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Abstract 

Resource polymorphisms exhibit remarkable intraspecific diversity and in many cases are expected 

to be maintained by diversifying selection. Phenotypic trade-offs can constrain morphologically 

intermediate individuals from effectively exploiting both alternate resources, resulting in ecological 

barriers to gene flow. Determining if and how phenotypic trade-offs cause fitness variation in the 

wild is challenging because of phenotypic and environmental correlations associated with alternative 

resource strategies. We investigated multiple pathways through which morphology could affect 

organismal performance, as measured by growth rate, and whether these effects generate 

diversifying selection in polymorphic Icelandic Arctic charr (Salvelinus alpinus) populations. We 

considered direct effects of morphology on growth and indirect effects via trophic resource use, 

estimated by stable isotopic signatures, and via parasitism associated with trophic resources. We 

sampled over three years in (lakes) Thingvallavatn and Vatnshlíðarvatn using the extended selection 

gradient path analytical approach and estimating size-dependent mortality. We found evidence for 

diversifying selection only in Thingvallavatn: more streamlined and terminally-mouthed planktivore 

charr experienced greater growth, with the opposite pattern in small benthic charr. However, this 

effect was mediated by parasitism and non-trophic pathways, rather than trophic performance as 

often expected. Detection of between-morph differences in the presence (Vatnshlíðarvatn) and 

direction (Thingvallavatn) of size-dependent mortality, together with non-trophic effects of shape, 

suggest that a morphological trophic performance explanation for polymorphism is insufficient. This 

rare insight into selection during early diversification suggests that a complex of interacting local 

factors must be considered to understand how phenotype influences fitness, despite morphological 

variation reflecting intuitive trade-off explanations. 

 

Keywords: microevolution, phenotypic selection, path analysis, selection differential, performance 

gradients, adaptation, natural selection, intraspecific competition, sympatric diversification 
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Introduction 

Numerous taxa show dramatic phenotypic polymorphisms, many of which involve the specialisation 

of discrete intraspecific morphs toward use of alternative resources (e.g. Price, 1987; Smith & 

Skúlason, 1996; Martin & Pfennig, 2010). Natural selection is thought to contribute to resource 

polymorphisms such as where morphs consume alternate resources but intermediate morphologies 

suffer reduced relative fitness due to incompatibilities between shape and either resource (Smith & 

Skúlason, 1996; Arnegard et al., 2014). Such diversifying selection, where natural selection increases 

phenotypic diversity, could maintain discrete morphs through post-zygotic ecological isolation (Nosil, 

2012), and play a role in initiating polymorphisms (Ackermann & Doebeli, 2004; Herron & Doebeli, 

2013). Studies under semi-natural conditions support a role for diversifying selection in maintaining 

such morphological diversity (Martin & Pfennig, 2010; Arnegard et al., 2014) but evidence in the wild 

is limited due to difficulties estimating fitness, multiple correlated environmental factors, and the 

numerous pathways through which traits can affect fitness (Mitchell-Olds & Shaw, 1987; Ghalambor 

et al., 2003; Morrissey et al., 2010; Franklin & Morrissey, 2017).  

In many cases, morphological specialisation is thought to result adaptively from the effects of traits 

on fitness where phenotypic trade-offs exist. Phenotypic trade-offs are where a trait that is 

beneficial for a particular ecological activity is detrimental to performance of an alternative activity 

(Bolnick et al., 2003). Hypothesised phenotypic trade-offs are typically well-grounded in the scientific 

literature: for example, lever systems involve force/velocity trade-offs whereby phenotypes 

maximising jaw closing speed result in weaker closing forces (Wainwright & Richard, 1995; Herrel et 

al., 2009). Such biomechanical trade-offs could contribute to diversification where alternate 

resources demand alternative foraging strategies. However, consideration must also be given to 

other potential fitness costs associated with alternate ecological activities. For example, exploiting 

alternate resources may increase susceptibility to predation or parasitism (Langerhans & Reznick, 

2009; Karvonen & Seehausen, 2012). Recent theory reconciling the general framework of path 

analysis with the concept of selection gradients now facilitates quantification of the effects of focal 
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traits on fitness both directly and indirectly via other traits or performance measures (Morrissey, 

2014). In addition to generating estimates of natural selection for focal traits, this approach can 

reveal through which functional pathway(s) traits influence fitness. 

Phenotypic trade-offs are thought to have contributed to the evolution of numerous postglacial fish 

species (Robinson & Wilson, 1994; Schluter & Rambaut, 1996). Trade-offs between terminal and 

subterminal mouth position affect gape and prey capture ability (Keast & Webb, 1966; Wainwright & 

Richard, 1995), and trade-offs between deep- and streamlined-bodies affect maneuverability and 

efficiency of continuous swimming (Webb & Weihs, 1983; Ellerby & Gerry, 2011). Such 

morphological trade-offs are expected to constrain individuals to forage on either patchily-

distributed pelagic prey or larger benthic prey within a complex substratum, resulting in selection for 

shape through prey capture efficiency (herein referred to as trophic performance). Arctic charr 

(Salvelinus alpinus) exhibit variation in morphology and resource-use that is consistent with 

hypothesised trade-offs associated with benthic and pelagic foraging. Coexisting morphs in Iceland 

inhabit ecosystems with few interspecific competitors and predators and often overlap in spawning 

times and locations (Skúlason et al., 1989a; Jónsson & Skúlason, 2000; Woods et al., 2012). The 

ability in these systems to gather individual-level data on diet, parasitism, and growth, permits 

insight into the various pathways through which trade-offs can influence fitness and facilitates 

estimates of diversifying selection in the wild.  

We investigated multiple pathways by which morphology could affect overall organismal 

performance, as measured by growth rate, and investigated whether these effects generate net 

diversifying selection in populations of Arctic charr inhabiting two lakes in Iceland in which early 

stages of putatively adaptive phenotypic differentiation are well-documented. We considered direct 

effects of morphology on growth, simultaneously with possible indirect effects via habitat 

preferences (as reflected by stable isotope analysis), and rates of parasitism that we expected would 

be linked to habitat use. We conducted our analyses of morphology in a geometric morphometrics 
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framework, and utilised the extended selection gradient path analytical approach (Morrissey, 2014) 

to quantify direct and indirect effects of morphology on fitness. We found evidence for diversifying 

selection in the lake in which greater differentiation already exists, and found that this diversifying 

selection is largely mediated by parasitism, rather than being an effect of morphology on trophic 

performance. 

 

Methods 

Study system 

We separately investigate two lakes, Thingvallavatn and Vatnshlíðarvatn, that contain charr morphs 

exhibiting differentiation associated with morphological trade-offs. Arctic charr, long recognised for 

intraspecific diversity (Klemetsen, 2010), exhibit degrees of phenotypic and genetic diversification 

across Icelandic lakes (Gíslason et al., 1999; Kapralova et al., 2011; Kristjánsson et al., 2011; Woods 

et al., 2012). Since colonisation 10,000 years ago, many lakes became inaccessible to migrants due to 

lava flows, landslides and isostatic rebound, and likely experienced no subsequent colonisation 

(Norddahl & Einarsson, 2001; Wilson et al. 2004; Geirsdóttir et al., 2009). Thingvallavatn is a spatially 

complex, spring-fed environment containing four charr morphs, distinguished as benthic or pelagic 

and further by size (small or large benthic) or diet (planktivore or piscivore), as well as threespine 

stickleback and brown trout (Jónasson, 1992). The small benthic and planktivore charr on which we 

focus overlap in spawning times and locations and exhibit morphological differences consistent with 

expectations for benthic and pelagic niches, respectively (Webb, 1984; Skúlason et al., 1989a; 

Wainwright & Richard, 1995). Vatnshlíðarvatn is a simple, shallow, runoff-fed lake with two charr 

morphs and no other fish (Jónsson & Skúlason, 2000). The silver and brown morphs exhibit life-

history differences and contrast in size and shape associated with the breadth of prey taxa used. The 

smaller, deeper bodied brown charr is a benthic Cladocera-specialist, while the larger, more 

streamlined silver charr is a trophic generalist (Jónsson & Skúlason, 2000; Franklin, 2017). In 
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Vatnshlíðarvatn, cannibalism occurs infrequently (Jónsson & Skúlason, 2000) and avian predators are 

usually present (personal observation). Morphological differentiation has been considered an 

adaptation to alternate trophic resources in both lakes (Malmquist et al., 1992; Jónsson & Skúlason, 

2000), and we investigate the lakes separately as two examples of shape selection in resource 

polymorphisms. 

 

Sampling 

In July 2014, 2015 and 2016, we sampled Arctic charr from specific locations within Thingvallavatn 

and Vatnshlíðarvatn. In Thingvallavatn we sampled small benthic (n=359) and planktivore (n=611) 

charr from the littoral zone around Mjóanes peninsula (Sandlund et al., 1992; Kapralova et al., 2011). 

In Vatnshlíðarvatn we sampled brown (n=199) and silver (n=943) charr along the north shore. We 

aimed to sample a range of immature charr to capture morphological variation unrelated to sexual 

traits, using Nordic mixed nets with mesh size 5 to 55 mm. On-site morph classifications, 

distinguished by size, shape, texture, and colour, were supported by objective classification using 

Gaussian mixture models (Franklin, 2017). 

Fish were sacrificed and, at the laboratory, individuals were weighed, their left sides photographed, 

and caudal muscle tissue was removed and frozen. Individual fish were frozen until sampling 

concluded, whereby we thawed them, extracted otoliths, determined their sex, and weighed their 

gonads. For a random subset of each morph (planktivore n = 349, small benthic n = 300, silver n = 

489, brown n = 123) we quantified Diphyllobothrium spp. in the body cavity and Diplostomum spp. in 

the right eye, using light microscopy for identification. Caudal muscle tissue was oven-dried at 60oC 

and ground to send 500ug to GLIER, University of Windsor, to quantify δ13C and δ15N stable isotope 

ratios. Age information was obtained by counting annuli of whole otolith sagittae submerged in 

water overnight and viewed with reflected light on a dark surface. Where we could not confidently 

assign fish sex due to underdeveloped gonads (208 fish), we used the male-specific marker sdY and 
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procedure described in Yano et al. (2012) to confirm sex.  DNA was extracted from caudal muscle 

tissue and then PCR and agarose electrophoresis were used to identify presence of sdY. 

 

Shape, trophic resource, and performance data 

Shape, trophic resource, and performance metrics were required to estimate effects and function of 

shape within our path analytical hypothesis (Fig. 1a). Our focal morphs differ in life history 

characteristics, including our performance metric of growth (Malmquist et al., 1992; Jónsson & 

Skúlason, 2000). Therefore, to explore natural selection at the most relevant level, path analyses 

were assessed within each morph. However, to facilitate interpretation of shape selection between 

coexisting morphs, our shape variables were calculated by pooling coexisting morphs within lakes. 

Strong covariance of within-morph shape variation with across-morph shape variation suggests that 

our variables are appropriate summaries of shape to explore within-morph patterns (Franklin, 2017). 

We therefore have two sets of shape variables, one per lake, because a formal comparison of shape 

variation between lakes is beyond the scope of this study. 

 

Shape data were summarised in each lake using linear measures of pectoral fin length and geometric 

morphometric relative warps one (RW1) to five (RW5), which account for around 75% of shape 

variation captured by 20 landmarks (Fig. S1; Franklin, 2017). Relative warps, principal components of 

shape space interpretable as shape transformations along major axes of observed variation, were 

computed using TPS software (F. James Rohlf; http://life.bio.sunysb.edu/morph), from size- and 

position- corrected Procrustes scores (as Franklin, 2017). Briefly, the greatest axis of shape variation 

(RW1T; where T references Thingvallavatn) in Thingvallavatn describes variation in relative head size 

and elongation of the body, particularly in the caudal region, and variation in mouth position, 

whereas RW2T reflects mid-body depth. The greatest axis in Vatnshlíðarvatn (RW1V) describes 

variation in relative head size, with RW2V reflecting depth of body (Fig. 2). In both lakes, coexisting 
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morphs can be differentiated by morphology along relative warp axes (Fig. S2, Franklin. 2017). 

Although we explored effects of RW1 to RW5 in each lake, here we present results for RW1 and RW2 

which differentiate coexisting morphs and represent shape differences consistent with the expected 

variation in body-shape and mouth-position associated with trophic performance (Malmquist et al., 

1992; Jónsson & Skúlason, 2000; Franklin, 2017). Results for both lakes’ RW3 to RW5 are contained 

in the appendix.  

 

As a performance measure for path analyses, growth was estimated as the increase in 

backcalculated fork length for the last complete year of growth. This was measured by the most 

recent full otolith annulus, which relates more directly to observed shape and trophic proxies 

(below) than lifetime growth. Estimates of back-calculated length-at-age were obtained through 

relative sizes of otolith annuli, under the assumption that the relationship between somatic and 

otolith growth is linear throughout the age range in question (Casselman, 1990; Campana & Jones, 

1992). To account for potential bias associated with statistical adjustments (Campana, 1990), we 

used a biological intercept of length at hatching of 20mm and otolith diameter of 0.1mm (from 

Salvelinus malma; Radtke et al. 1996). We backcalculated length-at-age as 

Li = Lc + (Oi – Oc) (Lc-Lo) (Oc-Oo)-1, 

where Li is estimated fish fork length at age i, Lc is fork length at capture, Oi is measured otolith 

radius at age i, Oc is otolith radius of outermost complete band at capture, Lo is fork length at 

biological intercept, and Oo is otolith radius at biological intercept, with all lengths in mm. Mean 

absolute error of observed with backcalculated size at age, calculated as (Li - Lc ) / Lc * 100,  was 

1.73% (standard deviation 2.28) in Vatnshlíðarvatn, and 1.60% (standard deviation 2.23) in 

Thingvallavatn. As an independent performance measure, we calculated condition factor as residuals 

of a regression of total body mass on fork length within each morph (Jakob et al., 1996). 
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We used estimates of recent growth and condition factor to estimate effects of shape on fitness. 

Due to difficulties assessing fitness directly in aquatic populations, we use performance measures 

related to our focal traits and trophic performance, and which we expect to affect fitness. Although 

there are exceptions, generally growth rate and condition factor have positive effects on fitness in 

fish through survival, mating success and fecundity (e.g. Dickerson et al. 2002; Foote 1990; Morita & 

Takashima 1998; Wootton 1973; Bolnick & Araújo 2011). Because we lack estimates of growth-

fitness or condition factor-fitness relationships in our study populations, our estimates are 

performance gradients (Arnold, 1983) and cannot be interpreted quantitatively as selection 

gradients. However, under the assumption that these relationships are monotonic, performance 

gradients should reflect qualitative features of the true selective surface (Franklin & Morrissey 

2017). 

Our proxies of trophic resource use are stable isotopic signatures of  13C and  15N, and counts of 

Diphyllobothrium and Diplostomum parasite infections. Benthic primary producers integrate less 12C 

(greater  13C) than pelagic producers due to less turbulence in benthic boundary layers (Hecky & 

Hesslein, 1995), and 15N is enriched (greater  15N) with each additional trophic level (Minagawa & 

Wada, 1984). Together,  13C and  15N provide estimates of time-integrated use of trophic 

resources (e.g. Knudsen et al., 2014; Berchtold et al., 2015). In Thingvallavatn, lower  13C values 

associate with consumption of Copepoda and greater  13C values associate with Lymnaea, while 

Cladocera and Chironomidae exhibit intermediate values. Planktivore and small benthic charr exhibit 

variation in  13C corresponding to planktivorous and benthic diet expectations, with a degree of 

overlap potentially due to use of larval (small benthic) or emerging (planktivore) Chironomidae 

(Malmquist et al., 1992; Franklin, 2017). In Vatnshlíðarvatn, greater  13C associates with increased 

resource breadth (more taxa identified in gut contents), and morphs differ in  13C values consistent 

with specialist and generalist diets (Franklin, 2017). In addition to quantifying resource use over 

several months using  13C and  15N (Guelinckx et al., 2007), counts of trophically-transmitted 

parasites are a proxy for cumulative consumption of Copepoda and Lymnaea (Bérubé & Curtis, 1986; 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Wilson et al., 2002; Voutilainen et al., 2008; Henriksen et al., 2015). Diphyllobothrium intensity 

increases with cumulative consumption of Copepoda, and is greater in the planktivore charr of 

Thingvallavatn and the silver charr of Vatnshlíðarvatn, whereas intensity of Diplostomum, 

transmitted via the water column from Lymnaea hosts, is greater in small benthic and brown charr 

(Franklin, 2017), controlling for size in both cases. Although Diplostomum can cause cataracts, and 

Diphyllobothrium become encysted in the body cavity (Bérubé & Curtis, 1986; Voutilainen et al., 

2008), the greater parasite intensities observed in larger fish, including within cohorts (Franklin, 

2017), suggests that energetic benefits of resource consumption may generally outweigh 

detrimental effects of parasitism.  

 

Performance-based inference of selection 

We estimated directional and quadratic performance gradients (Arnold 1983) using lakewide-

standardised (across morph) data to assess indications of diversifying selection independent of 

morph designations. Within each lake our performance measure of growth was relativised by 

dividing by mean growth across morphs and regressed on z-standardised shape traits (RW1 to RW5 

and relative pectoral fin length), including covariates of age, sex, residual gonad mass, and fork 

length; residual gonad mass are estimates of gonadal investment calculated as residuals of 

regressions of gonad mass on total body mass. Positive quadratic coefficients along with 

identification of a growth minimum within the range of phenotypes are indicative of diversifying 

selection. We then used a path analytical approach, using within-morph data throughout, to explore 

functional relationships among shape, resource use, and relative growth. The total effects of shape 

on relative growth can be considered ‘extended performance gradients’ in the manner of extended 

selection gradients (η; Morrissey, 2014). These total effects are the sum of all effects of shape on 

growth, via measured or unmeasured pathways, and can qualitatively reflect selection for shape 

(Franklin & Morrissey, 2017). Total effects can be divided into indirect and direct effects on growth: 
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indirect effects involve mediating variables determined by functional hypotheses (here, trophic 

proxies of isotopic signatures and parasite infections; Fig. 1a); direct effects are any effects for which 

intermediate variables are not included (Shipley, 2000). This partitioning allows us to identify the 

presence of diversifying selection (total effects), and determine if shape’s effects are via trophic 

performance, parasitism, or unmeasured non-trophic functions. 

 

Our path model (Fig. 1a) relating traits to growth presents a hypothesis whereby relative growth is 

affected by shape traits and resource use, represented by parasite infections over the long term and 

stable isotopic signatures over several months. Parasite infections are affected by shape traits and 

stable isotopic signatures. Stable isotopic signatures are affected by shape traits. Relative growth is 

individual growth divided by mean growth within morph, parasite infections are log counts, shape 

variables are relative warps 1 through 5 and residuals of pectoral fin length regressed on fork length. 

In addition, each path includes covariates of fork length (mm), sex (binary), residual gonad mass, and 

age (continuous covariate). The path-model equations are detailed in the appendix. Although effects 

on growth rate might vary inter-annually, we assume cumulative growth over several years is 

positively associated with fitness, allowing us to pool sampling years and improve statistical power. 

We log-transformed parasite data prior to inclusion in the path model, ensuring that there were 

minimal (and no qualitative) differences between the log-transformed models and log-link negative 

binomial models. We then z-standardised all variables except relative growth, and used the lavaan 

package in R (Rosseel, 2012) to carry out path analyses with bootstrapped standard errors on the 

data as provided. We repeated path analyses using condition factor as an independent response 

variable. We refer to our trophic pathways as capturing effects via differential prey resource use, yet 

there is invariably trophic variation that we cannot include such as physiological variation (Afik & 

Karasov, 1995; Pörtner et al., 2013), or variation within isotopic signatures (e.g. different-sized prey 

may not differ in isotopic signature, but may differ in profitability). Despite these limitations, we 
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expect to observe effects of shape on growth via our trophic pathways, as implied by prior research 

suggesting adaptation to differential use of prey taxa (e.g. Malmquist et al. 1992; Jónsson & 

Skúlason 2000). Having estimated path coefficients, we compared coefficients between coexisting 

morphs using two-sample z-tests, z = ya – yb / √(sea
2+seb

2), where y is the path coefficient, se is the 

associated standard error, and subscripts denote compared morphs. 

 

Size-dependent mortality 

To address a component of the growth-fitness relationship we explored size-dependent mortality 

within morphs by comparing frequency distributions of backcalculated length at a given age for fish 

caught in 2014 to those caught in 2016. The 2014 sample of a particular cohort represents an initial 

population, while the 2016 sample of the same cohort represents the subset of the population that 

survived a two-year selective period. A systematic difference in mean length (measured at a 

common age) suggests size-dependent mortality: if selection were for larger individuals, as is 

generally expected in fishes (e.g. Sogard, 1997; Morita & Takashima, 1998), the 2016 sample of fish 

would have a greater mean back-calculated length at the given age. This approach allowed us to 

account for inter-annual variation in size-dependent mortality by comparing only fish from the same 

cohort. For example, we compared age 5+ caught fish in 2016 (after selection) with age 3+ caught 

fish in 2014 (before selection) with length back-calculated to age 3+ in both cases. We calculated 

directional selection differentials within each morph by deducting the 2014 size data from the 2016 

size data, using z-standardised size data, and assessing deviation from zero with t-tests (p<0.05). 

Nonlinear selection differentials were calculated by deducting the variance of 2014 size data from 

the variance of the 2016 size data, then adding the squared value of the directional selection 

differential to account for reductions in variance associated with directional selection; F-tests 

assessed significant deviation from zero at p<0.05.  
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Results 

Lakewide performance gradients revealed effects of shape on growth that are consistent with 

diversifying selection in both lakes, but only in Thingvallavatn did they reflect morphology associated 

with trophic expectations. In Thingvallavatn, quadratic RW1T was positive (g936=0.051, se=0.020, 

p=0.012; Table 1) indicating intermediate shapes experiencing reduced growth relative to extremes 

on an axis summarising head size, mouth position, and body elongation. In Vatnshlíðarvatn, 

quadratic RW1V and RW5V were negative, indicating intermediates experiencing increased relative 

growth; although RW4V was positive (g1199=0.040, se=0.016, p=0.011; Table 1), this reflects an 

aspect of shape for which no a priori expectations exist. These nonlinear effects, including whether 

they are mediated by trophic resource use, were further investigated by exploring within-morph 

patterns in path analyses. 

 

(a) Total effects of shape on growth 

Shape affects growth in opposing directions between coexisting morphs in Thingvallavatn but not in 

Vatnshlíðarvatn. In Thingvallavatn, consistent with expectations, RW1T has a positive total effect on 

growth in planktivore charr (b305=0.039, se=0.020, p=0.046) but a negative total effect in small 

benthic charr (b269=-0.047, se=0.024, p=0.051; Table 2 details effects of RW1T and RW2T, see Tables 

S2 and S3 for further shape variables). These morph estimates differ significantly from each other 

(p=0.006, z-test, Table 2). Because RW1T involves variation in head size, mouth position, and 

elongation of the caudal region, these results support a priori predictions of diversifying selection for 

shape. Additionally, a negative effect of RW2T on growth detected in small benthic charr was absent 

in planktivore charr, representing an effect of mid-body depth differing significantly between 

morphs (p=0.007, z-test, Table 2). In Vatnshlíðarvatn, RW1V had positive effects on growth in both 

morphs while RW2V has negative effects significant only in silver charr (Table 3; Tables S4 and S5 for 

further shape variables). Brown and silver charr do not differ in total effects on growth for any shape 

variables (p>0.05, z-tests, Table S6). Rather, relatively larger heads (RW1V) and shallower bodies 
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(RW2V) associate with increased growth in both morphs. These total effects allow inferences 

regarding the form of selection. To explore function, we examined relationships among trophic 

resources and growth.  

 

(b) Effects of trophic resource use on growth  

Trophic resource use appears to affect growth only in planktivore and silver charr, largely due to 

detrimental effects of parasitism. No resource proxies significantly associated with growth for small 

benthic charr, though  13C and  15N positively associate with Diplostomum infections (Table 2a). 

For planktivore charr, isotopic signatures associate with growth only through Diphyllobothrium and 

Diplostomum infections, which have negative effects (Table 2a, Fig. 1b). In Vatnshlíðarvatn, though 

trophic resource proxies had no significant associations with each other or with growth for brown 

charr,  13C did have a marginally non-significant (p=0.08) negative effect on growth (Table 3a). A 

significant negative effect of  13C on growth was identified in silver charr, in addition to increasing 

Diplostomum infections which further negatively affected growth (Table 3a). 

 

(c) Effects of shape on growth via trophic resources 

Although shape affected growth via trophic resources in planktivore and silver charr, the mechanism 

is not consistent with expectations of trade-offs influencing trophic performance. For planktivore 

charr, greater RW1T increased growth by increasing  13C, which reduced detrimental 

Diphyllobothrium infections (Fig. 1b, Table 2). Although covariance of shape and growth is as 

predicted, the details differ: more streamlined individuals with terminal mouths (positive RW1T) 

have increased growth because they consume fewer Copepoda (increased  13C) and experience 

lower copepod-transmitted parasite infections. Other aspects of shape that affect planktivore charr 

growth via trophic pathways, RW2T and RW3T, follow the same pattern (Table 2, Table S3). In silver 
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charr RW3V and RW4V affect growth by increasing  13C and Diplostomum infections, respectively 

(p<0.05; Table S5 a-c). However, these aspects of shape did not have a significant total effect on 

growth, suggesting opposing effects via non-trophic pathways. In small benthic and brown charr, 

trophic resources did not associate with growth, and so there were no effects of shape on growth via 

trophic pathways. There were however associations suggesting shape-dependent resource-use: 

greater RW3T increased Diplostomum infection, and RW4T and pectoral fin length influenced 

isotopic signature in small benthic charr (Table S3a), while for brown charr greater RW1V increased 

Diplostomum infection (Table 3). The lack of effects on growth via trophic resources and the 

presence of total effects of shape suggest non-trophic effects of shape for these morphs also. 

 

Direct effects of shape on growth 

Effects of shape on growth independent of trophic resource pathways are large compared with 

effects via trophic pathways. The total effects of RW1T and RW2T on growth in small benthic charr 

that oppose those in planktivore charr are largely due to differing direct effects (RW1T p=0.022, 

RW2T p=0.001, z-test, Table 2), rather than effects via trophic pathways. The magnitude of direct 

effects in both Vatnshlíðarvatn morphs are considerably larger than effects via trophic pathways, 

and do not differ between morphs (Table 3, Tables S4 and S5). In addition, effects of shape via 

trophic pathways in planktivore and silver charr are often opposed by direct effects, nullifying their 

net influence on growth (e.g. planktivore RW2T, Table 2a and c; silver RW3V and RW4V, Table S5a 

and c). The associations between shape and growth that could not be explained by trophic resource 

pathways suggest that non-trophic functions of shape may play an important selective role. 

Repeating path analyses with condition factor as a response revealed no qualitative differences via 

trophic pathways to those presented above. Although direct effects of shape on condition differed 

to the equivalent effects on growth, due to covariance of deeper bodies with greater condition 

factor, condition factor revealed no additional opposing effects among morphs (data not shown).  
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Size-dependent mortality 

Differences in size-dependent mortality between coexisting morphs were evident in both lakes. 

Small benthic charr experienced selection for smaller sizes between 2014 and 2016, significant in 

age comparisons of 2 to 4 (before selection: 101 mm, after: 89 mm, S=-0.607, se=0.134, t83=-3.78; 

Table 4) and 3 to 5 (before: 121 mm, after: 109 mm, S=-0.474, se=0.125, t81=-3.13), whereas 

planktivore charr experienced selection for larger sizes over the same period, significant in age 

comparisons of 4 to 6 (before: 135 mm, after: 152 mm, S=0.323, se=0.072, t379=3.47) and 5 to 7 

(before: 161 mm, after: 181 mm, S=-0.540, se=0.098, t165=4.59). Although we obtained no 

statistically significant selection differentials in other age classes, effect sizes suggest it is 

advantageous for small benthic charr to be smaller at times when larger planktivore charr are 

advantaged. In Vatnshlíðarvatn, silver charr experienced selection of larger sizes in all age-classes, 

whereas there was no size selection in brown charr that significantly differed from zero, though 

estimates were positive (Table 4). There were no significant estimates of nonlinear size-dependent 

mortality in any morph (data not shown).  

 

Discussion      

Complex relationships among various ecological factors promote morphological diversity even in 

relatively simple and young polymorphic systems, as demonstrated through our novel use of the 

extended selection gradient path analytical approach. Contrary to general expectations (e.g. 

Malmquist et al., 1992; Robinson & Wilson, 1994; Arnegard et al., 2014), morphological trade-offs 

contributed little to diversifying selection via effects on trophic performance. In Thingvallavatn, the 

lake with greater phenotypic differentiation, morphologically intermediate individuals experienced 

reduced relative growth, indicating disruptive selection of shape if growth is monotonically related 

to fitness (Franklin & Morrissey, 2017). This diversifying selection is mediated by detrimental effects 

of Diphyllobothrium (Copepoda-transmitted tapeworms) and effects of shape on growth 

independent of resource use variation. In Vatnshlíðarvatn we found no support for diversifying 
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selection and shape predominantly affected growth independent of resource use. Our observations 

of parasite-mediated diversifying selection, non-trophic effects of shape, and contrasting patterns of 

size-dependent mortality between morphs, suggest a limited role for morphological-trade offs 

influencing fitness via trophic performance under natural conditions. 

 

Effects via trophic resource use 

Effects of shape on growth via trophic resource use are mediated by parasitism and suggest 

alterative functional explanations to that of prey capture efficiency. In Thingvallavatn, streamlined-

bodied planktivore charr (increased RW1T) experience greater growth by consuming fewer 

Copepoda (greater  13C), thus experiencing lower Diphyllobothrium infections. This may reduce 

subsequent internal haemorrhaging (Bérubé & Curtis, 1986). The shape-dependent use of 

Copepoda, and subsequent parasite exposure, appears not to result from biomechanical limitations 

involving prey capture: Thingvallavatn planktivore charr frequently consume Daphnia which are less 

parasitised and more easily captured than Copepoda (Malmquist, 1992; Malmquist et al., 1992; 

Franklin, 2017). Alternative explanations for shape-depedndent resource use may involve 

hydrodynamic demands associated with behaviours such as increased search behaviours, and/or 

boldness in foraging farther from the shoal (Ehlinger, 1990; Mikheev et al., 1996; Adams, 2004; 

Edelsparre et al., 2013). Shape-dependent parasitism was also evident in small benthic and brown 

charr, but without subsequent effects on growth. Variation in parasitism may result from differential 

use of the spatial environment, as suggested by the prevalent Diplostomum infections of brown 

charr despite rare consumption of Lymnaea (Jónsson & Skúlason, 2000; Franklin, 2017).  

Where resource use variation did affect growth independent of parasitism, it did not contribute to 

diversifying selection. In Vatnshlíðarvatn consumption of fewer taxa associated with greater growth, 

contrary to expectations for the generalist silver charr (Jónsson & Skúlason, 2000). In addition, shape 

did not influence variation in resource breadth as would be necessary to support a morphological 
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trade-off hypothesis between the specialist and generalist morphs. Therefore, morphological trade-

offs do not contribute to Vatnshlíðarvatn diversification via resource use under contemporary 

conditions, notwithstanding fluctuations over timescales greater than our three-year study (e.g. 

Wilson & Yoshimura, 1994). 

 

Non-trophic effects  

Shape affected growth independent of resource use variation, and we suggest this arises in part 

from biomechanical constraints of swimming behaviours associated with predator avoidance and 

escape (Webb, 1975; Bolnick & Araújo, 2011; Ellerby & Gerry, 2011; Samways et al., 2015). 

Interindividual variation in predator-avoidance behaviour often associates with morphology 

(Mikheev et al., 1996; Hawley et al., 2016), and in Thingvallavatn behavioural differences are 

evident. Planktivore charr exhibit shoaling, reluctance to forage without conspecifics, and spend 

considerable time hovering in the water column. Small benthic charr travel independently, are often 

stationary on the substrate and utilise refuges within the complex lava substrate (Malmquist, 1992; 

Sandlund et al., 1992; Skúlason et al., 1993; Kristjánsson et al., 2011). Such behavioural variation 

could result in diversifying selection of shape via energetic costs of locomotion, independent of 

trophic resource use. 

Predation may play a role in polymorphism in Thingvallavatn and Vatnshlíðarvatn through size-

selective mortality and behavioural responses. Predation as a cause of divergence has received 

considerable support (Rundle et al., 2003; Langerhans & Reznick, 2009; Scharnweber et al., 2013) 

and our selection differentials indicate that size-dependent mortality differs in direction 

(Thingvallavatn) or magnitude (Vatnshlíðarvatn) between coexisting morphs. Predation on 

intermediate-sized fish could act as a diversifying mechanism and could promote diversification in 

charr behavioural responses (Doucette et al. 2004; Parsons, 2008). Subsequent contrasting 

locomotive costs, prey and parasite exposure, or spawning behaviour, could have morphological 
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implications (Reznick, 1983; Stearns, 1989; Hutchings, 1993). In both lakes, differences between 

coexisting morphs in behaviour associated with predation (Malmquist, 1992; Skúlason et al., 1993; 

Parsons, 2008), in growth rate and life history (Sandlund et al., 1992; Jónsson & Skúlason, 2000), and 

our data suggesting non-trophic costs of shape and size-dependent mortality, may together suggest 

a diversifying role for predation.  

 

Implications  

We found little support for morphological trade-offs contributing to polymorphism through trophic 

performance under contemporary conditions. However, colonising charr 10,000 years ago 

experienced different conditions to today’s populations, and a complex of interacting ecological 

factors may have contributed to initiation and maintenance of polymorphism. Whether or not 

biomechanical constraints influencing trophic performance were an initial cause of morphological 

polymorphism, this study has demonstrated that resource polymorphisms can persist in its absence, 

despite potential gene flow. 

Our sampling approach allowed us to make inferences regarding selection via trophic resources, but 

naturally there were limitations. In Thingvallavatn it is possible that morph subpopulations exist, 

which might vary in phenotype, resource availability, and gene flow (Sandlund et al., 1992; 

Kapralova et al., 2011). We sampled in the littoral zone, obtaining planktivore charr that were likely 

more similar ecologically to small benthic charr compared with those in pelagic zones. This allowed 

us to examine selective processes where overlap in phenotype and resource use was most likely, and 

therefore to speculate on the fitness of potential inter-morph hybrids. During sampling we were also 

unable to sample the youngest cohorts adequately and may have overlooked selection via trophic 

pathways in young of the year. Although we expect competition in early life stages to be strong 

(Perez & Munch, 2010), reduced variation in morphology and feeding performance early in ontogeny 

(Skúlason et al., 1989b; Parsons, 2008) and limited juvenile diet breadth (Sandlund et al., 1988) 
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suggest that selection likely results from interference competition and variation in size rather than 

shape. However, as suggested by differences in size among morphs, competition in the nursery 

grounds might contribute to morph formation if size thresholds trigger faster growing individuals to 

switch to pelagic environments with different ecological conditions (Byström et al., 2014).  

We estimated performance gradients, which are qualitatively indicative of selection gradients when 

growth and fitness are monotonically related in the wild (Arnold, 1983; Franklin & Morrissey, 2017). 

Although the general expectation for fish is that increased growth results in greater fitness, this is 

not always the case (Dickerson et al., 2002; Foote, 1990; Morita & Takashima, 1998; Barber et al., 

2001; Carlson et al., 2008), and our data indicate that increased size can reduce survival of small 

benthic charr. Furthermore, differences in age at maturity and asymptotic size between coexisting 

morphs in both Thingvallavatn and Vatnshlíðarvatn (Jonsson et al. 1988; Skúlason et al., 1996; 

Jónsson & Skúlason, 2000) are suggestive of fitness component trade-offs resulting from different 

growth-fitness relationships between morphs (Reznick, 1983; Stearns, 1989; Hutchings, 1993). The 

potential for non-monotonic growth-fitness relationships may have implications for the forms of 

selection experienced in these systems, though this would not invalidate our observations regarding 

the roles of morphology via trophic performance. Measurement of growth-fitness relationships in 

the wild remains necessary to quantify fitness effects of parasitism and morphology via non-trophic 

functions. 

In conclusion, this study demonstrates that phenotype contributes to performance via multiple 

functions and that consideration of a complex of local ecological factors is necessary to understand 

diversification. We identified parasitism, non-trophic effects of shape, and size as factors likely 

influencing fitness in resource polymorphisms, with indications of disruptive selection of shape in 

Thingvallavatn and differing size-dependent mortality between morphs in both lakes. Because 

alternative functions can produce similar trait-performance covariance patterns, we stress the 

importance of measuring the nature of selection in the wild. Our observations using path analyses 
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and individual-level data revealed effects of shape inconsistent with assumptions based on intuitive 

morph categories. Phenotypic trade-offs influencing trophic performance have been identified or 

assumed in numerous systems (e.g. Price, 1987; Schluter, 1995), yet there remain few studies of 

diversifying selection in the wild, within few focal systems (Kingsolver et al., 2001; Siepielski et al., 

2013). This study therefore represents a valuable contribution to understanding early diversification 

in nature. Finally, if morphological trade-offs do not influence trophic performance under 

contemporary conditions, this suggests either that in these relatively simple and young systems, 

processes contributing to initial morphological diversification differ from those that now maintain 

them, or that such trade-offs did not contribute to morphological diversification. In either case, this 

highlights the need for a more nuanced understanding of the selective processes that result in 

intraspecific diversity.  
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Tables and Figures 

Table 1: Standardised lakewide (across-morph) performance gradients of relativised growth 

regressed on variance-standardised shape traits, for Arctic charr from the Icelandic lakes 

Thingvallavatn and Vatnshlíðarvatn. RW refers to relative warps, Pec fins to pectoral fin length, and 

square terms indicate quadratic estimates, p values below 0.05 are bold. Growth is relativised by 

dividing by mean growth across morphs within each lake, covariates included were age, sex, fork 

length and residual gonad mass. The presence of nonlinear effects in these lakewide comparisons 

suggests selection may operate in opposing directions between morphs. See Fig. S3 for wireframe 

depictions of RW1-5. 

Variance-standardised traits 

Thingvallavatn  Vatnshlíðarvatn 

Estimate  Std. error p. value  Estimate  Std. error p. value 

RW1 0.065 0.017 0.000  0.061 0.021 0.003 

RW2 0.023 0.011 0.033  -0.102 0.015 0.000 

RW3 -0.008 0.010 0.457  0.013 0.012 0.265 

RW4 -0.002 0.010 0.855  0.045 0.013 0.000 

RW5 -0.046 0.010 0.000  -0.006 0.013 0.653 

Pec fins 0.008 0.014 0.560  -0.042 0.019 0.028 

RW1
2
 0.051 0.020 0.012  -0.041 0.020 0.038 

RW2
2
 0.009 0.014 0.509  -0.014 0.020 0.483 

RW3
2
 -0.006 0.014 0.672  0.010 0.015 0.495 

RW4
2
 0.003 0.010 0.800  0.040 0.016 0.011 

RW5
2
 -0.008 0.014 0.567  -0.047 0.015 0.002 

Pec fins
2
 0.017 0.012 0.177  0.013 0.013 0.346 
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Table 2: Path coefficients detailing effects of shape (RW1T and RW2T) on growth within samples of small benthic and planktivore Arctic charr morphs from the Icelandic 
lake Thingvallavatn, and z-tests comparing effects between morphs. Standardised path coefficients (a), compound path coefficients (b), effects via trophic proxies (c), and 
total effects (d) from the path diagram relating shape (Fig.2) to relative growth (Fig. 1a), with covariates of age, sex, residual gonad mass, and fork length. Coefficients are 
displayed (standard errors in parentheses) except z-test columns which display p-values. Bolded values are significant at p=0.05 (significant path coefficients differ from 
zero; z-test significance indicates morph coefficients differ). Growth was relativised by dividing by mean growth within morph. Greater  13C indicates a benthic diet in 
Thingvallavatn, greater  15N indicates higher trophic level, Diplostomum are flukes with snail intermediate hosts, Diphyllobothrium are tapeworms with copepod 
intermediate hosts.  13C and  15N are included separately in (a) for univariate coefficients. Because  13C and  15N together produce an estimate of resource use, in 
compound path coefficients (b) they are not considered independently.  

 

 small benthic planktivore z-test 

 

RW1 RW2  13C  15N Diplo. Diph. RW1 RW2  13C  15N Diplo. Diph. RW1 RW2 

(a) path coefficients, detailing effect of column variable on row. Bottom row is direct effects of traits or trophic proxies on relative growth  p-values 

 13C -0.106 

(0.078) 

 -0.108 

(0.064) 

         0.148 

(0.069) 

 -0.150 

(0.067) 

        

 

0.015 0.650 

 15N 0.021 

(0.073) 

 -0.029 

(0.059) 

         -0.139 

(0.073) 

 0.211 

(0.070) 

        

 

0.121 0.009 

Diplostomum 0.115 

(0.061) 

 -0.056 

(0.050) 

 0.260 

(0.047) 

 0.130 

(0.051) 

     -0.019 

(0.053) 

 0.027 

(0.051) 

 0.355 

(0.043) 

 0.045 

(0.041) 

    

 

0.097 0.245 

Diphyllobothrium 0.007 

(0.082) 

 0.008 

(0.067) 

 -0.037 

(0.063) 

 -0.058 

(0.068) 

     -0.056 

(0.042) 

 0.091 

(0.040) 

 -0.322 

(0.034) 

 0.250 

(0.032) 

    

 

0.494 0.287 

Relative growth -0.045 

(0.024) 

 -0.062 

(0.020) 

 0.007 

(0.020) 

 0.010 

(0.021) 

 -0.021 

(0.024) 

 0.010 

(0.018) 

 0.025 

(0.019) 

 0.033 

(0.019) 

 0.013 

(0.019) 

 0.014 

(0.016) 

 -0.049 

(0.021) 

 -0.109 

(0.026)  

0.022 0.001 
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(b) compound path coefficients. Summaries of indirect effects of traits (columns) on relative growth via trophic pathways (rows)       

Effect on relative growth via:       

isotopes -0.001 

(0.002) 

 -0.001 

(0.002) 

         0.000 

(0.004) 

 0.001 

(0.005) 

         0.823 0.710 

isotopes via Diphyllobothrium 0.000 

(0.000) 

 0.000 

(0.000) 

         0.009 

(0.004) 

 -0.011 

(0.004) 

         0.024 0.006 

isotopes via Diplostomum 0.001 

(0.001) 

 0.001 

(0.001) 

         -0.002 

(0.002) 

 0.002 

(0.002) 

         0.180 0.655 

Diplostomum -0.002 

(0.003) 

 0.001 

(0.002) 

         0.001 

(0.003) 

 -0.001 

(0.003) 

         0.480 0.579 

Diphyllobothrium 0.000 

(0.001) 

 0.000 

(0.001) 

         0.006 

(0.005) 

 -0.010 

(0.005) 

         0.239 0.050 

(c) effects of traits on relative growth via trophic pathways (sum of indirect effects)        

Relative growth -0.002 

(0.004) 

 0.001 

(0.003) 

         0.014 

(0.007) 

 -0.019 

(0.007) 

         0.047 0.006 

(d) total effects of traits on relative growth, reflecting extended performance gradients (sum of all indirect & direct effects of traits on growth)    

Relative growth -0.047 

(0.024) 

 -0.061 

(0.020) 

         0.039 

(0.020) 

 0.014 

(0.019)      

    0.006 0.007 
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Table 3: Path coefficients detailing effects of shape (RW1V and RW2V) on growth within samples of brown and silver Arctic charr morphs from the Icelandic lake 
Vatnshlíðarvatn, and z-tests comparing effects between morphs. Standardised path coefficients (a), compound path coefficients (b), effects via trophic proxies (c), and 
total effects (d) from the path diagram relating shape (Fig. 2) to relative growth (Fig. 1a), with covariates of age, sex, residual gonad mass, and fork length. Coefficients are 
displayed (standard errors in parentheses) except z-test columns which display p-values. Bolded values are significant at p=0.05 (significant path coefficients differ from 
zero; z-test significance indicates morph coefficients differ). Growth was relativised by dividing by mean growth within morph. Greater  13C indicates greater resource 
breadth in Vatnshlíðarvatn, greater  15N indicates higher trophic level, Diplostomum are flukes with snail intermediate hosts, Diphyllobothrium are tapeworms with 
copepod intermediate hosts.  13C and  15N are included separately in (a) for univariate coefficients. Because  13C and  15N together produce an estimate of resource 
use, in compound path coefficients (b) they are not considered independently. 

 

 brown silver z-test 

 

RW1 RW2  13C  15N Diplo. Diph. RW1 RW2  13C  15N Diplo. Diph. RW1 RW2 

(a) path coefficients, detailing effect of column variable on row. Bottom row is direct effects of traits or trophic proxies on relative growth  p-values 

 13C -0.020 

(0.124) 

 0.024 

(0.122) 

         0.034 

(0.056) 

 -0.033 

(0.049) 

        

 

0.691 0.665 

 15N -0.015 

(0.131) 

 -0.172 

(0.129) 

         -0.010 

(0.074) 

 -0.078 

(0.065) 

        

 

0.973 0.515 

Diplostomum 0.270 

(0.097) 

 -0.084 

(0.096) 

 0.067 

(0.077) 

 -0.048 

(0.073) 

     0.121 

(0.049) 

 -0.238 

(0.043) 

 0.220 

(0.041) 

 0.088 

(0.031) 

    

 

0.170 0.143 

Diphyllobothrium 0.129 

(0.129) 

 -0.224 

(0.128) 

 -0.062 

(0.102) 

 0.167 

(0.097) 

     0.034 

(0.073) 

 -0.188 

(0.064) 

 0.004 

(0.062) 

 0.001 

(0.047) 

    

 

0.522 0.801 

Relative growth 0.088 

(0.046) 

 -0.034 

(0.045) 

 -0.064 

(0.036) 

 0.051 

(0.034) 

 0.025 

(0.045) 

 0.006 

(0.034) 

 0.092 

(0.025) 

 -0.084 

(0.023) 

 -0.064 

(0.021) 

 0.014 

(0.016) 

 -0.061 

(0.024) 

 0.008 

(0.016)  

0.939 0.323 
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(b) compound path coefficients. Summaries of indirect effects of traits (columns) on relative growth via trophic pathways (rows)       

Effect on relative growth via:       

isotopes 0.001 

(0.010) 

 -0.010 

(0.012) 

         -0.002 

(0.004) 

 0.001 

(0.004) 

         0.781 

 

0.385 

isotopes via Diphyllobothrium 0.000 

(0.000) 

 0.000 

(0.001) 

         0.000 

(0.000) 

 0.000 

(0.000) 

         1.000 1.000 

isotopes via Diplostomum 0.000 

(0.000) 

 0.000 

(0.001) 

         0.000 

(0.001) 

 0.001 

(0.001) 

         1.000 0.480 

Diplostomum 0.007 

(0.012) 

 -0.002 

(0.004) 

         -0.007 

(0.004) 

 0.015 

(0.006) 

         0.268 0.018 

Diphyllobothrium 0.001 

(0.004) 

 -0.001 

(0.008) 

         0.000 

(0.001) 

 -0.002 

(0.003) 

         0.808 0.907 

(c) effects of traits on relative growth via trophic pathways (sum of indirect effects)        

Relative growth 0.008 

(0.017) 

 -0.014 

(0.015) 

         -0.010 

(0.006) 

 0.015 

(0.008) 

         0.318 0.088 

(d) total effects of traits on relative growth, reflecting extended performance gradients (sum of all indirect & direct effects of traits on growth)    

Relative growth 0.096 

(0.046) 

 -0.048 

(0.045) 

         0.082 

(0.025) 

 -0.069 

(0.022)      

    0.789 0.675 
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Table 4: Size-dependent mortality within cohorts from 2014 to 2016 for Arctic charr morphs from 

two Icelandic lakes, Thingvallavatn and Vatnshlíðarvatn. Estimated mean cohort fork length before 

selection, after selection, directional selection differentials (S), with bolded values significant at 

p<0.05 (t-test), standard errors, and p-values. Age comparisons are within cohorts of each morph, 

using back-calculated length at a given age to estimate the difference between mean length of the 

cohort before selection (caught at younger age) to that of individuals that survived selection (caught 

at older age). 

 Thingvallavatn 
  small benthic planktivore 

age 
comparison 

before, 
mm 

after, 
mm 

S se p-
value 

 before, 
mm 

after, 
mm 

S se p-
value 

2 to 4 
101 89 -

0.607 
0.134 

0.000  100 95 -
0.034 

0.096 
0.798 

3 to 5 
121 109 -

0.474 
0.125 

0.002  114 121 
0.127 0.086 

0.251 

4 to 6 
137 133 -

0.129 
0.174 

0.534  135 152 
0.323 0.072 

0.001 

5 to 7 143 158 0.454 0.259 0.127  161 181 0.540 0.098 0.000 

6 to 8       186 191 0.189 0.215 0.411 

            

 Vatnshlíðarvatn 
  brown silver 

age 
comparison 

before, 
mm 

after, 
mm 

S se p-
value 

 before, 
mm 

after, 
mm 

S se p-
value 

2 to 4 116 124 0.097 0.121 0.555  112 140 0.510 0.049 0.000 

3 to 5 149 153 0.205 0.289 0.511  169 191 0.473 0.059 0.000 

4 to 6 170 170 0.021 0.345 0.949  209 224 0.583 0.107 0.000 
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Figure 1: Path diagrams illustrating (a) all path coefficients incorporated into models, and (b) 

effects estimated for the first relative warp of the planktivore Arctic charr morph from 

Thingvallavatn, Iceland. In (a) arrows connecting shape, stable isotopic signatures (d13C, d15N), and 

parasite infections (Diph., Diplo.), show how shape could indirectly affect growth via trophic 

pathways. The arrow directly connecting shape and growth accounts for non-trophic effects of shape 

on growth. The sum of all pathways reveals the total effects of shape on growth. (b) Wireframe 

depictions and path diagram of Thingvallavatn first relative warp (RW1) summarising effects of 

shape variation on growth in planktivore charr. Diph refers to Diphyllobothrium, Diplo to 

Diplostomum,  13C and  15N are stable isotopic signatures, and growth is relative back-calculated 

growth over one year. Solid lines depict positive relationships, dashed lines negative, with thickness 

reflecting the magnitude of path coefficients. Black lines are significant at p<0.05, grey lines are 

p<0.10, other path coefficients omitted; see Tables 2 - 3 (RW1 and RW2) or Tables S2 - S5 (all shape 

variables) for full details. Notably, effects of stable isotopic signatures on growth are mediated by 

parasitism, and effects of shape on growth are accounted for by trophic pathways. 
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Figure 2: Wireframe representations summarising the first two principal axes of shape variation 

(RW1, RW2) of Arctic charr morphs from the Icelandic lakes Thingvallavatn and Vatnshlíðarvatn. 

Thingvallavatn RW1T summarises 43.98%, and RW2T 10.34%, of lakewide shape variation captured 

by landmarks. Vatnshlíðarvatn RW1V summarises 31.05%, and RW2V 19.18%, of lakewide shape 

variation captured by landmarks. Wireframe depictions of RW3 to RW5 are in supplementary 

materials (Fig. S3)  

 




