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Abstract

We investigate the performance of different methodologies that measure the time lag between broad-line and
continuum variations in reverberation mapping data using simulated light curves that probe a range of cadence,
time baseline, and signal-to-noise ratio in the flux measurements. We compare three widely adopted lag-measuring
methods: the interpolated cross-correlation function (ICCF), the z-transformed discrete correlation function
(ZDCF), and the Markov chain Monte Carlo code JAVELIN, for mock data with qualities typical of multiobject
spectroscopic reverberation mapping (MOS-RM) surveys that simultaneously monitor hundreds of quasars. We
quantify the overall lag-detection efficiency, the rate of false detections, and the quality of lag measurements for
each of these methods and under different survey designs (e.g., observing cadence and depth) using mock quasar
light curves. Overall JAVELIN and ICCF outperform ZDCF in essentially all tests performed. Compared with
ICCF, JAVELIN produces higher quality lag measurements, is capable of measuring more lags with timescales
shorter than the observing cadence, is less susceptible to seasonal gaps and signal-to-noise ratio degradation in the
light curves, and produces more accurate lag uncertainties. We measure the Hβ broad-line region size–luminosity
(R–L) relation with each method using the simulated light curves to assess the impact of selection effects of the
design of MOS-RM surveys. The slope of the R–L relation measured by JAVELIN is the least biased among the
three methods and is consistent across different survey designs. These results demonstrate a clear preference for
JAVELIN over the other two nonparametric methods for MOS-RM programs, particularly in the regime of limited
light-curve quality as expected from most MOS-RM programs.
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1. Introduction

Reverberation mapping (RM; Blandford & McKee 1982;
Peterson 2014) is the primary technique to measure super-
massive black hole (BH) masses. Unlike other mass estimators
(e.g., stellar kinematics), RM does not require high spatial
resolution to resolve the sphere of influence of the central BH.
Instead, RM monitors different parts of the electromagnetic
spectrum (corresponding to different emitting regions of the
active galactic nucleus (AGN)) and measures the timing of
“light echoes” between different regions. Variable ionizing
emission is emitted from an accretion disk surrounding the
central BH. As the UV/optical radiation from the accretion
disk travels outward, it is reprocessed by various components
of the AGN, for example, the broad-line region (BLR) and the
dusty torus (e.g., Peterson 1997). RM measures the delay
between signals at different wavelengths to probe the structure
and kinematics of various regions of the AGN.

Most spectroscopic RM efforts have measured the time delay
between the continuum emission (arising in the accretion disk)
and the broad emission lines (produced by high-velocity gas

clouds in the BLR) using optical spectra. Assuming the BLR is
virialized, one can measure the BH mass (MBH) using the BLR
size (RBLR) inferred from the time delay and the BLR virial
velocity determined from the width of a broad emission line
(ΔV ) using the following equation:

( )=
D

M f
R V

G
, 1BH

BLR
2

where f is a dimensionless scale factor of order unity, called the
virial coefficient, that accounts for BLR geometry, kinematics,
and inclination.
One of the most important results of past RM studies is the

discovery of a correlation between the Hβ BLR radius and the
luminosity of the AGN (the R–L relation, e.g., Laor 1998;
Wandel et al. 1999; Kaspi et al. 2000, 2005; Bentz et al.
2006, 2009, 2013), which is the basis of the empirical single-
epoch (SE) method (Vestergaard & Peterson 2006; Shen 2013)
for BH mass estimation that utilizes SE spectroscopy. Using
the measured R–L relation and assuming it applies to objects at
different redshifts and luminosities, BH masses of broad-line
quasars can be estimated with the luminosity and broad-line
width measured from SE spectra. Due to its simplicity, the SE
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method is widely used to estimate quasar BH masses
(Vestergaard & Peterson 2006; Kelly & Shen 2013), although
its reliability for emission lines other than Hβ and in the high-
redshift and high-luminosity regime remains to be tested.

Traditional RM studies have focused only on the brightest
sources with the highest variability and generally the strongest
BLR lines in the local universe (z<0.1) to ensure successful
measurements of time lags. So far our understanding of the
BLR and the R–L relation is based on only ∼60 local AGNs,
which is a biased representation of the distant and luminous
quasar population. The Sloan Digital Sky Survey Reverbera-
tion Mapping Project (SDSS-RM, Shen et al. 2015) is a large-
scale RM program that simultaneously monitors 849 uniformly
selected quasars over a broad range of i-band magnitude
(15.0 < i < 21.7) and redshift (0.1 < z < 4.5), which greatly
expands the AGN parameter space for which RM has been
conducted. With its multiplex capability, SDSS-RM also
dramatically improves the observing efficiency of RM and
thus can extend the redshift and luminosity range for which
RM lag measurements are feasible. The first-season data from
SDSS-RM have already produced lags for different emission
lines in a luminosity-redshift regime largely unexplored by past
RM studies (Shen et al. 2016a; Grier et al. 2017; Li et al. 2017),
and the multiyear data have started probing lags at even higher
redshifts and luminosities (Grier et al. 2019).

With an industrial-scale MOS-RM program such as SDSS-
RM, it is important to understand the interplay among the
quasar sample, variability characteristics, survey design, and
observation sensitivity to evaluate/forecast the overall success
and limitations of lag measurements. Lag detections strongly
depend on the design of the monitoring program, including the
cadence, total observation baseline, seasonal/weather gaps, and
signal-to-noise ratio (S/N) of the flux measurements. The
complicated selection function induced by these various survey
parameters may lead to preferential lag detections in a certain
time range and may thus introduce potential selection biases
when assessing any intrinsic correlations between lags and
quasar properties (such as the R–L relation). In addition, the
often poor S/N and lower amplitude variability in quasars
produce low-quality measurements or even false detections.
Biases may also arise from different methods and assumptions
used by a specific lag-measuring technique when applied to the
typical survey-quality light curves produced by MOS-RM
programs, as most of these techniques were originally
developed using high-quality data from local AGNs.

Detailed simulations of mock data are required to quantify
the detection efficiency and quality of lag measurements for
MOS-RM programs and assess the strengths and weaknesses of
different lag-measuring techniques (e.g., Peterson et al. 1998;
King et al. 2015; Shen et al. 2015). In this paper, we use a set of
simulated observations of a uniform quasar sample (similar to
the SDSS-RM sample after down-sampling) to conduct an
investigation on a set of lag-measuring methods: the inter-
polated cross-correlation function (ICCF, Gaskell & Peterson
1987), z-transformed discrete correlation function (ZDCF,
Alexander 2013), and JAVELIN (Zu et al. 2011). Although
all three methods are widely used in the literature, there has not
been a comprehensive comparison of their performance over a
broad range of light-curve properties. In some recent RM work
(e.g., Grier et al. 2017; Homayouni et al. 2019; Edelson et al.
2019), JAVELIN and ICCF are found to yield consistent
lag measurements, but JAVELIN lag uncertainties are often

smaller than those for ICCF. The main purposes of this study
are to inform current and upcoming MOS-RM programs and to
understand selection biases introduced by the MOS-RM
program design. This work expands our previous investigation
(Shen et al. 2015), which only focused on the traditional ICCF
method to advise the design of the SDSS-RM program.
Section 2 describes the generation of our uniform mock

quasar sample and its simulated continuum and broad-line light
curves. Section 3 presents the methods we use for measuring
lags. We compare these different methods using results from
the uniform sample in Section 4, where we down-sample the
uniform quasar sample to provide results that can be compared
to realistic, flux-limited MOS-RM programs. Section 5
introduces a statistical approach to efficiently eliminate false
detections from low-quality light curves and present the
measurement results from this statistical approach. The
implications for the observed R–L relation are discussed in
Section 6, and the results are summarized in Section 7.
Throughout this work, we adopt a lambda cold dark matter
cosmology with ΩΛ=0.7, ΩM=0.3, and h=0.7.

2. Simulations

A sample of 100,000 mock quasars and their associated
light-curve pairs were generated following the procedures
described by Shen et al. (2015). We first generate a quasar
sample uniformly distributed over a grid of i-band magnitude
(15<Mi < 22) and redshift (0 < z < 5), and calculate the
absolute i-band magnitudes (Mi) using K-corrections from
Richards et al. (2006). The chosen i-band and redshift grids are
similar to those selected for the SDSS-RM program. Using a
power-law spectral index of 0.5 in Fν, we convert the absolute
i-band magnitudes to monochromatic rest-frame continuum
luminosities L5100, L3000, and L1350, which correspond to the
continuum wavelengths commonly adopted for use with Hβ,
Mg II, and C IV RM, respectively. To simplify the simulations,
we consider RM for a single line in a given redshift interval:
Hβ for z�0.9, Mg II for 0.9<z�2.2, and C IV for z > 2.2.
We assign equivalent widths of Hβ, Mg II, and C IV as

functions of the continuum luminosities of each mock quasar
using empirical relations and dispersions measured from the
SDSS DR7 quasar sample (Shen et al. 2011) and their
corresponding broad-line luminosities. BH masses are assigned
using the SE mass estimator based on Hβ and the model broad-
line widths and continuum luminosities (Vestergaard &
Peterson 2006).
For the majority of this work, we focus on the single-season

program simulation (with a duration of 180 days) and measure
Hβ lags with a few Mg II lags at intermediate redshifts. For the
multiseason simulation (Section 6.3), we use the same Hβ
RBLR–L relations for Mg II and C IV because the actual R–L
relations for the other lines are not as well established as that
for Hβ. We adopt the average Hβ RBLR–L relation at 5100Å
with a dispersion of 0.15 dex (Bentz et al. 2009) to assign the
expected BLR lags:

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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Although only a handful of Mg II lags have been reported in the
literature (e.g., Reichert et al. 1994; Dietrich & Kollatschny
1995; Metzroth et al. 2006; Shen et al. 2016b; Czerny et al.
2019), previous studies have demonstrated that the lags for
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broad Mg II and Hβ line widths are correlated (e.g., Wang et al.
2009; Wang et al. 2019; Shen et al. 2011) and that Mg II may
be used as a substitute for Hβ at z>1 (e.g., McLure &
Dunlop 2004; Shen & Liu 2012; Trakhtenbrot & Netzer 2012).
The C IV R–L relation at high redshift is currently constrained
by only a handful of high-redshift quasars with measured C IV

lags (e.g., Kaspi et al. 2007; Lira et al. 2018; Grier et al. 2019).
In local low-luminosity AGNs, C IV lags are found to be
smaller than Hβ lags by a factor of ∼2 (e.g., Peterson &
Wandel 1999, 2000). However, the discrepancies in different
R–L relations will not affect our results, as the purpose of this
study is to show how well each lag-measuring method recovers
the assigned lags under different observing circumstances.

For each mock quasar, we generate a continuum light curve
with daily sampling, assuming that quasar continuum varia-
bility follows the damped random walk (DRW) model (also
known as the Ornstein–Uhlenbeck process or the first-order
continuous autoregressive (CAR(1)) process, e.g., Kelly et al.
2009, 2011; Kozlowski et al. 2010; MacLeod et al.
2010, 2012). The DRW model describes a stochastic process
with a damping timescale τ (the timescale for the time series to
become uncorrelated) and a driving variability amplitude σ.
While the short (<day) and long (>years) timescales of quasar
variability are not well constrained by existing observations
and may deviate from the DRW model (e.g., MacLeod et al.
2010, 2012; Mushotzky et al. 2011; Simm et al. 2016; Guo
et al. 2017; Smith et al. 2018), our simulations will focus on the
timescales in which the observed quasar variability can be
approximately described by DRW models (1–1000 days). In
Section 4.6, we further test the capabilities of each lag-
measuring method with simulated non-DRW light curves.

The DRW parameters, τ and σ, can depend on the rest-frame
color, luminosity, and BH mass of the quasar (MacLeod et al.
2010, 2012). We assign the DRW parameters following the
empirical Equation (6) from MacLeod et al. (2012) and using
simulated quasar properties. However, Kozlowski (2017a,
2017b) reported that the scaling relations between DRW

parameters and quasar properties in MacLeod et al. (2012)
might be biased or might not exist. In this work, we only use
the DRW parameters to produce realistic stochastic light curves
to mimic quasar variability. Furthermore, we do not attempt to
recover the DRW parameters during the fitting to mock light
curves; instead, we fix the DRW parameters and only use the
DRW model as a tool to interpolate light curves.
The daily sampled DRW continuum light curve is

constructed using the assigned DRW parameters, and the
emission line light curve is generated by convolving the
continuum light curve with a Gaussian transfer function with an
offset equal to the assigned lag and a width of one-tenth of the
assigned lag. The transfer function describes the emission line
response to the continuum variability and is related to the
physical structure and kinematics of the BLR (Blandford &
McKee 1982). The choice of the transfer function width is
motivated by velocity-resolved lag observations (e.g., Grier
et al. 2013; Skielboe et al. 2015; Pancoast et al. 2018), but we
have tested different transfer function widths and found that the
results are insensitive to this detail (e.g., Shen et al. 2015).
For each simulation set, we down-sample the full light

curves to 30 epochs with a cadence of 6 days to mimic the first-
year light curves from the SDSS-RM program. Following the
assumptions of Shen et al. (2015), we adopt fiducial
uncertainties of 10−15 and 10−16 ergs−1cm−2 for the
continuum and line light curves, which are the typical flux
uncertainties in the SDSS DR9 BOSS quasar catalog (Paris
et al. 2012), to represent the sensitivity of our simulated survey.
The median relative uncertainties are ∼2% for continuum
fluxes and ∼10% for line fluxes for the final down-sampled,
flux-limited sample that mimics the SDSS-RM program (see
Section 3.6 for details). Finally, the fluxes are resampled in the
down-sampled light curves by adding to the original flux a
Gaussian random deviate with zero mean and a dispersion
equal to the flux uncertainty. Figure 1 (left panels) presents an
example of our simulated light curves.
Compared with the light curves from actual SDSS-RM data

used in Grier et al. (2017), the median S/Ns (flux over flux

Figure 1. An example of our simulated light curves and lag measurements using three different methods. Left: the simulated light curves (continuum in the top panel
and emission line in the bottom panel) and predicted light-curve models from JAVELIN (shaded blue area). The right three panels display the ICCF, ZDCF, and
posterior distribution function from JAVELIN. The black solid line marks the assigned lag of the mock quasar, and the red vertical lines indicate the measured lags
(solid) and their uncertainties (dotted). In this case, the measured lags from ICCF and JAVELIN are considered as true detections (see criteria in Section 3.5), and the
measured lag from ZDCF is not considered a detection.
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uncertainty) of the simulated continuum and line light curves
are, respectively, ∼3.5 and ∼1.5 times larger at similar
i-magnitude and redshift (Figure 2). The continuum light curves
in Grier et al. (2017) include additional photometric monitoring
data from the Steward Observatory Bok 2.3 m telescope and the
3.6 m Canada–France–Hawaii Telescope. An intercalibration of
the light curves was performed with the Continuum REproces-
sing AGN MCMC (CREAM) software (Starkey et al. 2016),
which corrected for detector properties, telescope throughputs,
and other properties specific to the individual telescopes. In
addition, CREAM applied a corrective term to the continuum and
line light-curve uncertainties to account for the intercalibration
and additional systematic uncertainties, which inflated the
uncertainties by a factor of a few. In most of our simulations,
we will not use the inflated uncertainties and will not discuss the
effects of systematic flux uncertainties in individual light curves.
Instead, we will discuss the effect of light-curve S/N on lag
detection using inflated uncertainties that include these correc-
tions and systematics in Section 4.5.

3. Measuring Time Lags

We measure time lags with three methods commonly used in
the literature: ICCF, ZDCF, and JAVELIN. ICCF measures the
cross correlation between linearly interpolated light curves by
assuming light curves are smooth between epochs. ZDCF does
not use any interpolation and calculates the discrete cross
correlation based solely on the observed data points. Finally,
JAVELIN assumes the DRW model to describe the variations
of the light curves and utilizes Markov chain Monte Carlo
(MCMC, e.g., Foreman-Mackey et al. 2013) to fit for the best
time lag. While there are other methods available, that is,
nonparametric techniques (Skielboe et al. 2015; Chelouche
et al. 2017), discrete correlation function (DCF, Edelson &
Krolik 1988), and CREAM (Starkey et al. 2016), the three
chosen methods are the most commonly used in analyzing the
light curves and measuring time lags; we thus limit our study to
these three.

Below we describe each of the three methods in further
detail.

3.1. Interpolated Cross-correlation Function

The most frequently used technique of measuring RM time
lags is the ICCF method. ICCF calculates time lags by shifting
and linearly interpolating the two light curves, calculating the
cross-correlation coefficient r at each given time lag (τ) and
finding the most likely time lag by locating the maximum r
over a grid of lag values. ICCF is designed for high-cadence
observations (i.e., traditional RM with the aim of a high success
rate), and it is unclear to what extent ICCF can be applied to
low-to-moderate quality light-curve data from MOS-RM
programs such as SDSS-RM.

In this work, we implement ICCF using the publicly
available PyCCF code (Sun et al. 2018) adapted from the
original ICCF code written by B. Peterson (Peterson et al.
1998). For a 180 day observing baseline, we compute the ICCF
with a search range of±100 days to require that at least
roughly half of the observations are included in the calculation
of ICCF. We tested different values (0.1, 0.2, 0.5, 1.0, and
2.0 times of the light-curve cadence) for the τ grid spacing. The
overall ICCF shape does not change drastically with different
τ grid spacing; however, the ICCF may have spurious spikes or

become oversmoothed when the grid density is too high or too
low. We selected half of the light-curve cadence to be the τ grid
spacing, which yields reasonably smooth CCFs for our mock
light curves.
We adopt the traditional flux randomization/random subset

sampling (FR/RSS) procedure (Peterson et al. 1998) to obtain
the measured time lag and its uncertainties. For 1000 Monte
Carlo (MC) realizations, we randomize the flux measurements
by their uncertainties and use a subset of light-curve points
(chosen at random with repetition) to calculate the CCF. The
flux randomization accounts for the flux measurement
uncertainties. By choosing random subsets of observations,
we can avoid artificial lags introduced by the sampling
characteristics of our observations or certain combinations of
a few epochs. The centroid computed over five points centered
around the ICCF peak is used as the measured time lag τcent in
each realization. This approach is slightly different from the
conventional method of calculating τcent from all the data
points with r>0.8×rmax. We found that with sparse light
curves, CCFs occasionally have multiple strong peaks, which
causes the centroid calculated in the conventional method to be

Figure 2. S/N of the simulated light curves (black shaded histogram)
compared with that of the Grier et al. (2017) light curves (red open histogram).
The S/N of the simulated light curves is represented with 50 realizations of
randomly selected down-sampled subsets (see Section 3.6 for details of the
down-sampling procedure) from the uniform sample to match the redshift and
i-band magnitude distribution of the Grier et al. (2017) sample.
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biased. With the five-point method, we are guaranteed to
calculate a centroid from the local region of the strongest peak,
ignoring the impact of aliased lags from sparse light curves.
Figure 3 demonstrates that the five-point method eliminates the
majority of false detections while retaining similar detection
efficiency (defined as the fraction of objects with a detected lag,
see Section 3.5 for our detection criteria). Finally, the cross-
correlation centroid distribution (CCCD), which is the
distribution of the measured τcent in all MC realizations, is
used to define the final lag and its measurement uncertainty, as
described in detail in Section 3.4.

3.2. z-Transformed Discrete Correlation Function

The ZDCF (Alexander 2013) is a modified version of the
original DCF proposed by Edelson & Krolik (1988). DCF
analyzes the correlations in time series data with a conservative
approach by merely calculating the cross correlation of the data
points, without any interpolation. DCF calculations can avoid
effects of correlated errors between continuum and line fluxes
measured from the same spectrum and yield more conservative
uncertainties. However, DCF does not perform well for light
curves with irregular or sparse cadences.

ZDCF incorporates two improvements into the original
DCF: the implementation of equal-population binning and the
uncertainty calculations using the z-transform. For each given
light-curve pair, we calculate and sort the time differences
between all data pairs from the two light curves. The ZDCF
time lag grid is determined by requiring equal numbers of data
pairs in each lag bin, that is, the ZDCF time grid resolution is
adaptive to the sampling of the light curves: when the sampling
is denser, ZDCF has better resolution at certain time lags. Next
we calculate the correlation coefficient for the data pairs in each
bin, and the uncertainty is calculated following Alexander
(2013) using the z-transform method. The above procedure is
repeated for 100 MC realizations, where in each iteration the
observed fluxes are randomly altered by the flux uncertainties.
The final ZDCF is the average of the 100 MC realizations.

To determine peak position and its uncertainties, ZDCF
calculates the maximum likelihood from the likelihood
function instead of using the traditional FR/RSS method to
prevent interpolation of data. We calculate the likelihood of
point i being the maximum in the final averaged ZDCF, which

is approximately the product of the possibilities for point i to be
larger than any other point j in the ZDCF (see Alexander 2013,
for the complete mathematical description). We adopt the peak
position as the measured lag and the 16th and 84th percentiles
of the normalized likelihood function (or the fiducial distribu-
tion) as the uncertainties of the peak position. Due to the
binning method, the search range of ZDCF is limited by the
number of data pairs, especially with sparse light curves.

3.3. JAVELIN

Another approach to measure lags is to assume a statistical
quasar variability model and model the continuum light curves,
line light curves, and their lags simultaneously. JAVELIN
assumes that the quasar continuum light curve can be described
by the DRW model and the line light curve is the shifted,
scaled continuum light curve smoothed by a transfer function (a
narrow top hat function is usually assumed in JAVELIN,
although there are other options available in the code as well).
This is a more empirically motivated method to interpolate the
data than simple linear interpolation as in ICCF, especially
when the observations are sparse or unevenly sampled. Linear
interpolations have minimum uncertainties halfway between
data points, where there are no actual data points and the
uncertainties are expected to be the largest. On the other hand,
the DRW model (and other stochastic process models) is a
model of data covariance and can interpolate unmeasured data
points based on the statistical properties of the entire light
curve. For the timescales of interest here (e.g., days to months),
the DRW model provides a reasonably good statistical
description of stochastic quasar continuum variability (e.g.,
Kelly et al. 2009; Kozlowski et al. 2010; MacLeod et al. 2010).
The JAVELIN code first fits a DRW model to the continuum

light curve and then fits the lag, width, and scale of the transfer
function. Because our mock light curves typically do not have
sufficient quality (in terms of cadence and baseline) to
constrain the damping timescale or the width of the transfer
function, we fix these parameters to 300 days and 2 days,
respectively. Because the damping timescale is fixed, we are
merely using JAVELIN to “interpolate” the light curves with a
DRW model. The damping timescale is chosen to be close to
the median of the assigned values in the mock sample that
mimic the observed distribution for SDSS quasars (Kelly et al.
2009; MacLeod et al. 2010, 2012), and the transfer function
width is chosen to be smaller than the observing cadence. Even
though the transfer function width is different from our
assigned value when generating light curves (one-tenth of the
assigned lag), it is sufficiently close to the widths for most of
our detected lags (on a scale of a few days) and the exact choice
does not matter as the transfer function cannot be well
constrained with our cadence. We tested this assumption by
fixing the damping timescale and the transfer function width at
different values (damping timescales at 180, 300, 500 days and
transfer function widths at 1, 2, 5, 10 days) in JAVELIN and
found the lag measurements do not change with different
damping timescale or transfer function widths; we thus stress
that our results are mostly insensitive to these assumptions.
We ran JAVELIN on the full length of light curves with a

flat prior of lags but only examine the posterior distribution
within±100 days to match our ICCF analysis. This practice is
almost equivalent to limiting the lag search range to±100 days
in JAVELIN. We chose not to limit the search range in
JAVELIN so that we can examine the posterior to verify the

Figure 3. Detection efficiency of the ICCF method for simulations with a
cadence of 6 days and 30 epochs, using different ICCF centroid calculation
schemes. Top panel: the centroid is calculated with all points above 0.8 of the
maximum r; bottom panel: the centroid is calculated using 5 points centered on
the peak. The color map represents the detection efficiency, and the numbers
are the detection counts (true detections in black and false detections in red) of
a single down-sampling realization. The total numbers of true and false
detections shown in the lower right corner are the median and uncertainties
derived from 100 down-sampling realizations. The gray contours show the
approximate constant lags from the R–L relation from Bentz et al. (2009).
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lag limit is reasonable for the length of our light curves and
examine the alias effects at the lag limit. In some cases,
imposing the lag limit later can effectively remove the strong
peaks near the edges in the posterior, which are caused by fits
with only a small overlapping segment of the light curves. The
fitting uses MCMC to sample the probability distribution of all
the fitted parameters. The posterior distribution function (PDF)
is used in a similar fashion as the CCCD for ICCF to calculate
the measured lag and its uncertainties, which will be further
discussed in Section 3.4.

3.4. Alias Removal

Upon examining the CCCD of the traditional ICCF and the
PDF of JAVELIN, we occasionally observe multiple peaks.
These aliases may be caused by various reasons, including
aliases from a segment of the light curves that may be
coincidentally correlated, or from a local minimum in MCMC
in the case of JAVELIN. Here we follow the quantitative alias
removal procedure of Grier et al. (2017). First, we apply a
weight P to each point in the CCCD/PDF using the fraction of
data points included in the calculation [ ( ) ( )]t=P N N 0 2,
where N(x) is the number of overlapping points at time lag x.
Next we smooth the CCCD/PDF by convolving with a
Gaussian filter with a dispersion of 5 days. The 5 day kernel is
determined by visual inspection of the PDF. Finally, the
primary peak of the weighted and smoothed CCCD/PDF is
identified and all data points beyond the range of the peak, that
is, beyond the closest local minima on both sides of the peak,
are excluded. Once the primary peak is identified, we adopt the
median of the truncated (but not weighted or smoothed)
CCCD/PDF as the final measured lag and the 16th and 84th
percentiles as the lower and upper uncertainties.

As discussed by Grier et al. (2017), the particular choice of
the weights does not carry any physical significance. Instead,
this empirical weighting form was found to perform well in
recovering the true lags and reducing aliases. This step goes
beyond the traditional ICCF and JAVELIN approach in lag
measurements but is necessary for low-quality light-curve data,
specifically when the sample size is large and it is unknown
whether or not a true lag will be detected. This additional alias
removal step does not affect the results for good-quality light-
curve data where the CCCD/PDF has a well-defined primary
peak. Figure 4 shows an example of measured detection
efficiency with and without alias removal using ICCF. The
alias removal procedure is effective in improving lag-detection
efficiency by doubling the number of detections in this case,
despite introducing a small number of false detections.

3.5. Detection Criteria

For a measured lag to be a detection, we require that it lie
more than 3σ away from zero, that it be positive (i.e., the line
flux lags behind the continuum flux), and that fewer than half
of the CCCD points or MC realizations are rejected in the alias
removal procedure (for ICCF and JAVELIN). This approach
assumes that there is no physical reason to produce a negative
lag, and measured negative lags are likely to arise from aliases
due to sampling properties of the light curves.
We impose additional criteria for the measured lag to qualify

as a “true detection” in our simulated data. For a true detection,
the measured lag must fulfill at least one of the following
criteria:

1. Absolute difference from the true lag is <3 days.
2. Relative difference from the true lag is <25%.
3. Absolute difference from the true lag is <3σ.

The first two criteria are introduced because the last criterion
can be systematically biased against short lags: short lags
are less likely to meet the 3σ detection requirement given the
same measurement error. If all three criteria are not satisfied,
the detection is classified as a false detection. False detections
are inevitable even after imposing our alias removal procedure.
In addition, we require detections (including both true and

false detections) to have assigned lags <100 days, that is, the
search range for a 180 day observation baseline. A great
majority of false detections are produced by light-curve pairs of
longer lags with variability on shorter timescales that leads to
aliases. In our controlled experiment, where the true lags are
known, we can simply choose to make a cut of the assigned
true lags (which will not be detected with a search range of
±100 days), and we compare different lag-measuring methods
in Section 4. Of our uniform sample, 9942 (∼10%) of the mock
quasars have assigned lags <100 days, thus only 10% of the
initial quasar sample can have lags detected from one season of
observation. In reality, the true lags of quasars are unknown;
therefore in Section 5 we develop a set of realistic selection
criteria that can effectively remove false detections. By
implementing these reasonable selection criteria, we can assess
the reliability of observed lags in actual MOS-RM programs.
Unless otherwise specified, the measured lags refer to the

measured observe-frame lags in the following.

3.6. Flux-limited Down-sampling

In order to mimic realistic MOS-RM surveys with flux-
limited samples, we also compare the lag detection results by
down-sampling from our uniform sample. The redshift and i-
magnitude distribution is matched to that of SDSS-RM quasars
using the quasar luminosity function from Richards et al.
(2006). For each simulation set, we generate 100 realizations of
the down-sampling, which have a median of -

+956 26
47 sources in

total and -
+177 11

14 (∼19%) sources with lag<100 days
(uncertainties are derived from the 16th and 84th percentiles).
This sample will be referred to as the flux-limited sample.

4. Results

4.1. Measured Lags

To evaluate the robustness of each technique, Figure 5
shows the density distribution of the assigned lags versus the
measured lags of the true detections for the uniform sample.

Figure 4. Similar to Figure 3. Detection efficiency of the ICCF method for
simulations with a cadence of 6 days and 30 epochs, with (top) and without
(bottom) the alias removal procedure.
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There are very few false detections, and they can be ignored for
now. The results for JAVELIN have the lowest scatter in the
distribution: the Pearson correlation coefficients are rICCF∼0.984,
rZDCF∼0.980, rJAVELIN∼0.993, indicating that JAVELIN lags
are more accurate. ICCF lags are consistent with their assigned
lags in general, despite the larger scatter. ZDCF is the the least
accurate at reproducing the assigned lags and is not capable of
detecting lags shorter than the observation cadence by design.
For the flux-limited sample, the Pearson correlation coefficients are
rICCF∼0.933, rZDCF∼0.925, rJAVELIN∼0.974.

Figure 6 evaluates the quality of lag measurements by
comparing the normalized measurement uncertainties (normalized
by the value of the assigned lag) and fractional difference between
the assigned and measured lags ( ∣ ∣d t tº -Lag 1mea assigned ) for
the true detections of the uniform sample. At low measurement
quality (high normalized uncertainties and δLag), the irregular
edges are caused by the detection criteria and are similar among
all three methods. At high measurement quality, ICCF and
JAVELIN are able to make lag measurements with smaller
uncertainties and δLag than ZDCF. The normalized measurement
uncertainties and δLag (median values and uncertainties derived
from the 16th/84th percentiles) are 7.5%(-

+
0.50
12 ), 3.3%(-

+
2.5
8.0) for

ICCF, 11%(-
+

6.1
12 ), 3.6%(-

+
2.5
6.3) for ZDCF, and 4.3%(-

+
0.30
12 ), 2.2%

(-
+

1.7
7.3) for JAVELIN. In addition, more JAVELIN lags lie in the

higher quality regime (low normalized uncertainties and δLag)

than ICCF lags. For the flux-limited sample, the normalized
measurement uncertainties and δLag are 15%(-

+
8.7
12 ), 5.8%(-

+
4.4
12 ) for

ICCF, 17%(-
+

9.2
11 ), 4.7%(-

+
3.5
11 ) for ZDCF, and 9.8%(-

+
6.6
13 ), 4.2%

(-
+

3.3
10 ) for JAVELIN.
Figure 7 demonstrates that the absolute uncertainties of

JAVELIN lags are smaller than those from ICCF and ZDCF, a
result confirmed in previous works (e.g., Grier et al. 2017;
Edelson et al. 2019). With our controlled experiment with
known lags, we are able to demonstrate that JAVELIN can
provide more accurate lag measurements, as already evident in
Figure 5. In addition, Figure 6 suggests that the JAVELIN
errors are reasonable and are not an underestimation of the
actual uncertainties in general. To further illustrate this point,
Figure 8 shows the distribution of the difference between
assigned and measured lags, normalized by the measurement
errors, for the uniform sample. The distribution for JAVELIN
(σGauss∼0.85) is most consistent with a Gaussian with unity
dispersion, while the ICCF (σGauss∼0.69) and ZDCF
(σGauss∼0.54) lag errors are more overestimated, leading to
narrower distributions. ICCF also produces more outliers with
underestimated lag uncertainties (ΔLag/στ,mea>3) (∼5.1%)
compared with JAVELIN (∼0.57%), and ZDCF does not have
any outliers. For the flux-limited sample, σGauss∼0.73 for
ICCF, σGauss∼0.49 for ZDCF, and σGauss∼0.76 for

Figure 5. Distribution of the measured lag and assigned lag of the true detections in the uniform sample for simulations with a cadence of 6 days and 30 epochs. The
shaded area is the 2D histogram of the assigned and measured lags (in terms of number of detections in each bin; color bars are in logarithmic scale), and the solid
vertical line segments are the uncertainties of the measured lags (randomly down-sampled from all detections for clarity). The black solid line is the 1:1 line for
guidance.

Figure 6. Distribution of the normalized measurement uncertainty (s tt,mea true) and the fractional difference between measured and assigned lags of the true detections
in the uniform sample for simulations with a cadence of 6 days and 30 epochs. The irregular edges in the upper right corner in the 2D histograms are shaped by the
detection criteria, that is, absolute difference <3 days (appears as the upper right tip along the 1:1 line), δLag<0.75 (cutoff in the x-axis seen in ZDCF and
JAVELIN) or the normalized measured uncertainty <1/3 (cutoff in the y-axis). Lag measurement precision (accuracy) improves toward the lower (left) direction.
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JAVELIN, and the fractions of outliers with underestimated
lag uncertainties are 1.1%, 0.0%, and 0.28%, respectively.

The reason why ICCF produces overestimated lag errors is
not entirely clear (e.g., Edelson et al. 2019). The flux
resampling part of ICCF produces noisier light curves than
the original light curve (i.e., the data points are perturbed twice
by flux errors), and the random subset sampling procedure will
remove epochs, which increases the uncertainty of lag detection
due to the loss of temporal information and may become
critical in the low-quality regime (i.e., sparse sampling and
large light-curve errors). JAVELIN is a more statistically
rigorous approach and does not suffer from these simplifica-
tions used in the ICCF.

4.2. Distribution of Detected Lags

Figure 9 compares the distribution of measured lags to that
of assigned lags in the uniform sample. Lags in the range of
∼10–90 days are most likely to be detected with our fiducial

cadence and baseline. In this range, all methods have similar
detection efficiency in each lag bins; the median detection
efficiencies are ∼61% for ICCF, ∼52% for ZDCF, and ∼64%
for JAVELIN, which suggests the detections are not biased
toward certain lag ranges. Interestingly, JAVELIN detects
many more short lags than ICCF and ZDCF. This behavior
indicates that, by assuming the DRW model, JAVELIN is
capable of producing reasonable predictions of light curves on
a grid finer than the cadence, and thus makes it possible to
detect a lag below the formal cadence of the data under certain
circumstances. As shown in Figure 9, most of the false
detections fall in the range of >60 days. ICCF is prone to
producing false detections in the 60–100 days range, regardless
of the input lag.
Figure 10 shows the same distributions but in the rest frame.

A uniform and wide distribution of rest-frame lags is critical to
measuring an unbiased R–L relation. With our 180 day
monitoring duration, we detect mostly rest-frame lags in the
range of 20–40 days. The detection rate decreases at 20 days
due to cadence limitations, and fewer detections are made at

Figure 7. Absolute uncertainties of lag measurements as a function of assigned
lags, based on the true detections in the uniform sample. The small dots
represent the individual measurements in the mock sample. The open circles
mark the median absolute uncertainty, and the error bars show the 16th and
84th percentile in each 10 day bin of assigned lags.

Figure 8. Distribution of the difference between assigned and measured lags,
normalized by the measurement uncertainty, of the uniform sample. The black
dashed line is a Gaussian distribution with unity dispersion.

Figure 9. Distribution of the measured lags of the uniform sample in the
observed frame. The gray solid histogram shows the number of detectable lags
in each bin. The open histograms represent the number of true detections, and
the solid histograms are the number of false detections. The number of false
detections is inflated by a factor of 5 for clarity.

Figure 10. Similar format to Figure 9. The distribution of measured lags of the
uniform sample in rest frame.
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>40 days because the observed-frame lags are shifted beyond
our search range. We further discuss the biases in measuring
the R–L relation slope under different observing conditions and
lag measurement methods in Section 6.1.

4.3. Detection Efficiency

Figure 11 displays the detection efficiency of true detections
in each redshift and i-band magnitude bin with simulations of
6 day cadence and 30 epochs for the uniform sample. The
overall detection fractions are ∼40% for ICCF and ∼36%
JAVELIN, and ∼23% for ZDCF out of all the detectable
sources (i.e., assigned lag<100 days) in the flux-limited
sample. However, as previously shown in Figure 9, ICCF has a
higher false-detection rate (∼5.4%) than the other two methods
(JAVELIN∼3.1% and ZDCF∼2.4%) for the flux-limited
sample. Most of these false detections lie in the fainter quasar
population, where the quasar variability is buried in the flux
measurement uncertainties.

Figure 11. Detection efficiency in the simulated grid of quasars measured with each method in a simulated program of 6 day cadence and 30 epochs. From the top to
bottom panels are the results from ICCF, ZDCF, and JAVELIN. The color map represents the detection efficiency, and the numbers are the detection counts (true
detections in black and false detections in red) of a single down-sampling realization. The total numbers of true and false detections shown in the lower right corner are
the median and uncertainties derived from 100 down-sampling realizations. The gray contours show the approximate constant lags from the R–L relation from Bentz
et al. (2009).

Figure 12. Detection efficiency (solid line and shaded area) and true (square) and false (cross) detection counts of the three methods as functions of i-band magnitude
(right panel) and redshift (left panel) in a simulated observation with 6 day cadence and 30 epochs. Detection counts are obtained using 100 down-sampling
realizations, and the median and the 16th and 84th percentiles are adopted as the final counts and their uncertainties. The dotted lines show the number of sources with
lags shorter than the search range (i.e., 100 days) in each magnitude or redshift bin. For i < 18, the detection efficiencies are not shown because there are no quasars
selected in more than 80% bootstrapping iterations.

Figure 13. Total counts of true (square) and false (cross) detections in the flux-
limited sample of simulations with 3, 6, and 12 day cadence.
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The detection efficiency, as the time lags, depends on
redshift and i-band magnitude. Observed-frame lags are time
dilated by (1+z), so the lags will be shifted out of the search
range at high redshifts. Our 100 day search range only allows
detection of lags at redshifts z < 1.5. Similarly, lags at low
redshift are difficult to detect as the lags may fall below the
observing cadence. Quasar variability is more likely to be
diluted by noise for dimmer sources, so the detection efficiency
naturally decreases as we approach the survey flux limit. In the
faintest i-magnitude and lowest z bin, the detection rate is low
because luminous quasars with high Eddington ratios tend to
vary more on longer timescales (>100 days) and their lags are
not detectable within our observing baseline (MacLeod et al.
2010).

The detection efficiency and detection counts as functions of
i-band magnitude and redshift are shown in Figure 12, using
the down-sampled simulations that mimic the SDSS-RM
sample. Detection efficiency decreases with i-band magnitude.
However, because the number of quasars increases with i-band
magnitude, the number of detections also increases. The
detection efficiencies of ICCF and JAVELIN are roughly the
same and higher than that of ZDCF in all magnitude bins.

The detection efficiency is the highest for JAVELIN and
ZDCF at redshift ∼0.2 and decreases both toward lower and
higher redshift. As the redshift increases, quasars with
detectable lags tend to be fainter, thus decreasing the detection
efficiency. The lags of the quasars in the lowest redshift bin are
too short to detect. For ICCF, detection efficiency is relatively
consistent in the range of ∼0.2–1.0, because ICCF is more
sensitive to lags around ∼100 days.

Our down-sampled realizations demonstrate that most of the
detected lags are from quasars around redshift ∼0.5 and with
i>19. This behavior is a selection effect due to the sample
characteristics and the range of lags where the fiducial survey
design is sensitive.

4.4. Effects of Cadence/Nepoch

To investigate the effect of cadence on lag detection, we ran
additional simulations with cadences of 3 and 12 days and the
same 180 day observation baseline to compare with our fiducial
cadence of 6 days. We start from the daily sampled light curves
described in Section 2 and resample the cadence and flux
measurements based on the same mock quasars and light
curves and follow the same procedures in measuring lags as
described in Section 3.

As shown in Figure 13, using the same method, the overall
detection efficiency decreases as the monitoring cadence
increases. Again JAVELIN and ICCF have higher detection
efficiencies than ZDCF. The increase of detection efficiency as
cadence improves is mainly a result of more data points in the
light curves, because most of the expected lags will be resolved
even with a 12 day cadence, but a higher cadence can lead to
more lag detections on shorter timescales. These results are
already confirmed in earlier simulations with ICCF (Shen et al.
2015).
Figures 14 and 15 show the breakdown of the detection

efficiency in each redshift and i-band magnitude bin for
different cadences/Nepoch (but with fixed baseline). The
number of detections and detection efficiency decrease in all
bins with increasing cadence as expected. The only exception is
the high-redshift bins in the ICCF case, which remains similar
in the 3 day and 6 day cadence simulation; this result may
simply be due to small number statistics.
We also ran our simulated observations with nonuniform

cadence using the first-year SDSS-RM spectroscopic observa-
tions that have an average cadence of 5.7 days (median cadence
of 4 days) and 32 epochs. For ICCF and JAVELIN, the overall
detection efficiency and number of detections after down-
sampling are consistent with our uniform-cadence simulations.
While correlated variations in the poorly sampled sections of
the light curves may be missed by the correlation analysis for
some sources, lags of other sources might be identified in more
densely sampled parts of the light curves, so the nonuniform
cadence does not significantly change the results for the overall
sample. However, this is not the case for ZDCF, where the
detection efficiency for the nonuniform cadence case is only
about half of that for the uniform-cadence case. ZDCF detects
fewer lags in all bins with nonuniform cadence, but especially
so at lag 20 days and ∼40 days. This lack of detections arises
because the ZDCF binning algorithm is less sensitive to lag in
this range with the nonuniform cadence. Having a reasonable
interpolation scheme, such as with ICCF or JAVELIN, helps
detect lags when the cadence is not uniform.

4.5. Effects of Light-curve S/N

Sufficient light-curve S/N is required for any lag-measuring
method to identify correlated variability in the presence of flux
errors. In this section, we decrease our continuum light-curve
S/N by a factor of 3.5, to match the S/N of the continuum light
curves of Grier et al. (2017), and line light-curve S/N by a
factor of 0.5, 1.0, 1.5 (closest to those in the Grier et al. 2017

Figure 14. Detection efficiency (solid line and shaded area) and true (square) and false (cross) detection counts as functions of i-band magnitude in simulated
observations with 3, 6, and 12 day cadence. The dotted lines show the number of sources with lags shorter than the search range (i.e., 100 days) in each magnitude or
redshift bin. For i < 18, the detection efficiencies are not shown because there are no quasars selected in more than 80% bootstrapping iterations.
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sample), and 2.0 to investigate the performance of each method
under various flux S/Ns.

In Figure 16, the total detection count decreases as the light-
curve S/N decreases for ICCF and ZDCF as expected.
However, for JAVELIN, the total number of detections
remains approximately constant as light-curve S/N decreases.
The individual bootstrapping realizations indicate that most of
the JAVELIN lags are still detected when the light-curve
quality is degraded to these levels, but with slightly larger lag
uncertainties. For ICCF and ZDCF, however, the dimmer and
higher-z quasars are no longer detected when the light-curve
S/N decreases. Measurement uncertainties for JAVELIN are
always the most reliable (i.e., σGauss∼0.75 for all simulations)
for different S/N levels, but ICCF and ZDCF measurement
uncertainties become more overestimated when light-curve
S/N decreases. Similar trends are observed in the detection
efficiency when broken down into i-band magnitude and
redshift bins in Figures 17 and 18.

4.6. Effects of the Power Spectral Density (PSD) of the Driving
Light Curve

Our mock light curves are simulated using DRWmodels, which
is also the assumption used in JAVELIN for lag measurements. If
the actual quasar light curves are approximately described by
DRW models, as observed for large samples of quasars for the

timescales of interest here (e.g., MacLeod et al. 2010), then using
JAVELIN is the correct approach to interpolate the light curves
between the epochs in the lag calculation. However, one concern is
that if the actual quasar light curve significantly deviates from a
DRW model, then the basic assumption in JAVELIN is violated
and the lag measurement may be problematic.
To test this possibility, we generate long, daily sampled

continuum light curves with a power-law PSD∝f α with slope
α of −1, −2, and −3 using the astroML (Vanderplas et al.
2012) package in python, which follows the approach
described in Timmer & Koenig (1995). The light-curve
variances are scaled to match the same rms variability as for
the uniform sample in our fiducial simulations before adding
Gaussian measurement uncertainties. We then follow the same
procedures of generating the line light curves, assigning light-
curve uncertainties and measuring the time lags with ICCF,
ZDCF, and JAVELIN as described in Section 3. After down-
sampling to sparse, shorter light curves, there will not be
sufficient data points or baseline to properly sample the
frequency space, and the measured PSD slope might change,
which is similar to the situation that our light curves cannot
constrain DRW parameters. Specifically, the DRW model has a
broken power-law PSD with a slope of −2 at high frequencies
and a slope of 0 at low frequencies (the characteristic timescale
is about a few hundred days, e.g., MacLeod et al. 2010). Recent
PSD measurements for several AGNs observed by the Kepler
satellite (Mushotzky et al. 2011; Kasliwal et al. 2015, 2017;
Smith et al. 2018) suggested a PSD slope steeper than −2 for
timescales below a few days, indicating less variability on the
shortest timescales than the DRW model. Using a single
power-law slope for the PSD over all relevant timescales is
probably a bad assumption, as the quasar variability PSD is
usually a broken power-law in the optical (e.g., Simm et al.
2016; Smith et al. 2018), but nevertheless this allows us to test
the impact of any deviations from the DRW models.
The measured lags are most correlated with the assigned lags

(rICCF∼0.95, rZDCF∼0.95, rJAVELIN∼0.98 for the flux-
limited sample) when α=−1 and least correlated with the
assigned lags when α=−3 (rICCF∼0.81, rZDCF∼0.75,
rJAVELIN∼0.92 for the flux-limited sample). JAVELIN
remains the best among the three in reproducing the assigned
lags in terms of being close to the true lags, even when the
input PSD is significantly different from the one assumed (i.e.,
DRW) in JAVELIN.
As shown in Figure 19, all methods detect the most lags when

α=−1 (detection efficiencies for the flux-limited sample: ∼38%
for ICCF, ∼24% for ZDCF, and ∼45% for JAVELIN) and
the fewest lags when α=−3 (detection efficiencies for the

Figure 15. Detection efficiency (solid line and shaded area) and true (square) and false (cross) detection counts as functions of redshift in simulated observations with
3, 6, and 12 day cadence. The dotted lines show the number of sources with lags shorter than the search range (i.e., 100 days) in each magnitude or redshift bin.

Figure 16. Total counts of true (square) and false (cross) detections in the flux-
limited sample at different error inflating factors for the line light curve.
Continuum light-curve errors are all 3.5 times higher compared with previous
figures (i.e., Figures 5–15).
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flux-limited sample: ∼22% for ICCF, ∼9.6% for ZDCF, and
∼12% for JAVELIN). When there is more variability on short
timescales (α=−1), there are more features in the light curves for
the methods to model and correlate. When α=−3, light curves
tend to be slowly varying or even monotonic for almost the entire
180 day baseline, which makes detecting lags more difficult for all
methods. In all cases, ICCF has the highest false-detection rate, and
the false detections tend to cluster around the search limit (∼60%

of the monitoring period), which will lead to a biased lag
distribution as discussed in Section 4.2. JAVELIN also has a
higher false-detection rate when α=−1 compared with the two
other α cases (but still fewer false detections than ICCF).
JAVELIN is unable to reproduce the high-frequency variations
in these light curves for this shallowest PSD slope, leading to more
false detections (8% of all sources, compared with <1% when
α=−2 or −3) and more overestimated uncertainties as seen in
the left panel in Figure 20. Overall, ICCF uncertainties are
overestimated (σGauss∼0.6) when α=−1 but underestimated
(σGauss∼1.1) when α=−3, ZDCF uncertainties are over-
estimated in all simulations, and JAVELIN uncertainties are
slightly overestimated but more consistent among all simulations.
These additional tests demonstrate that when the actual light-

curve PSD is different from the DRW model, the relative
performance in terms of lag-detection efficiency, rate of false
detections, and the reliability of reported lag uncertainties
remains more or less the same among the three methods. These
tests also show that the DRW model is extremely flexible and is
capable of fitting non-DRW light curves (see Kozlowski 2016
for a similar conclusion). Even though the DRW parameters
cannot be constrained by our light curves, the DRW model can
produce reasonable interpolation (better than linear interpola-
tion) and thus outperforms ICCF and ZDCF in most test cases.
Of course we have not exhausted the variety of PSD shapes,
and it is possible that certain peculiar PSD shapes will change
the relative performance among the three methods.
Finally, we point out that we have not tested the effect of

deviations in the line transfer function from the assumed top hat
function in JAVELIN. Yu et al. (2019) performed a more

Figure 18. Detection efficiency (solid line and shaded area) and true (square) and false (cross) detection counts as functions of redshift in simulated observations with
inflated error bars. The dotted lines show the number of sources with lags shorter than the search range (i.e., 100 days) in each magnitude or redshift bin.

Figure 17. Detection efficiency (solid line and shaded area) and true (square) and false (cross) detection counts as functions of i-band magnitude in simulated
observations with inflated error bars. The dotted lines show the number of sources with lags shorter than the search range (i.e., 100 days) in each magnitude or redshift
bin. For i < 18, the detection efficiencies are not shown because there are no quasars selected in more than 80% bootstrapping iterations.

Figure 19. Total counts of true (square) and false (cross) detections for the
flux-limited sample with mock light curves generated from single power-law
PSDs (as opposed to the DRW model) with different slopes. The overall
detection fraction decreases for steeper PSDs, where the light curves are more
and more dominated by slow varying (or even monotonic) trends.
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detailed study on the impact of transfer function forms on the
performance of JAVELIN, in the regime of high-quality light
curves typically achieved for local RM programs. It is always a
possibility that JAVELIN will fail badly for specific cases with
unusual transfer functions or PSD. However, for the bulk of
typical quasar light curves, and especially for the regime of
light-curve quality (e.g., S/N and sampling) of interest to most
MOS-RM programs, JAVELIN is favored over the other two
methods.

5. Lag Detection in Real Surveys

5.1. Selection with Light-curve Quality Cuts

In reality, the true lags of quasars in the MOS-RM sample
are unknown. Instead of comparing with the true lag, we can
use the quality of light-curve fits and the properties of the light
curves to evaluate the quality of the lag measurements.
Traditionally, visual inspection is often invoked to assess the
quality of the lag measurements.

Grier et al. (2017) applied cuts on the minimum ICCF
correlation coefficient (rmax) and the continuum and line light-
curve rms variability S/N (defined as the intrinsic variability of
the light curve about a fitted linear trend, divided by the
uncertainty of the estimated intrinsic variability). The variable
rmax can be used to evaluate whether the light curves are well
correlated. The continuum and line rms variability can be used
to identify short-time variability and exclude spurious correla-
tions for noisy light curves or light curves with long,
monotonic trends. The selected cutoff values strongly depend

on the desired balance between completeness and purity of lag
detections, for example, to achieve an acceptable false-
detection rate. Figure 21 shows the simulated detections by
imposing the additional lag-significance criteria of Grier et al.
(2017), with simulated light-curve S/N matched to the Grier
et al. (2017) sample (continuum light-curve uncertainties
inflated by 3.5 times and line light-curve uncertainties inflated
by 1.5 times). We evaluate the robustness of the detections
based on Section 3.5, which is more stringent than Grier et al.
(2017) as they only require a 2σ deviation from zero lag for a
significant lag. Roughly half of the detections from the original
test in Section 4.5 are removed due to low correlation or low
variability amplitude. The number of detections is slightly
lower than for Grier et al. (2017) due to the more stringent
detection criteria, and the false-detection rate is around 20%–

30%. Because these additional quality cuts remove the same
objects from the detected sample in each method, they do not
affect our conclusions about the relative performance of
different lag-measuring methods.

5.2. Selection with Statistical Test

Here we introduce a statistical approach to remove false
detections in MOS-RM surveys without knowing the true lags
or expected lags from an assumed R–L relation. Because
detectable lags in a specific survey design depend on the quasar
magnitude and redshift, we filter out false detections by
removing all sources in a redshift-magnitude bin that are
unlikely to host detectable lags. When analyzing light-curve
pairs with undetectable lags, statistically, all lag-detection

Figure 20. Distribution of the difference between assigned and measured lags, normalized by the measurement uncertainty, for the flux-limited sample using mock
light curves generated with single power-law PSDs with different slopes. The black dashed line is a Gaussian distribution with unity dispersion.

Figure 21. Detection efficiency of simulations with a cadence of 6 days and 30 epochs, based on the lag-significance criteria of Grier et al. (2017). The color map
represents the detection efficiency, and the numbers are the detection counts of a single down-sampling realization. The total numbers of true and false detections
shown in the lower right corner are the median and uncertainties derived from 100 down-sampling realizations, defined by the detection criteria described in
Section 3.5 (true detections in black and false detections in red). The gray contours show the approximate constant lags from the R–L relation from Bentz et al. (2009).
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methods should have an equal chance to produce positive and
negative lags, all of which are false detections. We compute the
ratio of positive lags to negative lags in each of the redshift-
magnitude bins and set a cutoff to exclude bins with a low
positive-to-negative measurement ratio. If a grid has a ratio
below this cutoff, we assume the time lags of all sources in that
grid are not reliable and all the detections (both true and false
detections) are removed in the grid. In this work, we start with
the uniform sample and impose redshift bins of 0.2 and
magnitude bins of 0.5 as an example. Each grid element has
∼600 quasars. The cutoff ratio of positive to negative lags of
1.5 is selected, which is optimized by searching for a ratio that
eliminates the most false detections while keeping the most true
detections. After the statistical selection, we apply the same
down-sampling procedure as in Section 3.6 to mimic the
SDSS-RM program.

Using this ratio criterion, we regenerate the true and false
detection map in Figure 22. We recover most (>90%) of the
lags found previously with the knowledge of the true lags. In
the following analysis, we still label the lags according to the

true/false detection criteria, but they are not selected by the
assigned lags and should be indistinguishable in real surveys.
Because we are selecting the redshift and i-band magnitude
bins without knowing the true lags, false detections increase in
the bins where τobs is ∼100 days, where some longer lags
could be falsely detected with a smaller measured lag. These
falsely detected long lags make up roughly a third (ICCF) to
half (ZDCF and JAVELIN) of all the false detections. The
median false-detection rate is roughly 18%, 9.0%, and 6.7% for
ICCF, ZDCF, and JAVELIN for the flux-limited sample, again
with JAVELIN having the lowest false-detection rate. These
results are similar to the estimated false-detection rate of Grier
et al. (2017), roughly 10%. Most of the sources in eliminated i-
magnitude and redshift bins have lags of 100days, above the
limit used in the lag search.
With this statistical approach to mimic the reality of MOS-

RM programs, the detected lag distribution from the uniform
sample and the 100 down-sampling realizations are shown in
Figures 23 and 24. JAVELIN and ZDCF measure a relatively
uniform lag distribution. ICCF favors lags around ∼60–90 days
and measures more true and false detections in this range. This
result suggests that the R–L relation derived with ICCF lags is

Figure 22. Detection efficiency of simulations with a cadence of 6 days and 30 epochs, selected by the statistical test described in Section 5. The color map represents
the detection efficiency, and the numbers are the detection counts (true detections in black and false detections in red) of a single down-sampling realization. The total
numbers of true and false detections shown in the lower right corner are the median and uncertainties derived from 100 down-sampling realizations. The gray contours
show the approximate constant lags from the R–L relation from Bentz et al. (2009). The bins removed by the statistical test are labeled with a red cross.

Figure 23. Distribution of the measured lags of the uniform sample in the
observed frame, selected by the statistical test described in Section 5. The gray
solid histogram shows the number of detectable lags in each bin. The open
histograms represent the number of true detections, and the solid histograms are
the number of false detections. The number of false detections are inflated by a
factor of 5 for clarity.

Figure 24. Median distribution of the detected lags in the 100 down-sampling
realization. The open histograms show the number of true detections, and the
solid histograms indicate the number of false detections. The gray shaded area
represents the median assigned lag distribution.

14

The Astrophysical Journal, 884:119 (21pp), 2019 October 20 Li et al.



more biased, especially for samples with a narrow redshift
distribution, where the limited observed-frame lag distribution
would correspond to a limited rest-frame lag distribution. In
Figure 25, ICCF has a higher detection rate in the low-
luminosity and high-redshift bins compared with JAVELIN
and ZDCF, but the false-detection rate is also high in those
grids. The total number of detections decreases significantly
beyond z∼1 as the light curves have lower S/N and the lags
are closer to the ∼100 day search limit. Overall these results are
similar to those in Sections 4.4 and 4.5.

6. Discussion

6.1. The R–L Relation

Now we examine how the selection effects from the sample
and survey design, as well as the uncertainties in the measured
lags, can affect the slope of the R–L relation, as compared with
the R–L relation and scatter used to assign lags to our simulated
quasars as described in Section 2. We use the 100 down-
sampled realizations of the flux-limited sample with the
statistical approach described in Section 5. The observed-
frame lags are shifted to rest frame by dividing by a factor of
(1+z) and then fit the slope in the τ−L relation with the
linear regression code LINMIX (Kelly 2007). LINMIX uses a
Bayesian approach to perform linear regression with measure-
ment errors in both coordinates and produces more consistent
fitting results than traditional regression methods when the data
have large intrinsic scatter or are poorly measured. Because the
R–L relation is derived with Hβ lags that are only measured at
z<0.9, we exclude all measured lags with z>0.9 during the
fitting. The fitting results are shown in Figure 26.

We first examine the effects of selection bias due to sample/
survey design by fitting the R–L relation with the assigned lags
of the true detections (top row in Figure 26). Due to our limited
observation period, we cannot detect observed-frame lags
longer than 100 days with any method and most short lags (less
than the cadence) with ICCF and ZDCF. This constraint limits
the dynamical range of luminosity and time lag in the R–L

relation fitting, resulting in the fitted R–L relation slope being
shallower than the nominal slope.
Next we examine the effects of lag measurement uncertain-

ties by fitting the R–L relation with the measured lags
(incorporating the lag uncertainties) for the true detections
only (middle row in Figure 26) and for all detections (bottom
row in Figure 26). When considering only the true detections
(which cannot be identified in real surveys), the fitted R–L
slopes are slightly shallower but still consistent with the
previous values. When including both true and false detections,
the fitted R–L slopes are the same within the uncertainties for
JAVELIN compared with the fitting with only true detections.
However, the fitted R–L slopes for ICCF and ZDCF are biased
by the false detections at ∼100 days (observed-frame), as
indicated by the larger scatter in Figure 27. In some
realizations, the measured lags of false detections deviate
significantly from the nominal R–L relation for ICCF and lead
to a highly biased R–L slope (∼0). Therefore, in practice, it is
important to examine questionable lag measurements and
establish criteria to discard them from the sample. In general,
R–L slopes measured from JAVELIN are more robust and
accurate than those from ICCF and ZDCF, which is due to the
combined benefits of having more detected lags (especially the
short lags) and higher lag measurement quality.
Figure 27 presents the histograms of the fitted R–L slope

from the measured lags (including false detections) in the 100
down-sampled realizations. In the 6 day cadence simulations,
fitted slopes are ∼0.4 for JAVELIN and ∼0.3 for ICCF and
ZDCF, and the normalized median absolute deviations
(NMADs) are ∼0.08 for JAVELIN and ∼0.14 for ICCF and
ZDCF. When the cadence decreases (number of epochs
increases), there are fewer false detections in ICCF, so the
fitted slope approaches ∼0.4, where most of the remaining bias
is due to the limited lag range. With the 12 day cadence, the
detections from ICCF and ZDCF decrease and false detections
increase, causing the R–L relation fitting to become unreliable,
as indicated by the broader range of the slope distribution
(NMAD ∼0.51 for ICCF and ∼1.35 for ZDCF). For
JAVELIN, the fitted slope converges around 0.4 for all three

Figure 25. Detection efficiency (solid line and shaded area) and true (square) and false (cross) detection counts of the three methods as functions of i-band magnitude
(right panel) and redshift (left panel) in a simulated observation with 6 day cadence and 30 epochs. The detections are selected with the statistical approach described
in Section 5, i.e., assuming no knowledge of the true lags. The dotted lines show the number of sources with lags shorter than the search range (i.e., 100 days) in each
magnitude or redshift bin. For i < 18, the detection efficiencies are not shown because there are no quasars selected in more than 80% bootstrapping iterations.
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cadences and the NMAD only increases slightly to 0.14 at
cadence of 12 days, which is comparable to NMAD for ICCF
and ZDCF simulations at cadence of 6 days.

For the light-curve S/N dependence, the median of fitted
R–L slopes is consistent at different S/N for all three methods,
because the number of detections and their distribution in the
R–L plane do not change drastically as light-curve S/N varies.
When the S/N is degraded, the R–L slope uncertainties
increase for ICCF and ZDCF but not for JAVELIN—this is
because the scatter in the R–L plane primarily originates from

the increased lag uncertainties as light-curve S/N decreases,
which is not the case for JAVELIN (see Section 4.5).

6.2. Scatter of the R–L Relation

The slope of the R–L relation derived from our simulation is
consistently shallower than the assigned value. However, the
Grier et al. (2017) R–L relation shows more scatter than the
Bentz et al. (2009, 2013) R–L relations (the Bentz et al. 2013
R–L relation is an updated version of the Bentz et al. 2009 R–L

Figure 26. Hβ R–L relation derived from one down-sampling realization. In each panel, the gray contours represent the uniform quasar sample, and the blue and
orange points are the true and false detections. The top row shows the R–L relation derived using the assigned lags of the true detections, the middle row presents the
result using measured lags with error bars of the true detections, and the bottom row displays the result using measured lags of both true and false detections. The black
solid line is the input R–L relation (Bentz et al. 2009) used to generate the uniform sample, and the blue lines are 50 random realizations drawn from the posterior of
the Bayesian regression fit to the R–L relation. The black points are the Bentz et al. (2013) local RM AGN sample for reference.
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relation that includes more low-luminosity sources). There are
many possible reasons for this discrepancy. For example, Grier
et al. (2017) used spectral decomposition to correct for host
galaxy light in the estimation of quasar-only luminosity instead
of high-resolution imaging decomposition as with Bentz et al.
(2009, 2013). There may also be intrinsic differences in the
R–L relations due to the difference in samples (e.g., the SDSS-RM
Hβ lag sample is at a substantially higher redshift and spans a
broader range of quasar parameter space than the Bentz et al.
sample). Du et al. (2016) suggested that the R–L relation might

depend on quasar luminosity and accretion rate (also see Loli
Martínez-Aldama et al. 2019). This discrepancy motivates us to
investigate how the observed R–L relation changes with different
assumptions of the intrinsic scatter. We produced another set of
simulations while applying increased scatter in the input R–L
relation, following the same procedures described in Section 2 but
doubling the scatter in the initial R–L relation to generate a new
set of mock quasars and light curves.
With the larger scatter in the input R–L relation, the fitted

R–L slope becomes less constrained, as demonstrated in the top

Figure 27. Distribution of the best-fit R–L slopes from 100 down-sampling realizations. From the left to right are the simulations of 3 day, 6 day, and 12 day cadences.
The vertical dashed lines indicate the median of each distribution, and the solid vertical lines mark the slope of the input R–L relation (β=0.519).

Figure 28. Hβ R–L relation derived from one down-sampling realization in the simulation with more scattered R–L relation. In each panel, the gray contours represent
the uniform quasar sample, and the blue and orange points are the true and false detections. The top row shows the R–L relation derived using the assigned lags of the
true detections, and the bottom row displays the result using measured lags of both true and false detections. The black solid line is the input R–L relation (Bentz
et al. 2009) used to generate the uniform sample, and the blue lines are 50 random realizations drawn from the posterior of the Bayesian regression fit to the R–L
relation. The black points are the Bentz et al. (2013) local RM AGN sample for reference.
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rows of Figure 28. The observed R–L relation slopes are
shallower compared with the original simulation for all three
methods. In addition, false-detection rates increase for all
techniques, as it is more difficult to statistically eliminate false
lags by rejecting quasars in certain magnitude and redshift bins
due to the increased scatter in the lags in each bin. These false
detections are located near the edge of our search range, mostly
in the range of 60–80 days. As a result, the deduced R–L
relation is flatter because the fit is skewed by these false
detections (see bottom left panel in Figure 28 for an example).
The distributions of the fitted R–L relation slopes are presented
in Figure 29: for all three lag-measuring methods the slopes are
shallower than those in the original simulations (∼0.2 for
ICCF, ∼0.1 for ZDCF, and ∼0.3 for JAVELIN) and the
NMAD increases compared with the original simulation
(NMAD ∼0.27 for ICCF, ∼0.46 for ZDCF, and ∼0.11 for
JAVELIN). The slope from JAVELIN lags is the least biased
among the three methods.

If the intrinsic scatter in the R–L relation is indeed larger for
the SDSS-RM sample than for the local RM sample, then it is
likely that we will measure a shallower slope using the
measured lags. The shallower measured slopes are primarily a
caveat of the limited dynamic range in the measured lags and
should be mitigated with additional lags measured over a
broader range in luminosity.

The lags from Grier et al. (2017) also on average fall below
the Bentz et al. (2009, 2013) R–L relation (also see, e.g., Du
et al. 2016). From our simulation, there is no evidence that
selection effects can cause a vertical offset from the input R–L
relation. However, long lags (>80 days) tend to be measured
with smaller values than the assigned values using the Grier
et al. (2017) lag-significance criteria, which can partially
contribute to the shallower slope in the R–L relation.

6.3. Multiyear Observations

Following the SDSS-RM survey design, we ran a 5 yr
simulation (with 30 observing epochs for the first year, 15
epochs for years 2 and 3, and 6 epochs for years 4 and 5)
and examined the lag measurements using ICCF and JAVELIN
on the flux-limited sample. Because the ZDCF method

consistently underperforms over the other two methods, we
do not consider ZDCF further in this section.
Similar to our 100 day search range criteria, we set the search

range to ∼800 days in order to avoid strong CCCD/PDF
signals produced with fewer overlapping points. The grid size
of the ICCF is set to 15 days, the median of the cadence, which
results in smoother ICCFs for light-curve pairs with larger lags.
The MCMC parameters are set to be the same as for our
180 day simulations (see Section 3), as this value is sufficient
for the results to converge. For the alias removal procedure, the
width of the Gaussian smoothing kernel was increased to 7.5
days to improve the ability to capture longer lags. We scale the
CCCD/PDFs as a function of the number of overlapping points
in each of the 6 month observing seasons. Both ICCF and
JAVELIN interpolate within the 6 month seasonal gaps, and
these lag ranges are down-weighted in the alias removal
procedure. Finally, we perform the statistical selection as in
Section 5 to remove unlikely detections. This approach
removes ∼10% false detections and <1% true detections for
ICCF and ∼20% false detections and ∼1% true detections for
JAVELIN.
Figure 30 presents the detection map of the 5 yr simulations.

The shaded area is the detection efficiency calculated from the
flux-limited sample, instead of the uniform quasar sample as in
the previous figures (e.g., Figure 11). The overall detection
efficiency is ∼45% for ICCF and ∼56% for JAVELIN, and
false-detection rates are ∼16% for ICCF and ∼6.9% for
JAVELIN with the 5 yr baseline. Lag detections are limited by
the observing baseline, redshift, and light-curve S/N. Below
redshift ∼2, the detection efficiency follows similar trends as
the single-season simulations. Compared to the 180 day
simulation, the detection efficiency increases for lag of <100
days with additional seasons of observation, especially for
JAVELIN. At longer lags (>100 days), lag-detection efficiency
increases at 2<z<2.5 for faint objects. This behavior arises
because, with the seasonal gaps and the chosen baseline, our
survey will be most sensitive to lags <100 days and 250–400
days. These trends are observed in Figure 31. In our 5 yr
simulation, detection efficiency peaks at z∼0.5 and z∼2.5

Figure 29. Distribution of the best-fit R–L slopes from 100 down-sampling
realizations in the simulation with more scattered R–L relation. The vertical
dashed lines indicate the median of each distribution, and the solid vertical
lines mark the slope of the input R–L relation (β=0.519).

Figure 30. Similar format to Figure 11. Detection maps for the 5 yr simulation
following the statistical selection described in Section 5. The color map
represents the detection efficiency, and the numbers are the detection counts
(true detections in black and false detections in red) of a single down-sampling
realization. The total numbers of true and false detections shown in the lower
right corner are the median and uncertainties derived from 100 down-sampling
realizations. The gray contours show the approximate constant lags from the R–
L relation from Bentz et al. (2009). The detection efficiency is calculated for the
selected sources in the flux-limited sample, instead of using the uniform sample
like in Figure 11.
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and falls off sharply at z > 3. Detections mostly fall in the
range of 0.5<z<2.5 due to the redshift distribution of our
sources.

The distribution of detected lags (Figure 32) reveals gaps in
the distribution of detected lags with ICCF, which correspond
to the seasonal gaps in the observations. For JAVELIN,
however, these gaps are less obvious, indicating that JAVELIN
is interpolating reasonably well within long seasonal gaps and
measures lags more accurately in multiyear projects than ICCF.
In addition, JAVELIN has lower and more evenly distributed
false detections throughout the lag ranges. For >600 day lags,
there are as many false detections as true detections for ICCF,
suggesting that it will be very difficult to identify true
detections with ICCF in this lag range.

Figure 33 displays the fitting of the R–L relation in one
down-sampled realization. Because the detected lags cover a
wide range in luminosity, the slopes are less biased by the
limited dynamical range than the 180 day simulation. The

ICCF R–L relation is still skewed by the false detections
clustered at ∼600–800 days. Because the distribution of false
detections in JAVELIN is more uniform over the range of lags,
the fitted slope of the R–L relation is more accurate. However,
the derived slopes are still somewhat shallower than the
assigned value due to the false detections at higher lags and
lower detection rate at small lags (in the rest frame).
Figure 34 shows the distribution of the fitted slopes from the

100 down-sampling realizations. The measured slopes from the
JAVELIN lags (slope ∼0.42, NMAD ∼0.03) are again more
consistent with the input slope than those from the ICCF lags
(slope ∼0.35, NMAD ∼0.05).
Expanding the lag sample to a wider AGN luminosity range

appears to be necessary to recover the true slope of the R–L
relation. The low-luminosity end of the R–L relation can be
filled in by measuring short lags in low-luminosity sources at
rapid cadence with short baselines. However, the high-
luminosity end of the R–L relation is a more difficult problem:
it requires continuous monitoring for years or even decades.
The longest measurable lags will always be limited by the total
baseline. Understanding the lag-detection limit and the false-
detection rate can help understand biases in the high-luminosity
end of the R–L relation.

7. Conclusions

In this work, we used simulated MOS-RM observations to
test the strengths and weaknesses of three popular time lag–
measuring methods: ICCF, ZDCF, and JAVELIN. We
examined lag detections for a uniform mock quasar sample
and down-sampled it to mimic flux-limited samples in real
surveys. Among the three methods, ZDCF has the lowest
detection efficiency and detection quality, indicating that the
interpolation between data points in the other two methods
enhances the probability of lag detection.
JAVELINperforms better than ICCF in essentially all major

benchmarks we tested:

1. JAVELINcan recover more lags that are shorter than the
cadence, which we ascribe to the more empirically

Figure 31. Detection efficiency (solid lines and shaded area) and true (square) and false (cross) detection counts of the three methods as functions of i-band magnitude
(right panel) and redshift (left panel) of the flux-limited sample from the 5 yr simulation. The dotted lines show the number of sources with lags shorter than the search
range (i.e., 800 days) in each magnitude or redshift bin. For i<17 and z>4, the detection efficiencies are not shown because there are no quasars selected in more
than 95% of bootstrapping realizations.

Figure 32. Median distribution of the detected lags in the 100 down-sampling
realization of the 5 yr simulation. The open histograms show the number of
true detections, and the solid histograms indicate the number of false
detections. The gray shaded area represents the median assigned lag
distribution.
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motivated interpolation scheme based on the DRW model
used to describe stochastic quasar continuum variability.

2. Overall, JAVELIN produces both more accurate and
more precise lag measurements for typical MOS-RM
programs. The formal lag errors from JAVELIN are also
the most reliable (compared with the deviations from the
true lags) among the three methods.

3. JAVELIN in general produces fewer false detections than
ICCF, and its detection efficiency and quality are less
sensitive to degradation of the S/N of light curves
(Figure 16).

4. JAVELIN is less affected by large, seasonal gaps in the
light curves, resulting in more lags that are near the
seasonal gaps that will otherwise be missed by ICCF.

This is again the result of the more physically motivated
interpolation scheme by JAVELIN (Section 6.3).

5. The advantages of JAVELIN in lag measurements lead to
less bias in the measured slope in the R–L relation than
ICCF (Section 6.1 and Figure 27).

6. JAVELIN performs at least equally well as ICCF in all
the aforementioned tests even when the continuum light
curves deviate from the DRW model assumed by
JAVELIN, in the single power-law PSD models we tested
(Section 4.6).

These results demonstrate the clear preference for JAVELIN
over the other two methods as the primary method of lag
measurements for MOS-RM surveys, where the quality of light
curves is generally worse than that achieved for traditional RM
programs targeting local low-luminosity AGNs.
We further developed a statistical approach to efficiently

eliminate false detections in MOS-RM surveys, without
knowing the true lags of the sample. Using this statistical
approach, we can recover 90% of the true (detectable) lags
while retaining a reasonably low false-detection rate (∼18% for
ICCF and <10% for ZDCF and JAVELIN).
JAVELIN recovers the most accurate R–L relation slope

compared with the fiducial slope measured for the low-z RM
sample, and the recovered R–L relation slope from ICCF and
ZDCF is shallower. When the intrinsic scatter in the R–L
relation increases, the recovered R–L relation becomes even
shallower. This is mainly because our 180 day mock observa-
tion is not capable of detecting long lags (and lags much shorter
than the cadence), thus limiting the dynamic range in the R–L
relation fitting. Indeed, when we include long lags from
multiyear observations, this discrepancy in the R–L relation
slope is reduced. The deficiency of short lags in the low-
luminosity regime still limits the recoverability of the true
slope. However, only JAVELIN is capable of producing

Figure 33. Hβ R–L relation derived from one down-sampling realization in the 5 yr simulation. The gray contours represent the uniform sample, and the blue and
orange points are the true and false detections. The black points are the Bentz et al. (2013) local RM AGN sample for reference. The black solid line is the input R–L
relation used to generate the uniform sample, and the blue lines are 50 random realizations drawn from the posterior of the Bayesian regression fit to the R–L relation.

Figure 34. Distribution of the best-fit R–L slopes from 100 down-sampling
realizations in the 5 yr simulation. The vertical dashed lines indicate the median
of each distribution, and the solid vertical lines mark the slope of the input R–L
relation (β=0.519).
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consistent slope measurements when the cadence is reduced or
the light-curve S/N is degraded.

Our investigations have not explored the entire parameter
space of RM and other less common methods of lag
measurements, and it is possible that JAVELIN may perform
worse than ICCF in special circumstances. However, for large-
scale MOS-RM programs, the recently developed, more
statistically robust methods (such as JAVELIN and CREAM)
convincingly produce superior results compared with the
traditional ICCF to utilize the full power of these MOS-
RM data.
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