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Abstract

In magnetised plasmas, magnetic reconnection is the potesagnetic field merging and recombination through
which considerable amounts of magnetic energy may be ctaw/arto other forms of energy. Reconnection is a
key mechanism for solar flares and coronal mass ejectiomgisdlar atmosphere, it is believed to be an important
source of heating of the solar corona, and it plays a majar molthe acceleration of particles in the Earth’s
magnetotail. For reconnection to occur, the magnetic fialgtyrin localised regions, be able to diffuse through the
plasma. ldeal locations for diffusion to occur are electuerent layers formed from rapidly changing magnetic
fields in short space scales. In this thesis we consider thesfiton and nature of these current layers in magnetised
plasmas.

The study of current sheets and current layers in two, ancemegently, three dimensions, has been a key
field of research in the last decades. However, many of thieskes do not take plasma pressure effects into
consideration, and rather they consider models of curdee¢ts where the magnetic forces sum to zero. More
recently, others have started to consider models in whielpthsma beta is non-zero, but they simply focus on the
actual equilibrium state involving a current layer and do cmnsider how such an equilibrium may be achieved
physically. In particular, they do not allow energy convensbetween magnetic and internal energy of the plasma
on their way to approaching the final equilibrium.

In this thesis, we aim to describe the formation of equilibristates involving current layers at both two and
three dimensional magnetic null points, which are speaifiations where the magnetic field vanishes. The dif-
ferent equilibria are obtained through the non-resistiyeaimical evolution of perturbed hydromagnetic systems.
The dynamic evolution relaxes via viscous damping, resglith viscous heating.

We have run a series of numerical experiments using LARE,g@drian-remap code, that solves the full
magnetohydrodynamic (MHD) equations with user controltestosity and resistivity. To allow strong current
accumulations to be created in a static equilibrium, we Isetrésistivity to be zero and hence simply reach our
equilibria by solving the ideal MHD equations.

We first consider the relaxation of simple homogeneousgitanagnetic fields embedded in a plasma, and
determine the role of the coupling between magnetic andv@dsrces, both analytically and numerically. Then,
we study the formation of current accumulations at 2D magnétpoints and at 3D magnetic nulls with spine-
aligned and fan-aligned current. At both 2D X-points and 3Mswith fan-aligned current, the current density
becomes singular at the location of the null. It is imposstblprecisely achieve an exact singularity, and instead,
we find a gradual continuous increase of the peak currenttower and small, highly localised forces acting to
form the singularity. In the 2D case, we give a qualitativeatiption of the field around the magnetic null using
a singular function, which is found to vary within the difét topological regions of the field. Also, the final
equilibrium depends exponentially on the initial plasmegsure. In the 3D spine-aligned experiments, in contrast,
the current density is mainly accumulated along and aba&uspine, but not at the null. In this case, we find that
the plasma pressure does not play an important role in thiegfipalibrium.

Our results show that current sheet formation (and prestymmabonnection) around magnetic nulls is held
back by non-zero plasma betas, although the value of thenplasessure appears to be much less important for
torsional reconnection. In future studies, we may consdaoader family of 3D nulls, comparing the results with
the analytical calculations in 2D, and the relaxation of emcomplex scenarios such as 3D magnetic separators.
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Chapter 1

Introduction

1.1 A stairway to solar magnetohydrodynamics

1.1.1 Nanautzin and the Sun

“Five worlds and five suns were created, one after the othdre first world was destroyed because its people
acted wrongfully. They were eaten by ocelots and the sumogest The second sun saw its people turned into
monkeys due to lack of wisdom. The third sun had its worldalest by fire, earthquakes, and volcanoes because
the people didn’t make sacrifices to the gods. The fourthdvperished in a flood which also drowned its sun.
Before creating the fifth world, our world, the gods met indlagkness to see who would have the honor of igniting
the fifth sun. Tecciztecatl volunteered. The gods built dikegon top of a pyramid and the volunteer prepared to
throw himself into the flames. He was dressed in beautifulrhimgbird feathers, with gold and turquoise. Four
times he tried to force himself into the suicidal fire but etioie his fear drove him back. Then the lowliest of all
the gods, Nanautzin, dressed in humble reeds, threw himszthe fire. Teccitztecatl was so ashamed that he too
jumped into the fire. The new sun rose into the sky giving tigthe fifth world”

Credit: “Fifth World” , Toltec myth. WWU Planetarium.

Toltecs dominated the central part of Mexico from centuXde Xll. They are believed to be the predecessors
of the Aztec culture, who thought of them as their wise araresMost of the information that we now have about
the Toltecs comes embedded in their myths, in which, as m#rer givilizations from the past, they recognised
the Sun as a powerful divinity, able to provide the Earth vhigat and light.

ﬁeﬂ‘_ﬁ,
(,) > a "’;‘,‘; Figure 1.1: Nanautzin in the flames
( s b (0 Nanautzin was known as the Scabby
(Zf)ctlb\{f" One, and was the ugliest and smallest
{:,(.\:f]‘s],) of all gods, but with a modest courage,
N~ nonetheless. Credit: nativeweb.org.
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What the Central American natives didn’t know is the trueunaiof what Nanautzin started by jumping into
the sacred fire and therefore creating our Sun. He would heee,lwithout doubt, a great alchemist, although his
humility would not have let him think about lead and gold, bleast, not before having had control over the most
basic of the nuclear fusions: from single protons.

So, our humble Sun, being a relatively small young star, i8gyed continuously by nuclear fusion happening
in its core, mainly combining two pairs of ionised hydrogen (protong)sptwo electrons to create one alpha
particle. This alpha particle is no more than a nucleus ofufel4, containing two protons and two neutrons. Plus
some extra energy is released in the form of 6 photons of glhgy in the range of gamma rays. Nowadays these
reactions are responsible for ab&at of the total nuclear energy produced in the Sun. The oth&f is due to
slightly heavier elements, with which Nanautzin would hgeae a little step further on his alchemy project, such
us Helium, Beryllium and Lithium. For all these reactionshppen, the Sun’s core needs to have a temperature
of about 15 million degrees. Gravitational attraction ispensible for this, pulling the matter inwards, and thus
building the required pressures and temperatures.

The gamma ray photons that are created in the core of the &ual trut through theadiative zoneHere, they
are absorbed and re-emitted, “bouncing around” for sevaitibn years. Thisradiative transferof the energy
causes the gamma rays to lose energy such that by the timestheythe top of the radiative zone the photons are
now in the visible range. Above, in ttnvective zondarge parcels of hot plasma move outwards carrying the
energy efficiently to the surface, where they cool beforeiogrback down again. The radius of the core is around
0.25 times the total radius of the Sufk (R covering the core, radiative and convective zones), thatiad
zone is aboud.45 R, and the thickness of the convective zone.BR, (see Figure 1.2). The layer that separates
the radiative and the convective zones istéehocline

Why there exists a region within the Sun’s interior in whiabngection dominates, making the transfer of
energy much more efficient, is due to the high gradients otlleemal quantities, temperature in particular. At
a certain height, the rapid changes of these gradientseddugs the heating from below, drive instabilities in
the density of the matter which ends up rising by buoyancyat T theSchwarzschild criteriorf stability for
convective flows.

Finally, after having reached the surface of the Sun, mosheflight is allowed to escape in the planetary
system, arriving at the Earth in the perfect conditions Matautzin would have liked for life and reason to exist.

©

Around the same time that the Toltecs were imagining thdly dgity jumping into the fires at the beginning
of times, other civilizations were observing the Sun at thieeoside of the World. During a solar eclipse on 22
December 968, in Constantinople, the Byzantine historiem Riaconus wrote in thAnnales Sangallenses
“... at the fourth hour of the day ... darkness covered theleand all the brightest stars shone forth. And it was
possible to see the disk of the Sun, dull and unlit, and a didfeeble glow like a narrow band shining in a circle
around the edge of the disk”

After the energy coming from the Sun’s core reaches its serféhis energy has to pass through the solar
atmosphere. Most of the radiation emitted from the Sun cdnoes thephotospherea thin layer below which it
is completely opaque, so it is usually understood as the soféace. Although most of the photons cross the solar
atmosphere without any effect, some of them do not.

During a solar eclipse in 1868, a deep red emission from theratmosphere was registered due to the
emission of the Hydrogen alpha spectral line. This emissane from the layer above the photosphere, named,
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g % A ' Waves
.\Q“ :\: .‘

L 7 .
i d"Rald/i/za:t?i\ie OO%?%

O EIT 284

(Low Corona)

Figure 1.2: The overall structure of the Sun, with the siZgb® various regions and their temperatures (in degrees
K) and densities (ikgm—3). The thicknesses of the photosphere and chromospher@tie scale. The image

of the photosphere is from the indicated MDI instrument (Milson Doppler Imager), taken in the continuum
near the Ni | 6768 nm line. The high chromospheric and coronages are from EIT (Extreme ultraviolet Imager
Telescope), taken at 304 and 284 Angstroms respectivebgésare courtesy of SOHO (SOlar and Heliospheric
Observatory). Figure based on: Priest (1982), Fig. 1.1.

by the English astronomer Sir Joseph Norman Lockyer (1888}, as theehromospherewhich, unless the disk
of the Sun is covered, for example in an eclipse, is not ptessibsee with a naked eye, because of the strong
emission coming from the photosphere.

This glow described by Diaconus is probably the oldest sxfee to thesolar corona which extends to the
Earth and far beyond. Like the chromosphere, it can only Is=onked when the strong emission from the pho-
tosphere is blocked by natural or artificial manners (Figlu®. Last, but certainly not least, in between the
chromosphere and the corona, there exists a very narrowdajled thetransition region

Common sense suggests that the temperature of the Sun slexBEsa0Ne moves away from the core, and that
it keeps decreasing throughout the solar atmosphere. Ttesfatement is initially right, with the temperature
decreasing from.5 x 107K in the core, to about600K at the bottom of the photosphere, and abti(0 K
at the top of the photosphere. But in 1940, when the Swedigmtsst Bengt Edlén (1906-1993) analyzed the
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Figure 1.3: This image of the solar corona contains a colerlay of the emission from highly ionised iron lines

and white light taken of an eclipse in 2008. Red indicates iiwe Fe XI 789.2 nm, blue represents iron line Fe
X1l 1074.7 nm, and green shows iron line Fe XIV 530.3 nm. Tikighe first such map of the 2D distribution of

coronal electron temperature and ion charge state. Crddtibal et al. (2010)

spectral lines from the solar corona, it was found that tHess were produced by highly ionised elements at
temperatures of0° K. After reaching its minimum value at the photosphere, theperature rises slowly through
the chromosphere, and then extremely quickly within thedition region, reaching temperatures of more than a
million degrees in the low corona. Further out from the lowata, the temperature starts decreasing again slowly
as the corona expands throughout the planetary systene aslér wind

The mechanisms to explain the heating of the chromosphedreanna are yet not well understood. Magnetoa-
coustic waves are believed to come out from the convectioe zdamping their energy and rising the temperature
to chromospheric levels (e.g. Osterbrock, 1961; Narain dimdschneider, 1996). The sudden increase of tem-
perature observed in the transition region is mainly belieto be a consequence of the release of energy stored
by highly dynamic magnetic fields (e.g. Walsh and Ireland)2Mood, 2010). But despite the extremely high
temperatures of the corona, its density is so low that it$ beatent is fairly negligible, i.e. a human body having
a bath in the solar corona would freeze anyway.

Throughout the years, astronomers of many civilizationgtlabserved temporary dark spots on the surface of
the Sun. Early explanations suggested that these wereatgrafsther planets. The first record of the observation
of sunspotscomes from the Chinese astronomer Gan De, in 364 BC, but itakdise beginning of tha7th
century when three astronomers independently pointecgtadepe at the Sun and discovered that those spots were
structures on the surface of the Sun. The astronomers wdile@@alilei (1564-1642), Johann Fabricius (1587-
1616) and Christopher Scheiner (1573-1650). Their tragkiermitted the astronomers to calculate the rotation
period of the Sun, and their appearance and disappearaecéooger periods showed how the Sun changed its
activity in a defined cycle of 11 years. Galileo guessed thasgots should be clouds floating over the Sun'’s
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SOHO EIT 304

SOHO MDI Continuum SOHO MDI Magnetogram

Figure 1.4: SOHO images from (left) MDI continuum, (middMpPl magnetogram and (right) EIT 304, from
2002, around the solar maximum of cycle 23. The magnetoghaws line-of-sight magnetic field at the photo-
spheric level. White is north polarity (magnetic field liqesinting outwards), and black is south polarity (magnetic
field lines pointing inwards). Images are courtesy of SOHOIMDT.

Figure 1.5: SOHO MDI magnetogram combined
with a magnetic field extrapolation in the low so-
lar corona, using the Potential-Field Source-Surface
(PFSS). Credit: NASA/Goddard Space Flight Center
Scientific Visualization Studio.

2000 Jul 14 00:55:00

surface, which would cover the light coming from the Sun.

In 1908, the American solar astronomer George Ellery Ha8$811938) discovered their true nature as mag-
netic structures on the Sun (Figure 1.4). He did the first measents of magnetic fields out of the Earth, in
sunspots. He also attempted to detect a general solar nagelet, about which he had speculated a dipole-type
field such as the one of a magnetised sphere. His first attegapgtsa very weak magnetic field with which he
could conclude nothing, butin 1912, Hale was able to obsiery&un’s magnetic field with better instrumentation,
and found the dipole structure that he had speculated.

Soon, magnetic fields became a key unavoidable issue fangofaics. The Sun appeared to have an extremely
complex and highly changing magnetic field, both in small @nge scales (Figures 1.4 and 1.5). These magnetic
fields are created by the internal rotation of the ionisedig#se interior of the Sun which acts as a giant magnetic
dynamo. The solar 11-year cycle is a magnetic phenomenomvnDo the convection zone, the Sun shows a
differential rotation That is, the solar gas rotates with a speed that is maximuheatquator, and decreases as
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one moves up or down to the poles. The movements of the edalatones drag the originally poloidal north-south
orientated magnetic fields and wrap them around the Bmega effegtproducing toroidal magnetic fields. After
this process, the toroidal magnetic fields exhibit highlysted flux tubeswhich may emerge to the surface by
buoyancy &élpha effec}, in the form of giant arcades. Some of these strong magfietitcubes are able to inhibit
the bulk motions of the plasma in the convection zone (whanycthe energy out from the radiation zone). Thus
they produce regions with lower temperatures than thenosundings, and hence, lower emission, i.e. they appear
as dark spots in the photosphere. Magnetic sunspots terahie n pairs with positive and negative polarities,
where positive means magnetic field pointing out of the Sad,reegative, pointing into the Sun, also referred as
to “north” and “south” polarities, respectively.

Once in the solar atmosphere, the strong magnetic fieldsngpfrom the interior undergo all kinds of strong
chaotic interactions, giving rise to enormous explosiverds, called solar flares, which release huge amounts
of energy, and can cause “solar tsunamis”, vast plasma amuhetia waves that expand over the whole solar
disk, discovered in 1997 by SOHO (Narukage et al., 2002) coelerate massive numbers of particles out into
the interplanetary medium. After most of the magnetic figddttcauses these big magnetic structures in the
atmosphere is diffused away, the Sun recovers its origiakdigal configuration, but with a reversed polarity of
the magnetic field. This whole big scale process is called&tings magnetic cycle. However, even when the large
scale magnetic field in the Sun has a poloidal configuratiois (§ known as thguite Sui, there is a permanent
turbulent magnetic field of local character which is resgolesfor many “micro-events” of energy release, and is
regenerated by amall scale dynamdriven by the convection movements of the plasma below the sarface
(Petrovay and Szakaly, 1993).

The cycle of magnetic activity and of sunspots on the Sun Bagmately 11 years. Hence, the complete
magnetic cycle, including the polarity reversal, is apjpnuately 22 years.

1.1.2 About magnetism

“A lodestone attracts a needle”This has long been a well know fact, even when there was ntaeagon for

it. A lodestone is a naturally magnetised piece of the mimaegnetite. It was during the Qin dynasty (221-206
B.C.), in China, when it was first noticed that a lodestonedieeesuspended so that it could turn, would always
point in the same fixed direction, to the magnetic north (aitBppole. These directions were noted to very closely
relate to the cardinal points given by astronomy. Some c&#tlater, again in China, the compass was first used in
navigation by Zheng He (1371-1435), and it soon became alwade used artifact. At the time, the reason why
it worked was unknown. Some thought it was the actual posdaisthat was attracting the needle, others thought
it was some kind of magnetic island at the Earth’s poles.

The English physicist William Gilbert (1544-1603) publésha large work on magnetism, magnetic bodies and
the great magnet of the Earth, being the first to argue thateheer of the Earth contained iron, making the Earth
a magnet itself, explaining the reason why compasses biaeh.

In 1820, the Danish physicist Hans Christian Oersted (1785t) was giving a science demonstration to some
friends and students about electric currents, and alsoedaontshow some experiments on magnetism for which
he needed a compass. While performing his electric demetitir he noticed how every time the electric current
was switched on, the needle of the compass moved. He saimhgattthe time and finished his demonstration, but
in the following months he tried hard to explain the behavidithe needle of the compass would orientate itself
perpendicular to the electric current flowing along a wirallgkily for him, he could not find an explanation, and
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had to content himself publishing just the results he foundhe coming years of the same century, other scien-
tists, in particular, André-Marie Ampere (1775-1836)avlichael Faraday (1791-1867), kept doing experiments
relating electricity and magnetism.

Shortly after the experiments of Oersted, that same yeap&mdiscovered that moving electric charges create
a magnetic field, which is perpendicular to the movement efdharges. The magnetic field wraps around the
electric current in circles, and it is related to the elecfigéld by Ampeére’s law, which states that the line integral
of the magnetic field around a closed path equals the elenfri@nt times a constant known as the magnetic
permeability,.

Around 1834, Faraday discovered electromagnetic indongsitating that a changing magnetic field induces an
electric field perpendicular to it. Faraday introduced tbaecept of magnetic field lines, which he called “lines
of force”. Similar to the velocity streamlines that are twlled by the particle of a fluid in motion, a magnetised
needle will always point along the field lines.

In the same way that electric fields, discovered by JohanhReiadrich Gauss (1777-1855), can be generated
by isolated charges, a magnetic field must be generated byodedionfiguration, which appears like a positive
and negative charge “inseparably bound together”. Thezenarmagnetic monopoles, which, in mathematical
language is transcribed as the divergence of the magndtcefipials zero. Gauss'’s law of electricity shows how
the divergence of the electric field is proportional to thectlic charge. By comparison, there does not exist such
thing as a magnetic charge.

Ampere was the first to notice that two electric currentsatected if running in parallel, and repelled if they
are antiparallel. This force is perpendicular to both thegynaic field,B, and the velocity of the electric current
carriersv, and has the formv x B (in mks units), where is the electric charge. If we also have an electric field,
E, the total force is théorentz forceF = ¢(E + v x B).

Finally, despite the rejection of the ideas of Faraday’ssif force by many scientists of the time, mainly
because of lack of mathematical formulation, the Scottisisgrist and mathematician James Clerk Maxwell
(1831-1879) took Faraday’s ideas and Ampere discovesias put all the theory of electric and magnetic fields
together into a quantitative electromagnetic theory, fdating what we nowadays know Baxwell equations for
electromagnetismrhese are described in Section 1.2.1.

Some years later, the theory of special relativity of Alleiristein (1879-1955) provided more of an explana-
tion to that “field generated by moving charges”, found olagonally, but somehow hard to assimilate, known
as a magnetic field. The defining postulate of special retgtis that physics must be consistent in every “frame
of reference”, defined by an observer moving at a certainoigloespect to others. If we consider the experiment
of a long wire carrying an electric current, and a negativargh moving parallel to it at the same velocity, then in
the “lab frame”, the moving charge is attracted to the wirgh®ymagnetic field generated by the current. Now, for
an observer that moves together with the electric chargs there is no magnetic force! Instead, in the charge’s
frame of reference, there is an attractive electric fieldm8omes, what looks like a pure magnetic field in one
frame of reference, looks like a pure electric field in a diigt one.

1.1.3 lonised gases

In 1927, the American scientist Irving Langmuir (1881-195fiidied electronical devices based on highly ionised
gases for General Electric Co. Perhaps, the way in whicheleatrified fluid carried the electrons and the ions
reminded him of the way the blood fluid carries its red and @hirpuscles. Whatever the reason, Langmuir took
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Figure 1.6: Ranges of temperature and electron densityef@ral laboratory and cosmic plasmas and their char-
acteristic physical parameters: Debye lengih plasma frequency,e and number of electron¥, in a Debye
sphere. Based on: Bittencourt (2004), Fig. 2.

the word given around one hundred years earlier by the Czexhaal scientist Johannes Purkinje (1787-1869) to
that clear blood liquidplasma and called an electrified fluid by the same name.

Unlike most people tend to think, a plasma cannot be quiterstood ashe fourthstate of matter. Liquid,
solid and gas states are based on intermolecular relats)stnd their change of phase is well defined at a constant
temperature for a given pressure, for each of the elementatimre. The change to a plasma, on the other side,
is necessarily an ionization process, which can be eithtdiatise or collisional, and will not happen at a fixed
temperature, although the number of ionizations will disedepend on the temperature.

Plasmas conduct electric currents, and are strongly &ffieay magnetic fields. There are four main criteria
for defining a plasma, described in Bittencourt (200Byndamentals of plasma physicsl) A plasma must be
macroscopically neutral, containing the same overall nemalh negative and positive charges. 2) A plasma must
follow collective phenomena, and its length-scales nedzktmuch larger than the minimum radius of neutrality,
known as théebye lengthnamed after the Dutch scientist Peter Debye (1884-1968) experimentally discov-
ered that this length of neutrality must be proportional tg? andn;m, whereT andn. are the temperature
and electron density. 3) A plasma must have a large amoumn¢efdiectrons inside the Debye sphere in order to
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follow a statistic behaviour. 4) A plasma must have a low hinyof collisions with neutral particles. The eventual
localised overdensities of electrons in the plasma caus®#gcillate with a given frequency, namely, ttengmuir
frequencywhich only depends on the electron density. This shoulddmsiderably larger than the frequency of
collisions with neutral particles for the plasma not to behas a normal, i.e. non ionised, fluid.

After the studies of relatively cool and dense plasmas orhizanis field of research expanded in several
directions. Around the same year that Langmuir came up \kightérm “plasma”, the English physicist Edward
Victor Appleton (1892-1965) confirmed the existence of ea§pha roof” above the Earth’s atmosphere, which is
ionised by the high energy radiation coming from the SunMath low enough density so that collisions are not
frequent enough to recombine the ions. This layer is caleddnosphere Since it has a strong influence on
the propagation of radio waves, it has been used to studyietyaf properties of plasma waves. Furthermore,
the possibility of a new source of energy from nuclear reaxtibecame quite popular after the creation of the
atomic bomb. These reactions require quite high temperatso scientists have had to deal with the problem of
trapping and controlling a plasma using magnetic fields.alginin 1958, observations from satellites revealed
the radiation belts in the Earth’s magnetosphere, and diedahe birth of space plasma physics. This branch of
plasma physics has utilised the knowledge of magnetic tngpgf plasmas from fusion research, of plasma waves
from ionospheric physics, and must include magnetic psesfor energy release and particle acceleration.

Here, on Earth we struggle to confine a plasma and keep it wuddrol, due to the cool temperatures and
high densities that we have, but as one moves out into spksnas exist in almost all astrophysical objects. In
particular, the temperatures in the solar corona are suathathits atoms appear ionised, and those atoms with
many electrons have lost several or all of them. For instacicaracteristic light has been detected in the corona
from iron which has lost 15 electrons (from a spectral lind3abnm observed over active regions at the corona, at
atemperature df x 10°K). As one moves away from the low corona, high velocities atmfl related to the high
temperatures of the corona, making the gravitational &ffetthe Sun negligible in many cases, thus allowing the
particles of the corona to expand throughout the interglagenedium and creating the solar wind.

1.1.4 Describing the dynamics of conducting fluids

“If a conducting liquid is placed in a constant magnetic fie&lery motion of the liquid gives rise to an EMF
[electromotive force] which produces electric currentswi@g to the magnetic field, these currents give mechanical
forces which change the state of motion of the liquid. Thus@&df combined electromagnetic-hydrodynamic wave
is produced which, so far as | know, has as yet attracted remétin.” (Alfvén, 1942)

Apart from a few isolated experiments, the influence of mégriields in conducting fluids did not start being
fully studied until the first half of the twentieth centuryhen astrophysicists realised how common magnetic fields
and plasmas are outwith our cool and dense planet. The sfudydoomagnetic flows became important after a
letter from Hannes Alfvén (1908-1995) was published inddatin 1942, in which he wrote about a certain type
of wave that could be of importance in solar physics, sindarsuoatter is a very good conductor with a general
magnetic field permeating it.

The study of the mutual interaction between a magnetic fiettlaaconducting fluid flow is called magneto-
hydrodynamics (MHD). Conducting fluids are restricted tuld metals, ionised gases (plasmas) or strong elec-
trolytes (solutes that are completely, or almost fully,ig@d in a solution).

The nature of the coupling between a magnetic fiBldand a velocity fields, is described in Davidson (2001)
“An introduction to magnetohydrodynamicss a split into three processes.
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The first arises from electromagnetic induction, discoddng Faraday in 1831. When the magnetic flux
through a closed circuit changes, it induces an electraraftirce (EMF) of ordex x B, which causes an electrical
current of ordew (v x B), with o being the electrical conductivity. This applies whether thagnetic field itself
changes in strength, or the conducting fluid is moved thratigHence, the relative movement of a conducting
fluid and a magnetic field, causes an EMF, with a subsequeritieleurrent density.

Secondly, according to Ampere’s law, these induced ctsrgive rise to a second induced magnetic field
around a closed loop, perpendicularto the current densityor,j. This provokes a change in the original magnetic
field, so that the overall consequence is that the fluid apdeairag the magnetic field lines along with it.

The third process is the interaction between the combinegheti field and the induced current density.
When an electric charge moves through a magnetic field, ikexdorce on the charge perpendicular to both the
movement of the charge and the direction of the magnetic.fi€his is the (magnetic) Lorentz force (per unit
volume),j x B. This force acts on the conducting fluid, and is generallgai&d so as to inhibit the relative
movement of the fluid and the magnetic field.

The last two processes have in common the effect of redubmgeiative movement of the magnetic field and
the conducting fluid. It is important to consider the paramethat define how weak or strong the influence of the
velocity field is over the magnetic field (or vice versa). létrelocity field is negligible, the induced magnetic field
will not be significant. Similarly, if the conductivity of ghfluid is very small, so too is the magnetic field. Also, a
current density spread over a large area can produce a hghgnetic field than the same current density spread
over a smaller area. Hence, the ratio of the induced fieldeafiplied magnetic field depends on the product of
these three quantities, i.e. the velocity figldthe conductivity of the fluidr, and the characteristic size, or length
scale,l. To this we may add the magnetic permeabilitywhich defines the ability of a material to acquire high
magnetization in response to an applied magnetic field. élelfieslopn — oo, both the induced and imposed
magnetic field are of the same order, and the combined magiedt behaves as if it were frozen into the fluid.
On the other hand, i¥lox — 0, the imposed magnetic field remains relatively unpertuylaed any possible
perturbation is immediately diffused away.

Mainly because of the enormous characteristic length sadlenost of the astrophysical plasmas, due to their
small mass densities, it is the first case that dominated)esodre said to behave under the@zen-incondition,
where the magnetic field lines have to move together with tagnpa. Motions along the field lines do not change
them, but motions across the field lines carry the field witmth

1.2 The Equations of magnetohydrodynamics

The equations of magnetohydrodynamics (MHD) include thie ffonservation equations, such as the continuity
equation (conservation of mass), equation of motion (cwmasien of linear momentum) and energy equation (con-
servation of energy), together with Maxwell's equationsti#ctromagnetism plus Ohm’s law. The macroscopic
conservation equations are derived from the Boltzmanrspart equation of the distribution function. Those
derivations are not shown here for simplicity. The resgjaguations are given in mks units. They may be found,
with further considerations, in Priest (1988olar magnetohydrodynamics”
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1.2.1 Maxwell's equations and Ohm’s law

Maxwell's equations, as discussed earlier, are the setemftrelmagnetic equations that relate the electric and
magnetic fields to their sources, charge density and etemirrent density, respectively.

Ampere’s lawdescribes how magnetic fields can be generated by electrierta and by changing electric fields
(the latter extension was made by Maxwell, and it is not inatiginal equation of Ampére), and are perpendicular
to both the electric currents and electric fields,

1 OE

S (1.2.1)

V xB=puj+

whereB is the magnetic induction (usually referred as to magnegld fin astrophysical contextg)is the current
density,E is the electric field, and andp are the speed of light and the magnetic permeability, reés@dyg in a
vacuum.

Solenoidal constrainstates that there are no magnetic charges, or magneticpolas

V. B=0. (1.2.2)

Faraday'’s lanshows that a changing magnetic field induces an perpendileletric field,

0B
E=——. 1.2.3
V x 5 ( )
Gauss' lawstates that an electric field is generated by electric clsarge
1,
V-E=-p", (1.2.4)

€

wheree is the permittivity of free space, and is the charge density.

Under theMHD approximationit is assumed that the plasma is non-relativistic, i.e.tyipecal plasma veloc-
ities are much smaller than the speed of light. Thus the setemm on the right hand side in equation (1.2.1) is
neglected, so that Ampére’s law becomes

VxB=yj. (1.2.5)

Finally, Ohm’s lawstates that the current in a non-relativistic moving plasimahe presence of a magnetic
field, is proportional to théotal electric field, in a frame of reference moving with the plasmhis total electric
field is the sum of the electric field that would act on the matet rest,E, plus the electric field due to the moving
magnetic field(v x B), hence,

j=0(E+vxB), (1.2.6)

wherev is the plasma velocity, andis the electrical conductivity. This equation can be gelsrd in models that
consider electrons, ions and neutral atoms as three ditféiteds, mixed together, but with different behaviours.
These considerations are, however, outwith the scope oftibsis.

Itis worth noting that the current density is definedjas p*v4, wherep* (= > gn,) is the charge density;(
is electric charge, and, is number of particles with chargg andvy is the drift velocity of the current carriers,
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which is different from the mean bulk velocity of the plasraad, therefore, it can coexist with a static equilibrium.
The MHD model uses macroscopical quantities and ignoremtbescopial effects. Then, the current density is
simply understood as a changing magnetic field of the f8m B, as given by Ampére’s law (1.2.5).

1.2.2 Field lines and flux tubes

For a known three dimensional magnetic fidkl= (B,, B,, B.), the magnetic lines of force, or magnetic field
lines are defined as

where B = /B2 + B2 + B? is the magnitude of the magnetic field, ands the distance along the field line.
The spacing between field lines corresponds to the magnitiithe field: the closer the field lines the stronger the
magnetic field. Also, field lines have a direction, definedhmy direction of the magnetic field vector.

We define a magnetic flux tube as the volume enclosed by a sedldflifies that intersect a simple closed
curve, so that both the cross section of ae@nd the magnetic field3, may vary along the length of the tube,
but the magnetic flux, defined as

¢m://SB.ds,

is always constant along the length of the flux tube. The veloira flux tube isf; (1) di, whereS(l) is the cross
section of the flux tube dtand L represents the total length. The volume of a single field limelerstood as the
differential volume of an infinitesimally thin flux tube, i®fined as

di

V= .
LB

(1.2.7)

1.2.3 Induction equation

From Ohm’s law (1.2.6) and Ampére’s law (1.2.5), the eliedield may be written as

_V><B_
=~

E vxB.

Taking the curl of this equation, defining the magnetic diffity asn = 1/(ou), and making use of Faraday’s law
(1.2.3), we get

%—?:Vx(va)—Vx(anB). (1.2.8)
The magnetic diffusivity is often assumed todgatially uniform Thus we can make use of the vector identity

Vx(VxB)=V(V-B)-V’B,
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where the first term in the right hand side is zero becausesoédtenoidal constraint (1.2.2), to get

%—]? =V x(vxB)+nV’B. (1.2.9)

This is theinduction equationThe first term in this equation is ttelvection termwhich covers the transport
or dragging of the magnetic field by the motion of the plasmée Fecond term is theiffusion term which
indicates that irregularities in an initial magnetic fieldlwliffuse away. We define theagnetic Reynolds number
as the ratio of the advection and the diffusion terms in tldei@tion equation,

|V x (v xB)|

R = = 578 (1.2.10)

If Iy is a scale of spatial variation of the magnetic field (chamastic length scale), and, the characteristic
velocity of the plasma, we can approximate the magnetic Blegmumber, in order of magnitude, as

- ’U()B/lo - D

" mB/E T

wherer = [y/vy is the characteristic advection time (time to travel a lérigtat the characteristic velocity of
the plasma), andp = [2/7 is the characteristic time of diffusion of magnetic irreariies. Thus, the magnetic
Reynolds number can be expressed as a ratio of two time scales

Typically, laboratory plasmas have very short length ssabehich, in many cases, makes the diffusion time
much shorter than the advection time, so tRgf < 1. On the other hand, astrophysical plasmas have, in general,
very large length scales, 9¢,, > 1, and it is the advection term that dominates in the inductiguation. This
is the case for most of the solar atmosphere, so it is commaovot& within the advection limit, in which the
diffusivity is neglected (not so much because of the valudefiffusivity itself, but for the huge length scales we
deal with), and the induction equation reduces to

%—]? =V x(vxB). (1.2.11)

In 1943, that plasma physicist that discovered the maggdtoldynamic waves in plasmas, Hannes Alfvén,
enunciated th&ozen-in-flux theorent'In a perfectly conducting fluidg,, — o), magnetic field lines move with
the fluid, i.e. the field lines artozeninto the plasma”. In other words, when the electrical conigitg tends to
infinity, 0 — oo, the magnetic diffusivity tends to zerg,— 0, and a plasma moving across the magnetic field
lines has to carry the magnetic field with it.

In scenarios where rapid changes in the magnetic field oo@rrshort spatial scales, the magnetic diffusivity
becomes important, and the frozen-in condition breaks down

1.2.4 Fluids equations

The changes in time of any macroscopic quanfjtyn a moving plasma, can be split into two different terms.
The first one is due to inner changesrwith time, and it may be expressed@g/0t, and the second is due to
gradients o). Consider a tall building which has a spatial gradient of, samperature, in the vertical direction.
Assume the temperature does not vary in time. Someone wles thie elevator up this building and measures



1.2 The Equations of magnetohydrodynamics 14

temperature on the way, would register a change in temperatith time, due to the combined velocity of the
elevator and the spatial gradient of temperature. This trar@tion may be expressed as V), and may be
due to the observer in the elevator or, in a plasma, to a wylofithe plasma itself. The combined effect results
in the total derivativeof the quantity@, also called thenaterial derivative convective derivativer Lagrangian
derivative namely,

D 0

— = -V. 1.2.12

D ot Y ( )

The equations describing the dynamics of fluids are predergt@ set of three conservation equations, together
with an equation of state that relates the gas pressure ttethsty and temperature.

Mass continuityor mass conservation, states that matter can not be createtbstroyed, i.e. changes in density
can only be produced by the plasma moving.

Dp
_ V-v=0 1.2.13
pe TPV VY ( )

or, using equation (1.2.12),

%Jrv.(pv) _o0, (1.2.14)

wherep is the plasma density andis the plasma velocity. For incompressible floRs, v = 0, soDp/Dt = 0,
meaning that the density is constant following the moveroétite material element.

Equation of motioror momentum conservation. This is Newton’s second lemiss x acceleration = applied
force. The forces are a sum of the gradient pressure force (higtspre regions push the plasma towards low
pressure regions), plus the magnetic Lorentz force, aner@kternal forcesF, such as gravitational or viscous
forces.

p(%—;’—f—(v-V)v) = _Vp+jxB+F, (1.2.15)

wherep is the plasma pressure.

Equation of statewhich for simplicity, is taken as the perfect gas law,

p=—pT", (1.2.16)
m

wherek g is the Boltzmann constanty is the mean particle mass, aiids the temperature. For an ideal polytropic
gas, the internal energy per unit mass is ¢, 7', wherec, is thespecific heat at a constant volunvehich relates
to ¢, thespecific heat at a constant pressuas

Cy = Cp — ks = 1 ks , (1.2.17)
P

wherey = ¢, /¢, is theratio of specific heatsHence, temperature and internal energy are related by

m

T=¢(y— 1)5 , (1.2.18)
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and using (1.2.17), we can rewrite equation (1.2.16) as
p=pe(y—1). (1.2.19)

The ratio of specific heats may also be written as

n+2

)

n

wheren is the number of degrees of freedom of the molecules in thenpda For fully ionised hydrogemn, = 3,
and soy = 5/3.

Energy equatiomr energy conservation. Energy is not created nor destroyhts equation can be expressed in
many ways, involving internal energy, enthalpy, entropgssure or temperature. The most fundamental form of
the energy equation is
Ds
T —=-L,

LY
wheres represents the entropy, and may be writtersas c¢,log(p/p”) + constant, and £ is the energy loss
function, which is the net effect of all sinks and sourcesradrgy. For our convenience, we write this equation
using the plasma pressure, as

" D
(2
v—1Dt \ p¥
where the quantity/p” is directly related to the entropy of the system. Using mastinuity (1.2.14), the energy
equation can be expressed as

Op

2 +v-Vp=—wV-v—(vy—-1)L. (1.2.20)

A perfectly isolated process with no exchange of heat igdaltliabatic For such processes, the energy loss
function must be identically zerd, = 0, and the entropy is conserved. This may be writtep/a8 = constant,
or pV7 = constant, with V' denoting volume.

1.2.5 Restrictions and special terms

The complete set of MHD equations is extremely complex. &fae many terms which take account of many
different effects. Four of the fundamental equations magtiended to account for extra effects. The first one is
Ohm’s law (1.2.6), which can be generalised for multi-fluidarels in which electrons, protons and ions are treated
as separate fluids. Some examples are Hall MHD (decoupliefeafrons from ions) and Cowling conductivity
(three-fluids models for partially ionised plasmas). Thesee a knock on effect for the induction equation (1.2.9),
as the electrical conductivity is directly related to thegmetic diffusivity, which may not be uniform. The third
equation is the equation of motion (1.2.15), in which theet§ of any kind of external force may be added, such as
gravitational and viscous forces. Finally, there is thergpequation (1.2.20), which has an energy loss function,
that is only zero if the process is adiabatic. Otherwisengefor thermal conduction, radiation or heating (e.g.
ohmic dissipation or viscous dissipation) may be included.
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The equations that are to be solved here are a very simpligeslon of the whole set. We do not take into
consideration any of the extra terms in Ohm’s law, nor in tguiction equation. These extra terms account for
collisionless effects and appear in models which are basegitber a two-fluid or a kinetic description of the
field. They are important, for instance, in small-scale rewxtion processes for which the classic resistive MHD
models have some deficiencies, such as the long energyediess the absence of a well-defined mechanism
for breaking the frozen-in condition, the onset problend #re particle heating problem (Birn and Priest, 2007,
“Reconnection of Magnetic Fields!)These effects do not affect the results of this thesis,casehisons that will
soon arise, we will be working with the frozen-in conditidor which the induction equation is reduced to the
advection limit (1.2.11), and the conductivity is assumefhite. Under the frozen-in condition, the diffusivity
tends to zero, so we talk @bn-resistiveMHD.

For simplicity, we assume that gravitational effects argligéble in the context of our experiments. However,
we are interested in viscous forces, which can be undergts@dfluid’s internal resistance to flow, and will have
the main effect of damping out plasma motions. Together With viscous force, there will be an associated
viscous heating term in the energy equation. This is our ooly-adiabaticterm, although in general it will be
small. These two terms are controlled by &ieematic viscosityv.

1.2.6 Summary of MHD equations

The magnetohydrodynamic equations we are going to be wgrkith are the compressible, viscous, non-resistive
equations, with no gravitational force.

Mass continuity : % +V.(pv)=0, (1.2.21)
Equation of motion : p ((Z—: + (v- V)v) =-Vp+jxB+F,, (1.2.22)
Energy equation : % +v-Vp=—pV-v+(y—1)H,, (1.2.23)
Ideal gas law : p=pe(y—1), (1.2.24)
Ampere’slaw:  j= V; B , (1.2.25)
Solenoidal constraint : V-B=0, (1.2.26)
Faraday’s law : 38_]? =-VxE, (1.2.27)
Ohm's law : E+vxB=0, (1.2.28)

whereF, andH,, are the viscous force and the viscous heating, respectiyiegn by

F, =pv (v% + %V(V : v)) , (1.2.29)
H, = pv (%eijeij - %(V . v)z) , with e;; = (0v;/0z;) + (Ov;/0x;) . (1.2.30)
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The electric field may be eliminated from equations (1.2&%) (1.2.28), to give the ideal induction equation,

%_]f —Vx(vxB). (1.2.31)

1.2.7 Energy considerations

In any physically consistent system, total energy is corexer The only way this may change is due to the
presence of inflows and outflows within the domain in consitien. However, energy does not necessarily have
to maintain the same form. It is therefore worth considethgthree different types of energy that will occur in
our magnetohydrodynamic system.

Kinetic energyis due to the macroscopic motions of the fluid, and its mageityper unit volume, igv? /2.
Theinternal energyof a system is due to the translational, rotational and vitmnal motion of the particles and
the potential energy associated to electric forces. Itrisatly related to the temperature of the system, as seen in
equation (1.2.18). The internal energy per unit mass=sp/p(y — 1), with pe being the internal energy per unit
volume. Finally, the energy stored in a magnetic field isrttagnetic energyand its expression per unit volume is
B? /2. The density of the flow of electromagnetic energy is givenHgPoynting fluxE x B/p.

The temporal evolutions of these three energies are exqaessfollows,

0 p p _
g (ﬁ) V. (7 P 1V) — Q.. (1.2.32)
8 2
() 3e) o

where the second terms on the left hand side on each equationrt for the inflows and outflows of energy, and
the right hand side term§)., Q,, andQy, are given by

Qez—ﬁ,
_ .
QnL—___V'.]XB7
o

Qr=-V-(pv)+v-jx B+ VvF.

For the total energy to be conserved, the sum of the threesgjons, (1.2.32) to (1.2.34), must equal zero. For our
particular case, we are assuming infinite conductivity, smthe only external forces and heating are given by the
viscous terms = —H,, andF = F,,, of equations (1.2.29) and (1.2.30). So our equation ofggnesnservation

is

H,—V . (pv)+vF, =0.

Thus, in a closed scenario, the gains (or losses) from onbesket energies must be completely balance by
losses (or gains) from the others. This will need to be loakedlosely in the study of dynamical processes in
magnetised plasmas, as their evolution will directly dep@mthe exchanges between the different types of energy.
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1.2.8 Magnetic forces

Magnetic fields produce magnetic forces, which act direatljthe plasma motions, changing their velocity. This
is the magnetic Lorentz forcg x B, which, according to Ampere’s law (1.2.5), can be written a

ij:l(VxB)xB.
7!
Using the vector identity
VB-B)=2Bx (VxB)+2(B-V)B,

the magnetic Lorentz force reduces to

jxB= %(B .V)B-V (;3;:) : (1.2.35)

The first term is thenagnetic tension forgend it appears when the magnetic field lines are curvedtdttac
try to make the field lines straight, like the tension alongrsmg. The second term is the magnetic pressure force,
and it appears when there exists a gradient in the field dingjogthe magnitude of the magnetic field). Like the
plasma pressure, it pushes from regions with high field gtietowards regions with low field strength. On its
own, it would homogenise the magnetic field. By similarityiwthe plasma pressure force, we define the magnetic
pressure a$? /2.

Note, that the Lorentz force is always perpendicular to tlagnetic field, since
B-(jxB)=0,

although magnetic tension and magnetic pressure forceegaarately have parallel components to the magnetic
field, but these must cancel each other.

Ignoring plasma effects, for a magnetic field to be in equiililm, the Lorentz force must equal zero. In the
absence of a magnetic tension force, the magnetic field neustréight and homogeneousiowever, magnetic
tension and pressure forces can balance each other, fanggstnhyperbolic X-points These two simple cases
are sketched in Figure 1.7, and will be the basis for our timethsional relaxation experiments.

If the magnetic field is embedded in a plasma, the pressuce fcain hold a non-zero Lorentz force in a
magnetohydrostatiequilibrium. In this case, we can define the (non-dimend)qriasma betag, as the ratio of
the gas pressure to the magnetic pressure,

gas pressure P

- plasma pressure - B2/2u "’

hence

2
8= % . (1.2.36)

If 8 < 1 then the plasma pressure force is negligible with respetiganagnetic forces, and if > 1, the
plasma pressure force dominates. The plasma beta tellswsrtpmrtant plasma effects are compared to magnetic
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(a) Homogeneous field (b) Hyperbolic X-point
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Figure 1.7: Two different configurations for magnetostatilibria. (a) Straight magnetic fiell = B,(0, 1,0),
with zero magnetic pressure forég; and magnetic tensiofiz, and (b) hyperbolic X-pointB = — By (y, z, 0),
with P = —T at every point. In (b), the magnetic field containmagnetic null pointwhereB = 0, at the
origin.

effects, and whether they can be neglected or not. In getesrak, most of the studies of coronal magnetic fields
assumed = 0, as the densities of the solar corona are extremely low. Mewéower in the chromosphere and
near locations where the magnetic field is very weak, or zbis assumption is no longer valid.

1.3 MHD equilibria: Magnetohydrostatics

Magnetic fields in the solar atmosphere change continupasly together with the solar plasma, they form a
highly dynamic environment. However, understanding MHiiBlorium conditions is extremely important for
studying these complex hydromagnetic scenarios, for uanieasons. Firstly, the set of MHD equations described
above has an immense degree of complexity, and so, studyingssociated stationary states provides a much
simpler solution to start with. Secondly, for every analgtiand numerical study, it is essential to understand the
initial equilibrium state, depending on the demands of theys Also, in relaxation-type experiments, one needs
to know and understand the properties of the final statesse/htathematical descriptions must be provided by
the MHD equilibrium theory. Lastly, from the point of view afodelling, many of the physical processes studied
in solar plasma physics occslowly, i.e. on time-scales much longer than the typical timeesoéthe system, so
the evolution of these systems can be modelled with a segqudrstatic equilibria. As an example, Schindler and
Birn (1986) used thiguasi-static theoryo model the dynamics of the Earth’s magnetotail.

The theory of the static solutions of the equations of MHDa#lexl magnetohydrostatics (MHS). For such a
state, there are no macroscopic velocities and the depeedéth time disappears. The equations and derivations
shown in this section, including more general cases, ar&aiqul in detail in Edenstrasser (1988). They are
also discussed by Priest (1982) and Biskamp (1988hlinear magnetohydrodynamics”

Under the static assumptions,= 0 and9d/0t = 0, the above equation of motion (1.2.22), gives rise to the
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fundamental equation of MHS,
jxB-Vp=0, (12.3.2)
which can be rewritten using Ampere’s law (1.2.25), as

Vp:HVprdy (1.3.2)
I

The very first result of magnetohydrostatics comes dirdotlsn equation (1.3.1), and is that the dot product of
B andVp s zero,

B - Vp=0, (1.3.3)

so the only spatial changes in the pressuraust be perpendicular to the magnetic field. In other wordsny
static equilibriumthe plasma pressure is constant along field lines

Combining the vector identit¥ - (V x A) = 0 and the solenoidal constraint (1.2.26), the magnetic fld
can be written as the curl of theector potentialA, perpendicular to the magnetic field, where

B=V xA. (1.3.4)

1.3.1 MHS equilibria in 2D

In a system with a translational invariance suctda8> = 0 (this is usually referred as to two and a half dimen-
sions), we can rewrit® as

B=VA,(z,y) x e, + B.(x,y)e, , (1.3.5)
whereA, is thez-component of the vector potentiAl. The scalar product dB andV A, equals zero,
B-VA,=(VA,xe;)- VA, + B.e,- VA, =0, (1.3.6)

since the first term on the right hand side of (1.3.6) is théasgaoduct of two orthogonal vectors, and the second
term is zero sincéA./9z = 0. Hence, in two (and two and a half) dimensiods, is constant along magnetic
field lines. This is a big advantage, as, in fact, the contofitd, are the projections of the magnetic field lines
onto thexy-plane. The functiom, (x, y) is known as thdlux function

Using equations (1.3.3) and (1.3.5), we get
B -Vp=(VA,xe.,)-Vp+B.e.-Vp=0. (1.3.7)

Again,p = p(z,y), so the second term on the right of equation (1.3.7) is zeendd, the first term on the right
hand side must be zero, and expanding it in terms of partialate/es, we obtain

oAop 0dop_,
oy dx  Ox oy '
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which implies that the pressuges a function of the flux functiom .,
p=F(A), (1:38)
whereF is an unknown function that is dependent on the initial ctads and evolution.

Now, in a strictly two-dimensional system, the magnetiafiedmponents are given by

0A, 0A,
B’I‘ = ) 31 = - )
Yoy v Oz

B.=0, (1.3.9)

and both the vector potentidl and the current densifiyhave an only non-zere-component, i.eA = A.e, and
j = j.e.. The curl of the magnetic field is then given by

2 2
VxB:(o,o,—%—aAz

2
2 o) TV A

so that, from Ampeére’s law (1.2.25), we get

Jje = Lo, (1.3.10)
0

Now, substituting (1.3.9) into equation (1.3.2), we obtain

1
Vp=-——V?A.VA, ,
Mo

and sinceVp = VA, dp/dA,, we get

dp_i

= A, =7, . 1.3.11
T MOV J (1.3.11)

This is theGrad-Shafranov equatigrior two-dimensional magnetic fields. Finally, combininguation (1.3.11)
with (1.3.8), we get

dF

s / _
]z—}'(Az)—dAz.

(1.3.12)

Equations (1.3.8) and (1.3.12) tell us thiat, two dimensional fields equilibrium, theplasma pressure and
current density are constant along field linéghis Grad-Shafranov equation gives the relation betwhesd two
guantities, andiniquelycharacterises a 2D MHS equilibrium.

1.3.2 Classification of the MHS equilibria

Looking at the fundamental equation of MHS (1.3.1), the Hopié can be classified into three different types,
depending on if the two terms involved are identically zenathey balance each other. Furthermore, the first case
also depends on whether the current den§jtis zero itself, or is parallel to the magnetic field everywhewe
shall present the three different cases in order of compylestiarting from the case wheje= 0, Vp = 0, then
with j || B, Vp = 0, and finally, the case whejex B = Vp.
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Potential fields

A magnetohydrostatic equilibrium is said to be potentighiére exists no current density, i.¢.= 0. Thus the
Lorentz force,j x B, is zero, and in order to satisfy equation (1.3.1), the pagnessure force must also equal
zero. Ampére’s law (1.2.25) gives

VxB=0,

and from the vector identitf¥’ x (V¢) = 0, the solution for potential fields is given iy = V¢, whereg(z, y, 2)
is thescalar magnetic potentialsing the solenoidal constraint (1.2.26), we get

V2p=0. (1.3.13)

Equation (1.3.13) is Laplace’s equation. Solutions canlitained by various methods including separation
of variables, and are uniquely determined by the boundafi¢gse system. Hence, given an initial magnetohy-
drodynamic system where the normal components to all baieslare prescribed and fixed, subject to “external”
disturbances, there exists one and only one potentialibguih.

Force-free fields
If both the gradient of pressure and the Lorentz force are,zbe equilibrium is known as force-free,

ixB=0. (1.3.14)

Notice, that the potential fields are one particular solutd this. Equation (1.3.14) implies that in the force-free
case, the current density vector is parallel to the magfietd, and from Ampére’s law (1.2.25),

VxB=aB, (1.3.15)

wherea may be a function of positiom, If & = 0, the equilibrium is potential.

From the vector identityv - (V x B) = 0, we have
V- (aB)=aV-B+B-Va=0,
and using the solenoidal constraint (1.2.26), we can gedtacton for the scalar functioa(r),
B-Va=0. (1.3.16)

Hence is constant along field lines, although it may vary from fiéfeelto field line.

Taking the curl of equation (1.3.15), we get

V x (VxB)=V x (aB)
=a(VxB)+VaxB
=o’B+VaxB,

and using the vector identify x (V x B) = V(V - B) — V2B, where the first term on the right hand side is
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zero, we obtain

VB =-a’B-VaxB. (1.3.17)

If « is constant everywhere, the equilibrium is known disear force-free fieldand equation (1.3.17) reduces
to

VB =—-0’B. (1.3.18)

Otherwise, the field is known asreon linear force-free fieldand the equations (1.3.17) and (1.3.16) need to be
solved together.

Non-force-free fields

The above force-free conditions involve zero Lorentz aredpla pressure forces. These approximations are valid
for many of the studies of coronal magnetic fields, where thema density is very low, and the effects of plasma
pressure in the highly magnetised atmosphere are negigthbwever, there are regions in which the magnetic
field weakens to a point at which plasma effects are no longggmificant, and hence, the above considerations
do not hold. In these cases, one must address the completgagof MHS (1.3.1), which, for two dimensional
fields, reduces to equation (1.3.11).

Furthermore, the inclusion of pressure effects adds in &ra e@omplication, since the energetics of the system
must then be considered. Theld plasma approximationeglects the effects of plasma pressure, and so, treats
the dynamical process as purely magnetic. In this case, l#fsna behaves, ignoring thermal effeds, if the
temperature were zero, and so too for the internal energie,Nlois does not mean that there is no plasma density.
Hence, if the internal energy is zero, from the above equnat{@.2.32), (1.2.33) and (1.2.34), only the last two
have to be considered, and so, the conversion of magnetigyetteinternal energy (or vice versa) is not allowed,
and so, a rapid release of magnetic energy can only be usedeteaate particles or to cause a bulk plasma flow,
but not to heat the plasma. On the other hand, when pressi@eseére included, the exchange of magnetic
and internal energy is possible, and it is precisely thatitlethich permits a wider family of different equilibria.
Hence, non-force-free effects will become important iniveg of weak magnetic field in the solar atmosphere,
such us the surroundings of possible localised points wiherenagnetic field vanishes.

1.3.3 Models of MHS equilibria

The magnetic field of the solar corona is believed to evolveugh a series of force-free states (Heyvaerts and
Priest, 1984). Since the solar corona involves a low-betamé in which magnetic forces dominate over plasma
forces, this is not an unreasonable assumption, and so, ohdisé recent studies on the relaxation of coronal

magnetic fields (e.g. Mackay and van Ballegooijen, 2006t di.e2007; Inoue et al., 2008; Janse and Low, 2009;
Miller et al., 2009; Pontin et al., 2009) have been done bysim®ring the approximation of an extremely tenuous

plasma, for which the plasma pressure does not play an ilmuptodle, and the persistent hydromagnetic structures
of the solar corona are assumed to be in magnetic balandezerit pressure gradients.

However, getting information about the magnetic field disttion in the solar corona is not a trivial prob-
lem. Unfortunately, the weak plasma emission due to the lemsidy of the corona makes direct measurements of
coronal magnetic fields extremely difficult. Even if somearmal lines show a sufficiently large Zeeman split and
measurements could be made, knowing exactly the heighteathese lines are formed is not easy, and even if
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known, the number of points would be small for this informatio be conveniently used. Thus it becomes neces-
sary to resort to magnetic field extrapolations from thetineddy easily measured photospheric or chromospheric
line-of-sight, or vector magnetograms. A large varietytaties have been made with current-free potential extrap-
olations (e.g. Altschuler and Newkirk, 1969; Hoeksema,11 @%ary, 1996; Rudenko, 2001), which, after showing
their inaccuracy in active regions (Schrijver et al., 2Q0&ve been improved with force-free extrapolations (e.g.
Wiegelmann et al., 2006; Schrijver et al., 2006; Mackay aad Ballegooijen, 2006; Régnier, 2008).

In addition, there are many codes available to calculategiiorce-free fields from the observed magnetic field
in the photosphere (Amari et al., 1998; Wiegelmann et aD62@008; Schrijver et al., 2006; Metcalf et al., 2008).
These codes have been used with varying degrees of succestetmine the magnetic field of solar flares and
active regions (e.g. Schrijver et al., 2008; Régnier, 20D8 Rosa et al., 2009; Wheatland and Régnier, 2009).
However, problems remain with these approaches. In péatica non-linear force-free field determined from a
line-of-sight photospheric magnetic field, fixed at the digioundaries of the domain, is not unique, but is one
of an infinite number of possible solutions. This fact is walbwn and has been discussed by several authors
(see Low, 2006). The main problem is that the observed bayrii#da are inconsistent with the nonlinear force-
free model. Recently, Wheatland and Régnier (2009) hawdied a self-consistent solution for a particular Solar
Active Region.

Placing aside extra contributions such as radiative Igsassubstantial fraction of the magnetic energy re-
leased goes into the internal energy, then the plasma beteothe small. Hence, considering the behaviour of
the plasma is important even if it has little effect on the lfimagnetic equilibrium. Gary (2001) suggested the
possibility that there is high beta plasma in the solar car@nove active regions.

There are many studies on the MHS equilibrium with force bedain the Earth’s magnetotail, both numerical
(e.g. Hesse and Birn, 1993; Lemon et al., 2003) and analycg. Birn, 2005; Zaharia et al., 2005), but only
within the past few years, the reconstruction of the glolmaboal magnetic field including a finite Lorentz force
balanced by magnetic and gravity forces have started to beidered, independently, by Ruan et al. (2008) and
Gary (2009).

Some years before, Low (19821984, 1985, 1991, 1992, 1988) and Bogdan and Low (1986) carried out
a wide analytical investigation of the full set of MHS eqoat, under different special assumptions. They pre-
scribed a special type of current flow which allowed the reiducof the mathematical problem to one single
partial differential equation. This procedure requiresaternal force dependent on the plasma density, such as a
gravitational force. Later, Neukirch (1995) used theseavdéibns to develop a self-consistent three-dimensional
analytic solution of the MHS equations, reducing them to lar8dinger type equation. Also, there exist various
other approaches which give analytical solutions to thedkfdimensional MHS Equations, as studied by Neukirch
and Rastatter (1999) and Petrie and Neukirch (2000). Traehaf Neukirch (1995) has been used by Ruan et al.
(2008) to extrapolate the magnetic field in the corona fromtpspheric magnetic field measurements, finding no-
ticeable differences in comparison to both potential amdedree field models. Also, this model has been recently
used for rotating magnetized coronae by Al-Salti et al. (301

In parallel to the above studies, Dasgupta et al. (1998) tigegrinciple of a minimum dissipative rate (MDR),
based on the idea that a dissipative system naturally temdsds a state in which its dissipation rate is minimum,
to study the relaxed states of a turbulent magnetised plasintaining a MHD equilibrium which could support a
pressure gradient in a non-force-free state. Then, BHatgga et al. (2007) used this same principle for modelling
solar arcades using a two-fluid description, obtaining axed state which was non-force-free in nature. Last, Gary
(2009) evaluated the MRD method for deriving a coronal normcé-free magnetic field solution.
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1.4 Magnetic null points

In most magnetic environments with a certain degree of cerifyl there exist certain points in which the mag-
netic field vanishes3 = 0. We call these magnetic null points, or magnetic neutrah{soiThey are key locations
for magnetic dissipation and energy conversion, as thesegiiens about which high current density layers may be
built in the form of a tangential discontinuity (see SectiioB). Hence, studying in detail the local magnetic con-
figuration around magnetic nulls is necessary for the unidedsng of such processes. We follow the mathematical
description of two and three dimensional null points ddsextiin Parnell et al. (1996), using a linear analysis about
the null in Cartesian geometry.

Taking the null point to be situated at the origin, withousdoof generality, and assuming that the magnetic
field approaches zero linearly, the magnetic fiBlehear a null point may be expressed as

B=M-r, (1.4.1)

whereM is a matrix with elements/;; = 9B, /dx; andr is the position vectofz, y, ).

1.4.1 Two-dimensional null points

In two dimensions, the matrix M is given by

ail  ai2 95, 95,

_ _ ox Oy

M = =\ o8, o8, |-
@21 a22 Dz oy

The solenoidal constraint (1.2.26) gives = —as2 = p, and Ampere’s law (1.2.25) gives the current density
associated with the null point gs = (a21 — a12)/u. Let us define a parametesuch that

1 ) 1 .
arz = 5((1—]2) and  ag = §(q—Jz) :

For a potential (i.e. current-free) null point,s = a21 = ¢/2. Finally, the matriXM can be written as

M = ( " p 2(4 - 7:) ) (1.4.2)

q+jz) —p
The flux functionA, is obtained using (1.3.9) and (1.4.2), as

A, ==[(q—j2)y° — (g + j=)a°] + pry .

=~ =

Now, thezy-axis can be rotated conveniently so that the last term onighéhand side disappears. Choosing the
angle of rotationd, so thattan 20 = —2p/q, the flux function becomes

Az = [(jthresh - ]z)y2 - (jthresh +]z)x2] ) (143)

A~ =

where ther’ andy’ coordinates have been renamed baclk andy, for simplicity, andj;u..s, is a threshold



1.4 Magnetic null points 26

current defined by
jthresh =V 4202 + q2 . (144)
In this new coordinate system,

. . 1. .
Bw = (jthresh - jz)y and Bl/ = §(jthresh +jz)x )

N | =

so the matrixM is given by

l . -
M = » 0 . 2 (jthresh jz) . (145)
§(]th7’esh + ]z) 0
The eigenvalues of this matrix are obtained by solving:t(M — AI) = 0, giving
1 7 .
A= :|:§ J2resh — J2 - (1.4.6)

So the eigenvalues will be real if.| < jinresn @nd imaginary if(j.| > jinresn, defining the geometry of the
two-dimensional null point.

Potential two-dimensional null points
For a potential null point in two dimensions, the currentsigns zero,j, = 0, M is symmetric, and its eigenvalues
are\ = +jipresn /2. The flux function is given by

Az _ jth;esh (yQ - .232) :

and the field lines are rectangular hyperbolae, and tracea potential X-pointas in Figure 1.8a, with exactBo®
between the separatrices (the field lines through the nititpolt was shown in Figure 1.7b how, in absence of
a plasma pressure gradient, this configuration is in coragtate balance. This is the only possible current-free
configuration for a two-dimensional null point.

Non-potential two-dimensional null points

If 5. # 0, we can distinguish three different types of two-dimenalanagnetic null points. 1) Ifj.| < jinreshs

the eigenvalues d¥1 are real, and the field lines formhgperbolic X-pointvith less (or greater) tha®0° between
the separatrices, as in Figure 1.8b, which tends to the patease wherj, — 0. 2) If |j.| = jinresn, the eigen-
values are zero, the flux function depends only on one coateljrand the field lines are anti-parallel, with a null
line along ther or y axis, as in Figure 1.8c. 3) Ifi.| > juresh, the eigenvalues are imaginary, and the field lines
form anelliptic O-point as in Figure 1.8d, which becomes circular whgf..s, = 0.

In two dimensions, we define separatrixas the line that separates two magnetic domains with differe
connectivities. In Figure 1.8, the separatrices, whiclgalthrough the null point, are shown with dashed lines.
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1.4.2 Three-dimensional null points

In three dimensions, the mat becomes

ai; a2 as oz oy 0z

oB, 0B, 0B,

M= ax ax a3 |= 92 oy os
9B, 0B. 0B.

asi as2 ass3 Oz Dy 9z

The solenoidal constraint (1.2.26) gives + as2 + as3 = 0, and this condition implies that the sum of the three
eigenvalues\;, Ao and\; is also zero. Let us represent the position along a singlenetagfield line near the null

in terms of a position vectar = (z,v,2)”, which depends on an arbitrary parameterhich varies along the
length of the field line. The magnetic field along the field Imay be written as

—M (), (1.4.7)

and, using the substitutiar{k) = Pu(k), whereP = (x1,x2,x3) is the matrix of the eigenvectors dl which
satisfy

MX1 = A1X1 5
MXQ = AQXQ 5

MX3 = )\3X3 s
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we rewrite equation (1.4.7) as

du(k)

_p-1 .
T~ = P'MP u(k). (1.4.8)

There are two cases that have to be considered separatgiyndiag on if the matrisM is diagonalizable or not.

First, we assume tha¥l can be diagonalised to a matrix whose elements can be either real or complex,
according to the nature of the eigenvalues. Then, threerdifit eigenvectors exist, and the solution of equation
(1.4.8) for a given field line can be written as

u(k) = AeM* (1.4.9)

whereA is also a diagonal matrix with its non-zero elements giverdby3 andC, which are constant along a
field line. Hence, the solution of equation (1.4.7) is givgn b

r(k) = AeMFx; + Be*Fx, + Cetsbxy (1.4.10)

We shall now consider the different cases, depending oreifeigenvalues are real or complex. The fact that
A1+ A2 + A3 = 0 gives us only two possibilities: either the three eigengalare real, or two of them are complex
and oneis real.

1) If all the eigenvalues are real, since the sum of the thigenealues is zero, there is always one eigenvalue of
opposite sign to the other two, say, A» > 0 and\s < 0. Then, for field lines going towards and away from the
null, we have

r(k — —00) — Ce’skxy |

r(k — 00) — AeMFx; + Be*?Fx, .

Hence, field lines that head towards the null are paralleh®gingle eigenvector, and field lines that are directed
away from the null lie parallel to a plane defined by the rermgjriwo eigenvectors. The line defined by the path
of the first eigenvector is thepine and the plane defined by the other two is the If the spine field line heads
towards the null, and the fan field lines go away from it, ase¢k@mples above, the null is callegasitive null
point. If, on the contrary, we exchange the signs of the eigengdiue A1, Ao < 0 andA3 > 0), then the fan field
lines head towards the null, and the spine field line go awayfit. In this case, the null is calledreegative null
point Figure 1.9 shows the geometry of a generic three-dimeak{positive) null point.

2) If we have two complex and one real eigenvalues,sayir and —27, with corresponding eigenvalues
x1 = (%} +1ix5)/2, x2 = (x} —ix})/2 andxs, we can rewrite equation (1.4.10) in terms of two new cortst&n
ando to get, forn > 0,

r(k — —o0) — Ce 2"kxy

r(k — 00) — Re"™ cos (Ok + vk)x, — Re"™ sin (Ok + vk)x) .

Again, if n > 0 and the null is positive, field lines that head towards thé ame parallel to one single eigenvector,
defining the spine, and field lines that go away from the nelpkrallel to the fan plane defined k{ andx’. The
fan field lines produce a pattern of a spiral.
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Figure 1.9: Structure of a 3D null
point, showing the spine and the fan
spine plane.

Secondly, if the matridVI is not diagonalizable, two of the eigenvalues are repeatddrae matrixiV can only
reduce to alordan normal fornthat looks like,

A1 0
Ja=| 0 X O
0 0 —2\

We now write the equation for the field lines using the substh r(k) = Pu(k), where this timeP =
(x1,x3,x3), with

MX1 = )\Xl s
Mx3 = x1 + Ax5 | (1.4.11)
MX3 = —2AX3 5
such that
du
@ = Jnu .

The solution of equation (1.4.7) for a given field line can ba/nwritten as

r(k) = (A + Bk)eMx; + Bexh + Ce x| (1.4.12)
AssumingX > 0, the solutions away from the null are

r(k — —00) — Ce Mxy |

r(k — o00) — (A + Bk)e*x; + BeMxs

so that field lines heading towards the null are parallel eodigenvector related to the single eigenvatkug,and
field lines going away from the null lie parallel to the planefided by the eigenvector; and the Jordan basis
vectorxs;.
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Following the method in Parnell et al. (1996), we can defineag wf reducingM to its simplest form, in
order to examine all possible configurations around a 3D puitit. We do this by choosing the local orthogonal
coordinate system such that the spine is always aligned twih-axis, and by rotating the system so that the
z-axis lies in the direction of the current density in thg-plane, so that the current is defined as

R )
i= ;(]J_,OJH) : (1.4.13)

wherej and;j are the components parallel and perpendicular to the smspectively, andMI results in

1 5(a—Jy) 0
0 Ji —(p+1)

wherep > —1, andg? < jﬁ + 4p. Similar to the 2D case, a threshold currept,..s», can be defined as
jthresh - (p - 1)2 + q2 . (1415)
The eigenvalues associated with can be written as

P+ 1+ thhresh - Jﬁ

AL = 5 ;
P+ 1 - \/jtzhresh _]ﬁ
Ay = 5 )
As=—(p+1). (1.4.16)

In situations wherg, = 0, the matrixM can be reduced, after the appropriate rotation about time st

L= 0
0 0 —(p+1)

Potential three-dimensional null points
For a potential field, bott, andj; are zero, and the matri¥I is symmetric, and can be written as

1 0 0
M = 0 p 0
00 —(p+1)

Thus the related eigenvalues are= 1, \» = pandis = —(p + 1), and the associated eigenvectors are

1 0 0
X1 = 0 3 X2 = 1 3 X3 = 0 ’
0 0 1

so for a potential null, the fan plane is perpendicular toghime. With this choice for the matrixI, where the
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spine lies along the-axis, we must have > 0. The eigenvectorg; andx, define the fan plane. The threshold
current isjnresn = |p — 1|, and depending on the value p&andj;..sn, We get the different types of potential
three-dimensional null points. 1) jf.-.sn = 0, thenp = 1 and the field is a positive proper radial null, symmetric
in the eight 3D quadrants, as shown in Figure 1.10a. 2).lf.s, > 0 andp > 0, the field is an improper radial
null: Field lines gather to run parallel (&s— o0) to thez-axis if 0 < p < 1, or parallel to they-axis if p > 1,

as in Figure 1.10b. 3) I = 0, there are only two non-zero eigenvalues, and the field bes@sequence of two-
dimensional potential X-points lying in planes parallethie zz-plane and forming a null line along theaxis.

Non-potential three-dimensional null points
Here, the matrixM is asymmetric, and we can study three different ca$gs: < jinresn, |7)] = Jtnresn @and

|.7||| > Jthresh-

> Whenlj)| < jinresn, the three eigenvalues are real and distinct, and all thigeseectors exist. 1) Ij; = 0
andj # 0, the fan and spine are perpendicular, but the eigenvegtoasidx, are not. Atk — oo, the field lines
in the fan plane run parallel to a lingx) in the fan plane, defining a skewed improper null. 2) If # 0 and

J) = 0, the fan is not perpendicular to the spine, and the angledsstshem reduces ggincreases. The fan does
not necessarily tilt about the-axis (the direction of the current) and so, the current flihs perpendicular to the
spine) does not generally lie in the plane of the fan. 3) 1£# 0 andj; # 0, the fan is tilted towards the spine, so
j1 dos not lie in the plane of the fan, and the field lines agaimeediskewed improper null.

> When|j| = jinresn, two Of the eigenvalues are repeated. 1) If# 0 andj; = 0, the fan does not lie in the
zy-plane, but field lines extend radially and symmetricallytia plane of the fan (Figure 1.11a). 2)jIif = 0 and

Ji # 0, there exist only two different eigenvectors, so an extretmemust be calculated using equation (1.4.11),
the Jordan basis vector. The fan plane is perpendicularg@pime, and the field lines in the fan form a spiral,
called acritical spiral, in which the field lines orientate towards the line of onegreigenvector (Figure 1.11b).
3)If j. # 0andj; # 0, we again have to look for a Jordan basis vector, and we finthanoritical spiral, with
the fan not perpendicular to the spine.

> When|ji| > jinresn, the two eigenvalues associated with the plane of the fac@rglex conjugates. 1) If
J1 = 0andj; # 0, the spine is perpendicular to the fan, and the field linesbaround the spine until they spread
spiraling outwards parallel to the fan plane (Figure 1.112)It is not possible to create a spiral null without a
parallel component of the current. 3)jif # 0 andj; # 0, we have a spiral null with the fan not perpendicular to
the spine.

In general, the geometry of three-dimensional nulls wilbeled on the four parametefs, ¢, j,j.). In the
case of a potential null, they reduce to one single parampetard for the non-potential case, the field lines about
the null are radial, critical spiral or spiral, dependingtbe relative size of the current parallel to the spine with
respect to the threshold current. The current perpenditulidne spine determines the inclination of the fan plane
to the spine.

A complete understanding of the geometry around magnelipaints is of extreme importance for studies of
coronal magnetic fields. Longcope and Parnell (2009) hawedaohat magnetic nulls have a reasonable population
density in the solar corona. Null points are found directbynfi extrapolations of the photospheric magnetic field,
but also their density is estimated from the Fourier spectafi the magnetogram coming from the solar photo-
sphere.
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(a) Proper radial null (b) Improper radial null
(Jwen=0,p=1)

(Jwesr> 0, p>0)
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Figure 1.10: Sketch of the magnetic con- Se - ANRTIzoLNN
figuration of two 3D potential nulls. For DT R
Sor -

simplicity we show only the spine and the
fan, with field lines lying in the fan plane
itself (dashed), for (a) a proper radial null,
and (b) an improper radial null with the
field lines aligned along thg-axis.

(@) [y | = Jov (0) iy | = Jov (©) Ll > Jovew

Tilted radial null (j,#0,,=0) Critical spiral null (j,=0,j,#0) Spiral null (j,=0,j,#0)

Figure 1.11: Sketch of the magnetic configuration of 3D noteptial nulls, for the cases with (a) current perpen-
dicular to spine, showing a tilted fan plane, and (b) and @c)ent parallel to the spine, showing the fan orthogonal

to the spine, and field lines in (b) a critical spiral and (cpdex spiral.

Parnell et al. (1997) showed that a linear three-dimensimrbpoint in equilibrium must be potentiaj & 0),
so cannot hold in a MHS equilibrium (in which the Lorentz fejcx B is balanced with a pressure gradiewty).
To show this, let’s take the curl of the fundamental equatibMHS, equation (1.3.1), making use of the vector

identity V x (Vf) =0,
Vx(xB)=VxVp=0.

Now, we use the vector identity
Vx(xB)=B-V)j-(-V)B+(V-B)j—(V-j)B.

As shown in Parnell et al. (1997), if we stay in the linear negj the current density remains constant, hence, the
first and last terms in the right hand side are zero, and the tim is also zero because of the solenoidal constraint
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(1.2.26). SincdB = M - r, we get
Vx((xB)=—(G-V(M-r)=-M-j=0, (1.4.18)

and asM is a non-singular matrix, the only solution to equation (18} isj = 0 and the null must be in a potential
equilibrium.

1.5 Current sheets and reconnection

1.5.1 Tangential discontinuities

A tangential discontinuity is a structure where the magniid on both sides of the discontinuity has no com-
ponent normal to the surface, and involves a change in tleetibin of the magnetic field, or in its magnitude,
or in both. In equilibrium, it is an example of a pressure bhakastructure (Burlaga, 1998nterplanetary mag-
netohydrodynamics’)a surface across which the total pressure (plasma plusetiajis constant. A tangential
discontinuity separates two different magnetic domainsl, @an also have different plasma motions, creating a
velocity shear across the discontinuity, but the plasma fltowugh the surface must be zero.

From Ampere’s law (1.2.25), the change in magnetic fielcdht@s an accumulation of electric current which
is confined in the surface of the discontinuity. These ar&edalurrent sheetsand in MHD studies they are
infinitesimally thin. A detailed compendium of the possilleeet configurations and the development of the
theory can be found in Priest and Forbes (200d@pgnetic Reconnection”

A simple form for a current sheet istdarris sheet given by the one-dimensional model of Harris (1962),
where the magnetic field is parallel to theaxis and varies only witly, and is defined aB(y) = (B.(y),0,0)
with B, = By tanh (y/L). The current density has a non-zergomponent given by

_108,
n oy

Jz =

A Harris sheet is an example of a neutral sheet, where the atiagiield vanishes in the center. A study of
the collisionless Vlasov-Maxwell equilibria in force fré¢arris sheets has been recently made by Harrison and
Neukirch (2009) and Neukirch et al. (2009).

1.5.2 Current sheet formation

The analytical form of current sheets in two-dimensiondtiie created following the collapse of a hyperbolic
X-point, were firstly studied by Green (1965), who suggesteéxpression for a one-dimensional current sheet of
the form

B, +iB, =\/Z%+a?, (1.5.1)

whereZ = x + iy represents the complex plane, ands the length of the sheet. The four separatrices open from
both ends of the current sheet in two so calfedoints inclined to one another with an anglef/3 (see Figure
1.12 for a schematic categorization of the possible mag@&isingular points described in this section).



1.5 Current sheets and reconnection 34

(a) X-point (b) Y-point (c) cusp-point (d) T-point
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Figure 1.12: Special magnetic points in two-dimensions.

Somov and Syrovatskii (1976) described the collapse of adinmensional X-point with a more general solu-
tion given by
Z2 412
VZ2ta

wherel? < a2. The two null points at the ends of the sheets are singulais @se reduces to Green’s solution
whenl? = a2

B, +iB, = (1.5.2)

Later on, Bungey and Priest (1995) extended the solutionoofid& & Syrovatsky, providing an analytical
expression for all the possible potential and force-fragfigurations around a linear current sheet,

bd? + 2dcZ — 7% + Ld?
N ’

whereb, ¢, d and By are constants.

By +iB, = —By (1.5.3)

In all these cases, the current sheet is assumed to be igiiinéky thin, and the current density hag-dike
singularity across the sheet.

The above theory has been applied to more general planantigineets in the potential and force-free solar
corona, involving the magnetic field associated with twookap regions, by Priest and Raadu (1975) and Tur and
Priest (1976), as in Figure 1.13. In these models, a curvedrisheet replaces the linear sheet found in previous
studies of X-point collapse, and the extremes of the shemt stpair ofcusp pointgsee Figure 1.12c), where the
separatrices are curved in space. This configuration has leed in a variety of models of equilibria for solar
coronal magnetic arcades and loops by Low (1981, h98286). Also, Vainshtein (1990) and Vekstein and Priest
(1993) tried to give analytical expressions for magnetidfeear special points, such as cusp points, assuming a
potential, and force-free solution outside and inside tepg¢respectively, in the first case, and a MHS combined
with a potential solution in the second case.

Before that, Parker (1972) considered the evolution ofdltienensional braided magnetic flux tubes, finding
rapid dissipation and reconnection, which enabled theltmyoof the magnetic field to reduce to a simple equi-
librium form. Parker suggested thet first order, changes in pressure along a flux tube would only modify the
vertical z-component of the field, and in general, “the pattern of thid files not vary along the general direction
of the field”, in other words, an equilibrium exists only ifglvariations in the field consist of simple twisting of the
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-a +a

Figure 1.13: Schematic representation of the magnetic fietdiguration in the plane perpendicular to two line
dipoles atr = +a, based on Tur and Priest (1976), Fig. 1, after an increageeimioment of the smaller dipole,
creating a current sheet, here shown as a thick curve.

lines. In a more complex topology case, such as braided fliestwrapped around each other, he suggested that
no equilibrium field was possible, and current would formba boundaries of the tubes, leading to topological
dissipation and merging of field lines in the process know agmetic reconnection. Syrovatskii (1978) also sug-
gested that the problem of continuous deformation of suddisfiead no solution in general. However, these results
were disputed by van Ballegooijen (1985), who argued ag®aker’s scheme. Instead he suggested that an equi-
librium should always exist, without the need for any formsginmetry of the field, implying that the coronal field
adjusts itself to the motions of the photosphere, and thaieotisheets are a result of photospheric motions and
would appear only when the boundaries have discontinuiNésre recently, the properties of three-dimensional
current sheets have been developed by Longcope (1996,.1998)

All the above studies involve potential and force-free Sohs and, in fact, the thin current sheet configurations
from Bungey and Priest (1995) am®t in equilibrium, even if the regions around them are. Thisesduse the
current varies along the sheet, but there is no plasma peessiold the Lorentz force within the current sheet.
More recently, Rastatter et al. (1994), Craig and Litvikeri2005) and Pontin and Craig (2005) have studied
the magnetohydrostatic relaxation of X-type null pointsnsidering plasma pressure forces, reaching a cusp-like
equilibrium sheet with the Lorentz force being balanced liy plasma pressure gradient. Common features of
these studies are the appearance of current accumulatangstae field separatrices. Also, they find evidence to
suggest that a singularity in current is formed at the laratf the null, as in the potential and force-free cases,
whose nature is unknown. Craig and Litvinenko (2005) findglsesma pressure to be enhanced in the regions
inside the cusps, and decreased in the regions outside $ps,cas sketched in Priest and Forbes (2000). Figure
1.14 show some schematic views of the different two-dinmraisheet configurations coming from the collapse
of a magnetic X-point.
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(a) Potential X-point (b) Green’s current sheet
(c) Cusp point (d) Pair of cusp points
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Figure 1.14: Sketch of two-dimensional equilibria, basadPoiest and Forbes (2000), Fig. 2.10. Thick curves
represent current sheets, and shaded regions are regienbaficed plasma pressure. In the absence of plasma, if
a hyperbolic X-point (a) is squashed in the vertical direatia current sheet is formed, with Y-points at both ends,
as in (b). In the presence of a non-zero beta plasma, if theiktjin (a) is squashed, the pressure is enhanced
in the shaded regions, producing the equilibrium in (c), kehee pair of cusp-points have formed, preserving the
X-point geometry at the center, while, in a non-zero betampla, (b) produces the equilibrium in (d), where the
current sheet has developed two cusp points at its ends,ighwte pressure is enhanced.

1.5.3 Magnetic relaxation theory

A common method for the study of dynamical processes in magguefluids, such as current sheet formation in

the solar atmosphere, is magnetic relaxation. An initiathessed system of magnetic field is allowed to evolve to
an equilibrium, driven by a velocity damping mechanism wvihicay or may not be physical. The evolution of the

field is constrained, as required by the demands of the stalitgjning different possible solutions. The plasma
effects are ignored in many of these models.

Taylor (1974) considered the relaxation of toroidal latoraplasmas, which he found to be reaching a relaxed
“guiescent” state which was largely stable. The plasma wasired in a rigid perfectly conducting vessel with
both magnetic and current density tangential to its surf&oe simplicity, he assumed the plasma internal energy
negligible compared to the magnetic energy, so that anytoalform of the equilibrium would be force-free. The
final equilibrium would be the one with minimum magnetic ene(Note, that in this ideal and purely magnetic
process, the difference in energy from initial and finalesiatlost).
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In the case of a perfectly conducting fluid, under the frorernendition, with no change in the magnetic
connectivity, he found that the quantity

K :/A-BdV, (1.5.4)
1%

is an invariant of motion, with” being the volume of an infinitesimal flux tube. This quant&ythemagnetic
helicity, and it is a measure of twisting and kinking of a flux tulself-helicity or of different linked flux tubes
(mutual helicity. Hence, the magnetic helicity was conserved for every fiakel Under this constraint, the state
of minimum energy was found to be given by the non-lineardefree solutionV x B = aB, with « being a
function constant along field lines, but varying from onedikdhe to another.

When considering small departures from idealness, Tagland changes in the connectivity of the field lines,
which implied that the magnetic helicity was not conservadefach field line. However, he found the sum/of
over all field lines almost unchanged, due to the fact thahgha in topology entailed very small changes of the
field itself. Hence, the effect of the reconnection of thedfieles was to redistribute the magnetic helicity among
the field lines involved. In this case, the state of minimurargg was given by the linear force-free field, with
constant everywhere.

Then, Heyvaerts and Priest (1984), examined the consegsi@fidaylor’s relaxation on the evolution of the
coronal magnetic fields, where the magnetic helicity is motstant in time, even in ideal MHD, as it varies as a
result of the field lines foot-points motions. Nonethelélsy generalised Taylor's hypothesis by saying that the
change of magnetic helicity must be a well known functionetptal to zero, given by

5= [avm-as).
whereS is the boundary of the volumié in which the helicity is defined. They show how this evolutairtoronal
magnetic fields can be understood as a series of force-atssspreserving the change of magnetic helicity. They
start from a quasi-static change of the initial linear foficee field which changes the state to a slightly non-linear
force-free field with new helicity, which then relaxes, falling Taylor's hypothesis, by reconnection processes, to
the linear force-free field with the same helicity, and bazkie beginning.

Heyvaerts and Priest (1984) made an essential point, whitlat the “convertible energy” is not the difference
between the initial energy and the energy of the potentiésas this last one is not readily accessible, but rather
the difference in energy between the initial configuratemmg the linear force-free state with the same helicity.

Taylor’s relaxation theory has been extended to solar aroragnetic fields by many authors (e.g. Nandy
et al., 2003; Miller et al., 2009). In particular, Browningad. (2008) and Hood et al. (2009) investigated Taylor
relaxation through a series of non-linear 3D simulations @lylindrical coronal loop model, initiated by MHD
instabilities, finding rapid magnetic reconnection whidloweed the system to relax towards a constarfbrce-
free solution.

1.5.4 Magnetic reconnection

Under ideal conditions, plasmas have infinite conductigitg the field must be frozen to the fluid, such that its
connections are preserved. This is, in general, the caseisdlar corona, where the characteristic lengths of the
plasma are so high that the diffusion term is negligible i ittduction equation, (1.2.9). However, it is possible
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(a) Sweet-Parker model: slow reconnection regime (b) Petschek model: fast reconnection regime
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Figure 1.15: Comparison between (a) the Sweet-Parker nafddbw reconnection, where energy conversion
happens in a large diffusion region, and (b) the Petschekemofl fast reconnection, where most of the energy
conversion takes place in four slow-mode shocks that corhefaismall diffusion region.

that, in certain regions, the magnetic diffusivity becorimaportant locally, allowing non-ideal effects to occur.
Two and three dimensional null points are potential log#ifor that non-idealness to happen.

Magnetic reconnection is the process in which field lineski@nd then merge with other field lines, allowing
them to change their connectivity. The process is direatliydd to the diffusion of the field and associated with
the release of magnetic energy, which is partly converteiimternal energy of the plasma. The characteristics of
these processes in two-dimensions are well gathered armbedpn Priest and Forbes (2000). Reconnection may
occur in presence of high electric fields and electric cureBome effects of magnetic reconnection can be: 1) the
partial conversion of magnetic energy into heat, a processvk asohmic dissipation2) acceleration of plasma
by converting magnetic energy into bulk kinetic energy, @nération of shock waves and current filamentation
and 4) changes of global connections of the field lines, t@avdhe field to relax to a lower energy state, affecting
the paths of fast particles and heat, which are generalctid along magnetic field lines.

Magnetic reconnection may be studied by either resistiem{ideal) MHD models, with the classical ohmic
dissipation, which can be mainly applied for highly colhisal plasmas, or using particle models, involving multi-
fluid theory, applicable in the higher corona, where callidess effects dominate. Nevertheless, even in the latter
case, an MHD approach can give a valid characterization eouildes a macroscopical view of the general process.

A very brief history of the study of magnetic reconnectioarts with Dungey (1953), who showed that the
collapse of a magnetic X-point would create a current shadlble of accelerating particles and generating heatin
solar flares (pointed out earlier by Cowling, 1953), and fitated that “lines of force can be broken and rejoined”.
The first model came with Parker (1957) and Sweet (1958), whdied the process of two bipolar magnetic
fields coming together. Parker was the first to use the termnmection of field lines. They showed that the
reconnection rate was equivalent to the inflow plasma speleidh turned out to be way too small for solar flares.
This mechanism is now referred asgtow reconnection Furth et al. (1963) showed that resistive instabilities
occur in a one-dimensional current sheet. This is known asetfring mode instability Then, Petschek (1964)
showed how conversion of magnetic energy into heat andikieeergy was also possible in slow-mode shock
waves, generated by a diffusion region much smaller thantiedormed in the Sweet-Parker model. This was the
first of many regimes ofast reconnectionBiskamp (1986) found a different solution to Petschek,clihfinally
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Priest and Forbes (1986) included into a whole family of 8ohs for both fast and slow reconnection, with the
cases of Petschek and Biskamp as particular solutionsrd=Igi5 shows a comparison between the Sweet-Parker
and the Petschek models.

In three dimensions, magnetic reconnection is very diffefeom reconnection in 2D (Priest et al., 2003).
Schindler et al. (1988) showed how, in contrast to the twoedisional case, in three dimensions, reconnection can
happen either at the location of magnetic null points or isegiize of them. Instead, the condition for reconnection
to occur is that, within a region of non-idealness, the irdéglong a field line of the electric field parallel to it is
different from zero,

/EH ds 75 0. (1.5.5)

In fact, if the region of non-idealness is a single isolategion with a singly peaked form for this integral, then
its maximum value gives the rate of three-dimensional reegation. The different regimes of three-dimensional
reconnection may be classified as follows. tdjsional fan and torsional spine reconnectjomhere torsional
motions concentrate the current along the spine or in theeptd the fan (Pontin et al., 2004; Priest and Pontin,
2009; Wyper and Jain, 2010), 8pine-fan reconnectigrwhere shearing motions concentrate the current along
both (Pontin et al., 2005; Priest and Pontin, 2009%e})arator reconnectignvhere current concentrates along the
separator line that joins two nulls and represents thesetgion of two separatrix surfaces (Parnell et al., 2010),
and 4)QSL reconnectionwhere reconnection occurs at quasi-separatrix layergrevthe mapping of magnetic
field lines changes continuously but extremely rapidlyéBrand Démoulin, 1995).

1.6 Non-dimensional equations: Normalization

Before moving on, we shall go back to our fundamental equoatioFor simplicity, it is convenient to non-
dimensionalise all the fundamental equations and questitThe purpose of this is twofold. First, the process
consists of measuring quantities relatively to some appaitgovalues (normalization), which allows us to work
with easy numbers, i.e. numbers that are not overly largeverly small, and “eliminates” certain constants
from the equations. Second, it provides a full removal otsibly a suitable substitution of variables, making all
guantities easier to work with, and scalably to many diffédtuations.

The normalization can be made in various ways. We do it by atising the magnetic field, plasma density
and length, following the same approach as the numerica twat we are going to be using (described in Chapter
2). We denote dimensionless quantities with a hat, so that

szoi,
:BOB7
P = pop

The nabla operator is normalised Ws= @/LO. From Ampere’s Law (1.2.25), we get

. - B()ﬁXB
J:JOJZL— )
o M

and we can define the normalised currerjtasV x B. Repeating the process with the equations (1.2.25)[Asipér
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law], (1.2.31)[ideal induction equation], (1.2.22)[etjoa of motion], (1.2.23)[energy equation], (1.2.24)[feat
gas law] and (1.2.18)[temperature], we get

jo = Bo/(pLo)

By
Vo = )
V HPO
L
tO = _O )
o
32
Po = —l ’
o
Po
€= —,
Po
m
To = €o— .
0 GOkB

Note, that the normalization is such that temperature atetrial energy are related b = ¢(y — 1), so we
havep = ﬁT. Also, in resistive MHD, the normalised diffusivity is conemly known as theesistivity, = 1 /0.
From the expression for the plasma beta= 2up/ B2, we get an expression for the plasma beta in terms of the
normalised quantities (note thats a non-dimensional quantity by definition) as

From this point, all the expressions and quantities we amegm refer to are the normalised ones, and for
simplicity, the hats are dropped from the normalised quiasti Hence, after the normalization, the equations
governing our MHD dynamical processes are summarised|yfjizal

dp

ot +V.-(pv)=0, (1.6.1)
W v Vve -tvps LV xB) xB+1F, (1.6.2)
ot p p p

Ip

E—i—v-Vp:—*ypV-v—&—Hl,, (1.6.3)
%—]? =V x(vxB), (1.6.4)

whereF, and H, are given by equations (1.2.29) and (1.2.30), the currensitieisj = V x B, and internal
energy is given by the ideal gas law= pe(y — 1), withy = 5/3.

The above set of differential equations can be solved aaliyt for the first order terms, using linear pertur-
bation theory. Otherwise, they require a powerful numétmal. For our experiments, we have used LARE, a full

MHD code, to solve equations (1.6.1) to (1.6.4) in two aneé¢hdimensions. The code is described in detalil in
Chapter 2.

1.7 Summary and main goals

The Sun, our star, is an amazing object that controls thefifeur planet. The majority of the processes occurring
in the outer layers of the star are driven by highly dynamigretic fields, at temperatures far above what we
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are used to on Earth. Understanding the behaviour of thegmeatia fields, and their interactions with the high
temperature conducting plasma in which they are embedsled,cial for our own comprehension of how our star
works. The rapid release of magnetic energy is a burningpidsut it requires a detailed study of the characteristics
of the hydromagnetic structures which lie behind. The ainthidf thesis is to study in detail the current density
accumulations in two and three dimensional magnetohyalticgtquilibria around magnetic null points, which are
locations where reconnection can occur.

Many of the studies of current sheet formation in the pastrassthe cold plasma approximation (e.g. Vain-
shtein, 1990; Vekstein and Priest, 1993; Bungey and PA€85), i.e. they do not take into account the effects
of plasma pressure, so magnetic effects dominate. Sdehtse studied these sorts of models for twenty years,
from the 70’s up to the 90’s. But if we think it over again, wdlgbon see a clear inconsistency in this approach.
Reconnection may happen around locations in which the niediedd vanishes, and the previous models assume
that the magnetic effects dominate over the plasma effelci®. can that be true, even for a low density plasma, in
regions about which the magnetic field is zero? Certainl{hase regions, the plasma effects will have to become
important. An extra consideration is the energetics, sifhtiee thermal energy of a system is neglected, what
happens with the energy released by the magnetic field?

Hence, in the last decades, scientists have started to takm@ pressure into consideration in studies of
relaxation around magnetic null points (Rastatter et #94; Craig and Litvinenko, 2005; Pontin and Craig,
2005). Now, a non-force-free equilibrium is allowed to baaked, as magnetic and pressure forces can be balanced
without vanishing individually. They have found substahdifferences with the cold plasma approximation, as
the nature of the equilibrium is now completely different.

But there is a last point that has to do with the mechanismhutitves the relaxation, in charge of damping out
the plasma velocities. In a numerical experiment, this @atidne as physically as desired, and therefore, the choice
of the latter studies has been to include a fictitious ternhéodquations, referred as fiactional damping term
such that the final equilibrium state can be achieved diredgth no further complications. This, however, forbids
another physical effect, which is energy exchange. By agldinly that fictitious term, they cannot investigate
exchanges of magnetic energy and thermal energy of the plaghich will affect the role of plasma and magnetic
field in the final equilibrium. Even if the dynamical proces$etween is notimportant in these studies, the plasma
may gain or lose some energy during the process, which mayittfinal state.

The approach in this thesis has been different. We have noergrents of magnetic relaxation about magnetic
null points in two and three dimensions, considering theaf of the plasma pressure during the relaxation,
which is driven by a viscous damping term. This, leads to &gageamount of viscous heating which drives, at
the same time as the relaxation occurs, exchanges betwegmetiaand internal energy. We attempt to give a
valid equilibrium, which is reached by allowing no recontieg, and we look at the redistributions of the plasma
and magnetic quantities. A key difference with force-fraeges is that infinitesimally thin current sheets are not
formed in the presence of a plasma pressure. We obtain ¢uacenmulations with finite widths and lengths,
hence, the term “current sheet” is not appropriate. Instesdshall refer to our large current accumulations as
current layers.

We shall now describe the common characteristics of all tteements. The method that we follow is
essentially the same in all. We start from an initial nonidiogium field, which has no initial flows in it (i.e. initial
kinetic energy is zero), with a constant background plaserssity and current density, and we allow the field to
relax via ideal (i.e. non-resistive) MHD processes to anldgium. We list the common characteristics for our
dynamical evolutions.
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> The relaxation is driven bghysical viscous forcesimplying that viscous heating will always be associated
with the final state.

> In general, the evolution of the fluid i®on adiabatic, due to the viscous heating term. This implies that
there are exchanges of internal energy of the plasma andetiagmergy of the field. Only to first order, the
heating term disappears and the process may be treatechhsitcli

> The domain isn every sense closedind magnetic field lines are tied at all the boundaries.
> Mass is conservedvithin the whole domain: inflows and outflows of plasma areailmwed.

> Total energy is conservedwhich means that when comparing the initial and final st@tésch are supposed
to be in equilibrium), the gain or losses of magnetic energstbe entirely balanced by losses or gains in
internal energy. Throughout the whole process, the sum ghmigc, internal and kinetic energyustremain
constant.

> All the processes ameon resistive which implies a number of consequences. 1) The connectvitield
lines cannot change, i.e. there is no magnetic reconnecl8di his restriction forbids ohmic dissipation
from occurring. Magnetic energy dissipation can take pldosvever, via viscous heating. 3) The field is
frozen to the plasma, hence, motions of plasma across tldifies must carry the field with them, so that
mass is not only conserved within the whole domain, but algbimvsingle flux tubes, and for each field
line. And 4) magnetic flux is conserved for the entire domain.

In order to do this, we have run a number of numerical expemnisienaking use of a full MHD code which
solves the set of MHD equations described before, with usetraelled viscosity. However, as with all numerical
codes, the domain is discretised on a grid of points (resoliglements), which, in practice, means that all the
considerations above are not true. That s, there are going some small losses through the boundaries, and some
reconnection might take place. Nonetheless, in most cdsEsenumerical effectarevery small, and we always
find a way to deal with them, allowing us to continue our aniglygthout major problems. The characteristics and
special features of the code are described in detail in @n&pt

We start by looking at a simple scenario with a straight anthbgeneous magnetic field embedded in a
plasma, with no special magnetic points or locations. Weahte to observe, for the simpler cases, the effects
of the plasma pressure and plasma energy in the relaxatiohwa are able to predict the equilibrium from the
initial perturbations, using linear wave theory. The magault is that the inclusion of plasma effects matter in the
relaxation, and even if simple, the final state cannot berdest using an evolution where pressure forces and
thermal energies are neglected. These experiments aressedrin Chapter 3.

Then, in Chapter 4, we look at the relaxation around two-disi@nal magnetic X-type points, which are a
relatively simple scenario in which magnetic reconnectian occur. We follow the study of Craig and Litvinenko
(2005), which takes plasma pressure into consideratiandes not consider the possibility of energy exchange,
and we attempt to give a qualitative description of the fidddwt the null, by following the work of Vekstein
and Priest (1993). In Chapter 5, we present two sets of exjeaits for two specific types of three-dimensional
magnetic nulls, by following the study of Pontin and Crai@@3), which again, does not allow energy exchange
in the relaxation scheme.

Finally, we summarise our results, going over the main attaratics of the MHS equilibrium states that we
find, evaluate their implications for current sheet forrmatand magnetic reconnection, and present possible future
work in Chapter 6.



1.7 Summary and main goals 43

It is worthwhile mentioning that relaxation via Ohmic digation, due to the effect of resistivity, or magnetic
diffusivity, represents a substantially different prahbléo relaxation via viscous dissipation. While viscositg-di
sipates the plasma velocity, diffusivity tends to elima#te electric current density, and such a relaxed state can
only involve potential fields, which are mathematically ggfined and are uniquely determined by the compo-
nents of the magnetic field normal to the boundaries. Fumbeg, the time-scales for an Ohmic relaxation in very
high magnetic Reynolds number environments, such as tlae sotona, are in general probably larger than the
age of the Sun itself, outwith regions with very small lengtiales (see Priest, 1982).

Given these, the main goal of our experiments and analysisgsovide a series of controlled MHS equilibria
through a realistic dynamical evolution, studying the tomas in which current accumulations occur, and derive
their nature, as far as possible, without allowing the fieldlissipate currents away and hence, forcing them to
achieve a purelyon-force-free state in equilibrium. When a valid equilibrium is found, it may provide the start
point for magnetic reconnection studies.

By considering the effects of the plasma pressure in thexaétan, we are facing a totally different problem
from that of the force-free relaxation studied by many oshdn our non-resistive MHD relaxations, the plasma
displacements will carry the magnetic field with them, getiag an electric current and a magnetic pressure.
Hence, the resulting equilibria has to involve a balancesbeh the Lorentz force and the plasma-pressure gradient.
The effects of including a finite plasma beta are relevantamy in the high plasma beta regions of the solar
atmosphere such as the photosphere and chromosphere lbalswibe relevant in the solar corona. Obvious
regions where the plasma beta is likely to have a significiatieare in the vicinities of magnetic null points,
where the magnetic field vanishes.



1.7 Summary and main goals

44




Chapter 2

The LARE Code

2.1 Introduction

LARE is a Lagrangian remap code that solves the full equatadMHD in two and three dimensions. The code
is second order accurate in space and time and is parafieliad/iP| and known to scale linearly up to 1000 cores
of a cluster. A full description of the code, put in contextdazsompared with other commonly used numerical
methods, together with some advantages and disadvan@aggsome standard numerical tests, can be found
in Arber et al. (2001). This approach for solving multidinsesnal MHD problems is based on control volume
averaging, with a staggered grid where scalars and veatededined at different points in the computational cell.

In an Eulerian code’s mesh, the grid is stationary and masssflietween the cells. On the other hand, a
Lagrangian code’s mesh moves with the material and is defdram each timestep, so no mass flows between
cells. The code can be separated into two main parts: Theabg@n step, that solves the MHD equations in a
frame that moves with the fluid, and a remap step, which p@séniables back onto the original grid. All the
physics is contained in the Lagrangian step, and the renepgspurely geometrical. At the remap step, gradient
limiters are applied so that the monotonicity in the denaityl internal energy remaps is preserved. The code
includes artificial viscosity, as an added scalar term tgolasma pressure, which avoids some known numerical
problems at shocks. This kind of scheme has been used widlehytirodynamic problems (see Woodward and
Collela, 1984; Benson, 1992), but the LARE code is the firstsofind to introduce magnetic field calculations.

The LARE code was motivated to be easily adaptable to a yaoieproblems in solar coronal physics: It
conserves energy to machine accuracy, correctly handtekshfinds accurate values for the temperature even for
low-beta plasmas such as the solar corona, and makes th@adifiextra physics easy through the Lagrangian
step.

2.2 Equations

LARE solves the normalised resistive MHD equations. Re#igis not assumed to be constant in the code, so the
non-ideal induction equation is taken to be equation (], h8tead of (1.2.9). The normalization of the resistivity

45
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is given by
=
pLovo

The equations with which the code works are the analogouguat®mns (1.6.1) to (1.6.4), with the inclusion
of a resistive term, and are written in Lagrangian form, ggih.2.12). The energy equation is written in terms
of the internal energy density (energy per unit mass), withglasma pressure given py= pe(y — 1). For the
induction equation, we make use of the vector identity

Vx(vxB)=B:-V)v—-(v-V) B+ (V-B)v—(V-v)B.

and the solenoidal constrair'¥, - B = 0. Thus the equations solved in the code are

Dp
P v 2.2.1
Dt~ PV (2.2.1)
1

gz—lvarl(VxB) xB+=-F,, (2.2.2)
Dt p p p

1
De_ Py .vilpily, (2.2.3)
Dt p p p
DB
o7 =B V)v—(V-V)B-V x(yV xB). (2.2.4)

The density change is calculated directly from volume clesngnd using mass conservation, so equation
(2.2.1) is not actually used. If a plasma element is initiall a pointX = (X3, X, X3) and moves to a point
x = (z1, 2, x3), then the change in element length is given by

dr; = 5" Piax,,
T 29X,

so that the density can be found from

=P
A?

wherep, is the original density and is the determinant of the Jacobian transformation matrix,

8{131 6302 8{133
0X1 0X1 0X1
A — 811 6302 8{133
0Xo 0Xo 0Xo
aflfl 8.’162 (91‘3
0X3 0X3 0X3

When dealing with control volumes, this is the ratio of thefimolume to the initial volume, and it is evaluated as
A=1+ (V. -v)dt. (2.2.5)

Equation (2.2.5) is second order accurate.
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2.2.1 \Viscous terms

The viscous terms are implemented through the stress tepsand strain rate; ;, which add an additional viscous
force to the momentum equation, as

F, = 2% (2.2.6)
81‘]‘

and a heating term to the energy equation,
H, =¢;joij , (2.2.7)

with o;; ande;; given by

1
Oi5 = Ur (&'j — géwv . V) s

o — 1 8117; n 8’()j
Y2\ 0z Omy)’
where the viscosity is defined as = vp, beingr the kinematic viscosity. Note, that the viscous heating is

an added contribution to the internal energy density. Theeg&tions are completely equivalent to (1.2.29) and
(1.2.30). The normalization for the viscosity is the saméhasone for the resistivity above, hence,

Vy

U, = .
uLovo

2.2.2 Shock viscosity

At shocks, the gradients become singular and the diffeakatjuations are not defined. Hence, LARE uses the
integrated form of the equations to get jump conditions s&rshocks. Let’s first describe the problem for the
one-dimensional equations wifh = 0 (i.e. non magnetic). The jump condition for the pressuressthe shock
can be derived, using tHeankine-Hugoniot relationgee, for example, Wesseling, 2001), as

+1 +1\?
L o(aw? + PO|AU|\/ (1) o,

~
P1 —Po =

wherep; is the pressure behind the shogk.is the pressure in front of the shoek,= /~vp/p is the sound speed,
and|Awv| is the jump in velocity across the shock. The difference apipnation for the derivative of an arbitrary
function f, to second order, may be written as

_ i) = fzi)  f(@id) = 2f(@i) + f(zio1)

df
30 = Az 2Ax

dx

The first order scheme has excessive diffusion away fromkshdmt the second order scheme introduces false
oscillations behind the shock. To avoid these problemsconé introduce some dissipation, only at steep gradi-
ents, consistent with the jump conditions, by adding a scata the pressur@ when the computational cells are
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compressed. In one dimensiahy = AxV - v, whereAz is the cell size, and
q = v1pcs Az|V - v| + 1apAz?(V - v)? . (2.2.8)

Note, thaty is always positive, and should only be applied when the sdleing compressed, i.e. wh&h- v < 0.
The parameters;, and v, are fixed by experimentation, and this additional term isyarded when required,
depending on the nature of the experiment. The default gahad the code works with arg = 0.1 andv, = 0.5.
They are both dimensionless by construction. Associatdutwisartificial viscosity there is an additional heating
term in the energy equation, given by;V - v/p.

In three dimensions, equation (2.2.8) can be generalised to
qg=wvipcsL|syi|+ VgpLisi , (2.2.9)

wheres | is the rate of the strain tensor in the direction normal togheck front, and_ ; is the distance across
the cell in the direction normal to the shock front.

Remember that the expression above is for non-magnetidgamsh In general, LARE uses a tensor shock
viscosity, similar to equation (2.2.9), where the souncesgijeas been replaced by the fast magnetoacoustic speed
cy,as

1
0% = (viper Lo + vapL? |s1l) (&j — 305V V) ) (2.2.10)
This is applied to all cells, as significant shear forces magtacross expanding cells, but the associated heating
term is always positive.

2.3 The grid

LARE uses a staggered grid, where scalars and vectors areedefi different points of the computational cell.
This avoids some numerical instabilities known as chedkam instabilities, and helps with central derivative
calculations. However, it implies an extra degree of coipfavhen combining different quantities, as we must
make use of (linear) interpolations to define all the reqligj@antities at the exact same location. By not doing
this, results may not be what one is expecting.

All the scalar quantities are defined at the cell volume agntagnetic field components are staggered and lie
on the cell faces, which helps with maintainiRg- B = 0, and the components of the velocity are staggered with
respect to the magnetic field and the pressure, to avoid enlecérd instabilities, and are defined at the vertices of
the cell. This layout is shown in Figure 2.1. As an additidieakure of LARE, the mesh can be stretched in any of
the three spatial directions, so that the volume of the eeigtht not be the same within the whole computational
domain.

In what follows, we define the notation within a computatilocell, following the terminology of Arber et al.
(2001), to be used in the finite difference scheme. In threeedsions, each cell is defined by the indi¢eg, k).
We begin by defining theontrol volumeas the volume of each cethyol; ; . (Figure 2.2).
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(a) 2D Computational cell (b) 3D Computational cell
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Figure 2.1: The staggered grid for LARE2D and LARE3D.

> The distances between cell faces in ithg andz directions arelzb; ; 1, dyb; j 1, anddzb; ; i, respectively,
while the distances between the cell centersdai® ; 1., dyc; ;. anddzc; ;i (i.e. dxc; ;i is the distance
between the centers of the control volumel; ; . andcvol; 1 j ).

> The density, internal energy density and plasma pressveeaged overvol; ; . arep; j i, € ;. andp; j i,
respectively, and are defined at the cell volume centératyc, zc); j x.

> Thez-component of the magnetic fieldiz; ; ., and is defined in the center of the right facéat, yc, zc); j,x,
wherexb; ;. = xc;;r + dab; /2. They andz components of the magnetic field are similarly de-
fined asBy; ; » and Bz, ; i, at the center of the back and top faces, respectivelfzatyb, zc); ; , and
(xe, ye, 2b); 4.1, Whereyb andzb are defined in the same way @als

> All the components of the velocity field are defined at the tigip-back vertex, atzb, yb, zb); j 1. These
areve; ;. k, VYi,j.k andvzi,j,k.

Given these, the density at the cell vertex, nam;@}l}{k, can be obtained bgontrol volume averagingas

i+1 j+1 k41

1
p;’J!k = Sooolt Z Z Z PLm.nCVOl m (2.3.2)

B0,k 1= m=j n=k

wherecvol} ; | is thevelocity cell control volumegiven by

(2

i+1 Jj+1 k41

cvol? ;. = 1 cvol
i,k 3 lLm,n -

=i m=j n=k

The magnetic field components at the cell center are simplatierages of the values on opposing faces, and the
velocity components defined on cell faces, e:gh; ; i, are the averages of the four vertex values.
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yb,;=yc,; +dyb;;/2

(xc, yb),; (xb, yb),;
dyb, ° (xb, yc);;
(xc, yc),;
xb,;=xc,; +dxb;;/2

«——— dxb, ———>

Figure 2.2: Notation for the finite difference scheme, in 2D.

From the induction equation, (2.2.4), we can derive the aagian evolutions of the averaged magnetic field
in the control volume,

% B;dr = /viB -dS — /[V x (nV x B);dr | (2.3.2)

and of the control volume flux,

D
— [B-dS=- [nj-dl 2.3.3
= Ji-a. (23.3)
where integrals oveitr anddS in equation (2.3.2) refer to integrals over the volume of atoa volume, and its
surface, respectively, and the integral odéin equation (2.3.3) refers to the line integral around therogurface
integrated over in theS integral, which is not the same as the closed volume in egqu##.3.2). The remap step
deals only with magnetic fluxes.

In Figure 2.3 we show how the components of the magnetic fidddafined at the four boundaries of a
two-dimensional box, including thghost cellsin grey, whose values must be specified by the user as boundar
conditions.

2.4 The Lagrangian step

The Lagrangian step is where all the physics takes place.nitheement of the plasma carries the grid with it,
deforming it in the three spatial coordinates. It is a simpiedictor-corrector scheme, where predicted values
are calculated with timesteft /2, and the corrected at the full timestéf All the derivatives are evaluated on
the original Eulerian grid, resulting in a fully three-dims&onal second order scheme, both in time and space. To
distinguish between different time levels, variables withsuperscript, e.gv, refer to variables on the Eulerian
grid at the start of the step; variables with a star supgysaig.v*, are the values after the predictor step, at half
timestep; and variables with the superscript 1, €g.represent the values at the end of the Lagrangian stege at th
full timestep. The core solver is made for ideal MHD, so wevslioe equations for the scheme without resistive
terms. Those are introduced separately at the end.
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Figure 2.3: Magnetic field at the LARE2D boundaries and ghels, in grey.

2.4.1 Predictor step

First, we can define a total plasma pressure by adding thedeeuation (2.2.9) to the common plasma pressure,
so thatP,,:; = p + g, wherep = pe(~y — 1). Hence, the predictor value for the internal energy derisity

Po a )
¢ = ¢ DotV -V (2.4.1)
2 P
whereV - v is found from the interpolated values of the velocities ia tkell faces, as
.y Pbigk —vrbicigk  vybijk —vybijrk | VZbijk — v2bijk—
b j k dybijk dzbi j.

The Jacobian of the predictor step is found from equatio?. %2, as

A*zl—i—%v-v,
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so that the density in the predictor step is
* P
= — 2.4.2
Pr= R (2.4.2)

and the total plasma pressure is given by
Pl =p (v —1)+q. (2.4.3)

Note, that the artificial viscous pressurés not advanced to the predictor level. From equation (2,3g2oring
the resistive terms in the right hand side, we get the predioagnetic field components, as

1 ot + - ot + -
Baz™ = — {Bx + —dxb[(va:Ba:) — (vzBx)® ]+ —dyb[(vay) — (vzBy)? |

ot -
—i-%[(w:Bz)z+ — (vxBz)? ]} : (2.4.4)
where(vzBz)® " is the product obz and Bz averaged to the center of the righface ateb; ; 1, and(vzBz)*
is averaged to the center of the lefface atrb;_ ;.. Similarly, we can derive the expressions Es’);r andB;. All
of the magnetic components are calculated in the cell volcemeer.

Finally, in order to get the predictor velocity at the celiex, we use equation (2.2.2), for which we need to
derive the vector force at the cell vertex, which is founchird* = (V x B*) x B* — Vp*, with components
(Fz*, Fy*, Fz*), assuming there are no viscous forces, after applying cbviiiume averaging tp* andB*, as
in equation (2.3.1), as they are both defined in the cell veleenter. The components of the predictor velocity
are given by

ot Fa*v

: (2.4.5)

and so on, where the superscripdenotes the control volume averaging at the cell vertex.

In order to include the viscous forces, the term in equati@.6) can be directly added to the calculations of
the predictor velocity. The viscous heating is added to titernal energy calculations using equation (2.2.7).

2.4.2 Corrector step

For the corrector step, flux conservation is used, since #ggdngian step is written for ideal MHD. The compo-
nents of the magnetic field are first converted into fluxesaisin

¢oxr = Bxdybdzb ,
¢y = Bydzbdxbh
¢z = Bzdxbdyb .
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The update of the density control volume for each celhis= 1 + §tV - v*, and for the internal energy density,
density and velocity at the end of the Lagrangian step, we hav

F *
el =e— ot szsz , (2.4.6)
1 14
= 2.4.7
N (2.4.7)
F *U
vet = vx + 5t ;} , (2.4.8)

with similar equations fowy!' andvz'. Also, the terms corresponding to the viscous force anditgatay be
added if required. The magnetic field does not need to be addas the remap step deals only with magnetic flux.
Note, that the update of the internal energy density, dgasitl velocities uses the density of the original Eulerian

grid, ensuring control volume mass conservation during-thgrangian step. To finalise, the positions of the grid
cells at the end of the Lagrangian step are calculated using

dwb117j,k = dab; j  + (vxb;:j?k — vxbz‘_17j7k)5t ,
dyb%,j,k = dybi jr + (vybj ; , — vybi ;1 )0t ,

dzb;j!k =dzb; j i + (v2b] ) — V2] _1)0t .

2.5 The remap step

The remap step is a purely geometrical mapping of the Lagaargyid back to the original Eulerian grid. Gradient
limiters are used to maintain monotonicity, and the magrfetld remap is done so th& - B = 0 is preserved.
The scheme for remapping uses mass coordinates, for comgemass, internal energy density and momentum,
to machine precision. However, kinetic and magnetic enargynot conserved in the remap step: This is only
significant at shocks where the limiters flatten gradientheremap step. However, further calculations can be
added, by user specification, to conserve kinetic energpaan eemap step, by considering the change in kinetic
energy summed over the cells and finding the energy whiclsisridhe remap, which is then added into the internal
energy as a heating term, thus conserving the energy. Timis peocedure could be applied to the magnetic energy
losses in the remap step, but that is notimplemented in ttie.déence, possible errors in total energy conservation
can be identified as errors in the magnetic field energy.

The remap is done in one-dimensional sweeps. To go over tieeps we shall then drop the indidgsk)
and work purely in one dimension. In what follows, the prim@arscript, e.guz!, refers to the values before the
remap, and the superscript- 1, e.g.vxz" !, refers to the values after the remap.

The condition for the remapping is mass conservation in eathso that the mass in the cell after the remap,
p"tldxb, equals the mass before the remahizb' minus the mass from this Lagrangian cell which overlaps the
Eulerian cell at + 1, dM;, plus the mass from the Lagrangian @ell 1 which overlaps the Eulerian célldM;_4,
as shown in Figure 2.4. Since the mass before the remap isthe as the initial mass in the original Eulerian
cell, i.e. p'dxb' = pdxb, we have

1
Pt =pt

(Mo — dM) (2.5.1)
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p, dxb, = p, dxb,
I 7/",’7/—'/7/7 dMm,
I
A AN A AN AN AN AN / X
<« dxb,
dxb,
Figure 2.4: Lagrangian displacement of a cell after a tieyst
where
dzb;
and
v}t
vi= dxb}

Note, that in these two equations;; is the velocity of the boundary, and in 3D this needs to beawgd by
the face-centered velocityzb;. The variableD, is thevan Leer gradient limite(van Leer, 1979), which is found
as follows. Initially, given a general variabfe the third-order upwind gradient is given by

2 — ;| fix1 — fil n T4 | fi = fizal

D;| = fi '>o,
|Dil 3 dxc; 3 drei_1 or Ui

= 2= |fixa = fil | 1+%ilfive — fixl 1

D;| = f L <0.
|Dil 3 dxc; * 3 dxeiyq or Vi =

The reason of these being third-order here is simply becidgessts nothing computationally, but in some cases it
might reduce slightly the numerical dissipation. Now, thegmitude of the gradient obtained is limited using

D; = sgnmax(|D;|dxb; , 2|fix1 — fil . 2|fi — fi-1l) (2.5.3)
where

sign(fiy1 — fi) if sign(fip1 — fi) = sign(fi — fi—1) ,

otherwise .

sgn =

The internal energy density remap follows the same proeedsithe density remap, such that

1
nt+l _ 1.1 1 e
e = T, (e;p;dxb; + de;—1 — de;) (2.5.4)
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/

B de,

e p'dxb/

e o dxb, ——>

Figure 2.5: Lagrangian energy change in mass coordinates.

where

dab; M,
de; = [ ¢! ip; (1 - -2 ) ) ang; 255
‘ <€Z+ 2 ( p}dwb%» (2.5.5)

as in Figure 2.5. NowD; is the van Leer limited gradient of the internal energy dgmsindde; denotes energy,
while ¢; is energy density (energy per unit mass).

The velocity remap is also done by using mass coordinatas, énsuring conservation of momentum. The
remap is the same as the one for the internal energy densliytaking into account that velocities must first be
averaged to the appropriate faces of the velocity contriime.

The calculations for the magnetic flux remap follow the samereach as that of the density. The total flux
through they face atyb; ; » is unchanged during the Lagrangian step and is givepy= By dxbdzb. This is
remapped usingz* to find the area of Lagrangian cells overlapping neighboEnggrian cells in the: pass of
the remap. Now, since the flux is defined as a face surfacega@iuantity, the velocity must be averaged at the
edge center, being replaced withe; ; , + vz jk—1)/2.

The calculations ofl¢y; ; x, they flux remapped from cells, j, k) to cell (i + 1, j, k), follows the calculations
of dM;. To preserve the solenoidal conditidWi,- B = 0, the code uses Evans and Hawley’s constrained transport
method (Evans and Hawley, 1988). This requires that

(byf;'é = Yij.k — AdPYijk
¢y?:11,j,k = Yiv1,4k + dPYijk
(ba:f;r,i = ¢ 5k + ddYijk

+1
Gy ik = PTivt ik — dOYijik

and similarly for the rest of the components. Finally, cating the fluxes back into field components then com-
pletes the remap step.
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2.6 Resistive terms

We are now going to discuss briefly the introduction of noeailderms in the LARE code. These come added in a
separate module which calculates the resistivity, difasind ohmic heating terms.

Resistivity is not homogeneous in the code. In fact, it is patad as a function of the current density, so that
it activates when the value of the current is above a giveitalivaluej...;;, as follows,

1 = no max(0, |]| -1).
Jerit
This approach allows reconnection only in certain isolatsgdons. A background value for the current may also
be given as an input to the code.

The diffusion of the magnetic field is carried out in the Laggian step. If it is allowed to happen, conservation
of magnetic flux can no longer be applied, and the magnetid fieist be calculated explicitly. This is done by
adding the missing resistive term in the predictor step &dalculations in (2.3.2), taken from equation (2.4.4),
given by

/[V x (nV x B)]; dr .

This term is, by construction, defined at the centers of thidames, as it is the magnetic field, so it does not require
any further averaging. In the corrector step, equation.82i8 used to calculate the change in magnetic flux, from
which the magnetic field components can be directly obtaifién, the remap step is carried out as in the ideal
case.

The magnetic diffusion creates an extra heating termptimaic heatinggiven byz;2, which is calculated at
the cell edges and averaged to the cell center to be used é@mérgy update.

The inclusion of artificial viscosity handles shocks cotiyedut also makes the solutions more diffusive. To
avoid this, the code includes a term of artificial resisyitiirough equations (2.3.2) and (2.3.3). This resistivity
has the form? At, whereuv 4 is the local Alfvén speed, and is added in the same mannkeastificial viscosity.

2.7 Stability condition

There exists a constraint in the timestep, related to theadgéepsize, which defines a stability criterion in numer-
ical computations. It has to do, as usual, with the fact thattomain of the numerical experiments is discretised
in points. And it appears from the finite differentiation safe, which is never exact.

Let’s define thedomain of dependenc# a partial differential equation (PDE) for a given pointthe portion
of the problem domain that influences the value of the satuéibthat given point. Similarly, the domain of
dependence of an explicit finite difference scheme for argivesh point is the set of mesh points that affect
the value of the approximate solution at that given meshtpdihe Courant-Friederichs-Lewy (CFL) condition
(Courantetal., 1928, English translation: Courant etl&6(7)) requires that the domain of dependence of the PDE
must lie within the domain of dependence of the finite differe scheme, for each mesh point. Any explicit finite
difference scheme that violates the CFL condition is nem@gainstable, although satisfying the CFL condition
does not necessarily guarantee stability.
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This condition may be derived usingn Neumanstability analysis for the differentiation scheme (see, fo
example, Isaacson and Keller, 1966). In a diffusion typeaéiqu, i.e.

Q _ &Q
a a2

stability can not be guaranteed, unless the numerical tape&, satisfiesit < %51-2//{. This condition can be

interpreted as requiring that the typical lengiidt)'/2 for the diffusion of@Q does not exceed one spatial stap
or equivalently that the physical diffusienis not bigger than the numerical diffusigéx)? /6t.

Hence, in the LARE code, the time-step can be restricted kipgahe smaller value from the restriction for
the resistive diffusive term and the viscous diffusive tesmthat

1 (0s)? 1@] 7 (2.7.1)

0t < min | =
_mln{2 5,

for the code to have a chance of being stable.

2.8 Summary

We have presented in this chapter the code we are going toihg fas the numerical experiments of this thesis.
The code solves the full set of MHD equations and can incluatk biscous and resistive terms. Each timestep
is split into a Lagrangian step followed by a remap onto thigioal grid. This allows all of the physics to be
included into the Lagrangian step, which is built throughirapde predictor-corrector scheme. The remap step
includes gradient limiters to help control shocks. The codes a staggered grid to prevent the checkerboard
instability and to build conservation laws into the finitéelience scheme.

For our purposes, viscosity is switched on, but we work witihiion-resistive version of the code. Nonetheless,
we must expect a small amount of numerical diffusion of thgnagic field when situations are pushed to the limit,
i.e. when very small length scales occur and hence largérielearrent densities are present. This will, however,
decrease considerably when using high spatial resolwltimugh such runs require more computational power.

The code has been tested widely for solar coronal phenoraaddt, has been proved to handle shocks correctly,
allowing the inclusion of non-hyperbolic physics such asigtvity and viscosity, and to accurately find local
temperatures. A set of tests which are well establishedditdrature are presented in Arber et al. (2001), in order
to prove the validity of the code.

In practise, what is needed for the numerical experimenassst of initial conditions for the magnetic field,
density, internal energy and velocity, plus the specifisatf how those quantities should behave at each of the
boundaries of the domain. Boundary conditions have to bbysspecifying the values at ghost cells (see Figure
2.3) right outside each boundary of the domain. Those arettieen on each timestep to calculate derivatives at
boundaries.

There is a number of control parameters to be specified bygbe such as grid-size, timestep, viscosity, and
shock viscosity parameters, among others. The last onegti@zero when possible. Also, we specify the kinetic
energy remap to be applied on each timestep, to ensure ecanggrvation at shocks.



2.8 Summary

58




Chapter 3

Relaxation of Parallel Magnetic Fields

3.1 Introduction

In our first set of experiments, we consider the case of a hyegmetic perturbation over a homogeneous two-
dimensional magnetic field with parallel field lines in a givepatial direction. This configuration is absolutely
general and might be compared with different solar envirentasuch as a region in a coronal prominence or part
of a coronal loop. The results shown in this chapter can bedon Fuentes-Fernandez et al. (2010).

Looking at this simple structure allows us to study in detfaél direct consequences of introducing a non-zero
plasma beta in relaxation experiments. Also, it providegasy context to look closely at the energy evolution
during the dynamical process. Furthermore, making use éifEtion theory, we are able redictmathemati-
cally the final equilibrium states as functions of the ilitdasturbances, which could be purely magnetic, thermal,
or both.

To test the analytical calculations, we show a series of @xyats in which the system is perturbed by a local
small enhancement in the plasma pressure. We analyse cciBcsprperiment in detail, and then we evaluate the
validity of the linear predictions for the whole series opeximents. According to equation (1.3.8), for final state
to be in equilibrium it is required that the plasma presssrednstant along field lines. In principle, the system
would be allowed to relax to the minimum magnetic energyestaddistributing the plasma pressure evenly over
the whole domain, but that is not possible, as there are nstikesterms in the equations, and hence, no magnetic
diffusion by ohmic dissipation in the relaxation. The fiefdfiozen to the plasma. Thus the plasma, trying to
expand because of the pressure enhancement, has to cammaginetic field with it and destroy its homogeneity.

3.2 Linear equations in 2D

Letz andy be the coordinates of the two-dimensional problem. Thé&irsetup involves a uniform magnetic field
pointing in the vertical-direction,B, = Byé,, and a background plasma with constant presgyreensitypo

and internal energyp, with no initial flow (i.e. vy = 0). The initial disturbances are supposed to be small, inrorde
to stay in the linear regime. Expressing each quanfity v, t) as the sum of a background constant value plus a
perturbationg(z,y,t) = qo + ¢1(z,y, t), where the subscrift indicates the background constant value, and the
subscriptl indicates the first order perturbation, we get the expressior the relevant quantities as functions of

59
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space and time, as

p(x,y,t) = po + p1(,y,1) (with p; < pg = const) ,
e(w,y,t) = eo + e1(w,y,t) (with €1 < €9 = const) ,
p(z,y,t) = po + pi(z,y,1) (with p; < po = const) ,
B(z,y,t) = Bo + Bi(z,y,t) (with |B1| < |Bg| = const) ,
v(z,y,t) = vi(z,y,t) (with |vi| very small) .

To derive the set of first order equations that describe tieali evolution of the field and the plasma, we have to
take into account that the derivatives of the backgroundtities are always zero, and we neglect the second order
terms that involve quadratic or higher order terms (i.e dois of the perturbations).

We first consider the linearised equation of state. The backgl and first order perturbation of the plasma
pressure are related to the plasma density and internajeti@ough equation (1.2.24), such that

po = poco(y — 1), (3.2.1)
p1 = (poe1 + preo)(y — 1) . (3.2.2)

Also, the total pressure, defined as the sum of the plasmayeeg, and the magnetic pressuB? /2, may be
written aspr = pro + pr1, USing

pro =po+ Bj/2, (3.2.3)
pr1 =p1+ (Bo-Bi). (3.2.4)

Now, from the normalised ideal MHD equations, (1.6.1) t&(4), we get

0
% — 0oV -v1, (3.2.5)
8V1

poﬁ =—-Vp + (V X Bl) X Bg+ Fu1, (326)
0
% — oV vy, (3.2.7)
% =V x (vi xBy), (3.2.8)

with F',; being the linearized viscous force, from equation (1.2.29)
9 1
Ful = poV \Y V1+§V(V'V1) .

wherev is the kinematic viscosity. Note, that the heating term desppear in equation (3.2.7), since it is purely
second order. Thus the process is adiabatic within thedireime, and there is no heating of any kind taking
place: The entropy per unit mass,- p/p”?, is conserved, for each single fluid element, and for theebbtx. For

the two-dimensional problem, we can rewrite the equatidrava in scalar form, decomposing all the vectorial
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guantities in components, as

% P (3.2.9)

P a;? - _% ~ By 85;’ + By aaB;"” + pov (V%u + %(%(V : V1)> , (3.2.10)
Po 8;? = —%—1;1 + pov (V%M + %C%(V : Vl)) ; (3.2.11)
% eV vy (3.2.12)
% _ Boa;;”” | (3.2.13)
ag;y g 8;5 | (3.2.14)

wherev,, v1,, B1, and By, are thex andy components of the perturbed velocity and perturbed magfietd,
respectively. Plasma pressure, density and internal gragegrelated by the perfect gas law, equations (3.2.1) and
(3.2.2), withy = 5/3.

From the conservation of entropy, a relation between thenptapressure and density perturbations may be
obtained, within first order (i.e. neglecting the terms imtag products of perturbations), using

Potpr _ _ Potp
(o +p1)"  pg +p1py "

—1
= (1+&> <1+M)
Po po Po

B ()2
Po Po Po

= p_g <1 + h_ m) = constant .
Po Po Po
Hence,
Apr _yAp
Po Po ’

whereA indicates the difference between final and initial staténefgierturbation, such that
Apy = EApy (3.2.15)

wherec, = \/vpo/po is thesound speed

In order to get a solution of the above equations, by propamlyerstanding what is happening and being able
to make some analytical progress, we first consider pertiorigthat are purely perpendicular and purely parallel
to the magnetic field, and solve the set of equations (3.2 @.2.14) for the two one-dimensional cases separately,
for then combining them to find the solution for a general wimensional hydromagnetic perturbation.
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3.2.1 1D Perturbation across field lines

Let's consider first a perturbation varying only in the diien perpendicular to the magnetic field lines, The
magnetic field vector has a non-zeyacomponentB,(z,t) = Bi,(x,t)é,, while the velocity has a non-zero
z-componenty, (z,t) = v, (x, t)é,. Equations (3.2.9) to (3.2.14) reduce to

% _ _poag;r , (3.2.16)

po% = —% + pou'% : (3.2.17)

% _ _WO% 7 (3.2.18)

8?;?’ = —Bo% : (3.2.19)
wherer’ = 4v/3, andpr is the perturbed total pressure, from equation (3.2.4gmly

pr1 = p1+ BoBiy - (3.2.20)

The equation governing the final equilibrium state can baiakd using equation (3.2.17). In a static equilibrium,
the time dependence disappears, and the velocity is zars, the equilibrium requires constant total pressure
everywhere,

Opr1
Ox

=0. (3.2.21)

That is, total pressure is constant everywhere in the finalliegum state. Combining equations (3.2.18) and
(3.2.19), we get the evolution of the total pressure as

1 8pTl o 2 2 0v1z
o (s +ca)— (3.2.22)

wherec, = By/./po is the (normalisedplfvén speednormally defined a4 = Bo//11p0)-

With a bit of manipulation, we can derive a differential etjoa for the total pressure. Differentiating (3.2.22)
with respect tor, substituting the value a¥%v,,. /02 given by (3.2.10), and differentiating all with respectito
again, we get

10 <82pT1) g+ < 1 9%pry 32111)

0o Ot \_ 0x2 v po Oz | Otdx

The differentiating of (3.2.22) with respecttaives us the last term in this equation, obtaining, finally,

82pT1 2 82pT1 ,8 (32pT1>

— (2 -
By = (c; +c3) 922 +v 71 \ "oa2 (3.2.23)

Equation (3.2.23) is thevave equation for fast magnetoacoustic wavBsese are longitudinal waves that propa-
gate in the direction perpendicular to the magnetic fielanpressing and expanding both the magnetic field and
the plasma. Their speed of propagation is given byfélsemagnetoacoustic speed

cp=1/c2+c2, (3.2.24)
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and the second term in the right hand side of (3.2.23) is tmepitag mechanism, which is controlled by the
kinematic viscosity.

Assuming that the total pressure can be considered as anoons, periodic function, the solution of last
equation is given by Fourier analysis, and can be expressadaperposition of plane waves, such as

pri(z,t) = Re <Z @k:ei(lm_m)> ) (3.2.25)
k

Each value of thevave numbelk (wherek is real) corresponds to a different oscillation mode. Ineyahw

will be a complex quantity dependent @nwith a real part, representing the frequency, and an inaagipart,
representing the damping rate for each mode. In the samethegpnstanp;, is a complex quantity as well, and
may be decomposed into real and imaginary constants. Bagle shode, characterized by the different values of
k, is not coupled to the other modes, and is a solution of theeveawation itself. Hence, we can consider each
wave with a generic wave number separately.

Forgetting for one moment the fact that only the real parthig expression makes physical sense, we may
substitute (3.2.25) into (3.2.23), replacing the spata@ahatives byik, and the time derivatives byiw, to obtain
a second grade equation fo(k), referred as to thdispersion relation

w? +ik*Vw — 3k* = 0. (3.2.26)

Equation (3.2.26) has the solutian= a + bi, whereaq, the real frequency of the wave, abdthe damping term,
are given by

k
a = /4ct — k2, (3.2.27)

1
b= Ek%’ . (3.2.28)

[\

Notice, from the square root in (3.2.27), that in order todhavharmonic mode, the wave numidemust satisfy
k*v"* < 4¢%, and higher modes will be damped without any type of oséilfat

On the other hand, from equations (3.2.27) and (3.2.28), mektfiat the mode wittk = 0 hasw = 0. From
equation (3.2.25), the expression far; (x, t) can be written as a constant coefficient, ggyplus a sum of terms
which will be proportional to a mix of cosines and sineskafandat and to the exponential"*. It is this last
term which matters, as it vanishes at the final equilibriusn{f— oo, thus leaving the total pressure as a constant
given by, everywhere, in agreement with equation (3.2.21). As thisstant does not vary in time, it can be
calculated fort = 0 as the first coefficient of the Fourier expansionpef (z, 0), namely

pr1(z,0) = % + Z [an cos(2mnz/Ly) + by, sin(2rnz/Ly)]
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whereL, is the length of the--domain, and the coefficients are given by

2

ag = L—w /pTl(J:,O) dx 9
2

an =1 /pTl(x7 0) cos(2mnz/L,) dz ,
2

The key point is thatry = ay, i.e. the constant coefficient from the Fourier analysis3o225) forpri(x,t) is
the same as the constant coefficient from the Fourier expafsi p1 (z, 0), so the perturbed total pressure in the
final equilibrium is given by that constant, which is themogeneous redistribution of the initial total pressure
given by

pra(e0) = 1= [pra(.0)de = = [ (p1(2.0) + BBy (2.0)) do (3.2.29)

where thedz integrals are integrals over the length of thelomain,L ...

From equation (3.2.22) we get an expression for the velag#ylient, as

Ovie 1 Opri

oxr poc; Ot

)

which we can substitute into equations (3.2.16), (3.2.18)(&.2.19), giving

dp1 1 Opr
= (3.2.30)
Op1 - Cz pr1
o E o (8231
0By, By Opri
v 20 . (3.2.32)

ot _pocf ot

Equations (3.2.30) to (3.2.32) show the time evolution @spia density, pressure and magnetic field during the
whole dynamical process. We emphasize the fact that aliriee dependencies appeatly on the total pressure

of the system. Integrating now from= 0 to t = oo, we obtain the perturbed quantities for the final equilibriu
state, as functions of the perturbed total pressure, to 8ecatb the background values:

pi() = p1(2,0) + g lpri(00) — pra(2,0)] (3.2.33)
f
2

pi(z) = p1(x,0) + i—%[pm(oo) —pri(z,0)], (3.2.34)

Byy(z) = Biy(2,0) + 302 [pr1(00) — pri(x,0)] . (3.2.35)
PoCy

Equations (3.2.33), (3.2.34) and (3.2.35) state that ndemabw we set our initial disturbance, the final
equilibrium distributions are completely determined bg thitial and the final total pressures of the system, which
are given by the solution of the wave equation. Also, theycamapletely independent of the viscosity, but the
dependence with the spatial coordinate remains. Thatégptbssure gradient is not zero, and so, the equilibrium
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described by these equations is not force-free in natutehleypressure gradient must be balanced by a non-zero
Lorentz force. Note, that also the adiabatic equation feditnear regime given in equation (3.2.15) is satisfied.

The distribution of the flux functiond., for the final equilibrium can be derived frof, = —0A./0x, as

0Cy

Tmin

ASY(z) = —Box — /T {Bl(x, 0) + pB—OQ[pm(OO) —pri(z, O)]} dz , (3.2.36)

where the first term is given by the integration of the congtackground3,. Last, the current density is given by

. 82A,(zx,t) OB
eq _ z ) — Y

Finally, we may want to express the final pressure as a fumciiod ., since in the equilibrium, the plasma
pressure is constant along field lines, as seen in equati8r8f1 This may be achieved by combining equations
(3.2.34) and (3.2.36). For a small perturbation, thingslmaa lot easier if we neglect the second term on the right
hand side of equation (3.2.36), assuming that

xr B
/ {31(1',0) + —Oz[pTl(OO) —PT1($70)]} dz| < [Boz| .
Tmin POCf
Then, our equilibrium state is defined by
02
p“U(A.) = po +p1(—A./Bo,0) + C—S[Pﬂ(oo) —pr1(—A./Bo,0)] . (3.2.38)
f

3.2.2 1D perturbation along field lines

Let's consider now a perturbation varying only in the difectof the main magnetic field;. The magnetic field

vector remains unperturbed, as it points along the diraaticthe perturbation and the velocity has a non-zgro
componenty (y,t) = vi,(y,t)é,. Hence, the evolution is purely non-magnetic, and will lead homogeneous
redistribution of the plasma pressure all along the fielddinEquations (3.2.9) to (3.2.14) reduce to

8/01 8v1y
L= 3.2.39
ot Lo ay ’ ( )
vy Ip1 , vy
- _ 3.2.40
Po~5; oy + pov oy ( )
8p1 8U1y
=z = 3.241
ot po dy ( )
and the equilibrium is now given by a constant plasma pressuerywhere,
Ip1 .
oy 0.
From equation (3.2.41), we get
Lop1 _ 20uy (3.2.42)

po Ot o dy
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By the appropriate combination of equations (3.2.40) an#.42), we get now a wave equation for the plasma
pressure,

822?1 2 32]?1 ’ 0 (82}91 )

oz~ “ayr TV o oy

(3.2.43)

Equation (3.2.43) define acoustic waves, which are alsoitiotigal, but propagate in the direction along the
magnetic field, with the speed of propagation being the s@pwkd of the medium, defined beforeas=
\/'ypo—/po. Note, that this speed is by definition slower than the fagymetoacoustic speed defined in equation
(3.2.24) for the horizontal propagation.

As before, the plasma pressure can be expressed as a suf@npafsplane waves, as in equation (3.2.25),
with the dispersion relation

W ik w -2k =0,
wherew = a + bi, and
b= %]{JQV/ .

The solution is given by a redistribution of the plasma puesslong the field lines, and may be written as

1
= 7 ) d ) 3.2.44
pee) = 1= [m0)ay (3:2.40
P = p1(5:0) + 11 (00) = pr(3:0)]. (3:2.45)

S

where thedy is the integral over thg-domain,L,. This time, there is no magnetic Lorentz force to countesact
plasma pressure gradient, hence, the plasma pressuredisttibutes evenly all along the field lines.

3.2.3 2D perturbation

We combine now the results of the two previous sections tainkd general solution for equations (3.2.9) to
(3.2.14). Once again, setting the velocities to zero, wetlyetequations governing the 2D equilibrium, from
equations (3.2.10) and (3.2.11), as

) 9B,

o (1 + BoBuy) = Bo a; =0, (3.2.46)
W _yg. (3.2.47)
dy

Equation (3.2.47) tells us that the final plasma pressuraatasiepend ony, so the solution for the pressure
must remain one-dimensional, i.e. only dependentorOn the other hand, equation (3.2.46) does not have a
direct interpretation, as both spatial derivatives ar@ived. The ternp; + By B, represents the perturbed total
pressure from Section 3.2.1, and the new té?gi3,,, represents the magnetic tension due to the curvature of the
field lines, which was zero in the one-dimensional cases. shsliwhen looking for a periodic solution, Fourier
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analyzing makes life simpler. Only if our functions are pelic in bothx andy, we can express the first order
terms as functions af!(**+lv—«t) \where each paitk, ) represents one single mode of oscillation in the global
time evolution. Then, equations (3.2.46) and (3.2.47) @relwritten as

k (p1+ BoB1y) — 1 BoB1, =0,
lp1 =0.
1) The modeé: = 0, [ = 0 represents the unperturbed background values.

2) Fork # 0, | = 0, the equation of the equilibrium is

0
%(Zﬁ + BoBiy) =0. (3.2.48)

These modes only depend onand represent the homogeneous redistribution of the poésisure studied in
Section 3.2.1.

3) Fork =0, [ # 0 we get

o _y (3.2.49)
dy

9B _ (3.2.50)
dy

These modes do not modify,,, instead they simply remove both the vertical gradients agnetic tension
and plasma pressure as in Section 3.2.2. Each of them iedreadividually, as they are not coupled in the
equations.

4) Finally, for those modes with # 0, [ # 0, we get
kBly — 1B, =0 )

which can be combined with the solenoidal condition for tregmetic field,V - B = 0, or, within our Fourier
notation,
k‘Bly + 1By, =0.

From these equations, we can conclude that, in the finalibguih, the existence of a variation @f;,, in the
x-direction is totally incompatible with a variation éf, . in they-direction. Hence, the modes with both wave
numbers: andl non-zero may appear in the dynamical evolution,rmttin the final equilibrium distributions.

Therefore, with our uniform background magnetic field pwigtstraight in the verticay-direction, the final
equilibrium state is a combination of the background val(ies= 0, | = 0), plus the vertical non-magnetic
evolution to a state with plasma pressure that is constangal, and/or the smoothing of the horizontal component
of the magnetic fieldX = 0, [ # 0), plus the one-dimensional hydromagnetic evolution athe field lines
(k # 0, 1 = 0). Note, that a perturbed magnetic field in the horizontadction, B, . (i.e. a curved magnetic field),
is not coupled with eithep; or B1,, so the final magnetic field lines remain straight, @gd is not involved in
the final equilibrium.

Hence, we may calculate the analytical two-dimensional &gailibrium in two steps. Let's denote the quan-
tities after the vertical non-magnetic evolution with arstaperscript, e.gp;. First, the non-magnetic evolution in
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the vertical direction, along the field lines,

pi(z) = Li /pl(x,yﬁ) dy (3.2.51)

Y
* ]‘ *
pi(@,y) = pi(z,y,0) + S lpi(@) = pilz,y,0)], (3.2.52)
with the total pressure given by

pr1(2) = pi(x) + BoBiy(z,0) . (3.2.53)

And second, the hydromagnetic evolution in the horizonit@ation, across the field,

(2, y) = gl y) + cigf[PTl(OO) ()] (3.2.54)
K
Pz, y) = pi(x) + j—;[pm(oo) — i (@)] 4 (3.2.55)
B (2,9) = Biy(@,0) + —2% [pra(o) — pin (0] (3.2.56)
PoCy

not forgetting to add the respective constant backgrouhcega

When analyzing the validity of the results above for a nosaidexperiment, it is important to remember that
equations (3.2.52) to (3.2.56) are restricted by the lirsggroximation, while equation (3.2.51) is not. Hence,
we expect our analytical calculations for the pressure td far much larger initial perturbations than the ones
for the density. If the initial pressure disturbance is moad, but the linear expression for the plasma pressure is
still valid, the adiabatic condition (i.e./p” = constant) gives us a better approximation for the final equilibrium
plasma density, calculated as

eq . 1/7
Pz, y) = <p (x]’)?ij%’y’o)> . (3.2.57)

We shall make a note about the two speeds involved in theisofu3.2.54) to (3.2.56). The sound speed,
is calculated from the background plasma pressure andtggmsi note how our choice of an ideal polytropic gas,
i.e. equation (1.2.24), removes the dependence on thetgémsne sound speed. And the fast magnetoacoustic
speed is defined in equation (3.2.24). Hence, we can deevgaheral expressions of our two characteristic speeds
as

Cs =/ 607(7 - 1) ) (3258)

BQ
cp = \/p_(()] +ey(y—1). (3.2.59)

Equation (3.2.58) defines the characteristic speed of thegakenon-magnetic evolution, and (3.2.59) defines the
characteristic speed of the horizontal evolution. Of ceutse dynamical process is more complicated than that.
These two evolutions do not occur independently, as thegssois two-dimensional. The system does not evolve
in the vertical direction first, and then in the horizontakdition, nor the opposite. In fact, there might be a whole
family of magnetoacoustic waves relaxing the system dowthedinal equilibrium. However, the equations are
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such that we can find the final equilibrium stateif the two one-dimensional evolutions occurred separataty, a
thus allowing us to make predictions.

3.2.4 Overview

So far, we have derived explicit analytical expressionstii@r solution of a generic hydromagnetic perturbation
imposed over a straight and uniform magnetic field, embeddedhermal plasma. To do this, we restricted the
calculations to the linear regime, in which the perturbagiare assumed to be small. In general terms, “small”
means that the products of these perturbed quantities bawe negligible when compared with the linear terms.
But the character of being “negligible” can only be examitddirect comparison with the exact results to the
equations. Although, in general, physical processes takesnatural events are not linear, in some cases, one
can find a regime where terms of higher order than linear daddtsignificant effects, and hence, the first-order
approximation does a good job.

Next, we consider a series of numerical experiments to ev@lior what range of parameters our linear results
are valid. If the results from above are only valid for a regiof really small perturbations, then those results are
meaningless. If they work for perturbations in some way caraple with the background quantities, then they
may have some potential.

3.3 Numerical experiments: Setup

The numerical results are obtained through a series of erpats, using the LARE code, where the magnitude of
the same type of perturbation is increased systematicaiiyce these are the first series of experiments discussed
in this thesis, we present the numerical setup in carefuildedpecifying the way we imposed the boundary
conditions of the code, using values at ghost cells out$idenimerical domain, together with the specification
of the initial conditions, which include the background ertprbed quantities and the initial perturbations which
break the equilibria, and the calculations of the perturdo¢al pressure, which determines the characteristics of
the final equilibrium states.

3.3.1 Numerical specifications

The numerical domain is a square box with a uniform grid266 x 256 points. The length of the domain is
L, x L, =1 x 1, and bothz andy vary from0 to 1. The background magnetic field is pointing in the vertical
y-direction and all the perturbations depend on betandy. The top and bottom boundaries of the box are
periodic, so that the field lines are not line-tied, allowthgm to move entirely together with the movement of the
plasma fluid. The boundaries on the left and right sides argecl. The precise conditions that has been set at the
boundaries of LARE are specified below.

The periodic boundaries on the top and bottom mean that asgtfib the top are coded as inflows at the bottom,
and vice versa. The code has this option to be set up autathatiy just choosing the boundaries to be periodic.
For the LARE discretization terminology, this is transetbinto two rows of ghost cells for each boundary (see
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Figure 2.3), as

Top boundaries : Bottom boundaries :

By (i,ny +1) = B(i,1) B, (i,0) = By(i,ny)
By (i,ny +2) = B (,2) B, (i,—1) = By(i,ny — 1)
By (i,ny, + 1) = By(i,1) By (i,—1) = By(i,n, — 1)
By(i,ny +2) = By(i,2) By(i,—2) = By(i,ny — 2)
€(i,ny +1) =¢€(i,1) €(,0) = €(i,ny)

e(i,ny +2) =€(1,2) €(i,—1) =€(i,ny — 1)
p(i,ny +1) = p(i, 1) p(i,0) = p(i, ny)

p(i,ny +2) = p(i,2) p(i,—1) = p(i,ny — 1)

On the other hand, closed boundaries on the left and rightirtied flows approaching the boundary must bounce
back into the numerical domain. In general, specifying etbboundaries is not a trivial problem, and doing it
incorrectly can cause losses through the boundaries Mimgthe breaking of conservation laws. Our specification
of closed boundaries is made by setting the quantities tobstant (or maxima or minima) across them, or, in other
words, setting their derivatives with respect to the comat normal to the boundary as zero. This is translated
into LARE as

Right boundaries : Left boundaries :

By (ng + 1,j) = Ba(na — 1,j) By (—1,j) = Bx(1,)
Ba(ne +2,5) = Bo(ne — 2,7) Ba(=2,j) = Bx(2,7)

By(ngy +1,7) = By(na, j) By(0,5) = By(1,4)

By(ne +2,j) = By(ne —1,5) By(=1,7) = By(2,J)

(e +1,5) = e(ne, j) €(0,7) = e(1,5)

€(ng +2,5) = €(ny = 1,7) e(=1,j) = €(2,J)

p(ne +1,5) = p(na, j) p(0,3) = p(1,7)

p(ne +2,5) = p(ne — 1, ) p(=1,5) = p(2,7)

Note, how the valugs, (i, 0) is not specified as a boundary in LARE, but as an initial caodit For the exper-
iments of this section, this choice of closed boundariegbes$ perfectly, and in fact, it has been confirmed that
the choice of periodic or closed boundaries makes no diffe¥eWe have shown here the specification for closed
boundaries to illustrate the two different options. In tlese of closed boundaries, all the velocities at the ghost
cells are set to zero.

3.3.2 Initial conditions

The initial equilibrium is a uniform magnetic field, poingralong the verticay-direction, which is embedded in a
plasma with uniform pressure, density and internal enexggl,with no velocities. The strength of the background
uniform magnetic field and the background internal energyfized, and have the valuesBjf, = 1.0 andey = 1.5,
respectively. The background densipy, is constant everywhere, and its value is varied from expent to



3.3 Numerical experiments: Setup 71

Background| Perturbation
q o q(t=0)
p Po 0.0
€ 15 €1(z,y,0)
P 2p0 3poc1
B 1.0 0.0
v 0.0 0.0

Table 3.1: Constant background values and initial pertioha for the numerical experiments.

experiment, as it controls the background plasma betahiegratio of the plasma pressure to the magnetic pressure,
which is defined as
~ 2po _ 2poco(y —1)

_ ZPo _ 2pocoy — 1) _ 3.3.1
Bg BS £o ( )

Bo

The initial perturbation is chosen to be a Gaussian enhaaceaif the internal energy. The initial perturbation
of the density is set to zero, so that the enhancement in #sera pressure is proportional to that of the internal
energy. The magnetic field is left unperturbed initially,tbe initial perturbed total pressure is just the perturbed
plasma pressure. The expression for the internal energyrpetion is

e1(z,9,0) = aexp {— (z - b)z] exp [—M} , (3.3.2)

2¢2 2c?

hence, the perturbation in the plasma pressure, accoriaguation (3.2.2), is given by

N AV _h\2
p1(2,y,0) = po(y — 1) aexp [—%} exp [—%} : (3.3.3)

where the Gaussian is taken to be centered in the domaih €).5, its width is held fixed for all the experiments,
¢ = 0.05, anda defines the amplitude of the perturbation, which, as the d¢packnd plasma density, varies from
experiment to experiment.

The value ofa defines the ratio of the maximum value of the perturbed plagreasure to the background
plasma pressure, what we have calledas follows

P max(p1) _ po(y—la a _ Ea . (3.3.4)

a
Do poco(y—1) e 3

In Table 3.1 we summarise the values for the background digsnand the initial perturbations for our ex-
periments. The values which are not specified with a numbesabject to changes in the plasma beta and the
amplitude of the perturbation. Lastly, we can also give abento the sound speed, which, as we discussed earlier,
depends only on the background internal energy. This is \/ﬁ ~ 1.29. This speed will be compared later
with the fast magnetoacoustic speed of the experiments.

The viscosity parameters are the same for all the expersnéstconsistency. There are three parameters to
be set, namely the linear and quadratic shock viscosita@a #quation (2.2.10);; andwvs,, respectively, and the
real viscosityy,, which is the kinematic viscosity times the plasma density= vp. The real viscosity is set to
v = 0.001, and both shock viscosities are sertwa The choice of no shock viscosity does not cause problemsin
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the relaxation, and may avoid extra complications whenyead) the dynamical evolution of the system. Hence,
we maintain this choice, if possible, throughout the whbkssis.

3.3.3 Perturbed total pressure

Before the results are discussed, let’s get the expressidhd one and only quantity that needs to be calculated for
comparing the equilibrium solutions with the analyticaligidprium results. That is, the total pressure. Combining
equations (3.2.51) and (3.2.53) with the initial condisaf our numerical experiments, we can get the perturbed
total pressure after the non-magnetic vertical evolutan,

=/ p1(z,y,0)dy
0

x —b)?
= po(y—1)aexp [—( 262) } : (3.3.5)
wherey) is a constant given by the error functianf(z) = % [Te=*" dz, as

Y= /OleXp {—%] dy = C\/geff(l) :

The final analytical perturbed total pressure is constart ,ig given by
1 1 1
pri(e0) = [ s = [ [ pi(ep.0)dyds. (3.3.6)
0 0 0

Equations (3.3.5) and (3.3.6), together with the backgdayrantities, from which we can calculate the sound
and fast magnetoacoustic speeds given in (3.2.58) an® @3, 3ive all the necessary ingredients for obtaining all
the equilibrium distributions, within the linear regime.

3.4 Numerical experiments: Results

In this section, we analyse closely the results from onelsiagperiment, for which we have specified the back-
ground density and the amplitude of the perturbatiopias 0.1 anda = 1.5, respectively. Hence, the background
plasma beta and the rat®, for the sample experiment, are

The fast magnetoacoustic speed for this experiment is diyeequation (3.2.59), as; ~ 3.42, which is about
two and a half times larger than the sound speed. For conmgsse the value of the Alfvén speectis ~ 3.16,
which is slightly smaller than the fast speed.

Below, we first have a look to the evolution at the integratedrgies of the system: internal energy, kinetic
energy and magnetic energy. Then we look at the distribatafrplasma pressure, density and current density
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for the initial perturbed state and final equilibrium staéed finally we compare the results of the numerical
experiments with the results from the linear analysis.

3.4.1 Energetics

We shall first look at the evolution of the energies in the asystto check that the experiment has been carried out
successfully. Figures 3.1 and 3.2 show the time evolutiotheffour energies of the system: kinetic, magnetic,
internal and total, integrated over the whole box, usingigonave time units, as the time for a sound wave to get
from the perturbation at the center of the box, to the top dtdmo boundaryrs = 0.5/cs. We can appreciate the
complex pattern of oscillations as a result of an infinite safrimdividual modes.

First, as we expect the system to be relaxed at the end of gegiements, the kinetic energy must have dropped
to zero. Remember that this energy starts at zero as wetle sire initial prescribed velocity is zero everywhere.
Thus the kinetic energy grows quickly from zero and thenxesaslowly until it vanishes, showing a series of
oscillations which account for the different families ofwes that propagate and are damped during the relaxation
process.

The system also starts with a certain amount of internal andmatic energy. These two show the same
types of complex oscillations as the kinetic energy, whiekiehto be damped out in the final equilibrium. The
contractions and dilatations of the plasma carrying themetig field imply that the magnetic field gets stressed
at the first timesteps of the dynamical process, beforedixesd back to a different equilibrium state. Hence, the
overall magnetic energy is increased during the dynamélakation process.

Now, if there are no losses across the boundaries, then téleetoergy, as a sum of the three energies above,
must be conserved in the whole process. Hence, if the valbetbfthe kinetic and magnetic energy rises during
the relaxation, then the internal energy must drop. In otverds, the energy to drive the relaxation process comes
from the enhanced internal energy of the plasma.

Note, that the initial magnetic field is unperturbed, andtke,initial magnetic configuration is the state with
minimum magnetic energy. Therefore, the final magneticgnbes to be equal or higher than the initial. Any
difference of energy must be taken from the internal eneigiyhe final equilibrium, the internal energy is reduced
by the same amount as the magnetic energy has increasedighiee the amplitude of the initial perturbation, the
higher the amount of the transferred energy. Since the fitions are small, these exchanges of energy have to
be so too.

We check that energy conservation is achieved, within nigakgrror. The exchange of energy (second order
effect) from internal to magnetic is d@fx 109, and the overall losses of total energy are approximageiyl0—2,
which is about).02 times the non linear effects (amount of exchanged energg)c& then conclude firmly that
energy conservation is well behaved for these experimeititslvARE, with no significant losses in the magnetic
energy during the remap steps, as discussed in Chapter 2.
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Figure 3.1: Time evolution of the energies of the system{terexperiment withhy = 0.1 anda = 1.5, integrated
over the whole two-dimensional box. The final losses of imiéenergy are entirely balanced with a net increase
of magnetic energy. The plot is logarithmic in time and cevidire whole relaxation. The magnetic, internal and
total energy have been shifted on tx@xis by subtracting a given value, but their amplitudeswtesscaled. These
constants ar@.499890, 0.152242 and0.652200, respectively.
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Figure 3.2: Reproduction of Figure 3.1 with a linear axis.otily covers the first part of the relaxation. The
complex oscillation periods are a result of the sum of thied#it plane waves that drive the relaxation.
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3.4.2 Equilibrium

At the end of the numerical experiment, the kinetic energypdrto zero and the system has reached an equilibrium.
In two dimensions, a double check can be done by evaluategldsma pressure, as a function of the flux
function, A,. At equilibrium, the plasma pressure is constant along fieks, and in 2D, that translates to plasma
pressure being a unique function of the flux function, agstat equation (1.3.8). This is equivalenBo Vp = 0.

For this set of experiments, this is satisfied straight fadlyg and no further considerations have to be made.

We now look at the distributions of plasma pressure, densitgrent density and magnetic field, in the final
equilibrium. Figures 3.3, 3.4 and 3.5 show two-dimensionaps of plasma pressure, density and perpendicular
current density, respectively, with magnetic field linegiplotted in both the initial and final states. At first sight,
we can get the main characteristics of the final equilibritiimere are horizontal gradients on the plasma pressure,
and at the same locations, we find current density accurnitiThat is, there is an equilibrium and it is non-
force-free. Plasma density is not constant along field lidedeficit in density occurs at the location of the initial
pressure perturbation, which is mainly balanced by an as®eén the direction of the magnetic field (Figure 3.4b).
This is in agreement with the adiabatic conditipfip” = constant.

Hence, from a qualitative point of view, the numerical résgkeem to agree with the predictions of the linear
analysis made at the beginning of the chapter. Now, the iqureist how accurate are these predictions, and how
far are the numerical results from the linear solutions.

Figures 3.6 and 3.7 show vertical cuts of plasma pressuralansity, and horizontal cuts of plasma density,
plasma pressure, magnetic field and total pressure, régglgcin the final equilibrium. These are compared with
the linear analysis predictions given by equations (3.2 42.55), (3.2.56) and (3.3.6), and, in case of the plasma
density, we also compare with the solution given by the axipration of adiabaticity, equation (3.2.57), which we
have already discussed is probably a better approximation.

We show that the match is almost perfect for the plasma presgual pressure and magnetic field, but does
not work well for the plasma density. This is not surprisiagthe vertical evolution of the plasma pressure is
accurate i.e. it is not constrained by the linear analysis, as showequation (3.2.51). Hence, the magnitude of
the initial perturbation for the plasma pressure that mediaxen into account when checking the accuracy of the
linear analysis, is the one after the vertical non-magmetéstribution, which is, of course, much smaller than the
original one.

The calculation of the plasma density are determined byitteat approximation all way through, as seen
in equation (3.2.52), and hence, the prediction for the itheirs the final equilibrium cannot be expected to be
good. However, if the process is adiabatic, the density @oliained directly from the final plasma pressure
distribution, using equation (3.2.57). In contrast witk tmear analysis, this adiabatic approximation does a very
good job, as shown in Figures 3.6b and 3.7b. In Figure 3.8 wetpé quantityp/p” in the final state compared
to the initial state, for both the vertical an horizontalzuBince the numerical experiments have been performed
using a full MHD code that solves the non-linear equatiohs,grocess is not entirely adiabatic, but has a finite
amount of viscous heating that will become important asiital perturbation is increased.

3.4.3 Overview

We have been able to predict the distributions of the finaildxjiwm quantities after a two-dimensional hydromag-
netic perturbation over a background homogeneous madietembedded in a plasmas. The linear calculations
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(a) Intital State

(b) Final Equilibrium
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Figure 3.3: Two-dimensional contour plots of plasma pressu(a) the initial state and (b) the final equilibrium,
for the same experiment as in Figure 3.1. White lines are miggfield lines.
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Figure 3.4: As Figure 3.3, with plasma density in (a) thaahitate and (b) the final equilibrium.
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Figure 3.5: As Figure 3.3, with current density in (a) theialistate and (b) the final equilibrium.
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Figure 3.6: Vertical cuts of (a) plasma pressure and (b)mpéadensity, for the same experiment as in Figure
3.1. Initial perturbed state (dashed) is compared with thal #quilibrium, as found by the full MHD numerical
simulations (solid) and predicted by the linear analyssl @rosses). For the density predictions, the blue crosses
represent the prediction from the adiabatic condition givg equation (3.2.57).
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Figure 3.7: Horizontal cuts for (a) plasma pressure, (b¥mla density, (c) total pressure and (d) magnetic field
strength, for the same experiment as in Figure 3.1.
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(a) Horizontal cut (b) Vertical cut

p/o"
p/p"

Figure 3.8: Adiabaticity condition for the same numericgberiment as in Figure 3.1. Plots pfp? in the initial
(dashed) and final (solid) state, for (a) horizontal cutpasrthe field lines, and (b) vertical cut, along the field
lines.

are well behaved for the experiment presented in this sectéiod are based in the one-dimensional propagations
by fast magnetoacoustic waves in the direction across thte ied slow sound waves in the direction along the
field lines. Although in reality, the initial disturbancedves into the final relaxed state through different fansilie

of magnetoacoustic waves. There exist an extra contribuifosslow magnetoacoustic waves propagates along
the magnetic field lines, which introduce a magnetic tenggom during the relaxation (i.e. curve the magnetic
field as they propagate up and downwards). Neverthelesse tthigsipate the magnetic tension in such a way
that it is totally unimportant when determining the final &ipuium distributions. The vertical redistribution of
the plasma pressure to a homogeneous value demands thetimégmsion to disappear completely, so both the
plasma pressure and total pressure are one-dimensiohal ahtl of the relaxation.

Within the linear regime, the final distributions are contplg independent of the viscosity, even though it
is required to permit the relaxation to occur, as it is theyahmping mechanism of the waves. An increase
in the viscosity enhances the diffusive term in the wave ggoaand so, accelerates the process, but the final
distribution is not modified. Second order terms, howeveghibe dependent on the kinematic viscosity, since
the heating term is proportional to it. Within the linearirag, in the final equilibrium, all the quantities are simply
determined by the behavior of the final equilibrium totalgmere, involving plasma and magnetic effects. Hence,
the final equilibrium states for plasma pressure and magfietd do not differ if the initial perturbation is of the
density or internal energy.

Now, we compare the results with experiments in which thiahperturbations are increased systematically,
evaluating the validity of the analytical calculationsfioe total pressure and plasma density in the final equilibriu
state, and their departure from the linear and adiabaticreg
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3.5 Importance of non-linear effects

To study how non-linearity affects the results as the magieitof the initial perturbation increases, we focus again
on the total pressure. The total pressure of the final numlezgpuilibrium must be constant, whether the relaxation
remains in the linear regime or not. On the other hand, thé/aoal definition of total pressure given by (3.2.20)
is an approximation from the linear analysis, and will beeoless valid as the non-linear terms become more
important. We perform a series of experiments for varioaspla beta values in which the relative amplitude of
the initial perturbation is changed from a very small value|l within the linear regime, to a large value way
outside it. Using these experiments, we investigate hoitlad total pressure departs from the linear predictions
for different background plasma beta values.

But first, we recall that the equilibrium results after the Blaxation may be separated into a vertical non-
magnetic evolution (vertical redistribution of plasmagsere) and a horizontal evolution (horizontal redistridt
of total pressure), in which the total pressure in the vatl@ase isnot constrained by the linear analysis. This
suggests that, effectively, in order to find a significantidéon in the final total pressure for the 2D experiment,
we will need very large values of the initial two-dimensibparturbation. Hence, the following experiments have
been made for just a one-dimensional perturbatioross the field linesThe ratio of the maximum value of the
perturbed plasma pressure to the background plasma peessudlefined in equation (3.3.4), is

max(p1 )

P=—",
Po

and may be mapped from the perturbation of the 1D experimente those for our initial 2D perturbation, using

b= { feo [ 22 ) .

This is obtained taking into account that the maximum valune perturbed plasma pressure, for our initial 2D
perturbation, is that of the 1D perturbation across the fiekk, after the homogeneous non-magnetic redistribution
of the plasma pressure along the field lines, given by thgiatenside the curly brackets.

Figure 3.9 shows the relative deviation of the linear appmation in both 1D and 2D for the total pressure, as a
function of the amplitude of the initial perturbation, fordidifferent values of the plasma beta£ 0.05, 3 = 0.1,
6 =0.2,0 = 1.3andg = 2). The bottomz-axis shows the magnitude of the one-dimensional pertiazand
the topz-axis shows the magnitude of the initial two-dimensionatymbation before its vertical expansion. The
deviation on they-axis is calculated as the maximum difference between tteatiprediction and the numerical
results for the total pressure,

& - max(pf" — pptm))
pT — num ’

br
wherep?“™ is the final constant total pressure obtained from the nwraksimulations, ang" is the linear total
pressure calculated from the numerical solutions from the £quilibrium, given by
4 B2  ByBj,(z,00
Ho Ho
with p (x, 00) and By (z, o0) being the final plasma pressure and magnetic field from theenigad simulations.

As 5 — oo, we expect the relative deviation of the linear analysi®twtto zero, independently of the pertur-
bation, as in this case, the magnetic effects disappeathariditial pressure perturbation completely redistrésut
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Figure 3.9: Relative deviation in the linear prediction béttotal pressure against the magnitude of the initial
pressure perturbation (bottom axisfsp and top axis i$P2p), for five different values of the plasma beta. The
slow growth rate of the deviation (non-linear effects) cates the validity of the linear analysis.

to a well defined constant value in the whole box. On the othedhif 5 < 1, then the magnetic field will domi-
nate over the plasma contributions, and large value®fuiill be needed to depart from the linear regime. These
two behaviors can be seen in Figure 3.9, where the plots ffige [plasma-betas tend to a smaller deviation, while
the plots for small plasma-betas take longer to reach sggmfideviations, i.e. to escape from the linear regime.
Furthermore, we must not forget that here we are only talkingut the initial background plasma beta, so a large
background beta combined with a large initial perturbatioth make the final plasma beta even higher. Thus,
P — oo willimply 8 — oo for the final equilibrium, so we expect the curves of the iregatleviation of the linear
analysis to turn back to zero as the initial perturbatiorresatly increased. In terms of energy conservation, as the
velocity is zero at the initial and final states, the integnadr the whole domain of internal energy plus magnetic
energy must be conserved:4f— oo, then the internal energy is much larger than the magnegoggnand will
just redistribute the plasma pressure, without transigrainy energy into the magnetic field.

On the contrary, the final plasma density is entirely detaadiby the linear analysis, in both the vertical and
the horizontal directions along and across the field line& a better approximation, by the adiabatic condition.
Hence, the non-linear effects for the plasma density widlgmuch quicker, as shown in Figure 3.10. These last
numerical experiments have been made for the original tincedsional Gaussian perturbation, for three different
values of the plasma betg (= 0.05, 5 = 0.2 and3 = 2). Thez-axis shows the magnitude of the initial two-
dimensional perturbation, to be compared with the tegis in Figure 3.9. The deviation on thyeaxis is given
by

max(pad _ pnum)

pnum

E, =

3

wherep?? is the plasma density given by equation (3.2.57), alttd" is the final density obtained with the numer-
ical experiments.

The relative deviation in the plasma density is considgrisher than the relative deviation in pressure, and
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Figure 3.10: Relative deviation of the density predictesuasing an adiabatic evolution, with equation 3.2.57,
against the magnitude of the 2D initial pressure pertudnatior three values of the plasma beta. Note, that the
z-axis in this plot is to be compared with the togaxis in Figure 3.9.

so, for only a small change jm /py in the 2D case, we find a large deviatiorpinAs this deviation quickly reaches
significant values, the plasma beta plays much less of asoléé non-linear effects in the plasma density than in
the above total pressure.

The linear predictions remain remarkably valid even owtshte linear regime, as the growth rate of the non-
ideal effects is very small, compared to the initial peratibns. We next consider the same kind of perturbation in
a more realistic three dimensional flux tube, following theng analysis as we have done for the two-dimensional
case. The system has cylindrical symmetry, so the quaktadisults must be the same as in the 2D case.

3.6 Parallel magnetic fields in 3D

The results above can be easily generalised for a three dioraal system. To do this we follow the same steps as
before, with one added coordinate which will be analogoubéopreviouse. Now the magnetic field is pointing
along thez-axis, i.e.By = Byé., and has cylindrical symmetry with respect to the axisay) = (0.5,0.5). The
results, however, are presented in cartesian coordirtateat is not restrictive for the derivation of the equatip
and for the presentation of the results.

3.6.1 Linear equations

At the beginning of the chapter, we derived the MHD equations generic two-dimensional linear hydromag-
netic perturbation, which we wrote in coordinates, as inagiqus (3.2.9) to (3.2.14). This set of equation can be
expanded to their equivalent set for a three-dimensiorgtkgy, where this time; is the direction of the back-
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ground magnetic field,

P
% =PV Vi, (3.6.1)
vy Op1 , OBy, OB, ) 19
Py T Tar  Pogy T BTy teov <V Vi +35-(V 1) ) (3.6.2)
871111 _ 8p1 0B, 8Bly 10
Pt = =~ o+ Bo—p o pov (VP 55 (V v ) (3.6.3)
8U12 _ 8p1 2 1 8
PO g = T TPV (V vzt 552 (Vevi) ) (3.6.4)
% = TPV Vi, (3.6.5)
8312? 8’()1;1@
a0, (3.6.6)
0By, Ovyy,
ot P, (3.6.7)
851512 = ~Bo(V-v1)", (3.6.8)

where(V - v1)* is the two-dimensional divergenceof, defined as

. 8’()13@ 8U1y
(V-vi)" = Ox dy

(3.6.9)

As before, we may divide the process in a vertical one-dinoers evolution, along the field lines, which is non
magnetic, and completely equivalent to the evolution dbedrin Section 3.2.2, and a two-dimensional evolution
across field lines, which is analogous to the one-dimensewadution across the field derived in Section 3.2.2, as
we show below.

If we consider a perturbation varying with the two coordesacross the field, andy, the perturbed magnetic
field has a non-zere component, i.eB; (z,y,t) = B.(z,y,t)é., and the perturbed velocity may be written as
vi(z,y,t) = vig(z,y,t)é, + viy(z, y,t)é,. Then we write

dp1

¥ —po(V -v1)* | (3.6.10)
87}137 _ 8pTl 2 1 8 *
P0 el B + pov <V Vigp + 3 9% (V Vl) ) , (3.6.11)
ovy, opr 10 y
i Y, <V2”1y+§a_y(v'vl) ) (3.6.12)
0
% = (V- v1)* (3.6.13)
8];;@, — _By(V -v1)* . (3.6.14)

wherepr, = p1 + BoB . is the perturbed total pressure, whose temporal evolusigiven by the combination of
equations (3.6.13) and (3.6.14), as

1 9pm
po Ot

=—cH(V-vi)", (3.6.15)
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in analogy with equation (3.2.22). Note, how in this case,tbrizontal evolution cannot be treated separately in
two one-dimensional evolutions farandy, precisely because the problem has cylindrical symmetrye ®@ay

to approach the problem would be to apply the same one-diomaivolution as in Section (3.2.1), to a radial
coordinater, and then apply cylindrical symmetry. However, this is net@ssary. As seen in previous sections, the
final equilibrium is independent of the dynamical evolutibence, equations (3.6.11) and (3.6.11) are irrelevant
for calculating the distribution of the equilibrium, andejust has to substitute the value(@¥ - v1)* given by
equation (3.6.15) into equations (3.6.10), (3.6.13) an@.{3), obtaining the exact same set of equations as in
(3.2.33), (3.2.34) and (3.2.35), namely,

o 1
plq(x7y) = pl(way70) + C_QLPTI(OO) _pTl(wayyo)] )
f

2

e Cs
plq(x7y) = p1($7ya0) + 6_2[pT1(OO) _pTl(x7y)O)] B

f

o B
B} (z,y) = Bi:(z,y,0) + po—coz[PTl(OO) —pri(z,y,0)] .
f

Now, we can combine these with the vertical non-magnetidutiam of the thermal quantities, adding the
constant background quantities, and thus getting the fopalibrium solution, which is in every sense analogous
to the previous two-dimensional case.

3.6.2 Numerical experiments

We can check the results for a three-dimensional flux tubé ait enhancement in pressure in the center of
the tube, which is completely analogous to the previousdimeensional perturbation, and is defined through a
centered Gaussian enhancement in the internal energw lgjve

€1(2,9,2,0) = aexp [_ﬂ} exp {_M] exp [_ﬂ] . (3.6.16)

2c2 2c2 2c2

The resolution of the three dimensional numerical box28 x 128 x 64, the length of the domain i, x
L,xL,=1x1x1,andz,yandz all vary from0 to 1. Boundary conditions are the same as those in the 2D
experiments, e.g. the side boundaries are closed and tlaatbipottom boundaries are periodic. There is no initial
perturbation in the magnetic field, nor the plasma densitg. bafore, the initial perturbed total pressure is the
initial perturbed plasma pressure, the perturbed totedqunes after the vertical evolutiop?, (z, y) is the integral
of the initial perturbation along, and so the final constant total pressure is given by

1 1 1 1 1
pri(o0) = / / P (2, y)dady = / / / P (2., 2,0) dzdady . (3.6.17)
0 0 0 0 0

The initial quantities and parameters of the initial pdsations are defined in the same way as for the experiment
discussed in Section 3.4, i.pg = 0.1, ¢9 = 1.5, By = 1, anda = 1.5, leaving the values for the background
plasma beta and the ratio of the maximum value of the pertugbasma pressure to the background plasma
pressure agy = 0.2 andP = 1.

In Figure 3.11 we show the evolution of the three energieb®fslystem, plus the total energy. The exchange
of energy from internal to magnetic (non linear effects) lmat4 x 10~7, and the losses of total energy are
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Figure 3.11: Time evolution of the energies of the threeadtisional system, integrated over the whole two-
dimensional box, for an experiment witgy = 0.1, ¢¢ = 1.5, By = 1 anda = 1.5. The magnetic, internal and
total energy have been shifted on th@xis by subtracting.499990, 0.150285 and0.650280, respectively.

approximately of4 x 10~%. As in the two-dimensional experiments, there is no sigaiftcchange in the total
energy of the system.

Figures 3.12 and 3.13 show three-dimensional contour pldtse final equilibrium plasma pressure and den-
sity, with a few field lines drawn in grey. The behaviour isywsimilar to the two-dimensional experiments. As
expected, plasma pressure is constant along field linesyarabserve a deficit of the plasma density at the loca-
tion of the initial pressure perturbation, and an incredsag@thez direction, in the center of the box. In Figures
3.14 we compare the vertical cuts(at = 0.5, y = 0.5) through the contour plots in Figures 3.12 and 3.13, for
density and plasma pressure with the final equilibrium potedi by the linear analysis. As for the 2D system, the
plasma pressure fits well, however, the plasma density dotesatch the straight forward linear prediction well,
but it does match the prediction for density from the adiebedndition given in equation (3.2.57). Figure 3.15
shows horizontal cuts across the field linegiat= 0.5, z = 0.5), for density, plasma pressure, total pressure and
magnetic field. These are completely analogous to any famfityits perpendicular to the field lines, through the
middle of the box, as the system has cylindrical symmetrg fitimerical results are compared with the prediction
of the linear analysis, and for the plasma density, with tiialzatic condition, as in Figures 3.6 and 3.7. Again,
the match between the numerical experiments and the acellgtlculations is fairly accurate.

3.6.3 Overview

In the first few sections of this chapter, we have presentatyical and numerical calculations for the 2D magne-
tohydrodynamic relaxation of an untwisted perturbed mégrsgstem embedded in non-zero beta plasmas, which
resulted in a final equilibrium state that differs substlhtifrom the initial background configuration. The equi-
librium reached is non-force-free in nature. Plasma pnesgtadients are balanced by the magnetic forces. For a
set of specified boundaries, all the hydromagnetic quastéie fully determined by the initial perturbed state.
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Figure 3.12: Final equilibrium plasma pressure and fielddimside a 3D squared flux tube, for the same experi-
ment as in Figure 3.11.
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Figure 3.13: Final equilibrium plasma density and field $ineside a 3D squared flux tube, for the same experiment
as in Figure 3.11.
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Figure 3.14: Cuts along field lines, through the middle oftibg, atz = 0.5 andy = 0.5, for (a) plasma pressure
and (b) plasma density, for the same experiment as in Figlfe &itial perturbed state (dashed) is compared with
the final equilibrium, as found by the full MHD numerical sitations (solid) and predicted by the linear analysis
(red crosses). For the density predictions, the blue csoggesent predictions from the adiabatic condition given
by equation (3.2.57).
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Figure 3.15: Cuts across field lines, parallel tothaxis, through the middle of the box,at= 0.5 andz = 0.5, for

(a) plasma pressure, (b) plasma density, (c) total presswtéd) magnetic field strength, for the same experiment
as in Figure 3.11. Note, the experiment is cylindrically syetric, so any horizontal line througdh.5,0.5,0.5)
gives the same answer.
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The generalization of the problem into three dimensiondiess direct, and all the equations have been easily
derived from the two-dimensional case. The analyticaldations are analogous, and no further implications
need to be taken into account.

The problem raised in this chapter is extremely simple, &t guite instructive in many ways. First, we
have approached the problem of non-zero, but finite, betsngda, with the most basic experiments, showing
their direct implications for equilibrium force balanceda@nergy conversion. Second, we have shown here how a
linear approximation to the equations that describe theegsysnay be relevant for a wide range of scenarios, with
localised non negligible perturbations of the field andha plasma quantities. And third, a comparison between
one, two and three dimensional cases has been made dirgeppboaching the problem in natural steps from the
simpler to the more complex scenario.

By comparison of Figures 3.12 and 3.13 to Figures 3.3 and \Belsee how the solutions for the two-
dimensional case are analogous to cuts of the solutionhéothree-dimensional problem in planes parallel to
the magnetic field, through the center of the box. The corsparhere is trivial, because we are working with the
same physical environment.

However, in the coming chapters we analyse equilibria of me¢ig null points in two and three dimensions,
and the complexity rises enormously. The physics aroundadiwensional null point is different to that around
a three-dimensional null. In most cases, one cannot justdaivo-dimensional cut of the 3D problem and find
the results from the 2D experiments. Nonetheless, havisgdiudied in detail the properties of two-dimensional
fields, we might find some interesting similarities.
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Chapter 4

Relaxation of 2D Magnetic Null Points

4.1 Introduction

In two-dimensions, magnetic X-points are the locations laictv magnetic reconnection can occur, being poten-
tial sites for energy conversion. Current sheet formatibthase geometries has been widely studied in many
astrophysical contexts, both analytically and numeng#llit only very recently have a few of these studies taken
finite plasma beta effects into consideration, and at the embjthere exists no description of the formation of a

non-force-free equilibrium around a two-dimensional Xifio

Two-dimensional reconnection at X-point geometries hagenbstudied for decades, starting with Dungey
(1953) and followed up by many (e.g. Parker, 1957; Sweet81®®tschek, 1964; Biskamp, 1986; Priest and
Forbes, 1986; Craig, 1994), with direct applications tasenvironments such as in the CME’s breakout model
(Antiochos et al., 1999), which have been applied extehsinghe last decade (e.g. Forbes et al., 2006; Zuccarello
et al., 2009), and in other interplanetary scenarios sudheseconnection site in the Earth’s magnetotail (e.g.
Hesse and Schindler, 2001). Also, they have been used in praypagation experiments involving a zero beta
plasma (McLaughlin and Hood, 2004), and a finite beta pladvicl &ughlin and Hood, 2006), finding in both
cases that the waves wrap around the null point, causing@onextial build up of current density at the location
of the null.

The aim of the present chapter is to provide a valid magnebaistatic equilibrium from the collapse of a
two-dimensional X-point. Under ideal, non-resistive citioths, the energy bound up in the global magnetic field
has to manifest itself as localized accumulations of cumensity.

It is well known that under the cold plasma approximatiog(eero plasma beta), an initially perturbed X-
point field relaxes to a potential equilibrium with a Y-typdinitesimally thin current sheet where the current is
zero everywhere except within the magnetic tangentialagisouity, where it develops a singularity of the form
j. = 0(A. — A.p). These potential configurations are described by Green5(186d Somov and Syrovatskii
(1976), as in equations (1.5.1) and (1.5.2). Later, BungelyRriest (1995) expanded these solutions for potential
and force-free fields giving a general expression, equdlidn3), for these force-free current sheets. Latter studi
have found the formation of localised infinite current la/er the Earth’'s magnetotail (Birn et al., 2003), relevant
for the initiation of the subsequent energy release phase.

89
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First evidence of current sheets extending along the seua®in sheared magnetic field structures were
studied by Zwingmann et al. (1985) for force-free equihnivhere they found mathematical singularities in the
current sheet which they interpreted as terms that “woutibree large in a real physical situation”. Later, Vekstein
and Priest (1993) made a mathematical analysis of the madiet around cusp-points, after the shearing of a
magnetic field with an X-type null point, and suggested aryaical form for the resulting singular current density.

Here, we show how a type of singularity is also formed in the-farce-free case, in agreement with the
numerical studies of Rastatter et al. (1994) and Craig aihdnenko (2005), described in Section 4.3.2. Our
numerical results show how the initial X-point collapsesatausp-like geometry in which the current density
accumulates around the neutral point and along the fouraguas. Again, the results agree, in this aspect, with
the previous numerical works of non-force-free X-pointlapte. However, we attempt to go a step further in the
description of the field, by running a series of very high tegon experiments, which allow us to look closer at
the current accumulations, in order to resolve them in betigth and width, and also to investigate the nature of
the singularity as a function of the initial disturbance.

4.2 General properties

4.2.1 Magnetohydrostatic equilibrium around an X-point

In this section, we revisit the fundamental equations of-tirmensional magnetohydrostatics around an X-type
neutral point. In force balance, the fundamental MHS eguaf{il.3.1), must be satisfied, i.e.

jxB-Vp=0,
which, for a two-dimensional field, reduces to the Grad-&iradv equation, (1.3.11),

dp 1, .
=—-—V Az =Jz
dA. ~ o g

where the flux functiomd,, defined by (1.3.9), is constant along field lines. In priteighe Grad-Shafranov
condition states that both the plasma pressure and thentwleasity have to be constant along every field line
for a two-dimensional equilibrium. Magnetic separatriees defined as the field lines that separate domains of
different magnetic connectivities. For an X-point configimn, there exist four separatrices, coming out from the
neutral point, that divide the domain into four regions. 8ese of the definition of the flux functiod,., this can

be shifted by an arbitrary integration constant, withosslof generality. Hence, it is commonly defined so that
A, = 0 at the separatrices, and thus also at the location of the null

4.2.2 Conservation of total current density

We are now going to show how the symmetry of the system mustrenstal current density conservation through-
out the dynamical relaxation of our two-dimensional X-goidsing normalised quantities, the time derivative of
the integrated current can be expressed as

d

— '-ds:i/VxB-ds7
dt Jg dt Jg
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whereS is the whole surface of our experiment adislis a vector normal to that surface. We can now apply the
Stokes theorefior differential geometry to get

4 '-ds:i%B-dl,
at /g at Jo

where, now,C' is the contour of the boundary ¢f, anddl is a vector tangent t@' at each point, so that, if we
denoteBr as the component of the vector magnetic field tangetial tdbthmdary at each point, we then have

d d
— [j-ds=— ¢ Brdl=0. 4.2.1
dt/s S=q f =0 (4.2.1)

The properties of symmetry of the system ensure that theessn (4.2.1) equals zero, as the four quadrants of
the domain are symmetric, and the integrated tangentiahetagfield is zero for each of the boundaries (top,
bottom, left and right) separately.

Hence, total current density has to be conserved in the doriéie evolution will allow a redistribution of the
initial current density and an accumulation of it at certmications, but in integral over the whole domain must
remain constant.

4.3 Previous work on current singularities in planar magnetc X-points

4.3.1 Analytical studies in force-free fields

Vekstein and Priest (1993) gave an analytical descripti@force-free magnetic arcade which included an X-point
on it and had been sheared in the ignorable coorditiateThey start from the expression

dB,

2Az - _Bz—
v dA, ’

(4.3.1)

which is analogous to the Grad-Shafranov equation, (1)3vlliere the magnetic componeBt(z,y) = B.(A.)
is specified by the shear of the foot point§A. ), as

B.(A,) = . (4.3.2)

The volumeV (A,) is defined in equation (1.2.7) in Section 1.2.2, as

o[

. B

and for two-dimensional fields, is a function of the flux fupat asB = |V A,|. Vekstein and Priest (1993)
suggested that the initial X-point split into a pair of cyspints, and considered the solution both inside and
outside the cusps. They gave a description of the local fletdiethe cusp using a poloidal flux functieh (r, 9),
wherer is the radial coordinate whose origin is at the beginnindnefdusp, and is the angular coordinate which

is zero at the axis of the current sheet, so that each poirtt@sdparatrix is defined by a different paird) (see
Figure 4.1).



4.3 Previous work on current singularities in planar magnetc X-points 92

£=-1

Figure 4.1: Poloidal magnetic field near the cid$p Based on Vekstein and Priest (1993), Fig. 2. Regions inside
and outside the cusp are denoted withand (o).

Inside the cusp, they suggested that for small values tife angle along the separatrix grewfas- +Kr?
and they wrote the flux function, inside the cusp, as

A (r,0) =r2f(&) (4.3.3)

wherea is a new parameter, argd= 6/ Kr”, so thatt = +1 at the separatrices. The functigris chosen so that
f(£1) = 0, hence, the flux function is zero at the separatrices.

The poloidal field components for the region inside the cuspeviound fromA. (r, 9) to be

1 0A, roh-1

= =),

0A, _ —1 4
By = —W = —ar® 1f(§) + Bre 1f (f)f .

Here, the expression fdB,. demands that > 1 + S for the magnetic field to be finite as— 0. From equations
(4.3.1) and (4.3.3), one gets the solution

V2A, = —mA", (4.3.4)

wheren = (23 + 2 — o)/« and f (¢) satisfies the equatioff’ () = —mK?2f~". Now, to obtain a finite value of
B., the volume of the separatrix field line, given by

dl R qr R qr
V)= [ — =2 =2K | ———,
© /LB / |B,] / ra=p1

has to be finite, and hence,— 8 — 1 < 1. This, together with the previous condition feleads to

1+08<a<2+p0. (4.3.5)

The solution outside the cusp was set to a potential poldieldl of the form

A, = Borsinf + ByrP sin[p(0 — )]
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with p > 1. This solution satisfiesl, = 0 at the separatrices. They then used magnetic pressurecbaaross
separatrices and matched the solutions inside and ouksdrisp, findingr = 1 + %5, and

p
14+35°

n=1-— (4.3.6)

4.3.2 Numerical studies in non-force-free fields

Rastatter et al. (1994) considered for the first time thea$ of pressure perturbations in numerical experiments
on the ideal relaxation of two-dimensional magnetic X-psjand studied the development of current layers with
singular current densities in which, in the relaxed state, initial X-point was replaced by either a T-point or
a cusp-point geometry. For the relaxation, they used adriel code, which damped the kinetic energy out of
the system by adding a fictitious relaxing term to the mom@naguation of the form-xv, but without any
associated heating term in the energy equation. Their Xtpelaxed to a singular two-dimensional equilibrium
which contained a plasma pressure jump across the sepaga#ind included current layers extending along the
whole separatrices. A key pointin their discussion is thaytargued that the finite width of their current sheet was
due to the finite difference method in their numerical appho@ather than being real. They found, nevertheless, the
integrated current density over the sheet width (namedacgicurrent) to be constant on each whole separatrix.

One decade later, Craig and Litvinenko (2005) reconsid#éregroblem of the relaxation of two-dimensional
magnetic X-points and the formation of current singulastin non-force-free equilibria. The emphasis of their
study lays in the evaluation of the strength of the curremjsiarity at the end of their relaxation, since this may
provide a measure of the energy that can be liberated by nembion. They find that the peak current of the
singularity follows a power law relationship to the grid o&gtion, which appears to be scaled with the plasma
pressure. Again, they made use of a frictional code with &iias damping term;-xv, added to the momentum
equation, but with no heating term in the energy equatiosymaing the polytropic model ~ p”, which imposes
a condition of adiabaticity to the process. In analogy with tesults of Rastatter et al. (1994), they found a
distribution of current density extended along the magrestparatrices, which they claimed to be almost uniform.

They then evaluated the singular behaviour of the null poimntent density in their relaxed state by comparing
the peak current using various numerical resolutions. Tgregented a logarithmic increase of the peak current
with resolution, at the same time as the area of the currget labove a given value for the current showed a
logarithmic decrease. Hence, the current layer itself imecaarrower with higher resolution. Then, they evaluated
the scalings of the peak current for different values of taekground plasma pressure of the system, finding a
weakening of the growth of the peak current density as thenpdapressure was enhanced. That is, a singularity
is harder to achieve the higher the value of the plasma pressithough the presence of a non-zero plasma
beta would not prevent a singularity forming. Also, theyKked at the collapse of one-dimensional anti-parallel
magnetic fields, and demonstrated analytically that a $amijyi would develop only in the pressureless case. In
practice, that means that an approach to the 2D problemdhrthese means is not of any use.

4.3.3 Our approach to the problem

In this chapter, we make a numerical study on the non-foreefelaxation of magnetic X-points, very closely
comparable to the work done by Craig and Litvinenko (200%)e Tirst fundamental difference is that we use a
full MHD code with a real viscosity term which also adds a egterm to the energy equation. The process is
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non-linear and non-adiabatic. Then, we examine in detaisthe and characteristics of the current accumulations,
both around the null and along the magnetic separatriceskafg that force balance is correctly satisfied in our
non-force-free equilibrium. We discuss how the approaekmgiby Craig and Litvinenko (2005) is not valid in
our more realistic magnetohydrodynamic evolution. Fipatly following the analytical study of Vekstein and
Priest (1993) for sheared magnetic arcades, we try to givesarigbtion of the field around the null, which does
not exactly match the numerical solution, but provides ahmaiatical tool to qualitatively study the dependence
of the equilibrium on the initial quantities.

4.4 Numerical experiments

4.4.1 Numerical setup

We have run, using the LARE MHD code, a series of two-dimemaliexperiments on X-point magnetic config-
urations embedded in non-zero beta plasmas. The initiainbeynamic quantities have constant values, and the
disturbance from the equilibrium is given by the magnetitdfien order to create the initial perturbed magnetic
field, a current-free hyperbolic X-point, given by, = (22 — y?)/2, is perturbed by squashing it in the vertical
y-direction by a given amountl — h) times the height of the original system, without introdgcamny initial
plasma flow, such that the flux function of the initial statgiigen by

L7, ¢
Az(m,y,O):§ et -5 ) (4.4.1)

The squashing creates a uniform non-zero current densibg@dicomponent is

. 1

Jo(z,y,0) = 7z~ 1. (4.4.2)
The initial plasma pressurgg, density,pp, and current densityjy, are set to be constant everywhere. The size of
the domain isl x h, with = varying from—0.5 to 0.5 andy varying from—0.5h to 0.5h. The grid is uniform and
has a resolution 0f024 x 2048. The particularly high resolution in the-direction is chosen to permit any current

layer that may form to be as thin as possible, but still reslole across its width.

We choose the four boundaries of the domain to be closed. dtadield lines are line-tied, and all components
of the velocity are set to zero on the boundaries. The othantifies have their derivatives perpendicular to each
of the boundaries set to zero, following the specificatiooloted boundaries given in Chapter 3. Quantities that
should be conserved over the whole domain are total energy durrent density and total mass. Since the process
is ideal (there is no diffusion to within the numerical lis)if the field is frozen to the plasma, and mass in a single
flux tube (or along a field line) must be conserved.

We have run a number of experiments with various heights, 0.1, 0.8, 0.7, 0.6, with the subsequent initial
current densitiesj, = 0.23, 0.56, 1.04, 1.78, and various initial plasma pressures, frppn= 0.125 to py = 1.
The values for the plasma pressure are varied by change®ipléisma density, throughy = poeo(y — 1),
maintaining the initial value of the internal energy the safor all the experiments, a = 0.75. In all the
experiments, the real viscosity is setto= 0.001, and both shock viscosities are sezg&ya
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Figure 4.2: Time evolution of the energies of the systenegrdated over the whole two-dimensional box, for the
sample experiment withi, = 1.04 andpy = 0.375. The plot is logarithmic in time. The magnetic, internal and
total energies have been shifted on thaxis by subtracting the constant valuess, 0.39 and0.48 respectively,
but their amplitudes are not to scale.

4.4.2 Energetics

For the first part of our study, we center our attention in camgle experiment witth = 0.7, jo = 1.04 and

po = 0.375. When we look at the energy evolutions in the X-point experimwe find an undesirable phenomenon
at the very first time steps of the simulation, which is punelynerical. Figure 4.2 shows the time evolution of
kinetic, magnetic, internal and total energies integratesl the whole box for that sample experiment. The time
axis is normalised to the fast magnetoacoustic time, defaseithe time for a fast wave starting from the left or
right boundary to reach the location of the null point,= 0.5/c¢;.

Within the first time steps of the numerical simulation, adenl increase of the kinetic energy occur. This
is not physical, as it is not balanced with any other compooéthe energy. In fact, the total energy increases
drastically. Soon after, this sudden perturbation disappedropping the kinetic energy and provoking a non-
physical rise of the internal energy which also makes thal &rtergy increase. After a short time, the relaxation
continues normally and energy conservation is satisfied.

This behavior varies if we change the shock viscosity pataragbut we are not able to make it disappear. It
might then be due to the sudden creation of a shock when tagatébn process starts, and we find it to have its
origins at the boundaries of the system. Everywhere elskardbmain, the quantities remain unperturbed. We
check that the plasma pressure and current density in thefrée® domain atime = 0.006 are perfectly constant,
and their values have changed from the initial prescribessdoyl x 10~°. Furthermore, these do not seem to
affect the final equilibrium state about the null, so it is gisten any more importance throughout the chapter, and
we consider the experiment from the time at which the totaergyremains constant.
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(a) Horizontal cut (b) Vertical cut
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Figure 4.3: Plots of current density for (a) a horizontalat = 0 and (b) a vertical cut at = 0. We show initial
(dashed) and final (solid) current density. In dotted lirteg, boundaries of a subdomain where the integrated
current in the final state equals the value in the initialestat

4.4.3 Final equilibrium

In order to proceed with the analysis, we first focus on the@arexperiment of Figure 4.2 and then discuss how
the results vary as the squashand initial plasma pressugg are varied. In our sample experiment, the height of
the box ish = 0.7, and the initial pressure j& = 0.375.

Let’s first have a look at a pair of cuts of the current density & 0 (horizontal cut) and: = 0 (vertical cut),
as shown in Figure 4.3. It is clear that there exist some banefffects at the four edges of the box. These are
non-physical, and a direct consequence of them is to bremle s the conservation laws, so, for example, the
total current density of our simulations is not conservedwiver, there is no evidence that these effects modify
the field around the null point, hence, our way to deal withghablem is fairly simplistic. We can always find
a subdomain in which the integrated current in the final stajeals the value at the initial state and so we only
consider this subdomain for each experiment. From thistpaia will show results from inside this subdomain.
The upper, bottom and left, right boundaries of this subdarage overplotted in Figure 4.3. The size of the
subdomain for the sample experiment is ab@ao x 0.42.

In Figures 4.4 and 4.5, we show two-dimensional contourspdotd surface plots of the plasma pressure and
electric current density, respectively, in the final stadé.first sight, the results of Craig and Litvinenko (2005)
appear to be faithfully reproduced by our numerical expents. Departing from an initial state containing an
X-point with uniform pressure and current density, we geeguilibrium where the X-point has produced a thick
current layer from which arms of enhanced current extendgtbe curved separatrices (Figure 4.5). The separa-
trices form cusp shapes at the two ends of the current layer.plasma pressure is enhanced within the cusps (to
the left and right of the current layer), and decreased irrelgéons outside the cusp, above and below the current
layer (Figure 4.4). Plasma pressure appears to be condtangt field lines (see latter for a further discussion).
However, although the electric current density is constdmmg most of the field lines, it is clearly not constant
along the separatrices.
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Figure 4.4: Two-dimensional contour plot (left) and sudddght) of plasma pressure for the final equilibrium
state for the sample experiment with= 0.7 andp, = 0.375. White solid lines on the left graph are the magnetic
field lines as contours of the flux functioty,.
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Figure 4.5: Two-dimensional contour plot (left) and sugdight) of current density for the final equilibrium state,
for the same experiment as that shown in Figure 4.4. Whiid 8oes on the left graph are the magnetic field lines
as contours of the flux functioA, .

0.6088

0.6083

0.6078

0.6073

0.6068

Figure 4.6: Two-dimensional contour plot (left) and sugfdrght) ofp/p for the final equilibrium state, for the
same experiment as that shown in Figure 4.4. White solic lovethe left graph are the magnetic field lines as
contours of the flux functiod .. The constant value in blue below the surface in the rightaspronds to the initial
value,py/pg = 0.6057.
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Figure 4.7: Test of the Grad-Shafranov condition for the neghydrostatic equilibrium for the sample experi-
ment. Current density (black, y-axis on the left) and plagpmessure (bluey-axis on the right) are plotted against
the flux functionA., for every single point in the numerical domain. Positivéues of A, refer to inside of the
cusp, while negativel, are outside the cusp.

Figure 4.6 shows two dimensional contour and surface plbjs/p”, which is proportional to the entropy.
Note, that the process is nowhere near to being adiabatice $his quantity is constant in the initial state, with
the valuep,/p] = 0.6057. Now, everywhere in the final state has an increased entvaflythe greatest increase
around the null point and directly above/below and to th&right of the null. These regions of highest entropy
mark the locations where most viscous dissipation occursomsequence of these localised increases of entropy
is that, while plasma pressure is constant along field lidessity is not. Overall it is clear that the creation of
a current layer cannot be achieved physically without somss bf magnetic energy which leads to a localised
heating about the null rising the internal energy of theeyst

Our relaxation process involves a heating term in the eneggyation, responsible for the transfer of part of
the magnetic energy in the system into internal energy. &fiexct is studied in detail in Chapter 3, and marks a
difference with the results of Craig and Litvinenko (2005he consequences of the non-adiabatic effects appear
in our final results: Plasma pressure is constant along fieéd | but density is not.

A direct check on the validity of our equilibrium may be donetbsting the behaviour of the pressyraith
respect to the flux functiod ., and also the consequences of the Grad-Shafranov conditi@11), which states
that the current density, must be also a unique function df.. In Figure 4.7, we represertery single poinof
the two-dimensional domain (within the subdomain whgris conserved), for the plasma pressure and the current
density against the flux function. Remember, that the ctidensity is the derivative of the plasma pressure with
respect to the flux function. It appears clear from this grtgatt the pressure is a unique function4f, and so
is most of the the current density distribution. The bigghspersion occurs when we approag¢h = 0, which
is the value on the separatrices, and at the X-point. Here;amesee the first sign of the field trying to reach a
singularity, which, from the Grad-Shafranov equation, liepan infinite derivative of the pressure with respect to
A,.

In order to check that the separatrices are in equilibriuith the pressure gradient being able to hold a current
accumulation along them, we look at the force balance athesseparatrices. Figure 4.8 shows a contour plot of
current density for the top-right quadrant with color-cdd®its perpendicular to the separatrix, and in Figure 4.9,
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Figure 4.8: Contour plot of current density for the top-tiglnadrant showing the locations of cuts across a sepa-
ratrix, which is used to check force balance.
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Figure 4.9: Cuts of current density (left) and total presquight) across the top-right separatrix, against the flux
function A, for our sample experiment. The colors follow the code in Fégli8. Note, the further the cut is from
the X-point, the wider the range of, covered by the perpendicular cut.

the current density and the total pressure along these peiqeéar cuts are plotted againdt. From Figure 4.9a,

we can see clearer how the current density is constant aleluglifies everywhere except at the regions about the
separatrices. Along the separatrices the current cleackeases as they head towards the null point. Figure 4.9b
shows that there is total pressure balance across the sggesaThat is, the gradients of plasma pressure are well
balanced by the magnetic pressure force, hence, the sygigeas to be in force balance everywhere, save at the
null.

Plasma pressure is constant along the separatrices, brenhtdensity is not, as shown in Figure 4.10a. A
magnetic separatrix represents an inflection line in themkapressure surface, and the Grad-Shafranov equation,
i.e. dp/dA, = j., does not hold there. However, the surface curréntdefined as the integral of the current
density,j., across the separatrix at a given position, over the widtthefcurrent layer, remains constant on the
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Figure 4.10: Plots of (a) current density, (b) surface aurréc) total magnetic pressure and (d) total pressure,
along the top right separatrix.

whole separatrix. This can be seen in Figure 4.10b, whete @alour symbol represents the integral

0.002
Is - / jz(Az)across dAz 5 (443)

—0.002

for the cuts in Figure 4.8. Note, that the integral in equafi.4.3) is done over the flux function, so the width of
the current layer is assumed to be in between the two samdifieklfor every point, and hence, it is smaller as
we move along the separatrix away from the X-point. The mgggioints in the plot are the null point, which is
singular, and other points near the null whose current laydths overlap with the separatrix below.

We define the total pressure force and the total force alomgaratrix as

FT:|jXB_Vp|7

wheres indicates the path along the separatrix. Since the plasesspre is constant along the separatrices, the
total pressure forcel'p, is equivalent to the magnetic pressure force. This foreeegative (Figure 4.10c), so it
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Figure 4.11: Electric current density across the width dod@the length of the central current layer, for the same
experiment withh, = 0.7 andpy, = 0.375. Results from the high resolution run (black diamonds) an@gared
with the results of a half-resolution run (grey stars).

pushes the plasma towards the null point, but it is compjdtelanced by the magnetic tension force, so the total
force is zero also along the separatrices (Figure 4.10d).

4.4.4 Current density layer

We now look closely at the dimensions of the current layehefgample experiment and evaluate the nature of its
finite width. Figure 4.11 shows cuts along the length (hartabcut) and width (vertical cut) of the current layer at
the location of the null, showing a length and width of thereat layer which are respectively of around 23 and 15
points (around 0.02 and 0.005 length units). These mayatelithat the current layer really has finite dimensions
and are not a result of the resolution of the numerical expeni, as suggested in Rastatter et al. (1994). In order
to check this, in Figure 4.11 we overplot the results fromgme experiment, run with a resolutionsdf2 x 1024

(half the original resolution). As can be seen, the dimemsiaf the current layer coincide for both experiments,
i.e. the finite width of the current layer is not a resolutidfeet, but a real characteristic of the equilibrium. These
results contradict the ones from Craig and Litvinenko (20®& which the dimensions of the current layer are
decreased when increasing the resolution.

In Figure 4.12, we show vertical cuts of the current densigosas the central current layer, for six different
experiments with the same squashihgs 0.7, but with different initial pressures. The width of the cehtayer
decreases for smaller plasma pressures, but remains fimikggure 4.13, we show horizontal cuts of the current
density along the central current layer, for the same caseés Rigure 4.12. As the pressure is decreased, the
length of the central current layer extends further, anctctiveent density becomes more concentrated, developing
a higher peak. The same behaviour is observed if the iniléedrpa pressure is held fixed, and the height of the
box is systematically decreased (i.e. the squashing ie&sed). This means that decreasing the initial plasma
pressure has a similar effect as increasing the initialenurdensity, as the action of both is to make the Lorentz
force dominate over the pressure force.

When the initial plasma pressure is small (e.g. in Figur&8,1he current layer has a length that is many times
longer that its width. We consider whether the current lag@pproaching the form found in Green’s current sheet
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Figure 4.12: Plots of electric current density across thathwof the central current layer, for six different experi-
ments, withh = 0.7, but different initial plasma pressures.
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Figure 4.13: Plots of electric current density along thegtbrof the main current sheet, for six different experi-
ments, withh = 0.7, but with different initial plasma pressures.
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Figure 4.14: The six plots in Figure 4.13 are overplotteddmmparison. The dimensions of the Green’s potential
solution are given in dotted lines. Figure (b) is a zoom ofcf@r a smaller range of current densities. In (b), the
initial current density is overplotted (dashed).

solution. This is checked by comparing these plots with theespondant length of the Green’s current sheet
(Figure 4.14).

To derive Green’s expression, complex variable notatiamsisd to simplify the discontinuity in the magnetic
field as cuts in the complex plang,= x + iy. The magnetic field around a potential current sheet is dExtas

By—l—iBmz\/ZQ—aQZ\/xQ—yQ—f—Qixy—a?,

where2aq is the length of the current sheet. Following the derivationBungey and Priest (1995), the analytical
profile of the current density along Green'’s potential thinrent sheet is given by the magnetic field discontinuity
asj. = 2B,(z,y = 0), and can be calculated from the expression above as

j» =2Bg(z,y =0) = 2¢/a? — 22 . (4.4.4)
Integrating equation (4.4.4) along the length of the sheetget the total current in the sheet, as
jr =a’m. (4.4.5)

Now, current density conservation implies that the Greehlset associated with our equilibrium distribution
should have a total current density equal to the total ctirdemsity in the initial field, hence, the half-length
of Green’s current sheet is directly related to the initiahstant current distribution. Looking at the results in
Bungey and Priest (1995), it can be seen that our normalizaéquires a factor of /4 in front of this length,
hence, obtaining

o=, /50 (4.4.6)
4V 7

which for our sample experiment gives the valuex 0.144. Note, that equation (4.4.4) represents a singular
current sheet containing the whole current in the domairnn sohypothetical case of a numerical Green’s state,
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this would have to be compared with the integrated currensidgover the width of one resolution element. What
we do for our experiments is compare our distributions whi lengtha.

In Figure 4.14, the six horizontal cuts of Figure 4.13 arerpiaited, and the dimensions of Green’s potential
solution are marked. All the curves cross at the same poimts andy, namely(=+a, jo), corresponding to the
initial value of the current density i, and the two ends of Green'’s current sheet.inThe main conclusion that
may be extracted from these plots is that the field is in alesagery far from the potential solution, although
the fact that all curves cross at the ends of Green'’s potasiteet seems to imply that Green’s solution might be
achieved (as far as we can get with the resolution) in the jimi— 0.

Following a systematic study, we find that the dependencéefequilibrium distributions with the initial
guantities differs from one experiment to another, and édfore determined by the initial plasma pressure and
current density of the system. This is studied in detail intfea 4.5.

4.4.5 Singular current

In Section 4.4.3, we evaluated the plasma pressure anchtdeasity of the final state. We now check whether the
current accumulation at the location of the null is held imeetequilibrium by evaluating force balance along and
across the current layer. Figure 4.15 shows plots of thewifft forces along and across the current layer, namely,
plasma pressure force,Vp, magnetic forcej x B, and total forcej x B — Vp. At first sight (Figure 4.15a and
b), the forces seem to be balanced, and the field seems to failibeum. However, when we look closely about
the origin (Figure 4.15c and d), there is a residual non-t&ed force which appears to be trying to stretch the null
in the horizontal direction, pushing from the top and bottamd pulling from the sides. These forces could either
be a result of a small amount of reconnection due to numetitfalsion, or may be the result of the current sheet
trying to tend towards a singularity. If the cause is recarioa, then the amplitude of the forces at the same time
of the relaxation should increase as the grid-cell sizedsiced. If on the other hand, the forces are a result of the
system attempting to form a singularity, they will decreaséhe grid-cell size is decreased.

We have run the same sample experiment with 0.7 andp, = 0.375 for three different resolutions, namely
256 x 512, 512 x 1024 and 1024 x 2048. In Figure 4.16, we show those residual forces for the sarperanent
after the same time has elapsed. The amplitude of the fosdagler the better the resolution is, implying that
the field is trying to converge to a singularity, and the higihe resolution, the closer the field is to achieving the
singularity, and so, the bigger the forces around the ctitegrer are. Note, that the length over which these forces
extend is roughly the same for the three resolutions.

Furthermore, the peak current appears to be slowly inangasitime, even when the velocities are essentially
zero everywhere in the domain (Figure 4.17). This is thedagtence of a singularity being formed, and, again,
represents a difference with the work in Craig and Litvin@iR005), in which they present scaling laws for the
peak current, which for our experiments, is not well defined.

4.4.6 Overview

We have presented evidence that the field has achieved dibagm everywhere save at the null point, where the
field is trying to converge to a singularity which is diffeten nature to the ones found by others in the force-free
cases when using relaxation codes as opposed to a full MHB. cbdwever, this state is impossible to reach
numerically, because of the resolution constraint. Noslets, the forces are sufficiently small for us to consider
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Figure 4.15: Pressure gradient force (dashed), magnetentn force (dashed-dot) and total force (solid), along
(a) horizontal and (b) vertical cuts through the X-point fioe sample experiment as shown in Fig. 4.4. The total
force very close to the origin is plotted against{cnd (d)y.
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Figure 4.16: The total forces along the length of the cursdrget after the same elapsed time for our sample
experiment shown in Fig. 4.4, but run using different gridateitions.
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Figure 4.17: Magnitude of the electric current density atltication of the null, as a function of time, for the same
experiment as shown in Fig. 4.4.

this state to be guasi-static statewhich can be understood as a magnetohydrostatic equitibri

An important result is that the form of the functiop&A.) andj.(A.), which define Grad-Shafranov’s con-
dition, are different for each of our experiments. That s final equilibrium directly depends on the initial
conditions of the experiments, i.e. on the initial plasmesgure and the initial current density. Also, the plots are
not symmetric with respect td, = 0, showing that the system approaches the singularity infardiit way for
positive and negative values df,, i.e. inside and outside the cusp, respectively.

In comparison to the study of Craig and Litvinenko (2005gytluse a frictional relaxation scheme with a
fictitious mechanism for damping velocities, while our MHDmerical experiments involve a physical viscous
term which is associated with a heating term, which heatplétema, taking energy from the magnetic field. This
affects in various ways to the final equilibrium state. Fiteey find a current layer about the null whose area is
decreased when increasing the resolution. However, weestiigre that the system may achieve a state with a
well defined and finite width and length of the current layémay happen that a non-negligible heating around
the null point enables a larger finite width to be held. Alsor peak current density, at the origin, is not able to
achieve a stable value, due to the presence of residuakfatzaut the null that try to collapse the field towards a
singularity, even if the field has achieved a good equililorieverywhere else. These forces continue feeding the
singularity if the simulation is run for longer, and hendeg tstrength of the singularity (as studied by Craig and
Litvinenko, 2005) is not a good parameter to evaluate. htsteve will try to give a qualitative description of the
field around the null point, and see how this depends on thialiguantities of our experiments.

4.5 Analytical description of the field

45.1 Sample experiment

We follow the approach given by Vekstein and Priest (1993 rirattempt to give a mathematical description of
the field about the null. The physics of their problem is d#éf& to ours, and they assumed a potential field outside
the cusp, which we do not have. Nevertheless, we can tesbthethey gave for the separatrix curve (the angle



4.5 Analytical description of the field 108

(a) Angle along separatrix (b) Flux function inside cusp
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Figure 4.18: Logarithmic plots of (a) the andglalong the separatrix versus the radiuand (b) the flux function
inside the cusp, along the-axis. In solid red, we present the best fit of a linear regoesgo the points which
seem to represent a straight line in each plot.

along the separatrix), in our experiments, and also thegjgsstions for the flux functiord ., and current density,

j. = —V2A,, for the region inside the cusp.

First, they suggested a form for the angle along the sejpasaté = Kr°, and for the flux function inside the
cusp as in equation (4.3.3), i.el.(r,0) = r*f(6/Kr”). A simpler form for A, can be studied fof = 0, i.e.
along thex-axis, for which equation (4.3.3) becomés = = f(, wherefy, = f(0).

Figure 4.18a shows the angle along the separatrix as a @umatithe radius (where = 0 is taken as the null
point at(0,0)). Both axes of the plot are logarithmically scaled, withreelr fit made to a set of points near the
null. We observe that the plot is not completely linear in ag@gion, and hence, we cannot expect good results
from the form given by Vekstein and Priest (1993). On the pltaand, Figure 4.18b shows the flux function inside
the cusp, along the-axis, also in logarithmic scale, and we observe a perfeeiali behavior. The two linear
regressions give the values of the two exponentsy as2.365 and = 0.299. Usingn = (28 + 2 — «)/«a, we
getn = 0.098 for the exponent in equation (4.3.4),

j. =mAI™ . (4.5.1)

Now, in Figure 4.19 we show logarithmic plots of the curreansity,j. = —V?2A. against the flux function
A, for inside and outside the cusp, with linear regressions tvem. In the case of inside the cusp, we have
overplotted a line using the exponent obtained above atlg Vekstein and Priest (1993), and we can observe
how that solution is far from our numerical results. We mugirt continue the analysis with direct fits to equation
(4.5.2).

In Figure 4.20, we show a close-up to the plots of Figure 4iih a/fit to equation (4.5.1). We have used the
same form for the function inside and outside the cusp, lafithas been made independently, thus the coefficients
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(a) Inside cusp (b) Outside cusp
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Figure 4.19: Logarithmic plots of the current density as action of the flux function for (a) inside the cusp,
showing a cut ayy = 0, and (b) outside the cusp, showing a cut:at 0. In solid red, we show a linear regression
of the points which are close to being a straight line. In #feglot, in dashed red, we present the slape 0.098
for the exponent calculated following the suggestions dfstein and Priest (1993).
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Figure 4.20: We present the fits in Figures 4.19a and 4.19mé&at scale. together with the fits for the total
pressure, given by equations (4.5.2)-(4.5.5).

and exponents are different in both regions. The currensitieand plasma pressure distributions have the form

Pi(d) = 7oAl 10, (4.5.3)
Joo(AL) =meAI™ (4.5.4)
Po(Az) = %Ai‘"o +C, (4.5.5)

where the subscriptsando refer to inside and outside the cusp, respectively. Theegadd the parameters for this
sample experiment ar@; = 0.337, n; = 0.236, m, = 0.273, n; = 0.278. The constanf' is determined as the
value of the equilibrium plasma pressure at the origin,die= p.,(0,0) = 0.38. Note, that this value is different
from the initial constant pressurgy = 0.375.
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Figure 4.21: Paramete(s;, n;, m,, n,) as functions of the initial pressure, for all the differeeights. First
columns are the coefficients; for inside the cusp, second column are the exponentsr inside the cusp, third
column are the coefficients,, for outside the cusp and fourth column are the exponepnter outside the cusp.
The values for the sample experiment studied above areigightl in orange.

4.5.2 Dependence with initial quantities

The process can be repeated for all the numerical expersnimding a dependence with the initial pressure and
initial current density. Figure 4.21 shows the dependehtesoparameterém;, n;, m,, n,) with initial pressure,
for the different values o, obtained using fits like the ones in Figures 4.19 and 4.2@¥ery single experiment.

The first conclusion that we directly obtain from Figure 4i2%hat there exists a clear functionality of the
four coefficients with the initial values of the pressure andent density, i.e with the plasma beta and the initial
perturbation. Bothn; andm, increase as the initial pressure increases,hundn, decreases as the initial
pressure increases. The second is that the solutions fideiasd outside the cusp are different, as was already
assumed in Vekstein and Priest (1993).

The pressureless limit case gives some hint about the sesudtvn in Figure 4.21. When the plasma pressure
tends to zero, then one would expect the system to approa&chdtential case where current density is zero
everywhere (exceptin a thin current sheet where it becoimgslar), hence, the coefficients; andm,, should go
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Figure 4.22: Here, we show the same plots as in Figure 4.2 fitg to the curves to the expressions (4.5.6) and
(4.5.7), in red, for the coefficients, andm,, and blue for the exponents andn,,.

to zero wherp — 0. With that consideration, we can find a good fit to the plotsighiFe 4.21, using exponential
functions, as follows,

m=—A(e"Pro — 1), (4.5.6)
n=ClPr -1)+E, (4.5.7)

where(A, B, C, D, E) are the parameters for a non-linear fitting. Figure 4.22 shihw fits of equations (4.5.6)
and (4.5.7) to the plots in Figure 4.21. The non-linear fitgehbeen done by using thesvenberg-Marquardt
methodfor non-linear modeling, described in Press et al. (1992)merical Recipes”, Chapter 15The parame-
ters after the fits are summarised in Table 4.1. No more caiais can be obtained from the data, apart from the
fact that these parameters preserve monotonicity.

In the limitp — oo, i.e. the plasma dominates over the magnetic field, the coaftsm,;,, tend to 4;,,,
and the exponents; , tend toE;,, — C;/,. These are summarised in Table 4.2. As an ambitious obsanyat
if the parameter; — C; (andE, — C,) can be understood as constant witminus numerical errors), then the
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h go || A B | G D; B || A B, | C, D, E,
0.9 0.23]| 0.112 3.786| 0.432 5.848 0.596| 0.109 3.971| 0.370 5.501 0.540
0.8 0.56|| 0.314 2.669| 0.339 3.550 0.470| 0.313 2.341| 0.417 3.893 0.558
0.7 1.04|| 0.570 2.392| 0.306 2.764 0.434| 0.689 1.312| 0.532 3.772 0.685
0.6 1.77|| 0.860 2.366| 0.273 1.420 0.370| 1.271 0.829| 0.575 3.208 0.748

Table 4.1: Paramete(si, B, C, D, E) as functions of the height of the bax or the initial current densityp.
The subscripts/o refer to inside/outside the cusp respectively.

h  jo | A E-C | A,  E,—C,
0.9 0.23] 0.112 0.164 | 0.109 0.170
0.8 0.56| 0.314 0.131 | 0.313 0.141
0.7 1.04| 0.570 0.128 | 0.689 0.153
0.6 1.77| 0.860 0.097 | 1.271 0.173

Table 4.2: Limits forp — oo as functions of the height of the bax or the initial current density.

exponents:; (andn,) in the limit p — oo, would then not depend on This is, when the plasma pressure is very
big, the final equilibrium would not depend on the squashig,on the electromagnetic perturbation.

45.3 Overview

We have studied in close detail the same problem as Craig @vidénko (2005), making use of the full set of
MHD equations, and we have found that our final equilibriurifieds from their result in some aspects. Using
the approach given by Vekstein and Priest (1993), we hawengavqualitative description of the final equilibrium
states by looking for fits to the equatign = F(A.). Even if this is only a qualitative analysis, it describes a
fair approximation of the behaviour of the final equilibriias the values of the initial plasma pressure and current
density are varied. These two-dimensional contexts araghf kelevance for systems with translational or rota-
tional symmetries, and their study is useful for some astysjral environments which can be well approximated
by these properties of symmetry.

In the next chapter, we evaluate current accumulationsrgetdimensional equilibria which contain 3D mag-
netic null points. The characteristics of these environtmeme going to be completely different to the two-
dimensional case, and the dynamical evolutions are lesscte® in the sense that the plasma has freedom to
move in all three spatial directions. Hence, the approathegroblem will have to be different.



Chapter 5

Relaxation of 3D Magnetic Null Points

5.1 Introduction

Three-dimensional magnetic null points have been studietetail within the last decade in the main context of
three dimensional magnetic reconnection. Their impokdioc magnetic energy release in solar and magneto-
spheric environments have been observationally estalibli many authors, for example in solar flares (Fletcher
et al., 2001), in solar active regions (Ugarte-Urra et d002) or at the Earth’'s magnetotail (Xiao et al., 2006).
However, a complete understanding of the formation of asnirsheet through the collapse of a three-dimensional
magnetic null point is still to be achieved, either matheoadly or phenomenologically.

The processes of reconnection in three dimensions ardisgmiy different to and much more complex than
those in two-dimensions at X-type null points (e.g Hesse @claindler, 1988; Priest et al., 2003). In general,
in three-dimensions, magnetic reconnection can occueetth nulls or in the absence of them, and does not
involve one-to-one breaking and rejoining of pairs of figltek, as in two-dimensions. A classification of the
reconnection regimes at three-dimensional magnetic mutitp is made by Priest and Pontin (2009). The nature
of the reconnection that takes place around a three-dimealksinull depends directly on the flows and boundary
conditions that are responsible for the reconnection (feidul). Below, we discuss the different reconnection
regimes about 3D nulls, assuming initially a potential adull, where the spine is perpendicular to the fan, and
field lines in the fan plane extend radially from the null (Rt et al., 1996).

1) A rotation of the fan plane about the spine drives a twigheffield lines around the spine (red arrows in
Figure 5.1). An electric current density builds along andmibe spine, in the direction of it. Reconnection of
field lines may take place in that region, producing a sligpafjthe field lines in a counter-rotational direction
to the twist, which dissipates the current density. Thisalbed torsional spine reconnectiorit does not involve
flow across the fan or the spine, and hence, the global topabthe field remains unchanged. Note, that the
reconnection does not take place at the location of the Mdidels of torsional magnetic reconnection are given
by Pontin et al. (2004) and Wyper and Jain (2010).

2) A rotation of the field lines about the spine, in differeirtedtions above and below the fan, creates an
electric current in the fan plane that points in the directad the spine but has different sign above and below

the fan (yellow arrows in Figure 5.1). Reconnection of fiettes can take place in the regions near the fan by
a rotational slippage of the field lines there in oppositections above and below the fan, so as to dissipate the

113
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(1) Boundary disturbance

(2) Direction of the induced
current density vector

z (@) (0,0,j)
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(i, 0, 0)
(i 0, 0)

Figure 5.1: Possible boundary disturbances responsibleeémnnection at a 3D positive null, showing the di-
rection of the induced current density, for taysional-spine reconnectiora rotation of the fan (red) induces a
unidirectional current density, parallel (below the fangantiparallel (above the fan) to the spine, tsional-
fan reconnectionopposite rotations above and below the fan of the field liresiathe spine (yellow) induce a
current density antiparallel to the spine, (c) andféd)-spine reconnectiora shear of the fan plane (blue) or the
spine (green), induces a current density perpendiculdrgepine in these cases along thaxis.

current density. This is calletrsional fan reconnectianAs before it does not produce a change in the topology
of the field, and reconnection does not happen at the locatbthe null (Pontin et al., 2004; Wyper and Jain,
2010).

3) A shear motion of the spine below and above the fan, in dmpdsections (green arrows in Figure 5.1),
or a shearing of the fan plane (blue arrows in Figure 5.1)dpoing a tilt with respect to the spine about a given
axis, drives a collapse of the null point. That is, the rasglt.orentz forces act in the same direction as the initial
disturbance, thus increasing it and resulting in a foldifighe spine and fan towards each other. A current is
created along the line to which the spine and fan are coligptsi, and so, it is perpendicular to the direction of the
perturbation, similarly to the two-dimensional X-pointlepse. Here, reconnection can take place in the vicinity
of the null, and implies that flux is transferred across theespnd the fan, thus changing the global topology of the
field lines, as in the two-dimensional case. Pontin et al052@ive a model for this type of reconnection, referred
to asfan-spine reconnection

All the previously mentioned studies of 3D reconnection aggmetic nulls assume a zero beta plasma model,
solving the equations only for the electromagnetic field] &ence, neglecting the effects of the plasma in the
evolution of the field. On the other hand, Pontin et al. (290ivestigated current sheet formation and evolution
of the field at 3D nulls after a shearing-type perturbatiasing a full MHD description of the field. They then
studied the subsequent reconnection processes usingHil Msistive numerical simulations, finding, at the time
of maximum current, the biggest current accumulation atdhation of the null, extended faintly along the spine
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and the fan. Using the same MHD approach, they investightedffects of compressibility (Pontin et al., 2@)7
in their evolution, finding a significant reduction of the geairrent and the reconnection rate as the limit of an
incompressible fluid was approached.

However, the non-resistive evolution of three-dimensiongls through a shearing-type perturbation and the
development of singular currents, to our knowledge, hay belen studied by Pontin and Craig (2005), who
analysed the formation of a current singularity at the lmcabf the null in a non-force-free equilibrium, in an
equivalent manner to the two-dimensional singularitiesligtd by Craig and Litvinenko (2005). The emphasis
of their study was the evaluation of the scaling laws for ttiergyth of the singularity, as a function of the grid
resolution of their experiments. They also studied theot$fef the plasma pressure in the relaxation, finding that,
while a singularity was formed in all cases, the plasma pres®rce weakened the strength of the singularity. For
the evolution of the field, they assumed the adiabatic pobitrmodelp ~ p?, using a frictional code where no
energy conversion was allowed.

Here, we study the non-resistive evolution of two configiorad, 1) a torsional-spine-type and 2) a sheared-type
perturbed magnetic null, using LARE3D. In particular, we arterested in the current accumulations that arise
when a non-force-free equilibrium is reached. We evaluageetffects of both the plasma pressure and the heat
transfer in the evolution, as both the initial disturbanice. (the torsion or the shear) and the background plasma
pressure are changed systematically. In the case of a sBggaatturbation, the formation of a current singularity
at the location of the null is evaluated.

5.2 Magnetic field configurations and numerical setup

As seen in Section 1.4.2, the magnetic fiBldaround a null point may be expressed as
B=M-r, (5.2.1)

whereM is a matrix with elements/; ; = 9B, /dx;, andr is the position vectofz, y, z)”. By choosing the right
coordinate system in which the spine lies alongkexis and the current density vector is directed somewhrere i
thezz-plane, the matriXM can be reduced to equation (1.4.14),

OB, 9B, OB, 1 ;
Ly e

M=| Z S % |~ | 2e+iq) p 0 )
05 9. &% 0 joo =+

wherej andj, are the components of the current density parallel and pelipelar to the spine, respectively,
such that

i=010,7)) .

The conditions-1 < p < co andg? < jﬁ + 4p (Parnell et al., 1996) ensure that the spine of the null ingtbe
z-axis, and the null is positive, i.e. the spine above andvbéhe fan is composed of a pair of field lines directed
towards the null, and field lines in the fan emanate away ftom i

In this chapter, we are going to study the MHD relaxation af tlifferent null point configurations, with the
current density vector entirely perpendicular or entingdyallel to the spine. As an initial magnetic field, we use a
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linear field around a null as described in equation (5.2.&) simplicity in our experiments, we have choses: 0
andp = 1, so that the field lines lying in the fan do not follow any predpant direction (i.e. they expand radially
outwards), and are rotationally symmetric about the sgitence, we can rewrite the matiM as

I
M=| 35 1 o0 |. (5.2.2)
0 g -2

We use the LARE code to run a series of non-resistive expeaitisran initial magnetic fields of 3D null points
that have a uniform spine-aligned or fan-aligned currembedded in a non-zero beta plasma. In order to inves-
tigate the dependence of the results on values for thelipitéssure and current density, we consider two sets of
experiments in which the magnitude of the background plasressure and the initial current density are varied
independently. All the initial plasma quantities (i.e. gt@a pressure, density and internal energy) are fixed as con-
stants and there are no initial flows. The current densityords also constant everywhere, as already explained,
and equalg0, 0, jo) in the first set of experiments, aiig), 0, 0) in the second.

The size of the numerical domaindx 2 x2, and allz, y andz vary from—1 to 1. The grid is uniform and has
a resolution o256 x 256 x 256. All boundaries of the domain are closed, in the same wayasetfor the 2D null
point experiments discussed in Chapter 4, and the magneltcidi line tied. At the boundaries, velocities are set
to zero and the rest of the quantities have their first devigatset to zero. The real viscosityus = 0.005, and
the two shock viscosities are zero in all the experiments.

5.3 3D nulls with spine-aligned current

5.3.1 Initial state

We first look at the relaxation of initial configurations of greetic null points with a constant current density
everywhere in the direction parallel to the spine, of thef@d, 0, jo). The magnetic field is then given by equations
(5.2.1)and (5.2.2), as

By=1— ‘%Oy , (5.3.1)
B, = %O;L ty, (5.3.2)
B, = -2z, (5.3.3)

The fan is perpendicular to the spine and lies in the plare0. We have run four experiments with a fixed value
of the plasma pressurgy; = 1, varying the initial current ag, = 0.025, 0.5, 1.0, 1.5, and five experiments with
the initial current fixed agy, = 1, and the initial pressure varying as = 0.05, 0.5, 1.0, 1.5, 2.0. Figure 5.2
shows the magnetic configuration of the initial state,fpe= 1.0 andpy = 1.0. The magnetic field lines show a
homogeneous twist about the spine, and the field lines lyirige fan define a logarithmic spiral.



5.3 3D nulls with spine-aligned current

117

~-1.0-1.0

(b) fan plane

T T

Figure 5.2: Magnetic configuration for the initial non-elgaium state with homogeneous spine-aligned current,
for jo = 1.0 andpy = 1.0, showing (a) the 3D configuration with field lines above theifapurple and field lines
below the fan in orange. The fan plane is outlined by a dasteetklline. The spine is represented in green, with
its projections onto thez-plane and;z-plane in dashed green lines. In (b), we plot the field lingb@fan plane,
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Figure 5.3: Time evolution of the energies of the systengrated over the whole domain, for the same experiment
as in Figure 5.2. The magnetic, internal and total energée® fbeen shifted on thg-axis by subtracting the
constant value8.5, 12.0 and20.5 respectively, but their amplitudes are not scaled.
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5.3.2 Final equilibrium state

We first concentrate on the case shown in Figure 5.2, whichjhas 1.0 andpy = 1.0. The evolution of the
energies of the system integrated over the numerical dormainown in Figure 5.3. The time unit is the time for
a fast magnetoacoustic wave to get from one of the boundiridee location of the null. The exchange from
magnetic to internal energy is approximately2, in normalised units, and the change in total energy is(juist1,
which is abou®.01 times the amount of exchanged energy and hence, it is nelglidilote that here, the numerical
effects that violated energy conservation in the first fenetisteps of the two-dimensional X-point experiments in
the previous chapter (which were explained as being a coes®g of sudden shock formation), do not appear in
our three dimensional models. Thus it appears as if energgsientially conserved in our experiments.

The magnetic field configuration at the end of the simulat®shown in Figure 5.4. Because of the line-
tied boundaries, and the restriction of an ideal evoluttbe, field cannot dissipate the original twist. Instead, in
comparison to the initial state (Figure 5.2), the relaxatippears to undo the original spiral of the fan field lines,
transferring the twist to the field lines about the spine. ldeer, the final relaxed field lines in our fan plane are
not entirely radial.

In order to evaluate if an equilibrium has been achieved, abagk to the main result of magnetohydrostatics
which states that, in a properly relaxed state, the plasmsspre is constant along field lines, and hence,

B-Vp=0.

By comparing, in the fan plane of the final state, the mageisuaf B - Vp and the poloidal magnetic fields,
(Figure 5.5), we show that the regions in whiBh- Vp # 0 coincide with the regions where the poloidal field
is large. This may indicate that these regions arise duedadsidual forces trying to converge the field lines to
a radial configuration that has not yet been achieved. Thamaagressure in the fan plane is effectively constant
everywhere with an approximate valuelo66, in comparison with its initial magnitudey, = 1. The restriction

of line-tide boundaries makes the final state hard to achiend the forces are fairly small, so the numerical
simulation would need to run for much longer to make thesegfisar.

We now consider if the system has achieved a good equilibiiutime regions outside the plane of the fan by
considering a vertical cut through the fan in a plane inalgdhe spine. As discussed above, in equilibrium, the
plasma pressure has to be constant along the magnetic frajalging B - Vp = 0. In Figure 5.6a we show that
outside of the fan plane, the pressure is constant along etiagield lines everywhere. The particular vertical
cut chosen is a plane perpendicular to the fan which cutsigiréwo of the regions of non-equilibrium in the fan
(indicated in red in Figure 5.5a).

Figures 5.6b and 5.6¢ show vertical cuts in the planre 0 with contour plots of plasma pressure and current
density. Plasma pressure is enhanced near the spine arelfamtplane, and current density concentrates princi-
pally along and about the spine, and is positive everywh&he magnitude of the current density is reflectively
symmetric about the fan plane, and rotationally symmetiimua the spine. Note, that the main accumulations of
current density occur in the locations where torsionahepeconnection takes place in 3D null point reconnection
studies (Pontin et al., 2004; Priest and Pontin, 2009; WgipdrJain, 2010). The current is effectively zero in the
fan plane, but has a small finite value at the location of tHeitself, corresponding to small and highly localised
gradients of the magnetic components at the location of title The scales of these gradients are of the order of
the size of the numerical grid, and hence, we are not ablevadefinitive answer as to whether the current at
the null itself is different to zero.
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(b) fan plane
W.O T T T

0.5 1

-1.0 1 I |

Figure 5.4: Magnetic configuration for the equilibrium statith spine-aligned current, for the same experiment
as in Figure 5.2, showing (a) the 3D configuration with fietees above the fan in purple and field lines below the
fan in orange. The outline of the fan is represented by dableezk lines. Also, the spine is represented in green,
with its projections onto thez-plane and,z-plane in dashed green lines. In (b), we plot the field linethéfan
plane, atz = 0.
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Figure 5.5: Contour plots of (aB - Vp| and (b) poloidal field B4, in the fan plane for the final state, for the same
experiment as in Figure 5.2. In (b), blue means clockwisalimig of the field lines, and red means anti-clockwise
winding. The red-dashed line in (a) shows the line of theivaktut shown in Figure 5.6a.
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Figure 5.6: Contour-plots of (4B - Vp|, for a vertical plane crossing the fan through the red dathedn Figure
5.5a, and (b) plasma pressure, (c) current density ang/(d), in theyz-plane atx = 0, for the same experiment
as in Figure 5.2

Parnell et al. (1997) describe how, an equilibrium involyanlinear 3D null must satisfy = 0, i.e. the field
has to be potential, as seen in Section 1.4, equation (3,4ih8e

Vx(({ixB)=-M-j=0,

whereM is a non-singular matrix. Assuming that the field lying in faa plane is linear in the final equilibrium,
this condition requires the field to be potential everywhieithe fan, except for the null point itself, wheBe= 0.
There, a finite singular current could in principle be all@ybut this cannot be confirmed within our resolution
limits.

The viscous heating term in the energy equation leads toadgabatic effects, from which it follows that the
quantityp/p? changes throughout the dynamical evolution, and thergétaesity is not constant along magnetic
field lines in the final state. Figure 5.6d shows a verticalafyi/p” in the planer = 0. We see that it does not
follow the same behaviour as the plasma pressure or thertuteasity. The higher values do not occur in the fan
nor along the spine. Instead/p” is near its minimum in those regions, indicating that therdissipation of
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magnetic energy does not happen at them.

The state of the plasma along the spine in the final state, amedo its initial state, is shown in Figure 5.7,
where we plot the current density, plasma pressure and@n{fo' p”) along the spine for the final and initial
states. Along the spine, the magnetic field is parallel (aktye null) and antiparallel (below the null) to the
electric current. Hence, the Lorentz force must equal zandl, in equilibrium, the pressure gradients have to
vanish, which they clearly do (Figure 5.7a). The currentsitgris nearly zero at the origin, and increases almost
linearly below and above the fan (Figure 5.7b). The entrogy) increases gradually along the spine, then more
rapidly as it heads to the null, peaking at the null itself(ie 5.7c¢). This indicates that there is marginally more
energy dissipated near the null than along the rest of theesput even near the null there is a little dissipation
compared to elsewhere in the domain (Figure 5.6d).

Figure 5.8 shows plots of the same quantities, across the sai three different heights, in the plane= 0.
We see that, in the region close to the spitel < y < 0.1, the plasma pressure gradients do not vary with height
(Figure 5.8a), hence, in the equilibrium, theeomponent of the Lorentz force is zero within a cylinder adlius
0.1 around the spine. Also in that regigwy,p” is near its minimum (Figure 5.8c), as discussed above. thes,
however, its maximum values away from the spine, where & geich larger than at the null point itself. Hence,
the largest dissipation of magnetic energy does not ocaurr@ar the null in this torsional case.

5.3.3 Changes in current density and plasma pressure

Finally, we evaluate how the results above vary when inéngasr decreasing the initial values of the plasma
pressure and current density. By increasing the initialstamt current densityj,, we naturally find a larger
accumulation of current about the spine, but the qualieadispects of the final equilibria are the same in all cases.
Figure 5.9a shows plots of current density along the spinfo experiments with the fixed initial plasma pressure
po = 1 and current densitieg = 0.25, 0.5, 1.0, 1.5. The gradients of current on moving away from the null are
steeper the higher the value of the initial current is. By panng now the current distributions at the final state
normalised by the initial value of the current density inteaase (Figure 5.9b), we obtain a very similar behaviour
for all the experiments. This suggests that the distrimsiof the current density in the final equilibria simply scale
with the value of the initial current densities.

However, by changing the initial plasma pressure we do ndttfie same effect. The final distributions of
current density are not affected by the magnitude of theainilasma pressure, and hence by the value of the
plasma beta. The current density distributions along tie dif the spine are seemingly independent of the plasma
pressure (Figure 5.10a), and so are the distributions s¢hesspine, for small changes of the plasma pressure
(Figure 5.10b). Only when the initial plasma pressure haslokecreased by a factor of 20 (i.e. for= 0.05), can
we see a small change in the regions about the spine, whedesthibution of current density tends to be smoother.

5.3.4 Overview

The three-dimensional relaxation of magnetic null pointthwgpine-aligned current has been investigated under
non-resistive conditions. An initial field with a constanirient density everywhere, in the direction of the spine,

evolves by concentrating the initial constant current dgreround the spine lines, above and below the fan,

maintaining the same direction in both hemispheres. Theentialong the spine points towards the null below the

fan plane, and away from the null above the fan plane. Thegeifothe final equilibrium, the twist of the field lines,
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Figure 5.7: Cuts of (a) plasma pressure, (b) current deasitly(c)p/p” along the spine, for the same experiment
as in Figure 5.2. Solid lines represent the final equilibratate, and dotted lines represent the initial state.
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Figure 5.8: Cuts of (a) plasma pressure, (b) current demasitly(c)p/p” across the spine, at heights= 0.4 (dash
dot), 2 = 0.6 (dashed) and = 0.8 (solid) for the same experiment as in Figure 5.2. Dottedslirepresent the
initial state.

which is initially homogeneous, accumulates about theespinth the same sense of rotation above and below the
fan. Our final equilibrium is such that the current densitgffectively zero everywhere in the fan plane. Also, the
field at equilibrium has rotational symmetry with respecttie spine. In order to reach the final equilibrium, we
find that the main locations of viscous dissipation do nouoat the regions of higher accumulations of current,
but they occur outside the separatrices and the null.

The effects of changes in the magnitude of the initial curdemsity (or equivalently, in the integrated current
density in the domain) are to increase the twist of the figlddiabout the spine, and hence, increase the current
density around it. The current density along the spine Emes monotonically as we move along the spine, with
the rate of increase scaled according to the initial curdemisity,jo, of the system. On the other hand, the results
are only very weakly dependent of the magnitude of the ingilasma pressure, and in principle, the pressure
gradients (pressure force) are able to hold the currentifesascumulation no matter what the magnitude of the
plasma pressure is.
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Figure 5.9: Cuts along the spine, of (a) current densityfdar different experiments with initial plasma pressure
po = 1, and current densitiek) = 0.25 (dotted),j, = 0.5 (dash dot),j, = 1.0 (dashed) ang, = 1.5 (solid).

In blue, we represent the initial constant current for eagheement. The current normalised with respect to the
initial values are overplotted in (b) for all four experinten
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Figure 5.10: Cuts (a) along and (b) across the spine, at heigh 0.6, of current density, for five different
experiments with initial current densityy = 1, and plasma pressurgg = 0.05 (dotted),po = 0.5 (dash dot
dot), po = 1.0 (dashed dot)p, = 1.5 (dashed) angy = 2.0 (solid). All plots overlap, except for the one with
Po = 0.05.
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Figure 5.11: Magnetic configuration for the initial non-@duium state with homogeneous current perpendicular
to the spine, pointing along theaxis, withjo = 1.0 andpy = 1.0, showing the 3D configuration with field lines

above the fan in purple and field lines below the fan in orafite. fan is represented by dashed black lines. Also,
the spine is represented in green, with its projections thea z-plane and,z-plane in dashed green lines.

5.4 3D nulls with fan-aligned current

5.4.1 |Initial state

In the second set of experiments, we look at the relaxatianagnetic null points with constant current density,
pointing in thez-direction, perpendicular to the spine, of the fofyp, 0, 0). The magnetic field is now given by

B, =z, (5.4.1)
By =y, (5.4.2)
B, = joy — 2z . (5.4.3)

The fan plane for such a field tilts about theaxis, so that it is not perpendicular to the spine. Iniiate plane
of the fan is defined by

2=y (5.4.4)

(Parnell et al., 1996). We have run three experiments withedfivalue of the plasma pressupg, = 1, varying
the initial current agjy = 0.5, 1.0, 1.5, and another three experiments with the initial currentdixg = 1, and
the initial pressure varying as = 0.5, 1.0, 1.5. Figure 5.11 shows the magnetic configuration of the ingiate,
for jo = 1.0 andpg = 1.0.

5.4.2 Final equilibrium state

We start analysing the results by focusing on the experinmefRigure 5.11, withj, = 1.0 andpg = 1.0. First,
in Figure 5.12, we show the evolution of the integrated eiesrgf the system. The time unit is the time for a fast
magnetoacoustic wave to get from one of the boundaries ttotia¢ion of the null. The exchange of magnetic to
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internal energy is larger than in the previous case, andpscagmately0.18. In comparison, the change in total
energy is 0f0.0003, and hence, the total energy may be said to be conserved.

The magnetic field configuration at the end of the simulat®shiown in Figure 5.13. In comparison to the
initial state (Figure 5.11), the relaxation appears toaqsk the spine and the fan towards each other in the region
near the null. Far from the null, the spine appear to be tryingecome perpendicular to the fan.

As in the previous sets of experiments, we check if our stagerbached an equilibrium, by calculating the
quantityB - Vp, which must equal zero everywhere for the plasma pressibbe tmnstant along field lines. This
condition holds everywhere save near and in the fan plargu(€i5.14a). Interestingly, the non-zero regions of
B - Vp do not occur symmetrically about the fan plane, but occumid above the fan when > 0 andy > 0
and in and below the fan when< 0 andy < 0. That is, they occur within the regions where the fan has been
folded up towards the spine. These regions of non-equilibrinay account for residual forces which are trying to
make the fan and the spine perpendicular away from the nolie Nhat near the null, the spine and the fan appear
to have collapsed to each other, and far from the null, theydtzvay, in a similar way to the separatrices in the
two-dimensional X-point case.

The distribution of the plasma pressure in the plane 0 is similar to that in the 2D X-point case, with the
pressure enhanced in the regions inside the “cusp” and asien the regions outside the “cusp” (Figure 5.14b),
exactly as in the collapse of two-dimensional X-points. Therent density appears to extend principally along
the fan, but also very faintly along the spine (Figure 5.14id)e current density vector in this case points in the
direction of thez-axis, i.e. perpendicular to the plane we show here, as irdivm@nsions. Hence, apart from the
asymmetry of the current enhancements, this is also sittaldre 2D behaviour we saw in the previous chapter.
Finally, the entropy/p") is maximum at the location of the null, as it is in the 2D cas®] it extends along the
fan plane, and along what appears to be the axis of the centmant layer. Hence, it is at these locations where
the main viscous dissipation has occurred.

In Figure 5.15a, we show a surface plot of the current demsitile same plane as the contour plot in Figure
5.14c, confirming that the current density is enhanced maitdng this cut of the fan plane, and faintly along the
spine. At the null, the current shows a spike, indicating éhsingular current may be being formed. Figure 5.15b
shows one-dimensional plots of the current density perigeitat to the fan at different points, in the same plane
as beforeg = 0. These results may be compared with the finite width of thesettimaccumulations obtained in the
two-dimensional X-point collapse. However, the resolutid the 3D experiments is insufficient, and the current
in the fan has a width of 5 or 6 resolution elements. This teésuhen inconclusive.

We now look at the geometry of the fan plane itself. Initiathye fan is a plane defined by the equation (5.4.4),
but in the final state, the surface of the fan is not planar.rtfeoto appreciate the shape of the fan surface in the
final state, Figure 5.16 shows a plot of the deformation offémesurface from the initial state. The fan deforms
towards the spine, upwards for positive valueg adind downwards for negative valuesyobut is symmetric with
respect to the: = 0 plane. Note, that the field is line-tied at the boundariefiefdomain, thus the fan is forced to
recover its initial position at the four edges.

The structure of the current density in the fan surface afitied equilibrium state is shown in Figure 5.17a.
The current density over all the fan surface is larger thathérest of the three dimensional domain, but we see
that the largest values are along thaxis, aty = 0, which is the tilt-axis. The absolute maximum is at the lawrat
of the null (Figure 5.15a). Near the null, the current hasya&iaf finite length extending along the axis of tilt.
Similarly, the entropy#/p”) in the fan plane has its higher values at the location of tireenit layer that forms
about the null (Figure 5.17b).
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Figure 5.14: Contour plots of (B - Vp|, (b) plasma pressure, (c) current density andp(t})?, in theyz-plane
atx = 0, for the same experiment as in Figure 5.11. The pink dashedshows the intersection of the fan plane,
and the blue dashed line shows the spine.
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Figure 5.15: Current density in the plame= 0, for the same experiment as in Figure 5.11, showing, (a)facer
plot of j, equivalent to the contour plot in Figure 5.14c, and (b) plaftcurrent density across the fan surface for
cuts perpendicular to it. Highlighted in the plot, we show tlalue ofy at which each cut crosses the fan. The
plots are centered at the location of the fan surface.
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Figure 5.16: Fan surface at the final state, with the init@hlbogeneous tilt subtracted at each point.
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Figure 5.17: Surface plots of (a) current density and(l)”, for the same experiment as in Figure 5.11, in the fan

surface.

In Figures 5.14c, 5.15a and 5.17a, it looks like a currerguderity may be trying to form. In the next section

we investigate the formation of such a singularity.

5.4.3 Current singularity

The formation of current singularities at line-tied 3D npdlints in non-resistive magnetohydrodynamics has been
studied by Pontin and Craig (2005). They show how these ousiegularities are formed in an equivalent manner
to that in two dimensions, using a frictional code with notireaterm. In agreement with their study, we find that
the current density spreads mainly over the fan surfacd, a/gmaller amount also concentrating along the spine,

as shown in Figure 5.15.

In our two-dimensional results from Chapter 4, we inveggdathe formation of a singular current at the
location of the null. It was found that small residual forecemained, concentrated about the null, stretching the
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Figure 5.18: Current density along the spine (black-spldtng the tilt-axis of the fan (blue-dashed) and along
they-axis of the fan (orange-dashed), for the same experimentriigure 5.11
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Figure 5.19: Magnitude of the residual forces (a) along fiees (b) along the tilt-axis of the fan and (c) along the
y-axis of the fan.

current layer in one direction and trying to converge it toirggslarity in the other. Furthermore, as the grid
resolution increased, so did the forces. Also, as the systaived, the peak current kept slowly increasing. We
aim to do a similar analysis for our three-dimensional noihp. In Figure 5.18, we show plots of current density
along the spine, along the-axis of the fan surface (tilt-axis), and along thexis of the fan surface. Along
the spine, a broad gradual increase of current ov@dength units from the null sees the current rise up from
0.7 to 13 before it peaks at oved0 at the null itself. This first broad enhancement is partlyoaigged with the
current accumulation about the fan plane. After that, theecu shows a spike, which reveals the formation of
the singularity at the null. The region in which the currerstidbution along the spine coincides with the current
distribution along the-axis of the fan is the region in which both the fan and spieetincurrently, and where the
singularity is to be formed.

By evaluating the residual forces, we expect to see a fuititgcation of the formation of a singularity, but
the low resolution of the experiments does not allow a caieturesult. The total forces evaluated along the spine
show a sudden increase about the null, but are nearly zehe axact location of the null itself (Figure 5.19a).
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These may indicate the formation of a singularity, as stlidig¢he two-dimensional case. However, the fan shows
higher residual forces away from the null (Figure 5.19b}kept in the axis of tilt of the fan, in which the forces
are minima (Figure 5.19c). The reason why these forces arsufficiently small is because they lie within the
numerical error of the finite difference derivatives. The wd higher resolution runs is necessary for a firmer
conclusion.

5.4.4 Changes in current density and plasma pressure

Finally, we discuss how the previous results vary when tlt@alrcurrent density and initial plasma pressure are
varied, and compare our results to those of Pontin and Cg4ig5). Pontin and Craig (2005) find a reduction in
the peak current when the plasma pressure is increased.

Following the investigation of Craig and Litvinenko (2036} the two-dimensional X-point relaxation, Pontin
and Craig (2005) evaluate the scaling of the peak currersitfewith the numerical grid size. As before, this
scaling law does not make sense in our full MHD numerical erpent, as the equations do not permit the peak
current to achieve a genuine singularity, but keeps slomdygasing as more time elapses.

First, from equation (5.4.4), the initial disturbance oé tiield (tilt of the fan) is defined by the magnitude of
the initial constant current density. The higher the ihitiarrent density, the higher the angle of tilt. We find that
the deformation of the spine in the final state directly dejsemn the steepness of the initial fan plane. The larger
the initial current the greater the deformation (curvatafehe fan and the spine (Figure 5.20a). Similarly, a larger
initial magnitude of the initial current density producest@eper initial inclination and a bigger deformation of the
fan plane (Figure 5.20b). The shape of the singularity altvegspine for the two experiments wijh = 0.5 and
1.0 is shown in Figures 5.20c and d. Here we see that the streftfik singularity increases when increasing the
initial current, and a clear well defined spike is only obserfor the smaller values gf, as the current layer gets
broader for larger values of the initial current.

Changes in the initial background plasma pressure do nettatffie the initial tilt of the fan surface, but they
affect the final collapse of the fan and spine towards the Ioyivarying the degree of the deformation (Figure
5.21a-b). It can be seen that a larger initial magnitude efptlasma pressure produces a smaller deformation of
the fan plane and the spine line. This is not surprising stheeplasma acts to reduce the effects of the initial
Lorentz force, preventing a collapse in the null. The supgian of the current layer and singularity as the plasma
pressure decreases is also seen in Figure 5.21c and d, whvexakar current in the fan surface and at the null is
seen for a smaller plasma pressure.

Overall, the results are similar to that of the relaxatiotvad-dimensional magnetic X-points. The singularity
becomes less pronounced if the initial current density sekesed, or the initial plasma pressure (and hence, the
plasma beta) is increased.
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Figure 5.20: Dependence with current density, showing da)(pink) and spine (blue) in the plane= 0 for

jo = 0.5, 1.0, 1.5, (b) shapes of the fan surfaces, after subtracting thelriti, and (c) and (d), current density
along the spine (black-solid) and along the tilt-axis (btlzshed) ang-axis (orange-dashed) in the fan plane, for
two of the experiments, withy = 0.5 and1.5.
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Figure 5.21: Dependence with plasma pressure, showin@ifgpink) and spine (blue) in the plame= 0 for (a)

po = 0.5, 1.0, 1.5, (b) shapes of the fan surfaces, after subtracting thelrili, and (c) and (d) current density
along the spine (black-solid) and along the tilt-axis (bllzsshed) ang-axis (orange-dashed) in the fan plane, for
the two experiments with, = 0.5 and1.5.
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5.45 Overview

In the last set of experiments of this thesis, we have corsitithe dynamical evolution of three-dimensional
magnetic null points with a shear-type perturbation in \ahize fan plane is tilted with respect to the spine, about
a given axis. An initially homogeneous current density,peedicular to the spine, pointing along theaxis,
evolves in time by collapsing the spine and the fan surfasatds each other. The current density remains purely
along thez-axis and it is accumulated around the final surface of thedad also along the spine, although with
a much smaller magnitude. A large and very localised thieeedsional current layer with finite dimensions is
formed about the null. It is found that this layer is wider hretdirection of the tilt-axis of the fan, while it has a
similar form along the spine and along thexis of the fan, in the region in which both the spine and drelfe
concurrently.

Thex = 0 plane, to which the current density vector is perpendiciglaows a very similar structure to the
two-dimensional case: (1) a cusp-like enhancement in ntisdound outlining the fan surface and the spine, (2)
pressure is enhanced in the regions inside the cusp, (J)pnpeaks at the location of the null, (4) the current
density tries to become singular at the null, but a true dargy is not possible to reach numerically, so instead
a pronounced spike in current is seen about which small watidrces are trying to converge the current to a
singular value.

The effects of decreasing the current density or increasiagplasma pressure are, first, to lessen the collapse
of the spine and the fan, and second, to decrease the sti@tgthsingularity at the three-dimensional null point,
but producing a narrower layer about the null. These reswjtse qualitatively with Pontin and Craig (2005), but,
as in the two-dimensional case, an evaluation of the madmidfithe peak current is not of any use, as in our case,
residual forces keep feeding current to the null, tryingdbiave an “impossible” singularity. The field is therefore
in a quasi-static equilibrium, but strictly speaking, amidigrium is impossible to be reached using an ideal MHD
evolution (this is also true in the 2D X-point collapse).

In the last chapter, after giving a brief summary of the ressfidund in this thesis, we discuss the implications of
the equilibrium states found in two-dimensional X-pointsldhree-dimensional magnetic nulls for current sheet
formation and magnetic reconnection, which, in a resistiedium, would occur around the locations of large
current density accumulations.



Chapter 6

Conclusions and Future Work

6.1 Discussion

In this thesis, the dynamical relaxation of four differeyidhomagnetic environments to static equilibria have
been studied in detail, under the assumptions of zero ragishnd zero gravity, but taking viscous terms into
consideration as mechanisms for damping velocities antitgeiéie plasma. In each case, the initial state has been
set up as a certain type of disturbance to a potential equitip with no initial flows. The domain of study has
been set to be closed for all the plasma and magnetic quemtitie have then analysed the electric current density
accumulations at the final equilibrium states, which, ircaes, are non-force-free in nature, and thus the plasma
pressure gradients are able to hold finite thick currentriage localised regions. We now summarise the results
obtained in this thesis and give some conclusions for thedets of experiments, being, the relaxation of parallel
magnetic fields, of 2D magnetic X-points, and of 3D magnatiksrwith spine-aligned and fan-aligned current.

6.1.1 Results overview

Parallel magnetic fields

In Section 3, we have presented analytical and numericalitzlons for the two and three dimensional evolution
of untwisted magnetic fields embedded in a non-zero betanalgse. in a plasma with non-negligible pressure).
The problem has been approached analytically by using arliagproximation to the equations, which allows the
solution to be Fourier decomposed into a whole family of peledent harmonic modes. To do this analytically
meant that the heating terms had to be neglected, and thesfindibrium is found to depend uniquely on the
redistribution of the total pressure. In the final equilibm, non-zero plasma pressure forces are balanced with
magnetic pressure forces, and hence, the equilibrium esbatter the relaxation is non-force-free. We find that, in
comparison to the numerical MHD results including viscoaating, the linear regime is well behaved for a wide
range of amplitudes of the initial perturbations, due tosimeple uniform field structure of the system. Indeed, the
linear regime correctly predicts the behaviour of the plagressure for initial perturbations that are many times
the equilibrium values, although it struggles to predia ptasma density correctly for any perturbations that are
not small. However, using a condition of adiabaticity (essuming zero energy conversion), a fairly good result
is found also for the plasma density. This is because thetsffesulting from the viscous heating do not become
important for a wide range of amplitudes of the initial diftances.
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2D magnetic X-points

In Section 4, we have studied the non-resistive relaxatiotwo-dimensional magnetic X-points embedded in
non-zero beta plasmas. In the final equilibria, the initi@gmetic X-point collapses to a pair of cusp-points in
which the electric current density accumulates at the lonadf the null and around the four separatrices. The
plasma pressure is enhanced in the regions inside the codpteareased outside them. The resulting field may
be far from the potential description given by Green (19688)ere an infinitesimally thin current sheet contains
the entire current of the domain, and the field is potentigrgwhere else. Instead of a thin current sheet, we
obtain a thick current layer with finite length and width. 8wfinite thickness current layer is created because
the plasma pressure gradients are able to hold a non-zeentdensity and balance the non-zero magnetic forces
in the layer. The current accumulations at the null beconmetr and more elongated as the plasma pressure is
decreased. Moreover, when comparing the experiments \iffgreht values of the plasma pressure, the current
distributions along the current layer intersect exactlyhat extremes of the corresponding Green’s current sheet,
suggesting that the current may ultimately converge to sesolution at the limipy — 0.

It is well known that the collapse of a two-dimensional X4pdieads to a build up of current to form a singu-
larity at the location of the null (e.g. Rastatter et al.949Bungey and Priest, 1995; Craig and Litvinenko, 2005),
where reconnection occurs in a resistive medium. We confierféarmation of this singularity, in non-force-free
equilibria, but we note that this state is numerically imgibke to reach due to the constraint of the grid resolution.
Small residual forces about the null keep feeding currensity into it, and hence, in contrast to the results of
Craig and Litvinenko (2005), the strength of the singujaiit not well defined by evaluating the peak current.
Instead, we attempt to describe the nature of the singuliarithe final equilibrium by following the description
given by Vekstein and Priest (1993) for force-free shearaedmetic fields containing X-points. They suggest a
form for the angle along the separatrix @s= Kr°, where(r, ) are the poloidal coordinates centered at the
origin of the cusp, and for the flux function inside the cuspdas= r* f(6/Kr”), and combine them to give an
equilibrium of the form

J. =mA;", (6.1.1)

with n > 0, so the current has a singularity/4t = 0. Then they match the solution with a potential configuration
outside the cusp. Unfortunately, we find that their resulésreot entirely valid for our case for several reasons.
Their expression for the angle of the separatrices does atthmour numerical results, and we do not have a
potential field anywhere in the domain. However, we use a fiégoation (6.1.1) for the current density as a
function of the flux function A, and we find a fair match which gives a qualitative systemagipendence of
the shape of the singularity with the initial quantities. Weluate the dependence of the coefficientand the
exponents: for different values of the initial current density and tindial plasma pressure. This works well both
inside and outside the cusp, but the parameters are diffeserthe field behaves differently, in both regions. We
fit the dependence of these two parameters on the initiahagsessure to exponential functions of the form

m=—A(e Pro — 1),
n=Cle P -1)+E,

where(4, B, C, D, F) are parameters which depend on the initial current deresity,are different for the inside
and outside regions of the cusp. We are not able to conclugibiag definitive from these results, except for the
fact that they preserve the monotonicity with initial curreensity.
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3D magnetic nulls

In Section 5, we study the non-resistive relaxation of twofigurations of three-dimensional magnetic null points,
with a rotational and a shearing disturbance of the fieldhéfirst case, we find a current accumulation along the
line of the spine, and directed parallel to the spine. In #®@ad case, the current accumulates in the fan plane
predominantly and also faintly along the spine, but it i®died perpendicular to the spine and the angle of tilt of
the fan surface.

In the first set of experiments, an initial overall twist oétfield lines evolves by concentrating the twist and
hence the current along the spine. We find the current to bengally zero at the fan plane, except at the null
point, where it may have a non-zero value which cannot be icoaél within our numerical resolution. The current
along the spine appears to increase linearly from the nutitpat a rate that is proportional to the initial value of
the current density. The final equilibrium state seems tonblependent of the initial plasma pressure, and only
when the plasma pressure is varied by a large amount do we Vuedlavariation of the final current redistribution.

In the second set of experiments, a tilt of the fan plane wapect to the spine causes the spine and fan to
collapse to each other in a similar way to the two-dimendigrgoint separatrices, finding a similar redistribution
of the thermal quantities to that of the 2D case. Currentitieissenhanced along the fan, and also weakly along
the spine. As discussed in Pontin and Craig (2005), the ouh&s a singularity at the location of the null. But
again, in contrast with their study, residual forces feezlgimgularity to a state which is impossible to be reached
by numerical means, and hence the value of the peak curreat iell defined at the final equilibrium.

6.1.2 Implications for current sheet formation and magnetc reconnection

The dynamical processes studied in this thesis about twéhaed dimensional magnetic null points, with line tied
boundaries, lead in all cases to high current density actatioos at specific locations. These are not infinites-
imally thin current sheets, rather they are current layeth @& finite width and length, which do not contain the
whole current of the numerical domain. In a real plasma,dhesalised regions with high current density would
mean that the electric resistivity can no longer be ignoaed, would lead to magnetic reconnection processes.

In both the two-dimensional X-point experiments and the¢hdimensional shearing experiments, the separa-
trices collapse to each other and the current builds a sanigy bt the exact location of the null point. Reconnection
in these cases would lead to changes in the overall topolidgg anagnetic field, and hence, to flux transport across
the separatrices. However, the singularity weakens anduirent density layer becomes thicker when the plasma
pressure is increased. This suggests that the presencegii-aédta plasma may inhibit the formation of current
layers and hence weakens (slow down) any reconnectionngékiarder to rapidly release the large amounts of
magnetic energy required for eruptive events in solar angnatospheric plasmas.

For the three-dimensional torsional null experiments nimite singular current density is created, instead the
current is mainly accumulated along and about the spineh Swtirrent accumulation would lead to the torsional
spine reconnection studied in Pontin et al. (2004) and WgperJain (2010). This type of reconnection does not
change the global topology of the field, and does not allow flowugh the separatrices. It causes the slippage of
the field lines around the spine, dissipating the twist ofittle and hence the current density there. We have found
that the current accumulations do not depend strongly otinitial plasma pressure, and hence, the twist around
the spine is independent of it. This suggests that recoiumeict this case is not strongly affected by the presence
of high beta plasmas, and can occur regardless of the valie glasma pressure.
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6.1.3 General conclusions

The interaction between plasma forces and magnetic foregtera when studying the dynamics of a hydromag-
netic medium. The energetics of the processes are sigrifibanause the transfer from one type of energy to
another can affect the evolution of the system.

The study of non-resistive evolutions in suitable enviremts for magnetic reconnection is a useful tool to
understand the consequences that changes in plasma engintsimay have on the process of release of magnetic
energy. By doing this we can predict in which environmentgn&ic reconnection will be more or less effective,
and what thermal quantities constrain the dissipation @f&thergy stored by the magnetic fields.

In the cases where an infinite singularity is formed at a noithp it is numerically impossible to reach a perfect
equilibrium, because the singularity is not accessibletduke finite grid resolution. In locations outside the null
point, the field achieves a good static equilibrium, withimmerical error, so the field can be described (in the 2D
case), at least qualitatively, by using a singular power\ldvwse parameters that depend exponentially with the
initial plasma pressure. On the other hand, we have fourtddh#orsional disturbances, the value of the plasma
pressure has low relevance for the final redistribution ef¢brrent, and hence, for reconnection.

Magnetic reconnection is an important process of energsass in scenarios like the solar corona and the
Earth’s magnetotail. In the second case, it provides a nmesimafor particle acceleration and for the global au-
rora mechanism. In the first case, it is the mechanism for $lalees and CME’s and is highly likely to be a key
mechanism providing a source of energy for the high tempegatobserved in the corona, although it competes
with numerous other models involving magnetoacoustic waeening from inside the Sun (see Walsh and Ireland,
2003; Hood, 2010). Therefore, many studies are currenilygoearried out in many different reconnection envi-
ronments, and are using different approaches. The detstileties of the characteristic of the most fundamental
processes such as current sheet formation are crucial.

6.2 Future work

The work presented in this thesis leaves several open patl#fferent directions, for future studies. First, our
analytical attempts to describe the field around a two-dsimeral magnetic X-point, lack a physical explanation
and cannot be given more than a mere qualitative charactee. pfoblem can be approached from other start
points. For instance, Vainshtein (1990) proposed a desmnipf the field about special magnetic points in two-
dimensions, such as cusp points at the ends of thin curreetstseeking a solution at smalbf the form

A, (r,0) =1 g1(0) + r*2g2(0) + - - -

with1 < a3 < as < -+, thus avoidingd, — oo whenr — 0.

One such form of this may be
A, (r,0) = agr?® + airPt cos (20) + asrP? g(0) | (6.2.1)

with 1 < pg < p1 < p2. The current density is then given given py= —V2A, = mA;". But then, the form
for g(0) is not trivial. We plan a further investigation of this appoh.
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The work in three-dimensional magnetic nulls, on the othard) has been analysed in less detail. Higher
resolution experiments and a wider range of values for thiaimuantities would provide tools for making a more
comparative analysis to the one made in 2D X-points. Alsopwnlg cover here two null point configurations, but
do not consider the entire family of magnetic structuresiatbthree-dimensional nulls. For instance, considering
deformations of improper non-radial nulls, or mixing rataial and shearing disturbances together.

Once the final state of our numerical simulations is well usti®d, we may “switch on” the resistivity in the
equations of our numerical code, and study the reconneptiocesses and the amount of energy transferred to

the plasma in the cases with different plasma betas, congptrése to the parameters that define the non-resistive
equilibria obtained within this thesis.

Finally, the work done here can be extended to more compkxas®s in two and three-dimensions including
a wider family of magnetic null points, and involving magiedtelds with multiple nulls. For instance, one such
field is one including two 3D null points and a single magnsgparator, which is the line determined by the
intersection of two separatrix surfaces (which are theresitms of the fan planes), and join a positive null to a
negative one (Figure 6.1). The relaxation in this kind ofiemwments may then be compared in detail with studies
of separator reconnection (e.g. Parnell et al., 2010).

magnetic
separator

separatrix
surface 2

separatrix -~7
surface 1

spine 1

Figure 6.1: Sketch of magnetic separator in 3D.
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