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Abstract

We present here a space- and phenotype-structured model of selection dy-
namics between cancer cells within a solid tumour. In the framework of this
model, we combine formal analyses with numerical simulations to investigate
in silico the role played by the spatial distribution of abiotic components of
the tumour microenvironment in mediating phenotypic selection of cancer
cells. Numerical simulations are performed both on the 3D geometry of an
in silico multicellular tumour spheroid and on the 3D geometry of an in vivo
human hepatic tumour, which was imaged using computerised tomography.
The results obtained show that inhomogeneities in the spatial distribution
of oxygen, currently observed in solid tumours, can promote the creation of
distinct local niches and lead to the selection of different phenotypic variants
within the same tumour. This process fosters the emergence of stable phen-
otypic heterogeneity and supports the presence of hypoxic cells resistant to
cytotoxic therapy prior to treatment. Our theoretical results demonstrate
the importance of integrating spatial data with ecological principles when
evaluating the therapeutic response of solid tumours to cytotoxic therapy.
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1. Introduction

Significant progress in understanding the mechanisms behind cancer de-
velopment has been achieved in recent years by using molecular-based se-
quencing techniques (Bhang et al., 2015; Vermeulen et al., 2013; Wang et al.,
2014; Ding et al., 2010; Zhang et al., 2014a; Yap et al., 2012; Martinez et al.,
2013). Despite this growing knowledge, we are far from a complete under-
standing of the principles that govern the emergence of intratumour hetero-
geneity. This poses a major obstacle to successful cancer chemotherapy and
management of disease relapse (Gerlinger et al., 2012; Marusyk et al., 2012;
Pribluda et al., 2015).

A novel perspective on cancer therapeutics can be obtained from the ac-
cumulating evidence indicating that the progression of solid tumours is, in
essence, an eco-evolutionary process (Merlo et al., 2006; Greaves and Maley,
2012; Pienta et al., 2008). Firstly, new phenotypic variants emerge in the tu-
mour via mutations and epimutations. Afterwards, these variants are subject
to natural selection, and they proliferate and die under the selective pressures
of the tumour microenvironment. From this evolutionary viewpoint, spatial
variations in the distribution of abiotic components of the tumour microen-
vironment (e.g. nutrients and therapeutic agents) may lead to the creation
of distinct local niches and thus provide ecological opportunities for diversi-
fication (Alfarouk et al., 2013; Gillies et al., 2012; Meads et al., 2009; Trédan
et al., 2007).

To explore in silico the validity of such an ecological argument linking het-
erogeneity in the distribution of abiotic components of the tumour microen-
vironment to the development and maintenance of phenotypic heterogeneity
between cancer cells, we present here a space- and phenotype-structured
model of selection dynamics in a solid tumour. Our model consists of an
integro-differential equation (IDE) for the spatiotemporal evolution of the
phenotypic distribution of cancer cells (Busse et al., 2016; Chisholm et al.,
2015; Delitala and Lorenzi, 2012; Lavi et al., 2013; Lorenzi et al., 2016; Lorz
et al., 2013; Perthame, 2006) coupled to a system of partial differential equa-
tions (PDEs) for the dynamics of abiotic factors (Macklin et al., 2009; Norris
et al., 2006; Ward and King, 1997).

Recent studies based on various mathematical modelling approaches sup-
port related hypotheses concerning the emergence of intratumour hetero-
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geneity. For instance, Fu et al. (2015) have proposed a model based on
a multi-type stochastic branching process describing growth of cancer cells
in multiple spatial compartments characterised by different environmental
conditions. Further, Lorz et al. (2015) have developed an IDE model of
phenotypic selection in a radially symmetric tumour spheroid viewed as a
population structured by a phenotypic trait and a 1D spatial variable. More
recently, Lloyd et al. (2016) have considered an evolutionary game theory
model of habitat heterogeneity where the tumour is composed of two com-
partments – the tumour core and the tumour edge – treated as two different
habitats. Although these studies provide a valuable proof of concept for
the hypothesis that spatial gradients of abiotic factors cause the selection
of different phenotypic properties in distinct regions within the same solid
tumour, they are based on mathematical models that rely on rather strong
simplifying modelling assumptions. In contrast to these, our mathematical
model requires no specific assumptions on the tumour geometry, and its
parameters can be linked to experimentally measurable quantities. For these
reasons, the model presented here offers a more flexible and realistic math-
ematical framework for studying phenotypic selection between cancer cells
within solid tumours.

In this paper, integrating the results of formal analyses with numerical
simulations, we show that inhomogeneities in the spatial distribution of oxy-
gen, which are currently observed in solid tumours, can promote the creation
of distinct local niches and lead to the selection of different phenotypic vari-
ants within the same tumour. This process fosters the emergence of stable
phenotypic heterogeneity and supports the presence of hypoxic cells resistant
to cytotoxic therapy prior to treatment. Moreover, our theoretical results
reveal how intratumour heterogeneity can reduce the efficacy of cytotoxic
drugs, leading to poor treatment outcomes, and demonstrate the import-
ance of integrating spatial data with ecological principles when evaluating
the therapeutic response of solid tumours to cytotoxic therapy.

2. Model description

We identify the tumour geometry with a spatial domain Ω ⊂ R3. At any
time instant t ≥ 0, we characterise the state of each cancer cell in the tumour
by means of a pair (x, y) ∈ Ω× [0, 1]. The vector x ∈ Ω identifies the spatial
position of the cell and the scalar variable y ∈ [0, 1] ⊂ R stands for the nor-
malised expression level of a hypoxia-responsive gene (Chisholm et al., 2015;
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Lorenzi et al., 2016; Lorz et al., 2013). Examples of hypoxia-responsive genes
can be found, for instance, in (Strese et al., 2013; Zhao et al., 2013). Cells
within the tumour proliferate and die due to competition for limited space.
Moreover, a cytotoxic drug can be administered which acts by increasing the
cell death rate. We assume increasing values of the phenotypic state y to be
correlated with a progressive switch towards a hypoxic phenotype which, in
turn, implies a progressive reduction in the proliferation rate (Gordan et al.,
2007; Lloyd et al., 2016). Additionally, given that cytotoxic agents target
mostly rapidly proliferating cells, we assume that higher values of the pheno-
typic state y correspond with higher levels of resistance to the cytotoxic drug
(Brown and Giaccia, 1998; Durand and Raleigh, 1998).

We model the local population density of cells (i.e. the cell phenotypic
distribution at position x) at time t by means of the function n(t,x, y) ≥ 0.
Given the local population density n(t,x, y), we define the local number
density of cells ρ(t,x) and the mean local phenotypic state of the cells µ(t,x)
as follows

ρ(t,x) =

∫ 1

0

n(t,x, y) dy and µ(t,x) =
1

ρ(t,x)

∫ 1

0

y n(t,x, y) dy. (2.1)

Finally, we introduce the functions s(t,x) ≥ 0 and c(t,x) ≥ 0 to model the
local concentration of oxygen and cytotoxic drug at position x and time t,
respectively.

2.1. Dynamics of cancer cells

The dynamics of the local population density n(t,x, y) is governed by the
following nonlinear IDE

∂n

∂t
(t,x, y) = R

(
y, ρ(t,x), s(t,x), c(t,x)

)
n(t,x, y). (2.2)

In Eq. (2.2), the function R
(
y, ρ(t,x), s(t,x), c(t,x)

)
represents the fitness

of cells with phenotypic state y at position x and time t (i.e. the fitness
landscape of the tumour), given the local environmental conditions determ-
ined by the local cell density ρ(t,x) and the concentrations of abiotic factors
s(t,x) and c(t,x). Throughout the paper, we define the fitness landscape of
the tumour as

R
(
y, ρ(t,x), s(t,x), c(t,x)

)
= p(y, s(t,x))− k(y, c(t,x))− dρ(t,x). (2.3)
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The definition given by (2.3) relies on the idea that a higher cell density
ρ(t,x) at position x corresponds to a more intense competition for space. In
particular, we let cells located at position x die with rate dρ(t,x), where the
parameter d > 0 represents the death rate due to intratumour competition
between cells. The function k(y, c) ≥ 0 models the additional death rate
due to the cytotoxic drug. Since increasing values of the phenotypic state
y correspond to higher levels of cytotoxic-drug resistance, we assume the
function k to be decreasing in the phenotypic state y. Moreover, since the
death rate increases with higher drug concentrations, we assume the function
k to be increasing in the drug dose c. The function p(y, s) ≥ 0 represents the
cell proliferation rate, which we define as

p(y, s(t,x)) = f(y) + r(y, s(t,x)). (2.4)

The function f(y) is the proliferation rate under hypoxic conditions and is,
therefore, an increasing function of the phenotypic state y (Xia et al., 2014).
The function r(y, s) is decreasing in the phenotypic state y and increasing in
the oxygen concentration s, since it models the rate of cell proliferation in
oxygenated environments (Alfarouk et al., 2013). In this paper we consider

f(y) = ζ
[
1− (1− y)2

]
, (2.5)

r(y, s(t,x)) = γs
s(t,x)

αs + s(t,x)

(
1− y2

)
, (2.6)

k(y, c(t,x)) = γc
c(t,x)

αc + c(t,x)
(1− y)2. (2.7)

These definitions satisfy the generic properties listed above and ensure ana-
lytical tractability of the model. Furthermore, they lead naturally to a
smooth fitness landscape which is close to the approximate fitness landscapes
inferred from experimental data through regression techniques – see, for in-
stance, (Otwinowski and Plotkin, 2014) and references therein. We note
that when y = 0 the cells use purely aerobic respiration for proliferation and
will not proliferate in the absence of oxygen. The state y = 1 denotes a
purely hypoxic phenotype with a correspondingly reduced proliferation rate,
which, however, is strictly positive (> 0) even in the absence of oxygen.
The definitions given by (2.6) and (2.7) rely on the further assumption that
the consumption of oxygen and the cytotoxic drug is governed by Michaelis-
Menten kinetics with constants αs > 0 and αc > 0, respectively (Norris et al.,

5



2006; Ward and King, 1997). The parameter γc > 0 is the maximum cell
death rate induced by the cytotoxic drug. The parameters ζ > 0 and γs > 0
represent the maximum proliferation rate under hypoxic conditions and in
oxygenated environments, respectively. Previous empirical studies suggest
that cancer cells inhabiting hypoxic regions in solid tumours proliferate more
slowly than cells populating oxygenated regions (Brown and Giaccia, 1998;
Brown and Wilson, 2004; Lloyd et al., 2016). In our modelling framework,
this observation is captured by the additional assumption ζ � γs.

2.2. Dynamics of abiotic factors

The abiotic factors (i.e. oxygen and cytotoxic drug) diffuse in space,
decay over time and are consumed by the cells. We note that the dynamics
of abiotic factors is faster than cellular proliferation and death (Jacqueline
et al., 2017; Walther et al., 2015). From a mathematical viewpoint, this
means that we can assume oxygen and the cytotoxic drug to be in quasi-
stationary equilibrium. In this setting, the dynamics of the functions s(t,x)
and c(t,x) are described by the following elliptic PDEs which are coupled to
the IDE (2.2)

βs∆s(t,x) = ηs

∫ 1

0

r
(
y, s(t,x)

)
n(t,x, y) dy + λs s(t,x) + Is(t,x), (2.8)

βc∆c(t,x) = ηc

∫ 1

0

k
(
y, c(t,x)

)
n(t,x, y) dy + λc c(t,x) + Ic(t,x). (2.9)

In the above equations, the parameters βs > 0 and βc > 0 represent the
diffusion constants of oxygen and the cytotoxic drug. The parameters ηs > 0
and ηc > 0 are scaling parameters for the consumption rate of abiotic factors
by cells in the tumour. The parameters λs > 0 and λc > 0 represent the
decay rates of oxygen and the cytotoxic drug. Finally, the terms Is(t,x) and
Ic(t,x) model sources and sinks of abiotic factors – one specific example we
shall use in the sequel is a stationary (time-independent) influx of oxygen
and cytotoxic drug into the tumour mass from blood vessels. Focussing on
the biological scenario in which the concentrations of abiotic factors in the
medium surrounding the tumour are constant in time, we make use of the
following boundary conditions for (2.8) and (2.9)

s(·,x) = S(x) and c(·,x) = C(x), x ∈ ∂Ω. (2.10)

The functions S(x) and C(x) model the concentrations of oxygen and cyto-
toxic drug on the tumour boundary ∂Ω.
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3. Formal analysis of phenotypic selection

To obtain an analytical description of phenotypic selection, we assume
that all possible phenotypic variants exist in the tumour at time t = 0, i.e.
we set n(0,x, y) > 0 for all x ∈ Ω and all y ∈ [0, 1]. Additionally, we assume
that the local cell density in the tumour is bounded above and below. In this
scenario, for every position x ∈ Ω, the local cell density at equilibrium ρ(x)
satisfies the following condition

max
y∈[0,1]

R
(
y, ρ(x), s(x), c(x)

)
= 0,

where s(x) and c(x) stand for the steady-state distributions of oxygen and
cytotoxic drug, respectively. Since the fitness landscape R is a monotonically
decreasing function of the local number of cells, for every x, there is a unique
value of ρ(x) that satisfies the above relation. Moreover, given Eqs. (2.5)-
(2.7), the fitness landscape R is a strictly concave function of y for all values
of ρ(x), s(x) and c(x). This implies that, for all values of x, there exists
one single phenotypic state y(x) which maximises the fitness landscape R at
equilibrium. Therefore, for each x there is a unique dominant phenotypic
state y(x) (i.e. at each position x in the tumour, the equilibrium phenotypic
distribution is unimodal). Given the phenotypic state y(x), the following
conditions are simultaneously satisfied

R
(
y(x), ρ(x), s(x), c(x)

)
= max

y∈[0,1]
R
(
y, ρ(x), s(x), c(x)

)
= 0

and
∂R

∂y

(
y(x), ρ(x), s(x), c(x)

)
= 0.

Together, the above considerations allow us to conclude that, given s(x) and
c(x), there exists a unique pair (ρ(x), y(x)) which solves the following system
of equations 

R
(
y(x), ρ(x), s(x), c(x)

)
= 0,

∂R

∂y

(
y(x), ρ(x), s(x), c(x)

)
= 0.

(3.1)

For every position x ∈ Ω, the pair
(
ρ(x), y(x)

)
characterises the local cell

density and the dominant phenotypic state at equilibrium. The formal argu-
ments presented above are consistent with the asymptotic analysis developed
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by Mirrahimi and Perthame (2015) for a system of equations modelling se-
lection dynamics in a population structured by a phenotypic trait and a 1D
spatial variable.

Solving the system of equations (3.1) we obtain

ρ(x) =
1

d

As(x)− Ac(x) +

(
ζ + Ac(x)

)2

ζ + As(x) + Ac(x)

 (3.2)

and

y(x) =
ζ + Ac(x)

ζ + As(x) + Ac(x)
, (3.3)

where

As(x) = γs
s(x)

αs + s(x)
and Ac(x) = γc

c(x)

αc + c(x)
.

Here, the expressions given by equations (3.2) and (3.3) demonstrate that the
local cell density ρ and the phenotypic state y that maximises the cellular
fitness at position x are determined by the concentrations of oxygen s and
cytotoxic drug c at the same position. This is illustrated by the heat maps
in Fig. 1, which show how, for the parameter values listed in Table 1, the
values of ρ and y vary as functions of s and c.

Figure 1: Plots of the local cell density ρ and the dominant phenotypic state y at equi-
librium as a function of the local concentration of oxygen s and cytotoxic drug c. The
quantities ρ, s and c are scaled by the reference values ρ0, s0 and c0 given in Table 1.
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Together, these results suggest that local variations of abiotic factors in
the tumour microenvironment determine spatial variations of the selected
phenotypic variants and cell densities. Specifically, lower values of the oxy-
gen concentration s and higher values of the drug concentration c correspond
to higher values of the phenotypic state y and lower values of the local cell
density ρ. Biologically, this means that local environments hostile to highly
proliferative cells (i.e. environments characterised by lower oxygen availab-
ility and higher concentration of the cytotoxic agent) promote the selection
of cells characterised by higher levels of expression of the hypoxia-responsive
gene, which in turn leads to smaller cell numbers. On the contrary, higher
values of s and lower values of c correspond to lower values of y and higher
values of ρ. Biologically, this means that highly proliferative cells are selec-
ted for in regions with higher oxygen and lower drug concentration, which in
turn leads to larger cell densities.

Table 1: Parameter values used to perform numerical simulations. Further details about
the model parameters can be found in Appendix A.

Parameter Biological meaning Value
αc Michaelis-Menten constant of cytotoxic drug 2× 10−6 g cm−3

αs Michaelis-Menten constant of oxygen 1.5× 10−7 g cm−3

βc Diffusion coefficient of cytotoxic drug 5× 10−6 cm2 s−1

βs Diffusion coefficient of oxygen 2× 10−5 cm2 s−1

γc Maximum cell death rate induced by cytotoxic drug 1.8× 10−4 s−1

γs Maximum cell proliferation rate in oxygenated environments 1× 10−5 s−1

ζ Maximum cell proliferation rate under hypoxic conditions 1× 10−6 s−1

d Rate of cell death due to competition for space 2× 10−14 cm3 s−1 cell−1

ηc Scaling factor for cell consumption of cytotoxic drug 4× 10−12 g cell−1

ηs Scaling factor for cell consumption of oxygen 2× 10−12 g cell−1

λc Decay rate of cytotoxic drug 0.1 s−1

λs Decay rate of oxygen 0.3 s−1

ρ0 Reference value for the local cell density 109 cells cm−3

s0 Reference value for the local concentration of oxygen 6.3996× 10−7 g cm−3

c0 Reference value for the local concentration of cytotoxic drug 10−5 g cm−3

4. Numerical solutions

We combine the formal results established in the previous section with
numerical simulations of the coupled system given by Eqs. (2.2), (2.8) and
(2.9). We consider both the case where the spatial domain Ω is an in silico
tumour spheroid as well as the case in which the domain Ω corresponds
to the three dimensional geometry of an actual in vivo human hepatic tu-
mour. The hepatic tumour was imaged using 3D computerised tomography
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and the image data has been obtained from the 3D-IRCADb-01 database
(http://www.ircad.fr/).

For the numerical simulations, we use the parameter values from the
existing literature which are listed in Table 1. Further details of the model
parametrisation are given in Appendix A, whilst a complete description of the
numerical methods used in this work can be found in Appendix B. Firstly,
we report here on results obtained under the assumption that the tumour is
avascular (i.e. Is(t,x) = 0 and Ic(t,x) = 0 for all t ≥ 0 and x ∈ Ω) and
the concentrations of oxygen and cytotoxic drug on the boundary ∂Ω are
constant (i.e. S(x) = s0 and C(x) = c0 for all x ∈ ∂Ω). Secondly, we carry
out numerical simulations in the case where oxygen and the cytotoxic drug
are brought into the tumour from blood vessels which are enclosed within
the tumour mass. The results obtained are presented and discussed at the
end of this section. In the latter case, we define Ωv to be the region inside
the tumour in which the blood vessels are present and set Is(·,x) = s0 and
Ic(·,x) = c0 for x ∈ Ωv and Is(·,x) = Ic(·,x) = 0 for x ∈ Ω \ Ωv. Similarly
we set S(x) = s0 and C(x) = c0 for x ∈ ∂Ωv and S(x) = C(x) = 0 for
x ∈ ∂Ω \ ∂Ωv.

4.1. In silico tumour spheroid simulations

The results obtained with and without the cytotoxic drug are presented
in Fig. 2, where the local concentrations of abiotic factors, the local mean
phenotypic state and the local cell density at equilibrium are shown.

The concentrations of oxygen and cytotoxic drug, when present, decrease
monotonically from the edge to the centre of the spheroid. As a consequence,
in the absence of drug (plots in the top row of Fig. 2), the local cell density
decays radially with maximum value on the spheroid boundary. We observe
the formation of a necrotic core, with very few living cells, surrounded by a
hypoxic region, then by a more densely populated rim with more living cells
present. Biologically, our results suggest that the outer part of the spheroid
becomes colonised by highly proliferative cells, while slow-proliferating cells
with a hypoxic phenotype are selected for in the interior of the spheroid.
Accordingly, the local mean phenotypic state is a radially decreasing function
from the centre to the boundary of the spheroid.

When the cytotoxic drug is present (plots in the bottom row of Fig. 2),
the number of living cells is consistently reduced throughout the whole tu-
mour spheroid. The selective pressure exerted by the drug drives the mean
phenotypic state towards drug-resistance. Moreover, the local cell density
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Figure 2: Plots of the local concentration of cytotoxic drug c(t,x), the local concentration
of oxygen s(t,x), the local mean phenotypic state µ(t,x) and the local cell density ρ(t,x)
at t = 70 days [i.e. close to the steady state of Eqs. (2.2), (2.8) and (2.9)] in an in silico
tumour spheroid of radius 800µm. The top and bottom rows refer to the cases when the
cytotoxic drug is absent and present, respectively. For better visualisation, only the bottom
half of the spheroid is shown. The quantities c, s and ρ are scaled by the reference values
c0, s0 and ρ0 given in Table 1.

and the local mean phenotypic state are no longer monotonic functions of
the distance from the centre of the spheroid. In this case, the density of
living cells is close to zero at both the boundary and the core of the tumour.
Therefore, most of the surviving cells are found in a thin band in the interior
of the spheroid where the local mean phenotypic state attains its minimum.

Both with and without the cytotoxic drug, at each position x the phen-
otypic distribution n(t,x, y) has a Gaussian-like profile (see Fig. S1 in the
supplementary material); therefore, the local mean phenotypic state coin-
cides with the locally dominant phenotypic state. To this end, Movie S1 in
the supplementary material demonstrates that after a short time period of
transient behaviour, the local cell density ρ(t,x) and the local mean phen-
otypic state µ(t,x) converge, respectively, to the equilibrium values of the
local cell density ρ(x), given by Eq. (3.2), and of the dominant phenotypic
state y(x), given by Eq. (3.3).

4.2. In vivo human hepatic tumour simulations

Figure 3 shows the computerised tomography scan of an actual human
liver tumour which we selected as the spatial domain Ω (obtained from the
3D-IRCADb-01 database which can be found at URL http://www.ircad.fr/).
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Figure 3: Computerised tomography scan of a human tumour (blue) shown in situ within
the liver (red). The maximum diameter of the tumour is approximatively 3200µm. The
inset shows a magnification of the tumour with a portion made transparent, as in Fig. 4,
in order to visualise the tumour bulk.

Our numerical simulations indicate that the spatial distributions of cells,
oxygen and cytotoxic drug as well as the spatial patterns of phenotypic se-
lection for the hepatic tumour are qualitatively similar to those observed in
the in silico tumour spheroid (compare the results in Fig. 4 with the results
of Fig. 2, and the results of Movie S1 with the results displayed by Movie S2
in the supplementary material).
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Figure 4: Plots of the local concentration of cytotoxic drug c(t,x), the local concentration
of oxygen s(t,x), the local mean phenotypic state µ(t,x) and the local cell density ρ(t,x)
at t = 70 days [i.e. close to the steady state of Eqs. (2.2), (2.8) and (2.9)] in the human
hepatic tumour of Fig. 3. The top and bottom row refer to the cases when the cytotoxic
drug is absent and present, respectively. For better visualisation, only a portion of the
tumour is shown. The quantities c, s and ρ are scaled by the reference values c0, s0 and
ρ0 given in Table 1.

4.3. Effects of tumour vasculature

In order to investigate the effects of tumour vasculature on phenotypic
selection, we included some artificial blood vessels into the tumour mass of
Fig. 3. In particular, we focused on the case in which the spatial domain Ω
is given by the tumour mass shown in Fig. 5.

Figure 5: Human hepatic tumour of Fig. 3 with the addition of artificial blood vessels.

The results shown in Fig. 6 and Movie S3 in the supplementary material
indicate that conclusions similar to those achieved in the previous sections
apply to the case with tumour vasculature. Specifically, when the cytotoxic
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drug is not present, highly proliferative cells are selected for in the tumour
areas where oxygen concentration is higher. Conversely, poorly oxygenated
regions are colonised by slow-proliferating cells which express hypoxic phen-
otypes. These hypoxic cells, characterised by lower levels of drug-sensitivity,
become dominant within the tumour upon delivery of the cytotoxic drug.

Figure 6: Plots of the local concentration of cytotoxic drug c(t,x), the local concentration
of oxygen s(t,x), the local mean phenotypic state µ(t,x) and the local cell density ρ(t,x)
at t = 70 days [i.e. close to the steady state of Eqs. (2.2), (2.8) and (2.9)] in the human
hepatic tumour with vasculature of Fig. 5. For better visualisation, only the bottom half of
the tumour is shown as in the inset. The top and bottom row display the results obtained
in the absence and in the presence of cytotoxic drug, respectively. The quantities c, s and
ρ are scaled by the reference values c0, s0 and ρ0 given in Table 1.

5. Discussion and conclusions

Our analysis and numerical simulations support the hypothesis that spa-
tial variations in oxygen levels can foster the emergence of phenotypic het-
erogeneity by promoting the creation of distinct local niches within the same
tumour. Our model predicts that well-oxygenated regions of the tumour
will be densely populated by highly proliferative cancer cells characterised
by higher oxygen uptake. Conversely, hypoxic cells with lower proliferation
rates colonise tumour regions hostile to fast-proliferating cells – such as the
regions of the tumour where oxygen concentration is lower.

Our modelling framework offers a plausible theoretical basis for recent
experimental results suggesting that the periphery and the centre of avascu-
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lar tumours represent distinct ecological niches (Brown and Giaccia, 1998;
Hoefflin et al., 2016; Lloyd et al., 2016; Tannock, 1968; Zhang et al., 2014b).
Furthermore, our findings agree with observations made in mathematical
modelling and experimental studies (Adamski et al., 2013; Brown and Gi-
accia, 1998; Powathil et al., 2012; Sullivan et al., 2008; Wartenberg et al.,
2003) which suggest that hypoxia favours the selection for cancer cells res-
istant to cytotoxic therapy prior to treatment. Consequently, this facilitates
the development of resistance following drug exposure.

Our analysis and numerical simulations also address the open question
of how phenotypic heterogeneity in a solid tumour changes under cytotoxic
therapy. Our results complement those of Robertson-Tessi et al. (2015) by
demonstrating that cytotoxic agents decrease the number of living cancer
cells and select for more resistant phenotypic variants throughout the whole
tumour. In particular, since cytotoxic drugs kill more proliferative cells in
regions of the tumour with higher oxygen concentration, the drug exposure
removes the selective barrier limiting the growth of less proliferative and
more resistant cells. This reduces drug efficacy, and ultimately leads to poor
treatment outcomes and low patient survival rates (Sottoriva et al., 2013;
Williams et al., 2016; Jones et al., 2008).

In summary, our mathematical study highlights the role that the spatial
distribution of abiotic components in the tumour microenvironment play in
mediating phenotypic heterogeneity in solid tumours. Our results strongly
support the need for spatial data when performing phenotypic profiling of
solid tumours, as single tumour biopsies are unlikely to fully represent the
complete phenotypic landscape of the tumour (Ding et al., 2010; Zhang et al.,
2014a; Yap et al., 2012; Martinez et al., 2013; Schwarz et al., 2015).

Histological analyses indicate that solid tumours contain cancer cells with
a wide spectrum of gene expression. However, our theoretical work provides
support for the ideas proposed by Alfarouk et al. (2013), who have noted that
the phenotypes of cancer cells result, to an extent, from predictable spatial
gradients in the concentrations of abiotic factors which can be mapped out
via non-invasive imaging techniques (Beerenwinkel et al., 2016). Under this
perspective, knowing how abiotic factors shape the phenotypic characterist-
ics of cancer cells, spatial patterns of tumour perfusion reconstructed from
clinical cancer images could be used to inform molecularly targeted therapy
combinations (Lopez and Banerji, 2016). This may open up new avenues of
research for exploiting ecological principles to design innovative therapeutic
protocols along the lines of adaptive therapy (Gatenby et al., 2009; Ibrahim-
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Hashim et al., 2017).
Additional strengths of the present study are that the parameter values

used to perform numerical simulations come from existing literature, and the
outcomes of our formal analysis are characterised by broad structural stabil-
ity under parameter changes. Our framework can accommodate parameter
values for any solid tumour and the method we have used to construct numer-
ical solutions of the model is applicable to arbitrary geometries. Therefore,
while we performed numerical simulations on the geometry of a given in vivo
human hepatic tumour as an illustrative example, our in silico approach can
be applied to studying phenotypic selection between cancer cells in a wide
range of neoplasms.

Finally, while we have assumed multiple phenotypic variants to be present
in the tumour from the beginning of simulations and we have considered the
tumour size to remain constant over time, the modelling framework presented
here can be extended to incorporate mutations and epimutations (Chisholm
et al., 2015; Lorenzi et al., 2016) as well as growing tumour spatial domains
(Ambrosi and Preziosi, 2002; Byrne and Chaplain, 1996; Byrne and Drasdo,
2009; Lorenzi et al., 2017; Perthame et al., 2014; Tang et al., 2013). Given
the robustness and structural stability of our results, we expect the main
conclusions of this work to hold even after the inclusion of these additional
layers of biological complexity.
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A. Model parametrisation

A.1. Dynamics of oxygen

In agreement with the considerations made by Ward and King (1997)
and the experimental results reported by Casciari et al. (1992), we set the
Michaelis-Menten constant of oxygen αs = 1.5×10−7 g cm−3, the maximum
cell proliferation rate in oxygenated environments γs = 1 × 10−5 s−1 and
the conversion factor for cell consumption of oxygen ηs = 2× 10−12 g cell−1.
Moreover, following Ward and King (1997), we make reference to the exper-
imental results by Hlatky and Alpen (1985) and set the diffusion coefficient
of oxygen βs = 2× 10−5 cm2 s−1. Also, we choose the natural decay rate of
oxygen λs = 0.3 s−1 in order to be consistent with the parameter values used
by Macklin et al. (2009).

A.2. Dynamics of cells

We set the rate of cell death due to competition for space d = 2 ×
10−14 cm3 s−1 cell−1 so that the equilibrium value of the local cell density
ρ in the presence of high oxygen concentrations (i.e. for s

αs+s
≈ 1) is approx-

imatively 5× 108 cell cm−3, which is consistent with the experimental values
reported in (Li, 1982). Moreover, in agreement with experimental results
on cell proliferation presented in (Gordan et al., 2007), we choose the max-
imum proliferation rate of cells under hypoxic conditions ζ to be one order
of magnitude smaller than γs.

A.3. Dynamics of the cytotoxic drug

In agreement with the considerations made by Norris et al. (2006) and the
experimental results reported by Kwok and Twentyman (1985), we set the
Michaelis-Menten constant of the cytotoxic drug αc = 2 × 10−6 g cm−3, the
maximum rate of cell death induced by the cytotoxic drug γc = 1.8×10−4 s−1

and the conversion factor for cell consumption of the cytotoxic drug ηc =
4×10−12 g cell−1. The diffusion coefficients of cytotoxic drugs vary depending
on the size of the molecules and the permeability of the surrounding tissue
(Norris et al., 2006). In order to be consistent with the experimental results
reported in (Levin et al., 1980), we the set diffusion coefficient of the cytotoxic
drug βc = 5× 10−6 cm2 s−1. Furthermore, we choose the natural decay rate
of the cytotoxic drug λc = 0.1 s−1 based on the biological data reported in
(Calabresi et al., 1985).
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A.4. Reference quantities t0, x0, ρ0, s0 and c0

We set t0 = 1 s, x0 = 10−3 cm [which corresponds to typical values
of cell radii (Melicow, 1982)], ρ0 = 109 cells cm−3 [which is consistent with
experimental measurements of cell densities in solid tumours (Li, 1982)], s0 =
6.3996× 10−7 g cm−3 [which is consistent with experimental data on oxygen
concentrations reported in (Kumosa et al., 2014)] and c0 = 10−5 g cm−3

[which corresponds to values for cytotoxic drug concentrations used in (Norris
et al., 2006)].

B. Numerical methods and further details of numerical simulations

The integro-differential equation for n(t,x, y) is approximated using a
semi-implicit Euler method, whilst the system of elliptic partial differential
equations for s(t,x) and c(t,x) is approximated using a finite element method
with linear basis functions. To this end, we construct a triangulation T of the
spatial domain Ω, which divides Ω into a finite number of non-degenerate and
non-overlapping tetrahedra such that the triangulation contains no hanging
nodes. We denote by V the space of all continuous piecewise linear functions
on T . Let Nt and Ny be positive integers, we define the uniform (for sim-
plicity) time-step τ = T/Nt, with T being the end time of simulations, and
trait-step hy = 1/Ny. For each l ∈ {0, 1, . . . , Nt} and each j ∈ {0, 1, . . . , Ny}
we define tl := lτ and yj := jhy.

Let {xi}i=0,...,Nh
denote the set of vertices of the triangulation T . We

look for approximations to the oxygen and cytotoxic drug concentrations,
that is, slh := sh(t

l) ∈ V and clh := ch(t
l) ∈ V with l = 0, . . . , Nt, and for

the density of cells in the phenotypic state yj, that is, (nh)
l
j := nh(t

l, yj) ∈ V
with l = 0, . . . , Nt and j = 0, . . . , Ny.

We define our nodal approximations as nli,j := nh(t
l,xi, yj), s

l
i := sh(t

l,xi)

and cli := ch(t
l,xi). One step of our numerical scheme is as follows: given{

(nh)
l−1
j

}
j=0,...,Ny

, sl−1
h , cl−1

h ∈ V, find
{

(nh)
l
j

}
j=0,...,Ny

, slh, c
l
h ∈ V such that,

for i = 0, . . . , Nh and j = 0, . . . , Ny,

nli,j = nl−1
i,j

{
1− τ

[
p
(
yj , s

l−1
i

)
− k

(
yj , c

l−1
i

)
− d

Ny + 1

Ny∑
k=0

nl−1
i,k

]}−1

,

and for all Φ ∈ V,∫
Ω

(
βs∇slh∇Φ− λsslhΦ

)
dx =

∫
Ω

[
1

Ny + 1

 Ny∑
k=0

r
(
yk, s

l−1
h

)
(nh)lj

+ I ls

]
Φdx
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and∫
Ω

(
βc∇clh∇Φ− λcclhΦ

)
dx =

∫
Ω

[
1

Ny + 1

 Ny∑
k=0

k
(
yk, c

l−1
h

)
(nh)lk

+ I lc

]
Φdx.

The explicit treatment of the nonlinear terms leads to the equations being
decoupled, so that only linear systems must be solved at each time-step. We
have investigated both Picard linearisation and Newton linearisation; the
results remain qualitatively unchanged. Our implementation makes use of
the ALBERTA C finite element toolbox Schmidt and Siebert (2005).

For all the simulations we report on in this work, we took the initial local
population density n(t = 0,x, y) to be uniform in x and a weighted Gaussian
in y with local average phenotype µ(t = 0,x) = 0.5 for all x ∈ Ω. The initial
local cell density was ρ(t = 0,x) = 5 × 108 cells cm−3 for any x ∈ Ω. We
verified through additional numerical simulations that, as one would expect,
the long-time behaviour of n(t,x, y) does not depend on the choice of the
initial condition. In the absence of blood vessels, we set Is(t,x) = 0 and
Ic(t,x) = 0 for all t ≥ 0 and x ∈ Ω, and we used the boundary conditions
S(x) = s0 and C(x) = c0 for all x ∈ ∂Ω. In the presence of blood vessels
(vid. Fig. 5), we set Is(t,x) = s0 and Ic(t,x) = c0 in the blood vessels
and Is(t,x) = Ic(t,x) = 0 otherwise, and similarly we used the boundary
conditions S(x) = s0 and C(x) = c0 at points where the blood vessels meet
the tumour boundary and S(x) = C(x) = 0 at all other points on the
boundary.

For the purpose of robust simulations, we non-dimensionalised the gov-
erning equations of the model as described in Appendix C. We used non-
dimensional parameters corresponding to the dimensional values provided
in Table 1 and discussed in Appendix A. To compute numerical solutions,
we used a time-step corresponding to τ = 2 × 103 s and select tf = 107 s
as the end time; furthermore, we chose Ny = 50, giving a phenotypic-step
hy = 0.02. We verified that the results remain qualitatively unchanged for
one level of refinement of all the discretisation parameters. To carry out
numerical simulations, we used a mesh consisting of 393216 tetrahedra with
68705 degrees of freedom for the multicellular tumour spheroid and a mesh
consisting 53292 tetrahedra with 9932 degrees of freedom for the hepatic
tumour. The meshing software CGAL (http://www.cgal.org) was used to
construct a tetrahedral mesh of the tumour.
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C. Non-dimensionalisation of the model

Denoting dimensionless variables by carets, we adopt the following res-
calings:

t̂ =
t

t0
, x̂ =

x

x0

,

n̂(t̂, x̂, y) =
n(t,x, y)

ρ0

, ŝ(t̂, x̂) =
s(t,x)

s0

, ĉ(t̂, x̂) =
c(t,x)

c0

,

α̂s =
αs
s0

, α̂c =
αc
c0

, γ̂s = t0 γs, γ̂c = t0 γc ζ̂ = t0 ζ, d̂ = t0 d ρ0,

β̂s =
t0 βs
r2

0

, β̂c =
t0 βc
r2

0

, η̂s =
ηs
s0

ρ0 η̂c =
ηc
c0

ρ0, λ̂s = t0 λs λ̂c = t0 λc

and

Îs(t̂, x̂) = t0
Is(t,x)

s0

, Îc(t̂, x̂) = t0
Ic(t,x)

c0

.

Here, t0, x0, ρ0, s0 and c0 denote suitable reference values (vid. Appendix
A). Under these rescalings, the governing equations of our model become:

∂n̂

∂t̂
(t̂, x̂, y) = R̂

(
y, ρ̂(t̂, x̂), ŝ(t̂, x̂), ĉ(t̂, x̂)

)
n̂(t̂, x̂, y), (x̂, y) ∈ Ω̂× [0, 1],

R̂
(
y, ρ̂, ŝ, ĉ

)
:= ζ̂

[
1− (1−y)2

]
+ γ̂s

ŝ

α̂s + ŝ

(
1−y2

)
− γ̂c

ĉ

α̂c + ĉ
(1−y)2− d̂ ρ̂,

β̂s ∆ŝ(t̂, x̂) = η̂s γ̂s
ŝ(t̂, x̂)

α̂s + ŝ(t̂, x̂)

∫ 1

0

(
1− y2

)
n̂(t̂, x̂, y) dy + λ̂s ŝ+ Îs(t̂, x̂),

β̂c ∆ĉ(t̂, x̂) = η̂c γ̂c
ĉ(t̂, x̂)

α̂c + ĉ(t̂, x̂)

∫ 1

0

(1− y)2 n̂(t̂, x̂, y) dy + λ̂c ĉ+ Îc(t̂, x̂).
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Sullivan, R., Paré, G. C., Frederiksen, L. J., Semenza, G. L., Graham, C. H.,
2008. Hypoxia-induced resistance to anticancer drugs is associated with
decreased senescence and requires hypoxia-inducible factor-1 activity. Mo-
lecular Cancer Therapeutics 7 (7), 1961–1973.

Tang, M., Vauchelet, N., Cheddadi, I., Vignon-Clementel, I., Drasdo, D.,
Perthame, B., 2013. Composite waves for a cell population system model-
ing tumor growth and invasion. Chinese Annals of Mathematics, Series B
34 (2), 295–318.

Tannock, I., 1968. The relation between cell proliferation and the vascu-
lar system in a transplanted mouse mammary tumour. British Journal of
Cancer 22 (2), 258.

Trédan, O., Galmarini, C. M., Patel, K., Tannock, I. F., 2007. Drug resistance
and the solid tumor microenvironment. Journal of the National Cancer
Institute 99 (19), 1441–1454.

Vermeulen, L., Morrissey, E., van der Heijden, M., Nicholson, A. M., Sot-
toriva, A., Buczacki, S., Kemp, R., Tavaré, S., Winton, D. J., 2013. De-
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