
Representation Learning for Minority and Subtle
Activities in a Smart Home Environment

Andrea Rosales Sanabria, Thomas W. Kelsey, and Juan Ye
School of Computer Science, University of St Andrews

St Andrews, UK
{ar296, juan.ye}@st-andrews.ac.uk

Abstract—Daily human activity recognition using sensor data
can be a fundamental task for many real-world applications, such
as home monitoring and assisted living. One of the challenges in
human activity recognition is to distinguish activities that have
infrequent occurrence and less distinctive patterns. We propose
a dissimilarity representation-based hierarchical classifier to
perform two-phase learning. In the first phase, the classifier
learns general features to recognise majority classes, and the
second phase is to collect minority and subtle classes to identify
fine difference between them. We compare our approach with a
collection of state-of-the-art classification techniques on a real-
world third-party dataset that is collected in a two-user home
setting. Our results demonstrate that our hierarchical classifier
approach outperforms the existing techniques in distinguishing
users in performing the same type of activities. The key novelty of
our approach is the exploration of dissimilarity representations
and hierarchical classifiers, which allows us to highlight the
difference between activities with subtle difference, and thus
allows the identification of well-discriminating features.

Index Terms—Smart home, activity recognition, dissimilarity
representation, representation learning

I. INTRODUCTION

Sensor-based human activity recognition is to extract
high-level descriptions (i.e., activities) from low-level sensor
data [20]. One of the key challenges is to recognise activities
that have infrequent occurrence and less distinctive patterns,
which can have a significant implication in health-related
applications. For example, life-threatening situations like fall
or heart attack are often not frequent and may have subtle
difference from other daily activities. Being able to recognise
them effectively will enhance the robustness of an activity
recognition system.
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Fig. 1. Activity distribution and recognition accuracies on a two-user co-living
environment

To illustrate the challenge of recognising minority and
subtle activities, we use the following example. Figure 1

presents the distribution of a set of concurrent activities from
two users recorded in a smart home setting [4] and activity
recognition accuracies (measured in F1-scores) from a Support
Vector Machine (SVM) with a RBF kernel.

As we can see, SVM can fairly well recognise the majority
activities like ‘Sleep’ and ‘Work’ and the activities with dis-
tinct patterns like ‘Bed Toilet Transition’. It performs poorly
when (1) distinguishing different activities from the same
user occurring in the same area; for example, whether a user
leaves or enters the house, and (2) differentiating the users
for the same type of activities performed in a public area;
for example, whether the one who leaves the house is the
user R1 or R2. Some activities do not occur often, especially
the leaving and entering home activities only occur 1% on
R1 and 0.05% on R2. Hence there are too few samples to
train a reliable classifier, and also learning their discriminative
features can be challenged by the majority classes. In addition,
these activities can have less discriminative patterns from their
majority counterpart; that is, they might activate the same set
of sensors but with little difference in distributions.

In this paper, we hypothesise that learning good feature
representations can help recognise minority and subtle activ-
ities. In particular, we address two research questions: what
constitute good feature representations?, and how can they
be learnt?. We explore the recent representation learning
techniques and focus on Dissimilarity Representation (DR)
that has achieved promising results in structural pattern recog-
nition in computer vision [5]. We propose a Dissimilarity
Representation based Hierarchical Classifier (DRHC), with
the aim to learn discriminative features in order to better
distinguish minority activities with less distinctive patterns. We
have evaluated our technique on a third-party dataset and have
demonstrated its effectiveness by comparison with (i) state-
of-the-art classification techniques, (ii) resampling techniques
that target at imbalanced datasets, and (iii) other representation
learning techniques.

The rest of the paper is organised as follows. Section II
introduces the existing literature in activity recognition. Sec-
tion III introduces dissimilarity representation and proposes
DRHC. Section IV describes the evaluation methodology and
Section V presents the evaluation results and discusses the per-
formance of DRHC over the other state-of-the-art classifiers.
The paper concludes in Section VI.



II. RELATED WORK

Human activity recognition has been an active field for more
than a decade. It aims to develop methods to understand human
behaviour from a series of observations derived from motion,
location, physiological signals and environmental information.
A general process in human activity recognition is to collect
and integrate data from various sensors, extract features, and
apply a learning technique to infer activities from the features.

Various data- and knowledge-driven techniques have been
applied to human activity recognition, including ontologi-
cal reasoning, Naive Bayes, Decision Trees, Hidden Markov
Models (HMM), Conditional Random Fields (CRF), Neural
Networks, and Support Vector Machines (SVM) [3], [22].
These techniques have demonstrated promising results in
learning complex correlations between human activities and
sensor features. However, few has focused on learning good
representations of sensor data so as to further distinguish
activities that have subtle difference.
A. Representation Learning

Representation learning has become a crucial task in ma-
chine learning. It can be either linear or nonlinear, either
supervised (i.e., features are learned using labelled input data),
or unsupervised (i.e., features are learned with unlabelled input
data). Traditional feature learning aims to learn transforma-
tions of the data that make it easier to extract useful infor-
mation when building a classifier [2]. Within this group, the
most popular feature learning is Principal Component Analysis
(PCA). This linear unsupervised algorithm transforms feature
variables into a smaller number of uncorrelated variables
called principal components. Another well-known linear super-
vised algorithm is linear discriminant analysis (LDA), which
finds a linear combination of features that separates two
or more classes of objects. It has been successfully used
in face recognition [2]. Unlike these approaches, manifold
learning is a nonlinear method that learns the high-dimensional
structure of the data from the data itself, without the use of
predetermined classifications [2].

Although, little research has addressed the problem of
representation learning for human activity recognition. Plotz et
al. highlight the idea of feature learning, which focuses on two
learning techniques: Principal Component Analysis (PCA) and
Autoencoder [18]. In the context of activity recognition, PCA
can perform poorly because it can miss important nonlinear
structures of the data. To tackle this problem, they propose
an alternative raw data representation based on the empirical
cumulative distribution function of the sample data. Further-
more, Mannini et al. propose the Pudil algorithm based on a
sequential forward-backward floating search [13], which is a
feature selection method to detect and discard the features that
are demonstrated to make minimal contribution to a correct re-
sponse from the classifier. Nguyen et al. have applied Bayesian
nonparametric to learn representations of user context and
community profiles [16].
B. Imbalanced Class Distribution

Activity data collected in the real-world environments, as
presented in Figure 1, can often have imbalanced distributions.

This problem has yet attracted sufficient attention. Feuz et
al. [6] propose intra-class clustering (ICC) technique to learn
from imbalanced classes without changing data distribution.
ICC decomposes a large majority class into smaller sub-classes
by clustering, which leads to a more balanced distribution.
This technique is applied before training the classifier. Each
class or classes are individually decomposed into sub-classes,
each instance of which will be assigned a new class label. This
new set of training data is then used to build a classification
model. They have designed different strategies of selecting the
number of clusters and determining labels for decomposed
classes. Their evaluation have demonstrated that creating a
more balanced class distribution leads to improved classifier
performance. Adding new classes creates new decision bound-
aries, which improves the performance of classifiers of high
bias classifiers like Naive Bayes. This work is most similar
to ours in terms of dealing with skewed class distribution.
The main difference is that we focus on minority and subtle
classes and also instead of separating the classes into more
balanced sub-classes, we apply a hierarchical approach to deal
with majority and minority classes at different levels.
C. Hierarchical Classifiers

Ensembles and hierarchical classifiers are often used to
recognise complex activities. Nguyen et al. have applied
a hierarchical HMM (HHMM) to recognise primitive and
complex behaviours of multiple people [15]. They construct a
unified graphical model composed of a set of HHMMs with
data association. Banos et al. [1] present a fusion classification
approach called Hierarchical-weighted classification (HWC).
This model combines hierarchical decision (HD) technique
and majority voting (MV). HD the classifiers’ decision are
made in strict order of classification capabilities. It gives more
importance to those classifiers which generally perform better.
The MV is a democracy-based model where all the classifiers
have the same opportunity to take a decision. The HWC is
composed by three classifications levels. Each classifier has
the same opportunity of collaborating on the final decision, but
ranking the relative importance of each one through the use of
weights based on the individual performance of each classifier.
Their model outperforms other multiclass approaches and
improves the scalability and robustness with respect to other
traditional fusion techniques.

Our proposed approach also is built on a hierarchical classi-
fier but the difference from the above work is that the hierarchy
comes from a collection of sub-groups, within each of which
data have high similarity. The employed classifiers employed
are dedicated to learn specific difference to differentiate them.

III. MINORITY AND SUBTLE ACTIVITY RECOGNITION

A. Problem Statement

Recognising everyday routine activities can be challenging,
as it involves understanding human behaviour from complex
interactions between diverse sensor signals.

Let Xc be a collection of instances belonging to a class
c and Pc be a pattern of the class c, which is a generalised
representation on its instances Xc. We define an activity class



c is minority if its instances are significantly less than the
averaged activity class size; that is, |Xc|∑

|Xcj
|

|C|

≤ θ, ∀cj ∈ C,

where C is a collection of classes of interest; and subtle if its
pattern representations are close to some other classes; that is,
dist(Pc, Pcj ) ≤ δ, ∃cj ∈ C.

For example in Figure 1, if we consider the threshold θ
as 0.5, then the activity ‘R1 leave home’ is considered as
a minor class as the ratio of its instances to the averaged
instances of all the classes is 0.2, while the activity ‘R1 sleep’
is considered not as a minor class as its ratio is 5.04. There
are different ways of characterising pattern representations and
evaluating the distance between them. For example, if we take
an intuitive way – calculating the Euclidean distance between
the centre points of two activity classes, and set the threshold
δ as 0.1, then we can consider the four activities of leaving and
entering home of both users as subtle, as their distances are
only about 0.001. The thresholds can be configured differently
to suit the characteristics of datasets and the requirements of
the applications.

TABLE I
DISTANCE MATRIX BETWEEN SUBTLE ACTIVITIES

R1 Leave
Home

R1 Enter
Home

R2 Leave
Home

R2 Enter
Home

R1 Leave Home 0 0.0016 0.0004 0.0008
R1 Enter Home 0.0016 0 0.0029 0.0012
R2 Leave Home 0.0004 0.0029 0 0.0011
R2 Enter Home 0.0008 0.0012 0.0011 0

B. Dissimilarity Representation

Dissimilarity representation (DR) represents data as the
difference between two objects. It is proposed as a more
flexible representation than feature representation, with the
purpose of having more information about the structure of the
objects [17]. A more formal definition is given as follow [5]:

Given a representation or prototype set R :=
{r1, r2, ..., rn}, a training set T := {x1, x2, ..., xn}, and
a dissimilarity measure d. A Dissimilarity Representation
(DR) of an object x is a set of dissimilarities
between x and the objects in R expressed as a vector
D(x,R) = [d(x, r1), d(x, r2), ..., d(x, rn)].

The prototype set R is generally a subset of the training set
T . The key idea of prototype selection is to find representative
instances from training set. The most common approaches
are clustering techniques and learning vector quantisation
(LVQ) algorithm [10]. After prototype selection, the original
feature space will be mapped to a dissimilarity space where
each object is represented as a dissimilarity vector d(xi, rj)
between an original object xi and a prototype rj . For binary
sensors, an object xi in the feature space can be represented
as [s1, s2, ..., sn], where si (1 ≤ i ≤ n) is the probability
of the ith binary sensor being activated during a certain time
interval (e.g., every 60 seconds) [23], and n is the number of
sensors being deployed. A prototype rj represents a particular
pattern for a subset of objects and a dissimilarity vector
d(xi, rj) indicates the distance from an object to a pattern.
Thus, the dissimilarity representation D(X,R) converts an

original object that expresses the activation probability of each
sensor into a distance object that suggests the closeness of an
original object to each representative pattern in the original
feature space.

We can train a classifier on the converted dissimilarity
representations, which is dedicated to learn differences to
separate objects in different classes. It is different from fea-
ture representation based classification that aims to learn the
correlations between features and classes. We hypothesise that
learning the difference between classes can better characterise
distinctive patterns of activities and thus achieve higher recog-
nition accuracies.

C. Dissimilarity Representation Generation

For the prototype selection, we apply a clustering algorithm
to each activity separately, and select the centre of each cluster
as a prototype. A good prototype that is well separated from
the others is crucial to generate dissimilarity vectors.

To guarantee good prototype selection, we use the niche
overlapping index [7], which has demonstrated promising
results in a recent feature selection study [9]. The niche overlap
occurs when two organismic units use the same resources or
other environmental variables. Following a similar principle,
we will use the overlapping coefficient between prototypes
to select the best discriminative prototypes. Let Si and Sj

be two species and let X = (X1, X2, ..., XN ) be a random
vector of resources variables. A variable Xt is assumed to be
described by the probability density function fit(x) and fjt(x)
for species Si and Sj respectively. The Niche Overlapping
Coefficient (NOC) β for the variable Xt is defined by:

βij(Xt) =

∫
min(fit(x), fjt(x))dx, (1)

with 0 ≤ β ≤ 1 and βij = βji.
For a group of species S we obtain S(S−1)/2 independent

pair of species. The averaged NOC for the group can be
estimated as

βg(Xt) =

∑S−1
j=1 (

∑S
j=i+1 βij)

S(S − 1)/2
, (2)

where βij is given by equation 1.
In the following, we introduce how to use NOC in prototype

selection. We first cluster Xc – the training instances on each
class label c, and take the mode and the mean of each cluster
as the prototypes for c. We denote the set of prototypes for a
class label c as Rc. In the end, we collect a set of prototypes
for all activities in C: R = Rc1∪Rc2∪· · ·Rc|C| . Let ricq (rjcs )
be the ith (jth) prototype on the class cq (cs); that is, ricq ∈ Rcq

and rjcs ∈ Rcs , the niche overlapping index between these two
prototypes is calculated as

Oij =

∑
ricqr

j
cs√∑

ri2cq r
j2
cs

. (3)



The overlapping measure Oi of a prototype ricq is computed
by averaging all the Oij from Equation (3) between ricq and
the prototypes in the other classes; i.e.,

Oi =

∑
∀r

j
cs∈Rcs

∀cs∈C,cs 6=cq

Oij

|R−Rcq |
.

We rank the prototypes according to the averaged over-
lapping measures and select the prototypes with a lower
overlapping index. That is, we set the mean of the overlapping
measures on all the prototypes as a threshold φ, and select
the prototypes if their overlapping measure O is no greater
than φ. The smaller the overlapping measure, the better the
prototype, suggesting a good separation from the others. The
representation set R := {r1, r2, ..., rn} is built with the
prototypes selected.

After prototype selection, the original feature space will be
mapped to a dissimilarity space where each object is repre-
sented as a dissimilarity vector d(xi, rj) between a original
object xi and a prototype rj . These converted dissimilarity
representations will be fed into a classifier to learn differences
to separate objects between classes.

D. Hierarchical Classifier

We design a hierarchical classifier to perform two-phase
learning, which is illustrated in the workflow in Figure 2.
The first phase of learning performs classification based on
dissimilarity representations to distinguish the majority of
classes, while the second phase is to focus on subtle classes
that cannot be correctly separated from other classes. To do
so, we test the classifier in the first phase with the training data
again and collect all the misclassified instances. The second
phase learning is designed as a stacked ensemble that is built
on one-class classifiers (OCCs) for classes that have been
misclassified in the first phase. OCCs characterise each class
and the ensemble will focus on learning the correlations be-
tween probability distributions of OCCs and class labels. Such
combination can lead to a more effective way to distinguish
classes with similar patterns. The process of the second phase
learning is described below.

Let M be the set of misclassified instances.
1. Employ a resampling technique on the misclassified
instances as they can be imbalanced; that is, MB =
resample(M).
2. Train an OCC on each misclassified class in MB .
3. Build a stacked ensemble on the conditional probabilities of
OCCs; that is, train another classifier on the union of all condi-
tional probabilities from each OCC, PM = [Pc1 Pc2 · · · Pcm ],
where ci is a class label in MB and 1 ≤ i ≤ m.

IV. EXPERIMENT AND EVALUATION

We hypothesise that DRHC algorithm can significantly
improve the accuracies of recognising minority activities with
less distinctive patterns by learning good representations of
sensor data. More specifically, we are mainly interested in

the following three questions: (1) Does DRHC outperform
the state-of-the-art classifiers in recognising minority and
subtle activities?; (2) Does DRHC outperform the existing
sampling techniques at targeting minority activities?; and (3)
Does DRHC outperform the existing representation learning
techniques in learning features?.

To address the above questions, we will compare the accura-
cies of DRHC with a collection of state-of-the-art classification
techniques on a real-world third-party dataset that is collected
in a two-user home setting.
A. Selection of Datasets
We mainly test our algorithm on smart home datasets that
involve binary event-driven sensors with imbalanced activity
distributions. For this purpose, we identify the dataset, the
Interleaved ADL dataset from the CASAS smart home project
at the Washington State University [4], referred to as WS. This
dataset is collected in a student apartment testbed during the
2009-2010 academic year. The apartment is instrumented with
various types of sensors to detect user movements, interaction
with selected items, the states of doors and lights, consumption
of water and electrical energy, and temperature, resulting in
2, 804, 812 sensor events. This dataset recorded 13 activities
performed by 2 individuals, as shown in Figure 1. We use
a semantic approach to separate sensor data for concurrent
activities [23]. There are two main goals of our algorithm
on this dataset: (1) distinguishing two users for the same
type of activities performed in a public area; for example,
whether the one who watches TV is the user R1 or R2, and
(2) distinguishing one users’ activities performed in the same
area; for example, whether a user sleeps or wanders in a room.
These two types have demonstrated as a challenging problem
in multi-user concurrent activity recognition [23].
B. Metrics
Given that all the datasets have an imbalanced distribution
of activities, we use the class-based F1-score to indicate the
performance of an algorithm [6].
C. Technique and Parameter Setup of DRHC
DRHC can be configured with any appropriate distance metric,
clustering technique, and classifier. For dissimilarity prototype
generation, we have experimented different distance met-
rics, including cosine, Euclidean, Kullback-Leibler divergence,
Mahalanobis, and Bray-Curtis, and prototype generation al-
gorithms including the traditional LVQ, KMeans and DB-
SCAN clustering algorithms. Among them, the best results
are achieved with cosine and DBSCAN, which are reported
in the following section.

We have also experimented with different techniques as
the base classifier, including SVMs with the linear and RBF
kernels, Naive Bayes (NB), K Nearest Neighbour (KNN),
Decision Tree (DT), and Random Forest (RF). Each of these
techniques has demonstrated promising results in activity
recognition [22]. In our experiments, the SVM with the RBF
kernel and Random Forest have performed the best. For the
sake of computation performance, we select SVM RBF as the
base classifier for DRHC and for all the others.

We choose a combined resampling technique – SMOTE
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Fig. 2. Workflow of dissimilarity representation-based ensemble

(Synthetic Minority Over-sampling TEchnique) followed by
Tomek link [14]. That is, we first over-sample minority
class instances by creating synthetic examples as close as
to their nearest neighbors, and then remove the majority
class instances that are part of a Tomek link. A pair of
instances is called a Tomek link if they are each other’s nearest
neighbours but belong to different classes. We have compared
the performance of this combined sampling technique with the
other techniques including SMOTE, Edited Nearest Neighbour
(ENN) [8], and Repeated Edited Nearest Neighbour (RENN),
in which the ENN algorithm is applied successively until it
can remove no further points [14]. This combined technique
has achieved the best performance.
D. Process
We run 100 iterations for 5-fold cross validation on each
dataset. In each iteration, we test all the algorithms including
both DRHC and the state-of-the-art classifiers. We report the
mean and standard deviation of F1-scores in each table in
Section V. To compare the results, we run Welch’s t-test
on the accuracies of all the iterations and calculate the p-
values. We hypothesise that the DRHC outperforms all the
other classifiers. We select a standard significance level of
95% for the test, meaning that if the p-value in the test result
is smaller than 0.05, then we accept that there is a statistically
significant improvement.

V. RESULTS AND DISCUSSION

In this section we will present and discuss the results.

A. DRHC and State-of-the-art Classifiers

To demonstrate the effectiveness of the DRHC algorithm,
we will compare with three types of classifiers. First of all, we
collect a wide range of classifiers in different types, including
KNN, SVM, NB, and RF. To note that we focus on learning
sensor data representation, but not sequential relationships, so
we exclude any sequence-based learning, like Hidden Markov
Model and Sequential Mining.

TABLE II
DRHC COMPARED TO STATE-OF-THE-ART CLASSIFIERS

DRHC SRHC SVM
RBF
(B)

SVM
RBF

RF
(B)

RF KNN NB

0.71
±
0.04

0.69
±
0.06

0.54*
±
0.01

0.52*
±
0.01

0.56*
±
0.01

0.53*
±
0.08

0.53*
±
0.05

0.49*
±
0.02

Figure 3 presents the F1-scores of recognising activities on
the WS dataset from DRHC, the state-of-the-art techniques,
and SRHC (the variant of DRHC, replacing the dissimilarity
representations with the usual sensor features in Section III-B).
Table II reports the mean and standard deviation of averaged
F1-scores over 100 iterations, and the star * indicates that
there is a statistically significant improvement of DRHC over
the state-of-the-art techniques.

State-of-the-art techniques perform poorly on recognising
the minority and subtle activities, especially distinguishing
users for activities in common areas – whether it is R1
or R2 of preparing a meal, watching TV, or bathing, or
separating one user’s activities in the same room – whether
R1 is wandering in room, or working or sleeping. Figure 4
shows the sensor feature distribution on these three activities,
because their occurrence activates the same set of sensors.
Also the distributions on these activities are imbalanced; that
is, the activity ‘R1 wandering in room’ only takes 0.05% of
the whole dataset while the other two activity classes dominate
the dataset; i.e., 24% and 12%. The small difference is more
difficult to be learned with the dominance of the majority
classes. SVM and RF have improved the recognition accu-
racies when configured with the balanced class distribution
option, by boosting some minority classes. In comparison,
DRHC outperforms them on most of activity classes and
leads to significantly improved overall F1-scores. With the
two-phase learning, especially the second-phase of learning
in DRHC, we can look into discriminative features that well
separates ‘R1 wander in room’ from the other two.

Difference between DRHC and SRHC is not significant, and
we reject our hypothesis that the dissimilarity representation
is more effective in distinguishing subtle differences between
classes. This is mainly due to the effectiveness of identified
prototypes. The problem remains of how to best to separate
prototypes when we have activities that activate the same
set of sensors, with the difference in their sensor distribution
being almost undetectably small. Such subtle differences can
challenge prototype selection. Future investigations include
the design and evaluation of prototype selection and distance
metrics to better represent and separate subtle difference in
these distributions.

B. DRHC and Sampling Techniques

The next experiment compares DRHC with the techniques
that focus on imbalanced class distribution. These include
resampling techniques mentioned in Section IV, plus a more
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Fig. 3. Comparison of DRHC with the state-of-the-art classifiers

Fig. 4. Sensor feature distribution on the activities ‘R1 sleep’, ‘R1 work’,
and ‘R1 wander in room’

recent technique, called intra-class clustering (ICC), where
instances are clustered and candidate labels are generated to
enforce a balanced class distribution between clusters [6].
For each of these options we take training data with sensor
dissimilarity representations and train a SVM classifier.

Figure 5 presents the F1-scores across all the activity
classes on the WS dataset. DRHC consistently outperforms all
these techniques in Table III. It demonstrates that sampling
techniques alone will help balance the class distribution. For
example, all these sampling techniques enables more accurate
recognition on the activities of ‘R1 wander in room’, and
bathing, leaving and entering home of both, compared to the
results on SVM RBF classifier in Figure 3. Especially, SMOTE
consistently outperforms the other sampling techniques. The
reason is that ENN and RENN undersample the majority
classes by removing data points. The more imbalanced the
data set is, the more samples will be discarded when using
these techniques.

DRHC outperforms SMOTE and one reason might be that
the sampling technique could generate potentially mislead-
ing information through oversampling the minority class [6].
SMOTE might introduce instances that do not add any infor-
mation about the minority classes which can be consider as
noisy instances rather than true representation of them.

TABLE III
DRHC COMPARED TO RESAMPLING TECHNIQUES

DRHC SMOTE RENN ENN ICC
0.71
±0.04

0.65*
±0.01

0.57*
±0.01

0.56*
±0.01

0.25*
±0.01

C. DRHC and Representation Learning Techniques

The third and final stage is to assess DRHC performance
against the current representation learning techniques [2]:
PCA, t-Stochastic Neighbour Embedding (t-SNE) [21], and
Autoencoder [12]. We feed the generated dissimilarity repre-
sentations to the above representation learning techniques, and
input the learned representations to the SVM RBF balanced
classifier for classification. Table IV reports the mean and
standard deviation of F1-scores. The results show a statisti-
cally significant improvement of DRHC over the compared
representation learning techniques.

TABLE IV
DRHC COMPARED TO REPRESENTATION LEARNING TECHNIQUES

DRHC PCA t-SNE Autoencoder
0.71 ±0.04 0.25* ±0.00 0.68* ±0.02 0.51* ±0.00

Detailed results are shown in Figure 5. PCA performs
the worst possibly indicating that compressing the data loses
meaningful information of the classes leading to a very low
F1-score. In addition, we need to retain 99% of the variability
in order to have a good representation. That is, we need to
preserve almost the same number of feature vectors so that
the classifier could distinguish between activities. The results
using PCA are not very outstanding and its poor performance
is consistent with the literature [11], which suggests that PCA
misses important nonlinear structures of the data.

t-SNE transforms the input feature vectors into 2 or 3
dimensions, which has been widely used in visualising high-
dimensional data. The features learnt from t-SNE can well
separate some classes, but not for classes with little difference.
t-SNE technique is able to learn good features to separate
classes, nevertheless the classifier is biased by the majority
classes in each cluster, which still results in the poor recogni-
tion accuracies on the minority classes.

Autoencoders have been widely used in speech recognition,
image classification, and face recognition [12], achieving
promising results in compressing data by learning linear and
nonlinear relationships between features. However, they are
less able to differentiate activities with less distinctive patterns.
We have configured the autoencoder with different parameters,
such as different numbers of layers, different numbers of neu-
rons, and various optimisation functions. No set of parameters
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Fig. 5. Comparison of DRHC with the sampling and representation learning techniques

significantly improves the classification accuracy, indicating
that an autoencoder fails in representing noisy data with few
spare feature vectors. However, we implement a standard
sparse autoencoder, and with more sophisticated autoencoders
(such as the variational autoencoder [19]) discriminatory per-
formance may be improved. This is out of scope for this paper,
however, and will be the focus of future investigations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a new technique, DRHC, based
on dissimilarity representation, which leverages a dissimilarity
representation-based multi-level ensemble in recognising mi-
nority and subtle activities. A sequence of empirical evaluation
and comparison demonstrates that this is a challenging task
where existing structure- and feature-based learning techniques
do not perform well in general, and our DRHC algorithm
constitutes a statistically significant improvement on existing
methods. The key novelty of our approach is that we reduce
the bias of the ensemble classifier by training it on a subset of
classes so that the classifier could focus on minority activities
and hence reliably identify well-discriminating features. So
far, we have only considered ambient sensor data (e.g. doors
opening and closing, motion sensors firing, lights turning on
and off, etc). Recent developments in wearable technologies
such as smart watches also allow collection of more dynamic
data such as accelerometer and heart rate. These data would
contribute to detecting subtle and minority activities, and
dissimilarity representation based classification of combined
ambient and mobile data will be useful in the future accurate
detection of important events in the ageing population.
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