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Abstract:  

Heat transfer in compressible laminar flow in mini-/micro-channels, a classical and general topic in 

fields of fuel cells, electronics, micro heat exchanger, etc., is revisited. Based on a two-dimensional 

continuum flow model, analytical solutions of the dimensionless model are achieved in closed-form 

symbolic algebras of Whittaker eigenfunctions, corresponding to two kinds of boundary conditions 

with arbitrarily prescribed wall temperature or wall heat flux. As the eigenvalues and eigenfunctions 

are independent on the dimensionless quantities, which influence the along-the-channel behaviors, 

the algorithm reveals the common features of compressible laminar thermal flows. The algorithms 

do not require the assumption of a linear pressure distribution, which is proved to be untenable in 

some cases (e.g. constant wall heat flux). The algorithms are validated well by the exact (numerical) 

computations in exemplary cases of both small and moderate Reynolds number, Mach number and 

Eckert number of air. Any Prandtl number of the fluid is applicable. 

Key words: Minichannel; heat transfer; compressible laminar flow; analytical solution; Whittaker 

function 

1. Introduction 

With hydraulic diameters ranging from microns to millimeters, and correspondingly outstanding 

heat transfer performance due to the large specific surface area, minichannels and microchannels 

have been being increasingly used in many different applications, e.g. gas distributors or flow field 

plates in fuel cells, compact heat exchangers, heat sinks for electronics cooling, temperature control 

in injection molding of plastic or composite materials, micro heat pipes in micro cooling system, 

and on-chip laboratories, etc. [1] 

Fluid flows and heat transfer in mini- and microchannels have been investigated a lot [1-5]. 

Besides large amounts of experimental studies and numerical calculations, analytical studies were 

performed to understand the fundamentals, including prediction of thermo-hydraulic performance, 

analysis of stability, parameter estimation in heat-transfer inverse problems, and also help in 

reducing the numerical computational cost. Brinkman [ 6 ] early calculated the temperature 

distribution in a capillary accounting for the energy dissipation of viscous flow under the conditions 

of a uniform wall heat flux or a homogeneous wall temperature. With an analytical solution in form 

of a series expansion, Siegel et al. [7] analyzed the heat transfer characteristics for a laminar forced 

convection flow in a circular tube with prescribed, i.e. uniform and arbitrary longitudinal variation 

of wall heat flux. Barron et al. [8] extended the Graetz problem, i.e. thermally developing heat 

transfer in laminar flow through a circular tube, to slip-flow regime accounting for the velocity slip 
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and the temperature jump boundary conditions, and solved the eigenfunctions by the power-series 

method. With the similar mathematical method, for a gaseous flow in two-dimensional micro and 

nano-channels, Hadjiconstantinou and Simek [ 9 ] investigated the constant wall-temperature 

convective heat-transfer characteristics in the slip-flow regime 0 ≤ Kn ≤ 0.2, where Kn the Knudsen 

number, defined as the ratio between the molecular mean free path and the channel height. They 

found that it is necessary to include the effects of axial heat conduction in the continuum model due 

to the finite Peclet numbers. Rouizi et al. [10] presented an analytical solution of conjugate heat 

transfer in flat mini-channel based on Fourier transform of the temperature and normal flux, and 

then used it inversely to estimate the fluid bulk temperature distribution from the external surface 

heat sources and the corresponding noised temperature profiles. Among these studies, 

incompressible fluids were considered, also for gaseous flow because of the small pressure drop and 

the small Mach number of flow in mini- and microchannels. For compressible flows, Prud'homme 

et al. [11] early presented an approximate solution for the expansion cooling of a compressible ideal-

gas fluid, with a double perturbation expansion of the radius to length ratio and the relative pressure 

drop. Vandenberg et al. [12] analytically investigated the velocity distribution of a steady, isothermal, 

compressible and laminar flow in a capillary, with a perturbation expansion of compressibility of 

the fluid. By setting the fluid inlet temperature equal to the homogenous wall temperature, 

Vandenberg et al. [13] then analytically investigated the thermal effects (expansion cooling and 

dissipation heating) of a compressible viscous flow. In this work, the eigenfunctions of the 

temperature distribution were expressed in form of power series, and the polynomial coefficients 

were numerically obtained from a set of linear equations. Harley et al. [14] made a theoretical 

investigation of compressible ideal-gas flow with low Reynolds number and high Mach number in 

microchannels, and presented a one-dimensional analytical solution of the axial distribution of the 

gas density for an isothermal problem. Schlichting and Gersten [15] summarized the boundary-layer 

theory of incompressible and compressible flow, among the algorithms only some specific cases 

have the analytical solutions in closed form for compressible thermal flow. 

In this article, we revisit the compressible gaseous thermal flow in a flat minichannel. The 

contents of the article are organized to first introduce the hydrodynamic equations, which are 

subsequently reduced and normalized based on scale analysis and dimensionless quantities. Then 

analytical solutions of the two-dimensional model are performed in closed-form symbolic algebras 

of eigenfunctions. Both the cases of boundary conditions of arbitrarily prescribed wall temperature 

and wall heat flux are included.  

2. Mathematical model 

For our problem, i.e. a parallel-plate channel as shown in Figure 1, an uniform flow from infinity 

is first isothermally fully developed to obtain a parabola velocity profile, then within the range of x 

= 0 and x = L the fluid has heat exchange with the walls with prescribed wall temperature or wall 

heat flux. The following assumptions are made: 

(a) The continuum hypothesis is applicable and there is no slip flow at the wall. 

(b) The flow is steady, laminar, with negligible volume forces and no external heat sources. 

(c) The fluid is Newtonian with constant dynamic viscosity (μ), constant-pressure specific heat 

(cp) and thermal conductivity (κ), 

(d) y-coordinate velocity (v) is safely discarded, i.e. v = 0. 
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Fig. 1 Geometry of a flat minichannel. 

The hydrodynamic equations for conversation of mass, momentum and energy in the two-

dimensional Cartesian coordinate system are 
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where the governing variables of ρ, T, p and u are density, static temperature, static pressure, and x-

coordinate velocity of fluid, respectively, μ’ the bulk viscosity, αp the thermal expansion coefficient, 

and Φ the dissipation related to shear viscosity 
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And two assumptions are also made: 

(e) The fluid is ideal gas, as a result, αpT = 1. 

(f) The gas pressure varies only along the Poiseuille flow direction, i.e. p = p(x). The safety of 

this assumption for mini-/microchannel flow was validated even in the critical conditions of very 

compressible fluids and high Mach number [12,13,14]. Eq. (2) is therefore omitted to avoid its 

incompatibility with p = p(x), and the safety of this treatment was also validated by Vandenberg et 

al. [12,13]. Note that we do not ask for the linear pressure profile as that used in [12,13], and we 

will prove the assumption of linear pressure profile hereafter. 

Define the following dimensionless quantities 
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where Re is the Reynolds number, de the hydraulic diameter and de = 2D for an infinite parallel-
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plate channel, Pr the Prandtl number, Pe the Peclet number, Ec is the Eckert number in which the 

reference temperature rise (∆T)0 is defined as 
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Here, ‘WT’ and ‘WHF’ represent the two cases of boundary conditions as shown in Fig. 1, i.e. 

prescribed wall temperature (WT) or prescribed wall heat flux (WHF), in which Tw(x) is the wall 

temperature in the WT case, q(x) the wall heat flux in the WHF case.. When Tw(x) = T∞ or q(x) = 0, 

(∆T)0 can be arbitrarily taken as a non-zero value, like (∆T)0 = T∞, to avoid the singularity in 

mathematics, but in this case the Eckert number does not denote the ratio of twice of the adiabatic 

temperature rise to the actual temperature rise [15]. 

Further define the dimensionless variables 
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where ρ∞, p∞,T∞ and u∞ are the gas density, pressure, temperature and mean velocity at the entrance 

of the channel, respectively, we then get the dimensionless governing equations for continuity and 

the gas temperature 
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For geometry of a minichannel, the depth of the channel (D) is much smaller than its length (L), 

i.e. 1/γLD = D/L is normally in order of 10−3~10−2. Therefore, the items of ∂2/∂x2 and (∂u/∂x)2 can be 

omitted and the system holds the framework as the classical boundary-layer equations [15], based 

on the scale analysis, i.e. 
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Correspondingly, the original elliptic system becomes a parabolic one, as a result, only the 

boundary condition at the channel inlet (x = 0) is need in the x direction. We will mainly solve the 

profiles based on the simplified set of equations, cf. Eqs. (11) and (12), and make improvements 

with some minor corrections accounting for the axial thermal conduction in Eq. (10). 

The corresponding boundary conditions are as follows accounting for no-slip flow at the wall and 
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symmetry at the centerline, the dimensionless boundary conditions are 
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3. Analytical approximation 

To get analytical solutions, we further assume: 

(g) The mass flow is locally fully developed, i.e. the profile of the mass flux is the same as the 

one obtained for a fully developed incompressible flow. Vandenberg et al. [12,13] used and validated 

such an assumption in isothermal compressible capillary flow, Guo and Wu [16] also presented that 

the locally fully developed approximation is valid if the flow Mach number is moderate. 

In mathematical form, considering the continuity equation (cf. Eq. (9)) and the parabolic velocity 

profile of an incompressible parallel flow in a straight channel, that is 
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The two items in the right hand side of the above equation denote heat conduction and dissipation 

heat, therefore in physics, the excess temperature is contributed by two effects: the effect of gas/wall 

heat exchange without dissipation, and the effect of frictional heat with respect to adiabatic wall 

[15]. In mathematics, we take a linear superposition of zero-order and first-order parts with respect 

to Ec, which is normally small enough to be as the perturbation variable (e.g. u∞ = 10 m s−1, cp = 

1006 J kg−1 K−1 for air, (∆T)0 = 10 K, Ec = 0.01) 

0 1Ec     (16) 

The Eckert number can be further related to the Mach number of the infinity flow (Ma∞) with 

respect to the infinity velocity (u∞) and the sound velocity at T∞, i.e. Ec = (γ−1)(Ma∞)2T∞/(∆T)0, in 

which γ is the specific heat ratio, γ = 1.4 for diatomic gas molecules. At the low and moderate Mach 

number, or even at the high Mach number but meanwhile the high temperature rise (∆T)0, Ec is 

small and the gas/solid heat exchange overwhelms the dissipation heat to dominate the gas 

temperature rise. 

3.1 Zero-order solutions 

3.1.1 Prescribed wall-temperature (WT) case 

The zero-order system is  
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it yields a system with homogeneous boundary conditions 
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With respect to the corresponding homogeneous equation of the above equation, using separation-

of-variables technique, we construct 
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Eq. (21) gives an exact solution in the form of Whittaker function, a kind of confluent 

hypergeometric function [17],  
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The standard solution of Whittaker’s equation is generally expressed as a linear combination of 

the two linearly independent solutions Mκ,μ(z) and Wκ,μ(z), seen also Appendix. Some studies used 

such mathematics for incompressible thermal flow accounting for the parabolic profile of velocity 

[18,19]. Alternatively, we instead use a linear combination of Mκ,μ(z) and Mκ,−μ(z), as they are linear 

independent with respect to μ = 1/4, and it gives us a simpler way to determine the eigenvalues and 

correspondingly more compact form of eigenfunctions. 

Considering the limiting form of Mκ,μ(z), cf. Eq. (A3), there is 
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which is used to determine the eigenvalues λn, and correspondingly the eigenfunctions{Yn} 
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Table 1 lists the values of the first fifteen non-zero λn (n = 1~15). It presents a rapidly equally-

spaced feature between two neighbor eigenvalues (λn−λn−1 ≈ 8), corresponding to the periodically 

oscillation of Mx/8,−1/4(x/2), as shown in Fig. 2. 

Table 1 The first 15 eigenvalues and coefficients for WT case 

n λn λn−λn−1 a1n 

1 3.363190644477972 − 0.745652186583203 

2 11.339714691790149 7.976524047312177 −0.137087067881769 

3 19.336484925020809 7.996770233230659 0.064491968114589 

4 27.335322885215088 7.998837960194280 −0.039510622244401 

5 35.334747130698553 7.999424245483464 0.027469857769128 

6 43.334410648649573 7.999663517951021 −0.020574322246476 

7 51.334192972667623 7.999782324018050 0.016184902033439 

8 59.334042089371408 7.999849116703786 −0.013182960291618 

9 67.333932137332994 7.999890047961586 0.011020446519237 

10 75.333848912529149 7.999916775196155 −0.009400044885553 

11 83.3337840124531 7.999935099923960 0.008147738226243 

12 91.3337321717271 7.999948159274027 −0.007155497289913 

13 99.3336899352377 7.999957763510523 0.006353025717266 

14 107.3336549485964 7.999965013358704 −0.005692784230661 

15 115.3336255561839 7.999970607587585 0.005141573998427 

 

 

Fig. 2 Zeros and periodically oscillation of Whittaker function Mx/8,−1/4(x/2) 
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Expanding the inhomogeneous item (last term) of Eq. (19) with the basis of the eigenfunctions, 

i.e. f(χ,ξ) = ∑fn(χ)Yn(ξ), it yields 
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To get a more accurate prediction of the axial profiles, we determine the value of bn from the 

characteristic equation corresponding to the second-order differential equation (cf. (10)) 
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For a limiting case, it reduces to the characteristic constant corresponding to the first-order 

differential equation (cf. Eq. (26)) 
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Therefore, the zero-order dimensionless total temperature for WT case is obtained by 
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in which the first item vanishes as ∑a1nYn(ξ) = 1 when N → ∞, anyway, it is still kept accounting 

for the truncation error when limited items (i.e. N < ∞) are taken for numerical calculation. 

Table 1 also lists the values of the first 15 coefficients, a1n, which show a feature of positive and 

negative alternation and a gradual decrease in magnitude. 

The average dimensionless temperature weighted by the mass flow rate is 
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The local Nusselt number and the mean Nusselt number can then be obtained by 
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1

2

1 1 1 w 21,
1 1

    2
3 2

n

n

dD

N N
dD

n n n n w n n n

n n

Nu

a Y a a M 





 


    


    





 
 

  
  

  

 
     

 
 

 (35) 

 
1

m
0

Nu Nu d    (36) 

3.1.2 Prescribed wall heat flux (WHF) case 

Defining 

 
 

   2

0

0

, ,
D

q
T

       


  


 (37) 

the zero-order system with homogeneous boundary conditions is obtained by 

 
 

   

 
 

 
   

2
2 2 23 3

2 22

0

1
22

0

2
1 4 1 4

,,0
BC:  0, 0 ,     0,    0

LD dD LD dDD dq
q

Pe T Pe d

D
q

T

    
   

   

  
  

  

   
       

    


   
   

 (38) 

Also using separation-of-variables technique, we construct 

     
0

, n n

n

      




  (39) 

where Eqs. (21)~(23) still hold for ψn(ξ) when n ≥ 1. Note that, different to Eq. (20), the index of n 

in Eq. (39) starts from n = 0. This difference is due to both the Newman-type boundary conditions 

at the two ends (ξ = 0 and 1/2) in the WHF case, which allows the existence of a nontrivial direct-

current item corresponding to n = 0, i.e. 

       1
8 4

2

0 ,

1
1,       2   1

nn nY Y M n   
 

    (40) 

The eigenvalues are determined by the boundary condition, dYn/dξ|ξ = 1/2 = 0. According to Eq. 

(A4), there are 

         1 1
8 4 8 4

1 1
0 4 2 2 4 2 21, ,

0,       0  1n n n n

n n
M M n 

   


  
       (41) 

The function ωn(χ) holds the same framework as Eqs. (26) and (27). According to Sturm-Liouville 

theory, the coefficients fn(χ) and Cn are determined by the weighted orthogonal eigenfunctions 

 
 

 2 3

0

2n n n

D dq
f ba q a

T d
 

 

 
   

  
 (42) 
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 

  3

0

0
n n

Dq
C a

T



 (43) 

where 

     
1 1
2 2 2 2

2 32 20 0

1 1
,     1 4n n n n

n n

a Y d a Y d
Y Y

          (44) 

Table 2 lists the first 16 eigenvalues and coefficients a2n and a3n. 

Table 2 The first 16 eigenvalues and coefficients for WHF case 

n λn λn−λn−1 a2n a3n 

0 0 − 1.5 0.05 

1 8.574449891262043  8.574449891262043 −0.415571171308799 −0.031699493520337  

2 16.607448955054519 8.032999063792476  0.259767859813622 0.008889805049549 

3 24.621212125443339 8.013763170388820 −0.194925373536150 −0.004085635816366 

4 32.629043392171262 8.007831266727923 0.158440349195970 0.002327688456663 

5 40.634194492735453 8.005151100564191 −0.134716049103952 −0.001496984555122 

6 48.637883309996965 8.003688817261512 0.117905609077432 0.001040849607436 

7 56.640677408765349 8.002794098768383 −0.105294085812198 −0.000764220478390 

8 64.642879897453426 8.002202488688077 0.095438852691162 0.000584142193557 

9 72.644668596367097 8.001788698913671 −0.087498182354645 −0.000460521842797 

10 80.646155277311152 8.001486680944055 0.080945877577779 0.000372077359867 

11 88.647414016896690 8.001258739585538 −0.075435054203879 −0.000306669699167 

12 96.648496014183735 8.001081997287045 0.070727183475642 0.000256968853360 

13 104.6494378846336  8.000941870449893 −0.066652512961491 −0.000218338785437 

14 112.6502665659481 8.000828681314474 0.063086739382730 0.000187732406313 

15 120.6510023546735 8.000735788725436 −0.059936621273379 −0.000163080971660 

The final solution of zero-order dimensionless total temperature for WHT case is 

 
 

     

 
 

   

2

0 3

0 00

2 3
0

0

, ,     

2 n n

N N

n n n n

n n

b b

n n n n

D
q a Y Y

T

D
ba a b e e q d

T


 

       


   


 



 
    

  

   
  

 



 (45) 

in which the first item vanishes as ∑a3nYn(ξ) = ξ2 when N → ∞, anyway, it is still kept accounting 

for the truncation error as limited items should be taken for a practical numerical calculation. 

The average dimensionless temperature, local Nusselt number and the mean Nusselt number can 

then be obtained by 

     
 

 
1
2

m 0
0 0

0

3
2 ,

Db
W d q d

T



        


  
   (46) 

 
 

     1
0 m20

,

eq d
Nu

T




    
 

   

 (47) 



11 
 

 
1

m
0

Nu Nu d    (48) 

3.2 Profiles of pressure, density and velocity 

Going back to the dimensional momentum equation, it is 

2

2

LD dDuu dp u
u

d Re

  


  
  

  
 

 (49) 

Considering the equation of state of ideal gas and Eq. (14), the gas velocity is related to the local 

temperature as  

 

 

 

 
       ,

g g
R T p u R W

u T
pu u W

   
 

  

 

 

 
 

 

 (50) 

where Rg is the gas constant of the fluid, Rg = 287 J kg−1 K−1 for air.  

Substituting Eq. (50), Eq. (49) becomes 

2 2 2
2

2 2 2 2 2

1
2LD dD

g

W T dp T d W dW T T
p W T W

u R p d Re d d

 

       

     
              

 (51) 

Considering 

   
2

2 20 0
avg

1 1 1
,        1

2 2g g

T
T T

p p R p R T T







  


  

          (52) 

Further, taking an approximation of the gas temperature, 

      00 0
,T T T T T           (53) 

substituting it into Eq. (51) and integrating in the ξ direction with a weight of function W(ξ), we got 

   

 

2 2
54
352 2

4 50

121

2

u LD dD

g

n LD dD
n n nn

Td
p F

u R d Re

d
T a a

d Re







 


 

  




  

 

 
   

  

 
    

 


 (54) 

where 

     
1 2 1 2 3

3 227
4 40 0

2 1 4n n na W Y d Y d         (55) 

     
2

1 2 1 2
2

5 20 0
2 36 1 4n n n

d W
a W Y d Y d

d
    


      (56) 

and 

     54
1 4 1 5350

1 1

12
N N

w LD dD
n n n n w

n n

d
F T a a a a

d Re

  
  

 

    
         

    
   (57) 

for the WT case, or 
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  3
3 470

0

N

n n

n

D dq
F a a

d


 

 
  

 
  (58) 

for the WHF case, in which a5n = 0 (n > 1) has been used accounting for the orthogonality between 

Y0(ξ) = 1 and Yn(ξ) (n > 1). The function F(χ) is denoted as the truncation error function, as ∑a1na4n 

= 54/35 and ∑a1na5n = −12 in the WT case, and ∑a3na4n = 3/70 in the WHF case, when N → ∞. 

Eq. (54) principally gives us a nonlinear profile of the gas pressure and correspondingly a linear 

profile in the cases of moderate temperature rises. 

3.3 First-order total temperature 

The first-order system for the total temperature is 

 

 
 

   
 

 

22
2 1 13

2 2

1

1

1
1 21

1 2

1 4

,0
BC :   0, 0,     0,     

,
          , 0  WT  or 0 WHF

LD dD LD dDdp u
u

Pe d Re

    


   

 
 



 
 



    
     

   
 

 


 
  



 (59) 

The system with the homogeneous boundary conditions still holds the Whittaker’s feature as the 

same as the zero-order system, i.e. Eqs. (24) and (25) or and Eqs. (40) and (41) hold for the 

eigenvalues and eigenfunctions for the WT and WHF case, respectively. 

Substituting Eqs. (50) in (59), it yields 

 
22 22

2 1 13
2 2 2

1 4 12
g gLD dD LD dD

R WT Rdp T
T W

Pe p d Re p

     
 

   

     
      

   
 (60) 

Using the temperature profile (cf. Eq. (53)) and the pressure profile (cf. Eq. (54)), expanding all 

the items in Eq. (59) in the basis of the eigenfunctions, following the Sturm-Liouville theory for 

weighted orthogonality of the eigenfunctions, we can in principle solve the first-order solution. 

Considering the tedious mathematical deviation, we instead present a simplified algorithm 

introducing below. 

3.4 Simplified algorithm 

In the preceding context, the fully two-dimensional profile of the gas density, i.e. ρ = ρ(x,y) was 

considered for strict mathematical deviations. As a matter of fact, due to the large length-depth ratio 

of a minichannel, the gas density in the y direction develops rapidly approaching to be homogenous 

except for the region very close to the channel inlet. Therefore, in this section, the gas density is 

assumed to be just function of x coordinate, i.e. ρ = ρm(x). Although it is incompatible with the 

equation of the state, i.e. ρ = p(x)/RgT(x,y) for ideal gases, the weakness of this assumption is 

considered to be insignificant accounting for the thermal expansion coefficient, αp = 1/T, which 

means a relative variation of the gas density in y direction in order of 10−3. 

3.4.1 Profiles of velocity and density 

Still with the parabolic velocity profile, i.e. u = um(x)E(y) where um(x) denotes the centerline 

(maximum in the y direction) velocity, the continuity equation leads to 
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            3
2

,         m m m m mu u E W u              (61) 

The zero-order temperature solution in the preceding mathematics is not affected. Revisiting the 

momentum equation, multiplying with ρ(x) at the both sides of Eq. (11), we got 

 
2

2 2

2

ln m LD dD
m m m m m

dp E
u E u

d Re

  
  

  

 
   

 
 (62) 

Via integrating the above equation in the y direction weighted by the mass flow rate, it yields 

0 0

7035
       

36 9

m LD dD
m

du dp
a u a

d d Re

 

 

 
    

 
 (63) 

Accounting for the pressure profile, which is generally a combination of power functions and 

exponent functions (cf. Eq. (54) and see also the Section 4), i.e. 

2

0 0

m

KK
j

j m

j j

dp
e

d

  




 

    (64) 

we can get the velocity and density profiles as 

 
 

 

   

 

 

0 0

2

0

1

3 35
2 36 1 1

0 00 0

35
36

0 0

11 !

j

kj jK
a a j kk

m j j k
j k

K
j a

j j

jj
u e e

a a

e e
a

 

 

  





  

 
 

 



 
   
  

 


 



 (65) 

  3 2m mu    (66) 

3.4.2 First-order total temperature 

When ρ = ρm(x), Eq. (59) becomes 

   
2

2 2 2 21 13
2 2

64
1 4 1 4LD dD LD dD

m m

dp
u u

Pe d Re

    
  

  

 
    

 
 (67) 

Following the preceding mathematical framework, the first-order temperature profile is easily 

obtained by expanding all the items in the basis of the eigenfunctions as 

   

 

1

1 1

1,or0

2

1 1 6
0

,

1282

3 3
n n

N

n n

n

b b LD dD
n m n m n

Y

dp
e e u a u a d

d Re


 

   

 
  









 
  

 





 (68) 

where 

 
1 2

2

6 2 0

1
n n

n

a Y d
Y

     (69) 

The index n starts from n = 1 or 0 in the WT and WHF cases, respectively, to N1, the number of 

terms. In the WHF case, a1n = 0 (n > 1) holds due to the orthogonality between Y0(ξ) = 1 and Yn(ξ) 
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(n > 1). Note that again, we take the same symbol sets for the WT and the WHF cases, but the values 

of the variables are different because of the different eigenvalues {λn} and eigenfunctions {Yn}. 

The above algorithm can be further simplified. Multiplying Eq. (11) with u  and summing it 

with Eq. (12), we got 

2

t t

2

1
1LD dD LD dD u

u Ec u
Pe Re Pr

     


   

     
     

      
 (70) 

where θt denotes the dimensionless total (or stagnant) temperature 

 

2
2t 1

t t 2

0

,    
2 p

T Tu
T T Ecu

c T
 

    


 (71) 

With the linear perturbation expansion of θt 

21
t t,0 t,1 t,0 0 t,1 1 02

,    ,    Ec u            (72) 

in which the zero-order velocity u0 = um(x)E(y), the differential system of the first-order total 

temperature is therefore obtained by 

   

   
 

   
 

 

2

t,1 t,12 2 23
2 2

2
129

t,1 8

1
t,1 21

t,1 2

8 1
1 4 1 1 12

,0
BC :   0, 1 4 ,     0,     

,
          , 0  WT  or 0 WHF

LD dD LD dD
mu

Pe Re Pr

    
 

 

 
  



 
 



    
      

   
 

  


 
  



 (73) 

Compared to Eq. (67), the differential system is simplified without the pressure gradient. By using 

the same mathematical framework, it yields the corresponding solution as 

   

   

1

t,1 t ,

1,or0

2

t, 7 8
0

,    

16 1
1

3
n n n

N

n n

n

b b bLD dD
n n n m

Y

a e e a e u d
Re Pr


  

   

 
   



 



 
   

 





 (74) 

where 

   
1 2 3

29
7 82 0

1
1 4n n

n

a Y d
Y

    ,     
1 2

2

8 2 0

1
1 12n n

n

a Y d
Y

     (75) 

The first-order temperature is finally simplified to  

 
2

2 21
1 t,1 2

1 4mu      (76) 

4. Applications 

In this section, we apply the preceding mathematical framework to two specific cases, with the 

prescribed wall temperature or wall heat flux in power-law profile, which are without losing of 

generality accounting for Taylor-series expansion of continuous rational functions. Then the 
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analytical solutions are compared with the exact (numerical) computations, in the cases of constant 

wall temperature or constant heat flux. In the text below, only the zero-order solutions are included 

for a compact expression, as the first-order solutions contribute very little at small values of Ec. 

Finally, a calculation is employed to validate the algorithms at moderate Reynolds number and Mach 

number, in which situation the friction heat (i.e. the first-order solution) could dominate the gas 

temperature profile. 

Case 1: the excess temperature of the wall presents a power-law distribution, in this case, similar 

solutions exist in the classical boundary-layer problems. 
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Following Eq. (33) and Eq. (B3), 
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Using Eqs. (35) and (36), the Nusselt number is 
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Following Eq. (54), the pressure profile is 
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where 
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Specially, for a constant wall temperature, i.e. Tw = Const and θw = 1 (m = 0), there are 
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In the case of the moderate temperature difference, (∆T)0, the second term in the right hand side 

of Eq. (86) is normally small, a linear pressure profile can then be obtained 
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which can be further simplified at the moderate Mach number as 
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The velocity and density profile can then be calculated by Eq. (50) and (14). The centerline 

velocity can be obtained based on the simplified algorithm, cf. Eq. (65) 

   
 

 
0 0

0

03 35
0 02 36 254

35

12
1 ,     1

1

a a LD dD
m a

T
u e e

TRe Ma


 



 
  



 



 
     

  
 (87) 

which can be used to calculate the first-order temperature, cf. Eq. (68). 

Figure 3 shows the analytical and exact along-the-channel profiles of the dimensionless gas 

temperature at the centerline, the average density, centerline velocity, pressure gradient and the local 

Nusselt number in the constant WT case. The parameters are: D = 10−3 m, L = 0.05 m, u∞ = 0.5 m 

s−1, p∞ = 105 Pa, T∞ = 300 K, Tw = 400 K, (∆T)0 = 100 K, which correspond to the dimensionless 

parameters as γLD = 50, Pr = 0.744, Re = 64.9, Ma∞ = 0.0014, Ec = 2.48×10−6 for air. The exact 

solutions were obtained by using the commercial package, COMSOL [20], and the number of items 

N = 5 was taken in default for the analytical computations. The algorithms, including the simplified 

algorithm, were validated well. As shown in Fig. 3b, the Nusselt number approaches to Nu = 7.54, 

which agrees very well with the theoretical value for the fully-developed thermal flow in a 

rectangular duct. 

As shown in Fig. 4a, the profiles of the dimensionless mass flux validate our assumption of the 

algorithms, i.e. Eq. (14). The profiles of the dimensionless temperature were also validated well, cf. 

Fig. 4b, even at the entrance sections of the channel. Figure 5 further compares the profiles of the 

average and centerline temperatures with different numbers of eigenfunctions. An overshooting at 

the entrance region occurs at very few items and gradually disappears with more items, anyway, 

even the computation as N = 1 can predict well the main profiles due to the fast convergence of 

Whittaker functions. The overshooting at the entrance is because of the inconsistence between the 

inlet and wall boundary conditions, T(0,y) = T∞ and T(x,D/2) = Tw at the top left corner (x = 0 and y 

= D/2).  
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Fig. 3 Computational results for the constant WT case: (a) analytical and exact profiles of 

dimensionless temperature, density and velocity along the channel, (b) analytical and exact profiles of 

dimensionless pressure gradient (upper) and Nusselt number (lower). 

 



18 
 

 

Fig. 4 Computational results for the constant WT case: profiles of (a) dimensionless mass flux and (b) 

dimensionless temperature, in the y direction at different locations along the channel. 
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Fig. 5 Computational results for the constant WT case: profiles of (a) dimensionless average 

temperature and (b) dimensionless centerline temperature at different numbers of items. 

Case 2: the distribution of the wall heat flux is in power-law form, i.e.  
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Following Eq. (45) and Eq. (B3), 
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Using Eq. (47), the Nusselt number is 
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Following Eq. (54), the pressure profile is 
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(92) 

Specially, for a constant wall heat flux, i.e. q(χ) = q0 (c = q0 and m = 0), there is 
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The pressure profile can be further simplified because of the rapid decay of the exponent items,  
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Note that, the constant wall heat flux case shows a parabolic pressure profile, instead of a linear 

one. As a result, the centerline velocity is obtained by 
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Figure 6 validated the analytical profiles of the dimensionless gas temperature at the centerline, 

the average density, centerline velocity, and pressure gradient along the channel in the constant WHF 

case. The parameters are employed as: D = 10−3 m, L = 0.05 m, u∞ = 0.5 m s−1, p∞ = 105 Pa, q0 = 

−600 W m−2, (∆T)0 = 102.67 K, which correspond to the dimensionless parameters as γLD = 50, Pr 

= 0.744, Re = 64.9, Ma∞ = 0.0014, Ec = 2.419×10−6 for air. The algorithms work well again. Instead 

of the linear pressure profile in the constant WT case, the linear pressure gradient denotes a parabolic 

profile of the gas pressure in the constant WHF case. Figure 7 further validates the profiles of the 

dimensionless mass flux and temperature. Without inconsistence between the boundary conditions, 

the close-form expansion with only two eigenfunctions (N = 1) works very well, and even only the 

direct-current items (N = 0) can predict well the main profiles, as shown in Fig. 8. 
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Fig. 6 Computational results for the constant WHF case: (a) analytical and exact profiles of 

dimensionless temperature, density and velocity along the channel, (b) analytical and exact profiles of 

dimensionless pressure gradient (upper) and Nusselt number (lower). 
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Fig. 7 Computational results for the constant WHF case: profiles of (a) dimensionless mass flux and 

(b) dimensionless temperature, in the y direction at different locations along the channel. 

 

 

Fig. 8 Profiles of the dimensionless centerline temperature at different numbers of items in the constant 

WHF case. 
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Case 3: The algorithms are finally validated at moderate Re and Ma∞ (i.e. Ec). The parameters 

are designed as D = 10−4 m, L = 5×10−3 m, u∞ = 100 m s−1, p∞ = 1.146×105 Pa (correspondingly the 

outlet pressure of 105 Pa), q(χ) = −1.4026×105(χ2−0.5χ) W m−2, (∆T)0 = 8.726 K, which correspond 

to the dimensionless parameters as γLD = 50, Re = 1487.5, Ma∞ = 0.288, Ec = 1.139 for air. 

Figure 9a shows the zero-order and first-order solutions of the dimensionless centerline 

temperature along the channel. Corresponding to the small value of the overall temperature rise, 

(∆T)0, the heat transfer between gas and wall is overwhelmed by the dissipation effect due to the 

high gas velocity. Therefore, the first-order solution dominates the temperature profile. Here q(χ) > 

0 means heat flows from the gas to the wall and vice versa. It is natural that the gas is cooled at the 

first half of the channel as q(χ) > 0. In the region of χ = 0.5~0.9, the gas is heated by the wall as q(χ) 

< 0, however, the centerline temperature gradually decreases because of the stronger thermal effect 

of expansion. Figure 9a and 9b further shows the analytical and exact along-the-channel profiles of 

the average gas temperature, wall temperature, gas velocity and pressure gradient. The algorithms 

work well again in this case of moderate Reynolds number and Mach number. 

5. Conclusions 

The classical problem of compressible laminar thermal flow in a flat mini- or micro-channel was 

revisited in this article. The hydrodynamic equations were introduced following two-dimensional 

continuum flow model, reduced to a system similar to the boundary-layer equations accounting for 

the geometric characteristics of mini- or micro-channels (large length/depth ratio), and then 

normalized related to dimensionless quantities including length/depth ratio (γLD), Reynolds number 

(Re), Prandtl number (Pr), Mach number (Ma∞) and Eckert number (Ec). Considering the much 

faster development of velocity than that of temperature, the momentum equation was decoupled 

with the energy equation by assuming that the mass flux (or velocity for simplification in cases of 

small/moderate temperature rise) holds a parabolic profile like the velocity profile of an 

incompressible parallel flow in a straight channel. Then analytical solutions of the dimensionless 

model were achieved in closed-form symbolic algebras of Whittaker eigenfunctions, corresponding 

to two kinds of boundary conditions with arbitrarily prescribed wall temperature or wall heat flux. 

As the eigenvalues and eigenfunctions (in y direction) are independent on the dimensionless 

quantities, which influence the along-the-channel behaviors, our algorithm reveals the common 

features of all kinds of compressible laminar thermal flows. The algorithm is robust without 

assuming the linear distribution of pressure. Then the algorithm was applied to two specific cases 

with the prescribed wall temperature or wall heat flux in power-law profile. The analytical solutions, 

both the zero-order and first-order parts corresponding to the perturbation variable of Ec, were 

exemplarily validated well via comparison with the exact (numerical) solutions, in the cases of small 

Ma∞ or Ec with boundary conditions of constant wall temperature or constant wall heat flux, and in 

the case of moderate Re and Ma∞ (or Ec) with boundary condition of parabolic wall heat flux. 

This work is helpful to understand heat transfer in compressible laminar flow in mini- or micro-

channels, a general problem in fields of fuel cells, electronics, micro heat exchangers, etc. Analytical 

solution including the effects of gas injection/suction will be discussed in the next. 
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Fig. 9 Comparison between the analytical and exact solutions at moderate Reynolds number and Mach 

number with along-the-channel profiles of (a) zero- and first-order centerline gas temperature, (b) 

average gas temperature and wall temperature, (c) gas centerline velocity and (d) pressure gradient. 

Appendix A: Whittaker function and its properties 
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The standard solutions of Whittaker’s equation, Mκ,μ(z) and Wκ,μ(z) are [17] 
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When 2μ is not an integer,  
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where Γ(∙) is the gamma function. 

When z → 0, there is limiting form 
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The differential of Mκ,μ(z) is 
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Appendix B: Integral of e−bx∫ebττmdτ 

Making the integral 

   
0
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x

b m

mF x e d b    (B1) 

Using integration by parts, it is easy to get 
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
    


  


 (B2) 

As a result of the above the recurrence relation, 

     
 1

1 1
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m kbx bx m kk
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  

 


     (B3) 

where 

       
0

1 ...... 1 ,       1
k

m m m m k m      (B4) 
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