THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

© 2019. The American Astronomical Society. All rights reserved.

Data Set

, José Sénchez—Gallego3, Joel Brownstein® Marla Argudo- Fernandez5

Michael Blanton® @, Kevin Bundy9 , Amy Jones10 Karen Masters'""'?@, David R Law , Kate Rowlands"”

Anne-Marie Weljmans , Kyle Westfall®®, and Renbln Yan'?
Space Telescope Science Institute, 3700 San Martin Drive, Baltlmore MD 21218, USA; bcherinka@stsci.edu
Department of Physics and Astronomy and PITT PACC, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260, USA
3 Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195, USA
Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112, USA
5 Centro de Astronomfa (CITEVA), Universidad de Antofagasta, Avenida Angamos 601 Antofagasta, Chile

Brian Cherinka' , Brett H. Andrews’

Santiago, Chile
Instltuto de Fisica, Pontificia Universidad Catélica de Valparaiso, Casilla 4059, Valparaiso, Chile
Depanment of Physics, New York University, 726 Broadway, New York, NY 10003, USA
Unlversuy of Cahforma Observatories, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
Depdrtment of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
Depaﬁment of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX, UK
13 Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
#School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
5 Department of Physics and Astronomy, University of Kentucky, 505 Rose St., Lexington, KY 40506-0057, USA
Received 2018 December 7; revised 2019 May 8; accepted 2019 May 31; published 2019 July 19

12

Abstract

The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, one of three core programs of the
fourth-generation Sloan Digital Sky Survey (SDSS-IV), is producing a massive, high-dimensional integral field
spectroscopic data set. However, leveraging the MaNGA data set to address key questions about galaxy formation
presents serious data-related challenges due to the combination of its spatially interconnected measurements and
sheer volume. For each galaxy, the MaNGA pipelines produce relatively large data files to preserve the spatial
correlations of the spectra and measurements, but this comes at the expense of storing the data set in coarse units or
“chunks.” This coarse chunking and the total volume of the data make it time-consuming to download and curate
locally stored data. Thus, accessing, querying, visually exploring, and performing statistical analyses across the
whole data set at a fine-grained scale is extremely challenging using just FITS files. To overcome these challenges,
we have developed Marvin, a toolkit consisting of a Python package, Application Programming Interface, and
web application utilizing a remote database. Marvin allows users to seamlessly work with MaNGA data by
abstracting both remote and local (on-disk) interactions to behind-the-scenes data-handling functions. Combining
this capability with additional processing and querying tools, users can create powerful Python workflows that are
easy to import and share. Marvin’s web application uses these tools to enable “point-and-click” examination of
data cubes and derived maps, as well as search queries for all publicly released MaNGA galaxies. Marvin’s
robust and sustainable design minimizes maintenance, while facilitating user-contributed extensions such as high-

https://doi.org/10.3847/1538-3881 /ab2634

CrossMark

Marvin: A Tool Kit for Streamlined Access and Visualization of the SDSS-IV MaNGA

,6,7
b}

S Chinese Academy of Sciences South America Center for Astronomy, China-Chile Joint Center for Astronomy, Camino El Observatorio, 1515, Las Condes,

level analysis code.

Key words: astronomical databases: miscellaneous — methods: data analysis — surveys

1. Introduction

Large astronomy collaborations with dedicated facilities
pursuing multiyear surveys are producing massive data sets at
furious rates. The data sets from the current generation of
surveys, such as the Sloan Digital Sky Survey (SDSS; York
et al. 2000; Strauss et al. 2002), require more disk space than is
available on personal computers and some moderate-sized
institution-level servers. However, the next generation of
surveys, such as the Large Synoptic Sky Survey (Ivezi¢ et al.
2019) and the Square Kilometer Array (Braun et al. 2015), will
create data sets that will be far too large for all but a few
dedicated national-level facilities. The real power of these
immense data sets comes from simultaneously leveraging
multiple sources of information (e.g., at different wavelengths)
about each object, so connecting the relevant data sources for a
comprehensive analysis is critical. Since individual users cannot
store the data locally and need to access portions of the data

remotely, bandwidth is often the primary bottleneck. Speed
increases in internet bandwidth have lagged behind those in
computer processors (i.e., Moore’s law; Moore 1965) by 10%
(Nielsen 1998); the effect of this lag has compounded over
decades, up to the present, to exacerbate the gap. Consequently,
only a subset of the data can be transferred. However, selecting
this subset often requires access to the whole data set, which
requires remote operations, especially queries.

SDSS was one of the earliest and remains one of the
strongest driving forces in astronomy pushing the philosophy
of public data releases that make astronomy a leader in open
science. Crucially, these data releases are served with robust
data distribution systems and come thoroughly documented.
These two often-overlooked aspects have lowered the entry
barrier and enabled thousands of professional astronomers and
many times more public users to take advantage of this
powerful data set. Marvin extends this mission by providing

https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
mailto:bcherinka@stsci.edu
https://doi.org/10.3847/1538-3881/ab2634
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab2634&domain=pdf&date_stamp=2019-07-19
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab2634&domain=pdf&date_stamp=2019-07-19

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Image slice Spectral slice
at a single at a single
wavelength spatial location

Image of
combined
light

Cherinka et al.

Emission line Gaussian flux: H-alpha 6564 ‘\l‘ log([NI116585 / H-alpha)
70 IS 70 —
5 0.06
60 ; 60T 60 -0.12
s .
o] N -0.18
45 2
g 40 Y 340
g [g -0.24
50 302 ? 30
= -0.30
20 ,\w 20
157 -0.36
10 o 10
- -0.42
0 X 0
0 20 40 60 - 0 20 40 60
spaxel spaxel
Stellar velocity Stellar velocity dispersion
70 70
120
60 60
50 50 | 105
7 D
3 40 g 40
w2 90 ©
& £ b €
30 ~ 30 <

0 20 40 60
spaxel

Figure 1. Left: gri image of MaNGA 1-596678 with the IFU field of view shown in purple. Middle: IFU observations produce three-dimensional data cubes, with one
spectral and two spatial dimensions (credit: Stephen Todd and Douglas Pierce-Price; IFS Wiki http: //ifs.wikidot.com). Right: spectral analysis of individual spaxels
produces hundreds of two-dimensional maps for each galaxy spanning a wide range of physical properties. The four example maps shown for 1-596678 are Ha flux
(top left), log(IN 11] A6585/Ha) flux (top right), stellar velocity (bottom left), and stellar velocity dispersion corrected for instrumental broadening (bottom right). The
map plots were made using the Marvin code provided in the online documentation (https://sdss-marvin.readthedocs.io/en/stable/tutorials /plotting-tutorial.html).

code to facilitate data use by professional astronomers,
scientists in other fields (e.g., physics, computer science, and
statistics), data scientists, citizen scientists, educators, and
students.

The current phase (2014-2020) of SDSS, SDSS-IV (Blanton
et al. 2017), consists of three simultaneous surveys, including
the Mapping Nearby Galaxies at Apache Point Observatory
(MaNGA; Bundy et al. 2015) survey. Legacy SDSS (York
et al. 2000) took spectra of only the central regions of galaxies
(Strauss et al. 2002), whereas MaNGA takes hundreds of
spectra per galaxy arranged in a hexagonal grid across the face
of the galaxy (Drory et al. 2015), using the SDSS/BOSS
spectrographs (Smee et al. 2013) on the SDSS telescope (Gunn
et al. 2006). Typically, there are three dithered sets of three
individual exposures offset from each other that are combined
into a data cube (Law et al. 2016; Yan et al. 2016a, 2016b).
Thus, each object is not represented by just a single central
spectrum, but rather a well-sampled grid of spectra.

Figure 1 illustrates the format of the MaNGA data set. Each
data cube consists of two spatial dimensions and one
wavelength dimension. The one-dimensional spectrum at each
spatial location can be interpreted in terms of measurements
and physical parameters, yielding over 150 two-dimensional
maps for each galaxy (Westfall et al. 2019), including gas
emission lines, stellar absorption features, stellar surface
density, star formation rate surface density, stellar velocities,
and gas velocities. These maps can then be interpreted in terms
of global properties of each galaxy: its mass in stars, its mass in
dark matter, its total star formation rate, and other quantities.
Marvin and the MaNGA maps for 4824 galaxies will be
publicly released as part of Data Release 15 (Aguado et al.
2019).

In addition to its complexity, MaNGA’s data volume is
significant. MaNGA will observe over 10,000 galaxies (Law
et al. 2015; Wake et al. 2017), more than an order of magnitude
larger than previous IFU surveys, such as the Atlas®®
(Cappellari et al. 2011), DiskMass (Bershady et al. 2010),
and CALIFA (Calar Alto Large Integral Field Area; Sanchez
et al. 2012) surveys. All told, the final MaNGA data release

will be 10 TB, or about 1 GB per galaxy in final summary data
products, containing data cubes and row-stacked spectra in log
and linear wavelength sampling, derived analysis maps, and
model template data cubes. Individual data releases contain
multiple analyses of each galaxy, each optimized for different
science goals, resulting in multiple versions, e.g., different
binning schemes, of the data cube and maps. The total volume
for all of the MaNGA public data releases will be 35 TB owing
to reanalyses of the same galaxies as the data pipelines
improve. Because of these reanalyses, if a given scientific paper
is to be replicable, easy access to previous data releases must
also be provided.

Further complicating analysis of MaNGA data is its coarsely
chunked storage across separate files for the spectra and
derived property maps for each galaxy. Traditionally data are
stored this way to optimize for an object-by-object catalog of
files. These coarsely chunked data make querying on
MaNGA’s spatially resolved data quite difficult without
extensive manual preparation of all files and tracking of
correct cross-matches, so queries can only easily be done on
global properties. Exploratory analysis and visualization are
cumbersome with coarsely chunked data, which is com-
pounded by the disconnected packaging of the spectra and
maps. Finally, coarsely chunked data unnecessarily strain
bandwidth and disk space resources because superfluous data
need to be transferred and stored. These challenges encourage
traditional object-by-object analyses instead of innovative ones
that leverage the statistically significant sample size of
MaNGA.

This paper presents software to address these challenges.
Section 2 describes a typical science use case for MaNGA and
how Marvin streamlines its implementation. Section 3
describes the initial prototype and its inherent limitations, the
core design philosophy of Marvin, and the components
involved. Section 4 describes the variety of client-based
programmatic tools available in Marvin. Section 5 describes
the front-facing web portion of Marvin, which serves as the
exploratory portal of entry for new users. The server-side
features and back-end capabilities are discussed in Section 6. In

http://ifs.wikidot.com
https://sdss-marvin.readthedocs.io/en/stable/tutorials/plotting-tutorial.html

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Cherinka et al.

Workflow Stages | [Existing MaNGA Workflow

Marvin Workflow

Selection

using global parameters.

Sample Select MaNGA galaxies from catalog

Select MaNGA galaxies from database
using global or local parameters.

Y

Data Access Download entire FITS files locally.
\J
Haia Use existing tools (e.g., Astropy) to
interaction import FITS file data into Python
environment.

\ 4

Data Linkage A :
spatially link data products.

Use metadata and documentation to

vy

Write custom analysis tools to

Interpretation
interpret the data.

Marvin’s MMA handles E
all data access. |

\i
Convert search results to Marvin
Tool objects (e.g. Cubes, Maps).

Marvin internally spatially
links all data products.

Y

Apply Marvin’s analysis tools or
write custom ones.

Figure 2. Typical MaNGA workflow stages from sample selection through interpretation (left column) performed with existing tools (middle column) and Marvin
(right column). At each stage, Marvin either enhances the existing capabilities (highlighted in red) or automatically handles tasks (gray boxes).

Section 7.1, we discuss the deployment and future directions
for Marvin. We summarize Marvin in Section 8.

2. Workflow

Figure 2 highlights an example workflow going through the
stages of Sample Selection, Data Access, Data Interaction, Data
Linkage, and Interpretation. Prior to Marvin, the workflow for
an analysis of MaNGA data, as indicated in the middle panel,
would typically consist of a user selecting galaxies based on
global galaxy parameters, downloading all the data files for
those galaxies locally, and then using existing tools (e.g.,
Astropy) to load the data into generic (i.e., not MaNGA-
specific) FITS objects in a programming environment. To
retrieve all relevant information for a target, the user must load,
access, and construct the spatial links between data in separate
files. Finally, users must write their own custom, often
reinvented, analysis tools to visualize and interpret the data
for their science.

The Marvin framework streamlines the existing workflow
as shown in the right panel of Figure 2. Marvin enhances
existing workflow steps (shown as red text) and obviates
workflow steps that require logistical overhead effort for data
handling (shown in gray dashed boxes). While the methods
involved in the existing workflow are functional, they contain
the following problems, which Marvin redresses:

1. The first four tasks in the workflow, i.e., selecting a target
sample, downloading and linking FITS files, are easy to
describe but require moderate effort to implement, which
is compounded when iterating over selection criteria
during exploratory analyses. In contrast, Marvin
provides functionality to handle these ubiquitous tasks.
In particular, Marvin’s front-end web interface enables

rapid preliminary visual exploration without downloading
data or writing code.

. The selection of galaxies to analyze can only be done on

global quantities, not the maps or the spectra. In contrast,
search capabilities in Marvin are far more powerful,
flexible, and detailed. Marvin can perform complex
queries on the maps and spectra (e.g., search for galaxies
with a high star formation rate surface density near the
center).

. Unnecessary data are inevitably downloaded, since only

entire files (containing the entire data cube or hundreds of
maps) are available for download, increasing bandwidth
and disk resources. In contrast, Marvin adds substruc-
ture to the data so that only the explicitly requested data
are downloaded (i.e., a single map or spectrum),
minimizing bandwidth and local disk use, if desired.

. Individuals must build their own tools to manage the

download of data to the local server, which can be
complicated to manage efficiently without substantial
effort. Additionally, individuals must define a different
set of tools for accessing remote data versus local files.
These logistical issues pose a significant barrier to new
users. In contrast, Marvin comes with such tools that
automatically avoid multiple downloads of the same data.
The same set of Marvin tools can be used in different
hardware locations (i.e., with either local or remote access
to the data) with only a single configuration change.

. To compare map quantities and spectra, individuals must

build their own tools to link spatial locations in the maps
to spectra. In contrast, most of the detailed data access
tools are built into Marvin and internally perform all
necessary linkage in a standardized fashion.

. Visualizing the data is cumbersome and time-consuming,

as it requires that all data be local and relies on manual

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

plotting scripts or the repetitive use of third-party tools. In
contrast, Marvin’s web interface and Python package
provide visualization tools for fast iteration and explora-
tory analyses.

7. Individuals’ analysis code remains siloed and is not
reused. In contrast, Marvin includes some analysis code
and serves as a foundation and repository for shared
analysis code, which minimizes code duplication across
researchers and projects.

Marvin is structured as a complete ecosystem such that the
entire workflow can be performed in a single Python
environment or program, but its modular design allows many
aspects of Marvin to be used independently of each other.
Data can be either accessed through Marvin’s provided Tools
or downloaded using Marvin but imported and analyzed with
other tools. This flexibility makes Marvin a useful tool to a
broad range of astronomers.

3. Core Design
3.1. The Marvin Prototype

To address the challenge of visually exploring MaNGA data,
we developed a prototype version of Marvin that existed as a
pure web application. The prototype displayed optical images,
spectra, and property maps for individual galaxies. These visual
displays, in conjunction with a basic annotation system, proved
useful for quality assessment of an early version of the MaNGA
pipelines. The prototype also featured a simple query system
and provided links to download the FITS data files.

The design choices for the prototype enabled rapid
development but ultimately limited its utility and sustainability.
The images, spectra, and maps were static PNG files, which
could not provide the interactive experience required for a
complete visual exploration of the complex suite of available
parameters. Queries could only be performed on global
properties, not local (spatially resolved) ones. Data could only
be accessed via large files that contained all of the spectra or
property maps for a galaxy, making it impossible to retrieve
just the spectrum or a single property of an individual spaxel.
Because expanding the feature set of the prototype required
creating new static files, the prototype was difficult to extend
and time-consuming to maintain.

Furthermore, none of the components in the prototype web
application were usable in a command line form. Users were
forced to reinvent the same visual and search tools if they
wanted to use them programmatically. Such tools could serve
as the basis for and be related to advanced programmatic
analysis tools. Every user would end up developing similar
tools but within different frameworks, such that each
individual’s analysis code would not be interoperable with
that of other users.

These limitations of the prototype design failed to address
any of the inherent challenges of the MaNGA data set. Thus, a
complete redesign and refactor was required to fix these
shortcomings, which led to a new design philosophy of
Marvin.

3.2. Design Philosophy and Core Components

Marvin’s design philosophy focuses on eliminating the
overhead costs and limitations of accessing the large, coarsely
chunked, and incompletely linked MaNGA data set. Solving

Cherinka et al.

these issues enables on-demand data access, interactive visual
exploration, minimal downloads, spatially resolved queries,
and statistical analyses at a spaxel level. Marvin provides a
feature-rich framework that serves as the building blocks for
user-developed analysis tools that can be contributed back into
Marvin to maximize code reuse and accelerate scientific
progress.

Marvin is a complete toolkit designed for overcoming the
challenges of searching, accessing, and visualizing the MaNGA
data. The core design is centered around a few main
components:

1. A Multi-Modal Access (MMA) system that handles all
data flow paths.

2. An Application Programming Interface (API) based on
the Representational State Transfer (REST) architectural
style that handles all communication between the client
and server.

3. A Brain, a common core package that handles generic
functionalities and abstracts common methods needed
during data gathering.

4. A programmatic DataModel that simplifies handling of
a large suite of parameters that may differ between data
releases and formats.

Marvin combines and builds on top of these core pieces to
provide the following additional tools:

1. A suite of interconnected Python tools, all based off a
core Python tool with the MMA system built in, with two
main tool types:

I. Data Product Tool: wraps your data products and
retrieves specific chunks of data (e.g., Cube or Maps
in Section 4.1).

II. Query Tool: performs SQL queries against the remote
data, with a pseudo-natural language syntax parser to
simplify the user input.

2. A Python Interaction class providing a uniform
interface to the API, integrated into all the Tools.

3. A web application, built on top of the Tools, for quick
data visualization and exploration.

These tools work with each other, allowing for multiple
entry points into the data, making it easy for users of various
domain expertise (i.e., from students to power users) to access
the data using the same suite of tools.

3.3. Multi-modal Access

In the case of MaNGA, the amount of data produced (the
final data release will be of order 10 TB) sits on the boundary
of what a user can store and analyze locally with normal
computing resources. Future surveys (e.g., the Large Synoptic
Survey Telescope) will produce data sets many orders of
magnitude larger than MaNGA'’s, thus requiring the develop-
ment of new ways to access data.

One of Marvin’s core design choices is that data access
should be abstracted in a way that makes the origin of the data
irrelevant to the final user. Marvin accomplishes this goal
with an MMA system with a decision tree that defines what
access mode to use and the code implementation that executes
it. Below we describe the data access modes: opening local
files, searching local databases, or making API calls to a remote
web server. Each of these data formats carries a series of
advantages and disadvantages, but Marvin’s MMA allows

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

users to leverage the advantages while minimizing the
disadvantages.

Files (e.g., FITS) provide portable data that can be heavily
compressed, and they are the current standard for astronomical
data distribution. However, data access can be slow (especially
from compressed files), and the data are usually stored in a way
that requires a degree of familiarity with the data model.
Moreover, doing searches and cross-analyses between multiple
targets usually demands accessing a large number of files and
keeping a significant amount of data in memory.

Relational databases solve some of these problems by storing
the whole data set in an optimized and well-indexed way,
which enables running complex queries efficiently and
provides quicker data access in most situations. In this case,
the main disadvantages are the large size of a monolithic
database (comparable to downloading all of the uncompressed
files that compose the data set) and the difficulty of learning
how to access data, especially compared to access via files.

Finally, data can be stored in servers (either as files or in
databases) and accessed remotely via an API call that returns
only the subset of data requested in the call. APIs are
convenient for the user since they obviate the need to download
data files to a local computer and can be used to abstract the
data model. Their main downsides are that the internet is
required to access the data and that applications that require
access to large amounts of data can be slow to run.

Marvin Tools (see Section 4) include implementations that
allow loading data from files, from a database, or via a series of
API calls. However, once the data have been loaded, the Tools
behave the same and produce the same results regardless of the
data origin.

Figure 3 shows the decision tree followed by each tool to
decide from where to load data. If the MMA is being run in
“local” mode and a target identifier is provided (a plate-IFU or
mangaid, which define a unique observation or a single target,
respectively; see Yan et al. 2016a), the code checks whether a
database is available and, if so, loads the data using it. If a
database cannot be found, the default path file corresponding to
that identifier and data release (generated as described in
Section 3.3.1) is used, if the file exists locally. Alternatively, a
file path can be passed to the MMA, in which case that file will
be used.

In “remote” mode, an API call is done to a remote server
with the target identifier and the data release as inputs; the
remote server uses the same MMA in “local” mode to access
the necessary data from a database containing the complete
MaNGA data set and returns them.

The default mode for Marvin is “auto” mode, which tries to
access the data in “local” mode first and will try in “remote”
mode upon failure. This order prioritizes local over remote data
access because the former is usually faster, while seamlessly
transitioning to the latter if the data are not available locally.

In principle, it would also be possible to set up a system with
a complete MaNGA database and use Marvin to access it
locally. While setting up such a system would be nontrivial
from a technical standpoint, there are situations in which it
could be advantageous (e.g., in the case of an institution that
wants to provide a local mirror of the MaNGA data set).

Figure 4 shows a high-level overview of the user interface in
Marvin. The user has two main access points: the local
Marvin client or the web browser interface. While the
browser interface communicates directly with the Marvin

Cherinka et al.

server, the MMA operating on the client side decides whether
to access data locally or remotely via API calls to the Marvin
server. The Marvin server (following the MMA decision tree)
first attempts to access data from a local database and will fall
back to files when needed.

3.3.1. Abstract Path Generation

A machine-aware approach to file locations requires general-
izing the ability to generate full paths to these files and
removing all traces of the base filesystem root directory. In this
way, Marvin can be agnostic to whether it is installed on a
user’s laptop or an SDSS host server. This layer of
functionality is provided by the publicly available sdss-
access (Cherinka et al. 2018) and sdss-tree (Cherinka &
Brownstein 2018) software packages. sdss-tree provides
the local system environment variable setup, allowing tools to
understand the relative locations of data, while sdss—access
provides a convenient way of navigating local and remote file
paths. Paths to files are defined in a template format, specified
with a shortcut name, plus a series of keyword arguments that
specify variables within the filenames. This enables users to
specify a robust path to any file simply by adjusting the input
variable parameters. These packages are designed around
relative path definitions, allowing a user to replicate a full
environment by changing the definition of the base path. With a
single root environment variable set by the user, these packages
automatically create a local filesystem structure that mimics the
filesystem of the SDSS Science Archive Server hosted at the
University of Utah on which the full MaNGA data archive is
stored.

For a given file, sdss-access has the ability to look up
the full system path, generate the corresponding HTTP URL,
and generate a remote access path for use with rsync. This
flexibility allows Marvin to know precisely where to look for
a given file locally and also quickly switch to a remote host
when needed. sdss-access has the ability to download files
from an SDSS server using multistream rsync, a technology
derived from the SDSS Transfer Product (Weaver et al. 2015).
This enables fast and robust file transfers, which are
particularly helpful for speeding up downloads of many files.
The hierarchy of files is created identically at the destination.
As paths are added to the service, sdss-access eliminates
redundant downloading by first checking for the existence of
the file locally and only downloads files that do not currently
exist.

3.4. Marvin’s Brain

Marvin relies on many logistical tasks and functionalities
for interacting with modern astronomical data interfaces that
are not specific to MaNGA. Examples of logistical tasks are
local file path management, submitting HTTP requests for
accessing remote data, constructing SQL queries to access data
from databases, and building web applications to serve data.
These tasks incur logistical overhead costs on users and serve
as barriers to data access. Since these tasks are not specific to
MaNGA, they have been abstracted out of Marvin into a
separate package called Marvin’s Brain that provides a
framework to automatically manage common data access
logistics.

Currently, the key capability implemented in the Brain is a
high-level wrapper, BrainInteraction, for handling

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Cherinka et al.

Local vs Remote decision tree

==
e

target File
identifier

YES
l download?

Open
DB

N Open

downloader

target
identifier

API call

FAILS!

Figure 3. Decision tree for the MMA system. The MMA system operates in three possible modes: local, remote, and auto. See text for a detailed explanation.

HTTP requests to and from the API, which Marvin subclasses
as Interaction (see Section 6.1). While BrainInter-
action contains all of the generic functionality, Marvin’s
Interaction class customizes the configuration for
MaNGA- and SDSS-specific needs, for example, adding
MaNGA-specific input request parameter validation. Comple-
menting the BrainInteraction class, the Brain also
includes a generic authentication class used when accessing
proprietary data via the API, generic utilities for streaming
large volumes of compressed data, a generic dictionary class
for the collection and lookup of all web and API routes from a
given web application, and generic functions to process any
incoming request data. As all of the Marvin Python Tools
utilize the API for remote access, abstracting this functionality
into a higher class provides a smooth entry point for each tool
that is robust against API changes and reduces repeated
necessary data handling. Additionally, the Brain also contains
code for error logging, generic database functions (e.g.,
constructing network node graphs between database tables),

efficient data compression, and a generic global configuration
class, all of which Marvin either uses directly or subclasses
for customization. While the Brain currently addresses the
management of HTTP requests to an API, the goal is to expand
its capabilities to additional common logistical overheads and
to provide a template product for the development of future
Marvin-like toolkits (see Section 7.3).

3.5. DataModel

As MaNGA is a long-running survey, the format of its DRP
and DAP data product FITS files can change between data
releases, also changing the MaNGA database content and
structure. These changes can break analysis scripts or tools that
access the underlying FITS files or database tables, creating
inconsistencies that make reproducibility impossible. For
example, a simple change is adding new properties, such as
MPL-6 measuring 44 spectral indices not included in MPL-5.
A more complicated case is the change in the default DAP
binning scheme from MPL-6 (no spaxel binning) to MPL-7

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Marvin User Interface

Multi-Modal

Marvin Client Access System

Cherinka et al.

Data Source

J

LMarvin Server

Figure 4. High-level user interface of Marvin and the MMA system, depicting the two major paths of user flow through the system, namely, via the browser, which
communicates directly with the Marvin server, or via the Marvin client, which uses the MMA to decide on local or remote access.

(HYBI1O; different spaxel binnings for stellar kinematics and
emission lines). Marvin programmatically implements the DRP
and DAP data models by mapping the underlying FITS and
database content into standardized DRPDataModel and
DAPDataModel objects and classes. These classes remain
constant in Marvin, acting as a translation layer between the
underlying FITS file products, the equivalent database content,
and the Marvin Python Tools. For example, the DRP FITS
extensions containing “flux,” “ivar,” and a “mask,” as well as
its equivalent database table, are mapped to a single
DataCube flux object. DAP FITS extensions containing
“spectral indices” are mapped to Property and Channel
objects. Through this standardized DataModel layer, data
model changes introduced between releases are automatically
propagated to the user-facing Data Product Tools simply by
setting the MaNGA data release in a Marvin session. Thus, the
Marvin Data Product Tools can be written independently of
FITS files and database structure, delivering the same content
through the same interface, regardless of data origin, which
promotes the usage of consistent data versions and aids in
scientific reproducibility for the users.

Ancillary benefits to the DataModel classes are the
conveniences they provide for the user. Users can program-
matically navigate the data model within the Data Product
Tools, or as a standalone object, obviating the need to refer to
online or published documentation of the MaNGA data model.
The data model is simplified for users by utilizing Fuzzy-
Wuzzy, a fuzzy string matching algorithm, to fix incorrect but
unambiguous user input (e.g., “gflux ha” maps to “emline gflux
ha 6564”). Additionally, the documentation for the data model
is automatically generated for online user reference.

4. Programmatic Tools

Marvin provides a programmatic interaction with the
MaNGA data to enable rigorous and repeatable science-
grade analyses beyond simply visualizing the data. These tools
come in the form of a Python package that provides convenience
classes and functions that simplify the processes of searching,
accessing, downloading, and interacting with MaNGA data;
selecting a sample; running user-defined analysis code; and
producing publication quality figures. Marvin Tools are

separated into two main categories: Data Product Tools and
Query Tools. The Data Product Tools are object based and are
constructed around classes that correspond to different levels of
MaNGA data organization. The Query Tools are search based
and are designed to provide the user the ability to remotely query
the MaNGA galaxy data set and retrieve only the data they want.
Marvin also provides a built-in data model, which describes the
science deliverables for every data release of Marvin. Overall,
these tools allow for easier access to the data without knowing
much about the data model, by seamlessly connecting all the
MaNGA data products, eliminating the need to micromanage a
multitude of files. Figure 5 shows a visual guide to all our tools
and highlights the interconnectivity between them. Tutorials with
worked examples using the programmatic tools are available in
the online documentation.'

4.1. Galaxy Tools

These tools cover four main classes, Cube, RSS, Maps, and
ModelCube, that are associated with the analogous Data
Reduction Pipeline (DRP; Law et al. 2016) and Data Analysis
Pipeline (DAP; Westfall et al. 2019) data products—namely,
multidimensional data cubes, row-stacked spectra, derived
analysis maps, and model cubes. The four main tools all inherit
from a common core object, thus sharing much of their
functionality and logic, such as the MMA. These tools are
designed to do more than simply wrap and serve the underlying
data and metadata contained in FITS files. Their goal is to
streamline the users’ interaction with that data and simplify
common but often nontrivial tasks associated with handling the
data. Via these tools, all data are delivered as Astropy
Quantitys, with attached variance, mask, and any associated
available properties. With Quantity variance and mask
tracking, this enables robust and consistent arithmetic between
any of the DAP Maps. Each tool has a built-in data model
describing the format and content of the data it delivers. This
data model also provides convenient top-level access to all
properties available, with autocomplete navigation. Any given
tool has convenient access to associated data products, as well
as easy download capability for any data accessed remotely.

16 https: //sdss-marvin.readthedocs.io/en/stable/tutorials.html

https://sdss-marvin.readthedocs.io/en/stable/tutorials.html

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Links
cube.getRSS()
rss.getCube()
(index]

= <G

Legend

I

cube.getimage()
image.getCube()

‘

) Visual Guide to Marvin Tools

=

Cherinka et al.

cuba%:?p?mm
cubelx,y] .
spaxel.getCube() [mety]

spaxel.spectrum

T

Figure 5. Visual guide of the programmatic Tools, highlighting the complex interconnectivity between the tools. Green icons represent core tool classes, with orange
ovals showing the connections between them. Pink icons are helper tools, and purple icons are endpoints for visually displaying data.

Features or functionalities that are common to multiple
tools are designed as Python Mixin objects. These objects are
designed as isolated pieces of code that can be “mixed in”
with any other tool, giving that tool access to its parameters.
Access to the NASA-Sloan Atlas (NSA) catalog (Blanton
et al. 2011)17 and the DAP summary file, for instance, are
implemented in this manner. Extracting spaxels within a
specified aperture is a common functionality delivered to all
tools as a Mixin.

There are additional tools that are not associated with a
particular MaNGA data file but instead map to objects related
to the MaNGA data. These tools behave in much the same way
as the core tools. They utilize the MMA, allow for remote file
downloading, and are seamlessly integrated with each other.
The Plate tool corresponds to an observed SDSS plate used
during MaNGA observations. This object provides a list of all
of the Cubes observed on a given plate, along with additional
metadata associated with the plate (exposure numbers,
observation date, etc.). The Image tool provides interaction
with the MaNGA IFU image cutout from SDSS multiband
imaging. It allows for quick display of the IFU image,
overplotting of the IFU hexagon, overplotting of the individual
IFU bundle or sky fibers, or generating an entirely new image
at a custom pixel scale. Additionally, a list of Image objects
can be quickly generated and downloaded to the local client
system. Image utilities also exist to quickly download a list of
images in bulk using the streaming capability of sdss-
access.

4.2. Subregion Tools

Marvin provides subregion galaxy tools, which are designed
to access individual components within the main MaNGA data
products. RSSFiber, Spaxel, and Bin provide access to the
row-stacked spectra from individual fibers, data cube spaxels,

17 https: //www.sdss.org/dr15/manga/manga-target-selection /nsa/

or bins (for binned DAP data), respectively. These tools come
with convenient plotting functions, as well as access to all the
DRP and DAP properties associated with a given element. The
DAP produces data products with different spectral binning
schemes for different science cases: unbinned spectra (SPX),
spectra binned to signal-to-noise ratio (S/N) ~ 10 using the
Voronoi binning algorithm (VORI10), and a hybrid binning
scheme (HYB10), with spectra binned to S/N ~ 10 for the
stellar kinematics, but emission-line measurements are per-
formed on the individual spaxels. The “HYB10” binning type
for DAP products has complicated the underlying binning
scheme of spaxels. The Spaxel and Bin tools make the
binning much more straightforward. Each Spaxel property
contains information about whether it is binned or not, hooking
into the Bin tool when appropriate. The Bin tool displays only
the relevant information for the underlying property and
binning type, clearing up most of the obfuscation with
accessing the “HYB10” binned files directly. From Bin, one
can access all spaxels belonging to that bin, as well as generate
masks for that bin.

4.3. Query Tools

Marvin provides tools for searching the MaNGA data set
through an SQL-like interface, either via a web form or a
Python class. The Marvin Query system uses a simplified
SQL syntax (see Section 4.3.1) that focuses only on a filter
condition using Boolean logic operators and a list of parameters
to return. Not only does this simplify the syntax, but it also
automatically performs the incredibly complex table joins
required to extract data from the MaNGA database. Users can
query the MaNGA sample on global galaxy properties, similar
to searching through the DRP and DAP summary files. In the
near future, users will be able to perform intragalaxy queries on
individual spaxel measurements—a task that requires a
database or loading all of the MaNGA spaxel data into

https://www.sdss.org/dr15/manga/manga-target-selection/nsa/

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Cherinka et al.

Natural Language Syntax

“Return all galaxies with a redshift less than 0.1 with stellar mass greater than 10A9 solar
masses and at least one spaxel with an H-alpha flux greater than 25 [107-17 erg / (cmA2

s spaxel)]. Also return the galaxies’ stellar velocities and g-r colors.”

Full SQL syntax

SELECT mangadatadb.cube.mangaid, mangadatadb.cube.plate, concat(mangadatadb.cube.plate, -,
mangadatadb.ifudesign.name) AS "cube.plateifu’, mangadatadb.ifudesign.name AS "ifu.name",
mangadapdb.cleanspaxelprop6.stellar_vel, mangasampledb.nsa.elpetro_absmag([3] -
mangasampledb.nsa.elpetro_absmag[4] AS elpetro_absmag_g_r, mangasampledb.nsa.elpetro_mass,
mangadapdb.cleanspaxelprop6.emline_gflux_ha_6564, mangasampledb.nsa.z,
mangadapdb.cleanspaxelprop6.x, mangadapdb.cleanspaxelprop6.y, mangadapdb.bintype.name AS
"bintype.name"’, mangadapdb.template.name AS "template.name"

FROM mangadatadb.cube JOIN mangadatadb.ifudesign ON mangadatadb.ifudesign.pk =
mangadatadb.cube.ifudesign_pk JOIN mangadapdb.file ON mangadatadb.cube.pk =
mangadapdb.file.cube_pk JOIN mangadapdb.cleanspaxelprop6é ON mangadapdb.file.pk =
mangadapdb.cleanspaxelprop6.file_pk JOIN mangasampledb.manga_target ON
mangasampledb.manga_target.pk = mangadatadb.cube.manga_target_pk JOIN
mangasampledb.manga_target_to_nsa ON mangasampledb.manga_target.pk =
mangasampledb.manga_target_to_nsa.manga_target_pk JOIN mangasampledb.nsa ON
mangasampledb.nsa.pk = mangasampledb.manga_target_to_nsa.nsa_pk JOIN mangadapdb.structure ON
mangadapdb.structure.pk = mangadapdb.file.structure_pk JOIN mangadapdb.bintype ON
mangadapdb.bintype.pk = mangadapdb.structure.bintype_pk JOIN mangadapdb.template ON
mangadapdb.template.pk = mangadapdb.structure.template_kin_pk JOIN mangadatadb.pipeline_info AS
drpalias ON drpalias.pk = mangadatadb.cube.pipeline_info_pk JOIN mangadatadb.pipeline_info AS
dapalias ON dapalias.pk = mangadapdb file.pipeline_info_pk
WHERE mangasampledb.nsa.z < 0.1 AND mangasampledb.nsa.elpetro_mass > 1000000000.0 AND

mangadapdb.cleanspaxelprop6.emline_gflux_ha_6564 > 25.0 AND drpalias.pk = 29 AND dapalias.pk = 30

Simplified SQL syntax

q
.

f = 'nsa.z < 0.1 and nsa.elpetro _mass > 1E9 and haflux > 25°'
= Query(searchfilter=f, returnparams=['stellar vel', 'absmag g r'])

Figure 6. Example query on the MaNGA data set. The top describes the query in natural language syntax, i.e., how a user would describe it. The red panel shows the
full SQL syntax needed to perform the same query on the MaNGA database. The green panel shows the corresponding pseudo-natural language syntax and its use in

Marvin.

RAM. Tutorials for querying with Marvin are available in the
online documentation.

4.3.1. Pseudo-natural Language Syntax

Figure 6 shows an example of a MaNGA query in (1) natural
language, (2) full SQL syntax, and (3) simplified pseudo-
natural language syntax. While the query is relatively easy to
describe in natural language, the full SQL syntax (red panel in
Figure 6) is immensely complicated to construct, even if the
user already knows how to write SQL queries. SQL queries
consist of three main parts: a select clause, a join clause,
and a where clause. Constructing the select and join
clauses requires detailed knowledge of the MaNGA database
schema, table design, available columns, and the keys needed
to join the tables. With the Marvin Query tool, rather than
submitting the full SQL query, the user submits only a
simplified where clause and an optional list of properties to
return. The remainder of the query (the select and join
clauses) is built dynamically behind the scenes, converted to
raw SQL, and then submitted to the database. This allows the
user to focus on the properties and their values in the selection
criteria.

Marvin uses SQLAlchemy to map Python “model” classes
onto each of our database tables and columns. This provides
the base ability to dynamically build and submit SQL queries in
Python. With these model classes, Marvin constructs a
singular lookup dictionary containing a mapping between a
string parameter name, in the form of schema.table.
column_name, and its Python counterpart. This provides an
automatic way of looking up the database location for a given

18 https:/ /sdss-marvin.readthedocs.io/en/stable /query.html

parameter name, effectively removing the select clause.
Marvin uses networkx to map those model classes onto a
network tree, which allows the construction of a proper SQL
join clause given any two input parameters across all tables in
all schema in the database. Finally, Marvin uses a customized
version of sglalchemy-boolean-search to simplify the
where clause to a simple input string. This is a Boolean parser
that takes a string Boolean filter condition, parses it, and
converts to the proper SQLAlchemy filter object. The green
panel in Figure 6 shows the pseudo-natural language equivalent
of the desired query.

4.4. Utilities

Maskbit: MaNGA uses masks as a compact way to
simultaneously convey information about the status of an
object under many Boolean conditions. The MaNGA pipelines
produce quality masks at each processing stage, which allow
users to filter out specific types of undesirable data when
performing science analyses. During target selection, MaNGA
likewise creates targeting masks that encode the sample or
program under which an object was selected to be targeted.

The Maskbit class is a general-purpose utility used by other
Data Product Tools. It automatically loads the schema for a
mask, which can be easily displayed for the user. It can then
convert from the native integer value (e.g., 1025) to the list of
bits set (e.g., [0, 10]) to the corresponding list of labels (e.g.,
[“NOCOV,” “DONOTUSE”] for the MANGA_DRP3PIXMASK
mask, which indicates that the spaxel has no coverage in the
cube and should not be used for science). Users can create a
mask by providing a list of labels instead of filtering bits. This
class also enables searching on bits, which is particularly useful
for target selection using the targeting masks.

https://sdss-marvin.readthedocs.io/en/stable/query.html

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Plotting Utilities: Marvin’s plotting utilities enable users to
quickly display images, spectra, and maps of individual
MaNGA galaxies or galaxy subregions. The plotting utilities
also can put galaxies or subregions in context via scatter and
histogram plots of query results. As a general philosophy,
Marvin’s plotting utilities are designed to have smart defaults
for quickly making useful visualizations while allowing for
significant customization via standard Matplotlib methods,
which is particularly important for displaying maps.

Querying is one of Marvin’s most powerful features. Yet it
is difficult, if not impossible, to discover trends in large tables
of text produced from a query. To that end, Marvin includes
utilities to make scatter and histogram plots of query results.
Queries in Marvin can return results with anywhere from a
few to millions of data points, so Marvin’s scatter plot
changes the underlying display technique depending on the
number of data points (see Figure 7). Fewer than 1000 data
points are shown individually (Figure 7(a)), 1000-500,000 data
points are shown as a hex-binned density distribution
(Figure 7(b)), and more than 500,000 data points are shown
as a scatter density map (Figure 7(c)) that is responsive even
with millions of data points. By default, scatter plots show
marginal histograms with the mean and standard deviation.
Users can also create histograms separately from a scatter plot
and extract the data points in each bin.

Analysis Tools: At the time of publication, we have
prioritized development of aspects of Marvin required for
interfacing with the MaNGA data over providing downstream
analysis tools. However, Marvin is ideally suited to serve as a
foundation for analysis tools that extend its functionality to
additional processing steps. One such analysis tool that has
already been developed is a tool to classify different regions of
a galaxy according to classical emission-line ratios.

As discussed by, e.g., Baldwin et al. (1981, hereafter BPT),
the nebular permitted (Ho, H3) and forbidden emission-line
transitions (e.g., [O 11] A3727, [O 111] A5008, [N 1I] A6585) are
commonly strong and easy to detect in galaxies that contain
significant quantities of gas. Since these transitions have
different ionization potentials, their relative strengths encode
information about both the metallicity of the gas and the
hardness of the radiation field emitted by the source of ionizing
photons. As such, easily measured line ratios such as [O1II]/
HB and [NII]/Ha can be used to discriminate between HII
regions produced by thermal (i.e., star formation) and
nonthermal processes (e.g., shocks and active galactic
nuclei [AGNs]).

Marvin’s BPT tool returns masks in which individual
spaxels have been classified as ‘“‘star-forming,” “Seyfert,” or
“LINER-like” line ratios, such that a user can then plot
diagnostic diagrams, categorial maps of the classifications, or
maps filtered by these classifications (for instance, plotting the
Ha flux for star-forming regions). Such analyses have revealed
significant clues as to the physical origins of the ionizing
photons, indicating, for example, that in many sources
observed to have LINER-like line ratios in SDSS single-fiber
spectroscopy the gas is spatially extended and likely ionized by
hot evolved stars rather than a central AGN (Belfiore et al.
2016).

4.5. Contributed Code

While the core of SDSS data releases centers around its base
projects’ science deliverables, smaller teams frequently

10

Cherinka et al.

;‘ o
o o
@ °
g °
-
1 ® 0,0
0
°
°
-1
24 22 20 18 16 14 12
Elpetro_Mag_G
(a)

v
& ° 0
g 60 ©
=
g 5]
K o
< 1
40
0 °®
20
-1
24 22 20 18 16 14 12
Elpetro_Mag_G

100

<]

km

Stellar velocity [

-25

Number of points per pixel

=50

=75

“19%950 2.5 5.0 7.5

10.0
Emission line Gaussian flux Ha 16564 [1 x 1077 9 __]

125 15.0 17.5 20.0

Sspaxelcm?
(c)

Figure 7. Scatter-plotting capability from the Marvin Results Tool. Depending
on the number of results, Marvin plots using a straight scatter plot, a hex-binned
density distribution, or a scatter density map. (a) Matplotlib scatter plot for results
with less than 1000 points. (b) Matplotlib hexbin plot for results with between 1000
and 500,000 points. (c) Matplotlib scatter density plot using https://github.com/
astrofrog /mpl-scatter-density for results with more than 500,000 points.

contribute added value to its core deliverables with additional
science products. These value-added data products or catalogs
(VACS) are derived data products based on the core

https://github.com/astrofrog/mpl-scatter-density
https://github.com/astrofrog/mpl-scatter-density

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

deliverables that are vetted, hosted, and released by SDSS in
order to maximize the impact of SDSS data sets. To increase
the visibility of MaNGA VACs, Marvin has hooks to allow
users to contribute small pieces of code that plug their VACs
into the overall system, immediately connecting their VAC into
the larger suite of Marvin Tools and MaNGA Data Products.
Each contributed code piece is well documented, adheres to the
overall standards set by SDSS,' and contains the proper
software credit for the user.

The core design principles of Marvin are to perform most
of the legwork for the users, making access as easy as
possible, while allowing users to contribute their own code to
help expand Marvin’s functionalities. For VACs, contribu-
tors create a new class defining their VAC based on a
predefined base class that provides unique target identifiers
and automatic file retrieval methods needed to extract specific
data from files. Contributors simply define the name of their
VAC, the unique file path parameters, and a single method
returning the data content. Contributors do not need to
implement access to the core data products, which is already
handled by Marvin.

More generally, the Marvin code is structured to ease
contributions of drop-in utility or analysis methods that
add functionality to Marvin. These functions can manip-
ulate or extract data from existing Marvin Tools, perform
some analysis, or return a plot or data. The BPT tool from
the previous section serves as an example of such a drop-in
function that easily wraps the existing Tools. Users are
encouraged to contribute Marvin-based analysis code
back into the project so that others can take advantage
of their efforts. We have adopted the BSD 3-Clause open-
source software license to facilitate and encourage
contributions.

5. Marvin Web

The web, or browser-based information gathering, is often
the first entry point for any user new to a field. Poor web design
(e.g., cluttered content, complex interfaces) can quickly
discourage users from interacting with the delivered content.
Marvin provides a web front end that aims to be as intuitive
and streamlined as possible, with a focus on quick visual
exploration of the MaNGA data set, leaving more rigorous
analysis to the programmatic Marvin Tools or the user’s own
scripts. This minimal but interactive interface encourages users
to quickly engage with MaNGA data and, when ready,
seamlessly transition into more advanced environments. Our
web component is built using Flask, a Python-based,
lightweight, micro web framework. Flask allows for quick
deployment of a web application with minimal effort. It
contains its own built-in web server for small-scale deploy-
ment, or can easily be integrated into more advanced web
servers for production deployment. It has built-in hooks for
modularity and extensibility and employs a templating system
for writing front-end code like HTML or Javascript in a
modular way.

MarvinWeb currently provides the following features:

1. a Galaxy page, for detailed information and interaction
with individual galaxies in MaNGA;

' hitps: //sdss-python-template.readthedocs.io/en/stable /standards.html

11

Cherinka et al.

2. a Query page, for searching the MaNGA data set using
the simplified SQL pseudo-natural language syntax
described in Section 4.3.1;

3. aPlate page, containing all MaNGA galaxies observed on
a given SDSS plate; and

4. an Image Roulette page that randomly samples images of
MaNGA galaxies, useful for browsing the wealth of
variety in the 10,000-galaxy sample.

The Galaxy page (see Figure 8) provides dynamic,
interactive, point-and-click views of individual galaxies to
explore the output from the MaNGA DRP and DAP, namely,
spectra and map properties, along with galaxy information from
the NSA catalog. In contrast to the prototype, this page is
completely interactive, with more galaxy metadata. These
interactive features are deployed using a variety of third-party
Javascript libraries: Dygraphs for the spectral viewer,
Highcharts for the map and scatter plot viewers, Open-—
Layers for the interactive optical image display, and D3 for
the box-and-whisker plots.

The Query page provides the entry point for quickly
searching through the MaNGA data set. In contrast to the
prototype, this page provides search capability for all properties
in the DRP and DAP summary files, with minimal impact on
the design interface of the page. The search capability will soon
be extended to the entire suite of MaNGA parameters. It is built
on top of the Marvin Query tool, providing a single simple
interface, for both the web and tool, that one needs to become
familiar with. In addition, the query system can be easily
extended for both web and client users at the same time.
Performing a query produces a navigable table of results, with
each row linking to the individual galaxy. One can optionally
switch to a postage stamp view of all galaxies returned in the
query subset.

While the input structure to the Marvin Query tool is
simplified greatly from the underlying full SQL statement, the
syntax can still be complicated to learn. Some users may find it
cumbersome, delivering confusion instead of intuition. The
Query page also includes an interface for dynamically
constructing an SQL statement in a guided manner. This
interface provides a series of parameter drop-downs that, in
conjunction with operators and values, can be used to build
conditions, and combined together with Boolean operands. A
web video tutorial®® is available highlighting general usage,
with more information available in the online documentation.

Because the web components are built on top of the Tools,
all the galaxy and query features can be mapped to an
underlying equivalent Marvin tool command. This allows
users to re-create what they experience in the Web with the
Marvin Tools locally on their system. On each page we
provide feature-specific code snippets that indicate the
equivalent commands for viewing galaxy maps or spaxels, or
querying the data set. These snippets can be copied and pasted
directly into the local iPython terminal.

For the back end, Flask provides the basis for the
framework as well. It can be run in a “debug” mode for rapid
development or be served in a production environment. For
production deployment, Marvin is run using the NGINX web
server, with uWSGI acting as the gateway interface between
the Flask web-app and NGINX. Flask provides the basic

20 hitps: / /www.sdss.org /dr15 /manga/manga-tutorials /marvin-tutorial
marvin-web/

https://sdss-python-template.readthedocs.io/en/stable/standards.html
https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/marvin-web/
https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/marvin-web/

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

O Github

Marvin

@ Help 99CiteUs

Cherinka et al.

Plate-IFU: 7977-12705 Cube Quality: Warnir \
Manga-1D: 1-596678
IAU Name: J221134.29+114744.9

OBJRA,
Dec

332.892838008 11.7959286635

IFU Glon,
Glat

72.7401970303 -35.0633570639

SN2 Blue,
Red

30.28 62.59

Date
Observed

DAP
Output

2014-08-30

DAP URL

MapSpec View

Galaxy Properties

Spectrum in Spaxel (j, i)=(37,37) at RA, Dec = (332.89284, 11.795929000000001)

=z
g 5
E
$ 4
2
o
) 3
8
- 2
x
S
L |
g 4000
v
stellar vel: HYB10-GAU-MILESHC =
72 72
68 68
64 64
60 60
56 I 56
52 100 s2
48 I 48

Spaxel Y
&
Spaxel Y

| I.
|

32

28

24 "

20

16

12

0 S5 10 15 20 25 30 35 40 45 S0 55 60 65 70
Spaxel X

S0

0

50
20

1 16

100 12
8
4
0

0 s

5000

emline gflux ha 6564: HYB10-CAU-MILESHC =

10 15 20 25 30 35 40 45 SO 55 60 65 70
Spaxel X

6000 7000
Observed Wavelength [Angstroms]

8000 9000 10000

specindex d4000: HYB10-CGAU-MILESHC

7 = 1.95
. 52 19
:5 185
H > B s
I 3 40 .
. X 36 1.75
a
& 32 17
3 28
24 165
2 20 16

155

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Spaxel X

Figure 8. Marvin web Galaxy page, highlighting the interactive point-and-click feature. Users can dynamically interact with individual galaxy spaxels and maps.
Clicking anywhere within the optical image, or the DAP maps, retrieves the spectrum at that spaxel location. The interactive spectrum displays both the flux (green)
and model fit (blue) for the selected spaxel. Marvin displays three maps by default: the Ho emission line flux, the stellar velocity, and the D4000 spectral index. Drop-
down menus provide additional maps to display or maps of different binning schemes.

framework on which the Marvin API and the web-facing
front end are built. Our back-end Flask routes are built using
the same suite of Marvin Tools available to the user on the
client side. In this manner, we can build a single tool for the
user while also using it to provide the same content directly
over the API or integrated into the front end as a web feature.
The server-side Marvin uses the same MMA system to
determine data location, pulling first from a local database
hosted at Utah and then from the files located on the Science
Archive Server (SAS) filesystem.

12

6. Marvin Back End
6.1. REST-like API

To provide remote data access, Marvin employs a REST-like
web API, which defines a set of rules for remote data acquisition
through HTTP request methods (i.e., GET and POST). The API
handles all requests and responses between the user and server.
There are three ways to interface with the Marvin API: directly
through HTTP (low level), with a Python helper class (mid
level), or via Marvin Tools (high level).

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

The lowest access level provides direct HTTP access to the API
routes. Our API routes use the underlying Marvin Tools and
provide remote access to the most commonly desired features of
the MaNGA data set. A list of the available routes, as well as what
data they provide, can be found in the online documentation.”!

While an experienced user can directly use the HTTP
routes to retrieve data, not everyone is familiar with how to
handle HTTP requests and responses. The middle layer wraps
the direct API calls into a Python Interaction class. The
Interaction class is a customized MaNGA subclass of the
Brains BrainInteraction (see Section 3.4), which
utilizes the requests package to handle GET/POST
exception handling, set default request parameters, check the
response, and provide convenience methods for parsing return
data into Python data types.

At the highest level, the Interaction class is built into
the core Marvin Tools (and any Tools customized from
them), providing remote access ability to all Tools. Marvin
contains a lookup dictionary for resolving API URL shortcuts
into their full route names. This dictionary allows each Tool to
understand its required remote call and provides robustness
against server-side API route changes. In this access level, the
user takes a hands-off approach to API requests. The Tool
determines when to access data locally or remotely. If remote
data access is required, it performs the API request without user
input and shapes the data properly upon receiving the response.
When using the API, the Tools employ a lazy-loading approach
to remote data to minimize server load. The API returns the
minimum amount of information needed to satisfy the user’s
request. Additional information requested through the Tools is
acquired through additional API calls.

6.2. Database

All MaNGA data are stored in a PostgreSQL relational
database. The database is the bedrock data storage component
of Marvin. It provides the basis for interactive visualization in
the web, spatially resolved queries, and selective data retrieval.
For each release of MaNGA, we store the metadata and raw
spectral output from the DRP and DAP pipelines. We currently
store data from MaNGA internal data releases, referred to as
MaNGA Product Launches (MPLs) 4-8, and the public data
release DR15. The MaNGA database currently houses all
galaxies across MPLs 4-8, totaling 12 TB in size. With
galaxies from earlier MPLs/data releases being rereduced and
reanalyzed in each MPL/data release, this results in a
cumulative 26,932 galaxy reductions/analyses. MPL-8 alone
contains 6779 galaxies contributing 3 TB to the database. The
database contains three main schema: mangadatadb, which
contains the DRP output; mangadapdb, which contains the
DAP output; and mangasampledb, which contains informa-
tion on MaNGA targets and the NSA catalog. In addition, there
is an auxiliary schema for miscellaneous data and a history
schema that stores user and query metrics. The main schema
designs can be found in the online documentation.**

6.3. SAS Filesystem

The SAS filesystem is the data warehouse for SDSS. Hosted
at the University of Utah and mirrored at the National Energy

2! hitps: //sdss-marvin.readthedocs.io/en/stable /api/web.html
2 https:/ /sdss-marvin.readthedocs.io/en/stable /api/db.html

13

Cherinka et al.

Research Scientific Computing Center, the SAS includes all of
the raw and reduced SDSS data, including the intermediate and
final data products from each survey’s data reduction or
analysis pipelines and value-added catalogs (~1000 TB). The
SAS serves both the collaboration (through a private gateway)
and the public. The filesystem structure is organized hierarchi-
cally by survey to facilitate easy navigation. Both the software
and data products are under version control, and the versions
are explicitly included in the file paths. The explicit versioning
in the file paths allows for consistent access and rapid
deployment for internal and public data releases. All software
and data products are frozen on a schedule set by the SDSS
collaboration and tagged to maintain a self-consistent, reliable,
and robust data system. These immutable tags and frozen
reduction versions ensure the reproducibility of high-quality
products. By developing Marvin to work on top of this
structure, we can consistently deliver an archive-quality data
product to the community, mitigating concerns about under-
lying intermittent data changes.

6.4. Authentication and Access

Marvin provides access to MaNGA data for both the SDSS
collaboration and the public astronomy community. The SDSS
collaboration provides data access rights for a proprietary
period, so Marvin has collaboration-only and public access
modes. The collaboration-only access mode provides access to
the private gateway for both internal data releases and public
data releases. In contrast, the public access mode provides
access to the public gateway for only the public data releases.
Approved SDSS collaboration members must authenticate with
Marvin before access is granted to the private gateway. For
the Web, Marvin uses the Flask extension Flask-Login,
which uses session-based cookies to handle all login and
authentication. For the API, Marvin uses Flask-JWT-
Extended, which authenticates via JSON Web Tokens. After
supplying their credentials in a Unix standard netrc file, the
user is allowed to log in and receive a valid token. The token is
inserted into every API request and authenticated on the
back end.

7. Deployment and Future Directions
7.1. Deployment

We tag and deploy versions of Marvin that can be installed
with the pip”> package manager, installed as a conda virtual
environment,”* or cloned with git from the GitHub®
repository. We encourage open-source software development
by adopting a BSD-3 license and hosting all code on Github.
The documentation for every version of Marvin is built with
the Sphinx package and available on Read the Docs,*
including the latest version pushed to the “master” branch of
the GitHub repository. The tagged versions of Marvin have a
digital object identifier (DOI) and are hosted on Zenodo.”’

Marvin uses several packages and services for testing—
pytest for Python code; the built-in Flask test server for
web back-end and API routes; and a combination of Selenium,

2
2

3 pip install sdss-marvin.
4 https: //anaconda.org/sdss/sdss-marvin
% https://github.com/sdss /marvin
© htps: //sdss-marvin.readthedocs.io
%7 hitps:/ /doi.org/10.5281 /zenodo.596700

https://sdss-marvin.readthedocs.io/en/stable/api/web.html
https://sdss-marvin.readthedocs.io/en/stable/api/db.html
https://anaconda.org/sdss/sdss-marvin
https://github.com/sdss/marvin
https://sdss-marvin.readthedocs.io
https://doi.org/10.5281/zenodo.596700

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Pytest-Flask, and BrowserStack for web front-end
interactions. The fraction of code covered by tests is tracked
using Coveralls.”® Our full test suite is automated with Travis-
CI, a continuous integration system. Finally, we use Sentry,*’
an open-source error tracking client, to monitor and fix crashes
in real time.

7.2. Ongoing SciServer Integration

While Marvin works either as a local analysis package or
for browser-based visual exploration, it still requires local
package installation for local analysis and focuses on single-
user software usage. Local package installation can often
interfere with custom user environments, while single-user
usage and analysis limits the ability for collaborative science.
However, an advantage of Marvin is that it can be deployed
either as a client service or in a server mode distributing
content, into existing archive systems or in different environ-
ments. To enable collaborative and remote scientific analysis,
we are in the process of integrating Marvin into the
SciServer platform. SciServer™ is a fully integrated
cyber-infrastructure system encompassing related, integrated
tools and services to enable researchers to cope with and
collaborate around scientific big data.

SciServer integration will enable users to utilize the
access and analysis capabilities of Marvin without having a
local installation. Collaborative science will be enabled through
remote, persistent Jupyter notebooks that can be shared
among multiple users. Analysis can be offloaded to the
SciServer system, removing the need for any data to be
hosted locally. Additionally, through the SciServer Com-
pute system, the Marvin Query tool will be expanded to
include asynchronous query capability, allowing intensive
queries to be submitted as jobs, similar to the existing SDSS
CasJobs system, freeing up the user’s local terminal.

7.3. Future Brain Generalization

Marvin is a toolkit specifically designed to serve MaNGA
users, but key aspects of it could be generalized to form a
template product that would serve as a starting point for a
toolkit for other astronomy data sets. Section 2 describes a
typical workflow with the MaNGA data set; however, this
workflow is not unique to MaNGA and is similar to workflows
with other astronomical data sets. As described in Section 3.4,
there are many common logistical challenges and overheads
when dealing with data access and delivery in astronomy, with
no suite of tools providing out-of-the-box capabilities to
address these challenges. Marvin’s Brain currently contains
some common important functionality necessary for a template
product that can facilitate a more streamlined data workflow.
Our goal is to further abstract out Marvin’s building blocks
(e.g., MMA system) into the Brain to create a complete
framework for a data distribution system, providing seamless
connections between web components, APIs, and program-
matic Python tools. Such a template product would link
underlying the Python packages (e.g., requests, Flask, SQLAI-
chemy) often used to solve logistical challenges but that do not
provide usable solutions by themselves. This product, when
given a file and a database presentation of that file, will provide

8 https: / /coveralls.io/github /sdss /marvin
% hitps: //sentry.io
30 hitp: //www.sciserver.org/

14

Cherinka et al.

base classes to provide a connected environment surrounding
that file, with local file and remote API access, programmatic
tools, a remote query system, and a web front end to the data
with a minimum display view. Creating a functional applica-
tion would simply involve building a new Python package
based off the Brain, subclassing its base classes, and adding
functionality and details necessary for the particular applica-
tion. Such a product would be particularly interesting for future
IFU data sets, as they are the most natural extension of
Marvin, reusing the majority of its programmatic tools;
however, the design of the Brain inherently makes it
applicable to generic data sets within astronomy.

8. Summary

We have presented the first public release of the Marvin
software, a toolkit for streamlining users’ workflow (Section 2)
on the SDSS-IV MaNGA data set. A novel aspect of Marvin
is the MMA system (Section 3.3) that automatically switches
between local files and a remote database to retrieve MaNGA
data. The MMA is tightly integrated into a suite of Python
Tools, enabling intuitive access into the MaNGA data products
(Section 4.1), as well as remote querying of the entire MaNGA
data set with a simplified query syntax (Section 4.3). Marvin
provides a web front end (Section 5) for quick visual
exploration of MaNGA data. We have adopted modern coding
best practices for long-term open-source software sustainability
(Section 7). Marvin is being integrated into the SciServer
platform to enable collaborative and remote analysis
(Section 7.2). Finally, we plan to generalize the Marvin
framework (Section 7.3) to be easily adaptable for other IFU,
astronomical, and scientific data sets.

We would like to acknowledge the MaNGA team for
supporting this project, helping shape its design, and providing
critical feedback and testing during various shakedown phases.
We would like to thank Demitri Muna for his help with Flask
and database services. We give thanks to 8485-1901 for its
noble sacrifice as our guinea pig.

Funding for the Sloan Digital Sky Survey IV has been
provided by the Alfred P. Sloan Foundation, the U.S.
Department of Energy Office of Science, and the Participating
Institutions. SDSS-IV acknowledges support and resources
from the Center for High-Performance Computing at the
University of Utah. The SDSS website is www.sdss.org.

SDSS-IV is managed by the Astrophysical Research
Consortium for the Participating Institutions of the SDSS
Collaboration, including the Brazilian Participation Group, the
Carnegie Institution for Science, Carnegie Mellon University,
the Chilean Participation Group, the French Participation
Group, Harvard-Smithsonian Center for Astrophysics, Instituto
de Astrofisica de Canarias, Johns Hopkins University, Kavli
Institute for the Physics and Mathematics of the Universe
(IPMU)/University of Tokyo, the Korean Participation Group,
Lawrence Berkeley National Laboratory, Leibniz Institut fiir
Astrophysik Potsdam (AIP), Max-Planck-Institut fiir Astro-
nomie (MPIA Heidelberg), Max-Planck-Institut fiir Astrophy-
sik (MPA Garching), Max-Planck-Institut fiir Extraterrestrische
Physik (MPE), National Astronomical Observatories of China,
New Mexico State University, New York University, Uni-
versity of Notre Dame, Observatdrio Nacional/MCTI, The
Ohio State University, Pennsylvania State University, Shanghai
Astronomical Observatory, United Kingdom Participation

http://www.sdss.org
https://coveralls.io/github/sdss/marvin
https://sentry.io
http://www.sciserver.org/

THE ASTRONOMICAL JOURNAL, 158:74 (15pp), 2019 August

Group, Universidad Nacional Auténoma de México, Univer-
sity of Arizona, University of Colorado Boulder, University of
Oxford, University of Portsmouth, University of Utah,
University of Virginia, University of Washington, University
of Wisconsin, Vanderbilt University, and Yale University.

Software: Anaconda (https://anaconda.org/anaconda/
python), Astropy (Astropy Collaboration et al. 2013; The
Astropy Collaboration et al. 2018, http://www.astropy.org),
Bootstrap (https://getbootstrap.com), Browserstack (https://
www.browserstack.com) brain (https://github.com/sdss/
marvin_brain), Coveralls (https://coveralls.io/), D3 (https://
d3js.org), DyGraphs (http://dygraphs.com), FITS (Pence et al.
2010), Flask (http://flask.pocoo.org), Flask-Login (https://
flask-login.readthedocs.io), Flask-TWT-Extended (https://
flask-jwt-extended.readthedocs.io), fuzzywuzzy (https://
github.com/seatgeek /fuzzywuzzy), git (https://git-scm.com),
Highcharts (https: //www.highcharts.com), Jinja2 (http://jinja.
pocoo.org/docs), JQuery (https://jquery.com), Jupyter (Kluy-
ver et al. 2016, http://jupyter.org), Matplotlib (Hunter 2007,
https://doi.org/10.5281 /zenodo.61948), networkx (https://
networkx.github.io), Nginx (https://www.nginx.com), Open-
Layers (https://openlayers.org), pip (https://pypi.org/
project/pip), Postgres (https://www.postgresql.org), pytest
(https://docs.pytest.org/), Read the Docs (https://
readthedocs.org/), requests (http://docs.python-requests.org),
rsync (https://rsync.samba.org), sdss-access (https://doi.org/
10.5281/zenodo.1410704), sdss-tree (https://doi.org/10.
5281/zenodo.1410706), Selenium (https://www.seleniumhgq.
org), Sphinx (http://www.sphinx-doc.org), SQLAlchemy
(https:/ /www.sqlalchemy.org), sqlalchemy-boolean-search
(https:/ /github.com/sdss/sqlalchemy-boolean-search), Tra-
vis-CI (https://travis-ci.org/), uwsgi (https://uwsgi-docs.
readthedocs.io).

ORCID iDs

https: //orcid.org /0000-0002-4289-7923
https: //orcid.org /0000-0001-8085-5890
Joel Brownstein @ https: //orcid.org,/0000-0002-8725-1069
Michael Blanton ® https: //orcid.org/0000-0003-1641-6222
Kevin Bundy ® https: //orcid.org/0000-0001-9742-3138
Karen Masters @ https: //orcid.org/0000-0003-0846-9578
David R. Law ® https: //orcid.org/0000-0002-9402-186X

Brian Cherinka
Brett H. Andrews

15

Cherinka et al.

https: //orcid.org /0000-0003-1809-6920
https: //orcid.org/0000-0003-1025-1711

Kyle Westfall
Renbin Yan

References

Aguado, D. S., Ahumada, R., Almeida, A., et al. 2019, ApJS, 240, 23

Astropy Collaboration, Price-Whelan, A. M., & Sip6cz, B. M. 2018, AJ,
156, 123

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,
558, A33

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5

Belfiore, F., Maiolino, R., Maraston, C., et al. 2016, MNRAS, 461, 3111

Bershady, M. A., Verheijen, M. A. W., Swaters, R. A., et al. 2010, ApJ,
716, 198

Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017, AJ, 154, 28

Blanton, M. R., Kazin, E., Muna, D., Weaver, B. A., & Price-Whelan, A. 2011,
Al, 142, 31

Braun, R., Bourke, T., Green, J. A., Keane, E., & Wagg, J. 2015, in Advancing
Astrophysics with the Square Kilometre Array (AASKA14), ed.
T. L. Bourke et al. (Trieste: SISSA), 174

Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, ApJ, 798, 7

Cappellari, M., Emsellem, E., Krajnovi¢, D., et al. 2011, MNRAS, 413, 813

Cherinka, B., & Brownstein, J. R. 2018, sdss/tree: tree, Zenodo, doi:10.5281/
zenodo.1410707

Cherinka, B., Brownstein, J. R., & Blanton, M. 2018, sdss/sdss_access: sdss_access
0.2.7, Zenodo, https://zenodo.org/record/1410705#.XS9vIo8pCUk

Drory, N., MacDonald, N., Bershady, M. A., et al. 2015, AJ, 149, 77

Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006, AJ, 131, 2332

Hunter, J. D. 2007, CSE, 9, 90

Ivezié, Z, Kahn, S. M., Tyson, J. A, et al. 2019, ApJ, 873, 111

Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, in Positioning and Power
in Academic Publishing: Players, Agents and Agendas, ed. F. Loizides,
B. Scmidt et al. (Amsterdam: I0S Press), 87

Law, D. R., Cherinka, B., Yan, R., et al. 2016, AJ, 152, 83

Law, D. R., Yan, R., Bershady, M. A, et al. 2015, AJ, 150, 19

Moore, G. E. 1965, IEEE Solid-State Circuits Society Newsletter, 11, 33

Nielsen, J. 1998, Nielsen’s Law of Internet Bandwidth, https: //www.nngroup.
com/articles/law-of-bandwidth

Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. 2010,
A&A, 524, A42

Sanchez, S. F., Kennicutt, R. C., Gil de Paz, A., et al. 2012, A&A, 538, A8

Smee, S. A., Gunn, J. E., Uomoto, A., et al. 2013, AJ, 146, 32

Strauss, M. A., Weinberg, D. H., Lupton, R. H., et al. 2002, AJ, 124,
1810

Wake, D. A., Bundy, K., Diamond-Stanic, A. M., et al. 2017, AJ, 154, 86

Weaver, B. A., Blanton, M. R., Brinkmann, J., Brownstein, J. R., & Stauffer, F.
2015, PASP, 127, 397

Westfall, K. B., Cappellari, M., Bershady, M. A., et al. 2019, arXiv:1901.
00856

Yan, R., Bundy, K., Law, D. R., et al. 2016a, AJ, 152, 197

Yan, R., Tremonti, C., Bershady, M. A, et al. 2016b, AJ, 151, 8

York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579

https://anaconda.org/anaconda/python
https://anaconda.org/anaconda/python
http://www.astropy.org
https://getbootstrap.com
https://www.browserstack.com
https://www.browserstack.com
https://github.com/sdss/marvin_brain
https://github.com/sdss/marvin_brain
https://coveralls.io/
https://d3js.org
https://d3js.org
http://dygraphs.com
http://flask.pocoo.org
https://flask-login.readthedocs.io
https://flask-login.readthedocs.io
https://flask-jwt-extended.readthedocs.io
https://flask-jwt-extended.readthedocs.io
https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
https://git-scm.com
https://www.highcharts.com
http://jinja.pocoo.org/docs
http://jinja.pocoo.org/docs
https://jquery.com
http://jupyter.org
https://doi.org/10.5281/zenodo.61948
https://networkx.github.io
https://networkx.github.io
https://www.nginx.com
https://openlayers.org
https://pypi.org/project/pip
https://pypi.org/project/pip
https://www.postgresql.org
https://docs.pytest.org/
https://readthedocs.org/
https://readthedocs.org/
http://docs.python-requests.org
https://rsync.samba.org
https://doi.org/10.5281/zenodo.1410704
https://doi.org/10.5281/zenodo.1410704
https://doi.org/10.5281/zenodo.1410706
https://doi.org/10.5281/zenodo.1410706
https://www.seleniumhq.org
https://www.seleniumhq.org
http://www.sphinx-doc.org
https://www.sqlalchemy.org
https://github.com/sdss/sqlalchemy-boolean-search
https://travis-ci.org/
https://uwsgi-docs.readthedocs.io
https://uwsgi-docs.readthedocs.io
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0002-4289-7923
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0001-8085-5890
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0002-8725-1069
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0003-1641-6222
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0002-9402-186X
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1809-6920
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
https://orcid.org/0000-0003-1025-1711
https://doi.org/10.3847/1538-4365/aaf651
https://ui.adsabs.harvard.edu/abs/2019ApJS..240...23A/abstract
https://doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://doi.org/10.1086/130766
https://ui.adsabs.harvard.edu/abs/1981PASP...93....5B/abstract
https://doi.org/10.1093/mnras/stw1234
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461.3111B/abstract
https://doi.org/10.1088/0004-637X/716/1/198
https://ui.adsabs.harvard.edu/abs/2010ApJ...716..198B/abstract
https://ui.adsabs.harvard.edu/abs/2010ApJ...716..198B/abstract
https://doi.org/10.3847/1538-3881/aa7567
https://ui.adsabs.harvard.edu/abs/2017AJ....154...28B/abstract
https://doi.org/10.1088/0004-6256/142/1/31
https://ui.adsabs.harvard.edu/abs/2011AJ....142...31B/abstract
https://ui.adsabs.harvard.edu/abs/2015aska.confE.174B/abstract
https://doi.org/10.1088/0004-637X/798/1/7
https://ui.adsabs.harvard.edu/abs/2015ApJ...798....7B/abstract
https://doi.org/10.1111/j.1365-2966.2010.18174.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413..813C/abstract
https://doi.org/10.5281/zenodo.1410707
https://doi.org/10.5281/zenodo.1410707
https://zenodo.org/record/1410705#.XS9vIo8pCUk
https://doi.org/10.1088/0004-6256/149/2/77
https://ui.adsabs.harvard.edu/abs/2015AJ....149...77D/abstract
https://doi.org/10.1086/500975
https://ui.adsabs.harvard.edu/abs/2006AJ....131.2332G/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.3847/1538-4357/ab042c
https://ui.adsabs.harvard.edu/abs/2019ApJ...873..111I/abstract
https://doi.org/10.3847/0004-6256/152/4/83
https://ui.adsabs.harvard.edu/abs/2016AJ....152...83L/abstract
https://doi.org/10.1088/0004-6256/150/1/19
https://ui.adsabs.harvard.edu/abs/2015AJ....150...19L/abstract
https://doi.org/10.1109/N-SSC.2006.4785860
https://www.nngroup.com/articles/law-of-bandwidth
https://www.nngroup.com/articles/law-of-bandwidth
https://doi.org/10.1051/0004-6361/201015362
https://ui.adsabs.harvard.edu/abs/2010A&A...524A..42P/abstract
https://doi.org/10.1051/0004-6361/201117353
https://ui.adsabs.harvard.edu/abs/2012A&A...538A...8S/abstract
https://doi.org/10.1088/0004-6256/146/2/32
https://ui.adsabs.harvard.edu/abs/2013AJ....146...32S/abstract
https://doi.org/10.1086/342343
https://ui.adsabs.harvard.edu/abs/2002AJ....124.1810S/abstract
https://ui.adsabs.harvard.edu/abs/2002AJ....124.1810S/abstract
https://doi.org/10.3847/1538-3881/aa7ecc
https://ui.adsabs.harvard.edu/abs/2017AJ....154...86W/abstract
https://doi.org/10.1086/680999
https://ui.adsabs.harvard.edu/abs/2015PASP..127..397W/abstract
http://arxiv.org/abs/1901.00856
http://arxiv.org/abs/1901.00856
https://doi.org/10.3847/0004-6256/152/6/197
https://ui.adsabs.harvard.edu/abs/2016AJ....152..197Y/abstract
https://doi.org/10.3847/0004-6256/151/1/8
https://ui.adsabs.harvard.edu/abs/2016AJ....151....8Y/abstract
https://doi.org/10.1086/301513
https://ui.adsabs.harvard.edu/abs/2000AJ....120.1579Y/abstract

	1. Introduction
	2. Workflow
	3. Core Design
	3.1. The Marvin Prototype
	3.2. Design Philosophy and Core Components
	3.3. Multi-modal Access
	3.3.1. Abstract Path Generation

	3.4. Marvin’s Brain
	3.5. DataModel

	4. Programmatic Tools
	4.1. Galaxy Tools
	4.2. Subregion Tools
	4.3. Query Tools
	4.3.1. Pseudo-natural Language Syntax

	4.4. Utilities
	4.5. Contributed Code

	5. Marvin Web
	6. Marvin Back End
	6.1. REST-like API
	6.2. Database
	6.3. SAS Filesystem
	6.4. Authentication and Access

	7. Deployment and Future Directions
	7.1. Deployment
	7.2. Ongoing SciServer Integration
	7.3. Future Brain Generalization

	8. Summary
	References

