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Abstract Three large calving events occurred at Petermann Glacier in northwest Greenland between 2008
and 2012 that generated ice islands (large tabular icebergs) that ranged from ~30 to 300 km2 in areal extent.
Ice islands are known to deteriorate, via fracture and melt, during their drift through regional water bodies
where they pose a potential risk to offshore resource extraction operations and disperse freshwater from the
Greenland Ice Sheet. This study presents the first analysis of the deterioration occurring across the flux
of ice islands that travel between Nares Strait and the North Atlantic after Petermann Glacier calving events.
The evolution of Petermann ice island size distributions was evaluated, and the spatial dispersal of meltwater
was quantified, through analyses that utilized the newly developed Canadian Ice Island Drift, Deterioration
and Detection Database. Size-frequency distributions remained relatively consistent, both spatially and
temporally, and were well fit by power law models with slopes of approximately �1.7. This suggested that
fracture was an important process by which the Petermann ice islands deteriorated, regardless of elapsed time
or distance from the glacier. Ice island meltwater fluxes into the Baffin Island and Labrador currents were
not large enough to slow down the Atlantic Meridional Overturning Circulation by weakening deep-water
convection in the Labrador Sea. However, augmentedmeltwater input was calculated within Petermann Fjord
(2.0 mSv) and in the vicinity of grounding locations (0.4 mSv). Further research is necessary to better
understand how this freshwater alters fjord circulation and influences the composition of local ocean waters.

Plain Language Summary Three large tabular icebergs (“ice islands”) broke away from Petermann
Glacier, northwest Greenland, between 2008 and 2012. We use the Canadian Ice Island Drift, Deterioration and
Detection Database to investigate the ice island size distributions as well as how meltwater, generated
through their drift and deterioration, is dispersed through water bodies such as Baffin Bay and the Labrador
Sea. The size-frequency distributions were best fit by power law models, which suggests that fracture was an
important process by which the Petermann ice islands deteriorated. While augmented meltwater input was
calculated within Petermann Fjord and at grounding locations, ice island meltwater fluxes were not large
enough to slow down the Atlantic Meridional Overturning Circulation. Our results contribute to the two
dominant themes of ice island research: their role in the dispersal of freshwater from the major Arctic and
Antarctic ice sheets and the risk that they pose to shipping and offshore resource extraction operations.

1. Introduction

Large tabular icebergs, or “ice islands,” are generated by calving events at high-latitude ice shelves and
floating ice tongues (Bigg et al., 2014; Nick et al., 2012). Examples include the 5,800-km2 ice island that broke
away from Larsen-C Ice Shelf in Antarctica in 2017 and three large ice islands that calved in relatively rapid
succession between 2008 and 2012 from Petermann Glacier in northwest Greenland (Crawford, Crocker,
et al., 2018; Münchow et al., 2014; National Aeronautics and Space Administration, 2017). While smaller than
many of their Antarctic counterparts, these three ice islands (~30 to 300 km2) were more extensive than typi-
cal Arctic ice islands (Figure 1; Crawford, Crocker, et al., 2018; Newell, 1993).

Research concerning ice islands and the many ice island fragments produced during their deterioration has
predominantly been dedicated to two subjects: their potential as hazards to shipping and offshore industrial
operations (Fuglem & Jordaan, 2017; Haas, 2012; McGonigal et al., 2011; Mueller et al., 2013; Peterson, 2011)
and the dispersal of freshmeltwater as they deteriorate during drift (Gladstone et al., 2001; Merino et al., 2016;
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Silva et al., 2006; Smith, 2011). Arctic research has historically focused on the former, as ice islands fracture
and generate numerous smaller ice islands, and icebergs, as well as bergy bits (100–300 m2) and growlers
(20 m2), which represent hazards to regional industrial interests (Canadian Ice Service [CIS], 2005; Newell,
1993; Peterson, 2011; Peterson et al., 2009; Sackinger et al., 1985).

Antarctic research has concentrated on the distribution of meltwater inputs into the Southern Ocean
resulting from the melt of ice islands, as well as the resulting biological, physical, and chemical consequences
to the surrounding water column (Duprat et al., 2016; Helly et al., 2011; Raiswell et al., 2016; Smith et al., 2013).
A series of studies beginning in 1980 used shipborne observations to assess the distribution patterns of
Antarctic ice island fragments and to infer rates of deterioration through size and concentration data
(Budd et al., 1980; Hamley & Budd, 1986; Jacka & Giles, 2007; Romanov et al., 2012). The most recent additions
to this research by Tournadre et al. (2012, 2015, 2016) incorporated altimeter, scatterometer, and optical and
synthetic aperture radar (SAR) remote sensing data sets (Fletcher et al., 2016; Long et al., 2002; Stuart & Long,
2011), which greatly increased the spatial coverage of the distribution analyses and also extended the size
classes included within the data set.

Ice islands and icebergs are an important component of the freshwater flux from the Antarctic and Greenland
ice sheets due to their potential to distribute meltwater over large regions (Enderlin et al., 2016, 2018;
Luckman et al., 2010; Stern et al., 2015). More concerted research is now being undertaken on this topic in
Arctic and sub-Arctic waters (Enderlin et al., 2016; Marson et al., 2018; Stern et al., 2015; Wagner &
Eisenman, 2017). However, it is a challenge to monitor numerous ice islands over their entire life spans
(Merino et al., 2016; Rackow et al., 2017; Stern et al., 2016). This has made it difficult to analyze deterioration
and estimate the spatial and temporal dispersal of meltwater following specific ice island calving events.

This article touches upon both of these research themes by using the new Canadian Ice Island Drift,
Deterioration and Detection (CI2D3) Database (Crawford, Crocker, et al., 2018) to investigate the downstream
consequences of the 2008, 2010, and 2012 Petermann Glacier calving events. This study determines the fit of
several statistical distributions to the size-frequency distribution of Petermann ice islands (PIIs) to evaluate
which one provides the best representation of these ice island observations. Iceberg and ice islands in the

Figure 1. Ice islands produced by recent calving events at the Petermann Glacier. (a) July 2008, Envisat (© European Space Agency); (b) August 2010, MODIS Aqua
(NASA, 2010); and (c) July 2012, ASTER Terra (NASA, 2012). The location of Petermann Glacier is denoted by the red circle in Figure 1a. MODIS = Moderate
Resolution Imaging Spectroradiometer; NASA = National Aeronautics and Space Administration; ASTER = Advanced Spaceborne Thermal Emission and Reflection
Radiometer; PII = Petermann ice island.
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Arctic and Antarctic have previously been described to be well repre-
sented by log-normal or power law size-frequency distributions (Enderlin
et al., 2016; Kirkham et al., 2017; Stern et al., 2016; Tournadre et al.,
2015). The nature of these distributions reflect the processes (e.g., fracture,
smaller-scale calving, and wave erosion) that contribute to iceberg or ice
island deterioration (Kirkham et al., 2017), which then influences the num-
ber and size of ice hazards and meltwater production. The results of our
analysis are discussed in this context.

This study also identifies where augmented, fresh meltwater flux mag-
nitudes occur in eastern Canadian Arctic waterbodies after ice island
calving events at Petermann Glacier. We quantify the spatial distribu-
tion of meltwater resulting from the drift and deterioration of the
numerous ice islands that originated from the 2008, 2010, and 2012
Petermann Glacier calving events and discuss the potential conse-
quences of this meltwater flux over varying spatial scales. The CI2D3
Database tracks the lineage of ice islands until they decrease to
approximately 0.25 km2 in surface area (Crawford, Desjardins, et al.,
2018). It is this lineage information and thorough monitoring that made
it possible to conduct these analyses for the individual PIIs observed in
satellite-borne SAR imagery that was acquired between July 2008 and
December 2013.

2. Study Area

Northwest Greenland contains a number of glaciers (i.e., Petermann, Ryder, and Steensby glaciers) that termi-
nate in floating ice tongues and episodically calve large ice islands (Figure 2; Higgins, 1989). Petermann Glacier
itself drains approximately 4% of the surface area of the Greenland Ice Sheet and has, historically, been
observed to calve once every 5 to 10 years (Higgins, 1991; Münchow et al., 2014). Recent calving events
occurred in 2001, 2008, 2010, 2011, 2012, 2013, and 2017 (Crawford, Crocker, et al., 2018; Desjardins et al., 2018).

Ice islands that calve from the northwest Greenland ice tongues fracture into numerous individual ice islands
that follow a southward drift trajectory. Figure 2 illustrates the dominant currents and bathymetry that influ-
ence ice island drift routes through the study area. Ice islands become caught in the southward flowing Baffin
Island Current after passing over a sill separating Kane Basin from Baffin Bay (Fissel, 1982; Tang et al., 2004).
Ice islands typically follow the edge of the Baffin Island continental shelf next to a steep shelf break (Newell,
1993; Tang et al., 2004). They exit Baffin Bay through Davis Strait and enter the Labrador Sea where they con-
tinue south in the Labrador Current (Newell, 1993; Tang et al., 2004). Ice islands from northwest Greenland
have been observed as far south as 42°N (Crawford, Crocker, et al., 2018). In this location offshore of
Newfoundland, ice islands encounter warmer waters associated with the North Atlantic Current, which has-
tens their disintegration (Figure 2; Bigg et al., 1997).

3. Methods
3.1. The CI2D3 Database and Initial Data Subsetting

The geospatial CI2D3 Database contains >25,000 entries representing observations of >900 individual ice
islands that were descendants of the large initial ice islands that calved from Petermann Glacier and other
northwest Greenland ice tongues between 2008 and 2012 (Crawford, Crocker, et al., 2018; Desjardins et al.,
2018). To generate the CI2D3 Database, ice islands were identified in SAR scenes obtained from the CIS
archive. These were primarily RADARSAT-1 and -2 (Canadian Space Agency) ScanSAR Wide acquisitions with
nominal resolutions of 100 m. A polygon was delineated to represent the surface extent of each identified ice
island in ArcGIS (v. 10.2–10.5), and a number of geospatial and qualitative attribute fields were populated
using customized geographic information system tools. Ice islands were tracked at a minimum 2-week obser-
vation interval. The lineage connection that is captured in the CI2D3 Database is illustrated in Figure 3a. These
lineage connections are made between repeat observations of a tracked ice island, or between a “mother” ice
island and the “daughters” that are created through their fracturing.

Figure 2. Bathymetry and ocean currents in the study area (National
Geophysical Data Center, 2006). PG = Petermann Glacier; RG = Ryder
Glacier; SG = Steensby Glacier; KB = Kane Basin; LS = Lancaster Sound;
NFLD = Newfoundland; CP = Cumberland Peninsula; AI = Admiralty Inlet;
CI = Coburg Island EI = Ellesmere Island; NS = Nares Strait; FB = Frobisher Bay.
Warm and cold currents are denoted by the red and blue colors, respectively.
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Uncertainty in the digitized surface area, calculated as the coefficient of variation between database techni-
cians, was 6.2% for monitored ice islands and 8.4% when an ice island was first identified in satellite imagery.
(cf. Paul et al., 2013). Full details regarding the data sources, workflow, and uncertainty assessment associated
with the CI2D3 Database are provided in Crawford, Crocker, et al. (2018). The database documentation
(Crawford, Desjardins, et al., 2018) is found at https://wirl.carleton.ca/ci2d3. The database is housed at the
Polar Data Catalogue, a public repository (https://www.polardata.ca/pdcsearch/PDCSearch.jsp?doi_id=12678).

This study focuses on the flux of ice islands following the largest three recent Petermann Glacier calving
events. The database contains 332, 9,658, and 7,263 ice island observations associated with the 2008,
2010, and 2012 calving events, respectively (Figure 3). Ice islands associated with the 2008 calving event were
monitored until there were no longer any identifiable ice islands >0.25 km2 in the study area. Monitoring of
the ice islands associated with the 2010 and 2012 calving events ended on 31 December 2013. The ice islands
associated with the 2008, 2010, and 2012 calving events had been monitored for 1, 3.5, and 1.5 years after
their respective calving events.

Finally, a note on terminology: The Manual of Ice defines an ice island fragment as a “piece of an ice island
that has broken away from the main mass” (CIS, 2005). It is difficult to distinguish the “main mass” with
increasing time after an initial glacier calving. For this reason, and also due to the overlap in sizes between
ice islands and fragments from different sources and calving events, all individual pieces are referred to as
“ice islands” in this study. The term ice island is not traditionally used to describe large tabular icebergs that
originate from Antarctica. However, all Arctic and Antarctic large tabular icebergs are referred to as ice islands
throughout this paper for simplicity. Smaller nontabular and tabular icebergs discussed in other publications
are still referred to as “icebergs.”

3.2. Size Distributions

We assessed the fit of several statistical distributions to the size-frequency distributions of PIIs originating
from the 2010 and 2012 calving events. The size-frequency distribution of ice islands originating from the

2008 calving event was not used in this analysis due to the low number
of individual ice islands associated with this calving event. Database
entries were subset to include only the first representation of each ice
island fragment per 2-week period to remove sampling bias. Eight of these
periods, each separated by a period of approximately 6 months, served as
“snapshots” to evaluate if the best fit distribution was consistent over time.
The study area was divided into four spatial snapshots, regions of 10° lati-
tude that broadly represent major water bodies (Table 1), to assess if the
best fit distribution was consistent across the drift range of PIIs. Similar
to the temporal assessment, only the first observation of an ice island

Figure 3. Illustration of Petermann ice island observations represented in the Canadian Ice Island Drift, Deterioration and Detection Database. (a) Example of the
directional relationship (i.e., lineage connection) established between repeat observations of an ice island and between “daughter” ice islands resulting from the
fracture of “mother” ice islands. All database entries associated with the (b) 2008, (c) 2010, and (d) 2012 Petermann Glacier calving events, represented as blue
points. The database currently includes entries of ice islands that were observed up to 31 December 2013. When monitoring ended, ice islands totaling 2% and 70%
of the original surface area associated with the 2010 and 2012 calving events remained in the study region.

Table 1
Spatial Snapshots Used to Assess Variation in Size Distributions

Spatial snapshot Water bodies
Latitude
range (°N)

1 Nares Strait/northern Baffin Bay ≥75
2 Baffin Bay <75 ≥65
3 Labrador Sea <65 ≥55
4 southern Labrador Sea; North Atlantic <55
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that was observed multiple times as it drifted through a spatial region was included in each spatial snapshot.
Only three ice islands associated with the 2012 Petermann Glacier calving event were associated with the
third spatial snapshot. We omitted this snapshot from the distribution fitting analysis due to this small sample
size.

Several probability distributions (power law, log-normal, normal, exponential, gamma, Weibull, and log-
logistic) were fitted to the observed ice island size-frequency distributions at each temporal and spatial snap-
shot using R (v. 3.0.2; R Core Team, 2013). Truncation of the data set at 0.25 km2 was accounted for using the
fitdistrplus, FAdist, and poweRlaw R packages (Aucoin, 2015; Delignette-Muller et al., 2017; Gillespie, 2017). A
comparison of the quality of the fitted distributions was conducted based on their individual Kolmogorov-
Smirnov statistic using the truncgof R package (Wolter, 2015).

3.3. Meltwater Dispersal

The spatial dispersal of meltwater resulting from the drift and deterioration of the PIIs was calculated based
on surface area and thickness change between each successive observation of the monitored ice islands in
the CI2D3 Database. Surface area change was calculated from areal extent information captured in the data-
base. Thickness change was estimated using basal and surface ablation modeling. Initial thicknesses of 76 ± 6
(1σ) and 182 ± 16 m were assigned to the ice islands created from the 2010 and 2012 calving events
(Münchow et al., 2014). The thickness of the 2008 PII was estimated to be 62.3 ± 6.8 m based on the draft
observed when it drifted over a mooring, deployed during the Canadian Arctic Through-flow project, at
80.5°N on 11 August 2008. Values of of 873 kg/m3 (Crawford, Crocker, et al., 2018) and 1,025 kg/m3 were
assigned to ice density (ρi) and water density (ρw), respectively. Thickness was backcalculated for all of the
ice islands associated with the 2008 calving event that were observed prior to this date (i.e., between 13
July and 11 August 2008) with the following basal and surface ablation models.

Basal ablation (Mb, m/s) was modeled by considering the turbulent exchange of heat across a flat plate
(Weeks & Campbell, 1973). Mb is related to the differential velocity (Δu; m/s) between the ocean current
and ice island drift and the difference in temperature (ΔT; °C) between the underlying ocean water and
the melting point (Tm) across its waterline L (m) with equation (1).

Mb ¼ C�Δu0:8
ΔT
L0:2

(1)

Cwas assigned a value of 1.3 × 10�5 ·m�2/5·s�1/5·°C�1. Crawford (2018), reports this value, after calibrating the
forced-convection basal ablation model with field data collected from a PII. Following Kubat et al. (2007) and
Løset (1993), Tm was calculated with equation (2), an empirical relationship that accounts for the influence of
meltwater on the salinity of the ice-ocean boundary layer and, consequently, the melting point of the ice.

Tm ¼ T f�e�0:19 Te�T fð Þ (2)

In equation (2), Te is the water temperature at the keel depth and Tf is the far-field freezing temperature of
ocean water at the same depth (Broström et al., 2009; Løset, 1993). Tf is calculated with salinity (S; psu) and
pressure (dbar) at the ice island keel depth (Fofonoff & Millard, 1983).

Equations (1) and (2) were forced with 5-day average ocean temperature and salinity data from a simulation
with the 1/12° resolution (about 4 km in Baffin Bay) regional Arctic and Northern Hemisphere Atlantic config-
uration of the Nucleus for European Modelling of the Ocean (NEMO) v.3.4 ocean model (Madec and the
NEMO team, 2015). This configuration covers the Arctic Ocean, as well as much of the Atlantic Ocean, with
open boundaries at the Bering Strait and 20°S. The simulation is run from 2002 to 2016 using surface forcing
from the Canadian Centre for Meteorological and Environmental Prediction’s (Environment and Climate
Change Canada) Global Deterministic Prediction System (GDPS) ReForcasts (CGRF) (Smith et al., 2014).
Further details on the model setup, as well as evaluation in and around Baffin Bay, can be found in Hu
et al. (2018) and Hughes et al. (2016).

Themean value associated with the drift of “PII-A” from the 2010 calving event (0.067m/s), as modeled by the
CIS, was assigned to Δu. The parameterization of Δu is a potential source of uncertainty for the Mb calcula-
tions within the thinning model (Bouhier et al., 2018; Jansen et al., 2007). A sensitivity analysis using the
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2008 calving event was conducted to illustrate the effect of varying the assigned value of Δu; the assigned
value of Δu was adjusted by 1σ (+0.047 m/s) to show the resulting variation in the magnitude of meltwater
input dispersed through the study region following the 2008 Petermann Glacier calving event.

Surface ablation (Ms; m/day) was calculated with a temperature index melt model, where a degree-day factor
(DDF; m water equivalent [w.e.]·°C�1·day�1) relates positive degree days (PDDs; °C· day) to an ablation mag-
nitude (equation (3); Pellicciotti et al., 2005).

Ms ¼ DDF�PDD (3)

A value of 6.4 mmw.e.·°C�1·day�1 was assigned to the DDF parameter (Crawford et al., 2015). PDDs were cal-
culated using hourly 2-m air temperature data from the CGRF data set (Smith et al., 2014). The ocean and
atmospheric data for the NEMO or CGRF grid cell where the ice island was located at the time of observation
were used, and the thinning of each ice island was then hindcast. The equations were run iteratively, so pre-
vious thinning was taken into account when determining the depth bin from which to extract Te and S. Keel
depth was also corrected for adjustments in hydrostatic equilibrium after each change in thickness.

The thinning experienced between successive ice island observations was calculated with Mb and Ms. The
meltwater input was then calculated based on the volume lost due to thinning across the surface area of each
ice island and the volume associated with decreases in surface area. Surface area loss was calculated between
successive observations of a tracked ice island or determined from unaccounted surface area based on the
combined surface extents of daughter ice islands following the fracturing of a mother ice island. Some ice
islands associated with the 2010 calving event did not have a fully documented history. The thicknesses of
these “orphan” ice islands were estimated based on the average melt rate of all other monitored ice islands.
Two small (~1 km2) orphan ice islands that were first observed ~2 years after the 2010 calving event were
omitted from the analysis because we could not reasonably estimate their thickness.

The areal extent of individual ice islands occasionally fluctuated due to satellite imagery artifacts and digitiza-
tion uncertainty. This occurred more frequently after a mother ice island fractured than between observa-
tions of an individual ice island that was monitored over time. Apparent increases in ice island volume
were subtracted from previously calculated meltwater input to ensure that this extra volume was not double
counted in the analysis, which would result in an overestimate of freshwater flux. Therefore, extent fluctua-
tions do not alter net freshwater input associated with individual calving events so long as they are
completely documented.

“Terminal” ice islands, referring to those that fell below the 0.25-km2 monitoring threshold or otherwise
became impossible to identify in SAR imagery, were converted to meltwater. Meltwater mass and volume
were aggregated by 2-week time periods across a 50 × 50-km grid. The time-integrated meltwater flux
was also calculated in milli-Sverdrups (mSv) across the same grid. To estimate meltwater discharge into
the Baffin Island and Labrador currents, the meltwater flux was calculated after aggregating the meltwater
input over larger regions of the study area.

4. Results
4.1. Overview of Ice Island Drift and Deterioration After Petermann Glacier Calving Events

The drift trajectories of ice islands associated with the 2008, 2010, and 2012 Petermann Glacier calving events
generally followed a route south through Nares Strait and continued along the western edge of Baffin Bay
and the Labrador Sea. The 2008 PII calved on 13 July with an initial surface area of 30.0 ± 2.5 km2. Four other
ice islands ranging from 0.3 ± 0.03 to 5.39 ± 0.5 km2 that most likely calved directly from Petermann Glacier
were also observed in the following days. The main ice island fractured twice in Nares Strait in August 2008
andwas not observed to fracture again until May 2009, though its surface area did decrease from 21.8 ± 1.4 to
11.0 ± 0.7 km2. This ice island rapidly deteriorated in the spring of 2009 when 15 small ice islands were
generated. The last ice island linked to the 2008 calving event was observed at the mouth of Frobisher
Bay, southeastern Baffin Island in July 2009 (Figure 4a).

At 292.7 ± 24.6 km2, the 2010 PII was an order of magnitude larger than the 2008 PII, and a far greater number
of ice islands were generated through its breakup (Figure 4b). Three smaller ice islands of 5.1 ± 0.4, 1.5 ± 0.1,
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and 2.6 ± 0.2 km2 also calved on 5 August 2010, yielding a total loss of 20.0 ± 0.1 Gt of ice. The 2012 PII was
initially 136.9 ± 11.5 km2, or 21.8 ± 0.2 Gt. The CI2D3 Database follows the 2010 and 2012 PIIs until 31
December 2013. At this time, six ice islands associated with the 2010 calving event remained in the study
area. The combined surface area of these ice islands represented 2% of the original surface extent of this
calving event. Eighteen ice islands and 70% of the original surface extent of the 2012 calving event
remained in the study area when monitoring ended.

4.2. Size Distributions

The ice island populations following the 2010 and 2012 Petermann Glacier calving events were consistently
dominated by smaller ice island sizes. For example, the majority of ice islands were <1 km2 for 80% of the
assessed temporal and spatial snapshots (Figures 5 and 6). While smaller ice islands dominated the 2010
and 2012 size distributions, the same pattern was not seen for the 2008 data set. This was due to the limited
fracturing experienced by the main ice island, which retained a relatively large surface area as it drifted
through the study area.

Based on the Kolmogorov-Smirnov test statistic comparison, the observed size-frequency distributions of all
spatial and temporal snapshots were best represented by a power law distribution (Figures 5 and 6). A log-
logistic model provided the second best fit to the size-frequency distributions of over 90% of the tested snap-
shots. The power law, log-logistic, and Weibull distributions were all more representative of the observed
size-frequency distributions than the log-normal distribution. This was the case for all tested temporal and
spatial snapshots.

The slopes of the fitted power law models for each of the temporal and spatial snapshots (�2.1 to �1.5) are
shown in the complementary cumulative distribution function plots of Figures 5 and 6. Here, P(surface area)
refers to the proportion of observations of the ice island surface area less than or equal to the value given on
the x-axis. The mean slope of the power law distributions fit to the 2010 snapshots was �1.7 (±0.2 standard
deviation). The slopes associated with the power law fits to the 2012 snapshots had the samemean slope but
a smaller standard deviation than the distributions fit to the 2010 snapshots (�1.7 ± 0.05), likely due to the
shorter monitoring duration associated with the 2012 Petermann Glacier calving event.

Figure 4. Ice islandmovement through the study area, color coded by time since calving, for the (a) 2008, (b) 2010, and (c) 2012 Petermann Glacier calving events. All
observations associated with the 2008 calving over the relatively short monitoring period. Ice islands associated with the 2008 event were monitored until all ice
islands were no longer identifiable (1 year post calving). The 2010 and 2012 events were subset to represent the “snapshots” of the ice island populations analyzed in
the size distribution analysis. Ice islands associated with the 2010 and 2012 events were tracked for 3.5 and 1.5 years post calving, respectively. The coloring
used for the temporal snapshots in Figures 4b and 4c correspond to the distributions shown in Figures 5 and 6, respectively.
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4.3. Meltwater Dispersal

Approximately 2.1 Gt of freshwater was contained in the ice island that calved from Petermann Glacier in
2008. The ice island that calved in 2010 contained almost 10 times the amount of freshwater compared to
the 2008 event. The initial ice island that calved in 2012 was less than half the extent of the 2010 ice island.
However, the ice island that calved in 2012 had a mass of approximately 22 Gt, which was similar to the 2010
ice island due to a much greater thickness (Münchow et al., 2014). The magnitude of meltwater input into
Nares Strait, Baffin Bay, and the Labrador Sea due to the deterioration of these three original ice islands is
shown in Figure 7. We capture 100% and 65% of the freshwater associated with the original ice islands
that calved from Petermann Glacier in 2008 and 2012, respectively (Figure 7). Due to uncertainty
associated with the thickness of orphan ice islands and fluctuations in the digitized surface area of some
monitored ice islands, the freshwater associated with the original 2010 calving event was overestimated
by ~4% (Figure 7b).

A relatively large quantity of meltwater was input within and at the mouth of Petermann Fjord after each cal-
ving event. The meltwater flux in the Petermann Fjord reached 0.3 mSv in the first 2 weeks after the 2012 cal-
ving event, and 0.9 Gt of meltwater was input at this location over the time that the associated ice islands
were monitored. The meltwater flux in the fjord was 7 times greater (2.0 mSv) after the 2010 Petermann
Glacier calving event. In total, 2.8 Gt of meltwater input was calculated at this location following this
calving event.

Ice island grounding in the northwest portion of Baffin Bay and along the continental shelf of Baffin Island
resulted in relatively high meltwater inputs at these locations. One example was the approximately

Figure 5. Ice island size distributions and distribution modeling (2010). Empirical cumulative size-frequency distributions of ice islands associated with the 2010
Petermann Glacier calving event by (a) temporal and (b) spatial snapshots. Power law model fits for the log-log complementary cumulative distribution function
of ice island surface area for the same (c) temporal and (d) spatial snapshots. Values in parentheses refer to the number of ice island observations associated
with the temporal or spatial snapshot. The vertical dotted line in each panel represents the 0.25-km2 threshold under which ice islands were not regularly included in
the Canadian Ice Island Drift, Deterioration and Detection Database and therefore were not considered in this analysis. The coloring of Figures 5a and 5c corresponds
to that in Figure 4b.
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0.4-mSv flux observed in the late summer of 2011 in the grid cell associated with “PII-B,” an ice island that
was grounded in this location for 15 months (Crawford et al., 2016). Increased meltwater input magnitudes
and time-integrated fluxes also coincided with regions where ice islands fully deteriorated, or at least to
the point that they were no longer tracked in the CI2D3 Database. For example, approximately 0.7 Gt,
or 35% of the mass, of the 2008 ice island was input at the mouth of Frobisher Bay following a large
breakup event (Figure 7a, lower right). Meltwater fluxes for individual grid cells in this region reached
0.1 mSv during this time. Large meltwater inputs were also observed off southern Labrador and
Newfoundland where many ice islands that originated from the 2010 calving event fully deteriorated or
fell below the CI2D3 Database monitoring threshold. The greatest meltwater flux into the Baffin Bay
(0.7 mSv) and the Labrador Sea/North Atlantic region (0.9 mSv), which corresponds with the Baffin
Island and Labrador currents, respectively, occurred approximately 1 year following the 2010
calving event.

The sensitivity analysis showed that the amount of meltwater input in a single 50 × 50-km grid cell varied by
as much as 33% when the value assigned to Δu was varied by +1σ. However, the impact of varying Δu was
more influential, relatively speaking, when minimal surface area reduction was taking place. This is a result of
Δu being directly implicated in the calculation of basal ablation, which was the process causing the majority
of deterioration during periods associated with smaller magnitudes of surface area reduction. The significant
negative correlation between the relative difference in meltwater input and the surface area loss per grid cell
(r =�0.32, p ≤ 0.05) supports our conclusion that variation in Δu was most influential when little surface area
reduction was taking place.

Figure 6. Ice island size distributions and distribution modeling (2012). Empirical cumulative size-frequency distributions of ice islands associated with the 2012
Petermann Glacier calving event by (a) temporal and (b) spatial snapshots. Power law model fits for the log-log complementary cumulative distribution function
of ice island surface area for the same (c) temporal and (d) spatial snapshots. Values in parentheses refer to the number of ice island observations associated with the
temporal or spatial snapshot. The vertical dotted line in each panel represents the 0.25-km2 threshold under which ice islands were not regularly included
in the Canadian Ice Island Drift, Deterioration and Detection Database and therefore were not considered in this analysis. The coloring of Figures 6a and 6c
corresponds to that of Figure 4c.
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5. Discussion
5.1. Size Distributions

Approximately 80% of ice islands in the spatial and temporal snapshots were<10 km2 (Figures 5 and 6). This
supports previous findings that most mass will be contained within a few large ice islands, while the ice
island population will be dominated by smaller ice islands, which are difficult to detect in SAR imagery
(Rackow et al., 2017; Saper, 2011; Wesche & Dierking, 2015). Therefore, these smaller ice islands, icebergs,
bergy bits, and growlers pose greater risks to offshore operations such as shipping and resource extraction
(Saper, 2011). Iceberg charts are routinely produced in the North Atlantic where the resource extraction
industry is active (Karlsen et al., 2001). However, the spatial coverage of these charts does not extend into
the Canadian Arctic, and only ice islands >5 km in length are regularly included on regional sea ice charts
(CIS, 2005).

The ice island generated after the 2008 calving event did not fracture over the majority of the time that it was
monitored. For this reason, we did not include it in the size distribution analysis. Potential reasons why this ice
island remained largely intact include its high relative thickness (i.e., the ratio of thickness to surface dimen-
sions), high sea ice concentration, and/or a low number of internal weaknesses that can predispose an ice
island to fracture by wave stress (Goodman et al., 1980; Orheim, 1980). Similar to our results for ice islands
associated with the 2010 and 2012 calving events, Enderlin et al. (2016) found that a power law model rea-
sonably represented iceberg size distributions in a Greenland fjord and used this to estimate growler popula-
tions. The finding that the size-frequency distributions of PIIs were best represented by a power law model
can similarly inform future predictions of the size-frequency distributions of ice islands, which may be of par-
ticular interest to offshore industry concerned with these marine hazards. The mean slope of the power law
distributions that were fit to the temporal and spatial snapshots in our study is very close to that reported for
the size-frequency distribution of Antarctic ice islands (�1.5; Bouhier et al., 2018; Tournadre et al., 2016). This
suggests that ice islands in both the Arctic and the Antarctic deteriorate through a complex set of fracture
and fragmentation mechanisms and that these deterioration processes occur similarly across a range of ice
island sizes (Kirkham et al., 2017; Tournadre et al., 2016).

In contrast, Kirkham et al. (2017) and Tournadre et al. (2012) found that the size-frequency distribution of
smaller icebergs located further from glacier calving sites was better represented by a log-normal model.

Figure 7. Spatial distribution of meltwater input, shown in gigatons (Gt), into the study area over the time period that the drift and deterioration of ice islands
originating from the (a) 2008, (b) 2010, and (c) 2012 Petermann Glacier calving events were monitored. Ice islands associated with the 2008 event were monitored
until all ice islands were no longer identifiable (1 year post calving). Ice islands associated with the 2010 and 2012 events were tracked for 3.5 and 1.5 years post
calving, respectively. Locations where no ice islands were observed are denoted by the white background. Gray cells denote where freshwater flux could not be
reasonably estimated due to fluctuation in ice island volume resulting from the digitization workflow and quality of the remotely sensed imagery used to generate
the Canadian Ice Island Drift, Deterioration and Detection Database. The count of ice islands that were no longer monitored in the database (“terminal ice islands”) is
denoted by the cell outlines: gray dotted outline = 1 to 5; gray solid line = 6 to 10; black solid line = >10; no outline = no terminal ice islands. It is likely that
freshwater input in these grid cells is overestimated since terminal ice islands were immediately converted to meltwater.
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Kirkham et al. (2017) explain that deterioration is increasingly dominated by a relatively small set of melt
processes (e.g., forced convection and wave erosion) as icebergs travel away from source glaciers.
Conversely, larger icebergs (and ice islands) are subject to a more complex set of deterioration processes
(e.g., large-scale fracture, smaller-scale calving, and ablation). This results in a wide range of ice island
surface areas and a situation in which a log-normal model can display characteristics that are similar to a
power law model (Kirkham et al., 2017; Tournadre et al., 2016). Mathematically, log-normal models
converge towards power law models as the variation in the variable of interest (i.e., surface area) increases.
The quadratic term in the log-normal density function is then minimized and the linear term
correspondingly becomes more influential (Mitzenmacher, 2004; Tournadre et al., 2016). The finding that
the power law distribution provided the best fit for all temporal and spatial snapshots suggests that the
complexity of deterioration processes to which the PIIs were subject did not substantially decrease over
the study area or time period that they were monitored.

5.2. Meltwater Dispersal

While fracturing and fragmentation alter ice island size distributions, they also influence meltwater produc-
tion. Fracturing causes further dispersal of meltwater as individual ice islands drift apart after a fracture event
(Tournadre et al., 2012) and also increases the surface area to volume ratio, which will cause an ice island to be
more susceptible to other meltwater-generating deterioration processes (e.g., wave erosion; Kirkham et al.,
2017; Stern et al., 2017). The dispersal of meltwater with the drift and deterioration of icebergs and ice islands
is often discussed in terms of the impact on fjord dynamics, local ocean properties, and ocean circulation pat-
terns (Enderlin et al., 2016; Stern et al., 2015; Wagner & Eisenman, 2017).

The strength of the Atlantic Meridional Overturning Circulation (AMOC) is of concern when considering the
increasing freshwater flux from the Greenland Ice Sheet and potential consequences to global ocean circula-
tion and energy transfers (Bamber et al., 2012; Böning et al., 2016; Gillard et al., 2016; Yang et al., 2016). In their
modeling studies, Gillard et al. (2016), Marson et al. (2018), and Wagner and Eisenman (2017) note that direct
meltwater input from the Greenland Ice Sheet or via iceberg deterioration could affect deep-water convec-
tion in the North Atlantic and potentially lead to a slowdown of the AMOC. However, a sustained freshwater
flux anomaly of at least 7 mSv in the North Atlantic is thought to be necessary to substantially slowdown the
AMOC (Brunnabrend et al., 2015; Yang et al., 2016). For reference, the Baffin Island Current transports
~93 mSv of liquid freshwater to the northern Labrador Sea (Curry et al., 2014). Our study shows meltwater
fluxes rose by 0.7 and 0.9 mSv in the Baffin Island and Labrador currents, respectively, after recent calving
events at Petermann Glacier. Therefore, while this meltwater was likely transported to the North Atlantic,
fluxes of this magnitude will not independently trigger a slowdown of the AMOC (Yang et al., 2016).
However, such additions of meltwater do augment an already increasing meltwater flux from the
Greenland Ice Sheet that concentrates in the Labrador Sea. This results in a freshening of the upper
Labrador Sea, which could potentially weaken deep-water convection in this region (Yang et al., 2016).
Further ocean modeling studies that focus on the fate of iceberg meltwater input at the ocean surface should
be conducted to understand its role in regional ocean circulation patterns (Marson et al., 2018).

At a more local scale, large meltwater input was calculated within Petermann Fjord after the 2008, 2010, and
2012 calving events, and a maximum flux of 2.0 mSv was reached after the 2010 calving event. This input is a
result of ice island melt as well as the reduction in ice island surface area while within the fjord due to fracture
and other deterioration processes. This caused ice islands to fall under the 0.25-km2 CI2D3 Database monitor-
ing threshold, after which point their mass was included in the meltwater input calculation. The freshwater
input in Petermann Fjord was likely overestimated as a result. We note that a layer between ~200- and
500-m depth in Petermann Fjord is highly influenced by a meltwater plume from basal ablation at the
grounding line of the glacier (Johnson et al., 2011), and meltwater resulting from iceberg deterioration will
likely remain above this layer. Meltwater input from ice island or iceberg deterioration could affect the phy-
sical composition of surface waters in Greenland fjords by influencing fjord circulation and altering the avail-
ability of heat for further glacier melt (Enderlin et al., 2016; Moon et al., 2018). Further research on the
relationship between the sources of freshwater input in Petermann Fjord (i.e., glacial discharge, iceberg dete-
rioration, and melt of the ice tongue) is necessary, and subsequent melt rates of the ice tongue and icebergs
with the fjord would be an interesting addition to this research subject.
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Outside Petermann Fjord, an elevated meltwater input was seen to coincide with grounding “hot spots”
along the eastern coasts of Ellesmere, Devon, and Baffin islands. For example, the deterioration of the
grounded “PII-B” at 69°N off the east coast of Baffin Island contributed to a meltwater flux of approximately
0.4 mSv in the corresponding grid cell. Stern et al. (2015) and Nacke (2016) are the few recent Arctic studies
that focused on alterations to the physical and biological water column caused by ice island deterioration.
The capacity for Arctic ice islands to impact the ocean ecosystem has previously been questioned due to
the difference in ice island sizes and which nutrients limit productivity of the Arctic versus Antarctic ocean
ecosystems. However, Smith et al. (2013) postulate that Arctic icebergs will impact the ocean column by pro-
moting upwelling (as observed by Stern et al., 2015), decreasing stratification, increasing the delivery of
nutrients, and increasing biological activity. Further in situ observations are necessary to support
these hypotheses.
5.2.1. Meltwater Analysis Considerations
The distribution of meltwater by single Antarctic ice islands throughout their drift in the Southern Ocean has
been documented by Helly et al. (2011), Jansen et al. (2007), and Schodlok et al. (2006). Likewise, regional
meltwater input in the Antarctic has been estimated with models (Bigg et al., 2014; Gladstone et al., 2001;
Martin & Adcroft, 2010; Merino et al., 2016; Stern et al., 2016) and analysis of the large Antarctic data sets com-
piled with altimeter, SAR, microwave radiometer, and optical data (Silva et al., 2006; Tournadre et al., 2012,
2015, 2016). However, it has not yet been possible to calculate more accurate ablation rates and determine
the location and magnitude of meltwater inputs over the full size range of Antarctic ice islands due to lineage
connections only being available for those >18.5 km in length (Merino et al., 2016). Lineage tracking within
the CI2D3 Database removes this constraint and allows the spatial distribution of meltwater input to
be determined.

Uncertainty in estimation of the magnitude and location of deterioration/meltwater input is introduced by
the time interval between observations, the manual digitization workflow used in generating the CI2D3
Database, the assumed thickness of the initial ice islands, and modeled thinning rates. In regard to the latter,
a constant value was assigned to Δu when modelingMb. In reality Δu will fluctuate due to, for example, wind
forces, the presence of sea ice, and ice island grounding. It is recommended that field campaigns be designed
to collect in situ ice island drift and ocean current data to constrain the range of observed values of Δu and
calibrate equation (1) for the drifting ice island case. Similar overestimation or underestimation of meltwater
input within and outside of fjords will arise from assigning inappropriately high or low values to the C and
DDF parameters when modeling Mb and Ms, respectively.

The conversion of ice islands that ceased to be monitored before they fully deteriorated introduces uncer-
tainty to the estimated spatial distribution of meltwater, as does the occasional fluctuation of the areal sur-
face extent of a monitored ice island. The meltwater associated with the small “terminal” ice islands
represented approximately 30%, 40%, and 19% of the total meltwater input calculated after the 2008,
2010, and 2012 calving events, respectively. The locations of the final observations of these ice islands are
denoted in Figure 7; however, it is likely that these ice islands later drifted out of these grid cells. Future stu-
dies could refine the meltwater input estimation by modeling the subsequent drift and deterioration of these
small ice islands, but it is outside of the scope of this paper to do so. Increases in surface area-associated fluc-
tuation in areal extents corresponded to 3%, 7%, and 8% of the original extents of the PIIs created in 2008,
2010, and 2012, respectively. Finally, it is possible that an ice island will travel through more than one
NEMO or CGRF grid cell between observations. This is a potential limitation with respect to the environmental
data assigned to hindcast the surface and basal ablation, especially when longer time intervals existed
between observations of an individual ice island.

6. Conclusions

The CI2D3 Database was used to conduct the first deterioration analysis for the flux of ice islands generated
after the 2008, 2010, and 2012 Petermann Glacier calving events. Hundreds of individual ice islands drifted
through the eastern Canadian Arctic and sub-Arctic due to recurrent fracturing after initial calving events
at Petermann Glacier. It was found that the size-frequency distributions of PIIs were well represented by a
power law model. This was consistent across temporal and spatial snapshots, which suggests that fracturing
caused by various mechanisms continued to be an important deterioration process as time elapsed from the
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original calving event and as ice islands drifted through the study region. These results can inform shipping
and natural resource extraction operations in the study area as to the likely distribution of ice hazard sizes
after large Petermann Glacier calving events.

Ice island fracture does not directly produce meltwater. However, fracture does increase the surface area-to-
volume ratio of the resulting ice islands, which will increase the susceptibility of resulting ice islands to other
deterioration processes that do generate meltwater. We quantified the spatial distribution of meltwater input
with the drift and deterioration of the 2008 (2.1 Gt), 2010 (20 Gt), and 2012 (22 Gt) PIIs. The calculated melt-
water fluxes were not large enough to adversely affect the AMOC. However, this meltwater contributes to the
increasing freshwater flux from the Canadian Arctic Archipelago and the Greenland Ice Sheet, which Yang
et al. (2016) suggest could be weakening the stability of this important circulation system. Areas of augmen-
ted meltwater input after Petermann Glacier calving events included locations prone to grounding (i.e., the
east coast of Baffin Island) and within Petermann Fjord. The impact of meltwater on ocean waters in relatively
close proximity to ice islands has been more concertedly studied in the Antarctic than in the Arctic, and it is
recommended that further research be dedicated to this topic in the Northern Hemisphere. For such studies,
the size-distribution analysis presented in this study could be used for initializing general circulation models
with iceberg components (Stern et al., 2016).

These investigations into the repercussions of Petermann Glacier calving events contribute to two dominant
ice island research themes: ice islands as hazards and their role in meltwater dispersal from the major ice
sheets. In total, the 2008, 2010, and 2012 PIIs were responsible for the greatest areal loss from any
marine-terminating Greenland glacier monitored between 1999 and 2013 (Jensen et al., 2016). The 2010 cal-
ving event was almost double the annual ice discharge across the grounding line of Petermann Glacier
(Rignot & Steffen, 2008) and reduced the area of the floating ice tongue by 25% (Nick et al., 2012).
Increased ocean and atmospheric temperatures and reduced sea ice extents will continue to destabilize
ice shelves (Liu et al., 2015; Shroyer et al., 2017), and a calving event >120 km2 in surface extent is antici-
pated to occur at Petermann Glacier in the coming years (Münchow et al., 2016). The deterioration of the
numerous ice islands generated after these large calving events will continue to be an important subject
of study due to their hazard implications as well as their role in the distribution of freshwater from the major
ice sheets.
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