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1. Passive acoustic monitoring (PAM) is used for many vocal species. However, few studies 23 

have quantified the fraction of vocalisations captured, and how animal distance and 24 

sound source level affect detection probability. Quantifying the detection probability or 25 

effective detection area (EDA) of a recorder is a prerequisite for designing and 26 

implementing monitoring studies, and essential for estimating absolute density and 27 

abundance from PAM data.  28 

2. We tested the detector performance of cetacean click loggers (C-PODs) using artificial 29 

and recorded harbour porpoise clicks played at a range of distances and source levels. 30 

Detection rate of individual clicks and click sequences (or click trains) was calculated. A 31 

Generalised Additive Model (GAM) was used to create a detection function and estimate 32 

the effective detection radius (EDR) and EDA for both types of signals. 33 

3. Source level and distance from logger influenced the detection probability. Whilst 34 

differences between loggers were evident, detectability was influenced more by the 35 

deployment site than within-logger variability. Maximum distance for detecting real 36 

recorded porpoise clicks was 566 m. Mean EDR for artificial signals with source level 37 

176 dB re 1 µPa @ 1m was 187 m., and for a recorded vocalisation with source level up 38 

to 182 dB re 1 µPa was 188 m. For detections classified as harbour porpoise click 39 

sequences the mean EDR was 72 m. 40 

4. The analytical methods presented are a valid technique for estimating the EDA of any 41 

logger used in abundance estimates. We present a practical way to obtain data with a 42 

cetacean click logger, with the caveat that artificial playbacks cannot mimic real animal 43 

behaviour and are at best able to account for some of the variability in detections between 44 

sites, removing logger and propagation effects so that what remains is density and 45 

behavioural differences. If calibrated against real-world EDAs (e.g., from tagged 46 

animals) it is possible to estimate site-specific detection area and absolute density. We 47 

highlight the importance of accounting for both biological and environmental factors 48 
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affecting vocalisations so that accurate estimates of detection area can be determined, and 49 

effective monitoring regimes implemented. 50 

Finnish Abstract 51 

1. Passiivista akustista seurantaa käytetään monien vokalisoivien lajien tutkimiseen. Harva 52 

tutkimus on määrittänyt äänitettyjä vokalisointeja tai tutkinut etäisyyden ja 53 

äänenvoimakkuuden vaikutusta akustisten laitteiden havaitsemisetäisyyteen (EDR), 54 

havaitsemisalueeseen (EDA)  tai havaitsemistodennäköisyyteen. Nämä ovat kuitenkin 55 

edellytyksiä tehokkaiden kartoitustutkimusten suunnitteluun ja olleellisia tietoja lajien 56 

tiheyttä mitattaessa akustisilla laitteilla.  57 

2. Me testasimme akustisten seurantalaitteiden (C-PODs) suorituskykyä jotka tallentavat 58 

pyöriäisten kaikuluotausäänisarjoja. Käytimme keinotekoisia sekä nauhoitettuja 59 

äänisarjoja joita toistettiin eri välimatkojen päästa ja eri lähdevoimakkuuksilla. 60 

Määrittelimme havaitsemisasteen sekä yksittaisille äänille etta äänisarjoille. Käytimme 61 

yleistettyä additiivista mallia (GAM) luodaksemme funktiot 62 

havaitsemistodennäköisyydelle ja arvioimme laitteiden tehokkaimman havaitsemisalueen 63 

(EDA) molemmille eri signaaleille. 64 

3. Sekä lähdevoimakkuus että välimatka vaikuttivat havaitsemistodennäköisyyteen. Vaikka 65 

yksilöllisillä laitteilla oli eroja, havaitsemistodennäköisyyteen vaikutti enemmän laitteen 66 

sijainti kuin laitteidenväliset erot.Suurin etäisyys josta pyöriäisvokalisaatio havaittiin oli 67 

566 m. havaitsemisetäisyyden keskiarvo keinotekoisille signaaleille 176 dB re 1 µPa @ 68 

1m lähdevoimakkuudella oli 187 m., ja nauhoitetulle pyöriaisääntelyille 69 

lähdevoimakkuudella 182 dB re 1 µPa oli 188 m. äänisarjojen havainnoille jotka laitteet 70 

automaattisesti luokitteli pyöriäisääniksi, keskiarvoinen havaitsemisetäisyys oli 72 m. 71 
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4. Tässä esitetty laskennallinen menetelmä on pätevä tekniikka havaitsemisalueen 72 

arvoimiseen millä tahansa laitteella jonka tarkoituksena on lajien tiheyden laskeminen. 73 

Me esitämme käytännöllisen tavan hankkia dataa merinisäkkäiden äänisarjoista, vaikka 74 

huomautamme että keinotekoiset toistokokeet eivät voi imitoida oikeiden eläinten 75 

käyttäytymistä. Parhaimmillaan ne pystyvät ottamaan huomioon datan vaihtelevuuden 76 

laitteiden sijainnista johtuen, poistaen laitteidenväliset erot ja akustisen propagaation 77 

seuraukset, niin että tiheys (ja siihen vaikuttavat oikeiden eläinten 78 

käyttäytymisvaihtelut) voidaan määritellä. Jos akustiset laitteet voidaan lisäksi 79 

kalibroida todellisia havainnointietäisyyksiä vasten (esim. villeiltä, merkityiltä 80 

eläimiltä) on mahdollista arvioida aluekohtainen havainnointitodennäköisyys seka 81 

absoluuttinen eläintiheys. Korostamme biologisten sekä ympäristöllisten osatekijoiden 82 

vaikutusta ja painoarvoa eläinten vokalisaatiohin, jotta täsmällisiä ja todenpitäviä 83 

arviointeja lajitiheyteen voidaan määritellä ja tuloksia tuottavia seurantajärjestelmiä 84 

toteuttaa.  85 

 86 

Key-words: C-POD, density estimation, detection function, effective detection radius, static 87 

passive acoustic monitoring, abundance. Word count: 7141 88 

Introduction  89 

Conservation and management of wildlife requires reliable estimates of animal abundance or 90 

density, traditionally achieved through visual counts or by (re-)capturing animals. Many animals, 91 

such as forest dwellers and diving marine species can be challenging to study due to 92 

inaccessibility of their habitats and limited availability for ground-based or sea surface-based 93 

observers. Visual monitoring methods are furthermore prone to inherent biases caused by 94 

temporal variability, observer ability and, particularly at sea, are limited to calm weather and 95 
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good visibility. Visual surveys conducted in summer cannot predict abundance in other seasons, 96 

and if not conducted at frequent intervals have a low ability to detect long term trends in 97 

population status. Cryptic, but vocal species, including many monkeys, bats, birds, frogs and 98 

cetaceans are increasingly being monitored using passive acoustic methods. Various techniques 99 

have been developed for mobile (i.e. towed) acoustic methods for studying cetaceans (Barlow 100 

and Taylor, 2005; Akamatsu et al. 2008) but static devices pose a new set of challenges. Various 101 

automated acoustic devices to collect and analyse acoustic data can now detect and identify 102 

species and can be an efficient alternative to or complement existing visual sampling as they can 103 

be used in inaccessible areas, reduce disturbance caused by human presence, and maximise 104 

temporal coverage through a long-term sampling regime (Digby et al. 2013; Mellinger et al. 105 

2007). In this paper, we present a technique for characterising the performance of an acoustic 106 

detector using playback experiments; although the technique is potentially applicable to 107 

terrestrial studies, our focus here is on cetaceans. 108 

 109 

Effective abundance monitoring is crucial for species under threat from anthropogenic activities. 110 

One such species is the harbour porpoise (Phocoena phocoena, Linnaeus, 1758), which, 111 

although commonly sighted off the North East Atlantic coastline, is increasingly threatened by 112 

human activities; the Baltic subpopulation is listed as ‘critically endangered’ in the IUCN Red 113 

List (Hammond et al. 2008). The porpoise is difficult to monitor using visual techniques because 114 

of its small size and cryptic behaviour, but it lends itself well to acoustic studies because it emits 115 

stereotypical, narrow-band high frequency (NBHF) echolocation clicks and produces near 116 

continuous vocalisations apart from short rest periods (Linnenschmidt et al. 2013, Wright et al. 117 

2017). Automated underwater click loggers such as C-PODs (Chelonia Ltd., Cornwall, UK) use 118 

waveform characterisation to identify clicks based on their intensity, bandwidth, frequency and 119 

duration. After retrieval of the devices, custom-written software then uses the recorded 120 

information to classify detected sounds into series, termed trains. These are further categorised 121 
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based on their likely origin (boat sonar, dolphin, or porpoise) according to known characteristics 122 

of cetacean vocalisations. Click logger data are now widely used to evaluate presence and 123 

foraging behaviour of vocalising cetaceans in both coastal and offshore areas (Benke et al. 2014; 124 

Verfuß et al. 2007; Schaffeld et al. 2016; Simon et al. 2010); and assess disturbance from wind 125 

farms, shipping, fisheries and coastal development (Carstensen et al. 2006; Todd et al. 2009). 126 

They can also potentially be used to estimate animal density (Kyhn et al. 2012).  127 

 128 

Estimating density 129 

Several approaches have been developed to estimate animal density from stationary passive 130 

acoustic data (Marques et al. 2012); we introduce two here that are relevant to static loggers. In 131 

the first, the unit of analysis is an individual vocalisation, such as a cetacean click. Then, 132 

𝐷̂ =
𝑛(1−𝑐̂)

𝑣̂ 𝑇𝑟̂
   (Eqn. 1) 133 

where n is the number of detected vocalisations, c is the proportion of those that are false 134 

positives (i.e., not from the target species), 𝜈 is the effective detection area (EDA, see below), T 135 

is the total monitoring time summed over all detectors in the survey and r is the average rate of 136 

sound production. The false positive rate, c, is estimated by inspecting a sample of the data under 137 

the assumption that a human analyst can accurately detect false positives. Sound production rate 138 

is best obtained from an auxiliary study where a sample of animals are fitted with acoustic 139 

recording tags and their vocalisation rate is measured; in practice, it is often obtained from 140 

studies undertaken in other times and places raising the possibility of bias. Here we focus on 141 

estimating EDA using recordings of cetacean echolocation, but the following equations can be 142 

applied to any animal that vocalises frequently. EDA is the area around a logger within which as 143 

many vocalisations are missed as are detected outside it; hence the EDA can be thought of as a 144 

measure of the area monitored by a logger. Acoustic detection is range-dependent, so one way to 145 

estimate EDA is by first estimating a detection function, g(y) (Buckland et al. 2001), which 146 
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describes the probability of detection as a function of horizonal range y of the click from the 147 

logger. Assuming vocalisations are distributed randomly around the logger (or, more 148 

appropriately, that multiple loggers are used in the survey and that they are distributed randomly 149 

within the study area), 150 

𝜈 = 2𝜋 ∫ 𝑟𝑔(𝑦)𝑑𝑦 
𝑤

0
   (Eqn. 2) 151 

where in theory 𝑤 = ∞, but in practice some finite truncation distance is used where g(y) is 152 

known to be 0. EDA is sometimes expressed in terms of the effective detection radius (EDR), 𝜌, 153 

i.e., the distance from the logger within which as many animals are missed as are detected 154 

outside it, where 𝜌 = √𝜈 𝜋⁄ . Another related quantity is the detection probability, i.e., the 155 

average probability of detecting a sound within distance w of the logger, 𝑃𝑎 = 𝜐 𝜋𝑤2⁄ . 156 

 157 

In the second approach to density estimation (e.g., Kyhn et al. 2012), the monitoring time is 158 

divided into a sequence of short “snapshots” where animal movement is negligible. Echolocating 159 

animals click in a regular sequence (a “click train”), and hence it is typically possible to count 160 

the number of animals detected within a snapshot interval (i.e., the number of overlapping click 161 

trains). The unit of analysis in this approach is the total number of animal detections, summed 162 

over all snapshots. Density is estimated as 163 

𝐷̂ =
𝑛𝑠(1−𝑐𝑠̂)

𝑣̂𝑠 𝑇𝑠𝑟̂𝑠
   (Eqn. 3) 164 

where 𝑛𝑠 is the number of animals detected, 𝑐𝑠 is the probability of a false positive animal 165 

detection, 𝜐𝑠 is the EDA for a vocalizing animal over the snapshot interval, 𝑇𝑠 is the total number 166 

of snapshots (summed over all sensors) and 𝑟𝑠 is the probability of an animal vocalizing at least 167 

once during a snapshot interval. A variant of this method can deal with the situation where 168 

animals are in groups, and multiple animals can be detected within a single snapshot (see Kyhn 169 

et al. 2012). 170 

 171 
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In both the above formulations, a critical step is estimation of the detection function, g(y), and 172 

hence the EDA. The most reliable way to do this is to collect auxiliary information from wild-173 

swimming animals within the study area during the time of the survey. In some cases, it may be 174 

possible to track a sample of animals in the vicinity of the loggers, for example by fitting them 175 

with acoustic- and location-sensing tags (e.g., Marques et al. 2009) or by observing them from a 176 

vantage point (e.g., Kyhn et al. 2012). However, tagging studies are logistically infeasible in 177 

many situations, and vantage points occur in limited locations and are only useful for species 178 

with short dive intervals.  179 

 180 

Here, we present an alternative approach, based on playback of artificial cetacean clicks or real 181 

recordings. This has the advantage of being feasible for use in many cases at all sampling 182 

locations, and potentially at multiple times during the survey period. All acoustic studies should 183 

account for imperfect detectability, inherent in any detector and various factors affect the 184 

detection probability of cetaceans with acoustic dataloggers. In a marine environment, playbacks 185 

can account for some of these factors, such as distance, water temperature, background noise, 186 

salinity and substrate which can cause variation in sound propagation, or lead to transmission 187 

loss, absorption into sediment and potential shadowing from physical objects (Au 1993; Au & 188 

Hastings 2008; DeRuiter et al. 2010; Zimmer 2011). However, a playback experiment cannot 189 

readily account for factors related to animal behaviour and activity state such as vocalisation 190 

rate, intensity and frequency of emitted sounds, direction of movement and orientation in the 191 

water column (Nuuttila et al. 2013), which must be borne in mind when interpreting results from 192 

such experiments. The first objective was to assess the performance of the hardware detection 193 

via the data logger’s hydrophone in detecting playbacks of porpoise click-like artificial signals. 194 

The second objective was to examine the performance of the click train classification and species 195 

identification software by playing a recorded porpoise vocalisation sequence to the logger and 196 

calculating the detection rate for the clicks detected but also for click sequences identified by the 197 
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algorithm (i.e., the snapshot method). The equations presented above can be adapted to other 198 

vocal species and acoustic instruments, both click loggers and full bandwidth recorders while the 199 

practical experiment presents a crucial step towards estimating cetacean abundance based on 200 

stationary acoustic monitoring of echolocation clicks. 201 

 202 

Materials and methods 203 

C-POD calibration 204 

The frequency response of the C-POD hydrophone was -208 dB re 1V/uPa at 130kHz. Each 205 

logger was calibrated in a tank at the German Oceanographic Museum. This consisted of 206 

ensonifying each C-POD with a 130 kHz artificially-created click signal at decreasing sound 207 

source levels and determining the sound pressure level threshold at four different positions 208 

around the C-POD where 50% of the transmitted signal was received by each POD. The average 209 

threshold level over the four positions was then used as the calibration sensitivity, which varied 210 

from 111 dB to 119 dB re 1Pa peak-to-peak (pp) across the C-PODs used in the study. Details 211 

on methodology can be found in Dähne et al. (2013). 212 

 213 

C-POD deployment 214 

Fifteen calibrated loggers were deployed off New Quay, Wales, moored in five stations of three 215 

loggers each in a triangular formation, at depths of 13-20 m of water, 1.5 m above the seabed and 216 

approximately 50-75 m apart (Figure 1). All the playbacks were conducted in sea states two or 217 

less, to ensure stability of the recording set up and the accuracy of the distance measurements. A 218 

side-scan sonar survey of the area was conducted prior to the study, revealing a generally even, 219 

sandy bottom substrate. 220 

** Figure 1** 221 

 222 
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Playback with artificial porpoise-like signals 223 

All the playbacks were conducted from a small inflatable boat drifting, with engine off, across 224 

the experimental area. An artificial click signal was used to create a repeatable signal where the 225 

source level could be manipulated to cover the intensity range of real harbour porpoise 226 

vocalisations. The signal consisted of 15 cycles of 130 kHz frequency, generated via National 227 

Instruments Corporation Ltd (UK) 6356 usb-box and played back using National Instruments 228 

Labview software and an omni-directional transducer (Reson TC4033, Teledyne RESON A/S, 229 

Denmark, with a projective sensitivity of 137 dB pp re 1 µPa/V for 130 kHz signal. The signal 230 

was played back at different source levels (see below) and distances from 0-800 m from the C-231 

PODs, to assess the effect of varying intensity on detection probability. Due to the drift of the 232 

boat, the playbacks were conducted from a total of 744 different distances measured using the 233 

boat’s GPS. The omni-directional transducer meant that the sound would travel to all directions 234 

resulting in expected detections across all C-PODs at varying distances.  235 

 236 

The signals were fed through an amplifier (A-301, A.A. Lab Systems Ltd., gain 26 dB), which 237 

drove the transducer suspended from the boat at 2 m below the water surface. The playback 238 

consisted of four separate sequences. Each sequence contained eleven blocks of ten clicks (90 ms 239 

duration with 60 ms pause between each block); each block had different source levels (SL), 240 

decreasing in 3 dB steps over a range of 30 dB from 176 dB pp re 1 µPa/V @ 1 m to 149 dB pp 241 

re 1 µPa/V @ 1 m (Figure S1, online supplement). Initially playbacks were conducted at higher 242 

source levels (up to 184 dB re 1 µPa/V @ 1 m) but 176 dB re 1 µPa/V @ 1 m represented the 243 

maximum source level that could be produced with the used equipment without creating 244 

distorted waveforms. 245 

 246 

Playback with recorded porpoise vocalisations 247 
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To assess the detection probability of actual harbour porpoise vocalisations, and the performance 248 

of the click train detection algorithm, echolocation clicks were recorded from captive porpoises 249 

at Fjord & Bælt Center, Denmark, and compiled into an 18 s long sequence. The recording 250 

included clicks of varying amplitude and frequency ranges, with source levels between 130 and 251 

182 dB re 1 µPa, representing some of the known variability in click rate and source level of real 252 

porpoise vocalisations (See signal waveform in Figure S2, online supplement).  253 

 254 

The recording was played using a similar setup as above but without an amplifier and through a 255 

calibrated directional transducer, a Reson TC2130, resonant at 104 kHz, with a usable 256 

transmitting band between 100–200 kHz, and a projection directionality of 12.3-16.9° for a 257 

signal between 100-150 kHz, which is similar to a porpoise beam at 13° at 130 kHz (Koblitz et 258 

al. 2012). The playbacks were played from 590 different distances ranging from 0 to 640 m from 259 

the C-PODs with an additional gain of 20 dB generated through the computer, resulting in a 260 

maximum source level of 182 dB re 1 µPa/V @ 1 m. The directional transducer, which has a 261 

narrow beam was used to replicate a real porpoise to imitate the directionality and beam width of 262 

the animal. During playbacks it was continuously rotated from side to side horizontally in an arc 263 

of approximately 90° centred on the middle of each C-POD station, imitating the sweeping 264 

movement of a porpoise head. The speed of rotational arc was not measured; it was based on 265 

subjectively determined observations of animals. 266 

 267 

The distance between the playback vessel and each of the C-PODs was determined from GPS 268 

latitude and longitude coordinates using the spherical law of cosines as follows:  269 

y = cos-1 (sin(lat1) sin(lat2) + cos(lat1) cos(lat2) cos(long2 – long1)) R     (Eqn. 4) 270 

where the position of the boat was defined as lat1 and long1, the position of the C-POD was 271 

defined as lat2 and long2, and R was the mean radius of the earth (6371 km). 272 
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 273 

Data analysis 274 

The data were visually inspected using C-POD software v.2.026 (Chelonia, 2012) to assess 275 

which playbacks were detected by the logger. For each artificial sequence, the C-POD raw click 276 

files (CP1 files) were examined, and the number of clicks from each series and each block was 277 

counted. For the recorded porpoise click sequence, only those playbacks with a clear recording 278 

of the whole or part of the identifiable sequence were considered as detected. The resulting data 279 

was divided into three datasets, each analysed separately to assess the performance of the C-280 

POD’s KERNO train classification algorithmin identifying the playback sequence as of porpoise 281 

origin: 1) detections of playback sequence in raw click files (called CP1 files by the C-POD 282 

programme), 2) detections of trains (CP3 files), and 3) detections of porpoise trains (CP3 files).  283 

To estimate the detection function for the artificial signal, the detected clicks were analysed 284 

using a Generalized Additive Mixed Model (GAMM), implemented via the gam function in the 285 

mgcv package in R (Wood 2006; 2011), with binomial error structure, logit link function and 286 

maximum likelihood (ML) parameter estimation. ‘Detected’ (1) or ‘not detected’ (0) was the 287 

binary response variable, with distance, source level, sensitivity, station and playback ID used as 288 

potential explanatory variables (on the logit scale). The numerical variables distance, source 289 

level and sensitivity were modelled using smooths (specifically, thin plate regression splines, 290 

with degree of smoothness selected by generalized cross validation). Playback ID and station 291 

were included as random effects, as each playback generated trials on each of the three C-PODs 292 

at a station, making the responses potentially non-independent. All potential main-effects models 293 

were fitted and the model with lowest Akaike Information Criterion (AIC) value was selected for 294 

inference (Burnham and Anderson, 1998). Models involving interactions were not considered. 295 

Variance and 95% confidence intervals (CIs) were calculated using a nonparametric bootstrap 296 
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(conditioning on the selected model), treating each playback as the unit for resampling with 1000 297 

bootstrap replicates. 298 

 299 

The selected model was then used to estimate click detection probability as a function of distance 300 

and the other selected variables; EDR was also calculated, by integrating out distance (Eqn. 2).  301 

The statistical analysis was identical for the recorded porpoise sequence, with the omission of 302 

source level as explanatory variable. 303 

 304 

Results 305 

Playbacks with artificial porpoise clicks 306 

Overall, 343 artificial playback sequences of 11 blocks of 10 clicks each were transmitted across 307 

the 15 C-PODs. This resulted in over 16 000 recorded playback blocks that were visually 308 

assessed.  309 

 310 

The model with lowest AIC values included all five explanatory variables (distance from data 311 

logger, source level, sensitivity, station and the random effect of playback; see Table S1 in the 312 

online supplement). The model explained 73.7 % of the deviance in the dataset. As expected, 313 

there was a strong negative effect of increasing distance and lower source level of the playback 314 

on detection probability, but also a significant effect of sensitivity (Figure 2). The detection 315 

probability fell sharply between 100 and 300 m distance from the data logger. The effect of 316 

source level on detection probability increased sharply for clicks over 160 dB pp re 1µPa/V @ 1 317 

m for all C-PODs.  318 

**Figure 2** 319 

The calculated EDR for artificial clicks with a source level of 176 dB re 1µPa m varied from 225 320 

to 148 m, with a mean of 186 m (95% CI: 173-200) averaging across the other explanatory 321 

variables and a mean EDA of 0.111 km2 averaging across all loggers. Lower source levels 322 
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drastically decreased the EDR and detection area, with notable differences between C-PODs and 323 

sites (Figures 3, 4 and S3, online supplement). Results of GAMM-model (Table S1) showed a 324 

strong negative correlation with distance and decreasing source level and to a lesser degree with 325 

sensitivity. The EDR values with 95% CI and CV for each C-POD for different source levels are 326 

listed in the online supplement in Table S2.  327 

**Figure 3** 328 

 329 

Playbacks with recorded porpoise clicks 330 

The recorded porpoise sequence was played back 184 times across the data loggers producing 331 

715 captured sequences across distances up to 640 m from the loggers. A total of 12 loggers out 332 

of the 15 deployed recorded usable data for this part of the experiment; data from station five 333 

was excluded from the analysis due to some unexplained discrepancies in recordings, some of 334 

which may have been due to mistakes in time stamping the recordings and erroneous start times 335 

of the devices. Consequently, only 409 of the captured sequences were usable for analysis.  336 

 337 

For all three datasets (raw click files, (CP1 files); detections of trains (CP3 files) and detections 338 

of porpoise trains (CP3 files), GAMM with lowest AIC values included station, distance, 339 

sensitivity and the random effect for playback, although for the raw click data (CP1 files) and the 340 

train detection files, sensitivity was not a significant variable at the P=0.05 level (Table S3 and 341 

Figure S5, online supplement). Station and distance were the most influential variables according 342 

to AIC scores. The models explained between 40% and 55% of the deviance in the datasets, 343 

notably less than the models for the artificial playbacks. Lowest detection probabilities for click 344 

data (CP1) were recorded for C-PODs 1A, 1C, 2A and 2B. High detection probability of clicks 345 

did not always correspond to high detection of classified porpoise trains (Figure S5 and S6, 346 

online supplement).  347 

 348 



15 
 

The calculated mean EDR across all C-PODs for raw click data from the recorded signal was 349 

188 m (95% CI: 135-241). For the part of the signal that the algorithm recognised as click train 350 

sequence, the mean EDR was 116 m (95% CI: 80-152) and for detected signal that was classified 351 

as porpoise train, the mean EDR was 72 m (95% CI: 52-92) (Figure 4). The mean EDR values 352 

for the click data with 95 CI and CV for each C-POD are listed in the online supplement Table 353 

S4. The EDA using the clicks detected from the raw click files (CP1) was 0.111 km2. When 354 

examining only those clicks that were correctly assigned as harbour porpoise trains by the 355 

classification algorithm, the effective area was reduced to 0.016km2. The mean difference in 356 

EDR from detected clicks to correctly detected species was 105 m (95% CI: 66-144).  357 

**Figure 4** 358 

Maximum detection distances  359 

Maximum detection distances where acoustic detections were still made depended on the source 360 

levels of the emitted signals. The maximum artificial click source level emitted without 361 

distortion was 176 dB re 1 µPa @ 1m. Our observed maximum detection distance for this source 362 

level was 545 m (recorded with C-POD 3B) and a mean detection distance was 402 m (95% CI: 363 

371-429). 364 

The maximum detection distance for the recorded porpoise sequence was 566 m (C-POD 4C) 365 

and the mean maximum distance for all the C-PODs was 248 m (95% CI: 181-316).  366 

 367 

Discussion 368 

Acoustic recorders are now commonly used, and they have the potential of estimating animal 369 

abundance. This is particularly important in the context of small cetaceans where click loggers 370 

are widely available, easy to use and provide cost effective way for long-term monitoring. 371 

Understanding the distance at which animals are detected and how source level and sensitivity 372 

affects their detectability is crucial for quantifying the species’ area use. Accurate estimates of 373 



16 
 

EDA are essential for density estimation using such devices. As far as we are aware, this is the 374 

first published study to attempt the estimation of the detection probability and calculation of 375 

EDA for C-PODs, or any other static, single hydrophone click detector for high frequency 376 

odontocetes, using both artificial and recorded real cetacean clicks. Note however, that playback 377 

experiments cannot incorporate animal behavioural variability and thus cannot produce accurate 378 

estimates of detection probability. Although it is possible that some unavoidable multipath 379 

reflections were contained in the playback signal, those reflections should not have interfered 380 

with our analysis since multipath would have been very low in amplitude and therefore would 381 

not have trigger the detection threshold of the C-POD at longer distances. In very short ranges 382 

multipath reflections can be recorded as individual clicks of which only the first (direct path) was 383 

used for our calculations. As such, the use of an artificial click sequence allowed us to assess the 384 

performance of the C-POD’s hydrophone and electronics in detecting clicks in a standardised 385 

and repeatable way. The use of real, recorded clicks with a directional transmitter enabled us to 386 

evaluate the performance of the classification algorithm for one type of standardized sequence 387 

with some measure of potential variability exhibited by the porpoise. 388 

 389 

As expected, the detection probability and the EDR decreased with increasing distance from data 390 

logger and the decreasing source level of the artificial signal. For porpoise-like sounds, no 391 

detections were made beyond 545 m from the logger, and signals below 153 dB pp re 1 µPa/V at 392 

1 m had less than 0.2 probability of being detected even at distances of less than 50 m. The most 393 

intense signal emitted (176 dB pp re 1 µPa/V at 1 m) here was effectively detected within 187 m 394 

radius around the C-POD, yielding a detection area of 0.110 km2. The highest source level used 395 

here was at the edge of the performance capability of the transducer and may have caused slight 396 

distortion to the signal. Further experiments with higher performance transducers are therefore 397 

recommended to evaluate higher source levels.  398 

 399 
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Similarly, decreasing detection probability with distance was evident with the real porpoise click 400 

sequences, with nearly the same EDR of 188 m for the raw data. The real clicks had generally 401 

higher detection probability and were detected from further away than the artificial clicks, 402 

despite being played back using a directional transducer which was being rotated from side to 403 

side. The higher detectability of the recorded real porpoises was likely because the probability of 404 

artificial signal detection was estimated for a single click, whereas the probability of real 405 

porpoise signal detection was calculated for the entire 18 s long snapshot sequence, more easily 406 

detected because  407 

of its duration but also because parts of the sequence were played at higher maximum source 408 

level than the artificial playbacks (182 dB re 1 µPa/V @ 1 m) and highlights the main difference 409 

between the two methods for density estimation discussed earlier. No published EDR values for 410 

porpoise clicks exist for C-PODs, but for T-PODs the reported mean EDR for wild porpoises for 411 

a comparable time window of 15 s was approximately 30 m, varying slightly with T-POD type 412 

and sensitivity (Kyhn et al. 2012). Here, the mean EDR of C-PODs for detecting and identifying 413 

recorded porpoise clicks as porpoises was much improved in comparison to T-PODs at 72 m, 414 

although it must be noted that Kyhn’s results were obtained from real, wild animals using visual 415 

tracking and could have thus been influenced by more unknown variables.  416 

 417 

The highest source level of the real recorded porpoise signal was at 182 dB re 1 µPa @ 1m, 418 

yielding a maximum detection distance of 566 m. The mean maximum distance for all the C-419 

PODs was 248 m (95% CI: 181-316), reflecting much reduced detection rates due to the 420 

directional transducer used, emulating more closely the real-life scenario of actual porpoise 421 

movement patterns and sonar beam-width. 422 

 423 

Click detection vs. train classification 424 
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As expected, the detection probability decreased from detected clicks to classified trains, and 425 

again to correctly classified species (Figure 4). The challenge remains for the software 426 

developers to improve the train classification algorithm to match the click detection abilities of 427 

the device, increasing its EDA – for the real porpoise click sequence used here, this would be a 428 

five-fold increase from 0.02 to 0.1 km2. As C-PODs do not record full waveforms they depend 429 

heavily in train detection on click intervals and their respective sequences. Therefore, an 430 

improvement is limited by the number of clicks necessary for classification and the allowed 431 

number of false positives. Attempt to reduce false positives typically increases false negative 432 

detections, however, in density estimation, false positive detections are perfectly acceptable, 433 

providing the false positive rate is accurately determined at the temporal and spatial scale of the 434 

density estimates, hence the parameter c in equation 1.  435 

 436 

Differences between loggers, deployment sites and playbacks 437 

It is crucial to ensure that data loggers used are calibrated to similar sensitivity thresholds. C-438 

PODs used in this study had a range in detection sensitivities at received levels between 111 and 439 

119 dB re 1µPa pp which is higher than advertised by the manufacturer. The measured 440 

calibration sensitivity had only a slight effect on the models, but there were large differences 441 

between calculated EDRs for C-PODs throughout the experiment. These are likely due to a 442 

combination of factors including C-POD sensitivity, subtle differences between deployment sites 443 

such as unexpected boulders or troughs in the seabed or variation in the substrate type, the 444 

deployment depth (Sostres and Nuuttila, 2015), and most importantly the added variability of the 445 

transmitted signal, due to hydrophone directionality and the added movement by the operator 446 

mimicking the side-to-side movement of the porpoise head.  447 

 448 
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Wild harbour porpoise source levels 449 

The source levels used here were based on limited recordings of wild porpoises (Villadsgaard et 450 

al. 2007), which may not reflect the real variation in source levels, likely to be affected by 451 

behavioural context and variation in habitat characteristics, such as ambient noise. Such variation 452 

has been demonstrated for the beluga whale (Delphinapterus leucas), adapting the source level 453 

and frequency of its echolocation clicks according to noise levels of its surroundings (Au et al. 454 

1985). Kyhn et al. (2013) show that recorded source levels of harbour porpoises can vary 455 

drastically between 169 and 199 dB re 1µPa m for Danish porpoises and 170 to 189 dB re 1µPa 456 

m for porpoises from British Columbia resulting in a mean difference of 10 dB between the 457 

habitats. Furthermore, Villadsgaard et al. (2007) reported differences between porpoises in 458 

captivity and in the wild of ~20 dB showing a habituation to the environment. Therefore, 459 

measurement of source levels in the area of concern is a prerequisite for estimating abundance 460 

from stationary acoustic data loggers. 461 

 462 

Here, the maximum undistorted source level achieved was 182 dB pp re 1 µPa/V @ 1 m for the 463 

recorded real porpoise signal, which is considerably less than the maximum recorded level of 464 

205 dB re 1 µPa/V @ 1 m, and therefore the EDRs reported here will not represent the full 465 

detection range of wild porpoises. High source levels have been calculated for the most intense, 466 

“on-axis” clicks, whereas the loggers will detect both on and off axis clicks, and consequently 467 

clicks of varying source levels. Here we aimed to achieve this variation by swivelling the 468 

transducer from side to side and although we believe that these results represent at least some of 469 

the natural variability of porpoise click trains arriving at a C-POD, they still cannot accurately 470 

reflect the variation in natural vocalisation behaviour or in fact the actual position of the animals 471 

in the water column, depending on their behaviour and prey type targeted (Sostres and Nuuttila 472 

2015). 473 

 474 
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EDR/EDA and density estimation 475 

Here we provide a way to use playbacks to estimate an EDR and EDA, which could be repeated 476 

at sites where monitoring studies require some estimate of a local detection probability for an 477 

effective sampling regime. The challenge for this data logger is not detecting the clicks – as seen 478 

here, the C-POD detects porpoise clicks well. However, train classification and species 479 

identification necessarily require more information, and this consequently reduces the EDR. In 480 

areas of low animal density, with no other cetacean species present, it would be practical to use 481 

the raw click data or the train classification results, without species identification, improving the 482 

overall detection rate and enlarging the EDA. However, where there are several species present 483 

this approach is not workable and species classification is the most practical way of 484 

distinguishing species, regardless of the reduced EDR. Most importantly EDR and playback 485 

experiments provide means to quantify effort in stationary acoustic monitoring, not only 486 

applicable and necessary for large scale efforts in monitoring, but also for small scale studies 487 

such as analysing the impacts of anthropogenic activities on odontocetes.  488 

 489 

To fully establish detection probabilities for cetaceans, we need to gain a thorough understanding 490 

of the effect of behaviour and group size on vocalisation rates (Nuuttila et al. 2013), including 491 

the portion of time the animals rest and spend silent, all of which can affect detectability (Wright 492 

et al. 2017). We can be relatively certain that porpoise vocalisation rates vary according to time 493 

of day (Todd et al. 2009, Schaffeld et al. 2016), increase during prey capture (DeRuiter et al. 494 

2009; Verfuß et al. 2009), and decrease or are non-existent during rest periods (Linnenschmidt et 495 

al. 2013; Wright et al. 2017), and that source levels of their feeding buzzes are reduced making 496 

them less detectable than other clicks at similar ranges (DeRuiter et al. 2009). For many other 497 

cetacean species, we have only limited information on their vocalisation rates, and further 498 

research is required.  499 

 500 
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 639 

Figure and table legends 640 

 641 

 642 

Figure 1. A diagram of a C-POD mooring set up for each station (A) and the map of the 643 

deployment site of all the C-PODs (B). For each of the five station, three C-PODs were moored 644 

on the sea bed and the playback transducer was suspended from the boat. 645 

 646 

 647 
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 649 

 650 
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 655 
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 657 

 658 

Figure 2. The effect of distance from C-POD, the signal source level and logger sensitivity on 659 

the detection probability of artificial playback signal in the GAMM model, estimated at the mean 660 

value of other covariates. Dashed lines indicate plus and minus two standard errors from the 661 

estimates; y-axis is transformed to the response variable scale, and the up-ticks on x-axis show 662 

the covariate values in the data. 663 
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 671 

Figure 3. Fitted probability curves for the detection of artificial playback clicks at different 672 

distances for source levels between 176 and 149 dB re 1 µPa/V @ 1 m for C-PODs at stations 673 

1A and 1B. Each line depicts the fitted probability for one dB value.  674 

 675 
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 681 

Figure 4. The effective detection radius (EDR) for both recorded porpoise sequence and the 682 

artificial playbacks. Artificial playback of highest source level 176 dB (white), recorded porpoise 683 

playback sequence for all logged clicks (light grey), all detected trains (dark grey) and all trains 684 

classified as porpoise (black) on all C-PODs. 685 
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