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Abstract

The reconnection of two flux tubes with footpoints anchored to a plane, such as the photosphere, is considered. We
focus on properties of the reconnected flux tubes, specifically their twist, which can be quantified using magnetic
helicity. If the tubes are of equal flux (®) and are initially crossed we find the results are dependent upon the
relative positioning of their footpoints: (i) nonequipartition of self-helicity is the typical situation; (ii) the total
amount of self-helicity in the reconnected tubes lies between 0 and 2®?, corresponding to a total twist of between 0
and 2 turns. If the tubes are initially uncrossed the self-helicity of each reconnected tube depends upon footpoint
arrangement. However, care needs to be taken when using these results as bringing the tubes together at the
reconnection site can introduce twist or writhe, which will also need to be taken into account. In the case where the
tubes are side by side and possess some overlap, reconnection may occur without distorting the tubes. For this
situation the reconnected tubes will be crossed: (i) equipartition of self-helicity is never met, but can be approached
in the limit of the footpoints being quasi-colinear; (ii) the overlying tube always has a self-helicity whose
magnitude >®? /2 (it exceeds a half turn); the underling tube’s self-helicity magnitude is always <®? /2 (less than
a half turn). Our results have a broad application in developing models of reconnecting coronal magnetic fields, as
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well as in interpreting observations and simulations of these fields.
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1. Introduction

Helicity is a powerful way of quantifying topology in a
vector field (Moffatt 1969; Berger & Field 1984). The original
expressions for total helicity within a given volume take the
form of volume integrals. However, this can also be viewed in
terms of helicities associated with constituent flux tubes
(Berger & Field 1984), which provides a measure of the
linkage of different flux tubes and the twist within each tube.
Subsequently, this has been taken to the limit of defining field
line helicity by Berger (1988), Russell et al. (2015), and Yeates
& Hornig (2016), and references therein.

The fact that magnetic helicity is conserved to a high degree
during reconnection (Berger 1984; Russell et al. 2015) has led
to its use in laboratory (Taylor 1974), magnetospheric (Song &
Lysak 1989; Wright & Berger 1989), and solar plasmas (Priest
& Longcope 2017; Threlfall et al. 2018). These studies deduce
properties of the post-reconnection state by conserving total
helicity.

Studies of magnetic helicity are often given in terms of dense
vector calculus integrals. However, there are surprisingly
simple and elegant geometrical interpretations to many of
these integrals that can facilitate their ready application with
little effort. For example, if two linked (and internally
untwisted) loops of equal flux undergo reconnection to produce
a single loop, that loop will have an internal structure
equivalent to a twist of two turns.

In this paper we provide more geometrical properties of
magnetic helicity that will aid its application to magnetic fields
emerging from a plane. The paper is structured as follows:
Section 2 provides the properties of magnetic helicity we
require; Sections 3 and 4 consider two tubes with footpoints
anchored in a plane, and derive properties of the final states that
can be achieved following reconnection—specifically the
amount of twist in each tube. Finally, Section 5 summarizes
our results and provides some concluding remarks.

2. Key Helicity Properties
2.1. Magnetic Helicity and Gauss Linkage

A magnetic field B and its vector potential A can be used to
define the (ordinary) magnetic helicity as (Moffatt 1969)

HzfA - BdV. (1)

When V is a simply connected closed volume with no
magnetic field passing through its boundary H is gauge
invariant. If the magnetic field exists in the form of closed
loops, or flux tubes, there exists a close connection with the
Gauss Linking Integral:

1 r—r
Lo=—¢ ¢ D=2 an x dr). @)
dr Iy Iy, |1 — 1

Here v; and ~, are two nonintersecting differentiable closed
curves that are integrated along using r; and r, respectively. If
the curves are linked in a similar fashion to the magnetic flux
tubes shown at the top of Figure 1, the Gauss Linking Number
is 1. Geometrically this is found from half the sum of signed
crossings. (There are two positive crossings in this example.)
For comparison, the magnetic helicity of the flux tubes at the
top of Figure 1 (if they have magnetic fluxes ®; and ®, and no
internal structure such as twist) is

H = NOD, = 2L,,0,, 3)

and may be thought of as proportional to a flux-weighted
Linking Number (Berger & Field 1984). In Equation (3), N is
the number of signed crossings. Evidently, N = 2L,
(Berger 1986).

The magnetic helicity () also has a topological interpreta-
tion for a single flux tube like that at the bottom of Figure 1,
and is related to the number of turns the field lines make over
one traversal of the tube. The number of turns is signed


https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
mailto:anw@st-and.ac.uk
https://doi.org/10.3847/1538-4357/ab2120
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab2120&domain=pdf&date_stamp=2019-06-19
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab2120&domain=pdf&date_stamp=2019-06-19

THE ASTROPHYSICAL JOURNAL, 878:102 (9pp), 2019 June 20

Figure 1. Various flux tube configurations. The top one has two linked flux
tubes with no twist or writhe. The middle configuration has twist (7= 1) and
writhe of the tube axis (VV = 1). The bottom tube has no writhe but a twist of
two turns (T = 2).

positive /negative for right/left handed turns. For T net turns
H = T®? 4)

for a tube with an axial flux ® (Berger & Field 1984). The tube
at the bottom of Figure 1 has 7' = 2.

The tube at the center of Figure 1 has a single turn but also
writhe (the crossing of the tube axis with itself), which also
contributes to the helicity (Berger & Field 1984). If the tubes
are thin and their axes are approximately coplanar, the middle
configuration has 7=1 and a writhe number W = 1.
Calugareaunu (1959) and White (1969) showed that the sum
of T'and WV is conserved. Indeed, a careful inspection of middle
and bottom tubes shows that one can be deformed onto the
other using ideal motions.

2.2. Self-helicity and Mutual Helicity

When flux tubes have both linkage with other tubes and
internal structure the magnetic field may be broken down into
subfields corresponding to each tube and its corresponding
vector potential. Suppose we label the tubes with a number
such that the first tube has magnetic field B; and corresponding
vector potential A;. The contribution to H from A; - B; is a
measure of how much the field lines in tube i are linked to
themselves, and is denoted by H;. Contributions to H from
A; - Bjand A; - B; (denoted by H;; and H;;) measure how much
flux tube B; is linked with tube B; and how much flux tube B; is
linked with tube B;. Evidently these must be the same:
H;; = 'Hj;. The total helicity is (Berger & Field 1984)

H=>) Hi+ >, Hj 5)
i ij (=)

There is a loose similarity with the interpretation of

inductance of electrical circuits that measures the linkage of a
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circuit with its own magnetic flux (self-inductance) or with the
magnetic flux generated by other circuits (mutual inductance).
This led Wright & Berger (1989) to introduce the terms “self-
helicity” and “mutual helicity” for the two contributions H; and
H;;. Note that the mathematical form of the integrals for
helicities and inductances are not identical (Demoulin et al.
2006): inductance measures the linkage of the magnetic field
produced by a circuit with another (possibly the same) circuit,
whereas helicity would correspond to the linkage of one circuit
with another (possibly the same) circuit.

The tubes at the top of Figure 1 are internally untwisted and
have no writhe, so H; =0 for both tubes. The helicity
H = 29, P, arises solely from mutual helicity. In contrast, the
single tube at the bottom of the figure has no contribution from
mutual helicity (as there are no other tubes to link with), and
H = H,; = 2®2 arises solely from the internal twist of the field
within the tube. Self-helicity not only arises from the twisting
of field lines within a tube, but can also be associated with the
writhe of the tube axis. Both the middle and bottom tubes in
Figure 1 have the same self-helicity, but in the middle one there
are contributions associated with the single turn and the writhe
of the tube axis. Self-helicity (T 4+ WW)®?) is associated with
the Calugareanu Invariant (Berger & Field 1984; Moffatt &
Ricca 1995).

2.3. Relative Helicity

If the magnetic field passes through the surface bounding the
volume under consideration, 7 is not gauge invariant and so no
longer has a topological interpretation. This led Berger & Field
(1984) to develop “relative helicity.” Besides the formulation
given by Berger & Field (1984) there are alternative, but
equivalent, expressions provided by Jensen & Chu (1984), Finn
& Antonsen (1985) and Berger (1988). The relative helicity (H)
is gauge invariant and has several elegant topological
interpretations. The ideas of self- and mutual helicities also
remain valid.

Consider the space between to infinite parallel planes, such
as that in Figure 2. If flux tube i contains a uniformly twisted
field with a signed number of turns T on passing between the
planes, then it has a relative self-helicity of

H; = T®;. (6)

If the footpoints of the two tubes (i and j) in Figure 2 turn
through a signed angle ¢ on mapping from one plane to the
other, then the contribution to the relative mutual helicity is
Hj; + Hj, where (Berger 1986)

H; = H; = i(b,-(bj. @)
’ 2

If two flux tubes have both of their footpoints on a single

plane (as in Figure 3) the self-helicity result (6) still applies, but

the mutual helicity terms are defined as (Berger 1986)

Pt

H; =H; =
ij = 1 o

D, P;. 8)

Hy=Hy =2 — 9.0, ©)
27

These formulae can be derived by integrating the appropriate
d Hy;/dt equation in, for example, Berger (1988), Wright &
Berger (1990), and Pariat et al. (2005).
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Figure 2. Two flux tubes (with fluxes ®; and ®;) extend between two parallel planes. The relative mutual helicity of the tubes is determined by the angle the line
joining the footpoints turns through when moving from the lower to the upper plane. If the fluxes are equal (®; = ®; = ®) and the tubes in the first configuration
reconnect to give the second, without footpoint motion, the angle at which the tubes turn around each other changes by exactly —, and the relative mutual helicity
changes by —®?. (This is strictly true if the tube width is much less than the footpoint separation.)

(b)

Figure 3. Two flux tubes (with fluxes ®; and ®;) have footpoints fixed in a
common plane. The relative mutual helicity of the tubes may be interpreted in
terms of the angle subtended by one tube about the other tube’s footpoints, as
indicated for crossed and uncrossed arrangements.

Finally, we note that the direction of the magnetic fields is
important. For example, if the direction of B; is reversed, the
sign of ®; will change as will those of H;; and Hj;.

2.4. Helicity Conservation

During reconnection the topology and linking of flux
elements can change dramatically. Although there is some
change of helicity during reconnection (the rate of change of
helicity density is —27j - B, where n is the resistivity), it is
relatively small compared to energy dissipation, and in the

solar corona (Berger 1984) and the magnetosphere (Wright &
Berger 1989) it is a good approximation to treat helicity as
being conserved. Near-conservation has also been established
within the field line helicity formulation (Russell et al. 2015).
Wright (1999) noted a geometrical interpretation to the change
in helicity during reconnection; it is associated with the change
in linkage of flux embedded in the diffusion region where
reconnection occurs. Although it is common to talk about
helicity dissipation, Wright shows how the helicity can increase
during reconnection, so it is more correct to say that helicity
nonconservation (rather than dissipation) is small during
reconnection.

Helicity conservation is a powerful tool for constraining
properties of the field following reconnection. It was first used
by Taylor (1974) to determine the lowest energy equilibrium
when helicity is conserved in a Reverse Field Pinch.
Subsequently, a similar approach has been applied to coronal
fields (Hood et al. 2009). It can also be used to determine the
amount of twist in dynamic reconnected flux tubes when they
are far from equilibrium, and was first applied by Wright &
Berger (1989) in a magnetospheric context.

The power of helicity conservation can be appreciated by
considering the situation where the flux tubes in Figure 1 all
have the same axial flux ®: the three configurations all have
H = 2®2. In the top one this comes from mutual helicity (self-
helicity is zero). Following reconnection at the upper crossing,
the middle configuration may be achieved, which only has a
self-helicity. (The mutual helicity is zero as there is now only a
single tube.) The bottom loop can be arrived at by ideal
motions of the middle tube, and so must have a helicity due to
internal twisting, H = T®2. Thus helicity conservation can be
used to deduce that the final configuration has exactly two
complete turns of twist.

Wright & Berger (1989) used properties of the tubes in
Figure 2 to show that if the tubes (of flux ®) started with self-
helicities of zero in the first configuration, then reconnected to
the second state (with no footpoint motion), then each
reconnected tube has a final self-helicity equivalent to exactly
a half twist (T = 1/2).
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Given that the tubes in Figure 3(a) (if both have flux ®) can
reconnect to produce the configuration in Figure 3(b), it is
natural to ask if the twist generated in the reconnected tubes has
a simple, exact value as in the examples above. Indeed, Priest
& Longcope (2017) have considered reconnecting the
uncrossed tubes in Figure 3(b) to give the crossed configuration
in Figure 3(a), and have shown this situation is not so simple.
They found that the total amount of self-helicity in the final
configuration depended upon the footpoint arrangement, in
contrast to the result corresponding to Figure 2. Moreover, the
way self-helicity is partitioned between the reconnected flux
tubes is known for Figure 2 (Wright & Berger 1989 prove there
is equipartition of self-helicity). For configurations similar to
those in Figure 3, Priest et al. (2016) introduced the “helicity
equipartition conjecture” to allow the exploitation of helicity
conservation in modeling coronal fields.

The remainder of this paper is devoted to evaluating the self-
helicities of reconnected tubes when changing between the
configurations in Figure 3 for arbitrary footpoint positions.
Hence we are concerned exclusively with relative helicity,
which, for brevity, we refer to simply as helicity hereafter.

3. Crossed Tubes

This section focuses on reconnecting the crossed configura-
tion in Figure 3(a) to produce the uncrossed configuration in
Figure 3(b). We consider general footpoint placements and
identify a general criteria for when the equipartition conjecture
holds.

3.1. General Footpoint Arrangement

To aid visualization of twist we shall take the flux tubes to
have the form of thin ribbons, or flux sheets. The initial
configuration of Figure 3(a) is represented as flux sheets in
Figure 4(a) where the sheets have relaxed onto the footpoint
plane for a simple depiction of the system, and is viewed
looking down on that plane. The positioning of footpoints is
quite general, with the proviso that the tubes cross one another.
We can introduce imaginary vertical parallel planes (indicated
by the blue lines) to provide a subdomain that enables the
determination of twist added to the sections of tube in this
region.

A close-up view of the subdomain between the two blue
planes in Figure 4(b) is shown on the left of Figure 5(a) prior to
reconnection. The middle of Figure 5(a) shows the sheets
immediately after reconnection. A careful consideration of the
order of reconnection of field lines in the flux sheets allows an
easy visualization of twist and provided enough insight to
allow Wright (1987) to argue that the reconnected tubes would
have a half turn each, suggesting the equipartion conjecture can
be applied here. Ideal motions can then allow the flux sheets to
adopt the configuration at the right of Figure 5(a). This
configuration is topologically identical to the situation in
Figure 2: the tubes initially have ¢; = 7 and no self-helicity, so
Equations (6) and (7) give a total H = i

The reconnected tubes (middle configuration of Figure 5(a))
do not twine about each other (¢, = 0) so H; = 0, and the
conserved helicity (H = 2 arises from the self-helicities of
the two reconnected tubes. In Appendix B of Wright & Berger
(1989) a detailed analysis shows that if reconnection
completely unlinks the tubes, then helicity equipartition holds
and they will both have a self-helicity of ®°/2, which

Wright

corresponds to a half turn of twist. Of course, it is possible
for subsequent reconnection within a given tube to produce
more complex field line braiding within the tube, but the self-
helicity will remain unchanged. (A half turn is the simplest
internal structure for a self-helicity of &2 /2.) In the right-hand
configuration of Figure 5(a) the tubes have relaxed following
reconnection, and the half turn is evident.

Care must be taken when applying ideal motions to bring
flux tubes together to reconnect that any writhe or twist
introduced is accounted for, as is done in the configuration on
the left of Figure 5(b). In this case the analysis used for
Figure 5(a) can be applied to a localized region around the
reconnection site to deduce that a half twist is added to each
tube here, which can then be added to any twist elsewhere on
the tube. The right-hand configuration shows how one tube has
a complete turn, while the other is untwisted.

The importance of reconnection occurring along a line in the
middle configuration of Figure 5(a) that results in complete
separation of the reconnected tubes on the right should be
stressed. For example, it is possible to form reconnected tubes
going from A to B and D to C, but some of the field lines of one
tube may still link with the other. At the heart of this issue is
the requirement to have reconnection along a line that coincides
with the crossings of the left, middle, and right lines of AC with
the right, middle, and left lines of BD, respectively.
Reconnection at other crossings is also allowed, and will
redistribute the self-helicity as interior structure of the
reconnected tubes that is not a simple half twist (see Wright
& Berger 1989 for a more detailed account.)

The issue described above regarding details of reconnection
can be circumvented by adjusting the orientation of the ribbons
we start with in Figure 4. Suppose the ribbons in Figure 4(a)
are chosen to lie in a vertical plane, so that they would be
viewed edge-on. The corresponding close-up of Figure 4(b) is
shown in Figure 5(c). Notice how the ribbons meet edge-on
and will now reconnect at a point in the order right, middle, and
left of AC with left, middle, and right of BD. The same helicity
analysis applies as that used in Figure 5(a), and the reconnected
tubes both have a twist T = +1/2.

Reconnection at a line, rather than a point, is probably more
likely to occur in nature. Indeed the sheet of flux in Figure 5(a)
could be thought of as part of a 3D flux tube and corresponds to
the flux reconnected over a short time interval (Wright 1987).
However, the edge-on ribbons in Figure 5(c) reconnecting at a
point provide a clean unambiguous final state that may be
preferred in some thought experiments.

Returning to the reconnected tubes in Figure 4(b), it is
tempting to let the tubes relax (c) and claim they both have a
half turn of twist. This turns out not to be the case and can be
appreciated by considering how the footpoints would need to
be turned in order to untwist the tubes, as in (d). We introduce
the angles 6y, g, Oc, and Op in (g) to facilitate this. These
angles have values between 0 and 7.

Rotating a tube about the center of its footpoint was shown
by Wright & Berger (1990) to cause a flux of self-helicity into
the tube across the boundary (see also Berger 1988, Pariat et al.

2005, and Demoulin et al. 2006). Integrating their equation for
dH;/dt in time gives the change in H;. We can concisely
summarize this for our purposes here: rotating a flux tube about
its axis through a signed angle A# about the (upward) normal
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Figure 4. Two flux tubes with their footpoints located in a single plane and viewed from above. (a) Initial configuration; (b) the state immediately after reconnection
(the blue lines indicate two vertical planes that are used to bound a subdomain studied in Figure 5); (c) relaxed state following reconnection; (d) after suitable footpoint
rotations the two tubes are untwisted; (e)—(g) angles used in the analysis: v;, 1, p;, and p, are used to define the mutual helicities in Equations (8) and (9). The angles
04, 0g, Oc, and O are used to identify the angles the corresponding footpoints in (c) need to be turned through to produce the untwisted ribbons in (d).

direction of the plane adds a self-helicity of

Al
2w
To untwist tube AB in Figure 4(c) we rotate about footpoint
A by an angle 0, (adding AH; = —(0, /27)®?) and rotate about
B by m — 0 (adding AH; = —((m — 0g) /27)®?)). If the tube
AB in Figure 4(d) is now untwisted (and has a self-helicity of

zero) it follows that before the rotations were applied to (c) it
had a self-helicity of

AH; = (10)

T+ 0A — 93(1)2.
27

In a similar fashion tube CD in Figure 4(c) can be untwisted
by rotating about D by —6) (adding AH; = (0p /27)®?) and
rotating about C by Oc + m (adding
AH, = —((6c + 7)/2m)®?)) to arrive at the untwisted state
in (d). This suggests the self-helicity of tube CD in (c) is

Hyp = (11)

T+ 0c — 9[)(1)2.
27

If this interpretation is correct we should find the total
helicity of the untwisted tubes in Figure 4(a) (due to the mutual
helicity (8)) should equal the total helicity of the twisted
reconnected tubes in (c), which arises from mutual helicity (9)

Hep = (12)

and the proposed self-helicities Hyz and Hcp,

Pt Vige P Vg | TH O g
s ™ 27
T+ 9C — 90 (132.
2
The validity of this equation can be established by noting
that not all of the angles are independent. Evidently in

Figure 4(g) ZAEB = ZCED and /BEC = ZAED, which
provide the identities

04+ 0= 0c+ 0p (14)
vi+ v+ p—py+0p—0Os=m. (15)

+ (13)

Substituting these identities into (13) confirms, after a little
algebra, that helicity is indeed conserved and suggests the
proposed forms for H,p and Hcp are correct.

3.2. General Equipartition Criterion

We are now in a position to deduce when equipartition of
helicity will occur: we require Hip = Hcp, which (after
eliminating fp using (14)) becomes

04 = Oc, (equivalentto 0 = Op). (16)

(The equivalence comes from the identity (14).)
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Figure 5. Close-up view of the region between the two vertical planes shown
in Figure 4(b). Panels (a) and (b) show the initial state (left), the state
immediately after reconnection (center), and the relaxed state (right). Panel (b)
shows the importance of accounting for twist or writhe away from the
reconnection site when determining the final configuration. Panel (c) shows the
situation if an alternative ribbon orientation is adopted.

The geometric interpretation of 64 = O in Figure 4(g) is
clear: the footpoints of the two reconnected tubes lie along the
lines AB and CD, and we require these lines to be parallel.
Indeed any footpoint arrangement for which AB and CD are the
bases (parallel sides) of a trapezium will exhibit equipartition,
even if highly obtuse (sheared).

3.3. Degree of Nonequipartition

When the footpoints do not form a trapezium there will be an
imbalance in the self-helicity of each reconnected flux tube. We
can quantify the relative imbalance of this partitioning by
defining (and using (11), (12), and (14))

_ 0= 0c . (17)
T — 0 + Oc

_ Hap — Hep
Hup + Hep

As expected, y = 0 if 64 = 6 and we recover equipartition.
It is important to note that although the angles 6,, 6p, 6¢, and
Op are all between 0 and 7, they are not completely arbitrary: to
use the equations in this section we need to have an initial
configuration in which the tubes are crossed (Figure 3(a)), so 64
cannot exceed m — 6y (Figure 4(g)).

Wright

It is possible to identify a few key cases to illustrate the
extent to which nonequipartition can occur. Figures 6(a)—(c)
show an extreme case with 64 — 7w, g — 0, - — 0, and
0p — . (For clarity, these cases are sketched a little off the
limiting values.) From (11), (12), and (17) we expect
Hyg = ®2, Hep = 0, and y = +1. The state immediately after
reconnection is shown in (b) and the relaxed state in (c), where
the uniform twist equivalent to the self-helicity is also
indicated. It is remarkable that equipartition is totally violated,
and all the self-helicity goes into just tube AB.

By repositioning the footpoints it is possible to get all of the
self-helicity deposited in tube CD. Figures 6(d)—(f) illustrate
this case (04 — 0, 03 — 7w, 6c — 7, and Op — 0), and the
analysis suggests Hyz = 0, Hop = ®* with an imbalance of
X = —1, equivalent to AB being untwisted and CD having one
full turn.

3.4. Bounds on Self-helicity

In addition to the degree of nonequipartition, it is of interest
to calculate the amount of total self-helicity that reconnecting
crossed tubes can liberate. The minimum that can be released is
0, and arises when both the initial and final mutual helicities are
zero vy — 0, pp—0, v, — 0, and p, — 0, which is
equivalent to 04 — 0, 6 — 7, Oc — 0, and 6p — 7), and is
shown in Figures 6(g)—(i). As expected, from (16) we have
equipartition of self-helicity, and in this case both reconnected
tubes have zero self-helicity—see (11) and (12).

The maximum self-helicity that can be liberated occurs when
the initial mutual helicity is maximum (v — 7, p; — )
having a value of 2®&*—equivalent to a full link as in the top
configuration of Figure 1—and the final mutual helicity is zero
(v, — 0, p, — 0). This configuration can be achieved by
letting 64 — 7, 0p — 0, 0c — 7, and Op — 0, and is shown in
Figures 69)—(1), and both the reconnected tubes have a self-
helicity @~ (or 1 full turn). This case obeys equipartition, as
expected since 64 = O¢.

4. Uncrossed Tubes

It seems plausible for the tubes in Figure 3(a) to reconnect
and produce the configuration in Figure 3(b) as they can
naturally come into contact with each other. It is not so obvious
that we can start with the uncrossed arrangement in Figure 3(b)
and reconnect this to produce the crossed tubes in Figure 3(a).
However, this process has been employed by Priest &
Longcope (2017) and shown to occur in simulations by
Threlfall et al. (2018), so we present an analysis for this case
here. It must be stressed that if the initial uncrossed tubes do
not overlap and present a natural reconnection site, then the
tubes will need to be distorted before reconnection can occur.
Distortions are quite likely to produce internal structure in the
form of twisting (e.g., as in Figure 5(b)) or writhe, which would
need to be allowed for on top of the self-helicity change
associated with reconnection. We focus on three cases where
there is some natural degree of overlap and distortion is not
required to allow reconnection.

4.1. BD Overlap

Figure 7(a) shows footpoints B and D overlapping with the
other tube and generating a natural reconnection site. Follow-
ing the approach of Section 3.1 a careful consideration of the
reconnected tubes shows they can be untwisted by the
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Figure 6. Four examples demonstrating of flux tube reconnection exhibiting extreme behavior. In all examples we have the state prior to reconnection (left),
immediately after reconnection (center), and the relaxed state (right). Cases of extreme nonequipartition (a)—(c) and (d)—(f) ; minimum twist produced (g)—(i);
maximum total twist produced (j)—(1). In the right-hand figures the signed uniform twist equivalent to the self-helicity is indicated.

following footpoint motions: for AC we rotate about A by
—(04 + w/2), adding AH; = (04 + 7/2)®*/27, and rotate
about C by —(0¢ + 7/2), adding AH; = (O + 7/2)®*/2n. If
the tubes have no self-helicity initially, it follows that after

reconnection tube AC has a self-helicity of

Hyc =

Ot Ot

P2, 18
. (18)
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Figure 7. (a) The initial state of uncrossed tubes when footpoints B and D
overlap with the other tube (top). Following reconnection, tube AC overlies
tube BD (middle). A plan view of the footpoints and relevant angles is also
shown (bottom). (b) The initial state of uncrossed tubes when footpoints A and
C overlap with the other tube (top). Following reconnection, tube BD overlies
tube AC (middle). A plan view of the footpoints and relevant angles is also
shown (bottom).

Similarly tube BD is untwisted by rotating about B by
0 — 7/2 (adding AH, = —(0p — 7/2)®?/27) and rotating
about D by 0p — 7/2 (adding AH, = —(0p — 7/2)D?/27),
indicating

793+9D—7T

H,
BD o

D2, (19)
Given the initial and final mutual helicities (from
Equations (9) and (8), respectively) it is easy to confirm that
the self-helicities above conserve helicity on recalling the
identities (14) and (15). Interestingly, Hyc < —®2?/2 and
Hgp > —®2/2 (since 0y, 03, O, and 6p > 0) so equipartition is
never achieved, although it may be approached in the limit 6,4,
g, Oc, and 8p — 0 and corresponds to both tubes having a self-
helicity of —®2/2 (or -ve half turn). This limit, where the
footpoints are almost colinear, is shown in Figure 8(a) viewed
side-on before (top) and after (bottom) reconnection. The
uniform twist equivalent to the self-helicity is also indicated.

4.2. AC Overlap

Figure 7(b) shows footpoints A and C overlapping and
generating a natural reconnection site. Again a careful
consideration of the reconnected tubes shows they can be
untwisted by the following footpoint motions: for AC we rotate
about A by /2 — 04, adding AH; = —(7/2 — 0,)®?/2, and
rotate about C by w/2 — Oc, adding
AH; = — (/2 — 0c)®?/2x. If the tubes have no self-helicity
initially, it follows that after reconnection tube AC has a self-
helicity of

Hyc = M¢2' (20)

27
Similarly tube BD is untwisted by rotating about B by
Op + 7/2 (adding AH; = —(0 + 7/2)P?/27) and rotating
about D by Op + 7/2 (adding AH; = —(0p + w/2)®*/27),

Wright

indicating
_ 93 + 9[) + T

2

Again, the self-helicities above and the appropriate mutual
helicities can be shown to conserve total helicity. Since
Hye < ®2/2 and Hpp > ®%/2, it follows that equipartition
never occurs for this case, although it may be approached in the
limit 64, 0, Oc, and 6p — 0 and corresponds to both tubes
having a self-helicity of +®2/2 (or 4-ve half turn). This limit,
where the footpoints are approximately colinear is shown side-

on in Figure 8(b) both before (top) and after (bottom)
reconnection.

Hpp o2, 21

4.3. Quasi-colinear Footpoints

Considering Figure 7(a) it is evident that the uncrossed tubes
will present most naturally for reconnection if they are side-by-
side and have some overlap. This will result if 4 < 1 and
Oc < 1 and we require 0 < p < /2 and 0 < Op < w/2 to
preserve the overlap. We refer to this type of highly aligned
footpoint arrangement as quasi-colinear. Under these assump-
tions, the self-helicities of the reconnected tubes reduce to
Hop = wqﬂ (22)

27
so the overlying tube (AC) always has close to a -ve half turn,
but the underlying tube (BD) has —®2/2 < Hgp < 0 so can
range from being untwisted to having a -ve half turn.

A similar analysis for Figure 7(b) indicates the quasi-colinear
arrangement results if 3 < 1 and 6p < 1 and we require
0<6y<7/2 and 0 < Oc < /2 to preserve the overlap.
Under these assumptions, the self-helicities of the reconnected
tubes reduce to

~ 1
Hyc ~ —=®2,
AC 5

Hyc = =0z be ch)z’
2

Now the overlying tube (BD) always has close to a +ve half
turn, but the underlying tube (AC) has self-helicity corresp-
onding to a state somewhere between untwisted to having a
+ve half turn.

There is one other quasi-colinear case to consider and this is
shown in Figure 8(c). The top configuration shows both
footpoints C and D overlapping with tube AB. There is no
natural reconnection site here, but allowing CD to rise a wee bit
presents potential reconnection sites and does not add and twist
or writhe to CD. Reconnecting at the right-hand site gives both
reconnected tubes a -ve half turn (bottom configuration). It is
interesting to note that if reconnection occurs at the left-hand
site instead, both tubes would gain a positive half turn. The
sense of all these twists would change if (in the middle panel)
tube CD was in front of tube AB.

I‘NIBD ~ %@2 (23)

5. Discussion and Conclusions

The expressions for self-helicity of reconnected flux tubes
derived here should be a powerful tool for studying theoretical
models of structures in the corona that undergo reconnection,
e.g., Priest & Longcope (2017). It is essential to accurately
assess the amount of twist produced in such processes as this
can have important consequences for the stability of flux tubes
and their subsequent evolution.

Our results will also be important for interpreting simulation
results and observations. Indeed, an example of
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Figure 8. Three quasi-colinear footpoint configurations that guarantee a suitable reconnection site without the need for significant distortion of the flux tubes. (Only
the tube axes are shown, and are viewed side-on.) The states before (top) and after (bottom) reconnection are shown. The signed value of the uniform twist equivalent

to the self-helicity is also indicated.

nonequipartition of self-helicity in reconnected flux tubes was
recently reported by Threlfall et al. (2018) who had a
configuration resembling that in Figure 7(a) but with 6, < 1,
O0c <1, g~ 0p~7/2, so similar to Figure 8(a). Our
expectation (from (22)) is that A;c ~ —®2/2 and Hpp ~ 0.
Threlfall et al. (2018) note that the underlying tube (BD) in
their simulation is untwisted, and their Figure 7 shows the field
lines of the overlying tube having an obvious -ve twist of about
the right amount. It should be noted that resistivity in their
model may affect the twist in the reconnected tubes, and also
that their simulation included footpoint motion, which may
inject helicity, so a definitive comparison is not possible.
However, the qualitative agreement with their results suggest
the ideas in this paper may have relevance.

In conclusion, we have provided a theoretical analysis of the
self-helicity and equivalent twist produced by reconnecting two
flux tubes anchored to a plane such as the photosphere. If the
tubes are initially crossed and untwisted, as in Figures 3(a)
and 4(a),

1. The general criterion for equipartition of self-helicity
between the reconnected flux tubes is that the footpoints
form a suitable trapezium.

2. Nonequipartition of self-helicity is the usual situation,
and can be extreme with either tube having no self-
helicity, but the other being twisted.

3. The amount of total self-helicity that can be deposited in
the reconnected tubes ranges from zero to 2&* dependent
upon footpoint arrangement.

If the tubes are initially uncrossed but overlap, as in Figure 7,

1. Equipartition of self-helicity in the reconnected tubes is
never achieved, although it may be approached in the
limit of the footpoints having a particular quasi-colinear
arrangement.

2. The overlying reconnected flux tube has a self-helicity
whose magnitude always exceeds &> /2 (i.e., a minimum
of a half turn). The underlying tube’s self-helicity
magnitude never exceeds <I>2/ 2, so always has less than
a half turn.

If the tubes do not overlap, care should be taken to account
for any twist or writhe that is introduced when bringing them
together at the reconnection site.

A.N.W. was partially funded by STFC Consolidated Grant
ST/N000609/1. The author thanks the referee for constructive
comments and the suggestion to include Figure 5(c) and the
associated discussion.
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