.9585* 

Random walk 0.9308 

Linear dividend yield 0.9308 

Linear price-earnings ratio 0.9262 

  

Nikkei  

LSTAR de-trended dividend yield 0.9493 

Random walk 0.9354 

Linear dividend yield 0.9354 

Linear price-earnings ratio 0.9354 

  

Note: * indicated statistical significance at 95% level of 

confidence 



247 

 

4.7. Conclusion  
 

This chapter has concentrated on the subject of long-horizon predictability of stock 

returns using the dividend-price ratio, or dividend yield, and price-earnings ratio. Based 

on the idea of the seminal research by Campbell and Shiller (1987) further research into 

this topic included using the relationship between stock returns and dividend yield in 

econometric forecasting by applying non-linear models (e.g. McMillan and Speight, 

2006; McMillan, 2007). As a result, this study applied an error-correction methodology 

using non-linear STAR-type models in order to carry out a forecasting exercise of 

monthly price returns. In addition, the non-linear forecasts were compared to linear 

benchmarks in the form of random walk and simple linear regression models.    

This chapter considered time-series data of monthly financial indices of four major 

economies including the FTSE All-Share of the UK, S&P index of the US, German 

DAX30 Performance and Japanese Nikkei 225 Stock Average index. The data obtained 

covered a period of thirty six years from January 1973 to February 2009 and included 

time-series of dividend yields and price-earnings ratio for each index. Descriptive 

statistics revealed that monthly data, expectedly, is less volatile in comparison to the 

daily data in Chapter 3, and naturally shares similar patterns observed with the daily 

frequency data. All data series were additionally de-meaned and de-trended in order to 

centre the long-run equilibrium around zero. The ADF unit root test confirmed linear 

stationarity for all price returns, FTSE dividend yield and de-trended dividend yield, as 

well as price-earnings ratio, log price-earnings ratio, de-meaned, and de-trended price-

earnings ratio for the DAX series. Non-linear unit root tests confirmed ESTAR and 

LSTAR non-stationarity for FTSE and DAX series and LSTAR-type stationarity for 
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S&P and Nikkei indices. A random walk model, and dividend yield and price-earnings 

linear regressions, as well as the appropriate STAR-type models, were estimated for all 

stationary time-series. The forecasting process consisted of an out-of-sample one-step 

ahead error-correction model procedure. Forecasting accuracy testing included ME, 

MAE, RMSE and trading rule style tests, as well as Diebold-Mariano tests of equal 

forecasting accuracy and the forecasting encompassing testing procedure. Furthermore, 

combination forecasts for each series included random walk, linear regression and 

STAR models, which in turn were assesses by the same forecasting accuracy tests.  

From the empirical results obtained in the first part of the empirical chapter, Section 4.4, 

it is apparent that while non-linear STAR models have slight advantage in terms of 

forecasting accuracy, which, whilst providing an appealing topic for an academic 

purpose, might seem as only a marginal superiority in terms of practical applications. 

However, evidence obtained in this chapter demonstrates the presence of stock returns 

predictability through the dividend yield and price-earnings ratio with no clear 

preference for either one of these variables. Moreover, similar to the empirical findings 

by numerous researchers who found patterns of non-linear mean reversion and STAR 

models to provide an adequate fit for the data (Kanas, 2005; Rapach et al., 2005; Bali et 

al., 2008), this paper also confirms capability of the STAR-type models to generate 

sufficiently accurate out-of-sample forecasts.    

The second empirical part of the chapter, Section 4.5, reviewed the non-linear error-

correction methodology in the context of long-horizon forecasting by applying a buy-

and-hold strategy for periods of three, six and twelve months. The results of the 

forecasting exercise seem to be similar to the suggestions by Fair and Shiller (1990) and 

Montgomery et al. (1998), in the sense that the long-horizon data displays smoother 
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trends and produces better forecasts. While the results obtained in Section 4.5 seem to 

confirm the findings by Montgomery et al. (1998) of long-horizon data to produce 

better forecasts, the overall investigation extends previous work by considering an out-

of-sample forecasting exercise, as opposed to in-sample predictions. Thus, the recursive 

one-step out-of-sample forecasting error-correction methodology is applied to long-

horizon stock prices data using a random walk model, linear regression with dividend 

yield and price-earnings ratio as determinants, and STAR-type models. The forecasts 

are then assessed using forecasting tests of forecast error magnitude, tests of equal 

forecasting accuracy and forecast encompassing tests. While all models seemed to 

produce reasonable adequate forecasts, STAR models proved to perform better 

comparing to monthly forecast results, with the asymmetric ESTAR model in particular 

being favoured for the FTSE index. However, the most considerable improvement in 

forecasting ability of the non-linear models followed a combined forecast approach. A 

combination of a random walk model and a STAR model for each series across three, 

six and twelve months of the holding period were assessed using the same forecasting 

accuracy testing procedures to reveal significant improvement over monthly forecasts 

obtained in Section 4.4 in terms of forecasting accuracy. Moreover, the notion of long-

horizon forecasts performing better comparing to higher frequency forecasts is 

confirmed by the twelve months combination forecast which appears to generate the 

best overall forecast for all four price series. 

The combination of a random walk model and a STAR-type model appears to be the 

best choice in terms of forecasting performance. This phenomenon could be explained 

due to the STAR model capturing the cyclical nature of the stock market characterised 

by asymmetric adjustments, while the random walk model accounts for periods of calm 
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in the financial market when the tranquil state is best described by a random process 

instead of deterministic trend. These results would seem to be most appropriate for 

market participants and policy-makers concerned with long-horizon predictions of the 

financial market.  
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Chapter 5 
House price returns forecasting 

 

 

5.1. Introduction  
 

This chapter investigates the application of the present value model approach to 

forecasting of house prices using price-income ratio with STAR-type models. The 

previous chapter, Chapter 4, applied the non-linear error-correction approach to 

investigate long-horizon predictability of stock returns using the dividend yield and 

price-earnings ratio. Cointegration methodology has been used by numerous studies 

(Campbell and Shiller, 1987, 1988a; Evans, 1991; Enders and Siklos, 2001; Bohl, 2003; 

Brooks and Katsaris, 2003; Bohl and Siklos, 2004; Psaradakis et al., 2004; Kanas, 2005; 

Cochrane, 2008) in order to examine the presence of a long-run relationship between 

stock prices and dividends and hence to test the validity of the present value model. The 

current study is concerned with predictability of financial assets and forecasting 

applications of non-linear models. Hence, in order to extend an investigation further this 

chapter intends to apply non-linear methodology and present value model procedure to 

forecasting house prices. This chapter will discuss the application of the above stock 

market situation to a housing market. In other words, it is an attempt to apply modelling 

and analysis of the relationship between stock prices and dividends to the possible 

relationship between real house prices and real income. It can be noted that behaviours 

of both markets are similar in nature, including the presence of bubbles, for instance. 
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However, there are some differences, mainly the time frame, as the housing market is 

less adjustable than the stock market where trade is taking place on an every-minute 

basis. This particular difference between the markets will also be reflected in 

forecasting horizons.  

The empirical version of the present value model was introduced in the seminal paper 

by Campbell and Shiller (1987). The model states that current stock prices are 

discounted values of future dividends where the discount rate is the required rate of 

return. According to Campbell and Shiller (1987), if the present value model holds, 

stock prices and dividends should cointegrate. This relationship between stock prices 

and dividends is also implied by the efficient market hypothesis (EMH), however, in 

such way that return stock predictability can be interpreted as an indication of market 

inefficiency. The relationship between stock prices and dividends can be examined 

using a cointegration approach where prices and dividends cointegrate assuming either 

constant discount rate or allowing for a time-varying discount rate. The unexpected 

significant rise in stock prices and subsequent fall in late the 1990s and early 2000s 

have raised new interest in the present value model and a re-examination of 

relationships between stock prices and dividends, as the simple constant discount rate 

model did not seem to hold. Nasseh and Strauss (2004) have suggested that low 

dividend payouts combined with record-high stock prices are an indication of stock 

price overreaction. They have pointed out that stocks were overvalued by 43% during 

the late 1990s, and further suggested that such stock price overvaluation can be 

explained by a break in dividend payments in the mid 1990s. It has been pointed out 

that failure of the present value model can be explained due to the presence of constant 

discount rate and rational expectations. However, allowing for a time-varying, as 
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opposed to constant, discount rate and including a component designed to capture 

speculative bubbles into the model has resulted in inconclusive empirical findings. 

Furthermore, Kanas (2005) also suggested non-linearities in the relationship between 

stock prices and dividends as a possible reason for the present value model to fail. 

Kanas (2005) attempted to use non-linear extensions of the present value model in order 

to investigate whether such models are superior in explaining stock prices as a function 

of dividends. The study had investigated monthly real stock index prices and real 

dividends for the UK, US, Japan and Germany and found significant evidence of the 

presence of non-linear cointegration for all considered countries. Kanas (2005) suggests 

that application of a non-linear approach improves the present value model in its ability 

to explain the relationship between the stock prices and dividends. Suggestion of the 

presence of non-linearities in the stock market and non-linear adjustment dynamics 

within mean reversion relationship between the stock prices and dividends encouraged 

research into possible explanations of these dynamics. The presence of non-linearities in 

the stock market has been attributed to the presence of bubbles (Evans, 1991; McMillan, 

2001; Bohl, 2003; Brooks and Katsaris, 2003; Kilian and Taylor, 2003; Psaradakis et 

al., 2004), transaction costs (Kilian and Taylor, 2003; McMillan, 2005; Bali et al., 

2008), and interaction between traders (McMillan, 2003; McMillan, 2005; McMillan 

and Speight, 2006). However, empirical evidence and studies of a long-run equilibrium 

relationship, or cointegration, between stock prices and dividends are mixed and 

unclear.  In addition, McMillan (2005) points out that most of these studies are focused 

on US data.  

Black et al. (2006) claim that housing markets received rather limited attention in 

academic literature compared to financial markets. However, despite the main attention 
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being focused on the financial market, there have been a number of studies to address 

the issue of housing markets. Many researchers highlighted the importance of the 

effects of housing prices on the whole economy and hence the importance of 

understanding and predicting house price dynamics (Case and Shiller, 1989; Brown et 

al., 1997; Muellbauer and Murphy, 1997; Crawford and Fratatoni, 2003; Turner, 2003; 

Fraser et al., 2008; Miles, 2008; Koetter and Poghosyan, 2009). Case et al. (2001) found 

changes in housing market wealth to have stronger effect on consumption compared to 

changes in the stock market wealth. The findings were sustained throughout the data 

from fourteen countries as well as a panel of US states, and found to be robust for 

different model specifications. Moreover, Koetter and Poghosyan (2009) point out that 

the policy makers do take into account property prices as being one of the indicators of 

the financial market’s susceptibility since imbalances in the housing market can lead to 

instability in the financial sector due to banks acting as mortgage lenders. Consequently, 

while an increase in house prices might increase the value of real estate in the bank’s 

possession and thus improve bank capital, and decrease the probability of mortgage 

borrowers defaulting on appreciated assets, the same house price increase and 

consequent lower perceived risk might also bring instability to banks by encouraging 

lendings to higher risk real estate at a lower interest rate.   

Despite Case and Shiller (2004) finding that homeowners treat their properties as an 

investment, Black et al. (2006) suggest that most house purchases are motivated by a 

consumption rather than an investment decision. High transaction costs and legal 

regulations prevent professional speculators to freely trade on the housing market. Thus, 

while the financial market is characterised with a large number of professional traders 

and market arbitragers, the real estate is not associated with professional speculators due 
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to limits to arbitrage and properties on the housing market being mostly bought and sold 

by private homeowners. Moreover, limits to arbitrage and an inelastic supply of housing 

contribute to slow mean reversion and thus long periods of adjustments of mispricing.    

Similarly to the financial market situation, bursts and booms observed in the housing 

market have encouraged investigations into house prices deviating from their 

fundamental values. The present value model approach was applied to mean-reverting 

house prices. Studies have found a number of variables to determine house prices 

including income levels, construction costs and elasticity of supply (Case and Mayer, 

1996; Case and Shiller, 2004; Black et al., 2005). In addition, demographic trends, shifts 

in employment and financial regulations have been shown to affect levels of house 

prices (Case and Mayer, 1996). Furthermore, researchers have recognised the presence 

of non-linearities and asymmetries in house prices and thus proposed possible 

explanations to these dynamics including presence of bubbles and transaction costs 

(Hall et al., 1997; Holly and Jones, 1997; Crawford and Fratantoni, 2003; Case and 

Shiller, 2004; Coleman et al., 2008; Goodman and Thibideau, 2008; Miles, 2008).   

The rest of this chapter is organised as follows. Section 5.2 reviews appropriate 

literature on the topic of applications of the present value model in forecasting and 

issues concerning the housing market; Section 5.3 introduces the methodology used to 

investigate the relationship between real house prices and real income, with empirical 

results presented in Section 5.4, which will concentrate on outlining and comparing 

forecasts drawn from the estimated models. Section 5.5 will conclude the chapter.  
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5.2. Literature review   
 

Introduction to the housing market  

 

The UK housing market has increased dramatically since the Second World War and 

has one of the largest owner-occupier rates in the world (Brown et al., 1997). Holly and 

Jones (1997) explain the excess demand for housing in the post-war period due to 

extensive decline in supply as a result of aerial bombing. In addition, less strict post-war 

lending policies appear to have encouraged the demand. Similarly, in much later 

periods, Brown et al. (1997) identified financial market deregulation and removal of 

mortgage constraints as main reasons for the housing market experiencing structural 

changes which brought about considerable price rises above consumer disposable 

incomes in the early 1970s, early 1980s and late 1980s. Hence, financial deregulation 

and availability of mortgage in the early 1980s encouraged a rise in the demand for 

housing. However, further monetary policies resulted in the rise of the mortgage interest 

rates during the 1990s, which weakened the housing market as a result of economic 

recession (Pain and Westaway, 1997). Thus, Goodman and Thibodeau (2008) attribute 

the fall of house ownership in 1980 in the US due to a rise in real interest rates. 

Muellbauer and Murphy (1997) suggested income growth in the early 1980s and 

income growth expectations, as well as the financial liberalisation of the 1980s, 

amongst the factors that contributed towards the UK house price boom in the late 1980s. 

Whereas, the subsequent burst in the 1990s was accompanied by weakened income 

growth and growth expectations, reversal of demographic trends, reintroduction of a 

property tax and stricter mortgage lending criteria. Muellbauer and Murphy (1997), 

therefore, point out the importance of understanding the UK housing market to the 
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government and policy makers as it can be a potential factor in causing macroeconomic 

instability. For further in-depth examination Case and Shiller (2004) offer an extensive 

review of historical patterns of housing prices in regional data for the US during periods 

from the 1980s to 2002. 

In the early models the supply and demand based approach was not sufficient to 

successfully forecast such rapid changes in housing prices movements. Hence, these 

substantial changes in the housing market initiated new research interest in modelling 

and forecasting of the housing market. In attempts to improve the house prices 

modelling an asset market approach proved to be the most promising. 

Some researchers approached the topic of housing market and patterns in house prices 

in terms of the so called standard urban model, which is a regression model of house 

prices against a set of locational attributes and amenities. Thus, Case and Mayer (1996) 

investigated the appreciation of housing in the Boston metropolitan area in terms of the 

effects local amenities such as employment, demographics, rate of new construction, as 

well as location and quality of schools, have on patterns in house prices. The study used 

a simple model of price determination with different sets of locational characteristics 

across series of different jurisdictions within the area while making an assumption of a 

fixed household income. Case and Mayer (1996) found that while shifts in employment 

and demographics have a significant effect on the housing market, it is, nonetheless, 

very slow to adjust and respond to such changes. In addition, Abraham and Hendershott 

(1996) suggest price trends to be localised phenomena. The researchers did not explore 

the issue of supply restrictions. The effects of supply restrictions might manifest itself in 

enhancing the localised phenomena described by Abraham and Hendershott (1996).  
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Furthermore, to improve modelling methodologies research studies concentrated on 

investigating determinants of the house prices and correct identification of the 

fundamental values while allowing for a time-varying approach. In addition, house 

prices are characterised by strong autocorrelation patterns and mean reversion (Case and 

Shiller, 1989; Gillen et al., 2001; Gu, 2002; Capozza et al., 2004; Zandi and Chen, 

2006). Gao et al. (2009) demonstrated the presence of positive correlation between 

fundamental house prices and household income, and negative correlation between 

house prices and mortgage costs. Moreover, Gao et al. (2009) did not consider 

forecasting exercise, however the research found that the longer housing market remains 

overvalued or undervalued, the stronger is the likelihood of reversion to the equilibrium. 

Mikhed and Zemčík (2009) found construction costs and income to be the main 

determinants of house prices. Mikhed and Zemčík (2009) based their investigation of 

the present value model approach and comprised a number of economic variables to 

form fundamental price levels including real house rent, mortgage rate, personal 

income, building costs, stock market wealth and population.  

Fraser et al. (2009), while recognising income as one of the main determinants of house 

prices, pointed out that an assumption of a constant, as opposed to time-varying, 

relationship between house prices and income is highly unlikely. Similarly, Brown et al. 

(1997) applied the Time Varying Coefficient (TVC) approach to quarterly data of house 

prices, disposable incomes, a demographic variable and the nominal user cost of 

housing for the period between 1968 and 1992. The results confirmed the TVC 

methodology to outperform an alternative constant parameter procedure in generating a 

house prices forecast. However, the study did not include the period of the housing 
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market crash in 1992, with researchers intending to extend the investigation to further 

analyse the performance of their approach beyond this date.  

Black et al. (2005) analysed UK house prices in a sample period from 1973:04 until 

2004:03 in order to define fundamental prices and investigate their connection to the 

inflationary process. As a result, they found that in this period actual house prices 

deviate from their fundamental prices. In addition, speculative activities do not seem to 

be the core cause of these deviations. Instead, over-sensitivity to expectations about 

fundamentals seemed to be the main reason for such behaviour. Case and Shiller (2004) 

found income to explain behaviour of US house prices for the majority of the data 

considered. Moreover, it appeared that in the states where income and house prices were 

highly correlated, inclusion of additional fundamental factors to the regression gained 

little explanatory power. Including these factors in regressions for the data where 

income had less explanatory power, on the other hand, significantly improved the  �� 

value. 

Black et al. (2006) modelled fundamental values of the UK house prices using time-

varying present value model excluding an explosive rational bubble caused by non-

fundamental factors as the reason for deviation of actual prices from their fundamentals. 

Instead, researchers find intrinsic and momentum price dynamics to be main 

determinants of price deviation. Fraser et al. (2008) also applied a time-varying present 

value model approach to determine the fundamental values of housing prices in New 

Zealand based on the real disposable income between 1970 and 2005. The real 

disposable income was used in the study in order to capture the income of households 

after taxes and inflation in contrast to previous studies which used equilibrium models 

with real income, real employment and real interest rates. Fraser et al. (2008) also based 
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their model on empirical framework proposed by Black et al. (2006). Fraser et al. 

(2008) defined the intrinsic bubble as the bubble component related to fundamentals. 

The results have shown deviations from the fundamental prices, however, most of 

housing market overvaluation was due to price dynamics and not an overreaction to 

changes in fundamentals. Following their previous study, Fraser et al. (2009) 

investigated the relationship between house prices and income in terms of 

responsiveness of the prices to temporary and permanent shock to the income. As a 

result, researchers found New Zealand’s house prices to be higher than suggested by the 

deterministic component, thus suggesting the temporary component to be responsible 

for such price overreaction. The UK data, on the other hand, revealed that an increase in 

housing prices was stimulated by permanent deterministic components. In addition, US 

house prices seemed to be more responsive to fluctuations in temporary or cyclical price 

components. As a result, Fraser et al. (2009) concluded that there was no consistent 

global pattern in the behaviour of house prices as a response to permanent and 

temporary income shocks, suggesting a closely considered and tailored approach to this 

phenomenon by policy makers.    

Evident inadequacy of simple linear models to produce accurate results have naturally 

integrated into academic studies concentrating on identifying and modelling non-

linearities and asymmetries present in house prices. The study by Holly and Jones 

(1997) investigated one of the most extensive data sets of UK housing prices from 1939 

to 1994. The researchers considered the possibility of non-linear adjustment in house 

prices dynamics by applying an asymmetric error-correction model and found the real 

income to be the main determinant of the real house prices in an asymmetric 

cointegrating relationship. Periods of disequilibrium between the two variables are 
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attributed to periods related to significant demographic changes and regulations on 

lending and mortgages. Miles (2008) suggests that symmetry in rising and falling 

markets imposed by linear models seems to be inappropriate for successful forecasting 

of housing prices due to the specific nature of the housing market often characterised by 

booms and bursts. Miles (2008) suggests a non-linear approach to forecasting housing 

prices, however, a Markov-switching model in particular was found to perform poorly 

in out-of-sample forecasting. Hence, the study applies the generalised autoregressive 

(GAR) model. Results showed the GAR model to perform better in out-of-sample 

forecast than ARMA and GARCH models when modelling high volatility house prices. 

Gao et al. (2009) recognised asymmetric patterns in house prices whereby price 

increases are very rapid while price declines are characterised by much slower speed. 

Gao et al. (2009) also distinguished between two types of behaviour displayed by the 

house prices: cyclical or volatile and non-cyclical or tame; and found cyclical markets 

to be characterised by larger autoregressive coefficients compared to non-cyclical 

markets. In addition, Gao et al. (2009) attached an important value to regional 

variability in house prices dynamics. Crawford and Fratantoni (2003) recognised the 

importance of specific boom-burst dynamics of the housing market and proposed the 

use of non-linear models in forecasting house prices. Black et al. (2006) also confirmed 

the cyclical nature of housing market dynamics.  

Presence of non-linearities and asymmetric dynamics of house prices behaviour have 

been observed in the housing market and attributed to various factors. Case and Shiller 

(2004) also confirmed downward stickiness of house prices following the survey on 

homebuyers in the US carried out in 2003. In addition to sticky downward house prices, 

Case and Shiller (2004) also pointed out the existence of sellers’ reserve prices thus 
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offering an ample explanation of the situation when the house prices do not fall 

immediately subsequent to an excess in supply. Moreover, supply constraints seem to 

be very significant in house price reactions to any market changes. For instance, 

Himmelberg et al. (2005) found that changes in house market behaviour could be seen 

as a local phenomenon with different US cities reacting differently to changes in 

fundamentals, which can be attributed to differences in elasticity of housing supply. 

Similarly, Goodman and Thibodeau (2008) point out the observed house prices 

increases in certain areas of the US were caused by the inelastic supply of housing and 

hence the average increase in the national aggregate house prices masks different rates 

of price appreciation for different regions for the country. They also found that the rate 

of house prices appreciation was directly affected by and was very sensitive to the 

housing supply elasticity. Restricted supply may indeed increase housing prices, 

however, Case and Shiller (2004) point out that building and construction companies, 

assuming these are driven by profit maximising strategies, seem to respond clearly to 

rises in demand and thus prices by increasing supply, permitting any required 

regulations. In addition, Case and Shiller (2004) also suggested that changes in 

employment might have positive as well as negative impact on demand for housing. 

Thus an increase in employment in certain areas will naturally be accompanied by 

increased demand for housing followed by a rise in prices, however, high housing costs, 

on the other hand, may make it difficult to attract employees thus decreasing growth of 

employment for that region.  

According to McQuinn and O’Reilly (2008), in the period between 1995 and 2005 the 

house prices for new Irish homes increased by 260 percent following a very successful 

performance of the Irish economy. Their investigation into demand for real estate as 



263 

 

being determined by the borrowing constraints indeed revealed a long-term 

cointegrating relationship between actual house price levels and the fundamental levels 

determined by the average amount of individual borrowing. McQuinn and O’Reilly 

(2008) suggested that the level of borrowing by individuals from financial institutions 

depends on levels of personal disposable income and interest rates.    

Case and Shiller (2004) noted that during a housing bubble homebuyers consider high 

housing prices affordable due to assumption that the purchase will be compensated as 

with further price increases. As researchers found out, the belief of further house price 

increases seems to be especially relevant to first time buyers as they become anxious 

that it will become more difficult to afford properties later on. This adds to the little 

perceived risk by homeowners treating real estate as an investment.   

Koetter and Poghosyan (2009) criticised previous studies for not taking into account of 

regional differences when applying housing price indicators in modelling, such as 

regional differences in financing schemes and tax laws, as well as evident immobility of 

real estate assets. According to Koetter and Poghosyan (2009), due to differences in 

these regional regulations the traditional approach to the analysis of real estate markets 

lacks the entity of objective comparability in cross-country studies. Koetter and 

Poghosyan (2009) found that while the German housing market was not characterised 

by rapid price increases the house prices nonetheless deviated from the fundamentals, 

displaying low speed of adjustment when compared to the results of similar studies on 

US data.  

Fraser et al. (2008) pointed out that limited arbitrage opportunities in the housing 

market may lead to any mispricing to have an effect for prolonged periods of time. 
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Muellbauer and Murphy (1997) recognised the importance of transaction costs and 

boom and burst dynamics of housing markets, and thus presence of non-linearities.  

   

 

Housing market bubbles versus changes in fundamentals  

 

Large movements in house prices have prompted speculation of the presence of bubbles 

in the housing market. As it was mentioned in the previous chapter, the concept of 

bubbles in financial markets has been considered somewhat controversial due to the 

inability to correctly identify such bubbles. Moreover, the presence of bubbles implies 

the existence of market inefficiencies. However, despite the debate, an ample number of 

research studies have been carried out into the investigation of rational bubbles. 

Stiglitz (1990) provides a comprehensive definition of a bubble in terms that the bubble 

exists when the only reason for the high price today is that investors believe the selling 

price of the asset will be high tomorrow and there seems to be no justification of such a 

price rise in terms of fundamental values of the asset. Furthermore, Black et al. (2006) 

indicated three types of market bubbles in the context of a housing market: momentum, 

explosive and intrinsic. While momentum investors’ behaviour is motivated purely by 

price, where a price rise or a price fall is expected to be followed by further price rise or 

fall respectively, and is treated as evidence against market rationality, rational bubbles 

and intrinsic bubbles are treated as supporting evidence of rationality. Black et al. 

(2006) describes explosive rational bubbles to cause price divergence from 

fundamentals to be driven by extraneous factors, whereas intrinsic rational bubbles 
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trigger price deviations due to exogenous factors. Furthermore, in the contrast to 

explosive bubbles, intrinsic bubbles periodically revert to the fundamental equilibrium 

value.      

Hall et al. (1997) applied a two-state Markov process to UK real house prices in order to 

identify bubble-like behaviour of house prices during known housing booms in 1971-

1974, 1977-1979 and 1986-1989. The Markov process estimated in the study was 

characterised by unknown transition probabilities. The process correctly identified 

periods associated with housing booms and the probability of bubbles bursting 

according to their size. Deterministic components of real house prices distinguished in 

the study included real personal income, the owner-occupied stock of housing, and the 

mortgage rate of interest. Garino and Sarno (2004) provided empirical evidence of the 

presence of bubbles in quarterly UK house price data in the period between 1983 and 

2002. The study identified two explosive bubbles in the late 1980s and in the late 1990s 

which is consistent with the house price bubble hypothesis and observed housing 

booms. In addition, the researchers noted that the latter bubble appeared to extend up to 

the end of the sample period of 2002. Black et al. (2006) used a time-varying present 

value approach to investigate the relationship between actual and fundamental housing 

prices in the UK. Results of the study revealed the presence of a rational bubble caused 

by non-fundamental factors.  

Black et al. (2006) after an investigation of UK quarterly housing data between 1973:04 

and 2004:03 found house prices to be overvalued by almost 25 percent at the end of the 

estimation period with an intrinsic bubble and fundamental components equally 

contributing to these price dynamics. Goodman and Thibodeau (2008) investigated the 

presence of speculative bubbles in the US housing market in terms of the extent the 
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prices will have to be above fundamentals in order to comprise a speculative bubble. 

This approach inevitably required estimation of fundamental values, which in this 

particular study were distinguished into long-run equilibrium prices and short-run 

deviations which move to correct the long-run equilibrium. Applying the rule of a 30 

percent increase over the fundamental values as an indication of presence of a 

speculative bubble, the researchers found that only 25 sets out of 84 considered regions 

could have been described as surpassing this threshold, suggesting that only specific 

individual regions were characterised by a speculative housing bubble rather than the 

country’s housing market as a whole.  

Coleman et al. (2008) investigated housing bubble dynamics of a sharp rise and 

subsequent fall in US house prices over the period of 1998 to 2008. The results 

suggested economic fundamentals to explain the house prices dynamics for the period 

prior 2003. However, the easy availability of loan products seemed to have encouraged 

increased consumption levels and rates of house ownership, thus instigating fruitful 

conditions for occurrence of a bubble. Researchers also found support of supply 

constraints to have an influence of house price movements. Similarly, Wheaton and 

Nechayev (2008) found an economic fundamental such as population, income growth 

and decline in interest rates to explain the increase in house prices between 1998 and 

2005. Coleman et al. (2008) also pointed out a regime shift in early 2004 which 

significantly affected lending patterns with the record increase of lending volume. This 

was brought about by a combination of political, regulatory and economic factors, and 

seemed to have reduced the importance of fundamentals in determining the house prices 

and for the prices to display bubble characteristics.  



267 

 

However, Stiglitz (1990) pointed out that the difficulty in identifying the presence of a 

bubble also lies in establishing whether the terminal price taken as the fundamental 

price level is indeed determined by the fundamental factors or is characterised by the 

reminiscence of another bubble. In other words, it is very challenging to distinguish 

between movements of a bubble and misspecification of a fundamental model. 

Himmelberg et al. (2005) investigated the US housing market highlighting difficulties 

when assessing whether rapid growth in house prices is the result of changes in 

fundamentals or presence of a bubble. Himmelberg at el. (2005) points out that high 

price growth is not necessarily an indication of the house prices to be overvalued. Thus, 

though they did find evidence of a housing bubble in the US data at the end of 2004, the 

results did not reveal excessive price increases over the fundamental prices. According 

to Himmelberg et al. (2005), a fall in house prices could be initiated by changes in 

economic fundamentals such as, for instance, a negative shock to the economy or a 

decline in economic growth, as well as increased sensitivity to increases to mortgage 

rates as a result of an unanticipated rise in interest rates. Moreover, Stiglitz (1990) 

suggests that there is no need to interpret a decline in asset price as the breaking of a 

bubble. Stiglitz (1990) demonstrates the argument on an example of crude oil prices 

being dependent on a speculative element of the future possibility of a development of a 

petroleum substitute which might reduce the demand and, hence, the value of oil. Thus, 

a sudden decline in the price of an asset could arise due to an occurrence of new 

information relevant to the future developments of the asset. However, there is a 

plausibility of a sharp decline in prices to be attributed to the breaking of a bubble when 

no presence of such new information has occurred. In addition, Stiglitz (1990) proposes 

that the presence of speculative bubbles could be supported by the fact that no other 
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evidence of the cause behind the market crashes of October 1987 and October 1989 

have been found to explain these events. Similarly, Stiglitz (1990) questions the 

rationale of interpretation of the booms of the 1920s and the crashes in 1929. 

Correspondingly, White (1990) explains the 1920s events as a boom and burst of a 

speculative bubble by systematically excluding other alternative explanations.      

As pointed out by Case and Shiller (2004), diminished demand for housing may cause 

the fall in housing prises thus resulting in the burst of the housing bubble. However, 

Case and Shiller (2004) found changes in fundamentals to explain much of the price 

increase in the housing market. Abraham and Hendershott (1996) found that the larger 

the bubble grows the more likely it is to burst. Abraham and Hendershott (1996) 

constructed their model to include a proxy for the bubble tendency to burst. The proxy 

was formed to account for the differences occurring between the actual house prices and 

the prices dictated by the fundamentals. Abraham and Hendershott (1996) found using 

such proxy to be useful in explaining large cyclical movements in house price levels. 

The researchers found that the inflation of the real cost of construction, real income 

growth and changes in real after-tax interest rates as determinants of real house price 

appreciation explained nearly half of historical fluctuations in the inflation of the real 

house prices. However, the model used by Abraham and Hendershott (1996) failed to 

explain prolonged cycles in house prices for some of the regions considered in the study 

suggesting the presence of bubbles. Abraham and Hendershott (1996) pointed out that it 

is extremely difficult to distinguish between whether changes in house price are caused 

by fundamentals or bubbles. Complicating the issue even further by comprising that 

bubble-like behaviour could also be a result of model misspecification.      
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Following an unprecedented rise in house prices in Dublin, Roche (2001) applied a 

regime-switching model to investigate whether the cause for such an excess increase in 

demand for housing was brought about by speculative bubbles or changes in economic 

fundamentals. In order to do that Roche (2001) divided the house prices into 

fundamental and non-fundamental components and used one of the methods of 

calculating non-fundamental house prices based on a standard asset-pricing model. 

Most of the models used in the study could be rejected in favour of the regime-

switching model, which seemed to produce some evidence supportive of the presence of 

speculative bubbles.     

Mikhed and Zemčík (2009) carried out a research into the determinants of house prices 

using the present value model approach and confirmed the presence of a bubble in the 

US housing market prior to 2006, which appears to be reverting to fundamentals after 

two years. Meese and Wallace (1994) also investigated house prices in the context of 

the present value model and found that while the relationship between actual and 

fundamental prices was rejected for the short-run data, it persisted in the long-run, thus 

recognising the presence of informational asymmetry in housing prices. Meese and 

Wallace (1994) attributed asymmetric adjustment to the presence of large transaction 

costs, which suggests that the utility gains from acting upon movements in the housing 

market will have to exceed transaction costs in order for the trade to take place. Meese 

and Wallace (1994) reject the proposal of bubbles as one of the reasons for failure of the 

short-run present value relationship in the housing market on the basis of absence of any 

empirically compelling evidence of the presence of bubbles. Similarly, Black et al. 

(2006) pointed out that the process of equilibrium correction of house prices will be 

prolonged by the limit to arbitrage. According to Black et al. (2006), limit to arbitrage 
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and hence longer reaction of housing price to revert to long-term equilibrium are due to 

high transaction costs, and due to heterogeneity and illiquidity characteristics of 

housing. Black et al. (2005) also highlighted the importance of identifying and 

understanding housing bubbles, since these have an impact on inflation, thus pointing 

out that studies in this area are very much significant for policy makers. 

 

 

Forecasting of the housing market  

 

Many researchers highlighted the importance of housing prices to the whole economy 

(Case and Shiller, 1989; Brown et al., 1997; Muellbauer and Murphy, 1997; Crawford 

and Fratatoni, 2003; Turner, 2003; Fraser et al., 2008; Miles, 2008; Koetter and 

Poghosyan, 2009). Brown et al. (1997) pointed out that movements in the UK housing 

market affect general price levels and consumer expenditure. Similarly, Garino and 

Sarno (2004) recommended further extended research into theoretical work concerning 

the house prices behaviour due to its importance in practical implications and the impact 

of public policy on housing markets and thus standards of living and patterns of saving 

and borrowing.   

Case and Shiller (1989) carried out research into the efficiency of the housing market, 

and found it to appear inefficient where house prices did not follow the random walk 

model, however did reveal substantial persistence in price changes. Hence, Case and 

Shiller (1989) suggested the house prices to be forecastable. Muellbauer and Murphy 

(1997) provided empirical evidence of both house prices and relative rates of return in 
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housing to be forecastable, thus refuting the hypothesis of efficiency of the housing 

market. Koetter and Poghosyan (2009) argue that in an efficient and frictionless market, 

properties in the real estate would reflect economic cycles and be priced according to 

the demand and supply which in turn will be determined by economic fundamentals. 

However, this relationship between house prices and macroeconomic fundamentals does 

not seem to hold. Koetter and Poghosyan (2009) name three main reasons for its failure, 

including the fact that real estate represents a non-standardised asset characterised by 

regional differences. In addition, the absence of principal trading centres causes 

imperfect information and thus lack of transparency and high transaction costs. Finally, 

Koetter and Poghosyan (2009) point out sluggish response to changes in supply as a 

result of construction times and limited land availability. Black et al. (2006) proposed 

that the occurring price inefficiency in housing market is due to limited arbitrage which 

results in prolonged periods of adjustment back to the fundamental equilibrium thus 

causing pricing inefficiencies. Crawford and Fratantoni (2003) pointed out that while 

price changes of an individual real estate are sometimes difficult to predict, the house 

prices as an aggregate, on the other hand, are forecastable.    

Fraser et al. (2008) emphasised the importance of understanding and correctly 

identifying movements of the housing sector, since dramatic changes in the housing 

market have a greater effect on the whole economy comparing to financial stock market 

movements, thus recognising causes of house price movements is vital for policy 

makers. Fraser et al. (2008) point out that, for instance, a rapid increase in housing 

wealth will instigate increased consumption and aggregate demand which in turn put 

pressures on maintaining the inflation band. Thus, the intervention will not be required 

in the case of a price increase caused by the changes in fundamental values. A 
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speculative bubble, on the other hand, will signify central bank intervention in terms of 

attempts to control inflation and potential economic slowdown which can be brought by 

the eventual burst of the bubble. Similarly, Miles (2008) underlines the importance of 

accurate forecasts of changes in house prices. Miles (2008) suggests that a significant 

increase in house price over the last decade had an effect on many economic 

components, including increased consumption and growth of secondary mortgage 

ownership. Moreover, these dynamics appear to be not only on a local or national level, 

but to be a global phenomenon. Similarly to Fraser et al. (2008), Black et al. (2006) 

supports the importance of understanding the housing market due to its considerable 

wealth effect which has been shown to be greater than that of financial assets. 

Moreover, Black et al. (2006) points out that due to housing assets forming a major part 

of household portfolios, the housing market crashes were observed to have more severe 

effects on the whole economy than stock market crashes and are characterised by longer 

recovery periods. Ortalo-Magné and Rady (2006) find that changes in income affect 

house prices and housing transactions. The researchers investigate house price dynamics 

in the context of credit constraint and limits of down payment which is an especially 

significant factor for young and first time buyers. These restrictions to entering the 

housing market by young households in turn can affect the housing market as a whole.   

Crawford and Fratantoni (2003) pointed out the importance of accurate modelling and 

forecasting of house prices for pricing mortgage credit risk. Similarly, Rosen et al. 

(1984) illustrated that volatility of house prices adds risk to household portfolios and 

thus discourages homeownership of naturally risk averse investors. According to Rosen 

et al. (1984), this phenomenon is evident during increases in house prices in the 1970s 

without subsequently significant changes in the number of homeowners. Englund et al. 
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(2002) pointed out the cost of homeownership will account for a larger portion of 

portfolios of an especially younger household with presumably lower incomes thus 

imposing an additional risk. Similarly, Turner (2003) found that low or moderate 

income households and first-time buyers are more sensitive to house prices volatility, 

which could be due to high income households’ ability to diversify their housing 

investment portfolios to a greater extent. Turner (2003) demonstrated a significant 

negative effect of investment risk which can arise from house prices volatility on 

homeownership and housing demand. Miles (2008) denotes growing financial 

sophistication of consumers, lenders and pension funds, which in turn encourages 

increased demand for accurate forecasts of house prices. This is especially valid in 

banking, as the housing market had a great effect on the financial market in a recent 

time period and since the probability of default and mortgage prepayment is determined 

by the volatility of house prices. Thus, more accurate forecasts will assist in 

management of prepayment risk on mortgage backed securities. Moreover, Koetter and 

Poghosyan (2009) point out that the policy makers do take into account property prices 

as being one of the indicators of financial market susceptibility since imbalances in the 

housing market can lead to instability in the financial sector due to the banks acting as 

mortgage lenders. Consequently while an increase in house prices might increase the 

value of real estate in the bank’s possession and thus improve bank capital, and decrease 

the probability of mortgage borrowers defaulting on appreciated assets, the same house 

price increase and consequent lower perceived risk might also bring instability to banks 

by encouraging lendings to higher risk real estate at a lower interest rate.   

Das et al. (2009) found a large-scale Bayesian Vector Autoregressive (BVAR) model to 

outperform linear alternatives in forecasting annualised real house price growth rates for 
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South Africa. According to researchers, linear models have failed to produce favourable 

forecasts because these failed to recognise non-linearities present in the data and did not 

take into account of asymmetries in house prices dynamics. Crawford and Fratantoni 

(2003) proposed non-linear regime-switching models as the most suitable for 

forecasting housing markets which are known to be prone to boom and busts. Different 

regimes under regime-switching models can accommodate different behaviour exhibited 

by the housing market under different economic conditions. The study found the 

regime-switching model to fit the house prices data better than linear alternatives, 

however, the simple ARMA model outperformed regime-switching in the out-of-sample 

forecasting exercise.  

 

 

Conclusion  

 

The review of the housing market literature suggests rather an understated amount of 

research into the dynamics of the market and reasons behind it, as well as limited 

studies of the house prices forecasting exercise, while it is difficult to underestimate the 

importance of investigations into these issues. Thus, Black et al. (2006) recommended 

further investigation into the causes of changes in fundamental values as an essential 

research with the intention of the facilitation of a better understanding of house prices 

dynamics by policy makers, while Miles (2008) points out a significant importance of 

accurate forecasts of house prices. Moreover, Das et al. (2009) pointed out the 

importance of forecasts of the house prices inflation to policy makers since changes in 
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house prices have direct effect on overall consumption, inflation and investment as 

houses make up a large proportion of a households’ wealth. Moreover, Das et al. (2009) 

suggests the recent credit crunch in the US imminently resulted in the economic 

recession, initiated by the burst of the housing bubble.   

The importance of investigating the housing market on a global level is evident from an 

investigation carried out by Beltratti and Morana (2010), where researchers applied a 

large scale macroeconomic model to investigate linkages between house prices and 

macroeconomic variables, and global factors determining international house prices in 

the data for the G-7 countries. The research revealed that indeed the global economic 

shocks have a major effect on fluctuations of the international housing prices with 

supply shocks having a larger consequence on price levels compared to demand 

variations. In addition, Beltratti and Morana (2010) found that the international 

macroeconomic and financial shocks can be construed by those of the US, suggesting 

the importance of the US market’s influence on the global economy. Beltratti and 

Morana (2010) also found that while both stock market shocks have significant effects 

on macroeconomy, the housing market price shocks have far greater effect than the 

stock market shocks. Beltratti and Morana (2010) pointed out that, according to their 

results, international housing markets appear to be interconnected and there is a 

possibility of speculative behaviour. House prices, at the same time, are also affected by 

the supply side individual to each country, which strongly suggests rational pricing as 

opposed to fads. However, the explicit investigation into the international housing 

market speculation and its effects is yet to be carried out. Beltratti and Morana (2010) 

concluded that policy makers should take into account the international business cycle 
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when assessing macroeconomic risks and suggested a further investigation into 

instability of the international banking market in the light of the current credit crunch.    

While the housing market shares some characteristics with the financial market, it also 

possesses very specific characteristics which result in unique reactions of the market to 

major changes. One of these features of the housing market is the price trends being a 

localised phenomenon, producing different price reactions in different regions 

(Abraham and Hendershott, 1996; Goodman and Thibideau, 2008; Koetter and 

Poghosyan, 2009). Consequently, basing their assumptions on the historical record, 

Case and Shiller (2004) suggested that a severe nationwide crash in housing prices is 

highly unlikely due to localised trends of house price movements implying the lack of 

synchrony in the response to regional markets. Thus, the lack of synchronous response 

of the aggregate housing market will diminish the severity of effects on the economy 

following the eventual burst of the housing bubble. However, Gao et al. (2009) pointed 

out that a decline in a housing market can lead to a considerable amount of mortgage 

defaults due to borrowers’ equity diminishing in value. Gao et al. (2009) attribute the 

mortgage melt-down in 2007 to such a decline in the housing market.     

Moreover, Case and Shiller (2004) approached investigation to the housing prices 

dynamics in explaining market bubbles and bursts somewhat differently by conducting 

a survey amongst a random sample of homebuyers in 2003. The aim of the survey was 

to focus on homebuyers’ expectations, their understanding of the housing market and 

hence their behaviour in response. Despite receiving a lower response rate in 2003 

comparing to the survey conducted previously in 1988, the researchers were able to 

draw certain conclusions about expectations and perceptions of US homebuyers. The 

lack of references to quantitative or professional based evidence by the respondents 
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illustrated the degree of amateurism amongst buyers and sellers in the housing market. 

Regardless of a small number of possibly professional market speculators, the majority 

of homebuyers are owner-occupiers treating the real estate as a long-term investment. 

Moreover, the survey revealed that whilst the behaviour and investment decisions of 

homebuyers seemed to be based on their exaggerated expectations, emotional 

excitement about local real estate and casual word of mouth, majority of survey 

participants did not believe the housing market was driven by psychology.      

From the literature review it is evident that while the housing market is an important 

part of the economy and its dynamics are greatly considered by the policy makers, 

academic research has yet to offer ample investigations into house prices behaviour and 

adequate forecasting methodology. Moreover, studies by Englund et al. (2002), Turner 

(2003), Case and Shiller (2004) and Ortalo-Magné and Radly (2006) confirmed the 

importance of movements in house prices on an individual homeowners level due to the 

property investment forming the majority of household portfolios. Hence, it is difficult 

to comprehend that such complex dynamics of the market are associated with large 

number of highly amateur investors due to most homebuyers lacking the professional 

speculative qualifications.   

 

 

5.3. Methodology 

 

The following methodology is based on the approach introduced by Black et al. (2005), 

which in turn has the present value model at its foundation proposed by Campbell and 
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Shiller (1987; 1988a; 1988b). Campbell and Shiller’s (1987) original present value 

model was constructed for two random variables, �� and ��, where �� is a linear function 

of the present discounted value of its expected future values, �� (5.1).  

 

�� = � 1 − �# 4 ��∞

�9 p���o� + G 

(5.1)  

 

The present value equation contains a coefficient, c, proportionality coefficient, �, and 

the constant discount factor, �.   

The model used by Black et al. (2005) relates the real house prices to the expected value 

of discounted future real disposable income. Similar to the principals of the original 

present value model the model used by Black et al. (2005) intends to capture the size of 

deviations of real house prices from their fundamentals. Black et al. (2005) assume the 

expected value of future real disposable income discounted at the real discount rate as a 

proxy of the fundamental residential property value.  

There are various methods of determining fundamental values for house prices. Some 

researchers, for instance, compare real house prices to disposable income. Thus, 

Muellbauer and Murphy (1997) suggested a measure of affordability in the form of 

price to income ratio to model booms and bursts in the housing market.  Black et al. 

(2005) also based their study of fundamental prices being linked to the affordability 

concept, which relates to the perception of wealth and based on real wages, employment 

rates and real interest rates. In Black’s et al. (2005) case the affordability proxies are 

real disposable income and real interest rates.  
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Hence, based on the present value model, the following approach relates the real house 

prices to the expected value of discounted future real disposable income:  

 

�� = p� 4 ��À�o�
Á

�9  
(5.2)  

 

where �� is the real level of house prices, p� is the expectations operator, �� is the 

required rate of return, or discount rate, and  À�o� is the real disposable household 

income in the period between t and i.                                                  

By dropping expectations, equation (5.2) can be written as following:             

 

�� = 4 ��Á
�9 À�o� (5.3)  

 

Realised discount rates, W�, or the real return, is defined in Black et al. (2005) as:  

 

 1 + W�o�# =  ��o� + À�# ��⁄  (5.4) 

 

The above expression (5.4) can be re-written as following:  
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+� = ��=1 + E�) *� − )�o�#? + )�o� − )� (5.5) 

 

where +� is defined as �� 1 + W# and the term  *� − )�# is the income-price ratio.  

Furthermore, following the work of Campbell and Shiller (1988a, 1988b), the time-

varying discount rate can be introduced using a first-order Taylor’s approximation for 

the first term of the equation (5.5) resulting in:  

 

+� = − )� − *���# + � )�o� − *�# + ∆*� + % (5.6) 

 

Where %  and � are linearisation constants:  

 

� = 1 =1 + E�) * − )ggggggg#?⁄  (5.7) 

 

% = −��� −  1 − �# ∙  * − )ggggggg# (5.8) 

 

where  * − )ggggggg# is the sample mean of  * − )# about which the linearisation was taken.  

Equation (5.6) contains terms )� and *� which in practice tend to be I(1), hence to 

ensure stationarity the equation is re-written so that it contains )*� which is log price-

income ratio  )� − *���#. 

 

)*� = % + �)*�o� + ∆*� − +� (5.9) 
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Further, repeating substitutions for )*�o�, )*�o�, … on the right hand side of the above 

equation, it can be re-expressed as follows:  

 

)*� = %=1 − ��? 1 − �# + 4 �5+�o5 + ��)*�o�
���
59  

(5.10) 

 

After letting Â → ∞, limiting last term to zero and taking conditional expectations the 

equation becomes:  

 

)*� = % − 1 1 − �# + 4 �5p�∆*�o5 − � 4 �5Á
59

Á
59 p�!�o5�  

(5.11) 

 

where 1 is the constant real-risk free component of real required returns.  

The final equation for the ratio which measures fundamental house prices is modelled as 

below:  

)*�∗ = % − 11 − � +  E�§ − �Ea§ #� � − ��#��K� 
(5.12) 

 

where E�′ K� = p�∆*�o� and Ea′ K� = p�!�o�. 

The equation for fundamental price-income ratio (5.12) can be re-written in simplified 

form.  
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)*�∗ =  % 1 − �⁄ # + p� 4 ��=∆*�o� − +�o5?Á
�9�  

(5.13) 

 

According to Black et al (2005), actual and fundamental prices deviations can be 

assessed by simply testing )*� = )*�∗, i.e. equations (5.12) and (5.13).  

Providing stationarity of changes in real income and stationarity of the discount rate, the 

relationship modelled by the above equation (5.12) implies that log prices and log 

income are cointegrated with a cointegration vector of N1, −1Q. If this relationship holds, 

the price-income ratio should be stationary. Hence, the statistical analysis of the 

equation (5.13) will involve testing the log price-income ratio for the presence of 

stationarity.  

 

 

5.4. Empirical results 

 

This study analysed quarterly real house prices from thirteen UK regions, including the 

UK as a whole, and a price series for the UK, and quarterly real disposable income data 

over the period of thirty years from 1974:01 to 2004:04. The full list of regions used in 

this paper is given in Table 5.1 below. In addition, following the methodology in 

Section 5.3, the price-income ratio for each region has been calculated using a technique 

based on methodology by Black et al. (2005).  
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Table 5.1. List of regions.  

 Region  

1 North  

2 Yorkshire and Humberside 

3 North West 

4 East Midlands 

5 West Midlands  

6 East Anglia 

7 Outer South East 

8 Outer Metropolitan London 

9 London 

10 South West 

11 Wales 

12 Scotland 

13 Northern Ireland 

14 UK 

 

 

Descriptive statistics  
 

The following diagrams (Figure 5.1 – 5.2) represent the time-series plot and histogram 

with descriptive statistics for the UK house prices as one of the considered series.
8
 

House price booms in 1980s and 1990s, and a dramatic increase in 2000s are clearly 

seen in the time-series pattern (Figure 5.1). The income growth and financial 

deregulation with easy availability of mortgages had resulted in a house price boom in 

the early 1980s. The next housing boom in the late 1980s was followed by a burst in the 

1990s due to rises in interest rates and stricter mortgage criteria following the economic 

                                                           
8
 All the estimations and statistical calculations are performed using the EViews 3.1 software.   
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recession. The late 1990s and early 2000s show signs of recovery followed by a rapid 

price increase well into the end of the period. Moreover, it is evident that the overall 

price level has risen dramatically over past thirty years.  

  

Figure 5.1. Real house prices, UK.  
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Figure 5.2.  Histogram of real house prices, UK.  

 

The histogram provides a good insight into the shape of the data distribution, whereas 

skewness and kurtosis indicate the symmetry and thickness of the tails of a distribution 

respectively. High kurtosis in the UK price series indicates a presence of fewer extreme 

values and more moderately sized observations, which is consistent with the time-series 

where extreme values are observed towards the end of the sample. Distribution for the 

UK series seems to be skewed to the right and have the tail of the distribution thicker 

than normal, supporting the assumptions made on the basis of kurtosis that the main 

concentration of the distribution is focused around lower observation values. According 

to the results of the Jarcque-Bera statistic, the hypothesis of normality was rejected for 

UK data at 5% significance level. The UK data has relatively high standard deviation 

compared to the other regions. However, it has to be taken into account that this data is 

likely to be non-stationary.   
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Figure 5.3 represents the time-series of the price-income ratio for UK data series, 

estimated using equation (5.13) from the methodology section (Section 5.3). Figure 5.4 

represents the histogram and descriptive statistics for the price-income ratio. 

 

Figure 5.3.  Price-income ratio, UK.  
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Figure 5.4.  Histogram of price-income ratio, UK.  

 

Consistent with the house prices time-series, the price-income ratio diagram 

demonstrates large increases during the boom in the 1980s due to high income growth, 

and rapid decline in the 1990s followed by the rise in interest rates and economic 

recession. In addition, a similar pattern of recovery could be seen towards the 2000s. 

The distribution of the UK price-income ratio seems to approximate to normal 

distribution as according to the Jarcque-Bera statistic, the hypothesis of normality could 

not be rejected for the UK price-income ratio at 5% level of significance. However, as it 

is evident from the diagram and the value of skewness, the lower tail of the distribution 

is thicker than that of a normal distribution. Negative skewness also suggests the main 

body of the distribution to be concentrated on the right of the diagram implying few low 

values.      

Nonetheless, descriptive statistics give merely a brief description of the data in order to 

give a researcher an idea of its basic characteristics. Further examination of the data 

considers issues of a different nature.  
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Unit root tests 
 

The augmented Dickey-Fuller (ADF) test was used as a linear unit root test on house 

prices, logs of house price, house prices returns, price-income ratio, logs of price-

income ratio and price-income ratio returns. The test was performed including an 

intercept and one lagged difference.  Prices, price-income ratios and logs of price and 

price-income ratios were found to be non-stationary, while the null hypothesis of unit 

root was rejected for house prices returns and price-income ratio returns at 5% level of 

significance (Table 5.2).    

Non-linear unit root tests performed on the data included tests for presence of general 

STAR-type non-stationarity by Pascalau (2007), asymmetric ESTAR stationarity 

(Sollis, 2009), ESTAR stationarity (Kapetanios et al., 2003), and LSTAR stationarity 

(Pascalau, 2007). The results of these tests are presented in Table 5.3.  

The procedure developed by Kapetanios et al. (2003) is based on a specific ESTAR 

model where the t-type test procedure involves testing a first-order Taylor series 

approximated to the ESTAR model. 

 

∆�� = M����a + �� (5.14)  

 

Where variable �� is substituted with the price-income ratio described in the above 

methodology, and �� is the error term. The cubed coefficient ����a  contained in the 

above equation, is the main analytical indicator used in assessing stationarity using 
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methodology by Kapetanios et al. (2003). The null hypothesis of unit root (]: M = 0) 

is tested against the alternative of ESTAR stationarity (]�: M < 0). The significant 

negative value of the coefficient indicates that the ESTAR stationarity holds. 

 

	bc = Md ,. E. =Md?e  (5.15)  

 

The t-statistic above (5.15), where Md  is the OLS estimate of M and ,. E. =Md? is the 

standard error of Md , tests the null hypothesis of M = 0 against M < 0. Asymptotic 

critical value of the 	bc statistic for the type of data used in this chapter is -2.22 for 5% 

level of significance for the data that was neither de-meaned nor de-trended (Kapetanios 

et al., 2003). The procedure was carried for all thirteen regions, including the UK as a 

whole, and the results of testing the null hypothesis of non-stationarity against the 

alternative hypothesis of stationarity are presented in Table 5.3.   

General STAR-type stationarity test (5.16) developed by Pascalau (2007) where the null 

hypothesis of unit root (]: F = M = � = 0) is tested against the presence of ESTAR or 

LSTAR stationarity (]�: F + M + � < 0) is based on the work by Kapetanios et al. 

(2003). Critical value at 5% level of significance for neither de-meaned nor de-trended 

data equals 3.64.  

 

∆�� = F����� + M����a + �����f + �� (5.16)  
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However, the rejection of the null hypothesis of unit root in the above test cannot 

distinguish between ESTAR and LSTAR stationarity. Thus, Pascalau (2007) proposed 

an additional test for the logistic smooth transition (LSTAR) process non-stationarity 

(5.17), with the critical value for the untreated data of 4.51 at 5% level of significance.  

 

∆�� = F����� + �����f + �� (5.17)  

 

The unit root test developed by Sollis (2009) allows for asymmetry within ESTAR-type 

non-linear dynamics. The null hypothesis of unit root is tested against the alternative of 

asymmetric ESTAR (AESTAR) non-linear stationarity as the regression coefficients are 

equal to zero (]: M = � = 0). The critical value used in this chapter at 5% level of 

significance is 2.505.  

 

∆�� = M����a + �����f + �� (5.18)  
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Table 5.2. ADF test with intercept and one lagged difference.  

 Region  House prices Log house 

prices  

House prices 

returns 

Price-income 

ratio 

Log price-

income ratio 

Price-income 

ratio returns 

1 North 2.4294 1.7280 -5.0543* -1.1415 -0.5545 -10.2670* 

2 Yorkshire and Humberside 0.0649 -0.0685 -4.3442* -1.7780 -1.5534 -9.1173* 

3 North West  1.5559 0.7254 -4.2486* -1.2505 -1.3665 -6.6173* 

4 East Midlands 0.5243 0.2022 -4.1623* -1.5767 -1.2055 -6.1407* 

5 West Midlands 0.6515 0.4804 -4.9310* -1.6066 -1.3691 -6.1539* 

6 East Anglia -0.0491 -0.1802 -4.3220* -1.3319 -1.0651 -6.2818* 

7 Outer South East -0.6144 -0.5367 -4.0220* -1.3352 -1.0476 -5.4070* 

8 Outer Metropolitan London -0.3138 -0.6934 -3.7598* -1.5207 -1.6024 -4.3783* 

9 London 0.3390 -0.1257 -3.7354* -1.0524 -0.9750 -5.0673* 

10 South West 0.3606 0.0710 -4.7207* -1.1328 -1.0436 -5.7897* 

11 Wales 1.2376 0.8777 -3.8893* -1.5124 -1.0809 -8.0248* 

12 Scotland 1.8195 1.2440 -6.9703* -1.8075 -1.3982 -8.5925* 

13 Northern Ireland 2.8502 1.6901 -7.1757* -1.0516 -0.9935 -9.5680* 

14 UK 0.0175 -0.1698 -4.3201* -1.4738 -1.1819 -5.4021* 

        

Note : * indicates stationarity at 5 % level of significance (critical value: -2.8685) 

2
9

1
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Table 5.3. Non-linear unit root tests results for price-income ratio.  

 Region  General 

STAR 

AESTAR ESTAR  LSTAR 

1 North 33.4391* 50.3027* -5.1934* 47.5075* 

2 Yorkshire and 

Humberside 

13.0923* 19.7171* -3.9195* 19.1865* 

3 North West  3.8306* 4.6023* -1.5369 3.8818 

4 East Midlands 2.1547 1.7460 -1.0147 1.3622 

5 West Midlands 0.3971 0.6003 -0.8664 0.5952 

6 East Anglia 3.9056* 4.0681* -1.3880 3.2319 

7 Outer South East 3.0185 2.9671* -1.1700 2.3043 

8 Outer Metropolitan 

London 

0.2225 0.3364 -0.7826 0.3366 

9 London 5.1861* 5.0877* -1.5274 4.0100 

10 South West 0.4185 0.5800 -0.8648 0.5513 

11 Wales 4.1689* 6.1912* -1.9815 5.7016* 

12 Scotland 5.3266* 6.9585* -1.6350 5.6755* 

13 Northern Ireland 4.5107* 6.1256* -1.5744 5.3359* 

14 UK 0.4378 0.5039 -0.7339 0.4415 

      

 Critical values at 5% 

level of significance 

3.64 2.505 -2.22 4.51 

Note : * indicates stationarity at 5 % level of significance 

 

The results in Table 5.3 suggest that at 5% level of significance series for nine out of 

fourteen series display non-linear stationarity. Most regions that reveal asymmetric 

ESTAR (AESTAR), ESTAR or LSTAR dynamics are also confirmed to have STAR-

type stationarity by the general STAR test; for the exception of the Outer South East 

(Region 7) which is specified to be following asymmetric ESTAR stationarity but not 
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confirmed by the general STAR test. Following the results of non-linear stationarity 

tests displayed in the table above, the appropriate STAR models are estimated for each 

specific region.  

 

Linear and non-linear model estimation and forecasting  
 

Following the unit root tests performed in this chapter, appropriate non-linear STAR-

type models were estimated for the nine out of fourteen series to have exhibited 

stationarity. The random walk model of house price returns and simple regression of 

house price returns with price-income ratio as a determinant variable were estimated as 

a linear benchmark comparable to the non-linear estimation results.  

The linear regression for house price returns, ��, using the price-income ratio as 

explanatory variable, ���, and a random error term, ��, as follows: 

 

�� = � + ����� + ����� + ⋯ + ����� + �� (5.19)  

 

Moreover, this chapter applies a forecasting exercise using non-linear STAR-type 

models as an error-correction term within the error-correction framework. Thus, the 

error-correction methodology takes on following forms for ESTAR (5.20), LSTAR 

(5.21) and AESTAR (5.22) models:    
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+� =  @ + @�,���# +  � + ��,���#=1 − E�) −F ,��D − G#� !� ,��D#⁄ #?+ �� 

 

(5.20)  

+� =  @ + @�,���# +  � + ��,���#=1 + E�) −F ,��D − G# ! ,��D#⁄ #?��+ �� 

 

(5.21)  

+� =  @ + @�,���#+  � + ��,���# Z1 + E�)=−F��,���� �� − F��,����  1 − ��#?[��
+ �� 

(5.22)  

 

where ,��D is a transition variable within the transition function  C ,��D#,  @� and �� are 

the autoregressive components of the model, d is the delay parameter, F, F�and F� are 

different speeds of adjustment, and �� is an error term. In addition, the indication 

function for AESTAR model depends on the sign of the transition variable: 

 

�� = 1 01 ,��� > 0 (5.23)  �� = 0 01 ,��� ≤ 0  

 

Thus, further to model estimation, a forecasting exercise was performed in the form of a 

recursive one-step ahead out-of-sample forecast. The main sample of 30 years of 

quarterly data of house price returns and price-income ratio over the period from 

1974:01 to 2004:04 containing 124 observations in total was split into in-sample of 

fifteen years from 1974:01 to 1989:02, and out-of-sample of fifteen years from 1989:03 

to 2004:04, consisting of 62 observations in each sample.   
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Forecasting accuracy tests 

 

A number of forecasting accuracy tests were performed on the results obtained from the 

linear and STAR model forecasts. The chosen forecasting accuracy tests are comparable 

and thus allow the identification of the superior forecast for each set of data.  The 

statistical loss tests included standard functions such as ME, MAE and RMSE, as well 

as the Diebold-Mariano test of equal forecasting accuracy, forecast encompassing test, 

and combination forecast tests. In addition, a simple trade rule procedure was used as an 

economic loss function test of accuracy of forecast.  

 

ME, MAE, and RMSE 

The results of initial tests for the random walk and linear regression forecasts are in the 

table below (Table 5.4). As indicated in the table, region 8 of Outer Metropolitan 

London seems to produce the most accurate statistics overall, followed by region 9 of 

London. While the linear regression forecast for region 2 of Yorkshire and Humberside 

produces the highest value for the trade rule test suggesting the highest speculative 

profit, followed closely by region 13 of Northern Ireland also generated by a linear 

regression forecast. The highest trade rule values produced by the random walk model 

belong to regions 3 and 11 of the North West and Wales respectively. Overall, the 

forecasting tests statistics differ only marginally, mostly displaying very similar 

outcomes for all the regions with no clear preference for either of the linear models.   
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Table 5.4. Random walk and linear regression models forecast statistics.   

 Region  ME MAE RMSE Trade rule 

  Random 

Walk  

Linear  Random 

Walk 

Linear Random 

Walk 

Linear Random 

Walk 

Linear 

1 North 0.0274 -0.0040** 0.0396 0.0607 0.0481 0.0706 0.0056 0.0045 

2 Yorkshire and Humberside 0.0271 0.0036 0.3722 0.0501 0.0465 0.0603 0.0026 0.0138* 

3 North West  0.0253 0.0191 0.0310 0.0373 0.0387 0.0445 0.0093* 0.0037 

4 East Midlands 0.0248 0.0206 0.0307 0.0336 0.0374 0.0405 0.0049 0.0053 

5 West Midlands 0.0217 0.0813 0.0301 0.0340 0.0353 0.0400 0.0055 0.0033 

6 East Anglia 0.0220 0.0205 0.0317 0.0324 0.0375 0.0381 0.0051 0.0059 

7 Outer South East 0.0213 0.0215 0.0290 0.0300 0.0349 0.0360 0.0061 0.0070 

8 Outer Metropolitan London 0.0175* 0.0177 0.0241* 0.0247* 0.0305* 0.0311* 0.0043 0.0053 

9 London 0.0182 0.0195 0.0270** 0.0281** 0.0326** 0.0337** 0.0054 0.0078 

10 South West 0.0222 0.0218 0.0315 0.0326 0.0360 0.0378 0.0051 0.0081 

11 Wales 0.0295 0.0070 0.0364 0.0492 0.0452 0.0581 0.0068** 0.0037 

12 Scotland 0.0178** 0.0011* 0.0291 0.0343 0.0369 0.0409 0.0054 0.0057 

13 Northern Ireland 0.0219 0.0233 0.0293 0.0305 0.0354 0.0364 0.0064 0.0107** 

14 UK 0.0230 0.0187 0.0286 0.0306 0.0334 0.0359 0.0062 0.0141 

          

Note : * indicates the best statistic 

        ** indicates the second best statistic   

2
9

6
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STAR models forecasts were assessed in the same fashion with results of accuracy tests 

provided in the tables below (Table 5.5 – 5.7). The statistics reveal a very similar 

pattern to linear results in terms of difficulty of determining clear preference for a 

specific model. However, the values of statistics in general seem to be fractionally 

better compared to those of linear forecasts, with the exception of the LSTAR forecast 

for region 11 of Wales which demonstrates the least favourable statistics results across 

all the linear and non-linear forecasts, yet producing a positive trade rule result.      

 

Table 5.5. Asymmetric STAR model forecast statistics.  

 Region  ME MAE RMSE Trade 

1 North 0.0002* 0.0251 0.0331 0.0140 

2 Yorkshire and Humberside 0.0063 0.0262 0.0348 0.0125 

3 North West  0.0084 0.0177* 0.0251** 0.0147 

6 East Anglia 0.0091 0.0255 0.0308 0.0191** 

7 Outer South East 0.0059 0.0183** 0.0245* 0.0220* 

9 London 0.0056 0.0240 0.0306 0.0168 

11 Wales 0.0115 0.0256 0.0326 0.0135 

12 Scotland 0.0053** 0.0230 0.0310 0.0059 

13 Northern Ireland 0.0132 0.0247 0.0309 0.0142 

Note : * indicates the best statistic 

        ** indicates the second best statistic   
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Table 5.6. ESTAR model forecast statistics.  

 Region  ME MAE RMSE Trade 

1 North 0.0073 0.0460 0.0521 0.0097* 

2 Yorkshire and Humberside -0.0015* 0.0366* 0.0456* 0.0080 

Note : * indicates the best statistic 

 

 

Table 5.7. LSTAR model forecast statistics.  

 Region  ME MAE RMSE Trade 

1 North -0.0276 0.0805 0.1420 0.0100** 

2 Yorkshire and Humberside 0.0189** 0.0393 0.0528 0.0069 

11 Wales 0.1264 0.1997 0.3045 0.0131* 

12 Scotland -0.0021* 0.0359** 0.0432** 0.0056 

13 Northern Ireland 0.0219 0.0315* 0.0381* 0.0021 

Note : * indicates the best statistic 

        ** indicates the second best statistic   

 

 

Diebold-Mariano tests 

The Diebold-Mariano test of equal forecasting accuracy (Diebold and Mariano, 1995) is 

designed to test whether the differences in MSEs of competing forecasts are statistically 

significant. Thus, assessing whether lower values of MSEs of one forecast are 

significant enough to validate the superiority of that forecast over competing 

alternatives. The null hypothesis of equal forecast accuracy is tested against an 

alternative hypothesis using the following test statistic:   
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'� = ��n=>̅?����>̅ 
(5.24)  

 

where >̅ is the mean of the coefficient >� which is the difference between the sets of 

squared forecast errors from two competing models, >� = E��� − E��� , and �n=>̅? is an 

estimate of the variance of >̅. 

The modified Diebold-Mariano statistic by Harvey et al. (1997) is more robust for two 

or more steps ahead and characterised with the ease of using the Student’s t-test critical 

values as opposed to the standard distribution statistics (5.25).  

 

'�∗ = �	 + 1 − 2ℎ + 	��ℎ ℎ − 1#	 ���� '� 

(5.25)  

 

where '� is the original Diebold-Mariano test statistic for ℎ steps ahead forecast for time 

t.  

The results of both Diebold-Mariano tests, the standard and modified, performed on the 

data revealed no significant statistics, thus rejecting ] of equal forecasting accuracy for 

all series suggesting that the differences in MSEs between competing forecasts are 

statistically insignificant (Table 5.8). 
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Table 5.8. Diebold-Mariano test statistics.  

 Region   DM statistic DM modified  

     

1 North RW/ linear 

RW/ AESTAR 

RW/ ESTAR 

RW/ LSTAR 

Linear/ AESTAR 

Linear/ ESTAR 

Linear/ LSTAR 

-0.0769 

0.0333 

-0.1333 

-0.1692 

0.9375 

-0.0364 

-0.1692 

-0.0767 

0.0332 

-0.1330 

-0.1688 

0.9353 

-0.0363 

-0.1688 

     

2 Yorkshire and Humberside RW/ linear 

RW/ AESTAR 

RW/ ESTAR 

RW/ LSTAR 

Linear/ AESTAR 

Linear/ ESTAR 

Linear/ LSTAR 

-0.0843 

0.3076 

0.0869 

0.0078 

0.5000 

0.1052 

0.0263 

-0.0841 

0.0306 

0.0867 

0.0078 

0.4988 

0.1050 

0.0262 

     

3 North West  RW/ linear 

RW/ AESTAR 

Linear/ AESTAR 

-0.1876 

0.0217 

0.0688 

-0.1871 

0.0216 

0.0686 

     

6 East Anglia RW/ linear 

RW/ AESTAR 

Linear/ AESTAR 

-0.0400 

0.2272 

0.2272 

-0.0399 

0.2267 

0.2267 

     

7 Outer South East RW/ linear 

RW/ AESTAR 

Linear/ AESTAR 

-0.0765 

0.4666 

0.4666 

-0.0763 

0.2267 

0.2267 

     

9 London RW/ linear 

RW/ AESTAR 

Linear/ AESTAR 

-0.1135 

0.4000 

0.4000 

-0.1132 

0.3990 

0.3990 

     

11 Wales RW/ linear 

RW/ AESTAR 

RW/ LSTAR 

Linear/ AESTAR 

Linear/ LSTAR 

-0.1000 

0.2857 

-0.1397 

0.4000 

-0.1353 

-0.0997 

0.2850 

-0.1394 

0.3990 

-0.1350 

     

12 Scotland RW/ linear 

RW/ AESTAR 

RW/ LSTAR 

Linear/ AESTAR 

Linear/ LSTAR 

-0.1192 

0.2000 

-0.1168 

0.1666 

-0.0916 

-0.1189 

0.1995 

-0.1166 

0.1666 

-0.0913 

     

13 Northern Ireland RW/ linear 

RW/ AESTAR 

RW/ LSTAR 

Linear/ AESTAR 

Linear/ LSTAR 

-0.0520 

0.1348 

-0.1923 

0.1111 

-0.1481 

-0.0518 

0.1345 

-0.1918 

0.1108 

-0.1478 

  

Note: RW – random walk 
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Forecast encompassing tests 

The forecast encompassing procedure tests whether two competing forecasts contain 

different additional information that is required to forecast the main variable. If one 

model does not contain such information it is said to be encompassed in the forecast 

produced by the other model. In the situation of both models contributing independent 

information towards forecasting of the variable, a combination of those forecasts might 

be considered. The simple version of the forecast encompassing test regresses the 

dependent variable �� on the forecasted values from both competing models �n��},� �#
 and 

�n��},� ��#
 (5.26). The null hypothesis of the first model’s forecast encompassing the forecast 

of the second, �� = 1, is tested against the alternative of �� = 0. The values of the 

coefficients will be reversed in the case of the first model’s forecast being encompassed 

in the second, �� = 1, �� = 0.  Any other outcome of the test will signify that neither of 

the models encompass the other. Non-zero values of coefficients will indicate that both 

models contain independent information and are required for the forecasting of the 

dependent variable, while zero coefficients will suggest that neither of the models 

contain information relevant to forecasting the variable.  

 

�� = ���n��},� �# + ���n��},� ��# + �� (5.26)  

 

In addition, this paper will run the encompassing test of forecasting errors whereby 

regression is performed on the forecasting errors of the competing models, based on the 

approach adopted by Shiller (1990).  
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�� − ���} = � + M�Z�n��} �# − ���}[ + M�Z�n��} ��# − ���}[ + �� (5.27)  

 

where �n��} �#
 is the forecast of the dependent variable �� made from one of the competing 

forecasting models, and �n��} ��#
 is the forecast of �� from the alternative forecasting model. 

The null hypothesis of the forecasts made by the first model contain no relevant 

information for forecasting the, ��,  ]: M� = 0#, which is tested against the hypothesis 

that the alternative model contains no relevant information (]�: M� > 0). This study will 

not exercise the restriction of the sum of the coefficients being equal to unity, since, 

according to Fair and Shiller (1990), both models generating noise will result in both 

coefficient estimates to be zero, while both models containing independent information 

will generate the sum of coefficients equal to two. Table 5.9 demonstrates the results of 

forecast encompassing tests of STAR models against linear alternatives, random walk 

and linear regression forecasts.  
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Table 5.9. Forecast encompassing tests.  

  Forecasting encompassing Forecasting errors 

encompassing 

  t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

t-statistic for M� 

1 North      

RW/ AESTAR 

RW/ ESTAR 

RW/ LSTAR 

RW/ Linear 

1.0426 

1.5387 

1.4295 

2.1478* 

4.8563* 

0.6945 

-0.5407 

1.5688 

-144.7705* 

-65.4633* 

-168.3195* 

-85.4498* 

0.0014 

-4.7573 

3.5231* 

-11.3113 

     

Linear/ AESTAR 

Linear/ ESTAR 

Linear/ LSTAR 

-0.3738 

-0.0976 

-0.0672 

4.9105* 

0.0463 

0.1017 

-21.6589* 

-5.0849* 

-23.4243* 

-0.6897 

-1.9252 

-1.1878 

      

2 Yorkshire and Humberside     

 RW/ AESTAR 

RW/ ESTAR 

RW/ LSTAR 

RW/ Linear 

-1.0135 

0.5995 

0.9693 

0.1307 

1.5819 

3.3491* 

2.9024* 

-0.1235 

-134.9165* 

-85.9780* 

-94.5831* 

-36.1964* 

-5.9216 

-1.4965 

-2.6104 

-7.5644 

     

Linear/ AESTAR 

Linear/ ESTAR 

Linear/ LSTAR 

-0.4636 

-0.9814 

-0.5456 

3.7033* 

3.4550* 

2.7842* 

-13.7166* 

-23.2782* 

-24.5957* 

1.9211 

-0.0797 

-0.0637 

      

3 North West     

 RW/ AESTAR 

Linear/ AESTAR 

RW/ Linear 

-0.8272 

1.3791 

4.8400* 

0.7666 

0.2746 

4.1662* 

-82.2837* 

-2.7083* 

-101.2296* 

-6.4145 

-1.8338 

-15.2907 

      

6 East Anglia     

 RW/ AESTAR 

Linear/ AESTAR 

RW/ Linear 

-0.1541 

-0.1544 

-0.6154 

5.0364* 

5.0964* 

-1.0360 

-85.0743* 

-76.7021* 

-20.8630* 

-1.1247 

-0.4764 

-21.4799 
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7 Outer South East      

 RW/ AESTAR 

Linear/ AESTAR 

RW/ Linear 

0.3688 

-0.1569 

0.2036 

8.0841* 

7.9797* 

-0.8351 

-78.9998* 

-120.8161* 

-9.9626* 

-0.3978 

-1.0119 

-19.4126 

      

9 London     

 RW/ AESTAR 

Linear/ AESTAR 

RW/ Linear 

0.0707 

-0.7560 

1.1888 

6.4999* 

6.4542* 

-1.6545 

-59.6645* 

-119.1018* 

-0.8286 

-0.0500 

-0.5699 

-12.8206 

      

11 Wales     

 RW/ AESTAR 

RW/ LSTAR 

Linear/ AESTAR 

Linear/ LSTAR 

RW/ Linear 

1.2857 

1.8069 

-1.4094 

-0.9137 

1.8912 

4.8765* 

0.3767 

5.2555* 

0.3474 

1.0751 

-68.6186* 

-123.8822* 

-14.3058* 

-27.4761* 

-73.89599* 

-0.3374 

-0.1672 

-2.1701 

-1.4671 

-14.9462 

      

12 Scotland     

 RW/ AESTAR 

RW/ LSTAR 

Linear/ AESTAR 

Linear/ LSTAR 

RW/ Linear 

0.4136 

1.2209 

-0.1514 

-1.5103 

0.4185 

2.6716* 

-0.0722 

2.4750* 

0.1072 

-0.9702 

-65.3268* 

-64.4207* 

-28.2226* 

-20.7665* 

-32.9223* 

1.2485 

-0.8648 

-6.7647 

-1.6093 

-8.4447 

      

13 Northern Ireland      

 RW/ AESTAR 

RW/ LSTAR 

Linear/ AESTAR 

Linear/ LSTAR 

RW/ Linear 

1.4668 

1.9974* 

1.0767 

1.3695 

0.9821 

-0.2465 

-2.1008 

0.1668 

-1.8060 

0.1582 

-13.9527* 

-30.9479* 

-13.4565* 

-18.8365* 

-9.4777* 

-5.0907 

0.4612 

-11.9912 

-1.5611 

0.5966 

 

Note: * significant at 5% 

         RW – random walk 
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The results of forecast encompassing tests (Table 5.9) reveal that STAR models for 

most of the series encompass linear alternatives, with the exception of Northern Ireland 

(Region 13) where random walk encompasses the LSTAR model. According to the 

results of the forecast encompassing test for the North (Region 1) AESTAR is not 

encompassed by neither random walk nor linear regression models, while linear 

regression is encompassed by the random walk; for Yorkshire and Humberside (Region 

2) AESTAR, ESTAR and LSTAR models encompass both linear alternatives; both 

random walk and linear regression forecasts seemed to contain independent information 

for the North West (Region 3); AESTAR model forecast was not encompassed by 

neither linear alternative for series of East Anglia (Region 6), Outer South East (Region 

7), London (Region 9), Wales (Region 11), and Scotland (Region 12); only the random 

walk seems to contain an independent information toward the forecasting of Northern 

Ireland (Region 13) series.    

The forecasting errors encompassing test, on the other hand, suggests that none of the 

STAR models encompass linear alternatives. In addition, the tests indicate that for most 

series random walk and linear models forecasts errors explain the forecasting variable, 

with the exception of London (Region 9) where neither the random walk model nor 

linear regression forecasting errors seem to contain independent information for 

forecasting the dependent variable.   

By illuminating the models that contain information which is encompassed in other 

forecasts, assuming it can be utilised by replacing such forecasts with the superior 

alternatives, the combination of a random walk and STAR models can be confirmed as 

the optimal forecast encompassing the information contained in the linear regression 

forecasts for all series.  
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Combined forecast 

Subsequent to the results of the forecast encompassing tests and as an additional mode 

of testing forecasting accuracy, all series for house prices were forecasted using 

combined forecast methodology. The forecasts are combined using the simple method 

of arithmetic average of combining weights which has been proven to be robust and 

reasonably accurate (5.28).  

 

1w �# = 1% 4 1�
-

�9�  

(5.28)  

 

where 1w �# is the equal weighting combined forecast of  1�, 1�, … , 1- which are the 

forecasts for the dependent variable, �. The methodology is applied to generate 

forecasts in combinations of the random walk, linear regression and STAR models; 

random walk and STAR model; and random walk and linear regression.  
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Table 5.10. Combination forecasts statistics. 

 Region  ME MAE RMSE Trade 

1 North     

 RW/ Linear/ AESTAR 

RW/ Linear/ ESTAR 

RW/Linear/ LSTAR 

RW/ AESTAR 

RW/ ESTAR 

RW/ LSTAR 

RW/Linear 

0.0094* 

0.0268 

0.0805 

0.0179** 

0.0303 

0.0391 

0.0229 

0.0417 

0.0431 

0.0970 

0.0267* 

0.0372** 

0.0620 

0.0406 

0.0506 

0.0520 

0.1707 

0.0330* 

0.0455** 

0.1057 

0.0487 

0.0120** 

0.0004 

-0.0011 

0.0131* 

0.0077 

-5.02E-05 

0.0056 

      

2 Yorkshire and Humberside     

 RW/ Linear/ AESTAR 

RW/ Linear/ ESTAR 

RW/Linear/ LSTAR 

RW/ AESTAR 

RW/ESTAR 

RW/ LSTAR 

RW/Linear 

0.0066** 

0.0124 

0.0149 

0.0062* 

0.0129 

0.0142 

0.0196 

0.0320** 

0.0352 

0.0368 

0.0289* 

0.0329 

0.0343 

0.0392 

0.0415** 

0.0445 

0.0471 

0.0377* 

0.0418 

0.0435 

0.0484 

0.0134 

0.0082* 

0.0088** 

0.0141 

0.0095 

0.0124 

0.0129 

      

3 North West      

 RW/Linear/ AESTAR 

RW/ AESTAR 

RW/Linear 

0.0163** 

0.0154* 

0.0226 

0.0260** 

0.0225* 

0.0309 

0.0334** 

0.0295* 

0.0389 

0.0140** 

0.0132 

0.0154* 

      

6 East Anglia     

 RW/Linear/ AESTAR 

RW/ AESTAR 

RW/Linear 

0.0148 

0.0089** 

0.0088* 

0.0331** 

0.0240* 

0.0469 

0.0395** 

0.0296* 

0.0537 

0.0129* 

0.0183 

0.0130** 

      

7 Outer South East     

 RW/Linear/ AESTAR 

RW/ AESTAR 

RW/Linear 

0.0050** 

0.0045* 

0.0095 

0.0210* 

0.0173* 

0.0455 

0.0272** 

0.0236* 

0.0525 

0.0192** 

0.0216* 

0.0120 

      

9 London     

 RW/Linear/ AESTAR 

RW/ AESTAR 

RW/Linear 

0.0021* 

0.0030** 

0.0154 

0.0232** 

0.0215* 

0.0346 

0.0291** 

0.0274* 

0.0410 

0.0155 

0.0172** 

0.0076* 

      

11 Wales     

 RW/Linear/ AESTAR 

RW/ Linear/ LSTAR 

RW/ AESTAR 

RW/ LSTAR 

RW/Linear 

0.0092* 

0.0248 

0.0114** 

0.0266 

0.0233 

0.0287** 

0.0420 

0.0261* 

0.0379 

0.0370 

0.0364** 

0.0600 

0.0332* 

0.0525 

0.0462 

0.0098 

0.0092 

0.0142** 

0.0118* 

0.0094 

      

12 Scotland     

 RW/Linear/ AESTAR 

RW/ Linear/ LSTAR 

RW/ AESTAR 

RW/ LSTAR 

RW/Linear 

0.0063** 

0.2327 

0.0080 

0.0217 

-0.0019* 

0.0382 

0.2439 

0.0350** 

0.0333* 

0.0492 

0.0483 

0.2706 

0.0461** 

0.0420* 

0.0582 

0.0034 

0.0037** 

0.0070* 

0.0032 

0.0004 
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13 Northern Ireland     

 RW/Linear/ AESTAR 

RW/ Linear/ LSTAR 

RW/ AESTAR 

RW/ LSTAR 

RW/Linear 

0.0265 

0.0186** 

0.0156* 

0.0186** 

0.0201 

0.0345 

0.0331 

0.0256* 

0.0271** 

0.0282 

0.0431 

0.0435 

0.0323* 

0.0342** 

0.0347 

0.0118* 

0.0093 

0.0143** 

0.0087 

0.0039 

      

Note : * signifies the value of the best statistic 

 

Following the results of combined forecasts statistical tests (Table 5.10), on the whole, 

combination forecasts containing the asymmetric ESTAR (AESTAR) model seem to 

produce the best performance in terms of forecasting accuracy as well as generating the 

highest trade rule results. Combinations of linear and random walk models do not 

generate even a marginal preference in comparison to other combinations of forecasts. 

Instead these are over performed by combinations of linear, random walk and STAR-

type models. Moreover, overall, taking into account test statistics for all the forecasts, 

including linear and non-linear individual forecasts, asymmetric ESTAR (AESTAR) 

model forecasts and a combination of random walk and AESTAR models seem to 

produce most favourable statistics including ME, MAE, RMSE and trade rule. For nine 

individual non-linear stationary house prices AESTAR and combinations including 

AESTAR model generated the best statistics for forecasting accuracy test.     

To conclude, based on the results obtained in this chapter, the preferred forecasting 

model for linearly stationary series is the random walk model (East Midlands, Region 4; 

West Midlands, Region 5; Outer Metropolitan London, Region 8; South West, Region 

10; UK, Region 14), whereas the preferred forecasting model for non-linear stationary 

series is the AESTAR model (North, Region 1; Yorkshire and Humberside, Region 2; 

North West, Region 3; East Anglia, Region 6; Outer South East, Region 7; London, 

Region 9; Wales, Region 11; Scotland, Region 12; Northern Ireland, Region 13). The 
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AESTAR model generates the best forecasting tests statistics and highest trade rule 

results across the regions characterised by non-linear dynamics, followed closely by the 

combination of random walk and AESTAR models.  

It is evident from the results presented in this chapter that house price returns are 

forecastable using a price-income ratio as a measure of affordability in order to establish 

the level of fundamental prices. In addition, the majority of the UK housing regions 

considered in this study exhibit non-linear adjustments to the equilibrium, which can be 

successfully forecasted with an application of STAR-type models, in particular 

asymmetric ESTAR (AESTAR).     

 

 

5.5. Conclusion  

 

This chapter applied the present value model and stock market approach to UK housing 

market data with the intent to carry out an econometric forecast of house price returns 

using non-linear modelling, in particular STAR-type models. Error-correction 

methodology was used to forecast house price returns using price-income ratio. The 

methodology was based on a procedure proposed by Black et al. (2005) which involved 

testing the stationarity of the price-income ratio as a measure of affordability in order to 

determine fundamental levels of house prices. Results reported by Black et al. (2005) 

found the price-income ratio to be non-stationary on the basis of the standard 

augmented Dickey-Fuller (ADF) test, which in turn suggested non-predictability of the 

house prices. However, it can be argued that such results imply that log house prices 
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and log income are simply not cointegrated with a vector N1, −1Q, rather than complete 

absence of cointegration between these variables. These results could be due to presence 

of the non-fundamental components within the price-income ratio such that the 

transversality condition used to derive the ratio might not hold. Hence, these factors 

might be the reason for linear models to fail. In addition, many researchers have argued 

in the context of the stock market that the log dividend-price ratio remains stable in the 

long-run, despite temporary deviations from the equilibrium relationship as a result of 

the presence of non-fundamental components in the linear present value model. Such 

behaviour implies the presence of non-linear dynamics within the dividend-price 

relationship. Similar dynamics are observed in the housing market in the relationship 

between house prices and real income. Furthermore, researchers attribute a non-

fundamental component to the presence of bubbles in both financial and housing 

markets, hence attempting to incorporate bubble dynamics into various non-linear 

modelling approaches (financial markets: Van Norden and Vigfusson, 1998; Bohl and 

Siklos, 2004; housing markets: Hall et al., 1997; Black et al., 2006; Goodman and 

Thibideau, 2008; Coleman et al., 2008). It must be pointed out that in most cases studies 

that intend to explain the presence of bubbles in stock prices mainly focus on so called 

‘rational’ bubbles, or as described by Evans (1991), speculative, periodically collapsing 

bubbles. However, it appears that the presence of bubbles presents researchers with 

main problems of empirical identification of bubbles and theoretical doubts of the 

existence of rational bubbles.  

Attempts to understand these concepts have led to the development of theories of 

behavioural finance, which examine the notion of market sentiment. The basis of 

behavioural finance is the argument that some financial phenomena can be understood 
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and explained assuming that some financial market participants are not fully rational 

(Barberis and Thaler, 2003). These theories particularly concentrate on the discussion of 

results of interaction between rational and irrational, or noise, traders. Behavioural 

finance theories argue that noise traders trade on the basis of predictive expectations, or 

in other words, trend-chasing. For instance, a price momentum trading strategy is based 

on the notion that the current trend in the financial market will continue. This can lead 

to investors’ underreaction to the arrival of new information (Reilly and Brown, 2003). 

However, positive news in momentum trading can lead to overreaction, so that the 

change in price will exceed the actual price required by the news.  

There is a possibility that the behavioural finance theories can be applied to the housing 

market participants, in the sense that the housing prices might also be driven by trend-

chasing activities. Moreover, Case and Shiller (2004) found that, according to their 

survey, a majority of housing market participants hold the view that the market is not 

driven by psychology, while at the same time revealing to form their investment 

decisions based on expectations and word of mouth information. However, applications 

of behavioural finance theories to housing markets are yet to be addressed in the 

literature. In contrast, housing market literature comprises of ample research into the 

subject of presence of bubbles in house prices. Parallel to the financial market, the 

housing market is characterised by specific booms and bursts dynamics, which 

differently to the stock market, are exemplified by sluggish responses and slow mean 

reversion.   

This chapter has provided an overview of academic literature on a general discussion 

and the subject of modelling of housing markets concentrating on performing a 

forecasting exercise of house price returns using non-linear models. The error-
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correction methodology was applied to real house prices and price-income ratio as a 

determinant variable. The current study employed real income as a measure of 

affordability and individual wealth as a main determinant of house price suggested by 

previous studies on housing markets (Case and Shiller, 2004; Fraser et al., 2008; Fraser 

et al., 2009). The price-income ratio used in this study was based on the ratio proposed 

by Black et al. (2005) as a measure of affordability to determine fundamental price 

levels to use in conjunction specifically with housing prices. However, distinct from the 

approach employed by Black et al. (2005) of using conventional unit root tests to assess 

stationarity of the price-income ratio, this study applies non-linear stationarity tests 

specifically designed to test non-linear STAR-type stationarity. This study presumes 

that this main distinction from the Black’s et al. (2005) approach in terms of using non-

linear unit root tests and incorporating non-linear error-correction methodology enabled 

to reveal non-linear asymmetric adjustment of the housing prices. Thus, the error-

correction methodology combined with STAR-type models was applied to quarterly 

house prices and real income data in order to generate a recursive out-of-sample one-

step ahead forecast. The results of non-linear forecasts were compared to linear 

benchmarks in the form of a random walk model and a linear regression using a number 

of tests of forecasting accuracy. The empirical results revealed that while linear models 

performed well, STAR models seemed to perform marginally better. The random walk 

model was found to produce the best forecasting statistics for five linearly stationary 

series, with the asymmetric ESTAR (AESTAR) model generating the best forecast for 

all nine non-linear stationary series.    

The objective of this study was to offer an extension of empirical evidence into non-

linear out-of-sample forecasting of house prices which appears to be lacking such type 
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of investigation. The results of this study imply that the asymmetric ESTAR (AESTAR) 

model has generated the best overall performance in out-of-sample forecasting of the 

UK house prices, thus confirming the presence of asymmetric adjustment suggested in 

previous studies (Crawford and Fratantoni, 2003; Black et al., 2006; Miles, 2008; Gao 

et al., 2009). According to the results obtained here, the asymmetry in the quarterly 

housing price time-series is apparent to the extent of being able to utilise non-linear 

AESTAR modelling. This asymmetry is consistent with the housing market being 

characterised by a slow speed of adjustment due to considerable transaction costs and 

borrowing constraints. Moreover, it is possible that the slow asymmetric adjustment is 

due to the slow reaction to market changes which can be explained by the lack of 

professional arbitragers in the housing market who would otherwise ensure the 

correction of profitable deviations from the fundamental price levels.     
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Chapter 6 
Summary and conclusion 

 

The objective of this thesis was to examine time-series forecasting methodology and to 

extend analysis of predictability of financial assets using a non-linear approach. Chapter 

2 offered an extensive literature review into time-series forecasting emphasising the 

importance of econometric modelling and forecasting techniques in a wide range of 

disciplines for varied market participants and policy-makers.  

Following a non-linear forecasting methodology described in Section 2.3, this study 

presented three empirical chapters, where Chapter 3 assessed predictability of daily 

stock returns and forecasting abilities of non-linear models; Chapter 4 focused on 

detecting and forecasting non-linear dynamics within the price-dividend relationship of 

monthly stock returns by applying non-linear error-correction framework, further 

developing the research into long-horizon predictability; and Chapter 5 extended the 

research of financial assets predictability to the housing market and applied non-linear 

equilibrium methodology to monthly house prices for a number of UK regions.    

Chapter 3 focused on examining forecasting abilities of non-linear smooth transition 

autoregressive (STAR) models using daily stock returns. Consistent with the previous 

literature (Abhyankar et al., 1995; Clements and Smith, 1999, 2001; McMillan, 2001; 

Lekkos and Milas, 2004; McMillan, 2004; Teräsvirta et al., 2005), the results confirmed 

the presence of predictability and STAR-type non-linearity within daily returns for 

FTSE, S&P, DAX and Nikkei indices. Moreover, the presence of STAR-type non-
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linearity also seems to be consistent with the notion of the presence of market frictions 

(Martens et al., 1998; Kapetanios et al., 2003; McMillan, 2005). However, while STAR 

models performed well in forecasting exercises compared to the linear benchmark in 

terms of forecasting accuracy, the random walk model seemed to outperform non-linear 

alternatives in terms of simplicity of application whilst not compromising the accuracy 

of the forecast at the same time. Thus, following the results of the Chapter 3, the 

random walk can be recommended as the preferred model for forecasting stock returns 

on the daily level in terms of the combination of model’s forecasting accuracy and its 

use in practical applications.      

Building on the present value model approach, Chapter 4 (Section 4.4) applied non-

linear error-correction methodology to forecasting the monthly price returns for FTSE, 

S&P, DAX and Nikkei indices using dividend yield and price-earnings ratio. Similar to 

the studies by McMillan and Speight (2006) and McMillan (2007), the empirical results 

confirmed non-linear predictability of monthly returns using STAR-type models. 

Determinants of the stock price, namely the dividend yield and price-earnings ratio, 

performed equally well in forecasting the returns with no clear preference for either of 

the variables. However, the best forecasting performance was achieved by a combined 

forecast of the random walk and STAR models. These results suggest that while the 

STAR models are able to capture asymmetric cyclical behaviour of returns series, 

random walk model compensates for the absence of non-linear adjustments in the 

periods of calm financial markets. Thus, for different states of the financial market 

characterised by either asymmetric cycles or periods of tranquillity, the combination of 

a random walk and non-linear STAR models forecast seems to be most preferable.  
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In addition, following research suggesting that stock predictability increases with the 

horizon (Fair and Shiller, 1990; Montgomery et al., 1998, Kim et al., 2005), Chapter 4 

(Section 4.5) included an investigation of the predictability of long-horizon stock 

returns. The study applied a buy-and-hold strategy where the stock is assumed to be 

held for periods of three, six and twelve months before selling. The approach is different 

to the previous studies in terms of applying an out-of-sample forecast, as opposed to an 

in-sample prediction. The findings confirm the suggestion of improved long-horizon 

predictability, as the forecasts generate stronger results in terms of forecasting accuracy 

compared to monthly forecasts. Moreover, similarly to the results of monthly data 

forecasts, the combination of a random walk model and non-linear STAR model 

appears to be favoured.       

Chapter 5 applied the financial market approach of the present value model to the 

housing market by utilising a non-linear error-correction methodology. The study 

approached the topic of house price predictability somewhat differently to the previous 

studies (Black et al., 2005; Black et al., 2006; Goodman and Thibideau, 2008) in terms 

of employing a non-linear framework to test for stationarity and application of STAR-

type models to an out-of-sample forecasting exercise. The results confirmed the 

presence of non-linearity within house prices. Moreover, the findings revealed the 

asymmetric ESTAR (AESTAR) model as the most successful model in terms of 

forecasting performance. The results demonstrated a clear preference for the AESTAR 

model for forecasting house price returns using the price-income ratio, hence 

confirming the assumption of slow asymmetric mean reversion of the house prices 

suggested by previous studies (Holly and Jones, 1997; Crawford and Fratantoni, 2003; 

Black et al., 2006; Miles, 2008; Gao et al., 2009).   
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Clements et al. (2004) pointed out that the ability of a model to generate a good in-

sample fit does not always translate into a good out-of-sample forecasting performance. 

In addition, Kanas and Yannopoulos (2001) highlighted the importance of including 

non-linear terms in out-of-sample forecasting in order to improve forecasting accuracy. 

Hence, this investigation focused on out-of-sample forecasting performances of non-

linear STAR-type models. It is evident that financial as well as housing markets are 

characterised with non-linear predictability with STAR-type models providing adequate 

forecasting of these dynamics. The study confirmed an increase of predictability with 

the horizon and successful application of STAR models to generate accurate forecasts. 

These findings should be of interest to policy-makers and market participants concerned 

with long-horizon economic and financial forecasts, which could assist in examining 

and predicting possible cyclical trends or the state of economy. The results also suggest 

a strong presence of asymmetry in housing markets. Following the research by Koetter 

and Poghosyan (2009), who suggested property prices as an indicator of the overall 

state of financial and banking sector stability, and Das et al. (2009) and Gao et al. 

(2009) attributing the recent credit crunch to the burst of the housing bubble, the 

importance of investigating housing market dynamics cannot be over exaggerated. 

Therefore, this study emphasises the results of house prices predictability and possible 

uses of asymmetric non-linear modelling in conjunction with financial market forecasts, 

as it is apparent that the house prices can be treated as indicators of wealth, and thus can 

be successfully utilised by policy-makers.  

The presence of non-linear dynamics within financial and housing markets is evident 

throughout the study. Despite the evidence in certain cases of linear models to generate 

equally accurate forecasts combined with the simplicity of implementation, it is 
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essential that the presence of non-linearity is not ignored. However, as pointed out by 

Chatfield (1997), there is a danger of overfitting or fitting an incorrect model due to a 

wide availability of specialised computer software. Thus, while the superiority of non-

linear models is greatly attractive, practitioners must take care when utilising complex 

models in the context of forecasting.  

In conclusion, it is worth to take into account that while econometric forecasting is an 

invaluable tool for market practitioners and policy makers, it is also, in fact, only an 

estimation of the future. Moreover, Hendry and Clements (2003) described economic 

forecasting as a mixture of science and art, while Armstrong and Fildes (2006) 

recommended an expansion of econometric forecasting techniques to other fields of 

sciences in order to improve existing forecasts by combining knowledge and 

developments in other disciplines, including medicine, geology, politics, weather and 

many others.  
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