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Abstract

In magnetised plasmas, magnetic reconnection is the process of magnetic field merging and recombination through

which considerable amounts of magnetic energy may be converted into other forms of energy. Reconnection is a

key mechanism for solar flares and coronal mass ejections in the solar atmosphere, it is believed to be an important

source of heating of the solar corona, and it plays a major role in the acceleration of particles in the Earth’s

magnetotail. For reconnection to occur, the magnetic field must, in localised regions, be able to diffuse through the

plasma. Ideal locations for diffusion to occur are electriccurrent layers formed from rapidly changing magnetic

fields in short space scales. In this thesis we consider the formation and nature of these current layers in magnetised

plasmas.

The study of current sheets and current layers in two, and more recently, three dimensions, has been a key

field of research in the last decades. However, many of these studies do not take plasma pressure effects into

consideration, and rather they consider models of current sheets where the magnetic forces sum to zero. More

recently, others have started to consider models in which the plasma beta is non-zero, but they simply focus on the

actual equilibrium state involving a current layer and do not consider how such an equilibrium may be achieved

physically. In particular, they do not allow energy conversion between magnetic and internal energy of the plasma

on their way to approaching the final equilibrium.

In this thesis, we aim to describe the formation of equilibrium states involving current layers at both two and

three dimensional magnetic null points, which are specific locations where the magnetic field vanishes. The dif-

ferent equilibria are obtained through the non-resistive dynamical evolution of perturbed hydromagnetic systems.

The dynamic evolution relaxes via viscous damping, resulting in viscous heating.

We have run a series of numerical experiments using LARE, a Lagrangian-remap code, that solves the full

magnetohydrodynamic (MHD) equations with user controlledviscosity and resistivity. To allow strong current

accumulations to be created in a static equilibrium, we set the resistivity to be zero and hence simply reach our

equilibria by solving the ideal MHD equations.

We first consider the relaxation of simple homogeneous straight magnetic fields embedded in a plasma, and

determine the role of the coupling between magnetic and plasma forces, both analytically and numerically. Then,

we study the formation of current accumulations at 2D magnetic X-points and at 3D magnetic nulls with spine-

aligned and fan-aligned current. At both 2D X-points and 3D nulls with fan-aligned current, the current density

becomes singular at the location of the null. It is impossible to precisely achieve an exact singularity, and instead,

we find a gradual continuous increase of the peak current overtime, and small, highly localised forces acting to

form the singularity. In the 2D case, we give a qualitative description of the field around the magnetic null using

a singular function, which is found to vary within the different topological regions of the field. Also, the final

equilibrium depends exponentially on the initial plasma pressure. In the 3D spine-aligned experiments, in contrast,

the current density is mainly accumulated along and about the spine, but not at the null. In this case, we find that

the plasma pressure does not play an important role in the final equilibrium.

Our results show that current sheet formation (and presumably reconnection) around magnetic nulls is held

back by non-zero plasma betas, although the value of the plasma pressure appears to be much less important for

torsional reconnection. In future studies, we may considera broader family of 3D nulls, comparing the results with

the analytical calculations in 2D, and the relaxation of more complex scenarios such as 3D magnetic separators.
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Chapter 1

Introduction

1.1 A stairway to solar magnetohydrodynamics

1.1.1 Nanautzin and the Sun

“Five worlds and five suns were created, one after the other. The first world was destroyed because its people

acted wrongfully. They were eaten by ocelots and the sun destroyed. The second sun saw its people turned into

monkeys due to lack of wisdom. The third sun had its world destroyed by fire, earthquakes, and volcanoes because

the people didn’t make sacrifices to the gods. The fourth world perished in a flood which also drowned its sun.

Before creating the fifth world, our world, the gods met in thedarkness to see who would have the honor of igniting

the fifth sun. Tecciztecatl volunteered. The gods built a bigfire on top of a pyramid and the volunteer prepared to

throw himself into the flames. He was dressed in beautiful hummingbird feathers, with gold and turquoise. Four

times he tried to force himself into the suicidal fire but eachtime his fear drove him back. Then the lowliest of all

the gods, Nanautzin, dressed in humble reeds, threw himselfinto the fire. Teccitztecatl was so ashamed that he too

jumped into the fire. The new sun rose into the sky giving lightto the fifth world.”

Credit: “Fifth World” , Toltec myth. WWU Planetarium.

Toltecs dominated the central part of Mexico from centuriesX to XII. They are believed to be the predecessors

of the Aztec culture, who thought of them as their wise ancestors. Most of the information that we now have about

the Toltecs comes embedded in their myths, in which, as many other civilizations from the past, they recognised

the Sun as a powerful divinity, able to provide the Earth withheat and light.

Figure 1.1: Nanautzin in the flames.
Nanautzin was known as the Scabby
One, and was the ugliest and smallest
of all gods, but with a modest courage,
nonetheless. Credit: nativeweb.org.
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1.1 A stairway to solar magnetohydrodynamics 2

What the Central American natives didn’t know is the true nature of what Nanautzin started by jumping into

the sacred fire and therefore creating our Sun. He would have been, without doubt, a great alchemist, although his

humility would not have let him think about lead and gold, or at least, not before having had control over the most

basic of the nuclear fusions: from single protons.

So, our humble Sun, being a relatively small young star, is powered continuously by nuclear fusion happening

in its core, mainly combining two pairs of ionised hydrogen (protons) plus two electrons to create one alpha

particle. This alpha particle is no more than a nucleus of Helium-4, containing two protons and two neutrons. Plus

some extra energy is released in the form of 6 photons of high energy in the range of gamma rays. Nowadays these

reactions are responsible for about85% of the total nuclear energy produced in the Sun. The other15% is due to

slightly heavier elements, with which Nanautzin would havegone a little step further on his alchemy project, such

us Helium, Beryllium and Lithium. For all these reactions tohappen, the Sun’s core needs to have a temperature

of about 15 million degrees. Gravitational attraction is responsible for this, pulling the matter inwards, and thus

building the required pressures and temperatures.

The gamma ray photons that are created in the core of the Sun travel out through theradiative zone. Here, they

are absorbed and re-emitted, “bouncing around” for severalmillion years. Thisradiative transferof the energy

causes the gamma rays to lose energy such that by the time theyreach the top of the radiative zone the photons are

now in the visible range. Above, in theconvective zone, large parcels of hot plasma move outwards carrying the

energy efficiently to the surface, where they cool before coming back down again. The radius of the core is around

0.25 times the total radius of the Sun,R⊙ (R⊙ covering the core, radiative and convective zones), the radiative

zone is about0.45R⊙, and the thickness of the convective zone is0.3R⊙ (see Figure 1.2). The layer that separates

the radiative and the convective zones is thetachocline.

Why there exists a region within the Sun’s interior in which convection dominates, making the transfer of

energy much more efficient, is due to the high gradients of thethermal quantities, temperature in particular. At

a certain height, the rapid changes of these gradients, caused by the heating from below, drive instabilities in

the density of the matter which ends up rising by buoyancy. That is, theSchwarzschild criterionof stability for

convective flows.

Finally, after having reached the surface of the Sun, most ofthe light is allowed to escape in the planetary

system, arriving at the Earth in the perfect conditions thatNanautzin would have liked for life and reason to exist.

⊙

Around the same time that the Toltecs were imagining their ugly deity jumping into the fires at the beginning

of times, other civilizations were observing the Sun at the other side of the World. During a solar eclipse on 22

December 968, in Constantinople, the Byzantine historian Leo Diaconus wrote in theAnnales Sangallenses:

“... at the fourth hour of the day ... darkness covered the earth and all the brightest stars shone forth. And it was

possible to see the disk of the Sun, dull and unlit, and a dim and feeble glow like a narrow band shining in a circle

around the edge of the disk.”

After the energy coming from the Sun’s core reaches its surface, this energy has to pass through the solar

atmosphere. Most of the radiation emitted from the Sun comesfrom thephotosphere, a thin layer below which it

is completely opaque, so it is usually understood as the solar surface. Although most of the photons cross the solar

atmosphere without any effect, some of them do not.

During a solar eclipse in 1868, a deep red emission from the outer atmosphere was registered due to the

emission of the Hydrogen alpha spectral line. This emissioncame from the layer above the photosphere, named,
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Figure 1.2: The overall structure of the Sun, with the sizes of the various regions and their temperatures (in degrees
K) and densities (inkgm−3). The thicknesses of the photosphere and chromosphere are not to scale. The image
of the photosphere is from the indicated MDI instrument (Michelson Doppler Imager), taken in the continuum
near the Ni I 6768 nm line. The high chromospheric and coronalimages are from EIT (Extreme ultraviolet Imager
Telescope), taken at 304 and 284 Angstroms respectively. Images are courtesy of SOHO (SOlar and Heliospheric
Observatory). Figure based on: Priest (1982), Fig. 1.1.

by the English astronomer Sir Joseph Norman Lockyer (1836-1920), as thechromosphere, which, unless the disk

of the Sun is covered, for example in an eclipse, is not possible to see with a naked eye, because of the strong

emission coming from the photosphere.

This glow described by Diaconus is probably the oldest reference to thesolar corona, which extends to the

Earth and far beyond. Like the chromosphere, it can only be observed when the strong emission from the pho-

tosphere is blocked by natural or artificial manners (Figure1.3). Last, but certainly not least, in between the

chromosphere and the corona, there exists a very narrow layer called thetransition region.

Common sense suggests that the temperature of the Sun decreases as one moves away from the core, and that

it keeps decreasing throughout the solar atmosphere. The first statement is initially right, with the temperature

decreasing from1.5 × 107K in the core, to about6600K at the bottom of the photosphere, and about4300K

at the top of the photosphere. But in 1940, when the Swedish scientist Bengt Edlén (1906-1993) analyzed the
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Figure 1.3: This image of the solar corona contains a color overlay of the emission from highly ionised iron lines
and white light taken of an eclipse in 2008. Red indicates iron line Fe XI 789.2 nm, blue represents iron line Fe
XIII 1074.7 nm, and green shows iron line Fe XIV 530.3 nm. Thisis the first such map of the 2D distribution of
coronal electron temperature and ion charge state. Credit:Habbal et al. (2010)

.

spectral lines from the solar corona, it was found that theselines were produced by highly ionised elements at

temperatures of106K. After reaching its minimum value at the photosphere, the temperature rises slowly through

the chromosphere, and then extremely quickly within the transition region, reaching temperatures of more than a

million degrees in the low corona. Further out from the low corona, the temperature starts decreasing again slowly

as the corona expands throughout the planetary system, as the solar wind.

The mechanisms to explain the heating of the chromosphere and corona are yet not well understood. Magnetoa-

coustic waves are believed to come out from the convection zone, damping their energy and rising the temperature

to chromospheric levels (e.g. Osterbrock, 1961; Narain andUlmschneider, 1996). The sudden increase of tem-

perature observed in the transition region is mainly believed to be a consequence of the release of energy stored

by highly dynamic magnetic fields (e.g. Walsh and Ireland, 2003; Hood, 2010). But despite the extremely high

temperatures of the corona, its density is so low that its heat content is fairly negligible, i.e. a human body having

a bath in the solar corona would freeze anyway.

Throughout the years, astronomers of many civilizations have observed temporary dark spots on the surface of

the Sun. Early explanations suggested that these were transits of other planets. The first record of the observation

of sunspotscomes from the Chinese astronomer Gan De, in 364 BC, but it wasat the beginning of the17th

century when three astronomers independently pointed a telescope at the Sun and discovered that those spots were

structures on the surface of the Sun. The astronomers were Galileo Galilei (1564-1642), Johann Fabricius (1587-

1616) and Christopher Scheiner (1573-1650). Their tracking permitted the astronomers to calculate the rotation

period of the Sun, and their appearance and disappearance over longer periods showed how the Sun changed its

activity in a defined cycle of 11 years. Galileo guessed that sunspots should be clouds floating over the Sun’s



1.1 A stairway to solar magnetohydrodynamics 5

Figure 1.4: SOHO images from (left) MDI continuum, (middle)MDI magnetogram and (right) EIT 304, from
2002, around the solar maximum of cycle 23. The magnetogram shows line-of-sight magnetic field at the photo-
spheric level. White is north polarity (magnetic field linespointing outwards), and black is south polarity (magnetic
field lines pointing inwards). Images are courtesy of SOHO MDI/EIT.

Figure 1.5: SOHO MDI magnetogram combined
with a magnetic field extrapolation in the low so-
lar corona, using the Potential-Field Source-Surface
(PFSS). Credit: NASA/Goddard Space Flight Center
Scientific Visualization Studio.

surface, which would cover the light coming from the Sun.

In 1908, the American solar astronomer George Ellery Hale (1868-1938) discovered their true nature as mag-

netic structures on the Sun (Figure 1.4). He did the first measurements of magnetic fields out of the Earth, in

sunspots. He also attempted to detect a general solar magnetic field, about which he had speculated a dipole-type

field such as the one of a magnetised sphere. His first attemptsgave a very weak magnetic field with which he

could conclude nothing, but in 1912, Hale was able to observethe Sun’s magnetic field with better instrumentation,

and found the dipole structure that he had speculated.

Soon, magnetic fields became a key unavoidable issue for solar physics. The Sun appeared to have an extremely

complex and highly changing magnetic field, both in small andlarge scales (Figures 1.4 and 1.5). These magnetic

fields are created by the internal rotation of the ionised gasin the interior of the Sun which acts as a giant magnetic

dynamo. The solar 11-year cycle is a magnetic phenomenon. Down in the convection zone, the Sun shows a

differential rotation. That is, the solar gas rotates with a speed that is maximum atthe equator, and decreases as
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one moves up or down to the poles. The movements of the equatorial zones drag the originally poloidal north-south

orientated magnetic fields and wrap them around the Sun (omega effect) producing toroidal magnetic fields. After

this process, the toroidal magnetic fields exhibit highly twistedflux tubeswhich may emerge to the surface by

buoyancy (alpha effect), in the form of giant arcades. Some of these strong magneticflux tubes are able to inhibit

the bulk motions of the plasma in the convection zone (which carry the energy out from the radiation zone). Thus

they produce regions with lower temperatures than their surroundings, and hence, lower emission, i.e. they appear

as dark spots in the photosphere. Magnetic sunspots tend to come in pairs with positive and negative polarities,

where positive means magnetic field pointing out of the Sun, and negative, pointing into the Sun, also referred as

to “north” and “south” polarities, respectively.

Once in the solar atmosphere, the strong magnetic fields coming from the interior undergo all kinds of strong

chaotic interactions, giving rise to enormous explosive events, called solar flares, which release huge amounts

of energy, and can cause “solar tsunamis”, vast plasma and magnetic waves that expand over the whole solar

disk, discovered in 1997 by SOHO (Narukage et al., 2002), or accelerate massive numbers of particles out into

the interplanetary medium. After most of the magnetic field that causes these big magnetic structures in the

atmosphere is diffused away, the Sun recovers its original poloidal configuration, but with a reversed polarity of

the magnetic field. This whole big scale process is called theSun’s magnetic cycle. However, even when the large

scale magnetic field in the Sun has a poloidal configuration (this is known as thequite Sun), there is a permanent

turbulent magnetic field of local character which is responsible for many “micro-events” of energy release, and is

regenerated by asmall scale dynamodriven by the convection movements of the plasma below the solar surface

(Petrovay and Szakaly, 1993).

The cycle of magnetic activity and of sunspots on the Sun is approximately 11 years. Hence, the complete

magnetic cycle, including the polarity reversal, is approximately 22 years.

1.1.2 About magnetism

“A lodestone attracts a needle”. This has long been a well know fact, even when there was no explanation for

it. A lodestone is a naturally magnetised piece of the mineral magnetite. It was during the Qin dynasty (221-206

B.C.), in China, when it was first noticed that a lodestone needle, suspended so that it could turn, would always

point in the same fixed direction, to the magnetic north (or south) pole. These directions were noted to very closely

relate to the cardinal points given by astronomy. Some centuries later, again in China, the compass was first used in

navigation by Zheng He (1371-1435), and it soon became a world wide used artifact. At the time, the reason why

it worked was unknown. Some thought it was the actual polarisstar that was attracting the needle, others thought

it was some kind of magnetic island at the Earth’s poles.

The English physicist William Gilbert (1544-1603) published a large work on magnetism, magnetic bodies and

the great magnet of the Earth, being the first to argue that thecenter of the Earth contained iron, making the Earth

a magnet itself, explaining the reason why compasses pointed north.

In 1820, the Danish physicist Hans Christian Oersted (1777-1851) was giving a science demonstration to some

friends and students about electric currents, and also wanted to show some experiments on magnetism for which

he needed a compass. While performing his electric demonstration, he noticed how every time the electric current

was switched on, the needle of the compass moved. He said nothing at the time and finished his demonstration, but

in the following months he tried hard to explain the behaviour: The needle of the compass would orientate itself

perpendicular to the electric current flowing along a wire. Unluckily for him, he could not find an explanation, and
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had to content himself publishing just the results he found.In the coming years of the same century, other scien-

tists, in particular, André-Marie Ampère (1775-1836) and Michael Faraday (1791-1867), kept doing experiments

relating electricity and magnetism.

Shortly after the experiments of Oersted, that same year, Ampère discovered that moving electric charges create

a magnetic field, which is perpendicular to the movement of the charges. The magnetic field wraps around the

electric current in circles, and it is related to the electric field by Ampère’s law, which states that the line integral

of the magnetic field around a closed path equals the electriccurrent times a constant known as the magnetic

permeability,µ.

Around 1834, Faraday discovered electromagnetic induction, stating that a changing magnetic field induces an

electric field perpendicular to it. Faraday introduced the concept of magnetic field lines, which he called “lines

of force”. Similar to the velocity streamlines that are followed by the particle of a fluid in motion, a magnetised

needle will always point along the field lines.

In the same way that electric fields, discovered by Johann Carl Friedrich Gauss (1777-1855), can be generated

by isolated charges, a magnetic field must be generated by a dipole configuration, which appears like a positive

and negative charge “inseparably bound together”. There are no magnetic monopoles, which, in mathematical

language is transcribed as the divergence of the magnetic field equals zero. Gauss’s law of electricity shows how

the divergence of the electric field is proportional to the electric charge. By comparison, there does not exist such

thing as a magnetic charge.

Ampère was the first to notice that two electric currents areattracted if running in parallel, and repelled if they

are antiparallel. This force is perpendicular to both the magnetic field,B, and the velocity of the electric current

carriersv, and has the formqv×B (in mks units), whereq is the electric charge. If we also have an electric field,

E, the total force is theLorentz force, F = q(E + v × B).

Finally, despite the rejection of the ideas of Faraday’s lines of force by many scientists of the time, mainly

because of lack of mathematical formulation, the Scottish physicist and mathematician James Clerk Maxwell

(1831-1879) took Faraday’s ideas and Ampère discoveries,and put all the theory of electric and magnetic fields

together into a quantitative electromagnetic theory, formulating what we nowadays know asMaxwell equations for

electromagnetism. These are described in Section 1.2.1.

Some years later, the theory of special relativity of AlbertEinstein (1879-1955) provided more of an explana-

tion to that “field generated by moving charges”, found observationally, but somehow hard to assimilate, known

as a magnetic field. The defining postulate of special relativity is that physics must be consistent in every “frame

of reference”, defined by an observer moving at a certain velocity respect to others. If we consider the experiment

of a long wire carrying an electric current, and a negative charge moving parallel to it at the same velocity, then in

the “lab frame”, the moving charge is attracted to the wire bythe magnetic field generated by the current. Now, for

an observer that moves together with the electric charge, then there is no magnetic force! Instead, in the charge’s

frame of reference, there is an attractive electric field. Sometimes, what looks like a pure magnetic field in one

frame of reference, looks like a pure electric field in a different one.

1.1.3 Ionised gases

In 1927, the American scientist Irving Langmuir (1881-1957) studied electronical devices based on highly ionised

gases for General Electric Co. Perhaps, the way in which thatelectrified fluid carried the electrons and the ions

reminded him of the way the blood fluid carries its red and white corpuscles. Whatever the reason, Langmuir took
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Figure 1.6: Ranges of temperature and electron density for several laboratory and cosmic plasmas and their char-
acteristic physical parameters: Debye lengthλD, plasma frequencyωpe and number of electronsND in a Debye
sphere. Based on: Bittencourt (2004), Fig. 2.

the word given around one hundred years earlier by the Czech medical scientist Johannes Purkinje (1787-1869) to

that clear blood liquid,plasma, and called an electrified fluid by the same name.

Unlike most people tend to think, a plasma cannot be quite understood asthe fourthstate of matter. Liquid,

solid and gas states are based on intermolecular relationships, and their change of phase is well defined at a constant

temperature for a given pressure, for each of the elements innature. The change to a plasma, on the other side,

is necessarily an ionization process, which can be either radiative or collisional, and will not happen at a fixed

temperature, although the number of ionizations will directly depend on the temperature.

Plasmas conduct electric currents, and are strongly affected by magnetic fields. There are four main criteria

for defining a plasma, described in Bittencourt (2004),“Fundamentals of plasma physics”. 1) A plasma must be

macroscopically neutral, containing the same overall number of negative and positive charges. 2) A plasma must

follow collective phenomena, and its length-scales need tobe much larger than the minimum radius of neutrality,

known as theDebye length, named after the Dutch scientist Peter Debye (1884-1966), who experimentally discov-

ered that this length of neutrality must be proportional toT 1/2 andn−1/2
e , whereT andne are the temperature

and electron density. 3) A plasma must have a large amount of free electrons inside the Debye sphere in order to
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follow a statistic behaviour. 4) A plasma must have a low rhythm of collisions with neutral particles. The eventual

localised overdensities of electrons in the plasma cause itto oscillate with a given frequency, namely, theLangmuir

frequency, which only depends on the electron density. This should be considerably larger than the frequency of

collisions with neutral particles for the plasma not to behave as a normal, i.e. non ionised, fluid.

After the studies of relatively cool and dense plasmas on Earth, this field of research expanded in several

directions. Around the same year that Langmuir came up with the term “plasma”, the English physicist Edward

Victor Appleton (1892-1965) confirmed the existence of a “plasma roof” above the Earth’s atmosphere, which is

ionised by the high energy radiation coming from the Sun, butwith low enough density so that collisions are not

frequent enough to recombine the ions. This layer is called the ionosphere. Since it has a strong influence on

the propagation of radio waves, it has been used to study a variety of properties of plasma waves. Furthermore,

the possibility of a new source of energy from nuclear reactions became quite popular after the creation of the

atomic bomb. These reactions require quite high temperatures, so scientists have had to deal with the problem of

trapping and controlling a plasma using magnetic fields. Finally, in 1958, observations from satellites revealed

the radiation belts in the Earth’s magnetosphere, and heralded the birth of space plasma physics. This branch of

plasma physics has utilised the knowledge of magnetic trapping of plasmas from fusion research, of plasma waves

from ionospheric physics, and must include magnetic processes for energy release and particle acceleration.

Here, on Earth we struggle to confine a plasma and keep it undercontrol, due to the cool temperatures and

high densities that we have, but as one moves out into space, plasmas exist in almost all astrophysical objects. In

particular, the temperatures in the solar corona are such that all its atoms appear ionised, and those atoms with

many electrons have lost several or all of them. For instance, characteristic light has been detected in the corona

from iron which has lost 15 electrons (from a spectral line at33.5nm observed over active regions at the corona, at

a temperature of5× 106K). As one moves away from the low corona, high velocities are found related to the high

temperatures of the corona, making the gravitational effects of the Sun negligible in many cases, thus allowing the

particles of the corona to expand throughout the interplanetary medium and creating the solar wind.

1.1.4 Describing the dynamics of conducting fluids

“If a conducting liquid is placed in a constant magnetic field, every motion of the liquid gives rise to an EMF

[electromotive force] which produces electric currents. Owing to the magnetic field, these currents give mechanical

forces which change the state of motion of the liquid. Thus a kind of combined electromagnetic-hydrodynamic wave

is produced which, so far as I know, has as yet attracted no attention.” (Alfvén, 1942)

Apart from a few isolated experiments, the influence of magnetic fields in conducting fluids did not start being

fully studied until the first half of the twentieth century, when astrophysicists realised how common magnetic fields

and plasmas are outwith our cool and dense planet. The study of hydromagnetic flows became important after a

letter from Hannes Alfvén (1908-1995) was published in Nature, in 1942, in which he wrote about a certain type

of wave that could be of importance in solar physics, since solar matter is a very good conductor with a general

magnetic field permeating it.

The study of the mutual interaction between a magnetic field and a conducting fluid flow is called magneto-

hydrodynamics (MHD). Conducting fluids are restricted to liquid metals, ionised gases (plasmas) or strong elec-

trolytes (solutes that are completely, or almost fully, ionised in a solution).

The nature of the coupling between a magnetic field,B, and a velocity fieldv, is described in Davidson (2001)

“An introduction to magnetohydrodynamics”, as a split into three processes.
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The first arises from electromagnetic induction, discovered by Faraday in 1831. When the magnetic flux

through a closed circuit changes, it induces an electromotive force (EMF) of orderv×B, which causes an electrical

current of orderσ(v × B), with σ being the electrical conductivity. This applies whether the magnetic field itself

changes in strength, or the conducting fluid is moved throughit. Hence, the relative movement of a conducting

fluid and a magnetic field, causes an EMF, with a subsequent electric current density.

Secondly, according to Ampère’s law, these induced currents give rise to a second induced magnetic field

around a closed loop, perpendicular to the current density vector,j. This provokes a change in the original magnetic

field, so that the overall consequence is that the fluid appears to drag the magnetic field lines along with it.

The third process is the interaction between the combined magnetic field and the induced current density.

When an electric charge moves through a magnetic field, thereis a force on the charge perpendicular to both the

movement of the charge and the direction of the magnetic field. This is the (magnetic) Lorentz force (per unit

volume),j × B. This force acts on the conducting fluid, and is generally directed so as to inhibit the relative

movement of the fluid and the magnetic field.

The last two processes have in common the effect of reducing the relative movement of the magnetic field and

the conducting fluid. It is important to consider the parameters that define how weak or strong the influence of the

velocity field is over the magnetic field (or vice versa). If the velocity field is negligible, the induced magnetic field

will not be significant. Similarly, if the conductivity of the fluid is very small, so too is the magnetic field. Also, a

current density spread over a large area can produce a highermagnetic field than the same current density spread

over a smaller area. Hence, the ratio of the induced field to the applied magnetic field depends on the product of

these three quantities, i.e. the velocity fieldv, the conductivity of the fluidσ, and the characteristic size, or length

scale,l. To this we may add the magnetic permeabilityµ, which defines the ability of a material to acquire high

magnetization in response to an applied magnetic field. Hence, If vlσµ → ∞, both the induced and imposed

magnetic field are of the same order, and the combined magnetic field behaves as if it were frozen into the fluid.

On the other hand, ifvlσµ → 0, the imposed magnetic field remains relatively unperturbed, and any possible

perturbation is immediately diffused away.

Mainly because of the enormous characteristic length scales of most of the astrophysical plasmas, due to their

small mass densities, it is the first case that dominates, so they are said to behave under thefrozen-incondition,

where the magnetic field lines have to move together with the plasma. Motions along the field lines do not change

them, but motions across the field lines carry the field with them.

1.2 The Equations of magnetohydrodynamics

The equations of magnetohydrodynamics (MHD) include the fluid conservation equations, such as the continuity

equation (conservation of mass), equation of motion (conservation of linear momentum) and energy equation (con-

servation of energy), together with Maxwell’s equations ofelectromagnetism plus Ohm’s law. The macroscopic

conservation equations are derived from the Boltzmann transport equation of the distribution function. Those

derivations are not shown here for simplicity. The resulting equations are given in mks units. They may be found,

with further considerations, in Priest (1982)“Solar magnetohydrodynamics”.
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1.2.1 Maxwell’s equations and Ohm’s law

Maxwell’s equations, as discussed earlier, are the set of electromagnetic equations that relate the electric and

magnetic fields to their sources, charge density and electric current density, respectively.

Ampère’s lawdescribes how magnetic fields can be generated by electric currents and by changing electric fields

(the latter extension was made by Maxwell, and it is not in theoriginal equation of Ampère), and are perpendicular

to both the electric currents and electric fields,

∇ × B = µj +
1

c2
∂E

∂t
, (1.2.1)

whereB is the magnetic induction (usually referred as to magnetic field in astrophysical contexts),j is the current

density,E is the electric field, andc andµ are the speed of light and the magnetic permeability, respectively, in a

vacuum.

Solenoidal constraint, states that there are no magnetic charges, or magnetic monopoles,

∇ · B = 0 . (1.2.2)

Faraday’s lawshows that a changing magnetic field induces an perpendicular electric field,

∇ × E = −∂B
∂t

. (1.2.3)

Gauss’ lawstates that an electric field is generated by electric charges,

∇ · E =
1

ǫ
ρ∗ , (1.2.4)

whereǫ is the permittivity of free space, andρ∗ is the charge density.

Under theMHD approximation, it is assumed that the plasma is non-relativistic, i.e. thetypical plasma veloc-

ities are much smaller than the speed of light. Thus the second term on the right hand side in equation (1.2.1) is

neglected, so that Ampère’s law becomes

∇ × B = µj . (1.2.5)

Finally, Ohm’s lawstates that the current in a non-relativistic moving plasma, in the presence of a magnetic

field, is proportional to thetotal electric field, in a frame of reference moving with the plasma. This total electric

field is the sum of the electric field that would act on the material at rest,E, plus the electric field due to the moving

magnetic field,(v × B), hence,

j = σ(E + v × B) , (1.2.6)

wherev is the plasma velocity, andσ is the electrical conductivity. This equation can be generalised in models that

consider electrons, ions and neutral atoms as three different fluids, mixed together, but with different behaviours.

These considerations are, however, outwith the scope of this thesis.

It is worth noting that the current density is defined asj = ρ∗vd, whereρ∗ (=
∑

qnq) is the charge density (q

is electric charge, andnq is number of particles with chargeq) andvd is the drift velocity of the current carriers,



1.2 The Equations of magnetohydrodynamics 12

which is different from the mean bulk velocity of the plasma,and, therefore, it can coexist with a static equilibrium.

The MHD model uses macroscopical quantities and ignores themicroscopial effects. Then, the current density is

simply understood as a changing magnetic field of the form∇ × B, as given by Ampére’s law (1.2.5).

1.2.2 Field lines and flux tubes

For a known three dimensional magnetic field,B = (Bx, By, Bz), the magnetic lines of force, or magnetic field

lines are defined as

dx

Bx
=

dy

By
=

dx

Bz
=

ds

B
,

whereB =
√

B2
x +B2

y +B2
z is the magnitude of the magnetic field, ands is the distance along the field line.

The spacing between field lines corresponds to the magnitudeof the field: the closer the field lines the stronger the

magnetic field. Also, field lines have a direction, defined by the direction of the magnetic field vector.

We define a magnetic flux tube as the volume enclosed by a set of field lines that intersect a simple closed

curve, so that both the cross section of areaS, and the magnetic field,B, may vary along the length of the tube,

but the magnetic flux, defined as

φm =

∫∫

S

B · dS ,

is always constant along the length of the flux tube. The volume of a flux tube is
∫

L
S(l) dl, whereS(l) is the cross

section of the flux tube atl andL represents the total length. The volume of a single field line, understood as the

differential volume of an infinitesimally thin flux tube, is defined as

V =

∫

L

dl

B
. (1.2.7)

1.2.3 Induction equation

From Ohm’s law (1.2.6) and Ampére’s law (1.2.5), the electric field may be written as

E =
∇ × B

σµ
− v × B .

Taking the curl of this equation, defining the magnetic diffusivity asη = 1/(σµ), and making use of Faraday’s law

(1.2.3), we get

∂B

∂t
= ∇ × (v × B) − ∇ × (η∇ × B) . (1.2.8)

The magnetic diffusivity is often assumed to bespatially uniform. Thus we can make use of the vector identity

∇ × (∇ × B) = ∇(∇ · B) −∇2B ,
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where the first term in the right hand side is zero because of the solenoidal constraint (1.2.2), to get

∂B

∂t
= ∇ × (v × B) + η∇2B . (1.2.9)

This is theinduction equation. The first term in this equation is theadvection term, which covers the transport

or dragging of the magnetic field by the motion of the plasma. The second term is thediffusion term, which

indicates that irregularities in an initial magnetic field will diffuse away. We define themagnetic Reynolds number

as the ratio of the advection and the diffusion terms in the induction equation,

Rm =
|∇ × (v × B)|

|η∇2B| . (1.2.10)

If l0 is a scale of spatial variation of the magnetic field (characteristic length scale), andv0 the characteristic

velocity of the plasma, we can approximate the magnetic Reynolds number, in order of magnitude, as

Rm ≈ v0B/l0
ηB/l20

=
τD
τ
,

whereτ = l0/v0 is the characteristic advection time (time to travel a length l0 at the characteristic velocity of

the plasma), andτD = l20/η is the characteristic time of diffusion of magnetic irregularities. Thus, the magnetic

Reynolds number can be expressed as a ratio of two time scales.

Typically, laboratory plasmas have very short length scales, which, in many cases, makes the diffusion time

much shorter than the advection time, so thatRm ≪ 1. On the other hand, astrophysical plasmas have, in general,

very large length scales, soRm ≫ 1, and it is the advection term that dominates in the inductionequation. This

is the case for most of the solar atmosphere, so it is common towork within the advection limit, in which the

diffusivity is neglected (not so much because of the value ofthe diffusivity itself, but for the huge length scales we

deal with), and the induction equation reduces to

∂B

∂t
= ∇ × (v × B) . (1.2.11)

In 1943, that plasma physicist that discovered the magnetohydrodynamic waves in plasmas, Hannes Alfvén,

enunciated thefrozen-in-flux theorem: “In a perfectly conducting fluid (Rm → ∞), magnetic field lines move with

the fluid, i.e. the field lines arefrozeninto the plasma”. In other words, when the electrical conductivity tends to

infinity, σ → ∞, the magnetic diffusivity tends to zero,η → 0, and a plasma moving across the magnetic field

lines has to carry the magnetic field with it.

In scenarios where rapid changes in the magnetic field occur over short spatial scales, the magnetic diffusivity

becomes important, and the frozen-in condition breaks down.

1.2.4 Fluids equations

The changes in time of any macroscopic quantityQ in a moving plasma, can be split into two different terms.

The first one is due to inner changes inQ with time, and it may be expressed as∂Q/∂t, and the second is due to

gradients ofQ. Consider a tall building which has a spatial gradient of, say, temperature, in the vertical direction.

Assume the temperature does not vary in time. Someone who takes the elevator up this building and measures
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temperature on the way, would register a change in temperature with time, due to the combined velocity of the

elevator and the spatial gradient of temperature. This timevariation may be expressed asv · ∇Q, and may be

due to the observer in the elevator or, in a plasma, to a velocity of the plasma itself. The combined effect results

in the total derivativeof the quantityQ, also called thematerial derivative, convective derivativeor Lagrangian

derivative, namely,

D

Dt
=

∂

∂t
+ v · ∇ . (1.2.12)

The equations describing the dynamics of fluids are presented as a set of three conservation equations, together

with an equation of state that relates the gas pressure to thedensity and temperature.

Mass continuityor mass conservation, states that matter can not be created nor destroyed, i.e. changes in density

can only be produced by the plasma moving.

Dρ

Dt
+ ρ∇ · v = 0 , (1.2.13)

or, using equation (1.2.12),

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.2.14)

whereρ is the plasma density andv is the plasma velocity. For incompressible flows,∇ · v = 0, soDρ/Dt = 0,

meaning that the density is constant following the movementof the material element.

Equation of motionor momentum conservation. This is Newton’s second law:mass × acceleration = applied

force. The forces are a sum of the gradient pressure force (high pressure regions push the plasma towards low

pressure regions), plus the magnetic Lorentz force, and other external forces,F, such as gravitational or viscous

forces.

ρ

(

∂v

∂t
+ (v · ∇)v

)

= −∇p+ j × B + F , (1.2.15)

wherep is the plasma pressure.

Equation of state, which for simplicity, is taken as the perfect gas law,

p =
kB

m
ρT , (1.2.16)

wherekB is the Boltzmann constant,m is the mean particle mass, andT is the temperature. For an ideal polytropic

gas, the internal energy per unit mass isǫ = cvT , wherecv is thespecific heat at a constant volume, which relates

to cp, thespecific heat at a constant pressure, as

cv = cp − kB

m
=

1

γ − 1

kB

m
, (1.2.17)

whereγ = cp/cv is theratio of specific heats. Hence, temperature and internal energy are related by

T = ǫ(γ − 1)
m

kB
, (1.2.18)
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and using (1.2.17), we can rewrite equation (1.2.16) as

p = ρǫ(γ − 1) . (1.2.19)

The ratio of specific heats may also be written as

γ =
n+ 2

n
,

wheren is the number of degrees of freedom of the molecules in the plasma. For fully ionised hydrogen,n = 3,

and soγ = 5/3.

Energy equationor energy conservation. Energy is not created nor destroyed. This equation can be expressed in

many ways, involving internal energy, enthalpy, entropy, pressure or temperature. The most fundamental form of

the energy equation is

ρT
Ds

Dt
= −L ,

wheres represents the entropy, and may be written ass = cvlog(p/ρ
γ) + constant, andL is the energy loss

function, which is the net effect of all sinks and sources of energy. For our convenience, we write this equation

using the plasma pressure, as

ργ

γ − 1

D

Dt

(

p

ργ

)

= −L ,

where the quantityp/ργ is directly related to the entropy of the system. Using mass continuity (1.2.14), the energy

equation can be expressed as

∂p

∂t
+ v · ∇p = −γp∇ · v − (γ − 1)L . (1.2.20)

A perfectly isolated process with no exchange of heat is calledadiabatic. For such processes, the energy loss

function must be identically zero,L = 0, and the entropy is conserved. This may be written asp/ργ = constant,

or pV γ = constant, with V denoting volume.

1.2.5 Restrictions and special terms

The complete set of MHD equations is extremely complex. There are many terms which take account of many

different effects. Four of the fundamental equations may beextended to account for extra effects. The first one is

Ohm’s law (1.2.6), which can be generalised for multi-fluid models in which electrons, protons and ions are treated

as separate fluids. Some examples are Hall MHD (decoupling ofelectrons from ions) and Cowling conductivity

(three-fluids models for partially ionised plasmas). Thesehave a knock on effect for the induction equation (1.2.9),

as the electrical conductivity is directly related to the magnetic diffusivity, which may not be uniform. The third

equation is the equation of motion (1.2.15), in which the effects of any kind of external force may be added, such as

gravitational and viscous forces. Finally, there is the energy equation (1.2.20), which has an energy loss function,

that is only zero if the process is adiabatic. Otherwise, terms for thermal conduction, radiation or heating (e.g.

ohmic dissipation or viscous dissipation) may be included.
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The equations that are to be solved here are a very simplified version of the whole set. We do not take into

consideration any of the extra terms in Ohm’s law, nor in the induction equation. These extra terms account for

collisionless effects and appear in models which are based on either a two-fluid or a kinetic description of the

field. They are important, for instance, in small-scale reconnection processes for which the classic resistive MHD

models have some deficiencies, such as the long energy release time, the absence of a well-defined mechanism

for breaking the frozen-in condition, the onset problem, and the particle heating problem (Birn and Priest, 2007,

“Reconnection of Magnetic Fields”). These effects do not affect the results of this thesis, as, for reasons that will

soon arise, we will be working with the frozen-in condition,for which the induction equation is reduced to the

advection limit (1.2.11), and the conductivity is assumed infinite. Under the frozen-in condition, the diffusivity

tends to zero, so we talk ofnon-resistiveMHD.

For simplicity, we assume that gravitational effects are negligible in the context of our experiments. However,

we are interested in viscous forces, which can be understoodas a fluid’s internal resistance to flow, and will have

the main effect of damping out plasma motions. Together withthis viscous force, there will be an associated

viscous heating term in the energy equation. This is our onlynon-adiabaticterm, although in general it will be

small. These two terms are controlled by thekinematic viscosity, ν.

1.2.6 Summary of MHD equations

The magnetohydrodynamic equations we are going to be working with are the compressible, viscous, non-resistive

equations, with no gravitational force.

Mass continuity :
∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.2.21)

Equation of motion : ρ

(

∂v

∂t
+ (v · ∇)v

)

= −∇p+ j × B + Fν , (1.2.22)

Energy equation :
∂p

∂t
+ v · ∇p = −γp∇ · v + (γ − 1)Hν , (1.2.23)

Ideal gas law : p = ρǫ(γ − 1) , (1.2.24)

Ampère′s law : j =
∇ × B

µ
, (1.2.25)

Solenoidal constraint : ∇ ·B = 0 , (1.2.26)

Faraday′s law :
∂B

∂t
= −∇ × E , (1.2.27)

Ohm′s law : E + v × B = 0 , (1.2.28)

whereFν andHν are the viscous force and the viscous heating, respectively, given by

Fν = ρν

(

∇2v +
1

3
∇(∇ · v)

)

, (1.2.29)

Hν = ρν

(

1

2
eijeij −

2

3
(∇ · v)2

)

, with eij = (∂vi/∂xj) + (∂vj/∂xi) . (1.2.30)
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The electric field may be eliminated from equations (1.2.27)and (1.2.28), to give the ideal induction equation,

∂B

∂t
= ∇ × (v × B) . (1.2.31)

1.2.7 Energy considerations

In any physically consistent system, total energy is conserved. The only way this may change is due to the

presence of inflows and outflows within the domain in consideration. However, energy does not necessarily have

to maintain the same form. It is therefore worth consideringthe three different types of energy that will occur in

our magnetohydrodynamic system.

Kinetic energyis due to the macroscopic motions of the fluid, and its magnitude, per unit volume, isρv2/2.

The internal energyof a system is due to the translational, rotational and vibrational motion of the particles and

the potential energy associated to electric forces. It is directly related to the temperature of the system, as seen in

equation (1.2.18). The internal energy per unit mass isǫ = p/ρ(γ − 1), with ρǫ being the internal energy per unit

volume. Finally, the energy stored in a magnetic field is themagnetic energy, and its expression per unit volume is

B2/2µ. The density of the flow of electromagnetic energy is given bythePoynting flux, E× B/µ.

The temporal evolutions of these three energies are expressed as follows,

∂

∂t

(

p

γ − 1

)

+ ∇ ·
(

p

γ − 1
v

)

= Qe , (1.2.32)

∂

∂t

(

B2

2µ

)

+ ∇ · (E × B/µ) = Qm , (1.2.33)

∂

∂t

(

1

2
ρv2

)

+ ∇ ·
(

1

2
ρv2v

)

= Qk , (1.2.34)

where the second terms on the left hand side on each equation account for the inflows and outflows of energy, and

the right hand side terms,Qe,Qm andQk, are given by

Qe = −L ,

Qm = − j
2

σ
− v · j × B ,

Qk = −∇ · (pv) + v · j× B + vF .

For the total energy to be conserved, the sum of the three expressions, (1.2.32) to (1.2.34), must equal zero. For our

particular case, we are assuming infinite conductivity, andso the only external forces and heating are given by the

viscous terms,L = −Hν andF = Fν , of equations (1.2.29) and (1.2.30). So our equation of energy conservation

is

Hν − ∇ · (pv) + vFν = 0 .

Thus, in a closed scenario, the gains (or losses) from one of these energies must be completely balance by

losses (or gains) from the others. This will need to be lookedat closely in the study of dynamical processes in

magnetised plasmas, as their evolution will directly depend on the exchanges between the different types of energy.
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1.2.8 Magnetic forces

Magnetic fields produce magnetic forces, which act directlyon the plasma motions, changing their velocity. This

is the magnetic Lorentz force,j × B, which, according to Ampère’s law (1.2.5), can be written as

j × B =
1

µ
(∇ × B) × B .

Using the vector identity

∇(B · B) = 2B× (∇ × B) + 2(B · ∇)B ,

the magnetic Lorentz force reduces to

j × B =
1

µ
(B · ∇)B − ∇

(

B2

2µ

)

. (1.2.35)

The first term is themagnetic tension force, and it appears when the magnetic field lines are curved. It acts to

try to make the field lines straight, like the tension along a string. The second term is the magnetic pressure force,

and it appears when there exists a gradient in the field strength (or the magnitude of the magnetic field). Like the

plasma pressure, it pushes from regions with high field strength towards regions with low field strength. On its

own, it would homogenise the magnetic field. By similarity with the plasma pressure force, we define the magnetic

pressure asB2/2µ.

Note, that the Lorentz force is always perpendicular to the magnetic field, since

B · (j × B) = 0 ,

although magnetic tension and magnetic pressure force can separately have parallel components to the magnetic

field, but these must cancel each other.

Ignoring plasma effects, for a magnetic field to be in equilibrium, the Lorentz force must equal zero. In the

absence of a magnetic tension force, the magnetic field must be straight and homogeneous. However, magnetic

tension and pressure forces can balance each other, for instance inhyperbolic X-points. These two simple cases

are sketched in Figure 1.7, and will be the basis for our two-dimensional relaxation experiments.

If the magnetic field is embedded in a plasma, the pressure force can hold a non-zero Lorentz force in a

magnetohydrostaticequilibrium. In this case, we can define the (non-dimensional) plasma beta, β, as the ratio of

the gas pressure to the magnetic pressure,

β =
gas pressure

plasma pressure
=

p

B2/2µ
,

hence

β =
2µp

B2
. (1.2.36)

If β ≪ 1 then the plasma pressure force is negligible with respect tothe magnetic forces, and ifβ ≫ 1, the

plasma pressure force dominates. The plasma beta tells us how important plasma effects are compared to magnetic
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(a) Homogeneous field
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(b) Hyperbolic X-point
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Figure 1.7: Two different configurations for magnetostaticequilibria. (a) Straight magnetic field,B = B0(0, 1, 0),
with zero magnetic pressure forcePB and magnetic tensionTB, and (b) hyperbolic X-point,B = −B0(y, x, 0),
with PB = −TB at every point. In (b), the magnetic field contains amagnetic null point, whereB = 0, at the
origin.

effects, and whether they can be neglected or not. In generalterms, most of the studies of coronal magnetic fields

assumeβ = 0, as the densities of the solar corona are extremely low. However, lower in the chromosphere and

near locations where the magnetic field is very weak, or zero,this assumption is no longer valid.

1.3 MHD equilibria: Magnetohydrostatics

Magnetic fields in the solar atmosphere change continuously, and together with the solar plasma, they form a

highly dynamic environment. However, understanding MHD equilibrium conditions is extremely important for

studying these complex hydromagnetic scenarios, for various reasons. Firstly, the set of MHD equations described

above has an immense degree of complexity, and so, studying the associated stationary states provides a much

simpler solution to start with. Secondly, for every analytical and numerical study, it is essential to understand the

initial equilibrium state, depending on the demands of the study. Also, in relaxation-type experiments, one needs

to know and understand the properties of the final states, whose mathematical descriptions must be provided by

the MHD equilibrium theory. Lastly, from the point of view ofmodelling, many of the physical processes studied

in solar plasma physics occurslowly, i.e. on time-scales much longer than the typical time-scale of the system, so

the evolution of these systems can be modelled with a sequence of static equilibria. As an example, Schindler and

Birn (1986) used thisquasi-static theoryto model the dynamics of the Earth’s magnetotail.

The theory of the static solutions of the equations of MHD is called magnetohydrostatics (MHS). For such a

state, there are no macroscopic velocities and the dependence with time disappears. The equations and derivations

shown in this section, including more general cases, are explained in detail in Edenstrasser (1980b,a). They are

also discussed by Priest (1982) and Biskamp (1993)“Nonlinear magnetohydrodynamics”.

Under the static assumptions,v = 0 and∂/∂t = 0, the above equation of motion (1.2.22), gives rise to the
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fundamental equation of MHS,

j × B− ∇p = 0 , (1.3.1)

which can be rewritten using Ampère’s law (1.2.25), as

∇p =
1

µ
(∇ × B) × B . (1.3.2)

The very first result of magnetohydrostatics comes directlyfrom equation (1.3.1), and is that the dot product of

B and∇p is zero,

B · ∇p = 0 , (1.3.3)

so the only spatial changes in the pressurep must be perpendicular to the magnetic field. In other words, in any

static equilibrium,the plasma pressure is constant along field lines.

Combining the vector identity∇ · (∇ × A) = 0 and the solenoidal constraint (1.2.26), the magnetic fieldB

can be written as the curl of thevector potentialA, perpendicular to the magnetic field, where

B = ∇ × A . (1.3.4)

1.3.1 MHS equilibria in 2D

In a system with a translational invariance such as∂/∂z = 0 (this is usually referred as to two and a half dimen-

sions), we can rewriteB as

B = ∇Az(x, y) × ez +Bz(x, y)ez , (1.3.5)

whereAz is thez-component of the vector potentialA. The scalar product ofB and∇Az equals zero,

B · ∇Az = (∇Az × ez) · ∇Az +Bzez · ∇Az = 0 , (1.3.6)

since the first term on the right hand side of (1.3.6) is the scalar product of two orthogonal vectors, and the second

term is zero since∂Az/∂z = 0. Hence, in two (and two and a half) dimensions,Az is constant along magnetic

field lines. This is a big advantage, as, in fact, the contoursof Az are the projections of the magnetic field lines

onto thexy-plane. The functionAz(x, y) is known as theflux function.

Using equations (1.3.3) and (1.3.5), we get

B · ∇p = (∇Az × ez) · ∇p+Bzez · ∇p = 0 . (1.3.7)

Again,p = p(x, y), so the second term on the right of equation (1.3.7) is zero. Hence, the first term on the right

hand side must be zero, and expanding it in terms of partial derivatives, we obtain

∂Az

∂y

∂p

∂x
− ∂Az

∂x

∂p

∂y
= 0 ,
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which implies that the pressurep is a function of the flux functionAz ,

p = F(Az) , (1.3.8)

whereF is an unknown function that is dependent on the initial conditions and evolution.

Now, in a strictly two-dimensional system, the magnetic field components are given by

Bx =
∂Az

∂y
, By = −∂Az

∂x
, Bz = 0 , (1.3.9)

and both the vector potentialA and the current densityj have an only non-zeroz-component, i.e.A = Azez and

j = jzez. The curl of the magnetic field is then given by

∇ × B = (0, 0,−∂
2Az

∂y2
− ∂2Az

∂y2
) = −∇2Azez ,

so that, from Ampère’s law (1.2.25), we get

jz = − 1

µ
∇2Az . (1.3.10)

Now, substituting (1.3.9) into equation (1.3.2), we obtain

∇p = − 1

µ0
∇2Az∇Az ,

and since∇p = ∇Az dp/dAz, we get

dp

dAz
= − 1

µ0
∇2Az = jz . (1.3.11)

This is theGrad-Shafranov equation, for two-dimensional magnetic fields. Finally, combining equation (1.3.11)

with (1.3.8), we get

jz = F ′(Az) =
dF
dAz

. (1.3.12)

Equations (1.3.8) and (1.3.12) tell us that,for two dimensional fieldsin equilibrium, theplasma pressure and

current density are constant along field lines. This Grad-Shafranov equation gives the relation between these two

quantities, anduniquelycharacterises a 2D MHS equilibrium.

1.3.2 Classification of the MHS equilibria

Looking at the fundamental equation of MHS (1.3.1), the equilibria can be classified into three different types,

depending on if the two terms involved are identically zero,or they balance each other. Furthermore, the first case

also depends on whether the current density,j, is zero itself, or is parallel to the magnetic field everywhere. We

shall present the three different cases in order of complexity, starting from the case wherej = 0, ∇p = 0, then

with j ‖ B, ∇p = 0, and finally, the case wherej × B = ∇p.
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Potential fields

A magnetohydrostatic equilibrium is said to be potential ifthere exists no current density, i.e.j = 0. Thus the

Lorentz force,j × B, is zero, and in order to satisfy equation (1.3.1), the plasma pressure force must also equal

zero. Ampère’s law (1.2.25) gives

∇ × B = 0 ,

and from the vector identity∇× (∇φ) = 0, the solution for potential fields is given byB = ∇φ, whereφ(x, y, z)

is thescalar magnetic potential. Using the solenoidal constraint (1.2.26), we get

∇2φ = 0 . (1.3.13)

Equation (1.3.13) is Laplace’s equation. Solutions can be obtained by various methods including separation

of variables, and are uniquely determined by the boundariesof the system. Hence, given an initial magnetohy-

drodynamic system where the normal components to all boundaries are prescribed and fixed, subject to “external”

disturbances, there exists one and only one potential equilibrium.

Force-free fields

If both the gradient of pressure and the Lorentz force are zero, the equilibrium is known as force-free,

j × B = 0 . (1.3.14)

Notice, that the potential fields are one particular solution of this. Equation (1.3.14) implies that in the force-free

case, the current density vector is parallel to the magneticfield, and from Ampère’s law (1.2.25),

∇ × B = αB , (1.3.15)

whereα may be a function of position,r. If α = 0, the equilibrium is potential.

From the vector identity∇ · (∇ × B) = 0, we have

∇ · (αB) = α∇ ·B + B · ∇α = 0 ,

and using the solenoidal constraint (1.2.26), we can get a restriction for the scalar functionα(r),

B · ∇α = 0 . (1.3.16)

Hence,α is constant along field lines, although it may vary from field line to field line.

Taking the curl of equation (1.3.15), we get

∇ × (∇ × B) = ∇ × (αB)

= α(∇ × B) + ∇α× B

= α2B + ∇α× B ,

and using the vector identity∇ × (∇ × B) = ∇(∇ · B) − ∇2B, where the first term on the right hand side is



1.3 MHD equilibria: Magnetohydrostatics 23

zero, we obtain

∇2B = −α2B − ∇α× B . (1.3.17)

If α is constant everywhere, the equilibrium is known as alinear force-free field, and equation (1.3.17) reduces

to

∇2B = −α2B . (1.3.18)

Otherwise, the field is known as anon linear force-free field, and the equations (1.3.17) and (1.3.16) need to be

solved together.

Non-force-free fields

The above force-free conditions involve zero Lorentz and plasma pressure forces. These approximations are valid

for many of the studies of coronal magnetic fields, where the plasma density is very low, and the effects of plasma

pressure in the highly magnetised atmosphere are negligible. However, there are regions in which the magnetic

field weakens to a point at which plasma effects are no longer insignificant, and hence, the above considerations

do not hold. In these cases, one must address the complete equation of MHS (1.3.1), which, for two dimensional

fields, reduces to equation (1.3.11).

Furthermore, the inclusion of pressure effects adds in an extra complication, since the energetics of the system

must then be considered. Thecold plasma approximationneglects the effects of plasma pressure, and so, treats

the dynamical process as purely magnetic. In this case, the plasma behaves, ignoring thermal effects,as if the

temperature were zero, and so too for the internal energy. Note, this does not mean that there is no plasma density.

Hence, if the internal energy is zero, from the above equations (1.2.32), (1.2.33) and (1.2.34), only the last two

have to be considered, and so, the conversion of magnetic energy to internal energy (or vice versa) is not allowed,

and so, a rapid release of magnetic energy can only be used to accelerate particles or to cause a bulk plasma flow,

but not to heat the plasma. On the other hand, when pressure effects are included, the exchange of magnetic

and internal energy is possible, and it is precisely that detail which permits a wider family of different equilibria.

Hence, non-force-free effects will become important in regions of weak magnetic field in the solar atmosphere,

such us the surroundings of possible localised points wherethe magnetic field vanishes.

1.3.3 Models of MHS equilibria

The magnetic field of the solar corona is believed to evolve through a series of force-free states (Heyvaerts and

Priest, 1984). Since the solar corona involves a low-beta plasma in which magnetic forces dominate over plasma

forces, this is not an unreasonable assumption, and so, mostof the recent studies on the relaxation of coronal

magnetic fields (e.g. Mackay and van Ballegooijen, 2006; Ji et al., 2007; Inoue et al., 2008; Janse and Low, 2009;

Miller et al., 2009; Pontin et al., 2009) have been done by considering the approximation of an extremely tenuous

plasma, for which the plasma pressure does not play an important role, and the persistent hydromagnetic structures

of the solar corona are assumed to be in magnetic balance, with zero pressure gradients.

However, getting information about the magnetic field distribution in the solar corona is not a trivial prob-

lem. Unfortunately, the weak plasma emission due to the low density of the corona makes direct measurements of

coronal magnetic fields extremely difficult. Even if some coronal lines show a sufficiently large Zeeman split and

measurements could be made, knowing exactly the height where those lines are formed is not easy, and even if
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known, the number of points would be small for this information to be conveniently used. Thus it becomes neces-

sary to resort to magnetic field extrapolations from the relatively easily measured photospheric or chromospheric

line-of-sight, or vector magnetograms. A large variety of studies have been made with current-free potential extrap-

olations (e.g. Altschuler and Newkirk, 1969; Hoeksema, 1991; Gary, 1996; Rudenko, 2001), which, after showing

their inaccuracy in active regions (Schrijver et al., 2005), have been improved with force-free extrapolations (e.g.

Wiegelmann et al., 2006; Schrijver et al., 2006; Mackay and van Ballegooijen, 2006; Régnier, 2008).

In addition, there are many codes available to calculate those force-free fields from the observed magnetic field

in the photosphere (Amari et al., 1998; Wiegelmann et al., 2006, 2008; Schrijver et al., 2006; Metcalf et al., 2008).

These codes have been used with varying degrees of success todetermine the magnetic field of solar flares and

active regions (e.g. Schrijver et al., 2008; Régnier, 2008; De Rosa et al., 2009; Wheatland and Régnier, 2009).

However, problems remain with these approaches. In particular, a non-linear force-free field determined from a

line-of-sight photospheric magnetic field, fixed at the rigid boundaries of the domain, is not unique, but is one

of an infinite number of possible solutions. This fact is wellknown and has been discussed by several authors

(see Low, 2006). The main problem is that the observed boundary data are inconsistent with the nonlinear force-

free model. Recently, Wheatland and Régnier (2009) have studied a self-consistent solution for a particular Solar

Active Region.

Placing aside extra contributions such as radiative losses, if a substantial fraction of the magnetic energy re-

leased goes into the internal energy, then the plasma beta cannot be small. Hence, considering the behaviour of

the plasma is important even if it has little effect on the final magnetic equilibrium. Gary (2001) suggested the

possibility that there is high beta plasma in the solar corona above active regions.

There are many studies on the MHS equilibrium with force balance in the Earth’s magnetotail, both numerical

(e.g. Hesse and Birn, 1993; Lemon et al., 2003) and analytical (e.g. Birn, 2005; Zaharia et al., 2005), but only

within the past few years, the reconstruction of the global coronal magnetic field including a finite Lorentz force

balanced by magnetic and gravity forces have started to be considered, independently, by Ruan et al. (2008) and

Gary (2009).

Some years before, Low (1982a, 1984, 1985, 1991, 1992, 1993a,b) and Bogdan and Low (1986) carried out

a wide analytical investigation of the full set of MHS equations, under different special assumptions. They pre-

scribed a special type of current flow which allowed the reduction of the mathematical problem to one single

partial differential equation. This procedure requires anexternal force dependent on the plasma density, such as a

gravitational force. Later, Neukirch (1995) used these derivations to develop a self-consistent three-dimensional

analytic solution of the MHS equations, reducing them to a Schrödinger type equation. Also, there exist various

other approaches which give analytical solutions to the three-dimensional MHS Equations, as studied by Neukirch

and Rastätter (1999) and Petrie and Neukirch (2000). The model of Neukirch (1995) has been used by Ruan et al.

(2008) to extrapolate the magnetic field in the corona from photospheric magnetic field measurements, finding no-

ticeable differences in comparison to both potential and force-free field models. Also, this model has been recently

used for rotating magnetized coronae by Al-Salti et al. (2010).

In parallel to the above studies, Dasgupta et al. (1998) usedthe principle of a minimum dissipative rate (MDR),

based on the idea that a dissipative system naturally tends towards a state in which its dissipation rate is minimum,

to study the relaxed states of a turbulent magnetised plasma, obtaining a MHD equilibrium which could support a

pressure gradient in a non-force-free state. Then, Bhattacharyya et al. (2007) used this same principle for modelling

solar arcades using a two-fluid description, obtaining a relaxed state which was non-force-free in nature. Last, Gary

(2009) evaluated the MRD method for deriving a coronal non-force-free magnetic field solution.
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1.4 Magnetic null points

In most magnetic environments with a certain degree of complexity, there exist certain points in which the mag-

netic field vanishes,B = 0. We call these magnetic null points, or magnetic neutral points. They are key locations

for magnetic dissipation and energy conversion, as they areregions about which high current density layers may be

built in the form of a tangential discontinuity (see Section1.5). Hence, studying in detail the local magnetic con-

figuration around magnetic nulls is necessary for the understanding of such processes. We follow the mathematical

description of two and three dimensional null points described in Parnell et al. (1996), using a linear analysis about

the null in Cartesian geometry.

Taking the null point to be situated at the origin, without loss of generality, and assuming that the magnetic

field approaches zero linearly, the magnetic fieldB near a null point may be expressed as

B = M · r , (1.4.1)

whereM is a matrix with elementsMij = ∂Bi/∂xj andr is the position vector(x, y, z)T .

1.4.1 Two-dimensional null points

In two dimensions, the matrix M is given by

M =

(

a11 a12

a21 a22

)

=

(

∂Bx

∂x
∂Bx

∂y
∂By

∂x
∂By

∂y

)

.

The solenoidal constraint (1.2.26) givesa11 = −a22 ≡ p, and Ampère’s law (1.2.25) gives the current density

associated with the null point asjz = (a21 − a12)/µ. Let us define a parameterq such that

a12 =
1

2
(q − jz) and a21 =

1

2
(q − jz) .

For a potential (i.e. current-free) null point,a12 = a21 = q/2. Finally, the matrixM can be written as

M =

(

p 1
2 (q − jz)

1
2 (q + jz) −p

)

. (1.4.2)

The flux functionAz is obtained using (1.3.9) and (1.4.2), as

Az =
1

4
[(q − jz)y

2 − (q + jz)x
2] + pxy .

Now, thexy-axis can be rotated conveniently so that the last term on theright hand side disappears. Choosing the

angle of rotation,θ, so thattan 2θ = −2p/q, the flux function becomes

Az =
1

4
[(jthresh − jz)y

2 − (jthresh + jz)x
2] , (1.4.3)

where thex′ andy′ coordinates have been renamed back asx andy, for simplicity, andjthresh is a threshold
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current defined by

jthresh =
√

4p2 + q2 . (1.4.4)

In this new coordinate system,

Bx =
1

2
(jthresh − jz)y and By =

1

2
(jthresh + jz)x ,

so the matrixM is given by

M =

(

0 1
2 (jthresh − jz)

1
2 (jthresh + jz) 0

)

. (1.4.5)

The eigenvaluesλ of this matrix are obtained by solvingdet(M − λI) = 0, giving

λ = ±1

2

√

j2thresh − j2z . (1.4.6)

So the eigenvalues will be real if|jz| < jthresh and imaginary if|jz| > jthresh, defining the geometry of the

two-dimensional null point.

Potential two-dimensional null points

For a potential null point in two dimensions, the current density is zero,jz = 0, M is symmetric, and its eigenvalues

areλ = ±jthresh/2. The flux function is given by

Az =
jthresh

4
(y2 − x2) ,

and the field lines are rectangular hyperbolae, and trace outapotential X-point, as in Figure 1.8a, with exactly90◦

between the separatrices (the field lines through the null point). It was shown in Figure 1.7b how, in absence of

a plasma pressure gradient, this configuration is in complete force balance. This is the only possible current-free

configuration for a two-dimensional null point.

Non-potential two-dimensional null points

If jz 6= 0, we can distinguish three different types of two-dimensional magnetic null points. 1) If|jz | < jthresh,

the eigenvalues ofM are real, and the field lines form ahyperbolic X-pointwith less (or greater) than90◦ between

the separatrices, as in Figure 1.8b, which tends to the potential case whenjz → 0. 2) If |jz| = jthresh, the eigen-

values are zero, the flux function depends only on one coordinate, and the field lines are anti-parallel, with a null

line along thex or y axis, as in Figure 1.8c. 3) If|jz| > jthresh, the eigenvalues are imaginary, and the field lines

form anelliptic O-point, as in Figure 1.8d, which becomes circular whenjthresh = 0.

In two dimensions, we define aseparatrixas the line that separates two magnetic domains with different

connectivities. In Figure 1.8, the separatrices, which allgo through the null point, are shown with dashed lines.
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(a)  |j | = 0z (b)  |j | <z jthresh
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Figure 1.8: Two-dimensional null points,
showing (a) a potential X-point, (b) a non-
potential hyperbolic X-point, (c) antipar-
allel field lines and (d) an elliptic O-point.
Dashed lines show theseparatricesof the
different magnetic regions. Based on Par-
nell et al. (1996), Fig. 2.

1.4.2 Three-dimensional null points

In three dimensions, the matrixM becomes

M =







a11 a12 a13

a21 a22 a23

a31 a32 a33






=







∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z






.

The solenoidal constraint (1.2.26) givesa11 + a22 + a33 = 0, and this condition implies that the sum of the three

eigenvaluesλ1, λ2 andλ3 is also zero. Let us represent the position along a single magnetic field line near the null

in terms of a position vectorr = (x, y, z)T , which depends on an arbitrary parameterk which varies along the

length of the field line. The magnetic field along the field linemay be written as

B =
dr(k)

dk
= M · r(k) , (1.4.7)

and, using the substitutionr(k) = Pu(k), whereP = (x1,x2,x3) is the matrix of the eigenvectors ofM which

satisfy

Mx1 = λ1x1 ,

Mx2 = λ2x2 ,

Mx3 = λ3x3 ,
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we rewrite equation (1.4.7) as

du(k)

dk
= P−1MP · u(k) . (1.4.8)

There are two cases that have to be considered separately, depending on if the matrixM is diagonalizable or not.

First, we assume thatM can be diagonalised to a matrixΛ whose elements can be either real or complex,

according to the nature of the eigenvalues. Then, three different eigenvectors exist, and the solution of equation

(1.4.8) for a given field line can be written as

u(k) = AeΛk (1.4.9)

whereA is also a diagonal matrix with its non-zero elements given byA, B andC, which are constant along a

field line. Hence, the solution of equation (1.4.7) is given by

r(k) = Aeλ1kx1 +Beλ2kx2 + Ceλ3kx3 . (1.4.10)

We shall now consider the different cases, depending on if the eigenvalues are real or complex. The fact that

λ1 + λ2 + λ3 = 0 gives us only two possibilities: either the three eigenvalues are real, or two of them are complex

and one is real.

1) If all the eigenvalues are real, since the sum of the three eigenvalues is zero, there is always one eigenvalue of

opposite sign to the other two, sayλ1, λ2 > 0 andλ3 < 0. Then, for field lines going towards and away from the

null, we have

r(k → −∞) → Ceλ3kx3 ,

r(k → ∞) → Aeλ1kx1 +Beλ2kx2 .

Hence, field lines that head towards the null are parallel to one single eigenvector, and field lines that are directed

away from the null lie parallel to a plane defined by the remaining two eigenvectors. The line defined by the path

of the first eigenvector is thespine, and the plane defined by the other two is thefan. If the spine field line heads

towards the null, and the fan field lines go away from it, as theexamples above, the null is called apositive null

point. If, on the contrary, we exchange the signs of the eigenvalues (i.e.λ1, λ2 < 0 andλ3 > 0), then the fan field

lines head towards the null, and the spine field line go away from it. In this case, the null is called anegative null

point. Figure 1.9 shows the geometry of a generic three-dimensional (positive) null point.

2) If we have two complex and one real eigenvalues, sayη ± iν and−2η, with corresponding eigenvalues

x1 = (x′
1 + ix′

2)/2, x2 = (x′
1 − ix′

2)/2 andx3, we can rewrite equation (1.4.10) in terms of two new constantsR

andΘ to get, forη > 0,

r(k → −∞) → Ce−2ηkx3 ,

r(k → ∞) → Reηk cos (Θk + νk)x′
1 −Reηk sin (Θk + νk)x′

2 .

Again, if η > 0 and the null is positive, field lines that head towards the null are parallel to one single eigenvector,

defining the spine, and field lines that go away from the null lie parallel to the fan plane defined byx′
1 andx′

2. The

fan field lines produce a pattern of a spiral.
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Figure 1.9: Structure of a 3D null
point, showing the spine and the fan
plane.

Secondly, if the matrixM is not diagonalizable, two of the eigenvalues are repeated and the matrixM can only

reduce to aJordan normal formthat looks like,

Jn =







λ 1 0

0 λ 0

0 0 −2λ






.

We now write the equation for the field lines using the substitution r(k) = Pu(k), where this timeP =

(x1,x
∗
2,x3), with

Mx1 = λx1 ,

Mx∗
2 = x1 + λx∗

2 , (1.4.11)

Mx3 = −2λx3 ,

such that

du

dk
= Jnu .

The solution of equation (1.4.7) for a given field line can be now written as

r(k) = (A+Bk)eλkx1 +Beλkx∗
2 + Ce−2λkx3 . (1.4.12)

Assumingλ > 0, the solutions away from the null are

r(k → −∞) → Ce−2λkx3 ,

r(k → ∞) → (A+Bk)eλkx1 +Beλkx∗
2 ,

so that field lines heading towards the null are parallel to the eigenvector related to the single eigenvalue,x3, and

field lines going away from the null lie parallel to the plane defined by the eigenvectorx1 and the Jordan basis

vectorx∗
2.
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Following the method in Parnell et al. (1996), we can define a way of reducingM to its simplest form, in

order to examine all possible configurations around a 3D nullpoint. We do this by choosing the local orthogonal

coordinate system such that the spine is always aligned withthe z-axis, and by rotating the system so that the

x-axis lies in the direction of the current density in thexy-plane, so that the current is defined as

j =
1

µ
(j⊥, 0, j‖) . (1.4.13)

wherej‖ andj⊥ are the components parallel and perpendicular to the spine,respectively, andM results in

M =







1 1
2 (q − j‖) 0

1
2 (q + j‖) p 0

0 j⊥ −(p+ 1)






, (1.4.14)

wherep ≥ −1, andq2 ≤ j2‖ + 4p. Similar to the 2D case, a threshold current,jthresh, can be defined as

jthresh =
√

(p− 1)2 + q2 . (1.4.15)

The eigenvalues associated withM can be written as

λ1 =
p+ 1 +

√

j2thresh − j2‖

2
,

λ2 =
p+ 1 −

√

j2thresh − j2‖

2
,

λ3 = −(p+ 1) . (1.4.16)

In situations wherej⊥ = 0, the matrixM can be reduced, after the appropriate rotation about the spine, to

M =







1 − 1
2j‖ 0

1
2 j‖ p 0

0 0 −(p+ 1)






. (1.4.17)

Potential three-dimensional null points

For a potential field, bothj⊥ andj‖ are zero, and the matrixM is symmetric, and can be written as

M =







1 0 0

0 p 0

0 0 −(p+ 1)






.

Thus the related eigenvalues areλ1 = 1, λ2 = p andλ3 = −(p+ 1), and the associated eigenvectors are

x1 =







1

0

0






, x2 =







0

1

0






, x3 =







0

0

1






,

so for a potential null, the fan plane is perpendicular to thespine. With this choice for the matrixM, where the
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spine lies along thez-axis, we must havep ≥ 0. The eigenvectorsx1 andx2 define the fan plane. The threshold

current isjthresh = |p − 1|, and depending on the value ofp andjthresh, we get the different types of potential

three-dimensional null points. 1) Ifjthresh = 0, thenp = 1 and the field is a positive proper radial null, symmetric

in the eight 3D quadrants, as shown in Figure 1.10a. 2) Ifjthresh > 0 andp > 0, the field is an improper radial

null: Field lines gather to run parallel (ask → ∞) to thex-axis if 0 < p < 1, or parallel to they-axis if p > 1,

as in Figure 1.10b. 3) Ifp = 0, there are only two non-zero eigenvalues, and the field becomes a sequence of two-

dimensional potential X-points lying in planes parallel tothexz-plane and forming a null line along they-axis.

Non-potential three-dimensional null points

Here, the matrixM is asymmetric, and we can study three different cases:|j‖| < jthresh, |j‖| = jthresh and

|j‖| > jthresh.

⊲ When|j‖| < jthresh, the three eigenvalues are real and distinct, and all three eigenvectors exist. 1) Ifj⊥ = 0

andj‖ 6= 0, the fan and spine are perpendicular, but the eigenvectorsx1 andx2 are not. Atk → ∞, the field lines

in the fan plane run parallel to a liney(x) in the fan plane, defining a skewed improper null. 2) Ifj⊥ 6= 0 and

j‖ = 0, the fan is not perpendicular to the spine, and the angle between them reduces asj‖ increases. The fan does

not necessarily tilt about thex-axis (the direction of the current) and so, the current (which is perpendicular to the

spine) does not generally lie in the plane of the fan. 3) Ifj⊥ 6= 0 andj‖ 6= 0, the fan is tilted towards the spine, so

j⊥ dos not lie in the plane of the fan, and the field lines again define a skewed improper null.

⊲ When|j‖| = jthresh, two of the eigenvalues are repeated. 1) Ifj⊥ 6= 0 andj‖ = 0, the fan does not lie in the

xy-plane, but field lines extend radially and symmetrically inthe plane of the fan (Figure 1.11a). 2) Ifj⊥ = 0 and

j‖ 6= 0, there exist only two different eigenvectors, so an extra vector must be calculated using equation (1.4.11),

the Jordan basis vector. The fan plane is perpendicular to the spine, and the field lines in the fan form a spiral,

called acritical spiral, in which the field lines orientate towards the line of one single eigenvector (Figure 1.11b).

3) If j⊥ 6= 0 andj‖ 6= 0, we again have to look for a Jordan basis vector, and we find another critical spiral, with

the fan not perpendicular to the spine.

⊲ When|j‖| > jthresh, the two eigenvalues associated with the plane of the fan arecomplex conjugates. 1) If

j⊥ = 0 andj‖ 6= 0, the spine is perpendicular to the fan, and the field lines spiral around the spine until they spread

spiraling outwards parallel to the fan plane (Figure 1.11c). 2) It is not possible to create a spiral null without a

parallel component of the current. 3) Ifj⊥ 6= 0 andj‖ 6= 0, we have a spiral null with the fan not perpendicular to

the spine.

In general, the geometry of three-dimensional nulls will depend on the four parameters(p, q, j‖, j⊥). In the

case of a potential null, they reduce to one single parameterp, and for the non-potential case, the field lines about

the null are radial, critical spiral or spiral, depending onthe relative size of the current parallel to the spine with

respect to the threshold current. The current perpendicular to the spine determines the inclination of the fan plane

to the spine.

A complete understanding of the geometry around magnetic null points is of extreme importance for studies of

coronal magnetic fields. Longcope and Parnell (2009) have found that magnetic nulls have a reasonable population

density in the solar corona. Null points are found directly from extrapolations of the photospheric magnetic field,

but also their density is estimated from the Fourier spectrum of the magnetogram coming from the solar photo-

sphere.
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Figure 1.10: Sketch of the magnetic con-
figuration of two 3D potential nulls. For
simplicity we show only the spine and the
fan, with field lines lying in the fan plane
itself (dashed), for (a) a proper radial null,
and (b) an improper radial null with the
field lines aligned along they-axis.

(a)  Proper radial null
( j = 0, p = 1 )thresh

(b)  Improper radial null
( j > 0, p > 0 )thresh

(b)  |j  | = j

Critical spiral null ( 0, j  = 0 )

thresh

j =

(a)  |j  | = j

Tilted radial null ( 0, j  = 0 )

thresh

j =

(c)  |j  | > j

Spiral null ( 0, j  = 0 )

thresh

j =

Figure 1.11: Sketch of the magnetic configuration of 3D non-potential nulls, for the cases with (a) current perpen-
dicular to spine, showing a tilted fan plane, and (b) and (c) current parallel to the spine, showing the fan orthogonal
to the spine, and field lines in (b) a critical spiral and (c) a coiled spiral.

Parnell et al. (1997) showed that a linear three-dimensional null point in equilibrium must be potential (j = 0),

so cannot hold in a MHS equilibrium (in which the Lorentz force j×B is balanced with a pressure gradient,∇p).

To show this, let’s take the curl of the fundamental equationof MHS, equation (1.3.1), making use of the vector

identity∇ × (∇f) = 0,

∇ × (j × B) = ∇ × ∇p = 0 .

Now, we use the vector identity

∇ × (j × B) = (B · ∇)j− (j · ∇)B + (∇ · B)j − (∇ · j)B .

As shown in Parnell et al. (1997), if we stay in the linear regime, the current density remains constant, hence, the

first and last terms in the right hand side are zero, and the third term is also zero because of the solenoidal constraint
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(1.2.26). SinceB = M · r, we get

∇ × (j × B) = −(j · ∇)(M · r) = −M · j = 0 , (1.4.18)

and asM is a non-singular matrix, the only solution to equation (1.4.18) isj = 0 and the null must be in a potential

equilibrium.

1.5 Current sheets and reconnection

1.5.1 Tangential discontinuities

A tangential discontinuity is a structure where the magnetic field on both sides of the discontinuity has no com-

ponent normal to the surface, and involves a change in the direction of the magnetic field, or in its magnitude,

or in both. In equilibrium, it is an example of a pressure balance structure (Burlaga, 1995,“Interplanetary mag-

netohydrodynamics”), a surface across which the total pressure (plasma plus magnetic) is constant. A tangential

discontinuity separates two different magnetic domains, and can also have different plasma motions, creating a

velocity shear across the discontinuity, but the plasma flowthrough the surface must be zero.

From Ampère’s law (1.2.25), the change in magnetic field creates an accumulation of electric current which

is confined in the surface of the discontinuity. These are called current sheets, and in MHD studies they are

infinitesimally thin. A detailed compendium of the possiblesheet configurations and the development of the

theory can be found in Priest and Forbes (2000),“Magnetic Reconnection”.

A simple form for a current sheet is aHarris sheet, given by the one-dimensional model of Harris (1962),

where the magnetic field is parallel to thex-axis and varies only withy, and is defined asB(y) = (Bx(y), 0, 0)

with Bx = B0 tanh (y/L). The current density has a non-zeroz-component given by

jz = − 1

µ

∂Bx

∂y
.

A Harris sheet is an example of a neutral sheet, where the magnetic field vanishes in the center. A study of

the collisionless Vlasov-Maxwell equilibria in force freeHarris sheets has been recently made by Harrison and

Neukirch (2009) and Neukirch et al. (2009).

1.5.2 Current sheet formation

The analytical form of current sheets in two-dimensional fields, created following the collapse of a hyperbolic

X-point, were firstly studied by Green (1965), who suggestedan expression for a one-dimensional current sheet of

the form

By + iBx =
√

Z2 + a2 , (1.5.1)

whereZ = x+ iy represents the complex plane, and2a is the length of the sheet. The four separatrices open from

both ends of the current sheet in two so calledY-points, inclined to one another with an angle of2π/3 (see Figure

1.12 for a schematic categorization of the possible magnetic 2D singular points described in this section).
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(a) X-point (b) Y-point (c) cusp-point (d) T-point

Figure 1.12: Special magnetic points in two-dimensions.

Somov and Syrovatskii (1976) described the collapse of a two-dimensional X-point with a more general solu-

tion given by

By + iBx =
Z2 + l2√
Z2 + a2

, (1.5.2)

wherel2 < a2. The two null points at the ends of the sheets are singular. This case reduces to Green’s solution

whenl2 = a2.

Later on, Bungey and Priest (1995) extended the solution of Somov & Syrovatsky, providing an analytical

expression for all the possible potential and force-free configurations around a linear current sheet,

By + iBx = −B0

[

bd2 + 2dcZ − Z2 + 1
2d

2

√
Z2 + a2

]

, (1.5.3)

whereb, c, d andB0 are constants.

In all these cases, the current sheet is assumed to be infinitesimally thin, and the current density has aδ-like

singularity across the sheet.

The above theory has been applied to more general planar current sheets in the potential and force-free solar

corona, involving the magnetic field associated with two bipolar regions, by Priest and Raadu (1975) and Tur and

Priest (1976), as in Figure 1.13. In these models, a curved current sheet replaces the linear sheet found in previous

studies of X-point collapse, and the extremes of the sheet show a pair ofcusp points(see Figure 1.12c), where the

separatrices are curved in space. This configuration has been used in a variety of models of equilibria for solar

coronal magnetic arcades and loops by Low (1981, 1982b, 1986). Also, Vainshtein (1990) and Vekstein and Priest

(1993) tried to give analytical expressions for magnetic fields near special points, such as cusp points, assuming a

potential, and force-free solution outside and inside the cusp, respectively, in the first case, and a MHS combined

with a potential solution in the second case.

Before that, Parker (1972) considered the evolution of three dimensional braided magnetic flux tubes, finding

rapid dissipation and reconnection, which enabled the topology of the magnetic field to reduce to a simple equi-

librium form. Parker suggested thatto first order, changes in pressure along a flux tube would only modify the

verticalz-component of the field, and in general, “the pattern of the field does not vary along the general direction

of the field”, in other words, an equilibrium exists only if the variations in the field consist of simple twisting of the
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Figure 1.13: Schematic representation of the magnetic fieldconfiguration in the plane perpendicular to two line
dipoles atx = ±a, based on Tur and Priest (1976), Fig. 1, after an increase in the moment of the smaller dipole,
creating a current sheet, here shown as a thick curve.

lines. In a more complex topology case, such as braided flux tubes wrapped around each other, he suggested that

no equilibrium field was possible, and current would form at the boundaries of the tubes, leading to topological

dissipation and merging of field lines in the process know as magnetic reconnection. Syrovatskii (1978) also sug-

gested that the problem of continuous deformation of such fields had no solution in general. However, these results

were disputed by van Ballegooijen (1985), who argued against Parker’s scheme. Instead he suggested that an equi-

librium should always exist, without the need for any form ofsymmetry of the field, implying that the coronal field

adjusts itself to the motions of the photosphere, and that current sheets are a result of photospheric motions and

would appear only when the boundaries have discontinuities. More recently, the properties of three-dimensional

current sheets have been developed by Longcope (1996, 1998).

All the above studies involve potential and force-free solutions and, in fact, the thin current sheet configurations

from Bungey and Priest (1995) arenot in equilibrium, even if the regions around them are. This is because the

current varies along the sheet, but there is no plasma pressure to hold the Lorentz force within the current sheet.

More recently, Rastätter et al. (1994), Craig and Litvinenko (2005) and Pontin and Craig (2005) have studied

the magnetohydrostatic relaxation of X-type null points, considering plasma pressure forces, reaching a cusp-like

equilibrium sheet with the Lorentz force being balanced by the plasma pressure gradient. Common features of

these studies are the appearance of current accumulations along the field separatrices. Also, they find evidence to

suggest that a singularity in current is formed at the location of the null, as in the potential and force-free cases,

whose nature is unknown. Craig and Litvinenko (2005) find theplasma pressure to be enhanced in the regions

inside the cusps, and decreased in the regions outside the cusps, as sketched in Priest and Forbes (2000). Figure

1.14 show some schematic views of the different two-dimensional sheet configurations coming from the collapse

of a magnetic X-point.
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(a) Potential X-point (b) Green´s current sheet

(d) Pair of cusp points(c) Cusp point

Figure 1.14: Sketch of two-dimensional equilibria, based on Priest and Forbes (2000), Fig. 2.10. Thick curves
represent current sheets, and shaded regions are regions ofenhanced plasma pressure. In the absence of plasma, if
a hyperbolic X-point (a) is squashed in the vertical direction, a current sheet is formed, with Y-points at both ends,
as in (b). In the presence of a non-zero beta plasma, if the X-point in (a) is squashed, the pressure is enhanced
in the shaded regions, producing the equilibrium in (c), where a pair of cusp-points have formed, preserving the
X-point geometry at the center, while, in a non-zero beta plasma, (b) produces the equilibrium in (d), where the
current sheet has developed two cusp points at its ends, in which the pressure is enhanced.

1.5.3 Magnetic relaxation theory

A common method for the study of dynamical processes in magnetised fluids, such as current sheet formation in

the solar atmosphere, is magnetic relaxation. An initiallystressed system of magnetic field is allowed to evolve to

an equilibrium, driven by a velocity damping mechanism which may or may not be physical. The evolution of the

field is constrained, as required by the demands of the study,obtaining different possible solutions. The plasma

effects are ignored in many of these models.

Taylor (1974) considered the relaxation of toroidal laboratory plasmas, which he found to be reaching a relaxed

“quiescent” state which was largely stable. The plasma was confined in a rigid perfectly conducting vessel with

both magnetic and current density tangential to its surface. For simplicity, he assumed the plasma internal energy

negligible compared to the magnetic energy, so that any analytical form of the equilibrium would be force-free. The

final equilibrium would be the one with minimum magnetic energy (Note, that in this ideal and purely magnetic

process, the difference in energy from initial and final state is lost).
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In the case of a perfectly conducting fluid, under the frozen-in condition, with no change in the magnetic

connectivity, he found that the quantity

K =

∫

V

A ·B dV , (1.5.4)

is an invariant of motion, withV being the volume of an infinitesimal flux tube. This quantity is themagnetic

helicity, and it is a measure of twisting and kinking of a flux tube (self-helicity) or of different linked flux tubes

(mutual helicity). Hence, the magnetic helicity was conserved for every fieldline. Under this constraint, the state

of minimum energy was found to be given by the non-linear force-free solution,∇ × B = αB, with α being a

function constant along field lines, but varying from one field line to another.

When considering small departures from idealness, Taylor found changes in the connectivity of the field lines,

which implied that the magnetic helicity was not conserved for each field line. However, he found the sum ofK

over all field lines almost unchanged, due to the fact that changes in topology entailed very small changes of the

field itself. Hence, the effect of the reconnection of the field lines was to redistribute the magnetic helicity among

the field lines involved. In this case, the state of minimum energy was given by the linear force-free field, withα

constant everywhere.

Then, Heyvaerts and Priest (1984), examined the consequences of Taylor’s relaxation on the evolution of the

coronal magnetic fields, where the magnetic helicity is not constant in time, even in ideal MHD, as it varies as a

result of the field lines foot-points motions. Nonetheless,they generalised Taylor’s hypothesis by saying that the

change of magnetic helicity must be a well known function notequal to zero, given by

DK

Dt
=

∫

S

(A · v)(B · dS) ,

whereS is the boundary of the volumeV in which the helicity is defined. They show how this evolutionof coronal

magnetic fields can be understood as a series of force-free states, preserving the change of magnetic helicity. They

start from a quasi-static change of the initial linear force-free field which changes the state to a slightly non-linear

force-free field with new helicity, which then relaxes, following Taylor’s hypothesis, by reconnection processes, to

the linear force-free field with the same helicity, and back to the beginning.

Heyvaerts and Priest (1984) made an essential point, which is that the “convertible energy” is not the difference

between the initial energy and the energy of the potential state, as this last one is not readily accessible, but rather

the difference in energy between the initial configuration,and the linear force-free state with the same helicity.

Taylor’s relaxation theory has been extended to solar coronal magnetic fields by many authors (e.g. Nandy

et al., 2003; Miller et al., 2009). In particular, Browning et al. (2008) and Hood et al. (2009) investigated Taylor

relaxation through a series of non-linear 3D simulations ofa cylindrical coronal loop model, initiated by MHD

instabilities, finding rapid magnetic reconnection which allowed the system to relax towards a constant-α force-

free solution.

1.5.4 Magnetic reconnection

Under ideal conditions, plasmas have infinite conductivityand the field must be frozen to the fluid, such that its

connections are preserved. This is, in general, the case in the solar corona, where the characteristic lengths of the

plasma are so high that the diffusion term is negligible in the induction equation, (1.2.9). However, it is possible
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(a) Sweet-Parker model: slow reconnection regime                                   (b) Petschek model: fast reconnection regime

Figure 1.15: Comparison between (a) the Sweet-Parker modelof slow reconnection, where energy conversion
happens in a large diffusion region, and (b) the Petschek model, of fast reconnection, where most of the energy
conversion takes place in four slow-mode shocks that come out of a small diffusion region.

that, in certain regions, the magnetic diffusivity becomesimportant locally, allowing non-ideal effects to occur.

Two and three dimensional null points are potential locations for that non-idealness to happen.

Magnetic reconnection is the process in which field lines break and then merge with other field lines, allowing

them to change their connectivity. The process is directly linked to the diffusion of the field and associated with

the release of magnetic energy, which is partly converted into internal energy of the plasma. The characteristics of

these processes in two-dimensions are well gathered and exposed in Priest and Forbes (2000). Reconnection may

occur in presence of high electric fields and electric currents. Some effects of magnetic reconnection can be: 1) the

partial conversion of magnetic energy into heat, a process known asohmic dissipation, 2) acceleration of plasma

by converting magnetic energy into bulk kinetic energy, 3) Generation of shock waves and current filamentation

and 4) changes of global connections of the field lines, that allow the field to relax to a lower energy state, affecting

the paths of fast particles and heat, which are generally directed along magnetic field lines.

Magnetic reconnection may be studied by either resistive (non-ideal) MHD models, with the classical ohmic

dissipation, which can be mainly applied for highly collisional plasmas, or using particle models, involving multi-

fluid theory, applicable in the higher corona, where collisionless effects dominate. Nevertheless, even in the latter

case, an MHD approach can give a valid characterization and provides a macroscopical view of the general process.

A very brief history of the study of magnetic reconnection starts with Dungey (1953), who showed that the

collapse of a magnetic X-point would create a current sheet capable of accelerating particles and generating heat in

solar flares (pointed out earlier by Cowling, 1953), and firststated that “lines of force can be broken and rejoined”.

The first model came with Parker (1957) and Sweet (1958), who studied the process of two bipolar magnetic

fields coming together. Parker was the first to use the term reconnection of field lines. They showed that the

reconnection rate was equivalent to the inflow plasma speed,which turned out to be way too small for solar flares.

This mechanism is now referred as toslow reconnection. Furth et al. (1963) showed that resistive instabilities

occur in a one-dimensional current sheet. This is known as the tearing mode instability. Then, Petschek (1964)

showed how conversion of magnetic energy into heat and kinetic energy was also possible in slow-mode shock

waves, generated by a diffusion region much smaller than theone formed in the Sweet-Parker model. This was the

first of many regimes offast reconnection. Biskamp (1986) found a different solution to Petschek, which, finally
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Priest and Forbes (1986) included into a whole family of solutions for both fast and slow reconnection, with the

cases of Petschek and Biskamp as particular solutions. Figure 1.15 shows a comparison between the Sweet-Parker

and the Petschek models.

In three dimensions, magnetic reconnection is very different from reconnection in 2D (Priest et al., 2003).

Schindler et al. (1988) showed how, in contrast to the two-dimensional case, in three dimensions, reconnection can

happen either at the location of magnetic null points or in absence of them. Instead, the condition for reconnection

to occur is that, within a region of non-idealness, the integral along a field line of the electric field parallel to it is

different from zero,

∫

E‖ ds 6= 0 . (1.5.5)

In fact, if the region of non-idealness is a single isolated region with a singly peaked form for this integral, then

its maximum value gives the rate of three-dimensional reconnection. The different regimes of three-dimensional

reconnection may be classified as follows. 1)torsional fan and torsional spine reconnection, where torsional

motions concentrate the current along the spine or in the plane of the fan (Pontin et al., 2004; Priest and Pontin,

2009; Wyper and Jain, 2010), 2)spine-fan reconnection, where shearing motions concentrate the current along

both (Pontin et al., 2005; Priest and Pontin, 2009), 3)separator reconnection, where current concentrates along the

separator line that joins two nulls and represents the intersection of two separatrix surfaces (Parnell et al., 2010),

and 4)QSL reconnection, where reconnection occurs at quasi-separatrix layers, where the mapping of magnetic

field lines changes continuously but extremely rapidly (Priest and Démoulin, 1995).

1.6 Non-dimensional equations: Normalization

Before moving on, we shall go back to our fundamental equations. For simplicity, it is convenient to non-

dimensionalise all the fundamental equations and quantities. The purpose of this is twofold. First, the process

consists of measuring quantities relatively to some appropriate values (normalization), which allows us to work

with easy numbers, i.e. numbers that are not overly large or overly small, and “eliminates” certain constants

from the equations. Second, it provides a full removal of units by a suitable substitution of variables, making all

quantities easier to work with, and scalably to many different situations.

The normalization can be made in various ways. We do it by normalising the magnetic field, plasma density

and length, following the same approach as the numerical code that we are going to be using (described in Chapter

2). We denote dimensionless quantities with a hat, so that

x = L0x̂ ,

B = B0B̂ ,

ρ = ρ0ρ̂ .

The nabla operator is normalised as∇ = ∇̂/L0. From Ampère’s Law (1.2.25), we get

j = j0ĵ =
B0

L0

∇̂ × B̂

µ
,

and we can define the normalised current asĵ = ∇̂×B̂. Repeating the process with the equations (1.2.25)[Ampère’s
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law], (1.2.31)[ideal induction equation], (1.2.22)[equation of motion], (1.2.23)[energy equation], (1.2.24)[perfect

gas law] and (1.2.18)[temperature], we get

j0 = B0/(µL0) ,

v0 =
B0√
µρ0

,

t0 =
L0

v0
,

p0 =
B2

0

µ
,

ǫ0 =
p0

ρ0
,

T0 = ǫ0
m

kB
.

Note, that the normalization is such that temperature and internal energy are related bŷT = ǫ̂(γ − 1), so we

havep̂ = ρ̂T̂ . Also, in resistive MHD, the normalised diffusivity is commonly known as theresistivity, η = 1/σ.

From the expression for the plasma beta,β = 2µp/B2, we get an expression for the plasma beta in terms of the

normalised quantities (note thatβ is a non-dimensional quantity by definition) as

β =
2p̂

B̂2
.

From this point, all the expressions and quantities we are going to refer to are the normalised ones, and for

simplicity, the hats are dropped from the normalised quantities. Hence, after the normalization, the equations

governing our MHD dynamical processes are summarised, finally, as

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.6.1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+

1

ρ
(∇ × B) × B +

1

ρ
Fν , (1.6.2)

∂p

∂t
+ v · ∇p = −γp∇ · v +Hν , (1.6.3)

∂B

∂t
= ∇ × (v × B) , (1.6.4)

whereFν andHν are given by equations (1.2.29) and (1.2.30), the current density is j = ∇ × B, and internal

energy is given by the ideal gas law,p = ρǫ(γ − 1), with γ = 5/3.

The above set of differential equations can be solved analytically for the first order terms, using linear pertur-

bation theory. Otherwise, they require a powerful numerical tool. For our experiments, we have used LARE, a full

MHD code, to solve equations (1.6.1) to (1.6.4) in two and three dimensions. The code is described in detail in

Chapter 2.

1.7 Summary and main goals

The Sun, our star, is an amazing object that controls the lifeon our planet. The majority of the processes occurring

in the outer layers of the star are driven by highly dynamic magnetic fields, at temperatures far above what we
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are used to on Earth. Understanding the behaviour of these magnetic fields, and their interactions with the high

temperature conducting plasma in which they are embedded, is crucial for our own comprehension of how our star

works. The rapid release of magnetic energy is a burning issue, but it requires a detailed study of the characteristics

of the hydromagnetic structures which lie behind. The aim ofthis thesis is to study in detail the current density

accumulations in two and three dimensional magnetohydrostatic equilibria around magnetic null points, which are

locations where reconnection can occur.

Many of the studies of current sheet formation in the past assume the cold plasma approximation (e.g. Vain-

shtein, 1990; Vekstein and Priest, 1993; Bungey and Priest,1995), i.e. they do not take into account the effects

of plasma pressure, so magnetic effects dominate. Scientists have studied these sorts of models for twenty years,

from the 70’s up to the 90’s. But if we think it over again, we will soon see a clear inconsistency in this approach.

Reconnection may happen around locations in which the magnetic field vanishes, and the previous models assume

that the magnetic effects dominate over the plasma effects.How can that be true, even for a low density plasma, in

regions about which the magnetic field is zero? Certainly, inthose regions, the plasma effects will have to become

important. An extra consideration is the energetics, sinceif the thermal energy of a system is neglected, what

happens with the energy released by the magnetic field?

Hence, in the last decades, scientists have started to take plasma pressure into consideration in studies of

relaxation around magnetic null points (Rastätter et al.,1994; Craig and Litvinenko, 2005; Pontin and Craig,

2005). Now, a non-force-free equilibrium is allowed to be reached, as magnetic and pressure forces can be balanced

without vanishing individually. They have found substantial differences with the cold plasma approximation, as

the nature of the equilibrium is now completely different.

But there is a last point that has to do with the mechanism which drives the relaxation, in charge of damping out

the plasma velocities. In a numerical experiment, this can be done as physically as desired, and therefore, the choice

of the latter studies has been to include a fictitious term to the equations, referred as tofrictional damping term,

such that the final equilibrium state can be achieved directly with no further complications. This, however, forbids

another physical effect, which is energy exchange. By adding only that fictitious term, they cannot investigate

exchanges of magnetic energy and thermal energy of the plasma, which will affect the role of plasma and magnetic

field in the final equilibrium. Even if the dynamical process in between is not important in these studies, the plasma

may gain or lose some energy during the process, which may alter its final state.

The approach in this thesis has been different. We have run experiments of magnetic relaxation about magnetic

null points in two and three dimensions, considering the effects of the plasma pressure during the relaxation,

which is driven by a viscous damping term. This, leads to a certain amount of viscous heating which drives, at

the same time as the relaxation occurs, exchanges between magnetic and internal energy. We attempt to give a

valid equilibrium, which is reached by allowing no reconnection, and we look at the redistributions of the plasma

and magnetic quantities. A key difference with force-free studies is that infinitesimally thin current sheets are not

formed in the presence of a plasma pressure. We obtain current accumulations with finite widths and lengths,

hence, the term “current sheet” is not appropriate. Instead, we shall refer to our large current accumulations as

current layers.

We shall now describe the common characteristics of all the experiments. The method that we follow is

essentially the same in all. We start from an initial non-equilibrium field, which has no initial flows in it (i.e. initial

kinetic energy is zero), with a constant background plasma density and current density, and we allow the field to

relax via ideal (i.e. non-resistive) MHD processes to an equilibrium. We list the common characteristics for our

dynamical evolutions.
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⊲ The relaxation is driven byphysical viscous forces, implying that viscous heating will always be associated

with the final state.

⊲ In general, the evolution of the fluid isnon adiabatic, due to the viscous heating term. This implies that

there are exchanges of internal energy of the plasma and magnetic energy of the field. Only to first order, the

heating term disappears and the process may be treated as adiabatic.

⊲ The domain isin every sense closed, and magnetic field lines are tied at all the boundaries.

⊲ Mass is conservedwithin the whole domain: inflows and outflows of plasma are notallowed.

⊲ Total energy is conserved, which means that when comparing the initial and final states(which are supposed

to be in equilibrium), the gain or losses of magnetic energymustbe entirely balanced by losses or gains in

internal energy. Throughout the whole process, the sum of magnetic, internal and kinetic energymustremain

constant.

⊲ All the processes arenon resistive, which implies a number of consequences. 1) The connectivity of field

lines cannot change, i.e. there is no magnetic reconnection. 2) This restriction forbids ohmic dissipation

from occurring. Magnetic energy dissipation can take place, however, via viscous heating. 3) The field is

frozen to the plasma, hence, motions of plasma across the field lines must carry the field with them, so that

mass is not only conserved within the whole domain, but also within single flux tubes, and for each field

line. And 4) magnetic flux is conserved for the entire domain.

In order to do this, we have run a number of numerical experiments, making use of a full MHD code which

solves the set of MHD equations described before, with user controlled viscosity. However, as with all numerical

codes, the domain is discretised on a grid of points (resolution elements), which, in practice, means that all the

considerations above are not true. That is, there are going to be some small losses through the boundaries, and some

reconnection might take place. Nonetheless, in most cases,thesenumerical effectsarevery small, and we always

find a way to deal with them, allowing us to continue our analysis without major problems. The characteristics and

special features of the code are described in detail in Chapter 2.

We start by looking at a simple scenario with a straight and homogeneous magnetic field embedded in a

plasma, with no special magnetic points or locations. We areable to observe, for the simpler cases, the effects

of the plasma pressure and plasma energy in the relaxation, and we are able to predict the equilibrium from the

initial perturbations, using linear wave theory. The main result is that the inclusion of plasma effects matter in the

relaxation, and even if simple, the final state cannot be described using an evolution where pressure forces and

thermal energies are neglected. These experiments are addressed in Chapter 3.

Then, in Chapter 4, we look at the relaxation around two-dimensional magnetic X-type points, which are a

relatively simple scenario in which magnetic reconnectioncan occur. We follow the study of Craig and Litvinenko

(2005), which takes plasma pressure into consideration, but does not consider the possibility of energy exchange,

and we attempt to give a qualitative description of the field about the null, by following the work of Vekstein

and Priest (1993). In Chapter 5, we present two sets of experiments for two specific types of three-dimensional

magnetic nulls, by following the study of Pontin and Craig (2005), which again, does not allow energy exchange

in the relaxation scheme.

Finally, we summarise our results, going over the main characteristics of the MHS equilibrium states that we

find, evaluate their implications for current sheet formation and magnetic reconnection, and present possible future

work in Chapter 6.
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It is worthwhile mentioning that relaxation via Ohmic dissipation, due to the effect of resistivity, or magnetic

diffusivity, represents a substantially different problem to relaxation via viscous dissipation. While viscosity dis-

sipates the plasma velocity, diffusivity tends to eliminate the electric current density, and such a relaxed state can

only involve potential fields, which are mathematically well defined and are uniquely determined by the compo-

nents of the magnetic field normal to the boundaries. Furthermore, the time-scales for an Ohmic relaxation in very

high magnetic Reynolds number environments, such as the solar corona, are in general probably larger than the

age of the Sun itself, outwith regions with very small lengthscales (see Priest, 1982).

Given these, the main goal of our experiments and analysis isto provide a series of controlled MHS equilibria

through a realistic dynamical evolution, studying the locations in which current accumulations occur, and derive

their nature, as far as possible, without allowing the field to dissipate currents away and hence, forcing them to

achieve a purelynon-force-free state in equilibrium. When a valid equilibrium is found, it may provide the start

point for magnetic reconnection studies.

By considering the effects of the plasma pressure in the relaxation, we are facing a totally different problem

from that of the force-free relaxation studied by many others. In our non-resistive MHD relaxations, the plasma

displacements will carry the magnetic field with them, generating an electric current and a magnetic pressure.

Hence, the resulting equilibria has to involve a balance between the Lorentz force and the plasma-pressure gradient.

The effects of including a finite plasma beta are relevant notonly in the high plasma beta regions of the solar

atmosphere such as the photosphere and chromosphere, but will also be relevant in the solar corona. Obvious

regions where the plasma beta is likely to have a significant effect are in the vicinities of magnetic null points,

where the magnetic field vanishes.
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Chapter 2

The LARE Code

2.1 Introduction

LARE is a Lagrangian remap code that solves the full equations of MHD in two and three dimensions. The code

is second order accurate in space and time and is parallelised via MPI and known to scale linearly up to 1000 cores

of a cluster. A full description of the code, put in context and compared with other commonly used numerical

methods, together with some advantages and disadvantages,and some standard numerical tests, can be found

in Arber et al. (2001). This approach for solving multidimensional MHD problems is based on control volume

averaging, with a staggered grid where scalars and vectors are defined at different points in the computational cell.

In an Eulerian code’s mesh, the grid is stationary and mass flows between the cells. On the other hand, a

Lagrangian code’s mesh moves with the material and is deformed on each timestep, so no mass flows between

cells. The code can be separated into two main parts: The Lagrangian step, that solves the MHD equations in a

frame that moves with the fluid, and a remap step, which puts the variables back onto the original grid. All the

physics is contained in the Lagrangian step, and the remap step is purely geometrical. At the remap step, gradient

limiters are applied so that the monotonicity in the densityand internal energy remaps is preserved. The code

includes artificial viscosity, as an added scalar term to theplasma pressure, which avoids some known numerical

problems at shocks. This kind of scheme has been used widely for hydrodynamic problems (see Woodward and

Collela, 1984; Benson, 1992), but the LARE code is the first ofits kind to introduce magnetic field calculations.

The LARE code was motivated to be easily adaptable to a variety of problems in solar coronal physics: It

conserves energy to machine accuracy, correctly handles shocks, finds accurate values for the temperature even for

low-beta plasmas such as the solar corona, and makes the addition of extra physics easy through the Lagrangian

step.

2.2 Equations

LARE solves the normalised resistive MHD equations. Resistivity is not assumed to be constant in the code, so the

non-ideal induction equation is taken to be equation (1.2.8), instead of (1.2.9). The normalization of the resistivity

45
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is given by

η̂ =
η

µL0v0
.

The equations with which the code works are the analogous to equations (1.6.1) to (1.6.4), with the inclusion

of a resistive term, and are written in Lagrangian form, using (1.2.12). The energy equation is written in terms

of the internal energy density (energy per unit mass), with the plasma pressure given byp = ρǫ(γ − 1). For the

induction equation, we make use of the vector identity

∇ × (v × B) = (B · ∇)v − (v · ∇)B + (∇ · B)v − (∇ · v)B .

and the solenoidal constraint,∇ ·B = 0. Thus the equations solved in the code are

Dρ

Dt
= −ρ∇ · v , (2.2.1)

Dv

Dt
= −1

ρ
∇p+

1

ρ
(∇ × B) × B +

1

ρ
Fν , (2.2.2)

Dǫ

Dt
= −p

ρ
∇ · v +

η

ρ
j2 +

1

ρ
Hν , (2.2.3)

DB

Dt
= (B · ∇)v − (∇ · v)B − ∇ × (η∇ × B) . (2.2.4)

The density change is calculated directly from volume changes and using mass conservation, so equation

(2.2.1) is not actually used. If a plasma element is initially at a pointX = (X1, X2, X3) and moves to a point

x = (x1, x2, x3), then the change in element length is given by

dxi =
∑

α

∂xi

∂Xα
dXα ,

so that the density can be found from

ρ =
ρ0

∆
,

whereρ0 is the original density and∆ is the determinant of the Jacobian transformation matrix,

∆ =

∣

∣

∣

∣

∣

∣

∣

∂x1

∂X1

∂x2

∂X1

∂x3

∂X1

∂x1

∂X2

∂x2

∂X2

∂x3

∂X2

∂x1

∂X3

∂x2

∂X3

∂x3

∂X3

∣

∣

∣

∣

∣

∣

∣

.

When dealing with control volumes, this is the ratio of the final volume to the initial volume, and it is evaluated as

∆ = 1 + (∇ · v)dt . (2.2.5)

Equation (2.2.5) is second order accurate.
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2.2.1 Viscous terms

The viscous terms are implemented through the stress tensorσij and strain rateεij , which add an additional viscous

force to the momentum equation, as

Fν =
∂σij

∂xj
, (2.2.6)

and a heating term to the energy equation,

Hν = εijσij , (2.2.7)

with σij andεij given by

σij = νr

(

εij −
1

3
δij∇ · v

)

,

εij =
1

2

(

∂vi

∂xj
+
∂vj

∂xi

)

,

where the viscosity is defined asνr = νρ, beingν the kinematic viscosity. Note, that the viscous heating is

an added contribution to the internal energy density. Theseequations are completely equivalent to (1.2.29) and

(1.2.30). The normalization for the viscosity is the same asthe one for the resistivity above, hence,

ν̂r =
νr

µL0v0
.

2.2.2 Shock viscosity

At shocks, the gradients become singular and the differential equations are not defined. Hence, LARE uses the

integrated form of the equations to get jump conditions across shocks. Let’s first describe the problem for the

one-dimensional equations withB = 0 (i.e. non magnetic). The jump condition for the pressure across the shock

can be derived, using theRankine-Hugoniot relations(see, for example, Wesseling, 2001), as

p1 − p0 =
γ + 1

4
ρ0(∆v)

2 + ρ0|∆v|

√

(

γ + 1

4

)2

(∆v)2 + c2s ,

wherep1 is the pressure behind the shock,p0 is the pressure in front of the shock,cs =
√

γp/ρ is the sound speed,

and|∆v| is the jump in velocity across the shock. The difference approximation for the derivative of an arbitrary

functionf , to second order, may be written as

df

dx
(xi) =

f(xi+1) − f(xi)

∆x
− f(xi+1) − 2f(xi) + f(xi−1)

2∆x
.

The first order scheme has excessive diffusion away from shocks, but the second order scheme introduces false

oscillations behind the shock. To avoid these problems, onecould introduce some dissipation, only at steep gradi-

ents, consistent with the jump conditions, by adding a scalar q to the pressurep when the computational cells are
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compressed. In one dimension,∆v = ∆x∇ · v, where∆x is the cell size, and

q = ν1ρcs∆x|∇ · v| + ν2ρ∆x
2(∇ · v)2 . (2.2.8)

Note, thatq is always positive, and should only be applied when the cell is being compressed, i.e. when∇ ·v < 0.

The parametersν1 and ν2 are fixed by experimentation, and this additional term is only used when required,

depending on the nature of the experiment. The default values that the code works with areν1 = 0.1 andν2 = 0.5.

They are both dimensionless by construction. Associated with thisartificial viscosity, there is an additional heating

term in the energy equation, given by−q∇ · v/p.
In three dimensions, equation (2.2.8) can be generalised to

q = ν1ρcsL⊥|s⊥| + ν2ρL
2
⊥s

2
⊥ , (2.2.9)

wheres⊥ is the rate of the strain tensor in the direction normal to theshock front, andL⊥ is the distance across

the cell in the direction normal to the shock front.

Remember that the expression above is for non-magnetic problems. In general, LARE uses a tensor shock

viscosity, similar to equation (2.2.9), where the sound speed has been replaced by the fast magnetoacoustic speed

cf , as

σshock
i,j = (ν1ρcfL⊥ + ν2ρL

2
⊥|s⊥|)

(

εij −
1

3
δij∇ · v

)

, (2.2.10)

This is applied to all cells, as significant shear forces may exist across expanding cells, but the associated heating

term is always positive.

2.3 The grid

LARE uses a staggered grid, where scalars and vectors are defined in different points of the computational cell.

This avoids some numerical instabilities known as checkerboard instabilities, and helps with central derivative

calculations. However, it implies an extra degree of complexity when combining different quantities, as we must

make use of (linear) interpolations to define all the required quantities at the exact same location. By not doing

this, results may not be what one is expecting.

All the scalar quantities are defined at the cell volume center, magnetic field components are staggered and lie

on the cell faces, which helps with maintaining∇ · B = 0, and the components of the velocity are staggered with

respect to the magnetic field and the pressure, to avoid checkerboard instabilities, and are defined at the vertices of

the cell. This layout is shown in Figure 2.1. As an additionalfeature of LARE, the mesh can be stretched in any of

the three spatial directions, so that the volume of the cellsmight not be the same within the whole computational

domain.

In what follows, we define the notation within a computational cell, following the terminology of Arber et al.

(2001), to be used in the finite difference scheme. In three dimensions, each cell is defined by the indices(i, j, k).

We begin by defining thecontrol volumeas the volume of each cell,cvoli,j,k (Figure 2.2).
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Figure 2.1: The staggered grid for LARE2D and LARE3D.

⊲ The distances between cell faces in thex, y andz directions aredxbi,j,k, dybi,j,k anddzbi,j,k, respectively,

while the distances between the cell centers aredxci,j,k, dyci,j,k anddzci,j,k (i.e. dxci,j,k is the distance

between the centers of the control volumecvoli,j,k andcvoli+1,j,k).

⊲ The density, internal energy density and plasma pressure, averaged overcvoli,j,k areρi,j,k, ǫi,j,k andpi,j,k,

respectively, and are defined at the cell volume center, at(xc, yc, zc)i,j,k.

⊲ Thex-component of the magnetic field isBxi,j,k, and is defined in the center of the right face at(xb, yc, zc)i,j,k,

wherexbi,j,k = xci,j,k + dxbi,j,k/2. The y and z components of the magnetic field are similarly de-

fined asByi,j,k andBzi,j,k, at the center of the back and top faces, respectively, at(xc, yb, zc)i,j,k and

(xc, yc, zb)i,j,k, whereyb andzb are defined in the same way asxb.

⊲ All the components of the velocity field are defined at the right-top-back vertex, at(xb, yb, zb)i,j,k. These

arevxi,j,k, vyi,j,k andvzi,j,k.

Given these, the density at the cell vertex, namelyρv
i,j,k, can be obtained bycontrol volume averaging, as

ρv
i,j,k =

1

8cvolvi,j,k

i+1
∑

l=i

j+1
∑

m=j

k+1
∑

n=k

ρl,m,ncvoll,m,n , (2.3.1)

wherecvolvi,j,k is thevelocity cell control volume, given by

cvolvi,j,k =
1

8

i+1
∑

l=i

j+1
∑

m=j

k+1
∑

n=k

cvoll,m,n .

The magnetic field components at the cell center are simply the averages of the values on opposing faces, and the

velocity components defined on cell faces, e.g.vxbi,j,k, are the averages of the four vertex values.
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dxb i, j

dyb i, j

(xc, yc) i, j

(xb, yc) i, j

(xc, yb) i, j (xb, yb) i, j

xb = xc + dxb / 2i, j i, j i, j

yb = yc + dyb / 2i, j i, j i, j

Figure 2.2: Notation for the finite difference scheme, in 2D.

From the induction equation, (2.2.4), we can derive the Lagrangian evolutions of the averaged magnetic field

in the control volume,

D

Dt

∫

Bi dτ =

∫

viB · dS−
∫

[∇ × (η∇ × B)]i dτ , (2.3.2)

and of the control volume flux,

D

Dt

∫

B · dS = −
∫

ηj · dl , (2.3.3)

where integrals overdτ anddS in equation (2.3.2) refer to integrals over the volume of a control volume, and its

surface, respectively, and the integral overdl in equation (2.3.3) refers to the line integral around the open surface

integrated over in thedS integral, which is not the same as the closed volume in equation (2.3.2). The remap step

deals only with magnetic fluxes.

In Figure 2.3 we show how the components of the magnetic field are defined at the four boundaries of a

two-dimensional box, including theghost cells, in grey, whose values must be specified by the user as boundary

conditions.

2.4 The Lagrangian step

The Lagrangian step is where all the physics takes place. Themovement of the plasma carries the grid with it,

deforming it in the three spatial coordinates. It is a simplepredictor-corrector scheme, where predicted values

are calculated with timestepδt/2, and the corrected at the full timestepδt. All the derivatives are evaluated on

the original Eulerian grid, resulting in a fully three-dimensional second order scheme, both in time and space. To

distinguish between different time levels, variables withno superscript, e.g.v, refer to variables on the Eulerian

grid at the start of the step; variables with a star superscript, e.g.v∗, are the values after the predictor step, at half

timestep; and variables with the superscript 1, e.g.v1, represent the values at the end of the Lagrangian step, at the

full timestep. The core solver is made for ideal MHD, so we show the equations for the scheme without resistive

terms. Those are introduced separately at the end.
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Figure 2.3: Magnetic field at the LARE2D boundaries and ghostcells, in grey.

2.4.1 Predictor step

First, we can define a total plasma pressure by adding the termof equation (2.2.9) to the common plasma pressure,

so thatPtotal = p+ q, wherep = ρǫ(γ − 1). Hence, the predictor value for the internal energy densityis

ǫ∗ = ǫ− δt

2

Ptotal∇ · v
ρ

, (2.4.1)

where∇ · v is found from the interpolated values of the velocities in the cell faces, as

∇ · v =
vxbi,j,k − vxbi−1,j,k

dxbi,j,k
+
vybi,j,k − vybi,j−1,k

dybi,j,k
+
vzbi,j,k − vzbi,j,k−1

dzbi,j,k
.

The Jacobian of the predictor step is found from equation (2.2.5), as

∆∗ = 1 +
δt

2
∇ · v ,
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so that the density in the predictor step is

ρ∗ =
ρ

∆∗ , (2.4.2)

and the total plasma pressure is given by

P ∗
total = ρ∗ǫ∗(γ − 1) + q . (2.4.3)

Note, that the artificial viscous pressureq is not advanced to the predictor level. From equation (2.3.2), ignoring

the resistive terms in the right hand side, we get the predictor magnetic field components, as

Bx∗ =
1

∆∗

{

Bx+
δt

dxb
[(vxBx)x+ − (vxBx)x−

] +
δt

dyb
[(vxBy)y+ − (vxBy)y−

]

+
δt

dzb
[(vxBz)z+ − (vxBz)z−

]

}

, (2.4.4)

where(vxBx)x+

is the product ofvx andBx averaged to the center of the rightx face atxbi,j,k, and(vxBx)x−

is averaged to the center of the leftx face atxbi−1,j,k. Similarly, we can derive the expressions forB∗
y andB∗

z . All

of the magnetic components are calculated in the cell volumecenter.

Finally, in order to get the predictor velocity at the cell vertex, we use equation (2.2.2), for which we need to

derive the vector force at the cell vertex, which is found from F∗ = (∇ × B∗) × B∗ − ∇p∗, with components

(Fx∗, Fy∗, F z∗), assuming there are no viscous forces, after applying control volume averaging top∗ andB∗, as

in equation (2.3.1), as they are both defined in the cell volume center. The components of the predictor velocity

are given by

vx∗ = vx+
δt

2

Fx∗v

ρv
, (2.4.5)

and so on, where the superscriptv denotes the control volume averaging at the cell vertex.

In order to include the viscous forces, the term in equation (2.2.6) can be directly added to the calculations of

the predictor velocity. The viscous heating is added to the internal energy calculations using equation (2.2.7).

2.4.2 Corrector step

For the corrector step, flux conservation is used, since the Lagrangian step is written for ideal MHD. The compo-

nents of the magnetic field are first converted into fluxes using

φx = Bxdyb dzb ,

φy = By dzb dxb ,

φz = Bz dxb dyb .
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The update of the density control volume for each cell is∆1 = 1 + δt∇ · v∗, and for the internal energy density,

density and velocity at the end of the Lagrangian step, we have

ǫ1 = ǫ− δtP ∗
total

Fx∗

ρ
, (2.4.6)

ρ1 =
ρ

∆
, (2.4.7)

vx1 = vx+ δt
Fx∗v

ρv
, (2.4.8)

with similar equations forvy1 andvz1. Also, the terms corresponding to the viscous force and heating may be

added if required. The magnetic field does not need to be updated, as the remap step deals only with magnetic flux.

Note, that the update of the internal energy density, density and velocities uses the density of the original Eulerian

grid, ensuring control volume mass conservation during theLagrangian step. To finalise, the positions of the grid

cells at the end of the Lagrangian step are calculated using

dxb1i,j,k = dxbi,j,k + (vxb∗i,j,k − vxb∗i−1,j,k)δt ,

dyb1i,j,k = dybi,j,k + (vyb∗i,j,k − vyb∗i,j−1,k)δt ,

dzb1i,j,k = dzbi,j,k + (vzb∗i,j,k − vzb∗i,j,k−1)δt .

2.5 The remap step

The remap step is a purely geometrical mapping of the Lagrangian grid back to the original Eulerian grid. Gradient

limiters are used to maintain monotonicity, and the magnetic field remap is done so that∇ · B = 0 is preserved.

The scheme for remapping uses mass coordinates, for conserving mass, internal energy density and momentum,

to machine precision. However, kinetic and magnetic energyare not conserved in the remap step: This is only

significant at shocks where the limiters flatten gradients inthe remap step. However, further calculations can be

added, by user specification, to conserve kinetic energy in each remap step, by considering the change in kinetic

energy summed over the cells and finding the energy which is lost in the remap, which is then added into the internal

energy as a heating term, thus conserving the energy. This same procedure could be applied to the magnetic energy

losses in the remap step, but that is not implemented in the code. Hence, possible errors in total energy conservation

can be identified as errors in the magnetic field energy.

The remap is done in one-dimensional sweeps. To go over the process we shall then drop the indices(j, k)

and work purely in one dimension. In what follows, the prime superscript, e.g.vx1, refers to the values before the

remap, and the superscriptn+ 1, e.g.vxn+1, refers to the values after the remap.

The condition for the remapping is mass conservation in eachcell, so that the mass in the cell after the remap,

ρn+1dxb, equals the mass before the remap,ρ1dxb1 minus the mass from this Lagrangian cell which overlaps the

Eulerian cell ati+1, dMi, plus the mass from the Lagrangian celli−1 which overlaps the Eulerian celli, dMi−1,

as shown in Figure 2.4. Since the mass before the remap is the same as the initial mass in the original Eulerian

cell, i.e.ρ1dxb1 = ρ dxb, we have

ρn+1
i = ρ+

1

dxbi
(dMi−1 − dMi) , (2.5.1)
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Figure 2.4: Lagrangian displacement of a cell after a timestep.

where

dMi =

(

ρ1
i +

dxbi
2
Di(1 − ψi)

)

vx∗i δt , (2.5.2)

and

ψi =
|vx∗i |δt
dxb1i

.

Note, that in these two equations,vx∗i is the velocity of the boundary, and in 3D this needs to be replaced by

the face-centered velocityvxb∗i . The variableDi is thevan Leer gradient limiter(van Leer, 1979), which is found

as follows. Initially, given a general variablef , the third-order upwind gradient is given by

|D̄i| =
2 − ψi

3

|fi+1 − fi|
dxci

+
1 + ψi

3

|fi − fi−1|
dxci−1

for vx1
i > 0 ,

|D̄i| =
2 − ψi

3

|fi+1 − fi|
dxci

+
1 + ψi

3

|fi+2 − fi+1|
dxci+1

for vx1
i ≤ 0 .

The reason of these being third-order here is simply becauseit costs nothing computationally, but in some cases it

might reduce slightly the numerical dissipation. Now, the magnitude of the gradient obtained is limited using

Di = sgnmax(|D̄i|dxbi , 2|fi+1 − fi| , 2|fi − fi−1|) , (2.5.3)

where

sgn =







sign(fi+1 − fi) if sign(fi+1 − fi) = sign(fi − fi−1) ,

0 otherwise .

The internal energy density remap follows the same procedure as the density remap, such that

ǫn+1
i =

1

ρn+1
i dxbi

(ǫ1i ρ
1
i dxb

1
i + dǫi−1 − dǫi) , (2.5.4)
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Figure 2.5: Lagrangian energy change in mass coordinates.

where

dǫi =

(

ǫ1i +
dxbi

2
Di

(

1 − dMi

ρ1
i dxb

1
i

))

dMi , (2.5.5)

as in Figure 2.5. Now,Di is the van Leer limited gradient of the internal energy density, anddǫi denotes energy,

while ǫi is energy density (energy per unit mass).

The velocity remap is also done by using mass coordinates, thus ensuring conservation of momentum. The

remap is the same as the one for the internal energy density, only taking into account that velocities must first be

averaged to the appropriate faces of the velocity control volume.

The calculations for the magnetic flux remap follow the same approach as that of the density. The total flux

through they face atybi,j,k is unchanged during the Lagrangian step and is given byφy = By dxb dzb. This is

remapped usingvx∗ to find the area of Lagrangian cells overlapping neighboringEulerian cells in thex pass of

the remap. Now, since the flux is defined as a face surface averaged quantity, the velocity must be averaged at the

edge center, being replaced with(vx∗i,j,k + vxi,j,k−1)/2.

The calculations ofdφyi,j,k, they flux remapped from cell(i, j, k) to cell (i+1, j, k), follows the calculations

of dMi. To preserve the solenoidal condition,∇ ·B = 0, the code uses Evans and Hawley’s constrained transport

method (Evans and Hawley, 1988). This requires that

φyn+1
i,j,k = φyi,j,k − dφyi,j,k ,

φyn+1
i+1,j,k = φyi+1,j,k + dφyi,j,k ,

φxn+1
i,j,k = φxi,j,k + dφyi,j,k ,

φxn+1
i+1,j,k = φxi+1,j,k − dφyi,j,k ,

and similarly for the rest of the components. Finally, converting the fluxes back into field components then com-

pletes the remap step.
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2.6 Resistive terms

We are now going to discuss briefly the introduction of non-ideal terms in the LARE code. These come added in a

separate module which calculates the resistivity, diffusion and ohmic heating terms.

Resistivity is not homogeneous in the code. In fact, it is computed as a function of the current density, so that

it activates when the value of the current is above a given critical valuejcrit, as follows,

η = η0 max(0,
|j|
jcrit

− 1) .

This approach allows reconnection only in certain isolatedregions. A background value for the current may also

be given as an input to the code.

The diffusion of the magnetic field is carried out in the Lagrangian step. If it is allowed to happen, conservation

of magnetic flux can no longer be applied, and the magnetic field must be calculated explicitly. This is done by

adding the missing resistive term in the predictor step to the calculations in (2.3.2), taken from equation (2.4.4),

given by

∫

[∇ × (η∇ × B)]i dτ .

This term is, by construction, defined at the centers of the cell faces, as it is the magnetic field, so it does not require

any further averaging. In the corrector step, equation (2.3.3) is used to calculate the change in magnetic flux, from

which the magnetic field components can be directly obtained. Then, the remap step is carried out as in the ideal

case.

The magnetic diffusion creates an extra heating term, theohmic heating, given byηj2, which is calculated at

the cell edges and averaged to the cell center to be used in theenergy update.

The inclusion of artificial viscosity handles shocks correctly, but also makes the solutions more diffusive. To

avoid this, the code includes a term of artificial resistivity through equations (2.3.2) and (2.3.3). This resistivity

has the formv2
A∆t, wherevA is the local Alfvén speed, and is added in the same manner as the artificial viscosity.

2.7 Stability condition

There exists a constraint in the timestep, related to the spatial stepsize, which defines a stability criterion in numer-

ical computations. It has to do, as usual, with the fact that the domain of the numerical experiments is discretised

in points. And it appears from the finite differentiation scheme, which is never exact.

Let’s define thedomain of dependenceof a partial differential equation (PDE) for a given point asthe portion

of the problem domain that influences the value of the solution at that given point. Similarly, the domain of

dependence of an explicit finite difference scheme for a given mesh point is the set of mesh points that affect

the value of the approximate solution at that given mesh point. TheCourant-Friederichs-Lewy (CFL) condition

(Courant et al., 1928, English translation: Courant et al. (1967)) requires that the domain of dependence of the PDE

must lie within the domain of dependence of the finite difference scheme, for each mesh point. Any explicit finite

difference scheme that violates the CFL condition is necessarily unstable, although satisfying the CFL condition

does not necessarily guarantee stability.
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This condition may be derived usingvon Neumannstability analysis for the differentiation scheme (see, for

example, Isaacson and Keller, 1966). In a diffusion type equation, i.e.

dQ

dt
= κ

d2Q

dx2
,

stability can not be guaranteed, unless the numerical timestep,δt, satisfiesδt ≤ 1
2δx

2/κ. This condition can be

interpreted as requiring that the typical length(κδt)1/2 for the diffusion ofQ does not exceed one spatial stepδx,

or equivalently that the physical diffusionκ is not bigger than the numerical diffusion(δx)2/δt.

Hence, in the LARE code, the time-step can be restricted by taking the smaller value from the restriction for

the resistive diffusive term and the viscous diffusive term, so that

δt ≤ min

[

1

2

(δs)2

η
,
1

2

(δs)2

ν

]

, (2.7.1)

for the code to have a chance of being stable.

2.8 Summary

We have presented in this chapter the code we are going to be using for the numerical experiments of this thesis.

The code solves the full set of MHD equations and can include both viscous and resistive terms. Each timestep

is split into a Lagrangian step followed by a remap onto the original grid. This allows all of the physics to be

included into the Lagrangian step, which is built through a simple predictor-corrector scheme. The remap step

includes gradient limiters to help control shocks. The codeuses a staggered grid to prevent the checkerboard

instability and to build conservation laws into the finite difference scheme.

For our purposes, viscosity is switched on, but we work with the non-resistive version of the code. Nonetheless,

we must expect a small amount of numerical diffusion of the magnetic field when situations are pushed to the limit,

i.e. when very small length scales occur and hence large electric current densities are present. This will, however,

decrease considerably when using high spatial resolution,although such runs require more computational power.

The code has been tested widely for solar coronal phenomena,and it has been proved to handle shocks correctly,

allowing the inclusion of non-hyperbolic physics such as resistivity and viscosity, and to accurately find local

temperatures. A set of tests which are well established in the literature are presented in Arber et al. (2001), in order

to prove the validity of the code.

In practise, what is needed for the numerical experiments isa set of initial conditions for the magnetic field,

density, internal energy and velocity, plus the specification of how those quantities should behave at each of the

boundaries of the domain. Boundary conditions have to be setby specifying the values at ghost cells (see Figure

2.3) right outside each boundary of the domain. Those are then taken on each timestep to calculate derivatives at

boundaries.

There is a number of control parameters to be specified by the user, such as grid-size, timestep, viscosity, and

shock viscosity parameters, among others. The last ones areset to zero when possible. Also, we specify the kinetic

energy remap to be applied on each timestep, to ensure energyconservation at shocks.
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Chapter 3

Relaxation of Parallel Magnetic Fields

3.1 Introduction

In our first set of experiments, we consider the case of a hydromagnetic perturbation over a homogeneous two-

dimensional magnetic field with parallel field lines in a given spatial direction. This configuration is absolutely

general and might be compared with different solar environments such as a region in a coronal prominence or part

of a coronal loop. The results shown in this chapter can be found in Fuentes-Fernández et al. (2010).

Looking at this simple structure allows us to study in detailthe direct consequences of introducing a non-zero

plasma beta in relaxation experiments. Also, it provides aneasy context to look closely at the energy evolution

during the dynamical process. Furthermore, making use of perturbation theory, we are able topredictmathemati-

cally the final equilibrium states as functions of the initial disturbances, which could be purely magnetic, thermal,

or both.

To test the analytical calculations, we show a series of experiments in which the system is perturbed by a local

small enhancement in the plasma pressure. We analyse one specific experiment in detail, and then we evaluate the

validity of the linear predictions for the whole series of experiments. According to equation (1.3.8), for final state

to be in equilibrium it is required that the plasma pressure is constant along field lines. In principle, the system

would be allowed to relax to the minimum magnetic energy state, redistributing the plasma pressure evenly over

the whole domain, but that is not possible, as there are no resistive terms in the equations, and hence, no magnetic

diffusion by ohmic dissipation in the relaxation. The field is frozen to the plasma. Thus the plasma, trying to

expand because of the pressure enhancement, has to carry themagnetic field with it and destroy its homogeneity.

3.2 Linear equations in 2D

Letx andy be the coordinates of the two-dimensional problem. The initial setup involves a uniform magnetic field

pointing in the verticaly-direction,B0 = B0êy, and a background plasma with constant pressurep0, densityρ0

and internal energyǫ0, with no initial flow (i.e.v0 = 0). The initial disturbances are supposed to be small, in order

to stay in the linear regime. Expressing each quantityq(x, y, t) as the sum of a background constant value plus a

perturbation,q(x, y, t) = q0 + q1(x, y, t), where the subscript0 indicates the background constant value, and the

subscript1 indicates the first order perturbation, we get the expressions for the relevant quantities as functions of
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space and time, as

ρ(x, y, t) = ρ0 + ρ1(x, y, t) (with ρ1 ≪ ρ0 = const) ,

ǫ(x, y, t) = ǫ0 + ǫ1(x, y, t) (with ǫ1 ≪ ǫ0 = const) ,

p(x, y, t) = p0 + p1(x, y, t) (with p1 ≪ p0 = const) ,

B(x, y, t) = B0 + B1(x, y, t) (with |B1| ≪ |B0| = const) ,

v(x, y, t) = v1(x, y, t) (with |v1| very small) .

To derive the set of first order equations that describe the linear evolution of the field and the plasma, we have to

take into account that the derivatives of the background quantities are always zero, and we neglect the second order

terms that involve quadratic or higher order terms (i.e. products of the perturbations).

We first consider the linearised equation of state. The background and first order perturbation of the plasma

pressure are related to the plasma density and internal energy through equation (1.2.24), such that

p0 = ρ0ǫ0(γ − 1) , (3.2.1)

p1 = (ρ0ǫ1 + ρ1ǫ0)(γ − 1) . (3.2.2)

Also, the total pressure, defined as the sum of the plasma pressure,p, and the magnetic pressure,B2/2, may be

written aspT = pT0 + pT1, using

pT0 = p0 +B2
0/2 , (3.2.3)

pT1 = p1 + (B0 · B1) . (3.2.4)

Now, from the normalised ideal MHD equations, (1.6.1) to (1.6.4), we get

∂ρ1

∂t
= −ρ0∇ · v1 , (3.2.5)

ρ0
∂v1

∂t
= −∇p1 + (∇ × B1) × B0 + Fν1 , (3.2.6)

∂p1

∂t
= −γp0∇ · v1 , (3.2.7)

∂B1

∂t
= ∇ × (v1 × B0) , (3.2.8)

with Fν1 being the linearized viscous force, from equation (1.2.29),

Fν1 = ρ0ν

(

∇2v1 +
1

3
∇ (∇ · v1)

)

.

whereν is the kinematic viscosity. Note, that the heating term doesnot appear in equation (3.2.7), since it is purely

second order. Thus the process is adiabatic within the linear regime, and there is no heating of any kind taking

place: The entropy per unit mass,s ∼ p/ργ , is conserved, for each single fluid element, and for the entire box. For

the two-dimensional problem, we can rewrite the equations above in scalar form, decomposing all the vectorial
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quantities in components, as

∂ρ1

∂t
= −ρ0∇ · v1 , (3.2.9)

ρ0
∂v1x

∂t
= −∂p1

∂x
−B0

∂B1y

∂x
+B0

∂B1x

∂y
+ ρ0ν

(

∇2v1x +
1

3

∂

∂x
(∇ · v1)

)

, (3.2.10)

ρ0
∂v1y

∂t
= −∂p1

∂y
+ ρ0ν

(

∇2v1y +
1

3

∂

∂y
(∇ · v1)

)

, (3.2.11)

∂p1

∂t
= −γp0∇ · v1 , (3.2.12)

∂B1x

∂t
= B0

∂v1x

∂y
, (3.2.13)

∂B1y

∂t
= −B0

∂v1x

∂x
, (3.2.14)

wherev1x, v1y, B1x andB1y are thex andy components of the perturbed velocity and perturbed magnetic field,

respectively. Plasma pressure, density and internal energy are related by the perfect gas law, equations (3.2.1) and

(3.2.2), withγ = 5/3.

From the conservation of entropy, a relation between the plasma pressure and density perturbations may be

obtained, within first order (i.e. neglecting the terms involving products of perturbations), using

p0 + p1

(ρ0 + ρ1)γ
=

p0 + p1

ργ
0 + γρ1ρ

γ−1
0

=
p0

ργ
0

(

1 +
p1

p0

)(

1 +
γρ1

ρ0

)−1

=
p0

ργ
0

(

1 +
p1

p0

)(

1 − γρ1

ρ0

)

=
p0

ργ
0

(

1 +
p1

p0
− γρ1

ρ0

)

= constant .

Hence,

∆p1

p0
− γ∆ρ1

ρ0
= 0 ,

where∆ indicates the difference between final and initial state of the perturbation, such that

∆p1 = c2s∆ρ1 , (3.2.15)

wherecs =
√

γp0/ρ0 is thesound speed.

In order to get a solution of the above equations, by properlyunderstanding what is happening and being able

to make some analytical progress, we first consider perturbations that are purely perpendicular and purely parallel

to the magnetic field, and solve the set of equations (3.2.9) to (3.2.14) for the two one-dimensional cases separately,

for then combining them to find the solution for a general two-dimensional hydromagnetic perturbation.
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3.2.1 1D Perturbation across field lines

Let’s consider first a perturbation varying only in the direction perpendicular to the magnetic field lines,x. The

magnetic field vector has a non-zeroy-component,B1(x, t) = B1y(x, t)êy, while the velocity has a non-zero

x-component,v1(x, t) = v1x(x, t)êx. Equations (3.2.9) to (3.2.14) reduce to

∂ρ1

∂t
= −ρ0

∂v1x

∂x
, (3.2.16)

ρ0
∂v1x

∂t
= −∂pT1

∂x
+ ρ0ν

′ ∂
2v1x

∂x2
, (3.2.17)

∂p1

∂t
= −γp0

∂v1x

∂x
, (3.2.18)

∂B1y

∂t
= −B0

∂v1x

∂x
, (3.2.19)

whereν′ = 4ν/3, andpT1 is the perturbed total pressure, from equation (3.2.4), given by

pT1 = p1 +B0B1y . (3.2.20)

The equation governing the final equilibrium state can be obtained using equation (3.2.17). In a static equilibrium,

the time dependence disappears, and the velocity is zero, thus, the equilibrium requires constant total pressure

everywhere,

∂pT1

∂x
= 0 . (3.2.21)

That is, total pressure is constant everywhere in the final equilibrium state. Combining equations (3.2.18) and

(3.2.19), we get the evolution of the total pressure as

1

ρ0

∂pT1

∂t
= −(c2s + c2A)

∂v1x

∂x
, (3.2.22)

wherecA = B0/
√
ρ0 is the (normalised)Alfvén speed(normally defined ascA = B0/

√
µρ0).

With a bit of manipulation, we can derive a differential equation for the total pressure. Differentiating (3.2.22)

with respect tox, substituting the value of∂2v1x/∂x
2 given by (3.2.10), and differentiating all with respect tox

again, we get

1

ρ0

∂

∂t

(

∂2pT1

∂x2

)

= −c
2
s + c2A
ν′

(

1

ρ0

∂2pT1

∂x2
+
∂2v1
∂t∂x

)

.

The differentiating of (3.2.22) with respect tot gives us the last term in this equation, obtaining, finally,

∂2pT1

∂t2
= (c2s + c2A)

∂2pT1

∂x2
+ ν′

∂

∂t

(

∂2pT1

∂x2

)

. (3.2.23)

Equation (3.2.23) is thewave equation for fast magnetoacoustic waves. These are longitudinal waves that propa-

gate in the direction perpendicular to the magnetic field, compressing and expanding both the magnetic field and

the plasma. Their speed of propagation is given by thefast magnetoacoustic speed,

cf =
√

c2s + c2A , (3.2.24)
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and the second term in the right hand side of (3.2.23) is the damping mechanism, which is controlled by the

kinematic viscosity.

Assuming that the total pressure can be considered as a continuous, periodic function, the solution of last

equation is given by Fourier analysis, and can be expressed as a superposition of plane waves, such as

pT1(x, t) = Re
(

∑

k

ϕkei(kx−ωt)

)

, (3.2.25)

Each value of thewave numberk (wherek is real) corresponds to a different oscillation mode. In general,ω

will be a complex quantity dependent onk, with a real part, representing the frequency, and an imaginary part,

representing the damping rate for each mode. In the same way,the constantϕk is a complex quantity as well, and

may be decomposed into real and imaginary constants. Each single mode, characterized by the different values of

k, is not coupled to the other modes, and is a solution of the wave equation itself. Hence, we can consider each

wave with a generic wave number separately.

Forgetting for one moment the fact that only the real part of this expression makes physical sense, we may

substitute (3.2.25) into (3.2.23), replacing the spatial derivatives byik, and the time derivatives by−iω, to obtain

a second grade equation forω(k), referred as to thedispersion relation:

ω2 + ik2ν′ω − c2fk
2 = 0 . (3.2.26)

Equation (3.2.26) has the solutionω = a ± bi, wherea, the real frequency of the wave, andb, the damping term,

are given by

a =
k

2

√

4c2f − k2ν′2 , (3.2.27)

b =
1

2
k2ν′ . (3.2.28)

Notice, from the square root in (3.2.27), that in order to have a harmonic mode, the wave numberk must satisfy

k2ν′2 < 4c2f , and higher modes will be damped without any type of oscillation.

On the other hand, from equations (3.2.27) and (3.2.28), we find that the mode withk = 0 hasω = 0. From

equation (3.2.25), the expression forpT1(x, t) can be written as a constant coefficient, sayϕ0, plus a sum of terms

which will be proportional to a mix of cosines and sines ofkx andat and to the exponentiale−bt. It is this last

term which matters, as it vanishes at the final equilibrium, for t→ ∞, thus leaving the total pressure as a constant

given byϕ0 everywhere, in agreement with equation (3.2.21). As this constant does not vary in time, it can be

calculated fort = 0 as the first coefficient of the Fourier expansion ofpT1(x, 0), namely

pT1(x, 0) =
a0

2
+
∑

n

[an cos(2πnx/Lx) + bn sin(2πnx/Lx)] ,
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whereLx is the length of thex-domain, and the coefficients are given by

a0 =
2

Lx

∫

pT1(x, 0) dx ,

an =
2

Lx

∫

pT1(x, 0) cos(2πnx/Lx) dx ,

bn =
2

Lx

∫

pT1(x, 0) sin(2πnx/Lx) dx .

The key point is thatϕ0 = a0, i.e. the constant coefficient from the Fourier analysis of (3.2.25) forpT1(x, t) is

the same as the constant coefficient from the Fourier expansion forpT1(x, 0), so the perturbed total pressure in the

final equilibrium is given by that constant, which is thehomogeneous redistribution of the initial total pressure,

given by

pT1(∞) =
1

Lx

∫

pT1(x, 0) dx =
1

Lx

∫

(p1(x, 0) +B0B1y(x, 0)) dx , (3.2.29)

where thedx integrals are integrals over the length of thex-domain,Lx.

From equation (3.2.22) we get an expression for the velocitygradient, as

∂v1x

∂x
= − 1

ρ0c2f

∂pT1

∂t
,

which we can substitute into equations (3.2.16), (3.2.18) and (3.2.19), giving

∂ρ1

∂t
=

1

c2f

∂pT1

∂t
, (3.2.30)

∂p1

∂t
=
c2s
c2f

∂pT1

∂t
, (3.2.31)

∂B1y

∂t
=

B0

ρ0c2f

∂pT1

∂t
. (3.2.32)

Equations (3.2.30) to (3.2.32) show the time evolution of plasma density, pressure and magnetic field during the

whole dynamical process. We emphasize the fact that all the time dependencies appearonly on the total pressure

of the system. Integrating now fromt = 0 to t = ∞, we obtain the perturbed quantities for the final equilibrium

state, as functions of the perturbed total pressure, to be added to the background values:

ρeq
1 (x) = ρ1(x, 0) +

1

c2f
[pT1(∞) − pT1(x, 0)] , (3.2.33)

peq
1 (x) = p1(x, 0) +

c2s
c2f

[pT1(∞) − pT1(x, 0)] , (3.2.34)

Beq
1y(x) = B1y(x, 0) +

B0

ρ0c2f
[pT1(∞) − pT1(x, 0)] . (3.2.35)

Equations (3.2.33), (3.2.34) and (3.2.35) state that no matter how we set our initial disturbance, the final

equilibrium distributions are completely determined by the initial and the final total pressures of the system, which

are given by the solution of the wave equation. Also, they arecompletely independent of the viscosity, but the

dependence with the spatial coordinate remains. That is, the pressure gradient is not zero, and so, the equilibrium
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described by these equations is not force-free in nature, but the pressure gradient must be balanced by a non-zero

Lorentz force. Note, that also the adiabatic equation for the linear regime given in equation (3.2.15) is satisfied.

The distribution of the flux function,Az, for the final equilibrium can be derived fromBy = −∂Az/∂x, as

Aeq
z (x) = −B0x−

∫ x

xmin

{

B1(x, 0) +
B0

ρ0c2f
[pT1(∞) − pT1(x, 0)]

}

dx , (3.2.36)

where the first term is given by the integration of the constant backgroundB0. Last, the current density is given by

jeqz (x) = −∂
2Az(x, t)

∂x2
=
∂By

∂x
. (3.2.37)

Finally, we may want to express the final pressure as a function of Az , since in the equilibrium, the plasma

pressure is constant along field lines, as seen in equation (1.3.8). This may be achieved by combining equations

(3.2.34) and (3.2.36). For a small perturbation, things canbe a lot easier if we neglect the second term on the right

hand side of equation (3.2.36), assuming that

∣

∣

∣

∣

∣

∫ x

xmin

{

B1(x, 0) +
B0

ρ0c2f
[pT1(∞) − pT1(x, 0)]

}

dx

∣

∣

∣

∣

∣

≪ |B0x| .

Then, our equilibrium state is defined by

peq(Az) = p0 + p1(−Az/B0, 0) +
c2s
c2f

[pT1(∞) − pT1(−Az/B0, 0)] . (3.2.38)

3.2.2 1D perturbation along field lines

Let’s consider now a perturbation varying only in the direction of the main magnetic field,y. The magnetic field

vector remains unperturbed, as it points along the direction of the perturbation and the velocity has a non-zeroy-

component,v1(y, t) = v1y(y, t)êy. Hence, the evolution is purely non-magnetic, and will leadto a homogeneous

redistribution of the plasma pressure all along the field lines. Equations (3.2.9) to (3.2.14) reduce to

∂ρ1

∂t
= −ρ0

∂v1y

∂y
, (3.2.39)

ρ0
∂v1y

∂t
= −∂p1

∂y
+ ρ0ν

′ ∂
2v1y

∂y2
, (3.2.40)

∂p1

∂t
= −γp0

∂v1y

∂y
, (3.2.41)

and the equilibrium is now given by a constant plasma pressure everywhere,

∂p1

∂y
= 0 .

From equation (3.2.41), we get

1

ρ0

∂p1

∂t
= −c2s

∂v1y

∂y
. (3.2.42)
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By the appropriate combination of equations (3.2.40) and (3.2.42), we get now a wave equation for the plasma

pressure,

∂2p1

∂t2
= c2s

∂2p1

∂y2
+ ν′

∂

∂t

(

∂2p1

∂y2

)

. (3.2.43)

Equation (3.2.43) define acoustic waves, which are also longitudinal, but propagate in the direction along the

magnetic field, with the speed of propagation being the soundspeed of the medium, defined before ascs =
√

γp0/ρ0. Note, that this speed is by definition slower than the fast magnetoacoustic speed defined in equation

(3.2.24) for the horizontal propagation.

As before, the plasma pressure can be expressed as a superposition of plane waves, as in equation (3.2.25),

with the dispersion relation

ω2 + ik2ν′ω − c2sk
2 = 0 ,

whereω = a± bi, and

a =
k

2

√

4c2s − k2ν′2 ,

b =
1

2
k2ν′ .

The solution is given by a redistribution of the plasma pressure along the field lines, and may be written as

p1(∞) =
1

Ly

∫

p1(y, 0) dy , (3.2.44)

ρeq
1 (y) = ρ1(y, 0) +

1

c2s
[p1(∞) − p1(y, 0)] , (3.2.45)

where thedy is the integral over they-domain,Ly. This time, there is no magnetic Lorentz force to counteracta

plasma pressure gradient, hence, the plasma pressure just redistributes evenly all along the field lines.

3.2.3 2D perturbation

We combine now the results of the two previous sections to obtain a general solution for equations (3.2.9) to

(3.2.14). Once again, setting the velocities to zero, we getthe equations governing the 2D equilibrium, from

equations (3.2.10) and (3.2.11), as

∂

∂x
(p1 +B0B1y) −B0

∂B1x

∂y
= 0 , (3.2.46)

∂p1

∂y
= 0 . (3.2.47)

Equation (3.2.47) tells us that the final plasma pressure cannot depend ony, so the solution for the pressure

must remain one-dimensional, i.e. only dependent onx. On the other hand, equation (3.2.46) does not have a

direct interpretation, as both spatial derivatives are involved. The termp1 + B0B1y represents the perturbed total

pressure from Section 3.2.1, and the new termB0B1x represents the magnetic tension due to the curvature of the

field lines, which was zero in the one-dimensional cases. As usual, when looking for a periodic solution, Fourier
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analyzing makes life simpler. Only if our functions are periodic in bothx andy, we can express the first order

terms as functions ofei(kx+ly−ωt), where each pair(k, l) represents one single mode of oscillation in the global

time evolution. Then, equations (3.2.46) and (3.2.47) can be rewritten as

k (p1 +B0B1y) − l B0B1x = 0 ,

l p1 = 0 .

1) The modek = 0, l = 0 represents the unperturbed background values.

2) Fork 6= 0, l = 0, the equation of the equilibrium is

∂

∂x
(p1 +B0B1y) = 0 . (3.2.48)

These modes only depend onx, and represent the homogeneous redistribution of the totalpressure studied in

Section 3.2.1.

3) Fork = 0, l 6= 0 we get

∂p1

∂y
= 0 , (3.2.49)

∂B1x

∂y
= 0 . (3.2.50)

These modes do not modifyB1y, instead they simply remove both the vertical gradients of magnetic tension

and plasma pressure as in Section 3.2.2. Each of them is treated individually, as they are not coupled in the

equations.

4) Finally, for those modes withk 6= 0, l 6= 0, we get

kB1y − lB1x = 0 ,

which can be combined with the solenoidal condition for the magnetic field,∇ ·B = 0, or, within our Fourier

notation,

kB1y + lB1x = 0 .

From these equations, we can conclude that, in the final equilibrium, the existence of a variation ofB1y in the

x-direction is totally incompatible with a variation ofB1x in they-direction. Hence, the modes with both wave

numbersk andl non-zero may appear in the dynamical evolution, butnot in the final equilibrium distributions.

Therefore, with our uniform background magnetic field pointing straight in the verticaly-direction, the final

equilibrium state is a combination of the background values(k = 0, l = 0), plus the vertical non-magnetic

evolution to a state with plasma pressure that is constant alongy, and/or the smoothing of the horizontal component

of the magnetic field (k = 0, l 6= 0), plus the one-dimensional hydromagnetic evolution across the field lines

(k 6= 0, l = 0). Note, that a perturbed magnetic field in the horizontal direction,B1x (i.e. a curved magnetic field),

is not coupled with eitherp1 or B1y, so the final magnetic field lines remain straight, andB1x is not involved in

the final equilibrium.

Hence, we may calculate the analytical two-dimensional final equilibrium in two steps. Let’s denote the quan-

tities after the vertical non-magnetic evolution with a star superscript, e.g.p∗1. First, the non-magnetic evolution in
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the vertical direction, along the field lines,

p∗1(x) =
1

Ly

∫

p1(x, y, 0) dy , (3.2.51)

ρ∗1(x, y) = ρ1(x, y, 0) +
1

c2s
[p∗1(x) − p1(x, y, 0)] , (3.2.52)

with the total pressure given by

p∗T1(x) = p∗1(x) +B0B1y(x, 0) . (3.2.53)

And second, the hydromagnetic evolution in the horizontal direction, across the field,

ρeq
1 (x, y) = ρ∗1(x, y) +

1

c2f
[pT1(∞) − p∗T1(x)] , (3.2.54)

peq
1 (x, y) = p∗1(x) +

c2s
c2f

[pT1(∞) − p∗T1(x)] , (3.2.55)

Beq
1y(x, y) = B1y(x, 0) +

B0

ρ0c2f
[pT1(∞) − p∗T1(x)] , (3.2.56)

not forgetting to add the respective constant background values.

When analyzing the validity of the results above for a non-ideal experiment, it is important to remember that

equations (3.2.52) to (3.2.56) are restricted by the linearapproximation, while equation (3.2.51) is not. Hence,

we expect our analytical calculations for the pressure to hold for much larger initial perturbations than the ones

for the density. If the initial pressure disturbance is not small, but the linear expression for the plasma pressure is

still valid, the adiabatic condition (i.e.p/ργ = constant) gives us a better approximation for the final equilibrium

plasma density, calculated as

ρeq(x, y) =

(

peq(x, y) ργ(x, y, 0)

p(x, y, 0)

)1/γ

. (3.2.57)

We shall make a note about the two speeds involved in the solutions (3.2.54) to (3.2.56). The sound speed,cs,

is calculated from the background plasma pressure and density, but note how our choice of an ideal polytropic gas,

i.e. equation (1.2.24), removes the dependence on the density in the sound speed. And the fast magnetoacoustic

speed is defined in equation (3.2.24). Hence, we can derive the general expressions of our two characteristic speeds

as

cs =
√

ǫ0γ(γ − 1) , (3.2.58)

cf =

√

B2
0

ρ0
+ ǫ0γ(γ − 1) . (3.2.59)

Equation (3.2.58) defines the characteristic speed of the vertical non-magnetic evolution, and (3.2.59) defines the

characteristic speed of the horizontal evolution. Of course, the dynamical process is more complicated than that.

These two evolutions do not occur independently, as the process is two-dimensional. The system does not evolve

in the vertical direction first, and then in the horizontal direction, nor the opposite. In fact, there might be a whole

family of magnetoacoustic waves relaxing the system down tothe final equilibrium. However, the equations are
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such that we can find the final equilibrium stateas if the two one-dimensional evolutions occurred separately, and

thus allowing us to make predictions.

3.2.4 Overview

So far, we have derived explicit analytical expressions forthe solution of a generic hydromagnetic perturbation

imposed over a straight and uniform magnetic field, embeddedin a thermal plasma. To do this, we restricted the

calculations to the linear regime, in which the perturbations are assumed to be small. In general terms, “small”

means that the products of these perturbed quantities have to be negligible when compared with the linear terms.

But the character of being “negligible” can only be examinedby direct comparison with the exact results to the

equations. Although, in general, physical processes that evoke natural events are not linear, in some cases, one

can find a regime where terms of higher order than linear do notadd significant effects, and hence, the first-order

approximation does a good job.

Next, we consider a series of numerical experiments to evaluate for what range of parameters our linear results

are valid. If the results from above are only valid for a regime of really small perturbations, then those results are

meaningless. If they work for perturbations in some way comparable with the background quantities, then they

may have some potential.

3.3 Numerical experiments: Setup

The numerical results are obtained through a series of experiments, using the LARE code, where the magnitude of

the same type of perturbation is increased systematically.Since these are the first series of experiments discussed

in this thesis, we present the numerical setup in careful detail, specifying the way we imposed the boundary

conditions of the code, using values at ghost cells outside the numerical domain, together with the specification

of the initial conditions, which include the background unperturbed quantities and the initial perturbations which

break the equilibria, and the calculations of the perturbedtotal pressure, which determines the characteristics of

the final equilibrium states.

3.3.1 Numerical specifications

The numerical domain is a square box with a uniform grid of256×256 points. The length of the domain is

Lx × Ly = 1 × 1, and bothx andy vary from0 to 1. The background magnetic field is pointing in the vertical

y-direction and all the perturbations depend on bothx andy. The top and bottom boundaries of the box are

periodic, so that the field lines are not line-tied, allowingthem to move entirely together with the movement of the

plasma fluid. The boundaries on the left and right sides are closed. The precise conditions that has been set at the

boundaries of LARE are specified below.

The periodic boundaries on the top and bottom mean that outflows at the top are coded as inflows at the bottom,

and vice versa. The code has this option to be set up automatically by just choosing the boundaries to be periodic.

For the LARE discretization terminology, this is transcribed into two rows of ghost cells for each boundary (see
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Figure 2.3), as

Top boundaries : Bottom boundaries :

Bx(i, ny + 1) = Bx(i, 1) Bx(i, 0) = Bx(i, ny)

Bx(i, ny + 2) = Bx(i, 2) Bx(i,−1) = Bx(i, ny − 1)

By(i, ny + 1) = By(i, 1) By(i,−1) = By(i, ny − 1)

By(i, ny + 2) = By(i, 2) By(i,−2) = By(i, ny − 2)

ǫ(i, ny + 1) = ǫ(i, 1) ǫ(i, 0) = ǫ(i, ny)

ǫ(i, ny + 2) = ǫ(i, 2) ǫ(i,−1) = ǫ(i, ny − 1)

ρ(i, ny + 1) = ρ(i, 1) ρ(i, 0) = ρ(i, ny)

ρ(i, ny + 2) = ρ(i, 2) ρ(i,−1) = ρ(i, ny − 1)

On the other hand, closed boundaries on the left and right mean that flows approaching the boundary must bounce

back into the numerical domain. In general, specifying closed boundaries is not a trivial problem, and doing it

incorrectly can cause losses through the boundaries, involving the breaking of conservation laws. Our specification

of closed boundaries is made by setting the quantities to be constant (or maxima or minima) across them, or, in other

words, setting their derivatives with respect to the coordinate normal to the boundary as zero. This is translated

into LARE as

Right boundaries : Left boundaries :

Bx(nx + 1, j) = Bx(nx − 1, j) Bx(−1, j) = Bx(1, j)

Bx(nx + 2, j) = Bx(nx − 2, j) Bx(−2, j) = Bx(2, j)

By(nx + 1, j) = By(nx, j) By(0, j) = By(1, j)

By(nx + 2, j) = By(nx − 1, j) By(−1, j) = By(2, j)

ǫ(nx + 1, j) = ǫ(nx, j) ǫ(0, j) = ǫ(1, j)

ǫ(nx + 2, j) = ǫ(nx − 1, j) ǫ(−1, j) = ǫ(2, j)

ρ(nx + 1, j) = ρ(nx, j) ρ(0, j) = ρ(1, j)

ρ(nx + 2, j) = ρ(nx − 1, j) ρ(−1, j) = ρ(2, j)

Note, how the valueBy(i, 0) is not specified as a boundary in LARE, but as an initial condition. For the exper-

iments of this section, this choice of closed boundaries behaves perfectly, and in fact, it has been confirmed that

the choice of periodic or closed boundaries makes no difference. We have shown here the specification for closed

boundaries to illustrate the two different options. In the case of closed boundaries, all the velocities at the ghost

cells are set to zero.

3.3.2 Initial conditions

The initial equilibrium is a uniform magnetic field, pointing along the verticaly-direction, which is embedded in a

plasma with uniform pressure, density and internal energy,and with no velocities. The strength of the background

uniform magnetic field and the background internal energy are fixed, and have the values ofBy = 1.0 andǫ0 = 1.5,

respectively. The background density,ρ0, is constant everywhere, and its value is varied from experiment to
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Background Perturbation
q q0 q1(t = 0)
ρ ρ0 0.0
ǫ 1.5 ǫ1(x, y, 0)
p 2ρ0

2
3ρ0ǫ1

|B| 1.0 0.0
|v| 0.0 0.0

Table 3.1: Constant background values and initial perturbations for the numerical experiments.

experiment, as it controls the background plasma beta, i.e.the ratio of the plasma pressure to the magnetic pressure,

which is defined as

β0 =
2p0

B2
0

=
2ρ0ǫ0(γ − 1)

B2
0

= 2ρ0 , (3.3.1)

The initial perturbation is chosen to be a Gaussian enhancement of the internal energy. The initial perturbation

of the density is set to zero, so that the enhancement in the plasma pressure is proportional to that of the internal

energy. The magnetic field is left unperturbed initially, sothe initial perturbed total pressure is just the perturbed

plasma pressure. The expression for the internal energy perturbation is

ǫ1(x, y, 0) = a exp

[

− (x− b)2

2c2

]

exp

[

− (y − b)2

2c2

]

, (3.3.2)

hence, the perturbation in the plasma pressure, according to equation (3.2.2), is given by

p1(x, y, 0) = ρ0(γ − 1) a exp

[

− (x− b)2

2c2

]

exp

[

− (y − b)2

2c2

]

, (3.3.3)

where the Gaussian is taken to be centered in the domain, i.e.b = 0.5, its width is held fixed for all the experiments,

c = 0.05, anda defines the amplitude of the perturbation, which, as the background plasma density, varies from

experiment to experiment.

The value ofa defines the ratio of the maximum value of the perturbed plasmapressure to the background

plasma pressure, what we have calledP , as follows

P =
max(p1)

p0
=
ρ0(γ − 1) a

ρ0ǫ0(γ − 1)
=

a

ǫ0
=

2

3
a . (3.3.4)

In Table 3.1 we summarise the values for the background quantities and the initial perturbations for our ex-

periments. The values which are not specified with a number are subject to changes in the plasma beta and the

amplitude of the perturbation. Lastly, we can also give a number to the sound speed, which, as we discussed earlier,

depends only on the background internal energy. This iscs =
√

5/3 ≈ 1.29. This speed will be compared later

with the fast magnetoacoustic speed of the experiments.

The viscosity parameters are the same for all the experiments, for consistency. There are three parameters to

be set, namely the linear and quadratic shock viscosities from equation (2.2.10),ν1 andν2, respectively, and the

real viscosity,νr, which is the kinematic viscosity times the plasma density,νr = νρ. The real viscosity is set to

νr = 0.001, and both shock viscosities are set tozero. The choice of no shock viscosity does not cause problems in
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the relaxation, and may avoid extra complications when analyzing the dynamical evolution of the system. Hence,

we maintain this choice, if possible, throughout the whole thesis.

3.3.3 Perturbed total pressure

Before the results are discussed, let’s get the expression for the one and only quantity that needs to be calculated for

comparing the equilibrium solutions with the analytical equilibrium results. That is, the total pressure. Combining

equations (3.2.51) and (3.2.53) with the initial conditions of our numerical experiments, we can get the perturbed

total pressure after the non-magnetic vertical evolution,as

p∗T1(x) = p∗1(x)

=

∫ 1

0

p1(x, y, 0) dy

= ψ ρ0(γ − 1) a exp

[

− (x− b)2

2c2

]

, (3.3.5)

whereψ is a constant given by the error function,erf(x) = 2√
π

∫ x

0 e−x2

dx, as

ψ =

∫ 1

0

exp

[

− (y − b)2

2c2

]

dy = c

√

π

2
erf(1) .

The final analytical perturbed total pressure is constant, and is given by

pT1(∞) =

∫ 1

0

p∗T1(x)dx =

∫ 1

0

∫ 1

0

p1(x, y, 0) dydx . (3.3.6)

Equations (3.3.5) and (3.3.6), together with the background quantities, from which we can calculate the sound

and fast magnetoacoustic speeds given in (3.2.58) and (3.2.59), give all the necessary ingredients for obtaining all

the equilibrium distributions, within the linear regime.

3.4 Numerical experiments: Results

In this section, we analyse closely the results from one single experiment, for which we have specified the back-

ground density and the amplitude of the perturbation asρ0 = 0.1 anda = 1.5, respectively. Hence, the background

plasma beta and the ratioP , for the sample experiment, are

β0 = 0.2 ,

P = 1 .

The fast magnetoacoustic speed for this experiment is givenby equation (3.2.59), ascf ≈ 3.42, which is about

two and a half times larger than the sound speed. For completeness, the value of the Alfvén speed iscA ≈ 3.16,

which is slightly smaller than the fast speed.

Below, we first have a look to the evolution at the integrated energies of the system: internal energy, kinetic

energy and magnetic energy. Then we look at the distributions of plasma pressure, density and current density
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for the initial perturbed state and final equilibrium state,and finally we compare the results of the numerical

experiments with the results from the linear analysis.

3.4.1 Energetics

We shall first look at the evolution of the energies in the system, to check that the experiment has been carried out

successfully. Figures 3.1 and 3.2 show the time evolution ofthe four energies of the system: kinetic, magnetic,

internal and total, integrated over the whole box, using sound wave time units, as the time for a sound wave to get

from the perturbation at the center of the box, to the top or bottom boundary,τs = 0.5/cs. We can appreciate the

complex pattern of oscillations as a result of an infinite sumof individual modes.

First, as we expect the system to be relaxed at the end of the experiments, the kinetic energy must have dropped

to zero. Remember that this energy starts at zero as well, since the initial prescribed velocity is zero everywhere.

Thus the kinetic energy grows quickly from zero and then relaxes slowly until it vanishes, showing a series of

oscillations which account for the different families of waves that propagate and are damped during the relaxation

process.

The system also starts with a certain amount of internal and magnetic energy. These two show the same

types of complex oscillations as the kinetic energy, which have to be damped out in the final equilibrium. The

contractions and dilatations of the plasma carrying the magnetic field imply that the magnetic field gets stressed

at the first timesteps of the dynamical process, before it relaxes back to a different equilibrium state. Hence, the

overall magnetic energy is increased during the dynamical relaxation process.

Now, if there are no losses across the boundaries, then the total energy, as a sum of the three energies above,

must be conserved in the whole process. Hence, if the value ofboth the kinetic and magnetic energy rises during

the relaxation, then the internal energy must drop. In otherwords, the energy to drive the relaxation process comes

from the enhanced internal energy of the plasma.

Note, that the initial magnetic field is unperturbed, and so,the initial magnetic configuration is the state with

minimum magnetic energy. Therefore, the final magnetic energy has to be equal or higher than the initial. Any

difference of energy must be taken from the internal energy.At the final equilibrium, the internal energy is reduced

by the same amount as the magnetic energy has increased. The higher the amplitude of the initial perturbation, the

higher the amount of the transferred energy. Since the perturbations are small, these exchanges of energy have to

be so too.

We check that energy conservation is achieved, within numerical error. The exchange of energy (second order

effect) from internal to magnetic is of4× 10−6, and the overall losses of total energy are approximately8× 10−8,

which is about0.02 times the non linear effects (amount of exchanged energy). We can then conclude firmly that

energy conservation is well behaved for these experiments with LARE, with no significant losses in the magnetic

energy during the remap steps, as discussed in Chapter 2.
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Figure 3.1: Time evolution of the energies of the system, forthe experiment withρ0 = 0.1 anda = 1.5, integrated
over the whole two-dimensional box. The final losses of internal energy are entirely balanced with a net increase
of magnetic energy. The plot is logarithmic in time and covers the whole relaxation. The magnetic, internal and
total energy have been shifted on they-axis by subtracting a given value, but their amplitudes arenot scaled. These
constants are0.499890, 0.152242 and0.652200, respectively.

Figure 3.2: Reproduction of Figure 3.1 with a linear axis. Itonly covers the first part of the relaxation. The
complex oscillation periods are a result of the sum of the different plane waves that drive the relaxation.
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3.4.2 Equilibrium

At the end of the numerical experiment, the kinetic energy drops to zero and the system has reached an equilibrium.

In two dimensions, a double check can be done by evaluating the plasma pressure,p, as a function of the flux

function,Az. At equilibrium, the plasma pressure is constant along fieldlines, and in 2D, that translates to plasma

pressure being a unique function of the flux function, as stated in equation (1.3.8). This is equivalent toB·∇p = 0.

For this set of experiments, this is satisfied straight forwardly, and no further considerations have to be made.

We now look at the distributions of plasma pressure, density, current density and magnetic field, in the final

equilibrium. Figures 3.3, 3.4 and 3.5 show two-dimensionalmaps of plasma pressure, density and perpendicular

current density, respectively, with magnetic field lines overplotted in both the initial and final states. At first sight,

we can get the main characteristics of the final equilibrium.There are horizontal gradients on the plasma pressure,

and at the same locations, we find current density accumulations. That is, there is an equilibrium and it is non-

force-free. Plasma density is not constant along field lines. A deficit in density occurs at the location of the initial

pressure perturbation, which is mainly balanced by an increase in the direction of the magnetic field (Figure 3.4b).

This is in agreement with the adiabatic condition,p/ργ = constant.

Hence, from a qualitative point of view, the numerical results seem to agree with the predictions of the linear

analysis made at the beginning of the chapter. Now, the question is how accurate are these predictions, and how

far are the numerical results from the linear solutions.

Figures 3.6 and 3.7 show vertical cuts of plasma pressure anddensity, and horizontal cuts of plasma density,

plasma pressure, magnetic field and total pressure, respectively, in the final equilibrium. These are compared with

the linear analysis predictions given by equations (3.2.54), (3.2.55), (3.2.56) and (3.3.6), and, in case of the plasma

density, we also compare with the solution given by the approximation of adiabaticity, equation (3.2.57), which we

have already discussed is probably a better approximation.

We show that the match is almost perfect for the plasma pressure, total pressure and magnetic field, but does

not work well for the plasma density. This is not surprising,as the vertical evolution of the plasma pressure is

accurate, i.e. it is not constrained by the linear analysis, as shown in equation (3.2.51). Hence, the magnitude of

the initial perturbation for the plasma pressure that must be taken into account when checking the accuracy of the

linear analysis, is the one after the vertical non-magneticredistribution, which is, of course, much smaller than the

original one.

The calculation of the plasma density are determined by the linear approximation all way through, as seen

in equation (3.2.52), and hence, the prediction for the density in the final equilibrium cannot be expected to be

good. However, if the process is adiabatic, the density can be obtained directly from the final plasma pressure

distribution, using equation (3.2.57). In contrast with the linear analysis, this adiabatic approximation does a very

good job, as shown in Figures 3.6b and 3.7b. In Figure 3.8 we plot the quantityp/ργ in the final state compared

to the initial state, for both the vertical an horizontal cuts. Since the numerical experiments have been performed

using a full MHD code that solves the non-linear equations, the process is not entirely adiabatic, but has a finite

amount of viscous heating that will become important as the initial perturbation is increased.

3.4.3 Overview

We have been able to predict the distributions of the final equilibrium quantities after a two-dimensional hydromag-

netic perturbation over a background homogeneous magneticfield embedded in a plasmas. The linear calculations



3.4 Numerical experiments: Results 76

Figure 3.3: Two-dimensional contour plots of plasma pressure in (a) the initial state and (b) the final equilibrium,
for the same experiment as in Figure 3.1. White lines are magnetic field lines.

Figure 3.4: As Figure 3.3, with plasma density in (a) the initial state and (b) the final equilibrium.

Figure 3.5: As Figure 3.3, with current density in (a) the initial state and (b) the final equilibrium.
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Figure 3.6: Vertical cuts of (a) plasma pressure and (b) plasma density, for the same experiment as in Figure
3.1. Initial perturbed state (dashed) is compared with the final equilibrium, as found by the full MHD numerical
simulations (solid) and predicted by the linear analysis (red crosses). For the density predictions, the blue crosses
represent the prediction from the adiabatic condition given by equation (3.2.57).

Figure 3.7: Horizontal cuts for (a) plasma pressure, (b) plasma density, (c) total pressure and (d) magnetic field
strength, for the same experiment as in Figure 3.1.
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Figure 3.8: Adiabaticity condition for the same numerical experiment as in Figure 3.1. Plots ofp/ργ in the initial
(dashed) and final (solid) state, for (a) horizontal cut, across the field lines, and (b) vertical cut, along the field
lines.

are well behaved for the experiment presented in this section, and are based in the one-dimensional propagations

by fast magnetoacoustic waves in the direction across the field, and slow sound waves in the direction along the

field lines. Although in reality, the initial disturbance evolves into the final relaxed state through different families

of magnetoacoustic waves. There exist an extra contribution of slow magnetoacoustic waves propagates along

the magnetic field lines, which introduce a magnetic tensionterm during the relaxation (i.e. curve the magnetic

field as they propagate up and downwards). Nevertheless, these dissipate the magnetic tension in such a way

that it is totally unimportant when determining the final equilibrium distributions. The vertical redistribution of

the plasma pressure to a homogeneous value demands the magnetic tension to disappear completely, so both the

plasma pressure and total pressure are one-dimensional at the end of the relaxation.

Within the linear regime, the final distributions are completely independent of the viscosity, even though it

is required to permit the relaxation to occur, as it is the only damping mechanism of the waves. An increase

in the viscosity enhances the diffusive term in the wave equation, and so, accelerates the process, but the final

distribution is not modified. Second order terms, however, might be dependent on the kinematic viscosity, since

the heating term is proportional to it. Within the linear regime, in the final equilibrium, all the quantities are simply

determined by the behavior of the final equilibrium total pressure, involving plasma and magnetic effects. Hence,

the final equilibrium states for plasma pressure and magnetic field do not differ if the initial perturbation is of the

density or internal energy.

Now, we compare the results with experiments in which the initial perturbations are increased systematically,

evaluating the validity of the analytical calculations forthe total pressure and plasma density in the final equilibrium

state, and their departure from the linear and adiabatic regime.
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3.5 Importance of non-linear effects

To study how non-linearity affects the results as the magnitude of the initial perturbation increases, we focus again

on the total pressure. The total pressure of the final numerical equilibrium must be constant, whether the relaxation

remains in the linear regime or not. On the other hand, the analytical definition of total pressure given by (3.2.20)

is an approximation from the linear analysis, and will become less valid as the non-linear terms become more

important. We perform a series of experiments for various plasma beta values in which the relative amplitude of

the initial perturbation is changed from a very small value,well within the linear regime, to a large value way

outside it. Using these experiments, we investigate how thefinal total pressure departs from the linear predictions

for different background plasma beta values.

But first, we recall that the equilibrium results after the 2Drelaxation may be separated into a vertical non-

magnetic evolution (vertical redistribution of plasma pressure) and a horizontal evolution (horizontal redistribution

of total pressure), in which the total pressure in the vertical case isnot constrained by the linear analysis. This

suggests that, effectively, in order to find a significant deviation in the final total pressure for the 2D experiment,

we will need very large values of the initial two-dimensional perturbation. Hence, the following experiments have

been made for just a one-dimensional perturbationacross the field lines. The ratio of the maximum value of the

perturbed plasma pressure to the background plasma pressure, as defined in equation (3.3.4), is

P =
max(p1)

p0
,

and may be mapped from the perturbation of the 1D experiments, onto those for our initial 2D perturbation, using

P2D =

{∫

exp

[

− (y − b)2

2c2

]

dy

}−1

P1D .

This is obtained taking into account that the maximum value of the perturbed plasma pressure, for our initial 2D

perturbation, is that of the 1D perturbation across the fieldlines, after the homogeneous non-magnetic redistribution

of the plasma pressure along the field lines, given by the integral inside the curly brackets.

Figure 3.9 shows the relative deviation of the linear approximation in both 1D and 2D for the total pressure, as a

function of the amplitude of the initial perturbation, for five different values of the plasma beta (β = 0.05, β = 0.1,

β = 0.2, β = 1.3 andβ = 2). The bottomx-axis shows the magnitude of the one-dimensional perturbation, and

the topx-axis shows the magnitude of the initial two-dimensional perturbation before its vertical expansion. The

deviation on they-axis is calculated as the maximum difference between the linear prediction and the numerical

results for the total pressure,

EpT =
max(|plin

T − pnum
T |)

pnum
T

,

wherepnum
T is the final constant total pressure obtained from the numerical simulations, andplin

T is the linear total

pressure calculated from the numerical solutions from the final equilibrium, given by

plin
T (x) = p0 + p1(x,∞) +

B2
0

2µ0
+
B0B1y(x,∞)

µ0
,

with p1(x,∞) andB1y(x,∞) being the final plasma pressure and magnetic field from the numerical simulations.

As β → ∞, we expect the relative deviation of the linear analysis to tend to zero, independently of the pertur-

bation, as in this case, the magnetic effects disappear, andthe initial pressure perturbation completely redistributes
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Figure 3.9: Relative deviation in the linear prediction of the total pressure against the magnitude of the initial
pressure perturbation (bottom axis isP1D and top axis isP2D), for five different values of the plasma beta. The
slow growth rate of the deviation (non-linear effects) indicates the validity of the linear analysis.

to a well defined constant value in the whole box. On the other hand, ifβ ≪ 1, then the magnetic field will domi-

nate over the plasma contributions, and large values forP will be needed to depart from the linear regime. These

two behaviors can be seen in Figure 3.9, where the plots for large plasma-betas tend to a smaller deviation, while

the plots for small plasma-betas take longer to reach significant deviations, i.e. to escape from the linear regime.

Furthermore, we must not forget that here we are only talkingabout the initial background plasma beta, so a large

background beta combined with a large initial perturbationwill make the final plasma beta even higher. Thus,

P → ∞ will imply β → ∞ for the final equilibrium, so we expect the curves of the relative deviation of the linear

analysis to turn back to zero as the initial perturbation is greatly increased. In terms of energy conservation, as the

velocity is zero at the initial and final states, the integralover the whole domain of internal energy plus magnetic

energy must be conserved: Ifβ → ∞, then the internal energy is much larger than the magnetic energy, and will

just redistribute the plasma pressure, without transferring any energy into the magnetic field.

On the contrary, the final plasma density is entirely determined by the linear analysis, in both the vertical and

the horizontal directions along and across the field lines, or in a better approximation, by the adiabatic condition.

Hence, the non-linear effects for the plasma density will grow much quicker, as shown in Figure 3.10. These last

numerical experiments have been made for the original two-dimensional Gaussian perturbation, for three different

values of the plasma beta (β = 0.05, β = 0.2 andβ = 2). Thex-axis shows the magnitude of the initial two-

dimensional perturbation, to be compared with the topx-axis in Figure 3.9. The deviation on they-axis is given

by

Eρ =
max(ρad − ρnum)

ρnum
,

whereρad is the plasma density given by equation (3.2.57), andρnum is the final density obtained with the numer-

ical experiments.

The relative deviation in the plasma density is considerably larger than the relative deviation in pressure, and
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Figure 3.10: Relative deviation of the density predicted assuming an adiabatic evolution, with equation 3.2.57,
against the magnitude of the 2D initial pressure perturbation, for three values of the plasma beta. Note, that the
x-axis in this plot is to be compared with the topx-axis in Figure 3.9.

so, for only a small change inp1/p0 in the 2D case, we find a large deviation inρ. As this deviation quickly reaches

significant values, the plasma beta plays much less of a role for the non-linear effects in the plasma density than in

the above total pressure.

The linear predictions remain remarkably valid even outside the linear regime, as the growth rate of the non-

ideal effects is very small, compared to the initial perturbations. We next consider the same kind of perturbation in

a more realistic three dimensional flux tube, following the same analysis as we have done for the two-dimensional

case. The system has cylindrical symmetry, so the qualitative results must be the same as in the 2D case.

3.6 Parallel magnetic fields in 3D

The results above can be easily generalised for a three dimensional system. To do this we follow the same steps as

before, with one added coordinate which will be analogous tothe previousx. Now the magnetic field is pointing

along thez-axis, i.e.B0 = B0êz, and has cylindrical symmetry with respect to the axis at(x, y) = (0.5, 0.5). The

results, however, are presented in cartesian coordinates,but that is not restrictive for the derivation of the equations,

and for the presentation of the results.

3.6.1 Linear equations

At the beginning of the chapter, we derived the MHD equationsfor a generic two-dimensional linear hydromag-

netic perturbation, which we wrote in coordinates, as in equations (3.2.9) to (3.2.14). This set of equation can be

expanded to their equivalent set for a three-dimensional system, where this time,z is the direction of the back-
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ground magnetic field,

∂ρ1

∂t
= −ρ0∇ · v1 , (3.6.1)

ρ0
∂v1x

∂t
= −∂p1

∂x
−B0

∂B1z

∂x
+B0

∂B1x

∂z
+ ρ0ν

(

∇2v1x +
1

3

∂

∂x
(∇ · v1)

)

, (3.6.2)

ρ0
∂v1y

∂t
= −∂p1

∂y
−B0

∂B1z

∂y
+B0

∂B1y

∂z
+ ρ0ν

(

∇2v1y +
1

3

∂

∂y
(∇ · v1)

)

, (3.6.3)

ρ0
∂v1z

∂t
= −∂p1

∂z
+ ρ0ν

(

∇2v1z +
1

3

∂

∂z
(∇ · v1)

)

, (3.6.4)

∂p1

∂t
= −γp0∇ · v1 , (3.6.5)

∂B1x

∂t
= B0

∂v1x

∂z
, (3.6.6)

∂B1y

∂t
= B0

∂v1y

∂z
, (3.6.7)

∂B1z

∂t
= −B0(∇ · v1)

∗ , (3.6.8)

where(∇ · v1)
∗ is the two-dimensional divergence ofv1, defined as

(∇ · v1)
∗ =

∂v1x

∂x
+
∂v1y

∂y
. (3.6.9)

As before, we may divide the process in a vertical one-dimensional evolution, along the field lines, which is non

magnetic, and completely equivalent to the evolution described in Section 3.2.2, and a two-dimensional evolution

across field lines, which is analogous to the one-dimensional evolution across the field derived in Section 3.2.2, as

we show below.

If we consider a perturbation varying with the two coordinates across the field,x andy, the perturbed magnetic

field has a non-zeroz component, i.e.B1(x, y, t) = Bz(x, y, t)êz , and the perturbed velocity may be written as

v1(x, y, t) = v1x(x, y, t)êx + v1y(x, y, t)êy. Then we write

∂ρ1

∂t
= −ρ0(∇ · v1)

∗ , (3.6.10)

ρ0
∂v1x

∂t
= −∂pT1

∂x
+ ρ0ν

(

∇2v1x +
1

3

∂

∂x
(∇ · v1)

∗
)

, (3.6.11)

ρ0
∂v1y

∂t
= −∂pT1

∂y
+ ρ0ν

(

∇2v1y +
1

3

∂

∂y
(∇ · v1)

∗
)

, (3.6.12)

∂p1

∂t
= −γp0(∇ · v1)

∗ , (3.6.13)

∂B1y

∂t
= −B0(∇ · v1)

∗ . (3.6.14)

wherepT1 = p1 +B0B1z is the perturbed total pressure, whose temporal evolution is given by the combination of

equations (3.6.13) and (3.6.14), as

1

ρ0

∂pT1

∂t
= −c2f(∇ · v1)

∗ , (3.6.15)
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in analogy with equation (3.2.22). Note, how in this case, the horizontal evolution cannot be treated separately in

two one-dimensional evolutions forx andy, precisely because the problem has cylindrical symmetry. One way

to approach the problem would be to apply the same one-dimensional evolution as in Section (3.2.1), to a radial

coordinater, and then apply cylindrical symmetry. However, this is not necessary. As seen in previous sections, the

final equilibrium is independent of the dynamical evolution, hence, equations (3.6.11) and (3.6.11) are irrelevant

for calculating the distribution of the equilibrium, and one just has to substitute the value of(∇ · v1)
∗ given by

equation (3.6.15) into equations (3.6.10), (3.6.13) and (3.6.14), obtaining the exact same set of equations as in

(3.2.33), (3.2.34) and (3.2.35), namely,

ρeq
1 (x, y) = ρ1(x, y, 0) +

1

c2f
[pT1(∞) − pT1(x, y, 0)] ,

peq
1 (x, y) = p1(x, y, 0) +

c2s
c2f

[pT1(∞) − pT1(x, y, 0)] ,

Beq
1z(x, y) = B1z(x, y, 0) +

B0

ρ0c2f
[pT1(∞) − pT1(x, y, 0)] .

Now, we can combine these with the vertical non-magnetic evolution of the thermal quantities, adding the

constant background quantities, and thus getting the final equilibrium solution, which is in every sense analogous

to the previous two-dimensional case.

3.6.2 Numerical experiments

We can check the results for a three-dimensional flux tube with an enhancement in pressure in the center of

the tube, which is completely analogous to the previous two-dimensional perturbation, and is defined through a

centered Gaussian enhancement in the internal energy, given by

ǫ1(x, y, z, 0) = a exp

[

− (x− b)2

2c2

]

exp

[

− (y − b)2

2c2

]

exp

[

− (z − b)2

2c2

]

. (3.6.16)

The resolution of the three dimensional numerical box is128×128×64, the length of the domain isLx ×
Ly × Lz = 1 × 1 × 1, andx, y andz all vary from0 to 1. Boundary conditions are the same as those in the 2D

experiments, e.g. the side boundaries are closed and the topand bottom boundaries are periodic. There is no initial

perturbation in the magnetic field, nor the plasma density. As before, the initial perturbed total pressure is the

initial perturbed plasma pressure, the perturbed total pressure after the vertical evolution,p∗T1(x, y) is the integral

of the initial perturbation alongz, and so the final constant total pressure is given by

pT1(∞) =

∫ 1

0

∫ 1

0

p∗T1(x, y)dxdy =

∫ 1

0

∫ 1

0

∫ 1

0

p1(x, y, z, 0) dzdxdy . (3.6.17)

The initial quantities and parameters of the initial perturbations are defined in the same way as for the experiment

discussed in Section 3.4, i.e.ρ0 = 0.1, ǫ0 = 1.5, B0 = 1, anda = 1.5, leaving the values for the background

plasma beta and the ratio of the maximum value of the perturbed plasma pressure to the background plasma

pressure asβ0 = 0.2 andP = 1.

In Figure 3.11 we show the evolution of the three energies of the system, plus the total energy. The exchange

of energy from internal to magnetic (non linear effects) is about 4 × 10−7, and the losses of total energy are
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Figure 3.11: Time evolution of the energies of the three-dimensional system, integrated over the whole two-
dimensional box, for an experiment withρ0 = 0.1, ǫ0 = 1.5, B0 = 1 anda = 1.5. The magnetic, internal and
total energy have been shifted on they-axis by subtracting0.499990, 0.150285 and0.650280, respectively.

approximately of4 × 10−8. As in the two-dimensional experiments, there is no significant change in the total

energy of the system.

Figures 3.12 and 3.13 show three-dimensional contour plotsof the final equilibrium plasma pressure and den-

sity, with a few field lines drawn in grey. The behaviour is very similar to the two-dimensional experiments. As

expected, plasma pressure is constant along field lines, andwe observe a deficit of the plasma density at the loca-

tion of the initial pressure perturbation, and an increase along thez direction, in the center of the box. In Figures

3.14 we compare the vertical cuts at(x = 0.5, y = 0.5) through the contour plots in Figures 3.12 and 3.13, for

density and plasma pressure with the final equilibrium predicted by the linear analysis. As for the 2D system, the

plasma pressure fits well, however, the plasma density does not match the straight forward linear prediction well,

but it does match the prediction for density from the adiabatic condition given in equation (3.2.57). Figure 3.15

shows horizontal cuts across the field lines at(y = 0.5, z = 0.5), for density, plasma pressure, total pressure and

magnetic field. These are completely analogous to any familyof cuts perpendicular to the field lines, through the

middle of the box, as the system has cylindrical symmetry. The numerical results are compared with the prediction

of the linear analysis, and for the plasma density, with the adiabatic condition, as in Figures 3.6 and 3.7. Again,

the match between the numerical experiments and the analytical calculations is fairly accurate.

3.6.3 Overview

In the first few sections of this chapter, we have presented analytical and numerical calculations for the 2D magne-

tohydrodynamic relaxation of an untwisted perturbed magnetic system embedded in non-zero beta plasmas, which

resulted in a final equilibrium state that differs substantially from the initial background configuration. The equi-

librium reached is non-force-free in nature. Plasma pressure gradients are balanced by the magnetic forces. For a

set of specified boundaries, all the hydromagnetic quantities are fully determined by the initial perturbed state.
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Figure 3.12: Final equilibrium plasma pressure and field lines inside a 3D squared flux tube, for the same experi-
ment as in Figure 3.11.

Figure 3.13: Final equilibrium plasma density and field lines inside a 3D squared flux tube, for the same experiment
as in Figure 3.11.
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Figure 3.14: Cuts along field lines, through the middle of thebox, atx = 0.5 andy = 0.5, for (a) plasma pressure
and (b) plasma density, for the same experiment as in Figure 3.11. Initial perturbed state (dashed) is compared with
the final equilibrium, as found by the full MHD numerical simulations (solid) and predicted by the linear analysis
(red crosses). For the density predictions, the blue crosses represent predictions from the adiabatic condition given
by equation (3.2.57).

Figure 3.15: Cuts across field lines, parallel to thex-axis, through the middle of the box, aty = 0.5 andz = 0.5, for
(a) plasma pressure, (b) plasma density, (c) total pressureand (d) magnetic field strength, for the same experiment
as in Figure 3.11. Note, the experiment is cylindrically symmetric, so any horizontal line through(0.5, 0.5, 0.5)
gives the same answer.
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The generalization of the problem into three dimensions hasbeen direct, and all the equations have been easily

derived from the two-dimensional case. The analytical calculations are analogous, and no further implications

need to be taken into account.

The problem raised in this chapter is extremely simple, but also quite instructive in many ways. First, we

have approached the problem of non-zero, but finite, beta plasmas, with the most basic experiments, showing

their direct implications for equilibrium force balance and energy conversion. Second, we have shown here how a

linear approximation to the equations that describe the system may be relevant for a wide range of scenarios, with

localised non negligible perturbations of the field and/or the plasma quantities. And third, a comparison between

one, two and three dimensional cases has been made directly by approaching the problem in natural steps from the

simpler to the more complex scenario.

By comparison of Figures 3.12 and 3.13 to Figures 3.3 and 3.4,we see how the solutions for the two-

dimensional case are analogous to cuts of the solutions for the three-dimensional problem in planes parallel to

the magnetic field, through the center of the box. The comparison here is trivial, because we are working with the

same physical environment.

However, in the coming chapters we analyse equilibria of magnetic null points in two and three dimensions,

and the complexity rises enormously. The physics around a two-dimensional null point is different to that around

a three-dimensional null. In most cases, one cannot just take a two-dimensional cut of the 3D problem and find

the results from the 2D experiments. Nonetheless, having first studied in detail the properties of two-dimensional

fields, we might find some interesting similarities.
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Chapter 4

Relaxation of 2D Magnetic Null Points

4.1 Introduction

In two-dimensions, magnetic X-points are the locations at which magnetic reconnection can occur, being poten-

tial sites for energy conversion. Current sheet formation at these geometries has been widely studied in many

astrophysical contexts, both analytically and numerically, but only very recently have a few of these studies taken

finite plasma beta effects into consideration, and at the moment, there exists no description of the formation of a

non-force-free equilibrium around a two-dimensional X-point.

Two-dimensional reconnection at X-point geometries have been studied for decades, starting with Dungey

(1953) and followed up by many (e.g. Parker, 1957; Sweet, 1958; Petschek, 1964; Biskamp, 1986; Priest and

Forbes, 1986; Craig, 1994), with direct applications to solar environments such as in the CME’s breakout model

(Antiochos et al., 1999), which have been applied extensively in the last decade (e.g. Forbes et al., 2006; Zuccarello

et al., 2009), and in other interplanetary scenarios such asthe reconnection site in the Earth’s magnetotail (e.g.

Hesse and Schindler, 2001). Also, they have been used in wavepropagation experiments involving a zero beta

plasma (McLaughlin and Hood, 2004), and a finite beta plasma (McLaughlin and Hood, 2006), finding in both

cases that the waves wrap around the null point, causing an exponential build up of current density at the location

of the null.

The aim of the present chapter is to provide a valid magnetohydrostatic equilibrium from the collapse of a

two-dimensional X-point. Under ideal, non-resistive conditions, the energy bound up in the global magnetic field

has to manifest itself as localized accumulations of current density.

It is well known that under the cold plasma approximation (e.g. zero plasma beta), an initially perturbed X-

point field relaxes to a potential equilibrium with a Y-type infinitesimally thin current sheet where the current is

zero everywhere except within the magnetic tangential discontinuity, where it develops a singularity of the form

jz = δ(Az − Az0). These potential configurations are described by Green (1965) and Somov and Syrovatskii

(1976), as in equations (1.5.1) and (1.5.2). Later, Bungey and Priest (1995) expanded these solutions for potential

and force-free fields giving a general expression, equation(1.5.3), for these force-free current sheets. Latter studies

have found the formation of localised infinite current layers in the Earth’s magnetotail (Birn et al., 2003), relevant

for the initiation of the subsequent energy release phase.

89
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First evidence of current sheets extending along the separatrices in sheared magnetic field structures were

studied by Zwingmann et al. (1985) for force-free equilibria, where they found mathematical singularities in the

current sheet which they interpreted as terms that “would become large in a real physical situation”. Later, Vekstein

and Priest (1993) made a mathematical analysis of the magnetic field around cusp-points, after the shearing of a

magnetic field with an X-type null point, and suggested an analytical form for the resulting singular current density.

Here, we show how a type of singularity is also formed in the non-force-free case, in agreement with the

numerical studies of Rastätter et al. (1994) and Craig and Litvinenko (2005), described in Section 4.3.2. Our

numerical results show how the initial X-point collapses toa cusp-like geometry in which the current density

accumulates around the neutral point and along the four separatrices. Again, the results agree, in this aspect, with

the previous numerical works of non-force-free X-point collapse. However, we attempt to go a step further in the

description of the field, by running a series of very high resolution experiments, which allow us to look closer at

the current accumulations, in order to resolve them in both length and width, and also to investigate the nature of

the singularity as a function of the initial disturbance.

4.2 General properties

4.2.1 Magnetohydrostatic equilibrium around an X-point

In this section, we revisit the fundamental equations of two-dimensional magnetohydrostatics around an X-type

neutral point. In force balance, the fundamental MHS equation, (1.3.1), must be satisfied, i.e.

j × B− ∇p = 0 ,

which, for a two-dimensional field, reduces to the Grad-Shafranov equation, (1.3.11),

dp

dAz
= − 1

µ0
∇2Az = jz ,

where the flux functionAz, defined by (1.3.9), is constant along field lines. In principle, the Grad-Shafranov

condition states that both the plasma pressure and the current density have to be constant along every field line

for a two-dimensional equilibrium. Magnetic separatricesare defined as the field lines that separate domains of

different magnetic connectivities. For an X-point configuration, there exist four separatrices, coming out from the

neutral point, that divide the domain into four regions. Because of the definition of the flux function,Az , this can

be shifted by an arbitrary integration constant, without loss of generality. Hence, it is commonly defined so that

Az = 0 at the separatrices, and thus also at the location of the null.

4.2.2 Conservation of total current density

We are now going to show how the symmetry of the system must ensure total current density conservation through-

out the dynamical relaxation of our two-dimensional X-point. Using normalised quantities, the time derivative of

the integrated current can be expressed as

d

dt

∫

S

j · ds =
d

dt

∫

S

∇ × B · ds ,
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whereS is the whole surface of our experiment andds is a vector normal to that surface. We can now apply the

Stokes theoremfor differential geometry to get

d

dt

∫

S

j · ds =
d

dt

∮

C

B · dl ,

where, now,C is the contour of the boundary ofS, anddl is a vector tangent toC at each point, so that, if we

denoteBT as the component of the vector magnetic field tangetial to theboundary at each point, we then have

d

dt

∫

S

j · ds =
d

dt

∮

C

BT dl = 0 . (4.2.1)

The properties of symmetry of the system ensure that the expression (4.2.1) equals zero, as the four quadrants of

the domain are symmetric, and the integrated tangential magnetic field is zero for each of the boundaries (top,

bottom, left and right) separately.

Hence, total current density has to be conserved in the domain. The evolution will allow a redistribution of the

initial current density and an accumulation of it at certainlocations, but in integral over the whole domain must

remain constant.

4.3 Previous work on current singularities in planar magnetic X-points

4.3.1 Analytical studies in force-free fields

Vekstein and Priest (1993) gave an analytical description of a force-free magnetic arcade which included an X-point

on it and had been sheared in the ignorable coordinate,Bz. They start from the expression

∇2Az = −Bz
dBz

dAz
, (4.3.1)

which is analogous to the Grad-Shafranov equation, (1.3.11), where the magnetic componentBz(x, y) = Bz(Az)

is specified by the shear of the foot points,d(Az), as

Bz(Az) =
d(Az)

V (Az)
. (4.3.2)

The volumeV (Az) is defined in equation (1.2.7) in Section 1.2.2, as

V =

∫

L

dl

B
,

and for two-dimensional fields, is a function of the flux function, asB = |∇Az|. Vekstein and Priest (1993)

suggested that the initial X-point split into a pair of cusp-points, and considered the solution both inside and

outside the cusps. They gave a description of the local field about the cusp using a poloidal flux functionAz(r, θ),

wherer is the radial coordinate whose origin is at the beginning of the cusp, andθ is the angular coordinate which

is zero at the axis of the current sheet, so that each point on the separatrix is defined by a different pair(r, θ) (see

Figure 4.1).



4.3 Previous work on current singularities in planar magnetic X-points 92

q = 0

x = 1

x = -1

(i)

(o)

(o’)

O1

q = p

q

Figure 4.1: Poloidal magnetic field near the cuspO1. Based on Vekstein and Priest (1993), Fig. 2. Regions inside
and outside the cusp are denoted with(i) and(o).

Inside the cusp, they suggested that for small values ofr, the angle along the separatrix grew asθ = ±Krβ

and they wrote the flux function, inside the cusp, as

Az(r, θ) = rαf(ξ) , (4.3.3)

whereα is a new parameter, andξ = θ/Krβ , so thatξ = ±1 at the separatrices. The functionf is chosen so that

f(±1) = 0, hence, the flux function is zero at the separatrices.

The poloidal field components for the region inside the cusp were found fromAz(r, θ) to be

Br =
1

r

∂Az

∂θ
=
rα−β−1

K
f ′(ξ) ,

Bθ = −∂Az

∂r
= −αrα−1f(ξ) + βrα−1f ′(ξ)ξ .

Here, the expression forBr demands thatα > 1 + β for the magnetic field to be finite asr → 0. From equations

(4.3.1) and (4.3.3), one gets the solution

∇2Az = −mA−n
z , (4.3.4)

wheren = (2β + 2 − α)/α andf(ξ) satisfies the equationf ′′(ξ) = −mK2f−n. Now, to obtain a finite value of

Bz, the volume of the separatrix field line, given by

V (0) =

∫

L

dl

B
= 2

∫ R

0

dr

|Br|
= 2K

∫ R

0

dr

rα−β−1
,

has to be finite, and hence,α− β − 1 < 1. This, together with the previous condition forα leads to

1 + β < α < 2 + β . (4.3.5)

The solution outside the cusp was set to a potential poloidalfield of the form

Az = B0r sin θ +B1r
p sin[p(θ − π)]
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with p > 1. This solution satisfiesAz = 0 at the separatrices. They then used magnetic pressure balance across

separatrices and matched the solutions inside and outside the cusp, findingα = 1 + 3
2β, and

n = 1 − β

1 + 3
2β

. (4.3.6)

4.3.2 Numerical studies in non-force-free fields

Rastätter et al. (1994) considered for the first time the effects of pressure perturbations in numerical experiments

on the ideal relaxation of two-dimensional magnetic X-points, and studied the development of current layers with

singular current densities in which, in the relaxed state, the initial X-point was replaced by either a T-point or

a cusp-point geometry. For the relaxation, they used a frictional code, which damped the kinetic energy out of

the system by adding a fictitious relaxing term to the momentum equation of the form−κv, but without any

associated heating term in the energy equation. Their X-point relaxed to a singular two-dimensional equilibrium

which contained a plasma pressure jump across the separatrices and included current layers extending along the

whole separatrices. A key point in their discussion is that they argued that the finite width of their current sheet was

due to the finite difference method in their numerical approach rather than being real. They found, nevertheless, the

integrated current density over the sheet width (named as surface current) to be constant on each whole separatrix.

One decade later, Craig and Litvinenko (2005) reconsideredthe problem of the relaxation of two-dimensional

magnetic X-points and the formation of current singularities in non-force-free equilibria. The emphasis of their

study lays in the evaluation of the strength of the current singularity at the end of their relaxation, since this may

provide a measure of the energy that can be liberated by reconnection. They find that the peak current of the

singularity follows a power law relationship to the grid resolution, which appears to be scaled with the plasma

pressure. Again, they made use of a frictional code with a fictitious damping term,−κv, added to the momentum

equation, but with no heating term in the energy equation, assuming the polytropic modelp ∼ ργ , which imposes

a condition of adiabaticity to the process. In analogy with the results of Rastätter et al. (1994), they found a

distribution of current density extended along the magnetic separatrices, which they claimed to be almost uniform.

They then evaluated the singular behaviour of the null pointcurrent density in their relaxed state by comparing

the peak current using various numerical resolutions. Theypresented a logarithmic increase of the peak current

with resolution, at the same time as the area of the current layer above a given value for the current showed a

logarithmic decrease. Hence, the current layer itself became narrower with higher resolution. Then, they evaluated

the scalings of the peak current for different values of the background plasma pressure of the system, finding a

weakening of the growth of the peak current density as the plasma pressure was enhanced. That is, a singularity

is harder to achieve the higher the value of the plasma pressure, although the presence of a non-zero plasma

beta would not prevent a singularity forming. Also, they looked at the collapse of one-dimensional anti-parallel

magnetic fields, and demonstrated analytically that a singularity would develop only in the pressureless case. In

practice, that means that an approach to the 2D problem through these means is not of any use.

4.3.3 Our approach to the problem

In this chapter, we make a numerical study on the non-force-free relaxation of magnetic X-points, very closely

comparable to the work done by Craig and Litvinenko (2005). The first fundamental difference is that we use a

full MHD code with a real viscosity term which also adds a heating term to the energy equation. The process is
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non-linear and non-adiabatic. Then, we examine in detail the size and characteristics of the current accumulations,

both around the null and along the magnetic separatrices, checking that force balance is correctly satisfied in our

non-force-free equilibrium. We discuss how the approach given by Craig and Litvinenko (2005) is not valid in

our more realistic magnetohydrodynamic evolution. Finally, by following the analytical study of Vekstein and

Priest (1993) for sheared magnetic arcades, we try to give a description of the field around the null, which does

not exactly match the numerical solution, but provides a mathematical tool to qualitatively study the dependence

of the equilibrium on the initial quantities.

4.4 Numerical experiments

4.4.1 Numerical setup

We have run, using the LARE MHD code, a series of two-dimensional experiments on X-point magnetic config-

urations embedded in non-zero beta plasmas. The initial thermodynamic quantities have constant values, and the

disturbance from the equilibrium is given by the magnetic field. In order to create the initial perturbed magnetic

field, a current-free hyperbolic X-point, given byAz = (x2 − y2)/2, is perturbed by squashing it in the vertical

y-direction by a given amount,(1 − h) times the height of the original system, without introducing any initial

plasma flow, such that the flux function of the initial state isgiven by

Az(x, y, 0) =
1

2

(

x2 − y2

h2

)

. (4.4.1)

The squashing creates a uniform non-zero current density whosez-component is

jz(x, y, 0) =
1

h2
− 1 . (4.4.2)

The initial plasma pressure,p0, density,ρ0, and current density,j0, are set to be constant everywhere. The size of

the domain is1×h, with x varying from−0.5 to 0.5 andy varying from−0.5h to 0.5h. The grid is uniform and

has a resolution of1024×2048. The particularly high resolution in they-direction is chosen to permit any current

layer that may form to be as thin as possible, but still resolvable across its width.

We choose the four boundaries of the domain to be closed. Magnetic field lines are line-tied, and all components

of the velocity are set to zero on the boundaries. The other quantities have their derivatives perpendicular to each

of the boundaries set to zero, following the specification ofclosed boundaries given in Chapter 3. Quantities that

should be conserved over the whole domain are total energy, total current density and total mass. Since the process

is ideal (there is no diffusion to within the numerical limits), the field is frozen to the plasma, and mass in a single

flux tube (or along a field line) must be conserved.

We have run a number of experiments with various heights,h = 0.1, 0.8, 0.7, 0.6, with the subsequent initial

current densities,j0 = 0.23, 0.56, 1.04, 1.78, and various initial plasma pressures, fromp0 = 0.125 to p0 = 1.

The values for the plasma pressure are varied by changes in the plasma density, throughp0 = ρ0ǫ0(γ − 1),

maintaining the initial value of the internal energy the same for all the experiments, atǫ0 = 0.75. In all the

experiments, the real viscosity is set toνr = 0.001, and both shock viscosities are set tozero.
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Figure 4.2: Time evolution of the energies of the system, integrated over the whole two-dimensional box, for the
sample experiment withj0 = 1.04 andp0 = 0.375. The plot is logarithmic in time. The magnetic, internal and
total energies have been shifted on they-axis by subtracting the constant values0.08, 0.39 and0.48 respectively,
but their amplitudes are not to scale.

4.4.2 Energetics

For the first part of our study, we center our attention in one sample experiment withh = 0.7, j0 = 1.04 and

p0 = 0.375. When we look at the energy evolutions in the X-point experiment, we find an undesirable phenomenon

at the very first time steps of the simulation, which is purelynumerical. Figure 4.2 shows the time evolution of

kinetic, magnetic, internal and total energies integratedover the whole box for that sample experiment. The time

axis is normalised to the fast magnetoacoustic time, definedas the time for a fast wave starting from the left or

right boundary to reach the location of the null point,τf = 0.5/cf .

Within the first time steps of the numerical simulation, a sudden increase of the kinetic energy occur. This

is not physical, as it is not balanced with any other component of the energy. In fact, the total energy increases

drastically. Soon after, this sudden perturbation disappears, dropping the kinetic energy and provoking a non-

physical rise of the internal energy which also makes the total energy increase. After a short time, the relaxation

continues normally and energy conservation is satisfied.

This behavior varies if we change the shock viscosity parameters, but we are not able to make it disappear. It

might then be due to the sudden creation of a shock when the relaxation process starts, and we find it to have its

origins at the boundaries of the system. Everywhere else in the domain, the quantities remain unperturbed. We

check that the plasma pressure and current density in the rest of the domain attime = 0.006 are perfectly constant,

and their values have changed from the initial prescribed ones by1 × 10−5. Furthermore, these do not seem to

affect the final equilibrium state about the null, so it is notgiven any more importance throughout the chapter, and

we consider the experiment from the time at which the total energy remains constant.
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Figure 4.3: Plots of current density for (a) a horizontal cutaty = 0 and (b) a vertical cut atx = 0. We show initial
(dashed) and final (solid) current density. In dotted lines,the boundaries of a subdomain where the integrated
current in the final state equals the value in the initial state.

4.4.3 Final equilibrium

In order to proceed with the analysis, we first focus on the sample experiment of Figure 4.2 and then discuss how

the results vary as the squashh, and initial plasma pressurep0 are varied. In our sample experiment, the height of

the box ish = 0.7, and the initial pressure isp0 = 0.375.

Let’s first have a look at a pair of cuts of the current density at y = 0 (horizontal cut) andx = 0 (vertical cut),

as shown in Figure 4.3. It is clear that there exist some boundary effects at the four edges of the box. These are

non-physical, and a direct consequence of them is to break some of the conservation laws, so, for example, the

total current density of our simulations is not conserved. However, there is no evidence that these effects modify

the field around the null point, hence, our way to deal with theproblem is fairly simplistic. We can always find

a subdomain in which the integrated current in the final stateequals the value at the initial state and so we only

consider this subdomain for each experiment. From this point, we will show results from inside this subdomain.

The upper, bottom and left, right boundaries of this subdomain are overplotted in Figure 4.3. The size of the

subdomain for the sample experiment is about0.60 × 0.42.

In Figures 4.4 and 4.5, we show two-dimensional contour plots and surface plots of the plasma pressure and

electric current density, respectively, in the final state.At first sight, the results of Craig and Litvinenko (2005)

appear to be faithfully reproduced by our numerical experiments. Departing from an initial state containing an

X-point with uniform pressure and current density, we get anequilibrium where the X-point has produced a thick

current layer from which arms of enhanced current extend along the curved separatrices (Figure 4.5). The separa-

trices form cusp shapes at the two ends of the current layer. The plasma pressure is enhanced within the cusps (to

the left and right of the current layer), and decreased in theregions outside the cusp, above and below the current

layer (Figure 4.4). Plasma pressure appears to be constant along field lines (see latter for a further discussion).

However, although the electric current density is constantalong most of the field lines, it is clearly not constant

along the separatrices.
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Figure 4.4: Two-dimensional contour plot (left) and surface (right) of plasma pressure for the final equilibrium
state for the sample experiment withh = 0.7 andp0 = 0.375. White solid lines on the left graph are the magnetic
field lines as contours of the flux functionAz .

Figure 4.5: Two-dimensional contour plot (left) and surface (right) of current density for the final equilibrium state,
for the same experiment as that shown in Figure 4.4. White solid lines on the left graph are the magnetic field lines
as contours of the flux functionAz .

Figure 4.6: Two-dimensional contour plot (left) and surface (right) ofp/ργ for the final equilibrium state, for the
same experiment as that shown in Figure 4.4. White solid lines on the left graph are the magnetic field lines as
contours of the flux functionAz. The constant value in blue below the surface in the right corresponds to the initial
value,p0/ρ

γ
0 = 0.6057.
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Figure 4.7: Test of the Grad-Shafranov condition for the magnetohydrostatic equilibrium for the sample experi-
ment. Current density (black, y-axis on the left) and plasmapressure (blue,y-axis on the right) are plotted against
the flux functionAz, for every single point in the numerical domain. Positive values ofAz refer to inside of the
cusp, while negativeAz are outside the cusp.

Figure 4.6 shows two dimensional contour and surface plots of p/ργ , which is proportional to the entropy.

Note, that the process is nowhere near to being adiabatic, since this quantity is constant in the initial state, with

the valuep0/ρ
γ
0 = 0.6057. Now, everywhere in the final state has an increased entropy,with the greatest increase

around the null point and directly above/below and to the left/right of the null. These regions of highest entropy

mark the locations where most viscous dissipation occurs. Aconsequence of these localised increases of entropy

is that, while plasma pressure is constant along field lines,density is not. Overall it is clear that the creation of

a current layer cannot be achieved physically without some loss of magnetic energy which leads to a localised

heating about the null rising the internal energy of the system.

Our relaxation process involves a heating term in the energyequation, responsible for the transfer of part of

the magnetic energy in the system into internal energy. Thiseffect is studied in detail in Chapter 3, and marks a

difference with the results of Craig and Litvinenko (2005).The consequences of the non-adiabatic effects appear

in our final results: Plasma pressure is constant along field lines, but density is not.

A direct check on the validity of our equilibrium may be done by testing the behaviour of the pressurep with

respect to the flux functionAz , and also the consequences of the Grad-Shafranov condition, (1.3.11), which states

that the current densityjz must be also a unique function ofAz . In Figure 4.7, we representevery single pointof

the two-dimensional domain (within the subdomain wherejz is conserved), for the plasma pressure and the current

density against the flux function. Remember, that the current density is the derivative of the plasma pressure with

respect to the flux function. It appears clear from this graphthat the pressure is a unique function ofAz , and so

is most of the the current density distribution. The biggestdispersion occurs when we approachAz = 0, which

is the value on the separatrices, and at the X-point. Here, wecan see the first sign of the field trying to reach a

singularity, which, from the Grad-Shafranov equation, implies an infinite derivative of the pressure with respect to

Az .

In order to check that the separatrices are in equilibrium, with the pressure gradient being able to hold a current

accumulation along them, we look at the force balance acrossthe separatrices. Figure 4.8 shows a contour plot of

current density for the top-right quadrant with color-coded cuts perpendicular to the separatrix, and in Figure 4.9,
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Figure 4.8: Contour plot of current density for the top-right quadrant showing the locations of cuts across a sepa-
ratrix, which is used to check force balance.

Figure 4.9: Cuts of current density (left) and total pressure (right) across the top-right separatrix, against the flux
functionAz for our sample experiment. The colors follow the code in Figure 4.8. Note, the further the cut is from
the X-point, the wider the range ofAz covered by the perpendicular cut.

the current density and the total pressure along these perpendicular cuts are plotted againstAz . From Figure 4.9a,

we can see clearer how the current density is constant along field lines everywhere except at the regions about the

separatrices. Along the separatrices the current clearly increases as they head towards the null point. Figure 4.9b

shows that there is total pressure balance across the separatrices. That is, the gradients of plasma pressure are well

balanced by the magnetic pressure force, hence, the system appears to be in force balance everywhere, save at the

null.

Plasma pressure is constant along the separatrices, but current density is not, as shown in Figure 4.10a. A

magnetic separatrix represents an inflection line in the plasma pressure surface, and the Grad-Shafranov equation,

i.e. dp/dAz = jz, does not hold there. However, the surface current,Is, defined as the integral of the current

density,jz , across the separatrix at a given position, over the width ofthe current layer, remains constant on the
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Figure 4.10: Plots of (a) current density, (b) surface current, (c) total magnetic pressure and (d) total pressure,
along the top right separatrix.

whole separatrix. This can be seen in Figure 4.10b, where each colour symbol represents the integral

Is =

∫ 0.002

−0.002

jz(Az)across dAz , (4.4.3)

for the cuts in Figure 4.8. Note, that the integral in equation (4.4.3) is done over the flux function, so the width of

the current layer is assumed to be in between the two same fieldlines for every point, and hence, it is smaller as

we move along the separatrix away from the X-point. The missing points in the plot are the null point, which is

singular, and other points near the null whose current layerwidths overlap with the separatrix below.

We define the total pressure force and the total force along a separatrix as

FP = − d

ds

(

p+
B2

2

)

,

FT = | j × B− ∇p | ,

wheres indicates the path along the separatrix. Since the plasma pressure is constant along the separatrices, the

total pressure force,FP , is equivalent to the magnetic pressure force. This force isnegative (Figure 4.10c), so it
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Figure 4.11: Electric current density across the width and along the length of the central current layer, for the same
experiment withh = 0.7 andp0 = 0.375. Results from the high resolution run (black diamonds) are compared
with the results of a half-resolution run (grey stars).

pushes the plasma towards the null point, but it is completely balanced by the magnetic tension force, so the total

force is zero also along the separatrices (Figure 4.10d).

4.4.4 Current density layer

We now look closely at the dimensions of the current layer of the sample experiment and evaluate the nature of its

finite width. Figure 4.11 shows cuts along the length (horizontal cut) and width (vertical cut) of the current layer at

the location of the null, showing a length and width of the current layer which are respectively of around 23 and 15

points (around 0.02 and 0.005 length units). These may indicate that the current layer really has finite dimensions

and are not a result of the resolution of the numerical experiment, as suggested in Rastätter et al. (1994). In order

to check this, in Figure 4.11 we overplot the results from thesame experiment, run with a resolution of512×1024

(half the original resolution). As can be seen, the dimensions of the current layer coincide for both experiments,

i.e. the finite width of the current layer is not a resolution effect, but a real characteristic of the equilibrium. These

results contradict the ones from Craig and Litvinenko (2005), for which the dimensions of the current layer are

decreased when increasing the resolution.

In Figure 4.12, we show vertical cuts of the current density across the central current layer, for six different

experiments with the same squashing,h = 0.7, but with different initial pressures. The width of the central layer

decreases for smaller plasma pressures, but remains finite.In Figure 4.13, we show horizontal cuts of the current

density along the central current layer, for the same cases as in Figure 4.12. As the pressure is decreased, the

length of the central current layer extends further, and thecurrent density becomes more concentrated, developing

a higher peak. The same behaviour is observed if the initial plasma pressure is held fixed, and the height of the

box is systematically decreased (i.e. the squashing is increased). This means that decreasing the initial plasma

pressure has a similar effect as increasing the initial current density, as the action of both is to make the Lorentz

force dominate over the pressure force.

When the initial plasma pressure is small (e.g. in Figure 4.13f), the current layer has a length that is many times

longer that its width. We consider whether the current layeris approaching the form found in Green’s current sheet
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Figure 4.12: Plots of electric current density across the width of the central current layer, for six different experi-
ments, withh = 0.7, but different initial plasma pressures.
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Figure 4.13: Plots of electric current density along the length of the main current sheet, for six different experi-
ments, withh = 0.7, but with different initial plasma pressures.
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Figure 4.14: The six plots in Figure 4.13 are overplotted forcomparison. The dimensions of the Green’s potential
solution are given in dotted lines. Figure (b) is a zoom of (a)over a smaller range of current densities. In (b), the
initial current density is overplotted (dashed).

solution. This is checked by comparing these plots with the correspondant length of the Green’s current sheet

(Figure 4.14).

To derive Green’s expression, complex variable notation isused to simplify the discontinuity in the magnetic

field as cuts in the complex plane,Z = x+ iy. The magnetic field around a potential current sheet is described as

By + iBx =
√

Z2 − a2 =
√

x2 − y2 + 2ixy − a2 ,

where2a is the length of the current sheet. Following the derivations in Bungey and Priest (1995), the analytical

profile of the current density along Green’s potential thin current sheet is given by the magnetic field discontinuity

asjz = 2Bx(x, y = 0), and can be calculated from the expression above as

jz = 2Bx(x, y = 0) = 2
√

a2 − x2 . (4.4.4)

Integrating equation (4.4.4) along the length of the sheet,we get the total current in the sheet, as

jT = a2π . (4.4.5)

Now, current density conservation implies that the Green’ssheet associated with our equilibrium distribution

should have a total current density equal to the total current density in the initial field, hence, the half-length

of Green’s current sheet is directly related to the initial constant current distribution. Looking at the results in

Bungey and Priest (1995), it can be seen that our normalization requires a factor of1/4 in front of this length,

hence, obtaining

a =
1

4

√

j0
π
, (4.4.6)

which for our sample experiment gives the valuea ≈ 0.144. Note, that equation (4.4.4) represents a singular

current sheet containing the whole current in the domain, soin a hypothetical case of a numerical Green’s state,
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this would have to be compared with the integrated current density over the width of one resolution element. What

we do for our experiments is compare our distributions with the lengtha.

In Figure 4.14, the six horizontal cuts of Figure 4.13 are overplotted, and the dimensions of Green’s potential

solution are marked. All the curves cross at the same points on x andy, namely(±a, j0), corresponding to the

initial value of the current density iny, and the two ends of Green’s current sheet inx. The main conclusion that

may be extracted from these plots is that the field is in all cases very far from the potential solution, although

the fact that all curves cross at the ends of Green’s potential sheet seems to imply that Green’s solution might be

achieved (as far as we can get with the resolution) in the limit p0 → 0.

Following a systematic study, we find that the dependence of the equilibrium distributions with the initial

quantities differs from one experiment to another, and is therefore determined by the initial plasma pressure and

current density of the system. This is studied in detail in Section 4.5.

4.4.5 Singular current

In Section 4.4.3, we evaluated the plasma pressure and current density of the final state. We now check whether the

current accumulation at the location of the null is held in a true equilibrium by evaluating force balance along and

across the current layer. Figure 4.15 shows plots of the different forces along and across the current layer, namely,

plasma pressure force,−∇p, magnetic force,j× B, and total force,j× B− ∇p. At first sight (Figure 4.15a and

b), the forces seem to be balanced, and the field seems to be in equilibrium. However, when we look closely about

the origin (Figure 4.15c and d), there is a residual non-zerototal force which appears to be trying to stretch the null

in the horizontal direction, pushing from the top and bottom, and pulling from the sides. These forces could either

be a result of a small amount of reconnection due to numericaldiffusion, or may be the result of the current sheet

trying to tend towards a singularity. If the cause is reconnection, then the amplitude of the forces at the same time

of the relaxation should increase as the grid-cell size is reduced. If on the other hand, the forces are a result of the

system attempting to form a singularity, they will decreaseas the grid-cell size is decreased.

We have run the same sample experiment withh = 0.7 andp0 = 0.375 for three different resolutions, namely

256×512, 512×1024 and1024×2048. In Figure 4.16, we show those residual forces for the same experiment

after the same time has elapsed. The amplitude of the forces is higher the better the resolution is, implying that

the field is trying to converge to a singularity, and the higher the resolution, the closer the field is to achieving the

singularity, and so, the bigger the forces around the current layer are. Note, that the length over which these forces

extend is roughly the same for the three resolutions.

Furthermore, the peak current appears to be slowly increasing in time, even when the velocities are essentially

zero everywhere in the domain (Figure 4.17). This is the lastevidence of a singularity being formed, and, again,

represents a difference with the work in Craig and Litvinenko (2005), in which they present scaling laws for the

peak current, which for our experiments, is not well defined.

4.4.6 Overview

We have presented evidence that the field has achieved an equilibrium everywhere save at the null point, where the

field is trying to converge to a singularity which is different in nature to the ones found by others in the force-free

cases when using relaxation codes as opposed to a full MHD code. However, this state is impossible to reach

numerically, because of the resolution constraint. Nonetheless, the forces are sufficiently small for us to consider
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Figure 4.15: Pressure gradient force (dashed), magnetic Lorentz force (dashed-dot) and total force (solid), along
(a) horizontal and (b) vertical cuts through the X-point forthe sample experiment as shown in Fig. 4.4. The total
force very close to the origin is plotted against (c)x and (d)y.

Figure 4.16: The total forces along the length of the currentsheet after the same elapsed time for our sample
experiment shown in Fig. 4.4, but run using different grid resolutions.
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Figure 4.17: Magnitude of the electric current density at the location of the null, as a function of time, for the same
experiment as shown in Fig. 4.4.

this state to be aquasi-static state, which can be understood as a magnetohydrostatic equilibrium.

An important result is that the form of the functionsp(Az) andjz(Az), which define Grad-Shafranov’s con-

dition, are different for each of our experiments. That is, the final equilibrium directly depends on the initial

conditions of the experiments, i.e. on the initial plasma pressure and the initial current density. Also, the plots are

not symmetric with respect toAz = 0, showing that the system approaches the singularity in a different way for

positive and negative values ofAz, i.e. inside and outside the cusp, respectively.

In comparison to the study of Craig and Litvinenko (2005), they use a frictional relaxation scheme with a

fictitious mechanism for damping velocities, while our MHD numerical experiments involve a physical viscous

term which is associated with a heating term, which heats theplasma, taking energy from the magnetic field. This

affects in various ways to the final equilibrium state. First, they find a current layer about the null whose area is

decreased when increasing the resolution. However, we suggest here that the system may achieve a state with a

well defined and finite width and length of the current layer. It may happen that a non-negligible heating around

the null point enables a larger finite width to be held. Also, our peak current density, at the origin, is not able to

achieve a stable value, due to the presence of residual forces about the null that try to collapse the field towards a

singularity, even if the field has achieved a good equilibrium everywhere else. These forces continue feeding the

singularity if the simulation is run for longer, and hence, the strength of the singularity (as studied by Craig and

Litvinenko, 2005) is not a good parameter to evaluate. Instead, we will try to give a qualitative description of the

field around the null point, and see how this depends on the initial quantities of our experiments.

4.5 Analytical description of the field

4.5.1 Sample experiment

We follow the approach given by Vekstein and Priest (1993) inan attempt to give a mathematical description of

the field about the null. The physics of their problem is different to ours, and they assumed a potential field outside

the cusp, which we do not have. Nevertheless, we can test the form they gave for the separatrix curve (the angle
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Figure 4.18: Logarithmic plots of (a) the angleθ along the separatrix versus the radiusr and (b) the flux function
inside the cusp, along thex-axis. In solid red, we present the best fit of a linear regression, to the points which
seem to represent a straight line in each plot.

along the separatrix), in our experiments, and also their suggestions for the flux function,Az, and current density,

jz = −∇2Az , for the region inside the cusp.

First, they suggested a form for the angle along the separatrix asθ = Krβ , and for the flux function inside the

cusp as in equation (4.3.3), i.e.Az(r, θ) = rαf(θ/Krβ). A simpler form forAz can be studied forθ = 0, i.e.

along thex-axis, for which equation (4.3.3) becomesAz = xαf0, wheref0 ≡ f(0).

Figure 4.18a shows the angle along the separatrix as a function of the radius (wherer = 0 is taken as the null

point at(0, 0)). Both axes of the plot are logarithmically scaled, with a linear fit made to a set of points near the

null. We observe that the plot is not completely linear in anyregion, and hence, we cannot expect good results

from the form given by Vekstein and Priest (1993). On the other hand, Figure 4.18b shows the flux function inside

the cusp, along thex-axis, also in logarithmic scale, and we observe a perfect linear behavior. The two linear

regressions give the values of the two exponents, asα = 2.365 andβ = 0.299. Usingn = (2β + 2 − α)/α, we

getn = 0.098 for the exponent in equation (4.3.4),

jz = mA−n
z . (4.5.1)

Now, in Figure 4.19 we show logarithmic plots of the current density,jz = −∇2Az against the flux function

Az for inside and outside the cusp, with linear regressions over them. In the case of inside the cusp, we have

overplotted a line using the exponent obtained above, following Vekstein and Priest (1993), and we can observe

how that solution is far from our numerical results. We must then continue the analysis with direct fits to equation

(4.5.1).

In Figure 4.20, we show a close-up to the plots of Figure 4.7, with a fit to equation (4.5.1). We have used the

same form for the function inside and outside the cusp, but the fit has been made independently, thus the coefficients
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Figure 4.19: Logarithmic plots of the current density as a function of the flux function for (a) inside the cusp,
showing a cut aty = 0, and (b) outside the cusp, showing a cut atx = 0. In solid red, we show a linear regression
of the points which are close to being a straight line. In the left plot, in dashed red, we present the slopen = 0.098
for the exponent calculated following the suggestions of Vekstein and Priest (1993).

Figure 4.20: We present the fits in Figures 4.19a and 4.19b in linear scale. together with the fits for the total
pressure, given by equations (4.5.2)-(4.5.5).

and exponents are different in both regions. The current density and plasma pressure distributions have the form

jz i(Az) = miA
−ni

z , (4.5.2)

pi(Az) =
mi

1 − ni
A1−ni

z + C , (4.5.3)

jz o(Az) = moA
−no

z , (4.5.4)

po(Az) =
mo

1 − no
A1−no

z + C , (4.5.5)

where the subscriptsi ando refer to inside and outside the cusp, respectively. The values of the parameters for this

sample experiment aremi = 0.337, ni = 0.236, mo = 0.273, ni = 0.278. The constantC is determined as the

value of the equilibrium plasma pressure at the origin, i.e.C = peq(0, 0) = 0.38. Note, that this value is different

from the initial constant pressure,p0 = 0.375.
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Figure 4.21: Parameters(mi, ni, mo, no) as functions of the initial pressure, for all the different heights. First
columns are the coefficientsmi for inside the cusp, second column are the exponentsni for inside the cusp, third
column are the coefficientsmo for outside the cusp and fourth column are the exponentsno for outside the cusp.
The values for the sample experiment studied above are highlighted in orange.

4.5.2 Dependence with initial quantities

The process can be repeated for all the numerical experiments, finding a dependence with the initial pressure and

initial current density. Figure 4.21 shows the dependence of the parameters(mi, ni, mo, no) with initial pressure,

for the different values ofh, obtained using fits like the ones in Figures 4.19 and 4.20 forevery single experiment.

The first conclusion that we directly obtain from Figure 4.21is that there exists a clear functionality of the

four coefficients with the initial values of the pressure andcurrent density, i.e with the plasma beta and the initial

perturbation. Bothmi andmo increase as the initial pressure increases, butni andno decreases as the initial

pressure increases. The second is that the solutions for inside and outside the cusp are different, as was already

assumed in Vekstein and Priest (1993).

The pressureless limit case gives some hint about the results shown in Figure 4.21. When the plasma pressure

tends to zero, then one would expect the system to approach the potential case where current density is zero

everywhere (except in a thin current sheet where it becomes singular), hence, the coefficientsmi andmo should go
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Figure 4.22: Here, we show the same plots as in Figure 4.21, with fits to the curves to the expressions (4.5.6) and
(4.5.7), in red, for the coefficientsmi andmo, and blue for the exponentsni andno.

to zero whenp → 0. With that consideration, we can find a good fit to the plots of Figure 4.21, using exponential

functions, as follows,

m = −A(e−Bp0 − 1) , (4.5.6)

n = C(e−Dp0 − 1) + E , (4.5.7)

where(A, B, C, D, E) are the parameters for a non-linear fitting. Figure 4.22 shows the fits of equations (4.5.6)

and (4.5.7) to the plots in Figure 4.21. The non-linear fits have been done by using theLevenberg-Marquardt

methodfor non-linear modeling, described in Press et al. (1992),“Numerical Recipes”, Chapter 15. The parame-

ters after the fits are summarised in Table 4.1. No more conclusions can be obtained from the data, apart from the

fact that these parameters preserve monotonicity.

In the limit p → ∞, i.e. the plasma dominates over the magnetic field, the coefficientsmi/o tend toAi/o,

and the exponentsni/o tend toEi/o − Ci/o. These are summarised in Table 4.2. As an ambitious observation,

if the parameterEi − Ci (andEo − Co) can be understood as constant withh (minus numerical errors), then the
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h j0 Ai Bi Ci Di Ei Ao Bo Co Do Eo

0.9 0.23 0.112 3.786 0.432 5.848 0.596 0.109 3.971 0.370 5.501 0.540
0.8 0.56 0.314 2.669 0.339 3.550 0.470 0.313 2.341 0.417 3.893 0.558
0.7 1.04 0.570 2.392 0.306 2.764 0.434 0.689 1.312 0.532 3.772 0.685
0.6 1.77 0.860 2.366 0.273 1.420 0.370 1.271 0.829 0.575 3.208 0.748

Table 4.1: Parameters(A, B, C, D, E) as functions of the height of the boxh, or the initial current densityj0.
The subscriptsi/o refer to inside/outside the cusp respectively.

h j0 Ai Ei − Ci Ao Eo − Co

0.9 0.23 0.112 0.164 0.109 0.170
0.8 0.56 0.314 0.131 0.313 0.141
0.7 1.04 0.570 0.128 0.689 0.153
0.6 1.77 0.860 0.097 1.271 0.173

Table 4.2: Limits forp→ ∞ as functions of the height of the boxh, or the initial current densityj0.

exponentsni (andno) in the limit p→ ∞, would then not depend onh. This is, when the plasma pressure is very

big, the final equilibrium would not depend on the squashing,i.e. on the electromagnetic perturbation.

4.5.3 Overview

We have studied in close detail the same problem as Craig and Litvinenko (2005), making use of the full set of

MHD equations, and we have found that our final equilibrium differs from their result in some aspects. Using

the approach given by Vekstein and Priest (1993), we have given a qualitative description of the final equilibrium

states by looking for fits to the equationjz = F(Az). Even if this is only a qualitative analysis, it describes a

fair approximation of the behaviour of the final equilibriumas the values of the initial plasma pressure and current

density are varied. These two-dimensional contexts are of high relevance for systems with translational or rota-

tional symmetries, and their study is useful for some astrophysical environments which can be well approximated

by these properties of symmetry.

In the next chapter, we evaluate current accumulations in three-dimensional equilibria which contain 3D mag-

netic null points. The characteristics of these environments are going to be completely different to the two-

dimensional case, and the dynamical evolutions are less restrictive in the sense that the plasma has freedom to

move in all three spatial directions. Hence, the approach tothe problem will have to be different.



Chapter 5

Relaxation of 3D Magnetic Null Points

5.1 Introduction

Three-dimensional magnetic null points have been studied in detail within the last decade in the main context of

three dimensional magnetic reconnection. Their importance for magnetic energy release in solar and magneto-

spheric environments have been observationally established by many authors, for example in solar flares (Fletcher

et al., 2001), in solar active regions (Ugarte-Urra et al., 2007) or at the Earth’s magnetotail (Xiao et al., 2006).

However, a complete understanding of the formation of a current sheet through the collapse of a three-dimensional

magnetic null point is still to be achieved, either mathematically or phenomenologically.

The processes of reconnection in three dimensions are significantly different to and much more complex than

those in two-dimensions at X-type null points (e.g Hesse andSchindler, 1988; Priest et al., 2003). In general,

in three-dimensions, magnetic reconnection can occur either at nulls or in the absence of them, and does not

involve one-to-one breaking and rejoining of pairs of field lines, as in two-dimensions. A classification of the

reconnection regimes at three-dimensional magnetic null points is made by Priest and Pontin (2009). The nature

of the reconnection that takes place around a three-dimensional null depends directly on the flows and boundary

conditions that are responsible for the reconnection (Figure 5.1). Below, we discuss the different reconnection

regimes about 3D nulls, assuming initially a potential radial null, where the spine is perpendicular to the fan, and

field lines in the fan plane extend radially from the null (Parnell et al., 1996).

1) A rotation of the fan plane about the spine drives a twist ofthe field lines around the spine (red arrows in

Figure 5.1). An electric current density builds along and near the spine, in the direction of it. Reconnection of

field lines may take place in that region, producing a slippage of the field lines in a counter-rotational direction

to the twist, which dissipates the current density. This is called torsional spine reconnection. It does not involve

flow across the fan or the spine, and hence, the global topology of the field remains unchanged. Note, that the

reconnection does not take place at the location of the null.Models of torsional magnetic reconnection are given

by Pontin et al. (2004) and Wyper and Jain (2010).

2) A rotation of the field lines about the spine, in different directions above and below the fan, creates an

electric current in the fan plane that points in the direction of the spine but has different sign above and below

the fan (yellow arrows in Figure 5.1). Reconnection of field lines can take place in the regions near the fan by

a rotational slippage of the field lines there in opposite directions above and below the fan, so as to dissipate the
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Figure 5.1: Possible boundary disturbances responsible for reconnection at a 3D positive null, showing the di-
rection of the induced current density, for (a)torsional-spine reconnection:a rotation of the fan (red) induces a
unidirectional current density, parallel (below the fan) and antiparallel (above the fan) to the spine, (b)torsional-
fan reconnection:opposite rotations above and below the fan of the field lines about the spine (yellow) induce a
current density antiparallel to the spine, (c) and (d)fan-spine reconnection:a shear of the fan plane (blue) or the
spine (green), induces a current density perpendicular to the spine in these cases along thex-axis.

current density. This is calledtorsional fan reconnection. As before it does not produce a change in the topology

of the field, and reconnection does not happen at the locations of the null (Pontin et al., 2004; Wyper and Jain,

2010).

3) A shear motion of the spine below and above the fan, in opposite directions (green arrows in Figure 5.1),

or a shearing of the fan plane (blue arrows in Figure 5.1), producing a tilt with respect to the spine about a given

axis, drives a collapse of the null point. That is, the resulting Lorentz forces act in the same direction as the initial

disturbance, thus increasing it and resulting in a folding of the spine and fan towards each other. A current is

created along the line to which the spine and fan are collapsing to, and so, it is perpendicular to the direction of the

perturbation, similarly to the two-dimensional X-point collapse. Here, reconnection can take place in the vicinity

of the null, and implies that flux is transferred across the spine and the fan, thus changing the global topology of the

field lines, as in the two-dimensional case. Pontin et al. (2005) give a model for this type of reconnection, referred

to asfan-spine reconnection.

All the previously mentioned studies of 3D reconnection at magnetic nulls assume a zero beta plasma model,

solving the equations only for the electromagnetic field, and hence, neglecting the effects of the plasma in the

evolution of the field. On the other hand, Pontin et al. (2007a) investigated current sheet formation and evolution

of the field at 3D nulls after a shearing-type perturbation, using a full MHD description of the field. They then

studied the subsequent reconnection processes using full MHD resistive numerical simulations, finding, at the time

of maximum current, the biggest current accumulation at thelocation of the null, extended faintly along the spine
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and the fan. Using the same MHD approach, they investigated the effects of compressibility (Pontin et al., 2007b)

in their evolution, finding a significant reduction of the peak current and the reconnection rate as the limit of an

incompressible fluid was approached.

However, the non-resistive evolution of three-dimensional nulls through a shearing-type perturbation and the

development of singular currents, to our knowledge, has only been studied by Pontin and Craig (2005), who

analysed the formation of a current singularity at the location of the null in a non-force-free equilibrium, in an

equivalent manner to the two-dimensional singularities studied by Craig and Litvinenko (2005). The emphasis

of their study was the evaluation of the scaling laws for the strength of the singularity, as a function of the grid

resolution of their experiments. They also studied the effects of the plasma pressure in the relaxation, finding that,

while a singularity was formed in all cases, the plasma pressure force weakened the strength of the singularity. For

the evolution of the field, they assumed the adiabatic polytropic modelp ∼ ργ , using a frictional code where no

energy conversion was allowed.

Here, we study the non-resistive evolution of two configurations, 1) a torsional-spine-type and 2) a sheared-type

perturbed magnetic null, using LARE3D. In particular, we are interested in the current accumulations that arise

when a non-force-free equilibrium is reached. We evaluate the effects of both the plasma pressure and the heat

transfer in the evolution, as both the initial disturbance (i.e. the torsion or the shear) and the background plasma

pressure are changed systematically. In the case of a shearing perturbation, the formation of a current singularity

at the location of the null is evaluated.

5.2 Magnetic field configurations and numerical setup

As seen in Section 1.4.2, the magnetic fieldB around a null point may be expressed as

B = M · r , (5.2.1)

whereM is a matrix with elementsMi,j = ∂Bi/∂xj, andr is the position vector(x, y, z)T . By choosing the right

coordinate system in which the spine lies along thez-axis and the current density vector is directed somewhere in

thexz-plane, the matrixM can be reduced to equation (1.4.14),

M =







∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z






∼







1 1
2 (q − j‖) 0

1
2 (q + j‖) p 0

0 j⊥ −(p+ 1)






,

wherej‖ andj⊥ are the components of the current density parallel and perpendicular to the spine, respectively,

such that

j = (j⊥, 0, j‖) .

The conditions−1 < p < ∞ andq2 ≤ j2‖ + 4p (Parnell et al., 1996) ensure that the spine of the null is along the

z-axis, and the null is positive, i.e. the spine above and below the fan is composed of a pair of field lines directed

towards the null, and field lines in the fan emanate away from it.

In this chapter, we are going to study the MHD relaxation of two different null point configurations, with the

current density vector entirely perpendicular or entirelyparallel to the spine. As an initial magnetic field, we use a
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linear field around a null as described in equation (5.2.1). For simplicity in our experiments, we have chosenq = 0

andp = 1, so that the field lines lying in the fan do not follow any predominant direction (i.e. they expand radially

outwards), and are rotationally symmetric about the spine.Hence, we can rewrite the matrixM as

M =







1 − 1
2j‖ 0

1
2 j‖ 1 0

0 j⊥ −2






. (5.2.2)

We use the LARE code to run a series of non-resistive experiments on initial magnetic fields of 3D null points

that have a uniform spine-aligned or fan-aligned current, embedded in a non-zero beta plasma. In order to inves-

tigate the dependence of the results on values for the initial pressure and current density, we consider two sets of

experiments in which the magnitude of the background plasmapressure and the initial current density are varied

independently. All the initial plasma quantities (i.e. plasma pressure, density and internal energy) are fixed as con-

stants and there are no initial flows. The current density vector is also constant everywhere, as already explained,

and equals(0, 0, j0) in the first set of experiments, and(j0, 0, 0) in the second.

The size of the numerical domain is2×2×2, and allx, y andz vary from−1 to 1. The grid is uniform and has

a resolution of256×256×256. All boundaries of the domain are closed, in the same way as those for the 2D null

point experiments discussed in Chapter 4, and the magnetic field is line tied. At the boundaries, velocities are set

to zero and the rest of the quantities have their first derivatives set to zero. The real viscosity isνr = 0.005, and

the two shock viscosities are zero in all the experiments.

5.3 3D nulls with spine-aligned current

5.3.1 Initial state

We first look at the relaxation of initial configurations of magnetic null points with a constant current density

everywhere in the direction parallel to the spine, of the form (0, 0, j0). The magnetic field is then given by equations

(5.2.1) and (5.2.2), as

Bx = x− j0
2
y , (5.3.1)

By =
j0
2
x+ y , (5.3.2)

Bz = −2z . (5.3.3)

The fan is perpendicular to the spine and lies in the planez = 0. We have run four experiments with a fixed value

of the plasma pressure,p0 = 1, varying the initial current asj0 = 0.025, 0.5, 1.0, 1.5, and five experiments with

the initial current fixed atj0 = 1, and the initial pressure varying asp0 = 0.05, 0.5, 1.0, 1.5, 2.0. Figure 5.2

shows the magnetic configuration of the initial state, forj0 = 1.0 andp0 = 1.0. The magnetic field lines show a

homogeneous twist about the spine, and the field lines lying in the fan define a logarithmic spiral.



5.3 3D nulls with spine-aligned current 117

Figure 5.2: Magnetic configuration for the initial non-equilibrium state with homogeneous spine-aligned current,
for j0 = 1.0 andp0 = 1.0, showing (a) the 3D configuration with field lines above the fan in purple and field lines
below the fan in orange. The fan plane is outlined by a dashed black line. The spine is represented in green, with
its projections onto thexz-plane andyz-plane in dashed green lines. In (b), we plot the field lines inthe fan plane,
at z = 0.

Figure 5.3: Time evolution of the energies of the system integrated over the whole domain, for the same experiment
as in Figure 5.2. The magnetic, internal and total energies have been shifted on they-axis by subtracting the
constant values8.5, 12.0 and20.5 respectively, but their amplitudes are not scaled.
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5.3.2 Final equilibrium state

We first concentrate on the case shown in Figure 5.2, which hasj0 = 1.0 andp0 = 1.0. The evolution of the

energies of the system integrated over the numerical domainis shown in Figure 5.3. The time unit is the time for

a fast magnetoacoustic wave to get from one of the boundariesto the location of the null. The exchange from

magnetic to internal energy is approximately0.12, in normalised units, and the change in total energy is just0.001,

which is about0.01 times the amount of exchanged energy and hence, it is negligible. Note that here, the numerical

effects that violated energy conservation in the first few time-steps of the two-dimensional X-point experiments in

the previous chapter (which were explained as being a consequence of sudden shock formation), do not appear in

our three dimensional models. Thus it appears as if energy isessentially conserved in our experiments.

The magnetic field configuration at the end of the simulation is shown in Figure 5.4. Because of the line-

tied boundaries, and the restriction of an ideal evolution,the field cannot dissipate the original twist. Instead, in

comparison to the initial state (Figure 5.2), the relaxation appears to undo the original spiral of the fan field lines,

transferring the twist to the field lines about the spine. However, the final relaxed field lines in our fan plane are

not entirely radial.

In order to evaluate if an equilibrium has been achieved, we go back to the main result of magnetohydrostatics

which states that, in a properly relaxed state, the plasma pressure is constant along field lines, and hence,

B · ∇p = 0 .

By comparing, in the fan plane of the final state, the magnitudes ofB · ∇p and the poloidal magnetic field,Bφ

(Figure 5.5), we show that the regions in whichB · ∇p 6= 0 coincide with the regions where the poloidal field

is large. This may indicate that these regions arise due to the residual forces trying to converge the field lines to

a radial configuration that has not yet been achieved. The plasma pressure in the fan plane is effectively constant

everywhere with an approximate value of1.06, in comparison with its initial magnitude,p0 = 1. The restriction

of line-tide boundaries makes the final state hard to achieve, and the forces are fairly small, so the numerical

simulation would need to run for much longer to make these disappear.

We now consider if the system has achieved a good equilibriumin the regions outside the plane of the fan by

considering a vertical cut through the fan in a plane including the spine. As discussed above, in equilibrium, the

plasma pressure has to be constant along the magnetic fields,implying B · ∇p = 0. In Figure 5.6a we show that

outside of the fan plane, the pressure is constant along magnetic field lines everywhere. The particular vertical

cut chosen is a plane perpendicular to the fan which cuts through two of the regions of non-equilibrium in the fan

(indicated in red in Figure 5.5a).

Figures 5.6b and 5.6c show vertical cuts in the planex = 0 with contour plots of plasma pressure and current

density. Plasma pressure is enhanced near the spine and in the fan plane, and current density concentrates princi-

pally along and about the spine, and is positive everywhere.The magnitude of the current density is reflectively

symmetric about the fan plane, and rotationally symmetric about the spine. Note, that the main accumulations of

current density occur in the locations where torsional-spine reconnection takes place in 3D null point reconnection

studies (Pontin et al., 2004; Priest and Pontin, 2009; Wyperand Jain, 2010). The current is effectively zero in the

fan plane, but has a small finite value at the location of the null itself, corresponding to small and highly localised

gradients of the magnetic components at the location of the null. The scales of these gradients are of the order of

the size of the numerical grid, and hence, we are not able to give a definitive answer as to whether the current at

the null itself is different to zero.
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Figure 5.4: Magnetic configuration for the equilibrium state with spine-aligned current, for the same experiment
as in Figure 5.2, showing (a) the 3D configuration with field lines above the fan in purple and field lines below the
fan in orange. The outline of the fan is represented by dashedblack lines. Also, the spine is represented in green,
with its projections onto thexz-plane andyz-plane in dashed green lines. In (b), we plot the field lines inthe fan
plane, atz = 0.

Figure 5.5: Contour plots of (a)|B ·∇p| and (b) poloidal field,Bφ, in the fan plane for the final state, for the same
experiment as in Figure 5.2. In (b), blue means clockwise winding of the field lines, and red means anti-clockwise
winding. The red-dashed line in (a) shows the line of the vertical cut shown in Figure 5.6a.
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Figure 5.6: Contour-plots of (a)|B ·∇p|, for a vertical plane crossing the fan through the red dashedline in Figure
5.5a, and (b) plasma pressure, (c) current density and (d)p/ργ , in theyz-plane atx = 0, for the same experiment
as in Figure 5.2

Parnell et al. (1997) describe how, an equilibrium involving a linear 3D null must satisfyj = 0, i.e. the field

has to be potential, as seen in Section 1.4, equation (1.4.18), since

∇ × (j × B) = −M · j = 0 ,

whereM is a non-singular matrix. Assuming that the field lying in thefan plane is linear in the final equilibrium,

this condition requires the field to be potential everywherein the fan, except for the null point itself, whereB = 0.

There, a finite singular current could in principle be allowed, but this cannot be confirmed within our resolution

limits.

The viscous heating term in the energy equation leads to non-adiabatic effects, from which it follows that the

quantityp/ργ changes throughout the dynamical evolution, and therefore, density is not constant along magnetic

field lines in the final state. Figure 5.6d shows a vertical cutof p/ργ in the planex = 0. We see that it does not

follow the same behaviour as the plasma pressure or the current density. The higher values do not occur in the fan

nor along the spine. Instead,p/ργ is near its minimum in those regions, indicating that the main dissipation of
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magnetic energy does not happen at them.

The state of the plasma along the spine in the final state, compared to its initial state, is shown in Figure 5.7,

where we plot the current density, plasma pressure and entropy (p/ργ) along the spine for the final and initial

states. Along the spine, the magnetic field is parallel (above the null) and antiparallel (below the null) to the

electric current. Hence, the Lorentz force must equal zero,and, in equilibrium, the pressure gradients have to

vanish, which they clearly do (Figure 5.7a). The current density is nearly zero at the origin, and increases almost

linearly below and above the fan (Figure 5.7b). The entropy (p/ργ) increases gradually along the spine, then more

rapidly as it heads to the null, peaking at the null itself (Figure 5.7c). This indicates that there is marginally more

energy dissipated near the null than along the rest of the spine, but even near the null there is a little dissipation

compared to elsewhere in the domain (Figure 5.6d).

Figure 5.8 shows plots of the same quantities, across the spine, at three different heights, in the planex = 0.

We see that, in the region close to the spine−0.1 < y < 0.1, the plasma pressure gradients do not vary with height

(Figure 5.8a), hence, in the equilibrium, thez-component of the Lorentz force is zero within a cylinder of radius

0.1 around the spine. Also in that region,p/ργ is near its minimum (Figure 5.8c), as discussed above. It reaches,

however, its maximum values away from the spine, where it gets much larger than at the null point itself. Hence,

the largest dissipation of magnetic energy does not occur ator near the null in this torsional case.

5.3.3 Changes in current density and plasma pressure

Finally, we evaluate how the results above vary when increasing or decreasing the initial values of the plasma

pressure and current density. By increasing the initial constant current density,j0, we naturally find a larger

accumulation of current about the spine, but the qualitative aspects of the final equilibria are the same in all cases.

Figure 5.9a shows plots of current density along the spine for four experiments with the fixed initial plasma pressure

p0 = 1 and current densitiesj0 = 0.25, 0.5, 1.0, 1.5. The gradients of current on moving away from the null are

steeper the higher the value of the initial current is. By comparing now the current distributions at the final state

normalised by the initial value of the current density in each case (Figure 5.9b), we obtain a very similar behaviour

for all the experiments. This suggests that the distributions of the current density in the final equilibria simply scale

with the value of the initial current densities.

However, by changing the initial plasma pressure we do not find the same effect. The final distributions of

current density are not affected by the magnitude of the initial plasma pressure, and hence by the value of the

plasma beta. The current density distributions along the line of the spine are seemingly independent of the plasma

pressure (Figure 5.10a), and so are the distributions across the spine, for small changes of the plasma pressure

(Figure 5.10b). Only when the initial plasma pressure has been decreased by a factor of 20 (i.e. forp0 = 0.05), can

we see a small change in the regions about the spine, where thedistribution of current density tends to be smoother.

5.3.4 Overview

The three-dimensional relaxation of magnetic null points with spine-aligned current has been investigated under

non-resistive conditions. An initial field with a constant current density everywhere, in the direction of the spine,

evolves by concentrating the initial constant current density around the spine lines, above and below the fan,

maintaining the same direction in both hemispheres. The current along the spine points towards the null below the

fan plane, and away from the null above the fan plane. Therefore, in the final equilibrium, the twist of the field lines,



5.3 3D nulls with spine-aligned current 122

Figure 5.7: Cuts of (a) plasma pressure, (b) current densityand (c)p/ργ along the spine, for the same experiment
as in Figure 5.2. Solid lines represent the final equilibriumstate, and dotted lines represent the initial state.

Figure 5.8: Cuts of (a) plasma pressure, (b) current densityand (c)p/ργ across the spine, at heightsz = 0.4 (dash
dot), z = 0.6 (dashed) andz = 0.8 (solid) for the same experiment as in Figure 5.2. Dotted lines represent the
initial state.

which is initially homogeneous, accumulates about the spine, with the same sense of rotation above and below the

fan. Our final equilibrium is such that the current density iseffectively zero everywhere in the fan plane. Also, the

field at equilibrium has rotational symmetry with respect tothe spine. In order to reach the final equilibrium, we

find that the main locations of viscous dissipation do not occur at the regions of higher accumulations of current,

but they occur outside the separatrices and the null.

The effects of changes in the magnitude of the initial current density (or equivalently, in the integrated current

density in the domain) are to increase the twist of the field lines about the spine, and hence, increase the current

density around it. The current density along the spine increases monotonically as we move along the spine, with

the rate of increase scaled according to the initial currentdensity,j0, of the system. On the other hand, the results

are only very weakly dependent of the magnitude of the initial plasma pressure, and in principle, the pressure

gradients (pressure force) are able to hold the current density accumulation no matter what the magnitude of the

plasma pressure is.
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Figure 5.9: Cuts along the spine, of (a) current density, forfour different experiments with initial plasma pressure
p0 = 1, and current densitiesj0 = 0.25 (dotted),j0 = 0.5 (dash dot),j0 = 1.0 (dashed) andj0 = 1.5 (solid).
In blue, we represent the initial constant current for each experiment. The current normalised with respect to the
initial values are overplotted in (b) for all four experiments.

Figure 5.10: Cuts (a) along and (b) across the spine, at height z = 0.6, of current density, for five different
experiments with initial current densityj0 = 1, and plasma pressuresp0 = 0.05 (dotted),p0 = 0.5 (dash dot
dot), p0 = 1.0 (dashed dot),p0 = 1.5 (dashed) andp0 = 2.0 (solid). All plots overlap, except for the one with
p0 = 0.05.
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Figure 5.11: Magnetic configuration for the initial non-equilibrium state with homogeneous current perpendicular
to the spine, pointing along thex-axis, withj0 = 1.0 andp0 = 1.0, showing the 3D configuration with field lines
above the fan in purple and field lines below the fan in orange.The fan is represented by dashed black lines. Also,
the spine is represented in green, with its projections ontothexz-plane andyz-plane in dashed green lines.

5.4 3D nulls with fan-aligned current

5.4.1 Initial state

In the second set of experiments, we look at the relaxation ofmagnetic null points with constant current density,

pointing in thex-direction, perpendicular to the spine, of the form(j0, 0, 0). The magnetic field is now given by

Bx = x , (5.4.1)

By = y , (5.4.2)

Bz = j0y − 2z . (5.4.3)

The fan plane for such a field tilts about thex-axis, so that it is not perpendicular to the spine. Initially, the plane

of the fan is defined by

z =
j0
3
y (5.4.4)

(Parnell et al., 1996). We have run three experiments with a fixed value of the plasma pressure,p0 = 1, varying

the initial current asj0 = 0.5, 1.0, 1.5, and another three experiments with the initial current fixed, j0 = 1, and

the initial pressure varying asp0 = 0.5, 1.0, 1.5. Figure 5.11 shows the magnetic configuration of the initialstate,

for j0 = 1.0 andp0 = 1.0.

5.4.2 Final equilibrium state

We start analysing the results by focusing on the experimentin Figure 5.11, withj0 = 1.0 andp0 = 1.0. First,

in Figure 5.12, we show the evolution of the integrated energies of the system. The time unit is the time for a fast

magnetoacoustic wave to get from one of the boundaries to thelocation of the null. The exchange of magnetic to
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Figure 5.12: Time evolution of the integrated energies of the system for the same experiment as in Figure 5.11.
The magnetic, internal and total energies have been shiftedon they-axis by subtracting the constant values9.1,
12.0 and21.1, respectively, but their amplitudes are not scaled.
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internal energy is larger than in the previous case, and is approximately0.18. In comparison, the change in total

energy is of0.0003, and hence, the total energy may be said to be conserved.

The magnetic field configuration at the end of the simulation is shown in Figure 5.13. In comparison to the

initial state (Figure 5.11), the relaxation appears to collapse the spine and the fan towards each other in the region

near the null. Far from the null, the spine appear to be tryingto become perpendicular to the fan.

As in the previous sets of experiments, we check if our state has reached an equilibrium, by calculating the

quantityB · ∇p, which must equal zero everywhere for the plasma pressure tobe constant along field lines. This

condition holds everywhere save near and in the fan plane (Figure 5.14a). Interestingly, the non-zero regions of

B · ∇p do not occur symmetrically about the fan plane, but occur in and above the fan whenz > 0 andy > 0

and in and below the fan whenz < 0 andy < 0. That is, they occur within the regions where the fan has been

folded up towards the spine. These regions of non-equilibrium may account for residual forces which are trying to

make the fan and the spine perpendicular away from the null. Note, that near the null, the spine and the fan appear

to have collapsed to each other, and far from the null, they bend away, in a similar way to the separatrices in the

two-dimensional X-point case.

The distribution of the plasma pressure in the planex = 0 is similar to that in the 2D X-point case, with the

pressure enhanced in the regions inside the “cusp” and decreased in the regions outside the “cusp” (Figure 5.14b),

exactly as in the collapse of two-dimensional X-points. Thecurrent density appears to extend principally along

the fan, but also very faintly along the spine (Figure 5.14c). The current density vector in this case points in the

direction of thex-axis, i.e. perpendicular to the plane we show here, as in twodimensions. Hence, apart from the

asymmetry of the current enhancements, this is also similarto the 2D behaviour we saw in the previous chapter.

Finally, the entropy (p/ργ) is maximum at the location of the null, as it is in the 2D case,and it extends along the

fan plane, and along what appears to be the axis of the centralcurrent layer. Hence, it is at these locations where

the main viscous dissipation has occurred.

In Figure 5.15a, we show a surface plot of the current densityin the same plane as the contour plot in Figure

5.14c, confirming that the current density is enhanced mainly along this cut of the fan plane, and faintly along the

spine. At the null, the current shows a spike, indicating that a singular current may be being formed. Figure 5.15b

shows one-dimensional plots of the current density perpendicular to the fan at different points, in the same plane

as before,x = 0. These results may be compared with the finite width of the current accumulations obtained in the

two-dimensional X-point collapse. However, the resolution of the 3D experiments is insufficient, and the current

in the fan has a width of 5 or 6 resolution elements. This result is then inconclusive.

We now look at the geometry of the fan plane itself. Initially, the fan is a plane defined by the equation (5.4.4),

but in the final state, the surface of the fan is not planar. In order to appreciate the shape of the fan surface in the

final state, Figure 5.16 shows a plot of the deformation of thefan surface from the initial state. The fan deforms

towards the spine, upwards for positive values ofy, and downwards for negative values ofy, but is symmetric with

respect to thex = 0 plane. Note, that the field is line-tied at the boundaries of the domain, thus the fan is forced to

recover its initial position at the four edges.

The structure of the current density in the fan surface at thefinal equilibrium state is shown in Figure 5.17a.

The current density over all the fan surface is larger than inthe rest of the three dimensional domain, but we see

that the largest values are along thex-axis, aty = 0, which is the tilt-axis. The absolute maximum is at the location

of the null (Figure 5.15a). Near the null, the current has a layer of finite length extending along the axis of tilt.

Similarly, the entropy (p/ργ) in the fan plane has its higher values at the location of the current layer that forms

about the null (Figure 5.17b).
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Figure 5.14: Contour plots of (a)|B · ∇p|, (b) plasma pressure, (c) current density and (d)p/ργ , in theyz-plane
atx = 0, for the same experiment as in Figure 5.11. The pink dashed line shows the intersection of the fan plane,
and the blue dashed line shows the spine.

Figure 5.15: Current density in the planex = 0, for the same experiment as in Figure 5.11, showing, (a) a surface
plot of j, equivalent to the contour plot in Figure 5.14c, and (b) plots of current density across the fan surface for
cuts perpendicular to it. Highlighted in the plot, we show the value ofy at which each cut crosses the fan. The
plots are centered at the location of the fan surface.
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Figure 5.16: Fan surface at the final state, with the initial homogeneous tilt subtracted at each point.

Figure 5.17: Surface plots of (a) current density and (b)p/ργ , for the same experiment as in Figure 5.11, in the fan
surface.

In Figures 5.14c, 5.15a and 5.17a, it looks like a current singularity may be trying to form. In the next section

we investigate the formation of such a singularity.

5.4.3 Current singularity

The formation of current singularities at line-tied 3D nullpoints in non-resistive magnetohydrodynamics has been

studied by Pontin and Craig (2005). They show how these current singularities are formed in an equivalent manner

to that in two dimensions, using a frictional code with no heating term. In agreement with their study, we find that

the current density spreads mainly over the fan surface, with a smaller amount also concentrating along the spine,

as shown in Figure 5.15.

In our two-dimensional results from Chapter 4, we investigated the formation of a singular current at the

location of the null. It was found that small residual forcesremained, concentrated about the null, stretching the
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Figure 5.18: Current density along the spine (black-solid), along the tilt-axis of the fan (blue-dashed) and along
they-axis of the fan (orange-dashed), for the same experiment asin Figure 5.11

Figure 5.19: Magnitude of the residual forces (a) along the spine, (b) along the tilt-axis of the fan and (c) along the
y-axis of the fan.

current layer in one direction and trying to converge it to a singularity in the other. Furthermore, as the grid

resolution increased, so did the forces. Also, as the systemevolved, the peak current kept slowly increasing. We

aim to do a similar analysis for our three-dimensional null point. In Figure 5.18, we show plots of current density

along the spine, along thex-axis of the fan surface (tilt-axis), and along they-axis of the fan surface. Along

the spine, a broad gradual increase of current over0.3 length units from the null sees the current rise up from

0.7 to 13 before it peaks at over30 at the null itself. This first broad enhancement is partly associated with the

current accumulation about the fan plane. After that, the current shows a spike, which reveals the formation of

the singularity at the null. The region in which the current distribution along the spine coincides with the current

distribution along they-axis of the fan is the region in which both the fan and spine lie concurrently, and where the

singularity is to be formed.

By evaluating the residual forces, we expect to see a furtherindication of the formation of a singularity, but

the low resolution of the experiments does not allow a conclusive result. The total forces evaluated along the spine

show a sudden increase about the null, but are nearly zero at the exact location of the null itself (Figure 5.19a).
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These may indicate the formation of a singularity, as studied in the two-dimensional case. However, the fan shows

higher residual forces away from the null (Figure 5.19b), except in the axis of tilt of the fan, in which the forces

are minima (Figure 5.19c). The reason why these forces are not sufficiently small is because they lie within the

numerical error of the finite difference derivatives. The use of higher resolution runs is necessary for a firmer

conclusion.

5.4.4 Changes in current density and plasma pressure

Finally, we discuss how the previous results vary when the initial current density and initial plasma pressure are

varied, and compare our results to those of Pontin and Craig (2005). Pontin and Craig (2005) find a reduction in

the peak current when the plasma pressure is increased.

Following the investigation of Craig and Litvinenko (2005)for the two-dimensional X-point relaxation, Pontin

and Craig (2005) evaluate the scaling of the peak current density with the numerical grid size. As before, this

scaling law does not make sense in our full MHD numerical experiment, as the equations do not permit the peak

current to achieve a genuine singularity, but keeps slowly increasing as more time elapses.

First, from equation (5.4.4), the initial disturbance of the field (tilt of the fan) is defined by the magnitude of

the initial constant current density. The higher the initial current density, the higher the angle of tilt. We find that

the deformation of the spine in the final state directly depends on the steepness of the initial fan plane. The larger

the initial current the greater the deformation (curvature) of the fan and the spine (Figure 5.20a). Similarly, a larger

initial magnitude of the initial current density produces asteeper initial inclination and a bigger deformation of the

fan plane (Figure 5.20b). The shape of the singularity alongthe spine for the two experiments withj0 = 0.5 and

1.0 is shown in Figures 5.20c and d. Here we see that the strength of the singularity increases when increasing the

initial current, and a clear well defined spike is only observed for the smaller values ofj0, as the current layer gets

broader for larger values of the initial current.

Changes in the initial background plasma pressure do not affect the the initial tilt of the fan surface, but they

affect the final collapse of the fan and spine towards the nullby varying the degree of the deformation (Figure

5.21a-b). It can be seen that a larger initial magnitude of the plasma pressure produces a smaller deformation of

the fan plane and the spine line. This is not surprising sincethe plasma acts to reduce the effects of the initial

Lorentz force, preventing a collapse in the null. The suppression of the current layer and singularity as the plasma

pressure decreases is also seen in Figure 5.21c and d, where aweaker current in the fan surface and at the null is

seen for a smaller plasma pressure.

Overall, the results are similar to that of the relaxation oftwo-dimensional magnetic X-points. The singularity

becomes less pronounced if the initial current density is decreased, or the initial plasma pressure (and hence, the

plasma beta) is increased.
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Figure 5.20: Dependence with current density, showing (a) fan (pink) and spine (blue) in the planex = 0 for
j0 = 0.5, 1.0, 1.5, (b) shapes of the fan surfaces, after subtracting the initial tilt, and (c) and (d), current density
along the spine (black-solid) and along the tilt-axis (blue-dashed) andy-axis (orange-dashed) in the fan plane, for
two of the experiments, withj0 = 0.5 and1.5.

Figure 5.21: Dependence with plasma pressure, showing (a) fan (pink) and spine (blue) in the planex = 0 for (a)
p0 = 0.5, 1.0, 1.5, (b) shapes of the fan surfaces, after subtracting the initial tilt, and (c) and (d) current density
along the spine (black-solid) and along the tilt-axis (blue-dashed) andy-axis (orange-dashed) in the fan plane, for
the two experiments withp0 = 0.5 and1.5.
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5.4.5 Overview

In the last set of experiments of this thesis, we have considered the dynamical evolution of three-dimensional

magnetic null points with a shear-type perturbation in which the fan plane is tilted with respect to the spine, about

a given axis. An initially homogeneous current density, perpendicular to the spine, pointing along thex-axis,

evolves in time by collapsing the spine and the fan surface towards each other. The current density remains purely

along thex-axis and it is accumulated around the final surface of the fan, and also along the spine, although with

a much smaller magnitude. A large and very localised three-dimensional current layer with finite dimensions is

formed about the null. It is found that this layer is wider in the direction of the tilt-axis of the fan, while it has a

similar form along the spine and along they-axis of the fan, in the region in which both the spine and the fan lie

concurrently.

Thex = 0 plane, to which the current density vector is perpendicular, shows a very similar structure to the

two-dimensional case: (1) a cusp-like enhancement in current is found outlining the fan surface and the spine, (2)

pressure is enhanced in the regions inside the cusp, (3) entropy peaks at the location of the null, (4) the current

density tries to become singular at the null, but a true singularity is not possible to reach numerically, so instead

a pronounced spike in current is seen about which small residual forces are trying to converge the current to a

singular value.

The effects of decreasing the current density or increasingthe plasma pressure are, first, to lessen the collapse

of the spine and the fan, and second, to decrease the strengthof the singularity at the three-dimensional null point,

but producing a narrower layer about the null. These resultsagree qualitatively with Pontin and Craig (2005), but,

as in the two-dimensional case, an evaluation of the magnitude of the peak current is not of any use, as in our case,

residual forces keep feeding current to the null, trying to achieve an “impossible” singularity. The field is therefore

in a quasi-static equilibrium, but strictly speaking, an equilibrium is impossible to be reached using an ideal MHD

evolution (this is also true in the 2D X-point collapse).

In the last chapter, after giving a brief summary of the results found in this thesis, we discuss the implications of

the equilibrium states found in two-dimensional X-points and three-dimensional magnetic nulls for current sheet

formation and magnetic reconnection, which, in a resistivemedium, would occur around the locations of large

current density accumulations.



Chapter 6

Conclusions and Future Work

6.1 Discussion

In this thesis, the dynamical relaxation of four different hydromagnetic environments to static equilibria have

been studied in detail, under the assumptions of zero resistivity and zero gravity, but taking viscous terms into

consideration as mechanisms for damping velocities and heating the plasma. In each case, the initial state has been

set up as a certain type of disturbance to a potential equilibrium, with no initial flows. The domain of study has

been set to be closed for all the plasma and magnetic quantities. We have then analysed the electric current density

accumulations at the final equilibrium states, which, in allcases, are non-force-free in nature, and thus the plasma

pressure gradients are able to hold finite thick current layers at localised regions. We now summarise the results

obtained in this thesis and give some conclusions for the four sets of experiments, being, the relaxation of parallel

magnetic fields, of 2D magnetic X-points, and of 3D magnetic nulls with spine-aligned and fan-aligned current.

6.1.1 Results overview

Parallel magnetic fields

In Section 3, we have presented analytical and numerical calculations for the two and three dimensional evolution

of untwisted magnetic fields embedded in a non-zero beta plasma (i.e. in a plasma with non-negligible pressure).

The problem has been approached analytically by using a linear approximation to the equations, which allows the

solution to be Fourier decomposed into a whole family of independent harmonic modes. To do this analytically

meant that the heating terms had to be neglected, and the finalequilibrium is found to depend uniquely on the

redistribution of the total pressure. In the final equilibrium, non-zero plasma pressure forces are balanced with

magnetic pressure forces, and hence, the equilibrium reached after the relaxation is non-force-free. We find that, in

comparison to the numerical MHD results including viscous heating, the linear regime is well behaved for a wide

range of amplitudes of the initial perturbations, due to thesimple uniform field structure of the system. Indeed, the

linear regime correctly predicts the behaviour of the plasma pressure for initial perturbations that are many times

the equilibrium values, although it struggles to predict the plasma density correctly for any perturbations that are

not small. However, using a condition of adiabaticity (i.e.assuming zero energy conversion), a fairly good result

is found also for the plasma density. This is because the effects resulting from the viscous heating do not become

important for a wide range of amplitudes of the initial disturbances.

133
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2D magnetic X-points

In Section 4, we have studied the non-resistive relaxation of two-dimensional magnetic X-points embedded in

non-zero beta plasmas. In the final equilibria, the initial magnetic X-point collapses to a pair of cusp-points in

which the electric current density accumulates at the location of the null and around the four separatrices. The

plasma pressure is enhanced in the regions inside the cusps and decreased outside them. The resulting field may

be far from the potential description given by Green (1965),where an infinitesimally thin current sheet contains

the entire current of the domain, and the field is potential everywhere else. Instead of a thin current sheet, we

obtain a thick current layer with finite length and width. Such a finite thickness current layer is created because

the plasma pressure gradients are able to hold a non-zero current density and balance the non-zero magnetic forces

in the layer. The current accumulations at the null become thinner and more elongated as the plasma pressure is

decreased. Moreover, when comparing the experiments with different values of the plasma pressure, the current

distributions along the current layer intersect exactly atthe extremes of the corresponding Green’s current sheet,

suggesting that the current may ultimately converge to Green’s solution at the limitp0 → 0.

It is well known that the collapse of a two-dimensional X-point leads to a build up of current to form a singu-

larity at the location of the null (e.g. Rastätter et al., 1994; Bungey and Priest, 1995; Craig and Litvinenko, 2005),

where reconnection occurs in a resistive medium. We confirm the formation of this singularity, in non-force-free

equilibria, but we note that this state is numerically impossible to reach due to the constraint of the grid resolution.

Small residual forces about the null keep feeding current density into it, and hence, in contrast to the results of

Craig and Litvinenko (2005), the strength of the singularity is not well defined by evaluating the peak current.

Instead, we attempt to describe the nature of the singularity in the final equilibrium by following the description

given by Vekstein and Priest (1993) for force-free sheared magnetic fields containing X-points. They suggest a

form for the angle along the separatrix asθ = Krβ , where(r, θ) are the poloidal coordinates centered at the

origin of the cusp, and for the flux function inside the cusp asAz = rαf(θ/Krβ), and combine them to give an

equilibrium of the form

jz = mA−n
z , (6.1.1)

with n > 0, so the current has a singularity atAz = 0. Then they match the solution with a potential configuration

outside the cusp. Unfortunately, we find that their results are not entirely valid for our case for several reasons.

Their expression for the angle of the separatrices does not match our numerical results, and we do not have a

potential field anywhere in the domain. However, we use a fit toequation (6.1.1) for the current density as a

function of the flux function,Az, and we find a fair match which gives a qualitative systematicdependence of

the shape of the singularity with the initial quantities. Weevaluate the dependence of the coefficientsm and the

exponentsn for different values of the initial current density and the initial plasma pressure. This works well both

inside and outside the cusp, but the parameters are different, so the field behaves differently, in both regions. We

fit the dependence of these two parameters on the initial plasma pressure to exponential functions of the form

m = −A(e−Bp0 − 1) ,

n = C(e−Dp0 − 1) + E ,

where(A, B, C, D, E) are parameters which depend on the initial current density,and are different for the inside

and outside regions of the cusp. We are not able to conclude anything definitive from these results, except for the

fact that they preserve the monotonicity with initial current density.
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3D magnetic nulls

In Section 5, we study the non-resistive relaxation of two configurations of three-dimensional magnetic null points,

with a rotational and a shearing disturbance of the field. In the first case, we find a current accumulation along the

line of the spine, and directed parallel to the spine. In the second case, the current accumulates in the fan plane

predominantly and also faintly along the spine, but it is directed perpendicular to the spine and the angle of tilt of

the fan surface.

In the first set of experiments, an initial overall twist of the field lines evolves by concentrating the twist and

hence the current along the spine. We find the current to be essentially zero at the fan plane, except at the null

point, where it may have a non-zero value which cannot be confirmed within our numerical resolution. The current

along the spine appears to increase linearly from the null point, at a rate that is proportional to the initial value of

the current density. The final equilibrium state seems to be independent of the initial plasma pressure, and only

when the plasma pressure is varied by a large amount do we find aweak variation of the final current redistribution.

In the second set of experiments, a tilt of the fan plane with respect to the spine causes the spine and fan to

collapse to each other in a similar way to the two-dimensional X-point separatrices, finding a similar redistribution

of the thermal quantities to that of the 2D case. Current density is enhanced along the fan, and also weakly along

the spine. As discussed in Pontin and Craig (2005), the current has a singularity at the location of the null. But

again, in contrast with their study, residual forces feed the singularity to a state which is impossible to be reached

by numerical means, and hence the value of the peak current isnot well defined at the final equilibrium.

6.1.2 Implications for current sheet formation and magnetic reconnection

The dynamical processes studied in this thesis about two andthree dimensional magnetic null points, with line tied

boundaries, lead in all cases to high current density accumulations at specific locations. These are not infinites-

imally thin current sheets, rather they are current layers with a finite width and length, which do not contain the

whole current of the numerical domain. In a real plasma, these localised regions with high current density would

mean that the electric resistivity can no longer be ignored,and would lead to magnetic reconnection processes.

In both the two-dimensional X-point experiments and the three-dimensional shearing experiments, the separa-

trices collapse to each other and the current builds a singularity at the exact location of the null point. Reconnection

in these cases would lead to changes in the overall topology of the magnetic field, and hence, to flux transport across

the separatrices. However, the singularity weakens and thecurrent density layer becomes thicker when the plasma

pressure is increased. This suggests that the presence of a high-beta plasma may inhibit the formation of current

layers and hence weakens (slow down) any reconnection, making it harder to rapidly release the large amounts of

magnetic energy required for eruptive events in solar and magnetospheric plasmas.

For the three-dimensional torsional null experiments, no infinite singular current density is created, instead the

current is mainly accumulated along and about the spine. Such a current accumulation would lead to the torsional

spine reconnection studied in Pontin et al. (2004) and Wyperand Jain (2010). This type of reconnection does not

change the global topology of the field, and does not allow flowthrough the separatrices. It causes the slippage of

the field lines around the spine, dissipating the twist of thefield and hence the current density there. We have found

that the current accumulations do not depend strongly on theinitial plasma pressure, and hence, the twist around

the spine is independent of it. This suggests that reconnection in this case is not strongly affected by the presence

of high beta plasmas, and can occur regardless of the value ofthe plasma pressure.
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6.1.3 General conclusions

The interaction between plasma forces and magnetic forces matters when studying the dynamics of a hydromag-

netic medium. The energetics of the processes are significant, because the transfer from one type of energy to

another can affect the evolution of the system.

The study of non-resistive evolutions in suitable environments for magnetic reconnection is a useful tool to

understand the consequences that changes in plasma environments may have on the process of release of magnetic

energy. By doing this we can predict in which environments magnetic reconnection will be more or less effective,

and what thermal quantities constrain the dissipation of the energy stored by the magnetic fields.

In the cases where an infinite singularity is formed at a null point, it is numerically impossible to reach a perfect

equilibrium, because the singularity is not accessible dueto the finite grid resolution. In locations outside the null

point, the field achieves a good static equilibrium, within numerical error, so the field can be described (in the 2D

case), at least qualitatively, by using a singular power lawwhose parameters that depend exponentially with the

initial plasma pressure. On the other hand, we have found that for torsional disturbances, the value of the plasma

pressure has low relevance for the final redistribution of the current, and hence, for reconnection.

Magnetic reconnection is an important process of energy release in scenarios like the solar corona and the

Earth’s magnetotail. In the second case, it provides a mechanism for particle acceleration and for the global au-

rora mechanism. In the first case, it is the mechanism for solar flares and CME’s and is highly likely to be a key

mechanism providing a source of energy for the high temperatures observed in the corona, although it competes

with numerous other models involving magnetoacoustic waves coming from inside the Sun (see Walsh and Ireland,

2003; Hood, 2010). Therefore, many studies are currently being carried out in many different reconnection envi-

ronments, and are using different approaches. The detailedstudies of the characteristic of the most fundamental

processes such as current sheet formation are crucial.

6.2 Future work

The work presented in this thesis leaves several open paths,in different directions, for future studies. First, our

analytical attempts to describe the field around a two-dimensional magnetic X-point, lack a physical explanation

and cannot be given more than a mere qualitative character. The problem can be approached from other start

points. For instance, Vainshtein (1990) proposed a description of the field about special magnetic points in two-

dimensions, such as cusp points at the ends of thin current sheets, seeking a solution at smallr of the form

Az(r, θ) = rα1g1(θ) + rα2g2(θ) + · · ·

with 1 ≤ α1 < α2 < · · · , thus avoidingAz → ∞ whenr → 0.

One such form of this may be

Az(r, θ) = a0r
p0 + a1r

p1 cos (2θ) + a2r
p2g(θ) , (6.2.1)

with 1 ≤ p0 < p1 < p2. The current density is then given given byjz = −∇2Az = mA−n
z . But then, the form

for g(θ) is not trivial. We plan a further investigation of this approach.
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The work in three-dimensional magnetic nulls, on the other hand, has been analysed in less detail. Higher

resolution experiments and a wider range of values for the initial quantities would provide tools for making a more

comparative analysis to the one made in 2D X-points. Also, weonly cover here two null point configurations, but

do not consider the entire family of magnetic structures around three-dimensional nulls. For instance, considering

deformations of improper non-radial nulls, or mixing rotational and shearing disturbances together.

Once the final state of our numerical simulations is well understood, we may “switch on” the resistivity in the

equations of our numerical code, and study the reconnectionprocesses and the amount of energy transferred to

the plasma in the cases with different plasma betas, comparing these to the parameters that define the non-resistive

equilibria obtained within this thesis.

Finally, the work done here can be extended to more complex scenarios in two and three-dimensions including

a wider family of magnetic null points, and involving magnetic fields with multiple nulls. For instance, one such

field is one including two 3D null points and a single magneticseparator, which is the line determined by the

intersection of two separatrix surfaces (which are the extensions of the fan planes), and join a positive null to a

negative one (Figure 6.1). The relaxation in this kind of environments may then be compared in detail with studies

of separator reconnection (e.g. Parnell et al., 2010).

spine 1

separatrix
surface 1

spine 2

separatrix
surface 2

magnetic
separator
magnetic
separator

+

-

Figure 6.1: Sketch of magnetic separator in 3D.
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