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Abstract

The measurement of temperature at the mesoscopic scale is challenging but important

in a wide variety of research fields, including the investigation of single molecule and cell

mechanics and interactions as well as fundamental studies in heat transfer and Brownian
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dynamics on this scale. In this letter we present a route that determines temperature

at the nano- to microscale with three independent measurements performed on a single

trapped, rotating luminescent microparticle. We measure temperature changes using

both the internal and external degrees of freedom, via (i) the upconverted luminescence,

(ii) the rotation rate, and (iii) the Brownian dynamics of the particle. This novel

tripartite approach allows us to cross-correlate the temperature for both the internal and

external (center-of-mass) degree of freedom for the particle. In addition, our approach

provides a measure of the temperature increase without the need of a precise knowledge

of the particle dimensions, shape or any previous calibration of the sample or the

experimental set-up. The developed technique opens up prospects for stringent tests of

nanothermometry.

Keywords

optical trapping; upconverting particles; birefringence; optical torque; nanothermometry

The measurement of temperature at high resolution plays an important role in numerous

processes, particularly at mesoscopic spatial scales. Micro and nanoparticle dynamics within

a fluid are subject to Brownian motion, and as such, the particle’s external degrees of freedom

(translation and rotation) are strongly influenced by temperature due to their dependence

on the viscosity of the surrounding medium.

Optical tweezers offer an ideal platform to study Brownian dynamics since the optical

forces and torques acting on a trapped particle are counteracted and balanced by the forces

and torques from the environment, which may also act as a method of heat dissipation. By

recording the motion of a Brownian particle trapped in liquid, it is possible to probe the

local fluid viscosity and its corresponding temperature around the particle. Recently much

effort has been directed at cooling the center-of-mass (CoM) motion of trapped particles

in vacuum, where the Brownian motion is controlled by optical fields,1–4 with a view to
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reaching the quantum ground state. Within this context, the temperature of the particle is

often assumed to be exclusively determined by its CoM motion (external degree of freedom)

based on the equipartition theorem.

On the other hand, upconverting particles (UCPs), have recently brought a surge of in-

terest in a variety of fields ranging from biological studies to quantum physics. UCPs are

able to absorb two or more incident photons of relatively low energy and convert them into

one emitted photon with higher energy, through a process known as upconversion (UC) .5–7

Importantly, the emission spectrum of a UCP encodes information of its internal tempera-

ture .8 When a UCP is optically trapped with a continuous wave (cw) beam at an appropriate

excitation wavelength it can be used as a remotely controlled thermometer .9,10 Furthermore,

depending on the doping type/content and the incident excitation wavelength, UCPs can

be either refrigerated or heated,11,12 thus offer an interesting testbed to measure and control

both the internal and CoM temperature.

Previous studies have shown that the internal temperature of a particle is in fact coupled

to the CoM temperature.4,13 Recently, laser-induced refrigeration of an optically trapped

Yb-doped UCPs has been reported both in liquid14 and vacuum.11 These studies show that

the CoM temperature of the particle is comparable with its internal temperature within

experimental errors. However, these studies do not offer any detailed analysis of how these

internal and external temperatures compare in the context of micro- or nano-thermometry.

Intriguingly, a recent study looked at coupling between internal and external degrees of

freedom of a vacuum trapped nanoparticle.4 Heating by the laser and black-body radiation

were attributed to lead to an internal temperature (> 1000 K) well in excess of the CoM

temperature (< 10 K), even in the presence of parametric feedback cooling. Such studies are

the cornerstone for future levitated hybrid optomechanics experiments. Importantly high

internal particle temperatures can adversely affect studies of such particles at the classical-

quantum interface and lead to a reduction in their performance as an ultra-precise sensor.

In this study we propose a novel tripartite method able to independently measure and
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correlate temperature changes from both the external and internal degrees of freedom for

a single trapped UCP. Two different types of UCPs, one with high absorption and the

other with lower absorption at the trapping wavelength, are employed. The dissipation of

the absorbed energy occurs through non-radiative processes mediated by phonons in the

material structure which produces a temperature increment only for the highly-absorbing

particles. To demonstrate our approach we measure the temperature of a single UCP trapped

in water. Firstly, the luminescent spectrum is recorded to determine the particle’s internal

temperature. This contrasts with other approaches 4 where a detailed knowledge of the

particle material properties are required. This is then compared with the external (CoM)

temperature of the UCP determined from the particle dynamics (translational and rotational

degrees of freedom) directly linked to the viscosity changes of the environment.

A key attribute to distinguish our presented tripartite approach is that it does not require

any knowledge of the particle physical properties, such as shape and size, or any calibration

of the sample or the experimental system. Furthermore, our experimental errors are much

smaller than those previously reported in aqueous media,14–16 allowing us to provide a strin-

gent approach for the analysis of heat transfer at the microscale for such optically trapped

particles.

Experimental

Thermometers. Two differently doped UCPs were used in this study: NaYbF4:Er3+,Nd3+

and NaYF4:Er3+,Yb3+ microcrystals (see Methods for details). They present a similar disc-

like shape with hexagonal facets, as shown in the scanning electron microscope (SEM) images

of Figures 1(a) and 1(b). In addition, both samples exhibit light emission in the visible range

under near-infrared 788 nm excitation. Figures 1(c) and 1(d) show the normalized lumines-

cence spectrum associated to the green emission of Er ions obtained from a single optically

trapped NaYbF4:Er3+,Nd3+ and NaYF4:Er3+,Yb3+ particle, respectively. Importantly, the
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relative emission intensity of the bands centered around 520 nm and 540 nm is temperature

dependent due to the change in the electronic population of the thermally-coupled excited

states with temperature (see Supporting Information for details).8,17,18 For our study, only

the highlighted bands in Figures 1(c) and 1(d) were used in order to reduce the experimental

error in the determination of the thermal changes (see Supporting Information for details).

In order to show the capability of the developed tripartite method to measure temperature

changes for a trapped particle, we chose the two differently doped samples to present distinct

light-to-heat conversion efficiencies (see Methods and Supporting Information for details).

The excitation of NaYbF4:Er3+,Nd3+ microcrytals by 788 nm radiation produces an increase

in they internal temperature. This is evidenced in Figure 1(c) where a clear change of the

relative intensity of the highlighted bands takes place when laser power is increased. On the

other hand, no temperature increase with laser power is seen for NaYF4:Er3+,Yb3+ UCPs

(see Figure 1(d)) which have lower absorption.

Both samples are positive uniaxial birefringent crystals, where the optical axis is perpen-

dicular to the two hexagonal facets.19,20 Thus these particles can be rotated by a circularly

polarized (CP) beam. In addition, both types of particles are non-spherical. This affects the

trapping properties of the particle. Due to the action of two different optical torques, the

particle is stably trapped with its optical axis parallel to the polarization of the trapping

laser, if linearly polarized (LP) light is used.20 Thus, the trapped particle is stably orientated

with its longitudinal axis parallel to the propagation direction of the trapping beam. This

means that, when CP light is used, the rotation axis is parallel to the longitudinal axis of

the particle.

Thermometric techniques. The following described techniques (luminescence, rotation

rate and trap stiffness methods) can provide a value for the thermal loading (CP ), which is the

temperature increment per unit of power generated by the trapped particle. The temperature

increase depends on the amount of light absorbed by the particle and the fraction of that light
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Figure 1: SEM images of (a) NaYbF4:Er3+,Nd3+ and (b) NaYF4:Er3+,Yb3+ particles and
their corresponding luminescence spectra in (c) and (d), respectively, for two different exci-
tation powers.

that is converted into heat through energy dissipation processes (see Supporting Information

for details). Although both the absorption rate and energy dissipation are expected to depend

on temperature, this dependence has been shown to be negligible in previous studies which

show a linear temperature increment with laser power in the range of temperature explored

here.12 Thus we assume a temperature increment (T ) with the laser power (P ) of the form:

T (P ) = T0 + CPP , where T0 is the initial temperature with no laser power applied (i.e.

room temperature). We stress that the rotation rate and trap stiffness methods described

below are independent of particle size and shape distinguishing this approach from previous,

established routes for determination of CoM temperature.10,14,15,21

Luminescence method. This method obtains a value of the thermal loading (CPI) from the

changes in the intensity ratio ( I2
I1
) of the two temperature-dependent emission bands:

6

Page 6 of 23

ACS Paragon Plus Environment

ACS Photonics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ln

(
I2

I1

)
= −CE

1

T0 + CPIP
+ CI , (1)

where CE and CI are constants which include information of the thermalized energy levels

involved in the radiative transitions (see Supporting Information for details).8,17 Thus, CPI

can be determined from the evolution of ln( I2
I1

) with P . It is worthy of note that, contrary

to conventional thermometry studies, a prior calibration of the luminescence response with

temperature is not needed since that information is included in the fitting parameters CE

and CI .

Rotation rate method. When a birefringent particle is trapped by a CP beam, an optical

torque will act on it: τopt = ∆σP/ω, where ∆σ is the change in the degree of polarization and

ω the angular frequency of light. The magnitude of τopt depends on the birefringence of the

particle, which induces a phase retardation in the components of the CP light resulting in a

change in the output polarization. In addition, optical torque transfer can be produced thor-

ough absorption of the CP light by the particle.22 Due to the Stokes drag torque counteracting

τopt, the trapped particle rotates at a terminal rotation rate: Ω = (∆σP )/(β(η)ω), where

β(η) denotes the rotational Stokes drag coefficient, which is dependent on the medium’s vis-

cosity (η(T )). Here we have used a tabulated dataset23 to obtain the temperature-dependent

viscosity of water: η(T ) = A+Be−T/C , with A = 0.156 ±0.007 mPas, B = 1.37 ± 0.02 mPas

and C = 41 ± 1 ◦C. Therefore the dependence of Ω(P ) can be written in the form:

Ω(P ) =
CRP

A+Be−(T0+CPΩP )/C
, (2)

where CR = ∆σ/(ωβ′), with β′ = β/η, is a constant that includes the characteristics of the

particle and τopt. The linear dependence of T with the laser power has also been included.

The thermal loading (CPΩ) can be determined from the fitting of Eq.(2) to the experimental

rotation rate as a function of the laser power. Therefore, here, CPΩ can be directly obtained

from Ω(P ) , while traditional studies require a prior knowledge of the drag coefficient of the
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particle (and therefore particle’s size and shape) and the thermal profile in the surrounding

medium in order to be able to fit the measured rotation rate to the theoretical model.21,24

In our case, particle’s size and shape are included as the fitting parameter CR.

Trap stiffness method. A particle trapped in an optical potential undergoes Brownian mo-

tion subject to the trap stiffness, which can be obtained by the analysis of its position power

spectrum.25 The corner frequency (fc) of the power spectrum determines the trap stiffness:

κ = 2πfcβ(T ), which is also dependent on T 21,26 and therefore provides a way to measure

temperature. Correct determination of the trap stiffness requires knowledge of the thermal

loading (CPκ). We determine its value by a numerical optimization routine which enforces

the expected linear relationship between κ and P (see Supporting Information for details).

This novel method presents several advantages in contrast to the traditional ways used to

measure temperature from the particle’s Brownian motion. Usually, power spectrum and

equipartition method results are combined.15 However, former studies have shown that dif-

ferent trap stiffness calibration methods lead to a different value of the trap stiffness due

to their particular limitations,27 and therefore, the combination of results from different

methods introduces more uncertainty in the measurement of the temperature. Moreover, to

obtain a value of κ from the equipartition method, the QPD signal needs to be converted

to displacement in distance units, rather than voltage, thus a calibration is needed.13 In

addition, to obtain a value of κ from the power spectrum, a knowledge of the drag coefficient

of the particle (including size and shape) is required. In this case, we have used a theoretical

translational drag coefficient for the disc-like particles: β′ = β/η = 6V f/f0R
−2, where V

and R are the volume and radius of the particle, respectively, and f/f0 the Perrin friction

factor.28 Nevertheless, this information is not necessary in our case since our procedure can

be applied for a normalized value of κ (κ/2πβ′ = fcη), since the drag coefficient is a constant

that multiplies the viscosity of the medium.

8
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Results and discussion

Highly-absorbing particles. Figures 2(a-c) show the experimental data obtained from

an optically trapped NaYbF4:Er3+,Nd3+ microparticle for the different techniques. The

change in the intensity ratio with the laser power (Figure 2(a)) indicates an increment of the

temperature of the particle according to a thermal loading of CPI = 0.37 ± 0.06 ◦CmW−1.

Figure 2(b) shows the rotation rate as a function of the applied laser power. The best fit of the

experimental data with Eq. (2) provides a thermal loading of CPΩ = 0.35 ± 0.05 ◦CmW−1.

Finally, Figure 2(c) shows a superlinear behavior of κ, assuming a constant temperature

(T = 22 ◦C) (green circles). The green line is a guide for the eye. Blue data correspond to

the optimized linear relationship between κ and P for a thermal loading of CPκ = 0.11 ±

0.04 ◦CmW−1. All the results are summarized in Table 1.

These thermal loadings of a single NaYbF4:Er3+,Nd3+ particle are one order of magnitude

larger than those measured for colloidal solutions of Nd-doped nanoparticles,12 but they

are comparable to those reported for individual gold nanoparticles.26,29 This suggests high

light-to-heat conversion efficiency of the studied particles (see Supporting Information for

details). Due to this fact, temperatures above the boiling point of water were reached during

experiments, as shown in Figure 3. We note that there are a number of reports showing light-

excited particles exceeding the boiling point of water at the standard pressure.29–31 However,

it is often the case that no bubble formation was observed probably due to the increase of

the critical temperature in the proximity of the particle (see Supporting Information for

details). In addition, it is worth noting that no signs of particle disruption were observed

even though its temperature can reach as high as 280 ◦C during the trapping experiments

(see Supporting Information for details).
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Figure 2: (a) Change in the intensity ratio as a function of the trapping power, (b) rotation
rate as a function of the laser power and (c) trap stiffness as a function of the laser power when
temperature is set to 22 ◦C (green) and when temperature increment is considered (blue) for
a NaYbF4:Er3+,Nd3+ microparticle. (d) Change in the intensity ratio as a function of the
trapping power,(e) rotation rate as a function of the laser power and (f) trap stiffness as a
function of the laser power when temperature is set to 22 ◦C (green) and when temperature
increment is consider (blue) for a NaYF4:Er3+,Yb3+ microparticle. Where not present, error
bars are smaller than the symbols denoting the data points.

Table 1: Measured thermal loadings. aThis thermal loading was calculated from the lumines-
cence thermal resolution (0.5 ◦C) divided by the maximum applied laser power (∼ 800 mW).
All values are given in ◦CmW−1.

Particle NaYbF4:Er3+,Nd3+ NaYF4:Er3+,Yb3+

Luminescence 0.37 ± 0.06 < 0.001 a

Rotation rate 0.35 ± 0.05 0.001+0.006
−0.001

Trap stiffness 0.11 ± 0.04 0.007 ± 0.003

Weakly-absorbing particles. The temperature increment produced by a optically trapped

single NaYF4:Er3+,Yb3+ microparticle was also measured which is a particle with a lower

absorption at 788 nm than NaYbF4:Er3+,Nd3+ particles. Results are shown in Figures 2(d-

f) and Table 1. The thermal loading for the luminescence method could not be calculated

because the temperature increment by the laser-induced heating is lower than the thermal

resolution of the technique, as explained in the next section. The rotation rate analysis
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Figure 3: Temperature as a function of power measured for a NaYbF4:Er3+,Nd3+ micropar-
ticle by using the three thermometric methods: luminescence (green triangles), rotation rate
(cyan circles), trap stiffness (navy squares). A room temperature of 22 ◦C is assumed.

provides a thermal loading value that agrees with that estimated from luminescence ther-

mometry. On the other hand, the trap stiffness measurements give a non-negligible thermal

loading that deviates by an order of magnitude (see Table 1). This discrepancy could result

from the fact that the trap stiffness method is very sensitive to the accuracy in the determi-

nation of fc. Therefore, even in the absence of a temperature increment, the linearity of κ

can be affected by the uncertainty in the measurement of fc, and the optimization process

is able to find a value of CPκ which enhances the linear relationship between κ and P .

We note that the results obtained for a non-heated NaYF4:Er3+,Yb3+ microparticle evi-

dence that the main heating source in the experiments developed with a NaYbF4:Er3+,Nd3+

microcrystal is the particle itself. Water presents a low absorption coefficient (αabs =

0.02 cm−1 32) at 790 nm, which is negligible in the present regime.

It is worth noticing that Figure 2 shows that NaYF4:Er3+,Yb3+ microparticles present

larger trap stiffness and a lower rotation rate than NaYbF4:Er3+,Nd3+ microcrystals. We
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attribute this discrepancy to the different temperatures and absorption coefficients of the

particles. In the case of the rotational motion, the temperature increment produces a re-

duction in the viscosity of the surrounding medium leading to a larger rotation rate for the

NaYbF4:Er3+,Nd3+ microparticles. In addition, optical torque can be transferred through

absorption producing an increase in the rotation rate for the highly-absorbing particles. The

contrary effect is observed for the trap stiffness which is not only reduced as a result of the

increment in the temperature, but also due to the larger absorption of the particles which

increases the scattering force. Consequently, NaYbF4:Er3+,Nd3+ microparticles are trapped

in a weaker optical potential region which leads to a reduction in the trap stiffness.

Thermal sensitivity and resolution. The thermal sensitivity (S) is used to describe

and compare the performance of different thermometric systems: S = 1
C
dC
dT

, where C is the

parameter used to determine the changes in the temperature, i.e. intensity ratio ( I1
I2
), trap

stiffness (κ) or rotation rate (Ω). Since both rotation rate and trap stiffness methods measure

the changes in temperature through the viscosity of the surrounding medium, they present

the same sensitivity (2.0 %K−1), which is three times larger than that of the luminescence

method (0.66 %K−1). This latter case is within the range published for similar luminescence

thermometers (0.2− 2.3 %K−1).8

These thermal sensitivities can be used to obtain a value of the thermal resolution (δT )

of each technique: δT = 1
S
δC
C
, where δC is the uncertainty in the determination of the pa-

rameter C. The thermal resolutions are 0.5 ◦C, 0.03 ◦C, and 0.1 ◦C for the luminescence,

rotation rate, and trap stiffness measurements, respectively. Here, the thermal resolution of

the luminescence method was used to estimate the internal thermal loading (see Table 1) for

the weakly-absorbing particle. The thermal resolution achieved by the combined methods

ensures a higher accuracy in the determination of the thermal changes than previously pub-

lished studies of optically heated or cooled particles in aqueous media. 14–16 This capability

will improve future analysis of the CoM and internal temperatures and their coupling.
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Different degrees of freedom. Furthermore, this tripartite approach allows us for the

first time to simultaneously analyze the temperatures obtained from three different degrees

of freedom of the particle: internal, rotational and translational. We note that it has been

suggested, both experimentally and theoretically, by previous studies that the medium tem-

perature probed by the dynamics of a particle can yield different temperature depending

on whether the rotational or translational motion is considered.15,21 Moreover, the inter-

nal temperature of the particle is typically higher than the temperature of the surrounding

medium.

In the case of highly-absorbing particles (NaYbF4:Er3+,Nd3+), Table 1 shows that the ther-

mal loading measured from the luminescence and the rotation methods are in good agreement

within the experimental error, whereas the trap stiffness method exhibits a lower temper-

ature (see also Figure 3). This discrepancy can be tentatively explained by taking into

account that the temperature of the fluid varies with the distance from the particle surface,

which means that there will be a non-uniform distribution of fluid viscosity around the par-

ticle. As mentioned above, previous studies suggest that the particle experiences a different

temperature depending on whether we consider rotational or translational motion, which

is known as "hot Brownian motion" (HBM).15,33–35 Therefore, this non-equilibrium steady

state affects the Brownian dynamics of the particle depending upon whether the rotational or

translational degree of freedom is under consideration.15,21,34,35 When rotating, the particle

dynamics are affected by the liquid in close proximity to it which is at a temperature close to

its internal, whereas when it translates the particle explores regions at a lower temperature.

In other words, the fluid velocity field is more localized near the particle for rotation than for

translation, therefore the effective temperature for rotational motion is higher than for trans-

lational motion.35 This thermal difference between the translational and rotational degrees

of freedom would be enhanced for larger temperature increments and in media with a lower

heat conductivity (such as low pressure gas or vacuum) where heat dissipation is reduced.4,13

Even though former studies have shown consistent results with those presented here, there
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is not a clear explanation of the discrepancy between the different degrees of freedom. The

technique here presented can be used in future studies on the dynamics of optically trapped

particles in HBM conditions to give a better insight of the problem in different media.

Finally, our results show that the temperature of the internal degree of freedom can only

be assessed by using the luminescence of the particle. The rotational degree of freedom

is affected by the superficial temperature of the particle which is, under our experimental

uncertainty, equal to that of the internal degree of freedom. On the other hand, the trans-

lational degree of freedom exhibits a lower temperature than that of the particle itself due

to the HBM. Our study shows that, in non-equilibrium thermal conditions, the Brownian

dynamics, i.e. the external degrees of freedom, of the particle do not give a real value of

the particle temperature, whereas only the luminescence, i.e. the internal degree of freedom,

allows an access to the internal temperature of the particle.

Conclusions

In summary, the temperature of an optically trapped upconverting particle has been mea-

sured by studying its internal and external degrees of freedom. The internal degree of freedom

has been experimentally assessed through the temperature-dependent luminescence of the

particle, while the rotational and translational degrees of freedom were analyzed through

the rotation rate and the trap stiffness of the particle, respectively. The higher thermal

resolution in comparison with former studies has allowed a detailed study between these

three independent methods. Both the internal and rotational degrees of freedom yielded the

same effective temperature, while the translational motion exhibited a lower temperature in

the non-thermal equilibrium state. These results are in good agreement with the hot Brow-

nian motion to which the particle is subjected. Moreover, we note that any non-spherical

particle will present non-zero off-diagonal terms in its hydrodynamic friction tensor that

couples translational and rotational motion.36 This is a minor effect not considered in the
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study, however optical forces and torques acting on the particles may be modified by this

hydrodynamic coupling. Follow up work would give a better insight in this matter.

The tripartite thermometric method described here does not require any knowledge of

the particle characteristics or any previous calibration, which enhanced thermal sensitivity

and resolution. This is a key advantage in comparison to former studies where theoretical

assumptions and additional particle size and shape information are required for the deter-

mination of temperature, which may increase the measurement uncertainty. Thus, it would

be very interesting to show further studies of particles with different size, shape and internal

structure in a distinct solvent to corroborate the wide applicability of the technique. Further-

more, upconverting particles can offer a multitude of opportunities in different fields such as

quantum optics, levitated-optomechanics and a wide range of biological studies. Thus, our

method will interest a broad audience working on areas in the determination and control of

temperature at the micro and nanoscale.

Methods and materials

Particle preparation. The hydrothermal procedure used to synthesize the two different

types UCPs is described elsewhere.9,10 The first sample is composed of colloidal NaYbF4

microcrystals, doped with a 2 % of trivalent erbium and a 10 % of trivalent neodymium ions,

while the other is a colloidal solution of NaYF4:0.5%Er3+,5%Yb3+ microcrystals.

Optical trapping set-up. We use a standard optical tweezers set-up with a Ti:Sapphire

laser (Coherent, Mira 900-F) tuned to a wavelength of 788 nm. This wavelength is chosen

because it is able to both excite the UC luminescence and induce absorption within the

trapped particle, while minimizing any absorption by water. The LP beam was focused by

a high numerical aperture (NA) microscope objective lens (Nikon, E Plan, 100× NA=1.25,

in oil) to trap individual particles suspended in deionized water. A quarter-wave plate was

placed immediately before the microscope objective in order to switch the beam’s polarization
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from LP to CP or vice versa. For the analysis of the particle dynamics, the forward scattered

light by the trapped particle was collected using a condenser lens (Mituyoto, M Plan Apo,

20× NA = 0.42) and detected by a quadrant photodiode (QPD, First Sensor, QP50-6SD2,-3

dB at 150 kHz). A CCD camera (Basler, piA640-210gm) was used for the visualization of the

trapped particle. Finally, a compact, fiber-coupled spectrometer (Oceanoptics, USB4000)

was used for the analysis of the particle’s luminescence. The very same condenser lens was

used to collect the luminescence and a shortpass filter (Thorlabs, FESH0700) was placed at

the entrance of the fiber to block the laser light from reaching the detector.

Experimental protocol. The following procedure was applied for the determination of

the thermal loading through the developed tripartite thermometric technique. First, the

trapped particle was set into rotation by a CP beam at different excitation powers up to

800 mW. At each power, a rotation signal was recorded by the QPD for 6 min. During that

time, six luminescence spectra were measured every 1 min. Once the rotation experiment was

completed, the same particle was trapped by an LP beam to measure the trap stiffness for the

same power range using the QPD. At each power level, ten consecutive measurements were

performed in order to obtain reliable statistics, together with six consecutive measurements

of luminescence spectra following the trap stiffness measurement.
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Figure 1: SEM images of (a) NaYbF4:Er3+,Nd3+ and (b) NaYF4:Er3+,Yb3+ particles and
their corresponding luminescence spectra in (c) and (d), respectively, for two different exci-
tation powers.

Figure 2: (a) Change in the intensity ratio as a function of the trapping power, (b) rotation
rate as a function of the laser power and (c) trap stiffness as a function of the laser power
when temperature is set to 22 ◦C (green) and when temperature increment is consider (blue)
for a NaYbF4:Er3+,Nd3+ microparticle. (d) Change in the intensity ratio as a function of the
trapping power,(e) rotation rate as a function of the laser power and (f) trap stiffness as a
function of the laser power when temperature is set to 22 ◦C (green) and when temperature
increment is consider (blue) for a NaYF4:Er3+,Yb3+ microparticle. Where not present, error
bars are smaller than the symbols denoting the data points.

Figure 3: Temperature as a function of power measured for a NaYbF4:Er3+,Nd3+ micropar-
ticle by using the three thermometric methods: luminescence (green triangles), rotation rate
(cyan circles), trap stiffness (navy squares). A room temperature of 22 ◦C is assumed.
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