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Abstract 

Coral skeletal Ba/Ca is a proxy for seawater Ba/Ca, used to infer oceanic upwelling and 

terrigenous runoff while [Mg2+] is implicated in the control of coral biomineralisation. We cultured 

large individuals (>12 cm diameter) of 3 genotypes of massive adult Porites spp. corals over a 

range of seawater pCO2 to test how atmospheric CO2 variations affect skeletal Ba/Ca and Mg/Ca. 

We identified the skeleton deposited after a 5 month acclimation period and analysed the skeletal 

Ba/Ca and Mg/Ca by secondary ion mass spectrometry. Skeletal Mg/Ca varies significantly 

between some duplicate colonies of the same coral genotype hampering identification of genotype 

and seawater pCO2 effects. Coral aragonite:seawater Ba/Ca partition coefficients (KD Ba/Ca) do 

not vary significantly between duplicate colonies of the same coral genotype. We observe large 

variations in KD Ba/Ca between different massive Porites spp. coral genotypes irrespective of 

seawater pCO2. These variations do not correlate with coral calcification, photosynthesis or 

respiration rates or with skeletal KD Mg/Ca or KD Sr/Ca. Seawater pCO2 does not significantly 

affect KD Ba/Ca in 2 genotypes but KD Ba/Ca is significantly higher at 750 μatm seawater pCO2 

than at 180 μatm in 1 P. lutea genotype. Genotype specific variations in KD Ba/Ca between 

different Porites spp. could yield large errors (~250%) in reconstructions of seawater Ba when 

comparing Ba/Ca between corals. Analysis of fossil coral specimens deposited at low seawater 

pCO2, may underestimate past seawater Ba/Ca and ocean upwelling/freshwater inputs when 

compared with modern specimens but the effect is small in comparison with the observed 

difference between coral genotypes.  
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1. Introduction 

Coral skeletal Ba/Ca correlates well with seawater Ba/Ca (Lavigne et al., 2016) and coral 

skeletal Ba/Ca records have been used to infer past seawater Ba concentrations, [Ba]. Dissolved 

oceanic Ba typically exhibits a nutrient-type vertical profile and is depleted in surface waters and 

regenerated at depth (Chan 1977). Both oceanic upwelling and terrigenous runoff are assumed to 

increase surface seawater [Ba] (Walther et al., 2013) and coral skeletal Ba/Ca records have been 

used to reconstruct past ocean circulation (Lea et al. 1989, Montaggioni et al., 2006) and/or local 

rainfall and freshwater inputs (Sinclair and McCulloch 2004; Walther et al., 2013). The application 

of the coral skeletal Ba/Ca proxy assumes that other biological and environmental factors either 

have no significant effect on skeletal Ba/Ca or can be corrected for e.g. temperature (Gonneea et 

al., 2017). However skeletal Ba/Ca was significantly higher (by ~20%) in a slow-growing Porites 

lobata field specimen compared to an adjacent faster growing individual (Allison and Finch 2007) 

mailto:na9@st-andrews.ac.uk


and also varied significantly between individual juvenile Favia fragum colonies grown in the same 

aquaria, independent of calcification rate (Gonneea et al. 2017). Other skeletal proxies e.g. Sr/Ca 

can be affected by coral calcification rate (de Villiers et al., 1994; de Villiers et al., 1995), coral 

species and genotype (de Villiers et al., 1995) and seawater pCO2 (Cole et al., 2016). 

Seawater pCO2 is a potential complicating factor in interpreting fossil coral skeletal records. 

Before the preindustrial period, atmospheric CO2 typically ranged from ~180 ppm (during glacial 

periods) to ~270 ppm (during interglacials) and was always significantly lower than during the 

present day (Petit et al., 1999). Seawater pCO2 affects the dissolved inorganic carbon chemistry of 

the seawater derived calcification fluid used for aragonite formation (Venn et al., 2012) and this 

may affect trace element incorporation (e.g. Holcomb et al., 2016; Cole et al., 2016). All skeletal 

Ba/Ca:seawater Ba/Ca coral calibrations have used modern day corals (Lea et al., 1989; Lavigne 

et al., 2016; Gonneea et al., 2017) and may not be applicable to fossil specimens which grew 

under lower seawater pCO2.  

To improve our understanding of Ba incorporation in coral we cultured multiple genotypes 

of massive Porites spp. (the genus most commonly used for palaeoenvironmental reconstruction) 

over a range of seawater pCO2, selecting concentrations that reflect present day conditions 

(~400 μatm) and values that are both lower and higher (180 and 750 μatm). Our range 

encompasses the likely concentration at the Last Glacial Maximum (Gattuso et al., 2009) and that 

projected to occur by the end of the present century (IPCC 2013). We acclimated the corals to 

altered seawater pCO2 for 5 months, identified the skeleton deposited after this period by alizarin 

red staining (Cole et al., 2016) and analysed its Ba/Ca and Mg/Ca composition. Mg2+ influences 

CaCO3 precipitation (Falini et al., 2009; Tao et al., 2009; Addadi et al., 2003) and is implicated in 

the control of coral biomineralisation (Sancho-Tomas et al., 2014). We explore the impacts of 

seawater pCO2 and coral genotype on skeletal Ba/Ca and we correlate both skeletal Ba/Ca and 

Mg/Ca with rates of key physiological processes (calcification, photosynthesis and respiration) 

measured during the experiment (Cole et al. 2018). 

 

2. Methods  

We tested the effect of variations in seawater pCO2 on the skeletal incorporation of Mg and 

Ba in 3 genotypes of massive Porites spp. corals at 25°C. All corals were harvested by a commercial 

collector from the same reef site in Fiji and imported into the UK. We assume that coral heads 

collected from large, spatially separate (non-adjoining) colonies represent different coral genotypes.  

We cut multiple sub-colonies (each ≥12 cm in diameter) from heads collected from each genotype 

to enable the study of large individuals of the same genotype in each pCO2 treatment. The 

physiological performance of small experimental coral colonies is not representative of larger 

colonies (Edmunds and Burgess, 2016). After sacrifice genotypes were identified to species level 

from surface skeletal morphology (Vernon, 2003). Two genotypes were identified as P. lutea and 

one as P. murrayensis (see Cole et al., 2016 for images of each coral). Two replicate colonies of the 

P. murrayensis genotype were cultured and analysed in 400 and 750 μatm seawater pCO2. These 

corals have previously been analysed for Sr/Ca and full details of this and the culture system are 

provided in Cole et al., 2016. Briefly, corals were cultured in an aquarium system constructed of low 

CO2 permeability materials and designed to control temperature, salinity and dissolved inorganic 

carbon (DIC) system parameters within narrow limits (Cole et al., 2016). Corals were housed in 21 l 

cast acrylic tanks, recirculated with seawater from high density polyethylene reservoirs containing 

~900 litres of seawater bubbled with gas mixes set to reach the target seawater pCO2 compositions. 

Corals were cultured at seawater pCO2 of ~180 µatm (the CO2 atmosphere during the last glacial 

maximum, Petit et al., 1999), ~400 µatm (the present day) and ~750 µatm (projected to occur by the 

end of the present century, IPCC 2013). Lighting was provided on a 12h light: 12h dark cycle such 



that photosynthetically active radiation (PAR) intensity at coral depth was ~300 μmol photons m-2 s-1. 

Corals were fed weekly with rotifers.   

After import into the aquarium, corals were maintained at ambient seawater pCO2 conditions 

for 2 months, adjusted to treatment pCO2 over another 2 months and then acclimated at the final 

treatment pCO2 for 5 months, all at 25°C. Coral calcification rate is a potential control on coral 

skeletal Mg/Ca and Ba/Ca geochemistry (Allison and Finch, 2007) but the response of calcification 

to altered seawater pCO2 can be affected by exposure duration (Castillo et al., 2014). Maintenance 

of control calcification rates during short pCO2 exposures could be explained by catabolism of stored 

lipids which then become depleted during longer pCO2 exposures (Castillo et al., 2014). The lipid 

reserves of massive Porites lobata field corals can sustain coral metabolic requirements under sub 

optimal growth conditions for >10 weeks (Spencer Davies 1991). Our acclimation times are much 

longer than this and it is unlikely that the response of the corals to altered seawater pCO2 is affected 

by short term catabolism of any storage lipids.  

At the end of the 5 month acclimation corals were incubated in 10 mg l-1 alizarin red for 8 

hours (whilst maintaining seawater pCO2) to create a stain line in the skeleton (Cole et al., 2016). A 

5 week experimental period followed in which calcification, respiration and net and gross 

photosynthesis were measured in each coral colony on 3 or 4 occasions (Cole et al., 2018). At the 

end of the experimental period the corals were sacrificed and immersed in 3-4% sodium 

hypochlorite solution for 24 h (to remove tissue). The skeletons were rinsed repeatedly in distilled 

water, dried and analysed by secondary ion mass spectrometry (SIMS).  

 

2.1 Seawater chemistry 

The reservoir seawater was ~80-85% fresh artificial seawater (Red Sea Salt, Red Sea 

Aquatics, UK) diluted with artificial seawater from a mixed coral/fish aquarium. ~10-15 l of 

seawater was usually removed from each reservoir each week (during removal of microalgae from 

the tank surfaces) and was replaced with fresh artificial seawater. No seawater replacement 

occurred during the 5 week experimental period. The total alkalinity, [Ca] and [Sr] of the culture 

seawater were maintained by additions of 0.6M Na2CO3 and a mixture of 0.58M CaCl2 + 0.02M 

SrCl2 by 200 μl volume solenoid diaphragm pumps, evenly spaced over a 24 hour period, 

controlled by a custom-written MATLAB® dosing control program (Cole et al., 2016). Seawater 

samples were collected weekly during the experimental period and analysed by quadrupole ICP-

MS (Thermo Scientific X Series)  for Mg, Ba and Ca. Samples were diluted 1000-fold in 5% HNO3 

(with 5 ppb In as an internal standard) and calibrated against matrix-matched synthetic standards 

prepared from 1000 μg ml-1 single-element stock solutions (Inorganic Ventures) in 5% HNO3.  

Replicate analyses of IAPSO standard seawater yielded Mg/Ca and Ba/Ca precision of 0.094 mol 

mol-1 and 1.3 μmol mol-1 respectively. 

 

2.2 Secondary Ion Mass Spectrometry (SIMS) 

The skeletons were sawn perpendicular to the growth surface of the coral skeleton to 

expose the centre of each colony and a section was cut along the axis of maximum linear 

extension.  Sections were fixed in epoxy resin (Epofix, Struers Ltd.) in 2.5 cm circular moulds, 

under vacuum. The sections were polished using silicon carbide papers (up to 4000 grade, 

lubricated with water) and polishing alumina (0.05 µm, suspended in water) to produce a cross-

section across the outermost surface of the skeleton, including the stain line. Sections were gold 

coated and analysed using a Cameca imf-4f ion microprobe in the School of Geosciences at the 

University of Edinburgh. Instrument conditions were 16O- beam, accelerated at 10.8 keV. The 

secondary ion extraction field was 4.5 KeV so the net impact energy of the primary ion beam was 

15.1 KeV. Energy offset = 75 eV, energy window = 40 eV, imaged field = 25 µm, field aperture 1 



and contrast aperture 2. We used a primary beam current of ~8 nA, a beam diameter of ~25 µm 

and a pre-analysis sputter of 1 minute to remove surface contamination. Each analysis is the sum 

of ten cycles and, for each cycle, we collected secondary singly-charged cations at masses 26Mg (3 

s), 44Ca (2 s) and 138Ba (15 s). Count rates were typically ~2000, ~230000 and ~80 counts per 

second (cps) respectively. The total time per analysis (including other isotopes not reported here) 

was 8 min and during this time the primary beam sputtered the sample to a depth of 2-3 μm 

(Allison et al., 2013). We estimate no significant isobaric interference for any of the isotopes 

studied (Allison 1996). Relative ion yields (RIY) for Mg/Ca and Ba/Ca were calculated from multiple 

(n = 9-27) daily analyses of a deep sea coral aragonite standard, NAHaxby2. We estimate the 

Mg/Ca composition of this standard as ≈ 65 mmol mol-1 and Ba/Ca ≈ 0.0155 mmol mol-1 by 

comparing SIMS analyses of this and another coral also analysed by bulk methods (Allison et al., 

2007). The standard deviation of multiple standard analyses was typically 1.4% and 2.0% for 

Mg/Ca and Ba/Ca respectively. For analysis of each coral, multiple analyses (n = 12-41) were 

evenly spaced across the skeleton deposited during the experimental period (between the stain 

line and the outermost edge of the skeleton) across 2-3 different corallites of each colony. High 

Ba/Ca values have been reported in some SIMS analyses on centres of calcification in the most 

recently deposited sections of Porites spp. skeletons (Allison and Finch 2007) indicating that 

sodium hypochlorite cleaning may not remove all organic contamination in these areas. These 

features, which appear as dark hollows on the section surface in reflected light (Allison and Finch 

2009) were avoided in this study. Analyses were also spatially removed, typically by several mm, 

from the skeleton deposited before import of the corals into the laboratory. Two replicate colonies 

of the P. murrayensis genotype were cultured and analysed in 400 and 750 μatm seawater pCO2. 

We calculated the mean and standard deviation of analyses in each coral sample. 

 

3. Results  

3.1 Seawater chemistry 

All seawater and skeletal data are summarised in Supplementary data table 1. Reservoir 

seawater Mg/Ca was comparable to natural seawater (Culkin and Cox, 1966) but reservoir Ba/Ca 

was higher than that reported from coral reef sites (~3 to 7-10 μmol mol-1, Walther et al., 2013; 

LaVigne et al. 2016). Reservoir seawater [Ca] and Mg/Ca were stable (within analytical error) over 

the 5 week experimental period (Table 1) and variations between reservoirs are not significant (2 

tailed t test, p>0.05). In contrast, seawater Ba/Ca varied significantly between all reservoirs (2 

tailed t test, p<0.05, Table 1) and is negatively correlated with seawater pCO2. Coral calcification 

and additions of the Na2CO3 and CaCl2+SrCl2 dosing solutions used to replace the ions consumed 

in calcification were highest at low seawater pCO2. It is likely that the Ba/Ca of the CaCl2+SrCl2 

dosing solution was higher than that of the reservoir seawater. Larger additions to the 180 µatm 

pCO2 treatment during the coral acclimation period (to replace the ions used in calcification) 

generated a higher seawater Ba/Ca in this treatment. Similarly, larger additions over the 5 week 

experimental period resulted in a discernible increase in seawater Ba/Ca during this time i.e. 

seawater Ba/Ca increased over the experimental period by 17% at 180 µatm pCO2 and by several 

% at 400 µatm pCO2 (Figure 1a).  

 

3.2 Coral skeletal Ba/Ca and Mg/Ca 

Coral skeletal Ba/Ca and Mg/Ca are illustrated for each coral in Figure 2a and b. We 

observe no significant differences (2 tailed t test, p<0.05) in skeletal Ba/Ca between the duplicate 

P. murrayensis genotype colonies in 400 and 750 μatm seawater pCO2 or in Mg/Ca at 750 μatm 

(Figure 2). However skeletal Mg/Ca varies significantly (p = 0.0013) between the duplicates 

cultured at 400 μatm and is ~30% higher in one individual.  



We observe close agreement between trends of increasing seawater and skeletal Ba/Ca 

over the 5 week experimental period in both analysed corallites of the P. lutea 1 coral in 180 μatm 

seawater pCO2 (Figure 1b) but similar trends are obvious in only one of 2 corallites analysed in the 

same coral genotype at 400 μatm seawater pCO2. The increase in seawater Ba/Ca at 400 μatm is 

smaller than at 180 μatm (Figure 1a) and errors in seawater and skeletal analyses make detection 

of trends difficult in this treatment. We do not plot trends in 750 μatm seawater pCO2 as variations 

in seawater Ba/Ca in this treatment are very small (Figure 1a). To remove the effect of variations in 

seawater Ba/Ca between seawater pCO2 treatments we present coral skeletal Ba data as Ba/Ca 

seawater:aragonite partition coefficients (Figure 2c), hereafter abbreviated to KD Ba/Ca (KD Ba/Ca 

= skeletal Ba/Ca/seawater Ba/Ca).  We also present skeletal Mg data as KD Mg/Ca (Figure 2d).  

We compare skeletal Ba/Ca and Mg/Ca between different coral genotypes cultured in the 

same seawater pCO2 by one way ANOVA (Table 2). All SIMS analyses for each coral genotype 

are combined for each seawater pCO2 treatment i.e. data from the 2 replicate P. murrayensis 

colonies cultured at 400 and 750 μatm are combined for this analysis. Significant variations in 

skeletal Ba/Ca occur between individuals of different genotypes cultured at the same conditions 

(Table 2) Skeletal Ba/Ca for P. lutea 1 are significantly higher than for P. lutea 2 or the P. 

murrayensis, irrespective of seawater pCO2 (Table 2). Skeletal Ba/Ca is significantly higher in P. 

lutea 2 compared to the P. murrayensis at 750 μatm.  We observe significant differences in 

skeletal Mg/Ca between colonies but these are not systematic e.g. skeletal Mg/Ca in P. lutea 1 is 

significantly higher than in both P. lutea 2 and P. murrayensis at 180 μatm but is significantly lower 

than P. lutea 2 and is not significantly different from P. murrayensis at 750 μatm (Table 2, Figure 

2b).  

Comparing coral Ba/Ca between seawater pCO2 treatments is more difficult due to the 

temporal trends in seawater Ba/Ca over the experimental period in the 180 and 400 μatm seawater 

pCO2 treatments. We normalise skeletal Ba/Ca of each SIMS analysis to the mean experimental 

period seawater Ba/Ca in each treatment and compare the resulting KD Ba/Ca by one way ANOVA 

(Table 3). In so doing we are assuming that calcification of each colony is approximately constant 

throughout the experimental period. Seawater Ba/Ca and skeletal Ba/Ca show similar proportional 

increases over the experimental period suggesting that this is a reasonable assumption (Figure 

1b). To ensure that variations in seawater Ba/Ca did not affect this statistical interpretation we 

repeated this normalisation using both the highest and lowest seawater Ba/Ca observed over the 

experimental period. KD Ba/Ca is significantly lower at 180 μatm than at 750 μatm in P. lutea 2 

regardless of normalisation procedure (Table 3, Figure 2c). KD Ba/Ca is significantly lower at 180 

μatm than at 400 μatm in the P. murrayensis  (Table 3) when SIMS data are normalised to the 

mean seawater Ba/Ca to calculate KD Ba/Ca but these corals are not significantly different when 

SIMS data are normalised to high seawater Ba/Ca. No other significant differences were observed 

in KD Ba/Ca between pCO2 treatments, regardless of the normalisation procedure.  

We compared KD Mg/Ca between individuals of the same genotype cultured under different 

seawater pCO2 using one way ANOVA (Table 3). Variations in KD Mg/Ca between seawater pCO2 

treatments are not consistent e.g. KD Mg/Ca is significantly higher at 180 μatm than at 750 μatm in 

P. lutea 1 but the relationship is reversed in P. lutea 2 (Table 3, Figure 2d).  

 

3.2.2. Relationships with physiological processes  

Calcification was significantly reduced at 750 μatm compared to 180 μatm seawater pCO2 

in the P. lutea 2 and P. murrayensis genotypes (Cole et al., 2018) but did not vary significantly as a 

function of seawater pCO2 in P. lutea 1. We plotted KD Ba/Ca and KD Mg/Ca versus calcification, 

respiration and net and gross photosynthesis for each colony as a function of coral genotype 

(Figure 3).  



In so doing we are matching the chemistry of the skeleton deposited in the 5 week 

experimental period with physiological measurements made over the same interval (Cole et al., 

2018). Some of the correlation coefficients between physiological rates and KD Ba/Ca and KD 

Mg/Ca are high (Table 4) but in only one case is the correlation significant, reflecting the small 

number of samples (n = 3-5). KD Mg/Ca is significantly negatively correlated with calcification rate 

in P. lutea 2. We do not observe consistent relationships between physiological rates and KD 

Ba/Ca and KD Mg/Ca. 

 

3.2.2. Relationships between elements  

To explore the interactions of different skeletal elements we plotted relationships between 

mean KD Ba/Ca, KD Mg/Ca and KD Sr/Ca (from Cole et al., 2016) for each individual coral. We plotted 

regressions, grouping the corals by genotype, (Figure 4) and calculated correlation coefficients 

(Table 5). None of these correlations is significant (p≤0.05) due to the small numbers (n = 3-5) in 

each regression group. KD Mg/Ca and KD Sr/Ca are negatively correlated in both genotypes of P. 

lutea but in only one case is the correlation strong (P. lutea 1, r2 = 0.85). We do not observe 

systematic behaviour in other elements between genotypes.  

 

4. Discussion 

4.1 Coral KD Ba/Ca 

We observe large variations in KD Ba/Ca, from ~0.5 to 1.5, between different coral 

genotypes grown in the same tanks (Figure 2). Our higher estimates of KD Ba/Ca are in reasonable 

agreement with previous reports for Porites spp. in the field (KD = 1.2, LaVigne et al., 2016) and for 

aragonites synthetically precipitated at 25°C from seawater (KD = 2.1, Gaetani and Cohen, 2006) 

and from Ca2+-Mg2+-Cl- solutions (ionic strength ~0.1M, KD = 1.5, Dietzel et al., 2004). Higher and 

lower KD Ba/Ca (KD = 3.8, Pretet et al., 2016; KD = 0.9, Gonneea et al., 2017) are occasionally 

observed in cultured corals but extreme values are unusual. In our study all corals appeared 

healthy throughout the experiment and physiological rates (Figure 3) are comparable to 

measurements of calcification (Allison et al., 1996) and photosynthesis and respiration (Hennige et 

al., 2010) in field specimens of massive Porites spp. Seawater Ba/Ca in our aquaria are high 

compared to natural waters and we cannot rule out the possibility that the relationship between 

seawater and skeletal Ba/Ca may be non-linear in some coral genotypes. However a linear 

relationship has been observed between seawater Ba/Ca and skeletal Ba/Ca in juvenile Favia 

fragum colonies cultured over a range of seawater Ba/Ca which extends to values similar to those 

used in our study.  

 

4.1.1 Coral genotype and KD Ba/Ca  

KD Ba/Ca for P. lutea 1 are x 2-3 higher than for P. lutea 2 or the P. murrayensis, 

irrespective of seawater pCO2 (Figure 2). LaVigne et al. (2016) observed good agreement in 

skeletal Ba/Ca of multiple P. lobata colonies from the same reef site and our finding that massive 

adult Porites spp. corals of the same species incorporate widely varying skeletal Ba/Ca under 

constant conditions is, to our knowledge, unique. Large variations in KD Ba/Ca (up to x2) have also 

been reported between individual juvenile Favia fragum colonies settled and grown in aquaria 

under the same seawater temperatures and seawater Ba/Ca (Gonneea et al. 2017). However 

calcite is present in the basal plates of newly settled coral recruits (Gilis et al., 2014) and KD Ba/Ca 

variations between juvenile corals may reflect varying mixtures of calcite and aragonite which 

exhibit different Ba/Ca partitioning. The mineral phase of adult corals is solely aragonitic (Gilis et 

al., 2014) and variations in mineralogy cannot explain the KD Ba/Ca variations observed here. 



Variations in skeletal Ba/Ca may reflect changes in the composition of the calcification fluid 

used for skeletal construction.  The aragonite skeleton precipitates from a calcification fluid 

enclosed in a space between the basal coral tissue and the underlying skeleton (Clode and 

Marshall, 2002). The calcification fluid probably derives from seawater transported paracellularly 

(between cells) to the calcification site (Tambutte et al., 2012). The fluid composition is modified by 

the addition or removal of solutes during fluid transport or whilst at the site e.g. Ca2+ is transported 

across cell walls via L-type Ca channels (Marshall 1996; Tambutte et al., 1996; Zoccola et al., 

1999) and the enzyme Ca-ATPase (Ip et al., 1991; Marshall, 1996).  

Several mechanisms may affect fluid and/or skeletal Ba/Ca. Increases in transcellular Ca2+ 

transport probably reduce calcification fluid Ba/Ca and thereby skeletal Ba/Ca. Ca channels likely 

increase fluid [Ca2+] while Ca-ATPase increases both the [Ca2+] and pH of the calcification fluid (Al 

Horani et al., 2003). Both of these increase the aragonite saturation state of the calcification fluid 

as the pH increase serves to concentrate dissolved inorganic carbon at the calcification site (Erez 

1978; McConnaughey 2003). Coral calcification rates are positively correlated with the saturation 

states of the calcification fluid (Allison et al., 2014) and seawater (Gattuso et al., 1998) so if this 

hypothesis is correct  then we expect low skeletal Ba/Ca (reflecting high transcellular Ca2+ 

transport) to occur at rapid calcification rates. The composition of the calcification fluid may also be 

affected by the amount of aragonite precipitated from it if the fluid acts as a semi-isolated reservoir 

(Rayleigh fractionation, Elderfield et al., 1996) and if Ba2+ competes with Ca2+ for inclusion in the 

aragonite lattice. The KD Ba/Ca of inorganic aragonite is >1 (Dietzel et al., 2004; Gaetani and 

Cohen, 2006) so the Ba/Ca of the fluid remaining in the reservoir, and of the aragonite precipitated 

from it, decreases as precipitation proceeds. Precipitation of a large proportion of the fluid reservoir 

results in low skeletal Ba/Ca. Finally, the growth entrapment model suggests that disequilibrium 

partitioning of metal/Ca may occur in carbonates at rapid precipitation rates (Watson 1994; Gabitov 

et al., 2014). As the KD Ba/Ca of inorganic aragonite is >1, then this model predicts a low aragonite 

Ba/Ca at fast precipitation rates. 

We do not observe systematic variations in the calcification rates of the different coral 

genotypes which would support these explanations. The fastest growing individuals of each coral 

genotype (those cultured at 180 μatm, Cole et al., 2018) attained broadly comparable calcification 

rates (Figure 3) yet these corals display widely varying KD Ba/Ca.  

Predicting the impact of Rayleigh fractionation and the growth entrapment model on 

skeletal Ba/Ca in our dataset assumes that Ba2+ substitutes in place of Ca2+ in the aragonite lattice. 

However the Ba structural state in coral aragonite is unknown (Finch et al., 2010). Coral skeletons 

are composite materials and some trace/minor element ions are substituted into the aragonite 

mineral e.g. Sr (Finch and Allison, 2003) while others may be hosted by an alternative phase e.g. 

Mg (Finch and Allison, 2008, Farges et al., 2009) and S (Cuif and Dauphin, 2005). If Ba is 

predominantly associated with a non-aragonite phase then variations in the proportion or, if 

organic, the composition of this phase, may affect skeletal Ba/Ca incorporation. 

 

4.1.2 Seawater pCO2 and KD Ba/Ca  

KD Ba/Ca are significantly higher at 750 μatm than at 180 μatm in 1 of the 3 coral 

genotypes (P. lutea 2) but in the other 2 coral genotypes no significant effect of seawater pCO2 can 

be determined. Seawater pCO2 may affect skeletal Ba/Ca incorporation if seawater pCO2 impacts 

the calcification fluid Ba/Ca. At high seawater pCO2, corals increase the pH (and decrease the [H+]) 

of the calcification fluid above that of seawater more than in their lower seawater pCO2 

counterparts (Venn et al., 2012). If this pH increase reflects proton extrusion by Ca-ATPase (e.g. Al 

Horani et al., 2003) then it is reasonable to assume that corals at high seawater pCO2 pump more 

Ca2+ into the calcification site. This could dilute calcification fluid Ba/Ca. This explanation does not 

fit our data where KD Ba/Ca are higher at high seawater pCO2. 



Calcification rates were reduced at 750 μatm compared to 180 μatm in both P. lutea 2 and 

P. murrayensis (Cole et al., 2018). Skeletal Ba/Ca is negatively correlated with calcification rate in 

all coral genotypes (Figure 3) but none of these relationships is significant due to the small sample 

numbers (Table 4). We do not observe significant variations in the calcification rates of P. lutea 1 

between pCO2 treatments and variations in KD Ba/Ca between these corals are small. An inverse 

correlation between calcification rate and KD Ba/Ca could be explained by Rayleigh fractionation 

(precipitation of a large proportion of the fluid reservoir will generate low aragonite Ba/Ca) or the 

growth entrapment model (rapid precipitation rates generate low aragonite Ba/Ca). However 

Rayleigh fractionation predicts positive correlations between observed KD Ba/Ca and KD Sr/Ca as 

the KD Ba/Ca and KD Sr/Ca of inorganic aragonite are both >1 (Dietzel et al., 2004; Gaetani and 

Cohen, 2006). However correlations between KD Ba/Ca and KD Sr/Ca (from Cole et al., 2016) for 

each coral, grouped by genotype, are insignificant and usually weak (Table 5). Furthermore our 

observation, that KD Ba/Ca is negatively correlated with calcification rate (Table 4, Figure 3), 

contrasts with observations of Porites spp. field colonies in which skeletal Ba/Ca was significantly 

higher (by ~20%) in a slow-growing  specimen compared to an adjacent fast growing individual 

(Allison and Finch 2007). How seawater pCO2 affects skeletal Ba/Ca is unknown but changes in 

seawater pCO2 likely affect multiple coral processes which may influence Ba/Ca incorporation.  

 

4.2 Coral KD Mg/Ca 

We observed large variations in skeletal Mg/Ca between duplicate colonies of the same 

genotype cultured at 400 μatm. XAFS indicates that coral skeletal Mg is not predominantly 

substituted for Ca in aragonite but is included in an alternative phase (Finch et al., 2008, Farges et 

al., 2009; Yoshimura et al., 2015) e.g. an organic material or amorphous calcium carbonate. Mg2+ 

affects CaCO3 polymorph and morphology (Falini et al., 2013) and is implicated in the control of 

coral biomineralisation (Sancho-Tomas et al., 2014). Mg2+ can facilitate (Falini et al., 2009, Tao et 

al., 2009) or inhibit (Addadi et al., 2003) CaCO3 precipitation possibly by interacting with different 

organic molecules present at the calcification site (Falini et al., 2013). Variations in skeletal Mg/Ca 

between duplicate colonies may reflect differences in calcification fluid Mg/Ca or changes in the 

proportions or compositions of the Mg-bearing phase. These variations are large and may 

overwrite any environmental effect on Mg incorporation (Mitsuguchi et al., 1996). We do not 

observe consistent relationships between KD Mg/Ca and seawater pCO2. Similarly we do not 

observe systematic relationships between coral physiological processes (calcification, 

photosynthesis and respiration, Figure 3) and skeletal Mg/Ca, or between KD Mg/Ca and KD Ba/Ca 

or KD Sr/Ca (Figure 4).  

 

4.3 Implications for reconstruction of environmental and palaeoenvironmental records 

Coral aragonite Ba/Ca correlates well with seawater Ba/Ca (LaVigne et al., 2016) and coral 

skeletal records has been used to infer oceanic upwelling (Lea et al. 1989) and/or local rainfall and 

freshwater runoff (Sinclair and McCulloch, 1994). While KD Ba/Ca is known to vary significantly 

between coral genera (LaVigne et al., 2016; Pretet et al., 2016), our study also demonstrates that 

KD Ba/Ca can vary significantly (by x2-3) between adult specimens of the same genera and even 

between individuals of the same coral species. Fossilised massive Porites spp. corals are not 

usually identified to species level as the corallite morphology at the growing coral surface is rarely 

preserved. The consequences of these variations will be limited if skeletal Ba/Ca is used to infer 

changes in ocean circulation or freshwater discharges within a single coral record (Sinclair and 

McCulloch, 1994). However if multiple coral records are compared e.g. to infer the significance of 

freshwater discharges between sites (Prouty et al., 2010) or to estimate changes in ocean 

circulation over geological time (Montaggioni et al., 2006), then the implications of variations in KD 

Ba/Ca are significant. Seawater Ba/Ca can vary by ~ x2 in regions affected by upwelling and 



terrestrial run-off (LaVigne et al., 2016). Genotype specific variations in KD Ba/Ca can be of a 

similar or greater magnitude so could overwhelm any skeletal signature of seawater Ba/Ca in inter-

coral comparisons.  

Our data also suggest that seawater pCO2 can affect skeletal Ba/Ca in some Porites sp. 

genotypes. KD Ba/Ca is significantly lower at 180 μatm than at 750 μatm (by 33%) in 1 coral 

genotype. KD Ba/Ca is lower at 180 μatm than at 400 μatm (by 13-16%) in 2 corals but these 

effects are not significant. Fossil coral specimens deposited at lower seawater pCO2, may 

underestimate past seawater Ba/Ca and thereby underestimate ocean upwelling or freshwater 

inputs when compared with more modern specimens however any affect will be very subtle as the 

magnitude of the seawater pCO2 effect is small in comparison with the KD Ba/Ca variation 

observed between genotypes. 

 

5. Conclusions 

KD Ba/Ca do not vary significantly between duplicate colonies of the same massive Porites 

sp. coral genotype but can vary significantly between adult specimens of the same genera and 

even between individuals of the same coral species cultured under the same environmental 

conditions. This has implications for the use of coral skeletons as indicators of seawater Ba/Ca and 

therefore of ocean upwelling or freshwater runoff. Genotype variations are large (up to x2-3) and 

could overwrite any environmental signature or imply significant variations in seawater Ba/Ca.  

Variations in KD Ba/Ca do not correlate with coral calcification, photosynthesis or respiration rates 

or with skeletal KD Mg/Ca or KD Sr/Ca and their origin is unresolved. KD Ba/Ca is significantly 

higher at 750 μatm seawater pCO2 than at 180 μatm in 1 of the 3 coral genotypes suggesting that 

seawater pCO2 (known to vary over geological time) could affect Ba/Ca in some coral skeletons. .  

 



Acknowledgments 

This work was supported by the UK Natural Environment Research Council (award NE/I022973/1) 

to AAF and NA.  NERC Scientific Services provided access to the ion microprobe, and we are 

indebted to Richard Hinton for his assistance with the analyses. Seawater Ba/Ca and Mg/Ca 

analyses were carried out by Matt Cooper (University of Southampton). We thank Dave Steven, 

Mark Robertson, Casey Perry, Mike Scaboo and Andy Mackie for their assistance with the culture 

system build. 

 
References 

Addadi, L., Raz, S., Weiner, S., 2003. Taking advantages of disorder: amorphous calcium 
carbonate and its role in biomineralization. Adv. Mater. 15, 959–970. 

Al-Horani, F.A., Al-Moghrabi, S.M., de Beer, D., 2003. The mechanism of calcification and its 
relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 
142, 419-426. 

Allison N., 1996. Quantitative determinations of trace and minor elements in coral aragonite by ion 
microprobe analysis, with preliminary results from Phuket, South Thailand. Geochim. Cosmochim. 
Acta 60, 3457-3470. 

Allison, N., Chambers, D., Finch, A.A., E.I.M.F., 2013. SIMS sputtering rates in biogenic aragonite: 
implications for culture calibration studies for palaeoenvironmental reconstruction. Surface Interface 
Anal. 45, 1389-1394. 

Allison, N., Cohen, I., Finch, A.A., Erez, J., Tudhope, A.W., 2014. Corals concentrate dissolved 
inorganic carbon to facilitate calcification. Nature Communications 5, 5741 doi: 
10.1038/ncomms6741. 

Allison, N., Finch, A.A., 2007. High temporal resolution Mg/Ca and Ba/Ca records in modern Porites 
lobata corals. Geochem. Geophys. Geosyst. 8, Q05001 doi 10.1029/2006GC001477.  

Allison, N., Finch, A.A., Webster, J.M., Clague, D.A., 2007. Palaeoenvironmental records from fossil 
corals: the effects of submarine diagenesis on temperature and climate estimates. Geochim. 
Cosmochim. Acta. 71, 4693-4703. 

Allison, N., Tudhope, A.W., Fallick, A.E., 1996. Factors influencing the stable carbon and oxygen 
isotopic composition of Porites lutea coral skeletons from Phuket, South Thailand. Coral Reefs, 15, 
43-57.  

Castillo, K.D., Ries, J.B., Bruno, J.F., Westfield, I.T., 2014. The reef-building coral Siderastrea 
siderea exhibits parabolic responses to ocean acidification and warming. Proceedings of the Royal 

Society of London B: Biological Sciences, 281, doi: 10.1098/rspb.2014.1856. 

Chan, L.H., Drummond, D., Edmond, J.M., Grant, B., 1977. On the barium data from the Atlantic 
GEOSECS expedition. Deep-Sea Research 24, 613-649. 

Clode, P.L., Marshall, A.T., 2002. Low temperature FESEM of the calcifying interface of a 
scleractinian coral. Tissue and Cell 34, 187-198. 

Cole, C., Finch, A.A., Hintz, C., Hintz, K., Allison, N., 2016. Understanding cold bias: variable 
response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals. Scientific Reports 
6, 26888; doi: 10.1038/srep26888.  

Cole, C., Finch, A.A., Hintz, C., Hintz, K., Allison, N., 2018. Effects of seawater pCO2 and 
temperature on calcification and productivity in the coral genus Porites spp.: an exploration of 
potential interaction mechanisms. Coral Reefs, doi.org/10.1007/s00338-018-1672-3. 

Cuif, J.-P., Dauphin, Y., 2005. The environment recording unit in coral skeletons – a synthesis of 
structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. 
Biogeosciences, 2, 61-73.  
Culkin, F., Cox, R.A., 1966. Sodium, potassium, magnesium, calcium and strontium in sea water.  
Deep-Sea Res., 13: 789-804. 

de Villiers, S., Shen, G.T., Nelson, B.K., 1994. The Sr/Ca-temperature relationship in coralline 



aragonite: influence of variability in (Sr/Ca)seawater and skeletal growth parameters. Geochim. 
Cosmochim. Acta, 58, 197-208. 

de Villiers, S., Nelson, B.K., Chivas, A.R., 1995. Biological controls on coral Sr/Ca and d18O 
reconstructions of sea surface temperatures. Science, 269, 1247-9. 

Dietzel, M., Gussone, N., Eisenhauer, A., 2004. Co-precipitation of Sr2+ and Ba2+ with aragonite by 
membrane diffusion of CO2 between 10 and 50°C. Chem. Geol. 203, 139-151. 

Edmunds, P.J., Burgess, S.C., 2016. Size-dependent physiological responses of the branching 
coral Pocillopora verrucosa to elevated temperature and pCO2. Journal of Experimental Biology, 
291, 3896-3906.  

Elderfield, H., Bertram, C.J., Erez, J. 1996. Biomineralization model for the incorporation of trace 
elements into foraminiferal calcium carbonate. Earth Planet. Sci. Lett. 142, 409-423. 

Erez, J., 1978. Vital effect on the stable-isotope composition seen in foraminifera and coral 
skeletons. Nature 273, 199-202. 

Falini, G., Fermani, S., Tosi, G., Dinelli, E., 2009. Calcium carbonate morphology and structure in 
the presence of seawater ions and humic acids. Cryst. Growth Des., 9, 2065–2072, doi: 
10.1021/cg8002959. 

Falini, G., Reggi, M., Fermani, S., Sparla, F., Goffredo, S., Dubinsky, Z., Cuif, J.-P., 2013. Control 
of aragonite deposition in colonial corals by intra-skeletal macromolecules. J. Struct. Biol. 183, 
226-238. 

Farges, F., Meibom, A., Flank, A.M., Lagarde, P., Janousch, M., Stolarski, J., 2009. Speciation of 
Mg in biogenic calcium carbonates. Journal of Physics: Conference Series 190, doi:10.1088/1742-
6596/190/1/012175.  

Finch, A.A., Allison, N., 2003. Strontium in coral aragonite: 2. Sr co-ordination and the long-term 
stability of environmental records. Geochim. Cosmochim. Acta 67, 4519-4527. 

Finch, A.A., Allison, N., 2008. Mg structural state in coral aragonite and implications for the 
paleoenvironmental proxy. Geophysical Research Letters 35, L08704, doi 10.1029/2008GL033543. 

Finch, A.A., Allison, N., Steaggles, H., Wood, C.V., Mosselmans, J.F.W., 2010. Ba XAFS of Ba-rich 
standard minerals and the potential for determining Ba structural state in calcium carbonate. Chem. 
Geol. 270, 179-185. 

Gabitov, R.I., Sadekov, A., Leinweber, A., 2014. Crystal growth rate effect on Mg/Ca and Sr/Ca 
partitioning between calcite and fluid: an in situ approach. Chem. Geol. 367 70-82 doi: 
10.1016/j.chemgeo.2013.12.019. 

Gaetani, G.A., Cohen, A.L., 2006. Element partitioning during precipitation of aragonite from 
seawater: a framework for understanding paleoproxies. Geochim. Cosmochim. Acta, 70, 4617-4634. 

Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S., Buddemeier, R.W., 1998. Effect of calcium 
carbonate saturation of seawater on coral calcification. Global and Planetary Change 18, 37-46 
doi.org/10.1016/S0921-8181(98)00035-6. 

Gattuso, J.-P., Lavigne, H., 2009. Technical Note: Approaches and software tools to investigate the 
impact of ocean acidification. Biogeosciences, 6, 2121–2133.  

Gilis, M., Meibom, A., Doart-Coulon, I., Grauby, O., Stolarski, J., Beronnet,A., 2014. 
Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis, J. 
Morphology, 275, doi: 10.1002/jmor.20307. 

Gonneea, M.E., Cohen, A.L., DeCarlo, T.M., Charette, M.A., 2017. Relationship between water 
and aragonite barium concentrations in aquaria reared juvenile corals. Geochim. Cosmochim. 
Acta. 209, 123-134. 

Hennige, S.J., Smith, D.J., Walsh, S.J., McGinley, M.P., Warner, M.E., Suggett, D.J., 2010. 
Acclimation and adaptation of scleractinian coral communities along environmental gradients within 
an Indonesian reef system, J. Exp. Mar. Bio. Ecol., 391, 153-152. 

Holcomb, M., DeCarlo, T.M., Gaetani, G.A., McCulloch, M., 2016. Factors affecting B/Ca ratios 

in synthetic aragonite. Chem. Geol. 437, 67-76. 



Ip, Y.K., Lim, A.L.L., Lim, R.W.L., 1991. Some properties of calcium-activated adenosine-
triphosphatase from the hermatypic coral Galaxea fascicularis. Mar. Biol. 111: 191-197.  

IPCC Climate Change 2013, 2013. The Physical Science Basis. (eds T.F. Stocker and D.Qin) 
Cambridge Univ. Press, Cambridge, U.K. 

LaVigne, M., Grottoli, A.G., Palardy, J.E., Sherrell, R.M., 2016. Multi-colony calibrations of coral 
Ba/Ca with a contemporaneous in situ seawater barium record. Geochim. Cosmochim. Acta 179, 
203-216. 

Lea, D.W., Shen, G.T., Boyle, E.A., 1989. Coralline barium records temporal variability in equatorial 
Pacific upwelling, Nature, 340, 373 – 376, doi:10.1038/340373a0. 

Marshall, A.T., 1996. Calcification in hermatypic and ahermatypic corals, Science 271, 637-639. 

McConnaughey, T.A.,  2003. Sub-equilibrium oxygen-18 and carbon-13 levels in biological 
carbonates: carbonate and kinetic models. Coral Reefs 22, 316-327.  

Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., Isdale, P.J., 1996. Mg/Ca thermometry in coral 
skeletons, Science, 274, 961-3. 

Montaggioni, L.F., Le Cornec, F., Corrège, T., Cabioch, G., 2006. Coral barium/calcium record of 
mid-Holocene upwelling activity in New Caledonia, South-West Pacific. Palaeogeography 
Palaeoclimatology Palaeoecology 237, 436-455.  

Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Stievenard, M., 1999. 
Climate and atmospheric history of the past 420 ky from the Vostok ice core. Antarctica. Nature 399, 
429-436. 

Pretet, C.E., Zuilen, K.V., Nagler, T.F., Reynaud, S., Bottcher, M.E., Samankassou, E., 2015. 
Constraints on barium isotope fractionation during aragonite precipitation by corals. The 
Depositional Record 1, 118–129. 

Prouty, N.G., Field, M.E., Stock, J.D., Jupiter, S.D., McCulloch, M., 2010. Coral Ba/Ca records of 
sediment input to the fringing reef of the southshore of Moloka'i, Hawai'i over the last several 
decades. Mar. Pollut. Bull. 60, 1822-35. 

Sancho-Tomás M., Fermani, S., Goffredo, S., Dubinsky, Z., García-Ruiz, J.M., Gómez-Morales, J., 
Falini, G., 2014. Exploring coral biomineralization in gelling environments by means of a counter 
diffusion system. CrystEngComm. 16, 1257 – 1267.  

Sinclair, D.J., McCulloch, M.T., 2004. Corals record low mobile barium concentrations in the 
Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers? Palaeogeography 
Palaeoclimatology Palaeoecology, 214, 155-174. 

Spencer Davies P., 1991. Effect of daylight variations on the energy budgets of shallow-water corals. 
Mar, Biol. 108, 137-144. 

Tambutte, E., Allemand, D., Mueller, E., Jaubert, J., 1996. A compartmental approach to the 
mechanism of calcification in hermatypic corals. J. Exp.Biol, 199, 1029-1041.  

Tambutte, E., Tambutté, S., Segonds, N., Zoccola, D., Venn, A., Erez, J., Allemand, D., 2012. 
Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification. 
Proc. Royal Soc. B 279, 19-27.  

Tao, J., Zhou, D., Zhang, Z., Tang, R., 2009. Magnesium-aspartate-based crystallization switch 
inspired from shell molt of crustacean. Proc. Natl. Acad. Sci. U.S.A. 106, 22096–22101. 

Venn, A.A., Tambutte, E., Holcomb, M., Tambutte, S., 2012. Impact of seawater acidification on pH 
at the tissue-skeleton interface and calcification in reef corals. Proc. Natl. Acad. Sci. 110, 1634-
1639.  

Vernon, J.E.N., 1993. Corals of Australia and the Indo-Pacific, University of Hawaii Press; 2nd 
edition. 

Walther, B.D., Kingsford, M.J., McCulloch, M.T., 2013. Environmental records from Great Barrier 
Reef corals: inshore versus offshore drivers, PLOS One, 8, e77091, doi: 
10.1371/journal.pone.0077091. 



Watson, E., 1994. A conceptual model for near-surface kinetic controls on the trace-element and 
stable isotope composition of abiogenic calcite crystals. Geochim. Cosmochim. Acta 68, 1473-
1488. 

Yoshimura, T., Tamenon, Y., Takahashi, O., Nguyen, L.T., Hasegawa, H., Iwasaki, N., Kawahata, 
H., 2015. Mg coordination in biogenic carbonates constrained A. by theoretical and experimental 
XANES, Earth Planet. Sci. Lett., 421, 68-74. 

Zoccola, D., Tambutte, E., Senegas-Balas, F., Michiels, J.F., Failla, J.P., Jaubert, J., Allemand, D., 
1999. Cloning of a calcium channel alpha 1 subunit from the reef-building coral, Stylophora pistillata. 
Gene, 227, 157-167.  

 

 

 

 

Table 1. Seawater compositions of different treatments. Values are means of 5 measurements 
over the experimental period ± standard deviation with coefficients of variation in parentheses. 
 

 180 µatm 400 µatm 750 µatm 

[Ca] (mmol kg-1) 9.78 ± 0.08 (0.8%) 9.84 ± 0.10 (1.0%) 9.86 ± 0.07 (0.7%) 

Mg/Ca (mol mol-1) 5.92 ± 0.08 (1.4%) 5.90 ± 0.08 (1.3%) 5.88 ± 0.05 (0.8%) 

Ba/Ca (μmol mol-1) 56.9 ± 4.6 (8.0%) 36.7 ± 2.0 (5.3%) 32.8 ± 0.9 (2.8%) 

 

 

Table 2. Summary of significant differences (p≤0.05) comparing skeletal Ba/Ca and Mg/Ca between 
individuals of different coral genotypes cultured in the same seawater pCO2 treatments. Significant 
differences were identified by one way ANOVA followed by Tukey’s pairwise comparisons. The data 
from the 2 replicate P. murrayensis colonies cultured at 400 and 750 μatm were combined for this 
analysis. 
 

 

ANOVA  Seawater pCO2 (μatm) 

  180 400 750 

 

Skeletal 

Ba/Ca 

P. lutea  1 and 2 

P. lutea  1  and P. murrayensis 

P. lutea  2  and P. murrayensis 

Pl1 > Pl2  

Pl1 > Pm  

Pl2 = Pm  

 

Pl1 > Pl2  

Pl1 > Pm  

Pl2 = Pm  

 

Pl1 > Pl2  

Pl1 > Pm  

Pl2 > Pm  

 

 

Skeletal 

Mg/Ca 

P. lutea  1 and 2 

P. lutea  1  and P. murrayensis 

P. lutea  2  and P. murrayensis 

Pl1 > Pl2  

Pl1 > Pm  

Pl2 = Pm  

Pl1 = Pl2  

Pl1 = Pm  

Pl2 = Pm  

Pl1 < Pl2  

Pl1 = Pm  

Pl2 > Pm  

 

 

  



Table 3. Summary of significant differences (p≤0.05) comparing KD Ba/Ca or KD Mg/Ca between 

individuals of the same coral genotype cultured in different seawater pCO2 treatments.  

 

 P. lutea  1 P. lutea  2 P. murrayensis 

 

KD Ba/Ca  

180 and 400 μatm 

180 and 750 μatm 

400 and 750 μatm 

180 = 400 

180 = 750  

400 = 750 

180 = 400 

180 < 750  

400 = 750 

180 =< 400a 

180 = 750  

400 = 750 

 

KD Mg/Ca  

180 and 400 μatm 

180 and 750 μatm 

400 and 750 μatm 

180 > 400 

180 > 750  

400 > 750 

180 = 400 

180 < 750  

400 = 750 

180 = 400 

180 = 750  

400 = 750 

Significant differences were identified by one way ANOVA followed by Tukey’s pairwise 
comparisons. The data from the 2 replicate genotype 3 colonies cultured at 400 and 750 μatm 
were combined for this analysis. 

a KD Ba/Ca calculated using mean seawater Ba/Ca in corals cultured at 180 μatm were significantly 
different from those of corals cultured at 400 μatm but KD Ba/Ca calculated using the highest 
observed seawater Ba/Ca at 180 μatm were not significantly different from those of corals cultured 
at 400 μatm. 

 

 

Table 4. Correlation coefficients (r2) between KD Ba/Ca and KD Mg/Ca (this study) and 

physiological processes (Cole et al., 2018) in each coral genotype.  

 

 KD Ba/Ca 

 

KD Mg/Ca 

Genotype Pl1 Pl 2 Pm Pl1 Pl 2 Pm 

Calcification 0.45 0.92 0.38 0.52 1.00 0.052 

NP 0.60 0.36 0.058 0.43 0.14 0.014 

GP 0.56 0.42 0.078 0.47 0.18 0.009 

R 0.31 0.70 0.18 0.72 0.001 0.000 

Significant correlations (p<0.05) are highlighted in bold. Genotypes are abbreviated as in the 
legend to Figure 2. 
 

 

Table 5. Correlations coefficients (r2) between KD Ba/Ca, KD Mg/Ca (this study) and KD Sr/Ca (from 

Cole et al., 2016) for each coral colony as a function of genotype. 

  

 P. lutea  1 P. lutea  2 P. murrayensis 

KD Ba/Ca and KD Sr/Ca 0.12 0.12 0.33 

KD Ba/Ca and KD Mg/Ca  0.0010 0.93 0.30 

KD Mg/Ca and KD Sr/Ca 0.85 0.34 0.11 
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Figure 1. a) Changes in seawater Ba/Ca over the 5 week experimental period (error bar indicates standard 
deviation of repeat seawater analyses) and b) increases in skeletal Ba/Ca (over 2 transects of different 
corallites of P. lutea 1) and seawater Ba/Ca over the 5 week experimental period at 180 and 400 µatm 
seawater pCO2. All points are shown as a proportion of the mean value. Skeletal Ba/Ca data have been 
scaled assuming that linear extension is constant over the 5 week period. The typical standard deviation of 
repeat analyses is indicated for all seawater points and as a floating error bar for skeletal Ba/Ca.
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Figure 2. Skeletal concentrations of a) Ba/Ca (µmol mol-1) and b) Mg/Ca (mmol mol-1) and observed 
seawater:coral aragonite partition coefficients (KD) of c) Ba/Ca and d) Mg/Ca. Error bars for skeletal 
concentrations indicate 95% confidence limits while error bars for KD compound 95% confidence limits for 
skeletal and seawater analyses. Skeletal concentrations are grouped per pCO2 treatment while KD are 
grouped per coral genotype (Pl 1 = P. lutea 1, Pl 2 = P. lutea 2, Pm = P. murrayensis).
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Figure 3. Relationships between coral skeletal KD Ba/Ca and Mg/Ca and calcification, photosynthesis and 
respiration in each coral genotype. Error bars indicate typical 95% confidence limits for KD (calulated by 
compounding 95% confidence limits for skeletal Me/Ca and seawater Me/Ca, where Me is Mg or Ba) and 
one standard deviation for physiological measurements.  
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(Cole et al., 2016) and c) KD Mg/Ca and KD Sr/Ca of each individual coral. Regressions are grouped per 
coral genotype. Error bars indicate typical 95% confidence limits for KD (calculated by compounding 95% 
confidence limits for skeletal and seawater Me/Ca).
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Table A1. Seawater and skeletal Ba/Ca and Mg/Ca data. Values are means ± standard deviation (n). Duplicate colonies of P. murrayensis at 

400 and 750 μatm are denoted a and b.  

 

Seawater pCO2 Seawater concentrations Genotype Skeletal concentrations 

 Ba/Ca 

μmol mol-1 

Mg/Ca 

mol mol-1 

 Ba/Ca 

μmol mol-1 

Mg/Ca 

mmol mol-1 

180 μatm 56.9 ± 4.6 (5) 5.92 ± 0.08 (5) P. lutea 1 

P. lutea 2 

P. murrayensis 

82.1 ± 5.1 (41) 

28.5 ± 1.2 (29) 

28.8 ± 5.8 (36) 

4.004 ± 0.219 (41) 

3.199 ± 0.178 (29) 

3.128 ± 0.169 (36) 

400 μatm 36.7 ± 2.0 (5) 5.90 ± 0.08 (5) P. lutea 1 

P. lutea 2 

P. murrayensis a 

P. murrayensis b  

51.6 ± 3.2 (26) 

24.4 ± 9.2 (23) 

20.7 ± 3.9 (23) 

22.0 ± 2.7 (20) 

3.538 ± 0.246 (26) 

3.490 ± 0.225 (23) 

3.007 ± 0.196 (23) 

3.567 ± 0.259 (20) 

750 μatm 32.8 ± 0.9 (5) 5.88 ± 0.05 (5) P. lutea 1 

P. lutea 2 

P. murrayensis a 

P. murrayensis b 

47.5 ± 4.4 (24) 

27.3 ± 12.0 (21) 

18.2 ± 2.8 (15) 

18.8 ± 3.6 (12) 

2.786 ± 0.113 (24) 

3.663 ± 0.253 (21) 

2.901 ± 0.191 (15) 

3.100 ± 0.254 (12) 

 



 


