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Abstract. Disturbances, such as cyclones, have a major effect on the structure and dynamics of 15 

coral reef assemblages. However, the effect of cyclones on demographic traits, such as fecundity, 16 

has rarely been quantified and direct estimates of mortality at the species level are rare. Here, we 17 

document the effect of Severe Tropical Cyclone Nathan on the demography of corals on the reef 18 

crest at Trimodal Reef in the northern Great Barrier Reef. Mortality rates based on tagged 19 

colonies were very high, ranging from 85.2 % in Goniastrea retiformis to 100% in six Acropora 20 

spp., 3 to 40 times higher than averages rates in the five years preceding Cyclone Nathan. 21 

Fecundity was lower in three out of the four species examined following the cyclone and egg 22 

carbon content was reduced by 58-63% in the two species examined. These results suggest that 23 

energy normally invested in reproduction was diverted to other processes such as injury repair 24 

and demonstrate that cyclones have important sub-lethal effects in addition to high rates of whole 25 

colony mortality. Coral cover was reduced from 34.9 ± 3.9 % (mean ± se) to 3.4 ± 1.5 % with 26 

reductions in the cover of all taxa except those with predominantly massive morphologies such 27 

as the Poritidae. A projected increase in the frequency of tropical storms as a result of global 28 

warming combined with an increase in the frequency and scale of coral bleaching, suggest a 29 

fundamental shift in mortality regimes on reefs which has the potential to threaten their long 30 

term persistence. 31 
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INTRODUCTION 35 

Tropical storms are common on coral reefs (Stoddart 1965; Connell 1997; Allison et al. 2003; 36 

Anthony et al. 2015). Many aspects of the effects of storms on reef-building coral assemblages 37 

are well established. In particular, the loss of coral cover following tropical storms is often 38 

dramatic but usually patchy (Woodley et al. 1981; Bythell et al. 1993; Beeden et al. 2015). 39 

Similarly, tropical storms cause an abrupt change in coral assemblage structure with a decrease 40 

in the relative and absolute abundance of species with morphologies most susceptible to waves 41 

(Adjeroud et al. 2002; Connell et al. 2004; Fabricius et al. 2008; Tanner 2017). However, there 42 

are very few studies on the effect of tropical storms on demographic rates, such as mortality, 43 

growth and fecundity. Such data are required in order to project the likely effect of changes in 44 

the intensity of tropical storms as a consequence of global warming (Bender et al. 2010; Reyer et 45 

al. 2017; Cheal et al. 2017). 46 

The high wind speeds characteristic of tropical storms produce waves of sufficient size to 47 

fracture or dislodge coral colonies from the substratum (Woodley et al. 1981; Masel & Done 48 

1993; Madin & Connolly 2006). Colonies that are not dislodged by waves can be injured through 49 

collisions with the dislodged colonies as they are transported across the reefs by waves (Rodgers 50 

& Fitz 1983; Fong & Lirman 1995). Coral tissue is also blasted or abraded by the force of water 51 

movement or through sand mobilised by waves (Woodley et al. 1981). The forces generated by 52 

tropical storms can be sufficiently large to change reef geomorphology resulting in long term 53 

changes to coral assemblage structure and patterns of zonation on reefs (Harmelin-Vivien and P. 54 

Laboute 1986; Sheffers and Sheffers 2006; Cheal et al. 2017). 55 

The loss of coral cover following cyclones generally scales positively with wind speeds 56 

(Fabricius et al. 2008; Beeden et al. 2015). Loss of coral cover is also related to reef aspect, with 57 
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sites in the lee of storm-generated waves generally less affected (Fabricius et al. 2008). Mortality 58 

rates following tropical storms are generally size specific (Hughes and Jackson 1980; Bythell et 59 

al. 1993) and are also determined by colony shape (Madin and Connolly 2006). For example, the 60 

probability of dislodgement in response to storms increases above a certain size in some 61 

morphologies, such as tabular species, producing bath-tub shaped mortality curves (Madin et al. 62 

2014). 63 

The effects of tropical storms on variables other than coral cover and assemblage 64 

structure are poorly understood. For example, there is almost no research into the effect of 65 

tropical storms on coral growth or reproduction and surprisingly few direct estimates of mortality 66 

at the species level. Previous research into the effects of injury in corals suggests that a reduction 67 

in fecundity is likely. For example, reproductive output is often reduced in injured colonies 68 

(Kojis & Quinn 1985; Rinkevich & Loya 1989; but see Graham & van Woesik 2013) or areas of 69 

a colony adjacent to injury (van Veghel & Bak 1994; Hall 1997) presumably because energy is 70 

directed to the repair of injured tissue rather than towards reproduction (Henry & Hart 2005). 71 

Similarly, reproductive output is also reduced by competition (Tanner 1995) and bleaching 72 

(Baird & Marshall 2002; Mendes & Woodley 2002). Harrison & Wallace (1990) predicted that 73 

vital functions of corals, such as regeneration and maintenance, were less likely to be affected by 74 

stress than non-vital functions, such as growth and reproduction. Similarly, Tanner (1995) 75 

argued that growth and maintenance should be favoured over reproduction because the fitness of 76 

long-lived colonial organisms with high fecundity and indeterminate growth, such as most 77 

corals, is influenced more by size transitions and survival probabilities than fecundity (e.g. 78 

Gotelli 1991). Thus, a coral colony should theoretically achieve greater lifetime fitness if it 79 

sacrifices current fecundity when a temporary demand for resources is placed upon it, such as 80 
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would occur following injury. Testing these hypotheses and clarifying the relationship among 81 

traits is critical for our understanding of coral life histories. 82 

Here, we use demographic data from five years pre-cyclone and observations post-83 

cyclone to test the effects of Tropical Cyclone Nathan on coral assemblage structure, mortality, 84 

fecundity and egg carbon content of reef corals on the reef crest of Trimodal Reef, in the 85 

northern Great Barrier Reef.  86 

 87 

METHODS 88 

Severe Tropical Cyclone Nathan 89 

Tropical Cyclone Nathan began as a tropical low pressure system on 9 March 2015, and 90 

intensified into a Category 4 system with maximum wind speeds of 165 km/h (105 mph) before 91 

crossing over Lizard Island on 19 March 2015. 92 

 93 

Study location 94 

The data were collected from Trimodal Reef in the northern Great Barrier Reef, from 2009 to 95 

2015. Trimodal Reef is located on the northern section of the reef surrounding Lizard Island 96 

between Palfrey Island and South Island (14.6998°S, 145.4486°E). The coral assemblage at 97 

Trimodal Reef is typical of semi-exposed mid-shelf reefs the length of the Great Barrier Reef.  98 

The five years preceding Cyclone Nathan were largely free from disturbances, such as cyclones 99 

and bleaching. The only exception was a crown of thorns (Acanthaster planci) outbreak between 100 

approximately 2012 and 2013. While this outbreak reduced coral cover at some sites around 101 

Lizard Island (Lyle Vail pers comm), there was no change in total coral cover at Trimodal Reef 102 

during this period (Madin et al. in press).  103 
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 104 

Coral assemblage structure 105 

Coral assemblage structure at Trimodal Reef was quantified using five replicate 10 m line 106 

intercept transects (Loya 1972) at 1 m depth in November 2014 and 2015. The intercepts of coral 107 

colonies > 5 cm maximum diameter were measured to the nearest 1 cm. Colonies were identified 108 

to genera or morphological groups of Acropora following Veron (2000). 109 

 110 

Estimating whole colony mortality 111 

Thirty colonies of each of 11 scleractinian coral species were first tagged on Trimodal Reef in 112 

November 2008 and further colonies were tagged each year to keep the total number in each 113 

species at approximately 30 colonies. Based on species abundance distributions at the site 114 

(Dornelas & Connolly 2008), the species were selected to include examples of rare and abundant 115 

species representing five different growth forms: tabular (Acropora cytherea [Dana 1846] and A. 116 

hyacinthus [Dana 1846]), arborescent (A. intermedia [Brook 1891] and A. robusta [Dana 1846]), 117 

corymbose (A. spathulata [Brook 1891], A. millepora [Ehrenberg, 1834], and A. nasuta [Dana, 118 

1846]), digitate (A. cf digitifera[Brook 1892] and A. humilis [Dana, 1846]) and massive 119 

(Goniastrea pectinata [Ehrenberg, 1834] and G. retiformis [Lamarck, 1816]). In subsequent 120 

years, colonies were considered dead if either they were found without tissue on the reef or could 121 

not be found following an exhaustive search using photographs from prior years. 122 

 123 

Estimating fecundity and colony size 124 

Approximately 30 additional colonies of each of the 11 species were sampled at random with 125 

respect to size from the same area of the reef crest each year to avoid potential effects of 126 
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fragment collection on subsequent colony growth estimates from 2009 to 2014. Due to very high 127 

mortality as a result of cyclone Nathan, only 16 G. pectinata, 13 G. retiformis, five A. hyacinthus 128 

and 12 A. cf digitiferawere were sampled in 2015. Cyclone Nathan killed all colonies of the other 129 

species. All species are broadcast spawning hermaphrodites and sampling for fecundity occurred 130 

in the week before the predicted date of spawning in all years. For the Acropora spp., four 131 

branches were removed from near the centre of the colony, fixed and decalcified. Then, the 132 

number of eggs in each of six polyps per branch, selected at random from below the sterile zone 133 

(Wallace 1985), were counted under a dissecting microscope. For the Goniastrea spp., one 134 

nubbin containing approximately 20 polyps was removed from each colony and the number of 135 

eggs in six randomly selected polyps was determined as above. To estimate colony area, the 136 

sampled colonies were photographed from directly above with a scale bar and the photographs 137 

were corrected for barrel distortion. From the photographs, the contours of the focal colonies 138 

were outlined and the areas were compared to that of the scale to estimate the colonies’ planar 139 

area using ImageJ. 140 

 141 

Egg carbon content 142 

Carbon content is often used as a proxy energy content and lower energy in eggs is correlated 143 

with reduced larval survivorship in the plankton (Fisher et al. 2007) and post-settlement 144 

mortality (Limbourn et al. 2008). To test for an effect of the cyclone on egg carbon content, three 145 

to six colonies of each of A. hyacinthus, A. baeodactyla, G. pectinata and G. retiformis were 146 

collected from the reef crest at Trimodal Reef adjacent to the tagged colonies and placed in an 147 

outdoor flow-through aquarium on two occasions; a few days before spawning in both 2013 (pre-148 

cyclone Nathan) and 2015 (post-cyclone Nathan). Prior to the expected night and time of 149 
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spawning, the colonies were isolated in individual buckets. Colonies of the Acropora spp. did not 150 

spawn in 2015. Gamete bundles from each of the colonies of G. pectinata and G. retiformis that 151 

spawned were collected and washed in 0.2 μm filtered seawater (FSW) to break apart the 152 

bundles and clean away the sperm. Five eggs from each colony were transferred individually into 153 

pre-cleaned tin capsule (ATD-1027 Tin Capsule Pre-Cleaned 6 x 4 mm; Choice Analytical) and 154 

frozen in liquid N2. Since blank readings on each plate vary, five blank controls (capsule with no 155 

egg) for each plate were also sampled. Total carbon content of each egg was analyzed on a solid 156 

sample combustion unit (Shimadzu) at the Australian Institute of Marine Science. 157 

 158 

Statistical analyses 159 

To estimate polyp fecundity we used a hurdle model with the function brm() of the package 160 

‘brms’ (Bürkner 2017). The hurdle model first uses a binomial model to analyse zero vs. non-161 

zero data, estimating the probability of a polyp being mature, and then uses a zero-truncated 162 

poisson or negative binomial model to analyse variation in non-zero data, estimating the number 163 

of eggs per mature polyp. Since polyp maturity and the number of eggs per mature polyp often 164 

increase with colony size (Kojis & Quinn 1985, Babcock 1991; Álvarez-Noriega et al. 2016) we 165 

used colony size (log-scale) and cyclone status (pre- or post-cyclone) as fixed effects, and colony 166 

identity and year (nested within cyclone status) as random effects. Year nested within cyclone 167 

status could not be included in the model estimating maturity probability for G. pectinata 168 

because all polyps were mature in 2010, 2011 and 2013, causing problems with convergence. A 169 

zero-truncated poisson error distribution was used for the Acropora spp., and a zero-truncated 170 

negative binomial error distribution was used for the Goniastrea spp. due to overdispersion. 171 



9 
 

To estimate egg carbon content, we fitted a linear mixed effects model with the function 172 

‘brm’ from the ‘brms’ package (Bürkner 2017). Species, cyclone status and an interaction 173 

between them were used as fixed effects, and colony identity as a random effect. All statistical 174 

analyses were performed in R version 3.2.3 (R Core Team 2015) in a Bayesian framework.  175 

 176 

RESULTS 177 

Change in coral cover and assemblage structure 178 

Coral cover was reduced by 90% following Cyclone Nathan, from a mean of 34.9 ± 3.9SE % in 179 

November 2014 to 3.9 ± 1.5SE % in November 2015 (Fig. 1 & 2). Cover was reduced in all taxa 180 

with the exception of Porites and other scleractinians (Fig. 3). Loss of cover was higher in 181 

branching taxa, such as Acropora and Pocillopora and lower in taxa with predominantly 182 

encrusting and massive morphologies, such as the Merulinidae, Porites and other scleractinians 183 

(Fig. 1-3).  184 

 185 

Mortality as result of cyclone Nathan 186 

Mortality from cyclone Nathan was extremely high in all species. Only 9 of the 241 colonies 187 

alive in 2014 were alive in 2015 (Fig. 2) an overall mortality rate of 97% (Table 1). Indeed, only 188 

12 colonies, either alive or dead, could be found in 2015 suggesting that as many as 229 colonies 189 

had been dislodged by waves or debris during the storm. Mortality rates in six of the tagged 190 

Acropora spp. were 100% (Table 1). Mortality was lowest in Goniastrea retiformis where 85.2% 191 

of colonies were killed. The rates of mortality following the cyclone were 3.5 to 40 times higher 192 

than the average annual mortality rates for each species in the 5 years prior to the Cyclone 193 

Nathan (Table 1). 194 
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 195 

Changes in reproductive output in response to cyclone Nathan 196 

Polyp maturity was not overly affected by Cyclone Nathan, and increased with colony size for all 197 

species except for G. pectinata (Fig. 4- A, C, E & G, Table A1-A4 & A6). Polyp maturity was 198 

highly variable among colonies and less variable among years (grouped before and after the 199 

cyclone) (Tables A1-A4 & A6). The number of eggs per mature polyp was slightly lower after 200 

the cyclone in all species expect A. cf. digitifera (Fig. 4- B, D, F & H, Tables A1-A4 & A6). 201 

However, this effect was small in comparison to the variation in number of eggs among polyps 202 

(Fig. 3- B, D, F & H). In contrast to polyp maturity, there was little variation in eggs per mature 203 

polyp among colonies and almost negligible variation among years (grouped before and after the 204 

cyclone) (Tables A1-A4 & A6). 205 

 206 

Changes in egg carbon content 207 

Egg carbon content was considerably lower for both species following Cyclone Nathan (58% 208 

lower in G. retiformis and 64% lower in G. pectinata) (Fig. 5). Egg carbon content was slightly 209 

higher for G. retiformis than for G. pectinata before the cyclone but not after (Table A5 &A6). 210 

 211 

DISCUSSION 212 

Cyclone Nathan had a profound effect on the coral assemblage on Trimodal Reef. Mortality rates 213 

were extremely high in all tagged coral species, although mortality was slightly lower in species 214 

with a massive morphology than in branching species. Most mortality was presumably due to 215 

dislodgement during the storm, although some colonies could have been killed by other factors, 216 

such as sand-blasting, prior to dislodgement. This high mortality resulted in a large decline in 217 
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coral cover. In addition, there was a small decline in fecundity in three of the four species 218 

examined and a large decline in egg carbon content in the few colonies that survived the cyclone. 219 

Cyclone Nathan had a dramatic effect on coral assemblage structure, including a 90% 220 

decline in coral cover and reductions in the abundance of all taxa except for other scleractinians. 221 

Similarly, there was a shift in the relative abundance of taxa caused by differential susceptibility 222 

to cyclonic disturbance with taxa dominated by species with massive morphologies (e.g. 223 

Merulinidae, Porites & other scleractinians) less affected than taxa composed mostly of 224 

branching species (e.g. Acropora, Pocillopora and Stylophora). Such shifts in the relative 225 

abundance of taxa following disturbance might have a role in the maintenance of species 226 

richness (Connell 1978; Rogers 1993; Aronson & Precht 1995). 227 

The rates of mortality recorded on the reef crest at Trimodal were exceptionally high 228 

when compared to most previous estimates of cyclone induced mortality (e.g. Connell 1973; 229 

Bythell et al. 1993; Connell et al. 2004). Until the turn of the century, and despite the frequency 230 

of disturbance events on reefs, background mortality from predation, competition and 231 

sedimentation typically exceeded mortality from catastrophic disturbances (Connell 1973; Done 232 

et al. 2010; Pisapia et al. 2016). For example, between 1963 and 1993, mortality attributed to 233 

catastrophic disturbance accounted for less than one-third of the whole colony mortality in coral 234 

assemblages on Heron Island (Hughes & Connell 1999). Similar patterns were evident at St 235 

Croix, in the Caribbean (Bythell et al. 1993). The scale of the damage caused by Cyclone 236 

Nathan, when considered along with the increasing frequency of catastrophic mortality following 237 

mass bleaching events (Hughes et al. 2017; Hughes et al. 2018a) suggests that these historical 238 

differences in the relative contribution of catastrophic and background mortality to population 239 

dynamics are changing in response to increasing anthropogenic sources of disturbance, and that 240 
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reefs are transitioning into novel coral assemblages that differ greatly from the assemblages of 241 

the recent past (Hughes et al. 2018b). 242 

The mortality of tagged colonies (97%) was greater than the loss of coral cover (90%) 243 

because approximately 80% of the tagged colonies were Acropora spp (Table 1), compared to 244 

about 60% of the coral assemblage (Fig. 3). Acropora spp. are generally more susceptible to 245 

hydrodynamic disturbances, such as storms, due to their branching morphology (Madin et al. 246 

2014; Table 1). 247 

Cyclone Nathan reduced per polyp fecundity in three of the four species examined, 248 

however, these declines were small in comparison to the pre-cyclonic variation in fecundity 249 

among polyps. In contrast, egg carbon content was considerably reduced in the two species 250 

examined. This was almost certainly a result of injuries sustained by surviving colonies (Fig. 1) 251 

because reproductive output is often reduced in injured colonies (Kojis & Quinn 1985; 252 

Rinkevich & Loya 1989; but see Graham & van Woesik 2013) or areas of a colony adjacent to 253 

injury (van Veghel & Bak 1994; Hall 1997). This suggests that there might be a trade-off in 254 

energy allocation between maintenance and fecundity; that is, injury repair is favoured over 255 

reproduction as hypothesised by Harrison & Wallace (1990) and Tanner (1995). Fecundity is 256 

also often reduced in response to competition (Tanner 1995), disease (Burns & Takabayashi 257 

2011) and bleaching (Michalek-Wagner & Willis 2001; Mendes & Woodley 2002). Declines in 258 

reproductive output following Nathan highlight sub-lethal effects of cyclones that might further 259 

impede population recovery. Nonetheless, the high rates of whole colony mortality will have a 260 

much greater effect on the reproductive output of these populations than the often minor declines 261 

in fecundity. 262 
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Corals have evolved to cope with a high frequency and intensity of disturbance 263 

(Richmond 1993). Indeed, coral assemblages at Trimodal Reef have been affected by 264 

catastrophic disturbances in the past; in particular, an Acanthaster planci outbreak in the late 265 

1990’s that reduced coral cover to less than 10% (Pratchett 2005) and other cyclones in the more 266 

distant past (Wolff et al. 2016). Nonetheless, coral assemblages at Trimodal Reef had recovered 267 

to moderate levels of cover and diversity by 2011 (Keith et al. 2015) if not before. However, the 268 

frequency and intensity of disturbance on reefs appears to be increasing. In particular, the 269 

intensity of tropical storms is projected to increase (Bender 2010; Cheal et al. 2017) and the 270 

return times of mass bleaching events have halved in this millennium when compared to the 271 

return times in the 20 years prior to the year 2000 (Hughes et al. 2018a). Indeed, back to back 272 

mass bleaching events on the Great Barrier Reef in 2016 and 2017 have further transformed reefs 273 

in the region surrounding Lizard Island, including Trimodal Reef, to very low cover and 274 

diversity systems (Hughes et al. 2018b). Furthermore, global warming is projected to increase 275 

the intensity of tropical storms in the near future (Knutson et al. 2010; Cheal et al. 2017) 276 

suggesting the potential for a fundamental shift in mortality regimes on reefs that might threaten 277 

their long term persistence. 278 
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Table 1. Mortality rates of tagged colonies on Trimodal Reef following Cyclone Nathan. 446 

Background mortality rates are the average annual mortality rates between 2008 and 2014 i.e. 447 
pre-cyclone. 448 
 449 

species 2010 2011 2012 2013 2014 background Nathan 

Acropora cytherea 15.4 16 23.8 28.6 19 20.6 100 

Acropora cf digitifera 7.1 6.9 15.4 3.7 0 6.6 100 

Acropora hyacinthus 6.9 10.3 34.6 32.3 8.7 18.6 100 

Acropora intermedia 23.8 11.8 13.3 26.7 27.3 20.6 100 

Acropora millepora 9.7 6.9 25 26.9 11.5 16.0 96.2 

Acropora nasuta 14.3 12.5 28.6 53.3 42.9 30.3 100 

Acropora humilis 17.5 10.8 35.3 40.7 27.3 26.3 100 

Acropora spathulata 3.3 0 27.6 12.5 4.3 9.5 96.2 

Acropora robusta 10.7 0 28 12.5 3.1 10.9 96.9 

Goniastrea pectinata 3.7 0 8 0 4 3.1 92.3 

Goniastrea retiformis 3.4 0 7.1 0 0 2.1 85.2 

total 10.5 6.8 22.4 21.6 13.5 15.0 97.0 

   450 
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Figure legends 451 

Figure 1. Representative tagged colonies before (panels A, C and E) and after (panels B, D and 452 

F) Cyclone Nathan showing a loss of tissue through injuries presumably associated with the 453 

storm. Panels A and B are Acropora spathulata, panels C & D are A. humilis and panels E and F 454 

are Goniastrea retiformis. 455 

 456 

Figure 2. Representative areas of the reef crest at Trimodal Reef in November 2014 (a) and 457 

November 2015 (b). 458 

 459 

Figure 3. Coral assemblage structure at Trimodal Reef before (November 2014 – black bars) and 460 

after (November 2015 – white bars) Severe Tropical Cyclone Nathan. 461 

 462 

Figure 4. Panels A, C, E and G: colony size (log-scale) vs. polyp maturity probability pre- and 463 

post-cyclone (in grey and blue respectively). Panels B, D, F and H: colony size (log-scale) vs. the 464 

number of eggs per mature polyp pre- and post-cyclone (in grey and blue respectively). The solid 465 

lines show estimates and the ribbons show the 95% credible intervals. The grey and blue points 466 

correspond to the data before and after the cyclone (respectively). The sample sizes (number of 467 

colonies and number of polyps, in that order) for each species were: A. cf. digitifera (172, 4066), 468 

A. hyacinthus (151, 3612), G. pectinata (146, 882), and G. retiformis (157, 942). 469 

 470 

Figure 5. Estimates of effect of cyclone status on the mean carbon content (g) per egg for 471 

Goniastrea pectinata and G. retiformis. Error bars show the 95% credible intervals. The sample 472 
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sizes (number of colonies and number of eggs, in that order) for each species were: G. pectinata 473 

(6, 29) and G. retiformis (7, 30).  474 



21 
 

 475 

Figure 1  476 



22 
 

 477 

 478 

 479 

Figure 2 480 

  481 



23 
 

 482 

Figure 3 483 

  484 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0
p
er

ce
n
t 

co
v
er

 +
 S

E



24 
 

 485 



25 
 

Figure 4 486 

  487 

Figure 5.  488 

 489 


