## Accepted Manuscript

Polycyclic ethers and an unexpected dearomatisation reaction during studies towards the bioactive alkaloid, perophoramidine

Craig A. Johnston, Ross P. Wilkie, Helmut Krauss, Andrew R. Neal, Alexandra M.Z.
Slawin, Tomas Lebl, Nicholas J. Westwood

PII: $\quad$ S0040-4020(18)30491-5
DOI: $\quad$ 10.1016/j.tet.2018.04.086
Reference: TET 29501

To appear in: Tetrahedron

Received Date: 18 December 2017
Revised Date: 24 April 2018
Accepted Date: 25 April 2018

Please cite this article as: Johnston CA, Wilkie RP, Krauss H, Neal AR, Slawin AMZ, LebI T, Westwood NJ, Polycyclic ethers and an unexpected dearomatisation reaction during studies towards the bioactive alkaloid, perophoramidine, Tetrahedron (2018), doi: 10.1016/j.tet.2018.04.086.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## ACCEPTED MANUSCRIPT

an unexpected dearomatisation reaction leading to a complex polycyclic system with three contiguous all-carbon quaternary centres


## Graphical Abstract

Leave this area blank for abstract info.

Polycyclic Ethers and an Unexpected Dearomatisation Reaction during studies towards the Bioactive Alkaloid, Perophoramidine

Craig A. Johnston ${ }^{\text {a }}{ }_{\text {, Ross }}$ P. Wilkie ${ }^{\text {a }}$, Helmut Krauss ${ }^{\text {a }}$, Andrew Neal ${ }^{\text {a }}$, Alexandra M. Z. Slawin ${ }^{\text {a }}$, Tomas Leblí, Nicholas J. Westwood ${ }^{\text {a }}$

School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, KY16 9ST (UK).
an unexpected dearomatisation reaction leading to a complex polycyclic system with three contiguous all-carbon quaternary centres


# Polycyclic Ethers and an Unexpected Dearomatisation Reaction during studies towards the Bioactive Alkaloid, Perophoramidine 

Craig A. Johnston ${ }^{\text {a }}$, Ross P. Wilkie ${ }^{\text {a }}$, Helmut Krauss ${ }^{\text {a }}$, Andrew R. Neal ${ }^{\text {a }}$, Alexandra M. Z. Slawin ${ }^{\text {a }}$, Tomas<br>Lebl ${ }^{\text {a }}$, Nicholas J. Westwood ${ }^{\text {a, }}$<br>${ }^{a}$ School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, KY16 9ST, UK.

## ARTICLE INFO

## Article history.

Received
Received in revised form
Accepted
Available online

## Keywords:

Natural product
Ring opening reaction
Cyclic ether
Dearomatisation


#### Abstract

The bioactive alkaloid natural product perophoramidine and the related family of compounds known as the communesins have inspired the synthesis community for more than a decade. Many of the elegant approaches have required the synthesis of complex intermediates that have not always reacted in the expected manner. In this study we describe a series of cyclic ethercontaining precursors that were prepared during our synthetic studies towards these natural products. Attempts to open the cyclic ether ring and trap the resulting stabilised carbocation with a carbon nucleophile ultimately led to the preparation of a diallyl-substituted all carbon quaternary centre. Subsequent attempts to differentiate between the two allyl groups resulted in a relatively clean transformation to an unexpected compound. Extensive structural characterisation, including small molecule X-ray crystallography, showed that a dearomatisation reaction had occurred.


2017 Elsevier Ltd. All rights reserved.

## 1. Introduction

Perophoramidine (1) and the family of alkaloids known as the communesins have provided a significant challenge to the synthesis community for more than a decade (Figure 1). ${ }^{1-5}$ Their complex polycyclic structures and the abundance of stereogenic centres, two of them being all carbon quaternary centres, have tested a range of synthetic methodologies to the full. We have reported a total synthesis of the simplified dehaloperophoramidine (2) structure which involved, as a key carbon-carbon bond forming step, the Lewis-acid catalysed opening of epoxides of the general type 3 and subsequent trapping with allyl-trimethylsilane to give 4. ${ }^{6,7}$ This strategy was inspired by a series of observations on structurally related cyclic ethers. The synthesis and studies on the reactivity of these


(+)-Perophoramidine
$2 R=R^{1}=H$
previously unreported ethers are described here.

Figure 1: Structures of Perophoramidine (1), the related Dehaloperophoramidine (2) and a key step in our previously reported synthesis of 2. Reaction conditions: a) Allyl-TMS (2.5 eq.), $\mathrm{TiCl}_{4}$ ( 4 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ see refs. 6 and 7 for more details.


ORTEP representation of 6 at 50\% elipsoid probability

ORTEP representation of 7 at $\mathbf{5 0 \%}$ elipsoid probability

Scheme 1: Synthesis and subsequent reaction of cyclic ether 6; Reagents and conditions: a) $\mathrm{AlCl}_{3}\left(7 \mathrm{eq}\right.$.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $95 \%$; b) $\mathrm{AlCl}_{3}$ ( 7 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt then after work up $\mathrm{AlCl}_{3}(7$ eq.), PhMe, rt, $46 \%$ over 2 steps. The structures of $\mathbf{6}$ (left) and $\mathbf{7}$ (in box) were confirmed by X-ray crystallographic analysis.

## 2. Results and Discussion

Our interest in cyclic ethers in this context was first aroused when allylic alcohol 5 was treated with an excess of aluminium trichloride at room temperature in dichloromethane. In line with previous literature precedent using $\mathrm{AlCl}_{3}{ }^{8}$ and work using
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},{ }^{9}$ both on unrelated structures, we observed highly diastereoselective formation of cyclic ether 6 in $95 \%$ yield (Schemes 1 and S1). Small molecule X-ray crystallographic analysis of $\mathbf{6}$ confirmed the structure as drawn. A limited screen of alternative Lewis acids (Table S1) suggested that the use of $\mathrm{AlCl}_{3}$ was important for the formation of $\mathbf{6}$ from 5 . Interestingly, when toluene was used as a solvent in place of dichloromethane in the $\mathrm{AlCl}_{3}$ reaction, a second product assigned as structure 7, resulted from ring opening of the cyclic ether ring. The ${ }^{1} \mathrm{H}$ NMR of 7 was noteworthy due to the presence of an apparent doublet (with a small coupling constant of $J=1.3 \mathrm{~Hz}$ ) equating to 4 protons in the aromatic region. Combined with the presence of a new signal corresponding to an aromatic methyl group and other analytical data, it was concluded that a molecule of the solvent (toluene) had been incorporated into the product during this reaction. Small molecule X-ray crystallographic analysis of 7 confirmed the structure and the observed signal in the ${ }^{1} \mathrm{H}$ NMR spectrum of 7 was rationalised based on a small chemical shift difference between the aromatic protons in the toluene ring in 7 leading to a small coupling constant. Exposure of a crude sample of 6 prepared in dichloromethane to excess $\mathrm{AlCl}_{3}$ in toluene gave exclusively $\mathbf{7}$ as a single diastereomer (Scheme S1).


Scheme 2: 5-membered cyclic ethers $\mathbf{1 2}$ were viewed as a central unit in a plan to form an all-carbon quaternary centre at position C11 in 11. a) Conversion of previously reported aldehyde 8 to ethers 9 and 10. Reaction conditions: a TBAF, $p-\mathrm{TsCl}, \mathrm{DMAP}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $82 \%$; b (i) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$, 2-methylbut-2-ene, ${ }^{\dagger} \mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$, rt, 2h; (ii) $\mathrm{TMSCHN}_{2}, \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}, 54 \%$ over two steps. b) proposed route from 13 via cyclic ethers of general structure $\mathbf{1 2}$ to $\mathbf{1 1}$ inspired by the experimental observations shown in Schemes 1 and 2a.

A second interesting observation came following our previously reported synthesis of the $\alpha$-hydroxy aldehyde 8 (Scheme 2a). ${ }^{7}$ Reaction of $\mathbf{8}$ with TBAF in the presence of tosyl chloride and DMAP resulted in the formation of another 5-membered cyclic ether 9 (Scheme S2 for a more detailed discussion). In contrast to cyclic ether 6 (Scheme 1), ether 9 does not possess a hydrogen atom at the C11 position. The conversion of $\mathbf{8}$ to $\mathbf{9}$ was assumed to occur via tosylation of the initial formed primary alkoxide followed by nucleophilic substitution involving attack of the tertiary alcohol/alkoxide at the tosyl-substituted carbon. Subsequent oxidation of aldehyde $\mathbf{9}$ and esterification gave cyclic ether $\mathbf{1 0}$ in moderate yield over the two steps. Combining the two observations described in Schemes 1 and 2a led us to consider a new approach for establishing the C11 all carbon quaternary centre in compounds of general type 11 (Scheme 2b). This
strategy would involve the synthesis of relevant C11-substituted cyclic ethers of the general type $\mathbf{1 2}$ which could potentially undergo ring opening and trapping with a suitable carbon nucleophile. The conversion of the ketone $\mathbf{1 3}$ to $\mathbf{1 2}$ became the next challenge.

Rapid access to the $\mathrm{C} 11-\mathrm{H}$ cyclic ether $\mathbf{1 4}$ was achieved following reduction of $\mathbf{1 3}$ using sodium borohydride to give $\mathbf{1 5}$. Reaction of $\mathbf{1 5}$ with tosyl chloride in pyridine ( 2 hours at room temperature
followed by heating at $60^{\circ} \mathrm{C}$ ), inspired by existing literature on unrelated structures, ${ }^{10}$ gave 14. Cyclic ethers $\mathbf{1 6 - 1 8}$ were prepared in excellent yields and as single diastereomers by an analogous route using greater than two equivalents of the corresponding Grignard reagent to give alcohols 19-21. Cyclisation of $\mathbf{1 9 - 2 1}$ using tosyl chloride gave 16-18. Finally, increased quantities of cyclic ether $\mathbf{1 0}$ were prepared from $\mathbf{1 3}$ via


O-silylation to give 22, diastereoselective conversion to the epoxide 23 followed by deprotection to give 24. Reaction of epoxide 24 with $p$-toluenesulfonic $\operatorname{acid}^{11}$ at room temperature gave the cyclic ether 25 in excellent yield. Dess-Martin oxidation ${ }^{12}$ of $\mathbf{2 5}$ to 9 followed by Pinnick oxidation ${ }^{13}$ and esterification gave $\mathbf{1 0}$.

Scheme 3: Formation of cyclic ethers $\mathbf{1 4}, \mathbf{1 6 - 1 8}, \mathbf{2 5}, 9$ and 10. Reaction conditions: a $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt, $1 \mathrm{~h} 95 \%$ for $\mathbf{1 5}$; b MeMgCl (2.2 eq.), THF, $0^{\circ} \mathrm{C}$ to rt, $1 \mathrm{~h}, 98 \%$ for $\mathbf{1 9}$; $\mathbf{c} \mathrm{EtMgCl}$ (4 eq.), THF, $0^{\circ} \mathrm{C}$ to rt, $1 \mathrm{~h}, 96 \%$ for $\mathbf{2 0}$; $\mathbf{d}$ allyl MgCl ( 3.0 eq.), THF, 0 ${ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}, 92 \%$ for $\mathbf{2 1}$; e $p-\mathrm{TsCl}$, pyridine, $\mathrm{rt}, 2 \mathrm{hs}$ then $60^{\circ} \mathrm{C}$ for 5 hs ., $70 \%$ for $\mathbf{1 4}, 81 \%$ for 16, $84 \%$ for $\mathbf{1 7}, 70 \%$ for $\mathbf{1 8}$; $\mathbf{f}$ TPDBS-Cl, imid., DCM, rt, 1 h ; $\mathbf{g}$; $\mathrm{ClICH}_{2}$, MeLi:LiBr, THF, $6 \mathrm{~h},-78^{\circ} \mathrm{C}-\mathrm{rt}, 71 \%$ (2 steps); h TBAF, THF rt, $2 \mathrm{hs}, 98 \%$; i $p$ - TsOH , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $18 \mathrm{hs}, 94 \%$; $\mathbf{j}$ Dess-Martin periodinane, ${ }^{12} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 90 \%$; $\mathbf{k}$ (i) $\mathrm{NaClO}_{2}$, $\mathrm{NaH}_{2} \mathrm{PO}_{4}$, 2-methylbut-2-ene, ${ }^{t} \mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}$, 2h; (ii) $\mathrm{TMSCHN}_{2}, \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}, 54 \%$ (2 steps).

Having accessed a number of cyclic ethers of general structure $\mathbf{1 2}$ (Scheme 2 b ), attempts to open the ether ring with concomitant trapping of the resulting carbocation with a carbon nucleophile were carried out. Initially we returned to the $\mathrm{AlCl}_{3}$-mediated opening in toluene. Encouragingly, cyclic ethers 14, 16 and 17 were converted under these conditions to 26, 27 and 28 respectively (Figure 2) in an analogous manner to the conversion of 6 to 7 (Scheme 1). Evidence to support the assigned relative stereochemistry of 26-28 came from NOESY experiments (Figures S1-S3). It was determined that greater than 3 eqs. of $\mathrm{AlCl}_{3}$ were required for these reactions to proceed possibly due to competing coordination of the Lewis acid to other heteroatoms.


Figure 2: Structures of compounds obtained from ring opening of cyclic ethers followed by trapping with a carbon-based nucleophile. Reagents and conditions: $\mathrm{AlCl}_{3}$ ( 7 eq.), PhMe, rt, $77 \%$ for $\mathbf{2 6}$ from 14; 83\% for 27 from 16; $70 \%$ for 28 from 17. $\mathrm{AlCl}_{3}$ (7 eq.), allylTMS ( 10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h} .87 \%$ for 29 from 16; $68 \%$ for 30 from 17; $\mathrm{TiCl}_{4}$ (5 eq.), allylTMS (5 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}, 4.5 \mathrm{hs} .87 \%$ for 31 from 18.

The reaction of cyclic ether 18 (Scheme 3) with $\mathrm{AlCl}_{3}$ in toluene led to full consumption of the starting material but a complex mixture of products was formed and the expected product could not be isolated. Unfortunately, cyclic ethers 10 and, perhaps more surprisingly, 25 did not react at room temperature even after extended reaction times (up to 18 hours). Increasing the number of equivalents of $\mathrm{AlCl}_{3}$ and/or heating the reaction using conventional or microwave methods had no effect. Use of a ptoluenesulfonic acid-mediated protocol, that had been successful for the conversion of $\mathbf{1 4}$ to $\mathbf{2 6}$, did not work in the case of $\mathbf{2 5}$ (Scheme S3) Use of the Hosomi-Sakuri protocol ${ }^{14}$ with $\mathrm{AlCl}_{3}$ and allyltrimethylsilane as the nucleophile in dichloromethane enabled the synthesis of $\mathbf{2 9}$ and $\mathbf{3 0}$ from $\mathbf{1 6}$ and $\mathbf{1 7}$ respectively (Figures 2, S4 and S5). Again, the attempted reaction of $\mathbf{1 8}$ gave a complex mixture and, despite considerable efforts (Table S2), none of the desired products could be obtained when $\mathbf{1 0}$ and $\mathbf{2 5}$ were used under these conditions. However a change of Lewis acid from $\mathrm{AlCl}_{3}$ to $\mathrm{TiCl}_{4}$, inspired by a report from Heathcock, ${ }^{15}$ did enable the synthesis of $\mathbf{3 1}$ (Figure 2) from $\mathbf{1 8}$ in $87 \%$ yield. Having successfully established a robust route to an all carbon quaternary centre at C 11 in 31, it became clear that to progress further towards the natural products it would be necessary to differentiate between the two allyl groups present at the C11 position. One possible approach to this was to attempt a selective iodoetherification reaction on 31 in the hope that a 7 -membered cyclic ether ring (as in 32, Scheme 4) would form on reaction of the primary alcohol in $\mathbf{3 1}$ with the allyl group that was on the same face (as opposed to the other more distant C11-allyl group). The remainder of this report describes the unexpected outcome of the attempted iodoetherification reaction of $\mathbf{3 1}$.


Scheme 4: The attempted conversion of $\mathbf{3 1}$ to 32. Reagents and conditions: a NIS (1.2 eqs.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $1 \mathrm{~h}, 40 \%$ recovered starting material $\mathbf{3 1} ; 15 \%$ of $\mathbf{3 3}$ and $9 \%$ of $\mathbf{3 4}$. See Figure 3 and Scheme 5 for the structures of $\mathbf{3 3}$ and 34. The use of the A and the D-ring nomenclature is highlighted in the structure of the starting material 31.

Preliminary studies on the reaction of $\mathbf{3 1}$ with iodine or N iodosuccinimde (NIS) in a range of solvents including acetonitrile and dichloromethane, with or without the addition of base $\left(\mathrm{NaHCO}_{3}\right.$ or NaHMDS), resulted in the partial reaction of

31 to give on all occasions what appeared to be a mixture of 3 major products along with some unreacted starting material 31. It proved possible to isolate 2 of the new products ( $\mathbf{3 3}$ and $\mathbf{3 4}$ ) in sufficient quantities for detailed analysis. ${ }^{1} \mathrm{H}$ NMR analysis of the first of these products indicated that only one allyl group was still present (Figure 3a, red section in structure). It was also clear that the $\mathrm{C}-10 \mathrm{~b} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$ substituent present in $\mathbf{3 1}$ was retained, but that the signals corresponding to the $\mathrm{CH}_{2}-\mathrm{O}$ group had shifted from 2.85 and 3.11 ppm in 31 to 3.65 and 3.99 ppm (Figures 3a and S6). The significant downfield shift of these types of signals had been observed on several occasions during this work following cyclic ether formation. A new singlet at 4.27 ppm corresponding to a CH proton was also observed, with the proton being bonded to a carbon atom with a ${ }^{13} \mathrm{C}$ NMR chemical shift of 88.0 ppm (data not shown). This peak was not present in the starting material 31 and would not be expected in $\mathbf{3 2}$. There was also (i) a $\mathrm{CH}_{2} \mathrm{I}$ group (as observed by a characteristic ${ }^{13} \mathrm{C}$ peak at 9.0 ppm ), (ii) an additional $\mathrm{CH}_{2}$ group and (iii) a CH (observed as a multiplet at around 2.4 ppm ) bonded to a carbon atom with a ${ }^{13} \mathrm{C}$ chemical shift of 45.7 ppm . Analysis of the COSY spectrum indicated that the CH multiplet at 2.4 ppm correlated with both the $\mathrm{CH}_{2} \mathrm{I}$ and the other $\mathrm{CH}_{2}$ group. This suggested that the atoms corresponding to these signals were connected in the sequence $\mathrm{CH}_{2} \mathrm{I}-\mathrm{CH}-\mathrm{CH}_{2}$ with this fragment most likely coming from the reaction of one of the allyl substituents with iodine. The CH proton did not correlate with any other signal (Figure 3 blue section in structure). The aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum contained only 10 protons with 8 CH environments observed in the HSQC spectrum. This was lower than the 13 aromatic protons present in the starting material 31 and the expected product 32, suggesting that some change to the molecule had taken place in one or more of the aromatic rings.


Figure 3: The attempted conversion of $\mathbf{3 1}$ to 32. Reagents and conditions: a NIS (1.2 eqs.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, \mathrm{lh}, 40 \%$ recovered starting material $\mathbf{3 1} ; 15 \%$ of $\mathbf{3 3}$ and $9 \%$ of $\mathbf{3 4}$. See above and Figure 4 for the structures of $\mathbf{3 3}$ and $\mathbf{3 4}$.

Analysis of the ${ }^{13} \mathrm{C}$ NMR spectrum indicated that there were 30 carbon atoms present in the product, suggesting that no carbon atoms were lost or gained in the reaction. DEPTQ analysis identified a CH signal with a chemical shift of 146.5 ppm , which was much higher than any CH carbon observed in related compounds. It was thought that this signal may have originated from the A ring of 31. It was also noted that the signals
corresponding to the three other aromatic protons in the A ring of 31 were not observed (Scheme 4), suggesting that reaction had taken place on this ring. There also appeared to be $7 \mathrm{CH}_{2}$ carbon environments present and 10 quaternary carbon environments. This was 2 more quaternary carbons than in $\mathbf{3 1}$ or would be expected in 32. With this information in mind, the HMBC spectrum of the product was analysed to try to determine the atom connectivity. The CH singlet at 4.27 ppm correlated with seven other carbon atoms (Figure 3) including a $\mathrm{CH}_{2} \mathrm{O}$ (67.2 $\mathrm{ppm})$, CH ( 45.7 ppm ) and a CH ( 146.5 ppm ). These correlations suggested that this CH group was within 2-3 bonds of the C-10b substituent, the signals corresponding to the reacted allyl and the A ring. The close bonding proximity of all of these groups, and the large number of HMBC correlations observed for this CH singlet suggested that a multi-ring system may have been formed. Surprisingly, it seemed likely that the A ring was no longer aromatic and now contained four quaternary carbons. High resolution mass spectrometric analysis of the product found a $\mathrm{m} / \mathrm{z}$ of 812.9329 , which was much higher than that of the starting material $31\left(435.2430[\mathrm{M}+\mathrm{H}]^{+}\right)$and the expected product 32 (561.1403, expected $[\mathrm{M}+\mathrm{H}]^{+}$). This mass corresponded to a molecular formula of $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{1} \mathrm{~N}_{2} \mathrm{I}_{3}$ which suggested the addition of 3 iodine atoms and the loss of three hydrogen atoms had occurred relative to 31. This data, as well as that obtained from the NMR analysis, led to the proposal that this product was 33 (Figure 3, Scheme 5 and Tables S3 and S4 for full assignments of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR). This proposed structure of $\mathbf{3 3}$ was found to be consistent with all of the characterisation data obtained including the key HMBC correlations.


Scheme 5: Optimised formation of $\mathbf{3 3}$ from 31. Reagents and conditions: a NIS (3.6 eq) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 6 \mathrm{~h}, 65 \%$. One possible mechanism for the reaction is shown. The structure of 33 was confirmed by X-ray crystallographic analysis.

The unusual structure proposed for $\mathbf{3 3}$ contained three contiguous all carbon quaternary carbon centres, as well as two additional stereocentres. It was thought that at least 3 equivalents of NIS were required to produce $\mathbf{3 3}$ and so the reaction of $\mathbf{3 1}$ was repeated with 3.6 equivalents of NIS resulting in the production
of 33 as a single product in reasonably high yield ( $65 \%$ ). Upon recrystallisation of $\mathbf{3 3}$ from ethyl acetate and methanol, a crystal was obtained that was suitable for X-ray crystallographic analysis. The analysis found a pair of enantiomers present in the unit cell in line with the fact that the starting material $\mathbf{3 1}$ was racemic. This analysis confirmed that the connectivity in the structure of $\mathbf{3 3}$ was as assigned by NMR and mass spectrometric analysis and enabled the relative stereochemistry of $\mathbf{3 3}$ to be assigned (Scheme 5). One possible mechanism for the formation of $\mathbf{3 3}$ could involve reversible reaction of $\mathbf{3 1}$ with NIS to form a series of iodonium ions, one of which ( $\mathbf{3 5}$ in Scheme 5) could undergo nucleophilic attack from the aromatic A ring to give 36. This would lead to formation of a new ring by linking one of the two allyl substituents and the C-10a position. The alcohol substituent could then add to the extended iminium system in $\mathbf{3 6}$ to form the cyclic ether ring. Subsequent iodination of the diene unit by the remaining NIS could form 33. Evidence to support this mechanism came from the observation that the second product from the original studies was assigned the structure 34 based on comparison of the NMR analysis with that of $\mathbf{3 3}$. The three signals corresponding to the diene protons in 34 were all found in the $5.6-6.4 \mathrm{ppm}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure S7), as expected. Treatment of a crude sample of $\mathbf{3 4}$ with NIS led to formation of $\mathbf{3 3}$ (Figure S8).

## 3. Conclusions

In conclusion, we have described the synthesis of a series of cyclic ether containing compounds that are structurally related to the bioactive alkaloid natural product perophoramidine (1). Attempts to open the ether rings and trap the resulting carbocations with carbon nucleophiles proved successful in several cases leading us to the C11-diallylated compound 31. In order to progress further towards the target molecules $\mathbf{1}$ and $\mathbf{2}$, an attempt was made to differentiate between the two allyl substitutents using an intramolecular iodoetherification protocol. Unexpectedly, this led to a major structural change involving an unusual dearomatisation reaction. The hexacyclic core structure that results contains 3 contiguous all carbon quaternary centres and five stereogenic centres in total. To the best of our knowledge, the closest literature precedent (Scheme S4) proceeds via radical intermediates rather than likely carbocation intermediates involved in the chemistry described here. ${ }^{16} \mathrm{We}$ remain surprised by the complexity of the compounds formed during, what appeared on paper at least, to be a reasonable synthetic plan.

## 4. Experimental

### 4.1. General methods

All chemicals and solvents were purchased from Sigma Aldrich (UK) or Alfa-Aesar and used without further purification. All reactions were carried out under a positive pressure of nitrogen or argon in flame or oven-dried glassware. Thin layer chromatography (TLC) analysis was performed on silica precoated SIL G-25 UV 254 sheets (layer: 0.25 mm silica gel with fluorescent indicator $\mathrm{UV}_{254}$, Alugram, UK). Compounds were visualised by UV light (UV lamp, model UVGL-58, Mineralight LAMP, Multiband UV-254/365 nm) and stained with potassium permanganate. Flash column chromatography was carried out on silica gel ( $40-63 \mu \mathrm{~m}$, Fluorochem, UK). Melting points were measured with an Electrothermal 9100 capillary melting point apparatus and are uncorrected. Fourier Transform infra-red spectra (FT-IR) were acquired on a Perkin Elmer paragon 1000 FT spectrometer. Absorption maxima are reported in
wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Unless otherwise stated, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR M ( $1 \mathrm{H}, \mathrm{m}$ ), $7.15-7.07(2 \mathrm{H}, \mathrm{m}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 5.96$ spectra were measured at room temperature ( 298 K ) on a Bruker DPX $400\left({ }^{1} \mathrm{H}=400 \mathrm{MHz},{ }^{13} \mathrm{C}=100 \mathrm{MHz}\right)$; Bruker Avance 300 $\left({ }^{1} \mathrm{H}=300 \mathrm{MHz},{ }^{13} \mathrm{C}=75 \mathrm{MHz}\right)$ and a Bruker Avance 500 $\left({ }^{1} \mathrm{H}=500.1 \mathrm{MHz},{ }^{13} \mathrm{C}=125 \mathrm{MHz}\right)$. Deuterated solvents were used and ${ }^{1} \mathrm{H}$ NMR chemical shifts were internally referenced to $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ in chloroform- $\mathrm{d}_{1}$ solution. Chemical shifts are expressed as $\delta$ in unit of ppm and coupling constants are recorded in Hz. Data processing was carried out using TOPSPIN 2 NMR version (Bruker UK, Ltd) or MestreNova 9.0 program (Bruker UK Ltd). In ${ }^{1} \mathrm{H}$ NMR assignment the multiplicity used is indicated by the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, brs $=$ broad singlet. Signals of protons and carbons were assigned, as far as possible, by using the following twodimensional NMR spectroscopy techniques: $\left[{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right]$ COSY, $\left[{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right]$ HSQC (Heteronuclear Single Quantum Coherence) and long range $\left[{ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}\right]$ HMBC (Heteronuclear Multiple Bond Connectivity). Mass spectrometry analysis (electrospray mode, ES; chemical ionization mode, CI) were performed by Ms Caroline Hosburgh and were recorded on a high performance orthogonal acceleration reflecting TOF mass spectrometer operating in positive and negative mode, coupled to a Waters 2975 HPLC.

### 4.2. General Procedures

4.2.1. Aluminum trichloride-mediated opening of cyclic ether
compounds in touene

To a solution of the cyclic ether compound (1 eq.) in toluene ( 1 vol) was added $\mathrm{AlCl}_{3}$ ( 7 eq .). The mixture was stirred at rt for 1 h before $1 \mathrm{M} \mathrm{NaOH}(1 \mathrm{vol})$ was added and the mixture extracted with ethyl acetate ( $3 \times 1 \mathrm{vol}$ ). The organic extracts were dried ( $\mathrm{MgSO}_{4}$ ), filtered and concentrated before purification by column chromatography (EtOAc/hexanes) to give the desired product.

### 4.2.2. Aluminum trichloride-mediated opening of cyclic ether compounds in the presence of allyltrimethyl silane.

To a solution of the cyclic ether compound (1eq.) in DCM (1 vol) was added allyltrimethylsilane ( 10 eq.) followed by $\mathrm{AlCl}_{3}$ ( 7 eq .). The mixture was stirred at rt for 1 h before 1 M NaOH ( 10 vol) was added and the mixture extracted with $\operatorname{DCM}(3 \times 10$ vol). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated before the crude product was purified by column chromatography (EtOAc/hexanes) to give the alcohol product.

### 4.3. Compounds synthesised

### 4.3.1. ( $\pm$ )-(2R,10bS,11S)-5-benzyl-2'-methyl-1',2',10b,11-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline (6)

To a stirred solution of $\mathbf{5}^{7}(0.05 \mathrm{~g}, 0.137 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL ) was added $\mathrm{AlCl}_{3}(0.131 \mathrm{~g}, 0.985 \mathrm{mmol})$. The suspension was stirred at rt for 18 h before sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added to quench the reaction. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with water ( 20 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel ( $20 \% \mathrm{EtOAc} / \mathrm{hexane}$ ) afforded 6 ( $0.048 \mathrm{~g}, 0.133$ $\mathrm{mmol}, 95 \%$ ). Crystals suitable for X-ray analysis were obtained. I.R. (ATR) $v_{\text {max }}: 1555,1456,1045,999,802 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(1 \mathrm{H}$, ddd, $J=7.5,1.5,1.0 \mathrm{~Hz}), 7.50-7.44$ $(2 \mathrm{H}, \mathrm{m}), 7.38-7.30(5 \mathrm{H}, \mathrm{m}), 7.30-7.24(1 \mathrm{H}, \mathrm{m}), 7.24-7.17$
$(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 4.74$ $(1 \mathrm{H}, \mathrm{qd}, J=9.5,6.0 \mathrm{~Hz}), 2.31-2.23(1 \mathrm{H}, \mathrm{m}), 2.12(1 \mathrm{H}, \mathrm{dd}$, $J=12.0,6.5,0.5 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 171.7,154.4,139.7,138.1,137.0,129.7,129.1,129.0$, 128.7, 127.4, 126.5, 126.0, 122.9, 122.7, 121.6, 118.0, 115.0, 79.2, 75.1, 58.3, 49.3, 44.3, 22.9; LRMS (ESI) $m / z 367$ ([M+H] ${ }^{+}$, 100), 389 ([M+Na] ${ }^{+}$, 60); HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}^{+} 367.1805$, found 367.1794.

### 4.3.2. ( $\pm$ )-1-((10bS,11R)-5-benzyl-11-(p-tolyl)-5,11-dihydro-10bH-indolo[2,3-b]quinolin-10b-yl)propan-2-ol (7)

To a stirred solution of $\mathbf{5}(0.05 \mathrm{~g}, 0.137 \mathrm{mmol})$ in $\mathrm{PhMe}(10 \mathrm{~mL})$ was added $\mathrm{AlCl}_{3}(0.131 \mathrm{~g}, 0.985 \mathrm{mmol})$. The suspension was stirred at rt for 18 h before sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added to quench the reaction. The aqueous layer was separated and extracted with EtOAc ( $2 \times 10 \mathrm{~mL}$ ) and the combined organic extracts were washed with water ( 20 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel (EtOAc/hexane) afforded $7(0.029 \mathrm{~g}, 0.063 \mathrm{mmol}$, $45 \%$ ). Crystals suitable for X-ray analysis were obtained. I.R. (ATR) $v_{\text {max }}: 3250,1558,1541,1456,1215,1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.49-7.42(2 \mathrm{H}, \mathrm{m}), 7.38(2 \mathrm{H}, \mathrm{dd}, J=8.0$, $7.0 \mathrm{~Hz}), 7.36-7.26(2 \mathrm{H}, \mathrm{m}), 7.24-7.13(3 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}, \mathrm{ddd}$, $J=7.5,1.0 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.02-6.89(2 \mathrm{H}, \mathrm{m}), 6.79$ $(4 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=16.5$ $\mathrm{Hz}), 4.60(1 \mathrm{H}, \mathrm{s}), 3.71-3.62(1 \mathrm{H}, \mathrm{m}), 2.29-2.10(2 \mathrm{H}, \mathrm{m}), 2.11$ $(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{dd}, J=6.5,1.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 173.0, 155.5, 140.0, 137.3, 136.4, 136.4, 136.3, $130.8,128.9,128.6,128.3,127.9,127.6,127.0,126.4,123.5$, 123.5, 122.2, 118.1, 115.4, 65.5, 57.0, 50.9, 49.7, 45.9, 24.2, 21.0; LRMS (ESI) m/z 459 ([M+H] $\left.{ }^{+}, 100\right), 481\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+} 459.2431$, found 459.2417.
$6(0.016 \mathrm{~g}, 0.044 \mathrm{mmol}, 31 \%)$ was also isolated from this reaction. An alternative protocol for the preparation of 7 was also used: To a stirred solution of $5(0.04 \mathrm{~g}, 0.109 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added $\mathrm{AlCl}_{3}(0.102 \mathrm{~g}, 0.765 \mathrm{mmol})$. The suspension was stirred at rt for 18 h before sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to quench the reaction. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with water $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford $\mathbf{6}$ which was used without further purification. To a stirred solution of $\mathbf{6}(0.109 \mathrm{mmol})$ in $\mathrm{PhMe}(3$ $\mathrm{mL})$ was added $\mathrm{AlCl}_{3}(0.106 \mathrm{~g}, 0.797 \mathrm{mmol})$. The suspension was stirred at rt for 18 h before sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to quench the reaction. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with water ( 10 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel (EtOAc/hexane) afforded $7(0.023 \mathrm{~g}, 0.05 \mathrm{mmol}$, $46 \%, 2$ steps).

### 4.3.3. ( $\pm$ )-(3aR,13bR)-9-Benzyl-2,3,9,13b-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline-13b-carbaldehyde (9)

To a solution of $\mathbf{8}^{7}(45 \mathrm{mg}, 0.071 \mathrm{mmol})$ in DCM ( 1 mL ) was added $p$-toluenesulfonyl chloride ( $20 \mathrm{mg}, 0.106 \mathrm{mmol}$ ), 4dimethylaminopyridine ( $15 \mathrm{mg}, 0.120 \mathrm{mmol}$ ) and tetra- $n$ butylammonium fluoride ( 2 M in $\mathrm{THF}, 70 \mu \mathrm{~L}, 0.141 \mathrm{mmol}$ ). The mixture was stirred at room temperature for 2 h before $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) ( 3 mL ) was added and the mixture extracted with DCM (3 x $3 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product. Purification
by column chromatography ( $10-20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ) gave 9 as M and concentrated to give the crude product. The crude product an orange-brown solid ( $22 \mathrm{mg}, 82 \%$ ).
m.p. $82-85^{\circ} \mathrm{C}$; I.R. (KBr) vmax: 2921, 1732, 1558, 1453, 1206, $754,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.36$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.12(\mathrm{~m}, 9 \mathrm{H})$, $6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08-4.01(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=12.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.05$ (dt, $J=12.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 196.0$, 170.1, 154.3, 139.7, 136.3, 135.9, 130.4, 129.2, 128.9, 128.2, 127.4, 126.4, 123.3, 123.1, 122.0, 121.6, 118.5, 115.6, 89.6, 66.0, 57.7, 49.1, 37.5; HR MS [ES+]: m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ 381.1603, found $381.1596[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 9 was also prepared as follows: To a solution of 25 ( $50 \mathrm{mg}, 0.131 \mathrm{mmol})$ in DCM ( 1.5 mL ) was added Dess-Martin periodinane ( $67 \mathrm{mg}, 0.158 \mathrm{mmol}$ ) and the mixture stirred at rt for 1h. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.) ( 2 mL ) and $\mathrm{NaHCO}_{3}$ (aq.) ( 2 mL ) were added and the mixture was stirred for a further 30 minutes before being extracted with DCM ( $3 \times 5 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ filtered and concentrated before purification by column chromatography (EtOAc/hexanes) to give 9 as an orange-brown solid ( $45 \mathrm{mg}, 90 \%$ ). All characterisation data were as reported above.
4.3.4. ( $\pm$ )-rac-(3aS, 13bS-Methyl 9-benzyl-2,3,9,13b-tetra-hydrofuro[3,2-c]indolo[2,3-b]quinoline-13b-carboxylate (10)

To a solution of $9(40 \mathrm{mg}, 0.105 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1,2$ mL ) was added 2-methylbut-2-ene ( $0.11 \mathrm{~mL}, 0.210 \mathrm{mmol}$ ), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(213 \mathrm{mg}, 1.367 \mathrm{mmol})$ and sodium chlorite $(124 \mathrm{mg}$, 1.367 mmol ). The mixture was stirred at rt for 2 h before water ( 5 mL ) was added and the mixture extracted with EtOAc (4 x 5 $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude acid product. The crude was redissolved in anhydrous methanol ( 2 mL ) and (trimethyl-silyl)diazomethane ( 2 M in diethyl ether, $105 \mu \mathrm{~L}$, 0.210 mmol ) was added. The solution was stirred for 1 h at rt before acetic acid was added $(50 \mu \mathrm{~L})$ and the mixture stirred for a further $0.5 \mathrm{~h} . \mathrm{NaHCO}_{3}$ (aq.) ( 5 mL ) was added and the mixture extracted with DCM ( $4 \times 5 \mathrm{~mL}$ ) before the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude ester. Purification by column chromatography ( $10-20 \%$ Ethyl acetate/hexanes) gave $\mathbf{1 0}$ as a pale orange solid ( $23 \mathrm{mg}, 54 \%$ ).
m.p. $69-71{ }^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 2950,1764,1722,1557,1491$, $1468,1451,1204,1101,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.59 (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.19$ (m, 9H), $7.08-7.00$ (m, 2H), $6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=$ $10.0,8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dt}, J=12.5,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15$ (ddd, $J=12.0,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 171.0,168.5,153.7,138.9,137.0,136.3,130.2,129.0$, $128.8,127.4,127.4,126.6,123.3,123.2,123.0,121.4,117.9$, 115.6, 86.6, 65.5, 58.0, 52.4, 49.0, 37.0; HRMS [ES+]: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} 411.1703$, found $411.1704[\mathrm{M}+\mathrm{H}]^{+}$.

### 4.3.5. ( $\pm$ )-(10bR,11R)-5-Benzyl-10b-(2-hydroxyethyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-11-ol (15)

To a solution of $\mathbf{1 3}^{7}(1.00 \mathrm{~g}, 2.71 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(0.21 \mathrm{~g}, 5.42 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes before removing the ice-bath and allowing the mixture to stir at rt for a further $1 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}$ (aq.) (30 ml ) was added and the organic solvent was removed under reduced pressure before the mixture extracted with DCM ( $3 \times 30$ $\mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered
was purified by column chromatography (EtOAc/hexanes) to give 15 as a white solid ( $0.98 \mathrm{~g}, 97 \%$ ). m.p. $180-181^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 3320,2143,1555,1469,1452,1206,1059,761,702$ $\mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.16(\mathrm{~m}, 8 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 3.70$ $(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}), 2.34-$ $2.26(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.46(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.7,155.6,138.9,136.7,128.8,128.8,128.5,127.5,127.3$, $126.3,125.5,124.2,123.4,122.4,117.8,114.8,70.9,58.9,56.0$, 49.7, 32.8. HRMS [ES-]: $m / z$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ 369.1603, found $369.1603[\mathrm{M}-\mathrm{H}]^{-}$.
4.3.6. ( $\pm$ )-(3aR,13bR)-9-Benzyl-2,3,9,13b-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline (14)

To a solution of $\mathbf{1 5}$ ( $100 \mathrm{mg}, 0.270 \mathrm{mmol}$ ) in pyridine ( 5 mL ) was added $p$-toluenesulfonyl chloride ( $57 \mathrm{mg}, 0.297 \mathrm{mmol}$ ) and the solution stirred at rt for 2 h . The mixture was then heated to 60 ${ }^{\circ} \mathrm{C}$ for a further 5 h before cooling to rt and adding $1 \mathrm{M} \mathrm{HCl}(75$ $\mathrm{mL})$. The mixture was extracted with DCM ( $3 \times 30 \mathrm{~mL}$ ) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product. Purification by column chromatography ( $\mathrm{EtOAc} /$ hexanes) gave 14 as a pale yellow solid ( $67 \mathrm{mg}, 70 \%$ ). m.p. $122-124{ }^{\circ} \mathrm{C}$; I.R. ( KBr ) $v_{\text {max }}: 2921,1737$, $1555,1464,1199,754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.52$ (dd, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.26(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.91 (td, $J=10.0,9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.00$ (ddd, $J=11.5,7.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $171.8,154.2,140.1,139.0,136.9,129.2,128.9,128.5,128.3$, 127.3, 126.4, 123.9, 123.1, 122.7, 121.4, 117.9, 115.1, 79.9, 65.2, 56.5, 49.2, 36.7; HRMS [APCI+]: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ 353.1648 , found $353.1644[\mathrm{M}+\mathrm{H}]^{+}$.

### 4.3.7. ( $\pm$ )-(10bR,11R)-5-Benzyl-10b-(2-hydroxyethyl)-11-methyl-10b,11-dihydro-5H-indolo[2,3b]quinolin-11-ol (19)

To a solution of $\mathbf{1 3}^{7}(360 \mathrm{mg}, 0.977 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added methylmagnesium bromide ( 3 M in THF, 0.72 mL , 2.150 mmol ). The mixture was stirred for 10 minutes before the ice-bath was removed and stirring continued for a further 1 h at rt . $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) ( 10 ml ) was added and the organic solvent was removed under reduced pressure before the mixture was extracted with DCM ( $3 \times 10 \mathrm{ml}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product. The crude product was purified by column chromatography (EtOAc/hexanes) to give 19 as a yellow solid ( $367 \mathrm{mg}, 98 \%$ ). m.p. $114-117{ }^{\circ} \mathrm{C}$; I.R. ( KBr ) $v_{\text {max }}: 2921,2852$, 1552, 1467, 1452, 1204, 754, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dt}, J=6.5,0.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.16$ (ddd, $J=8.0,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10-7.02$ (m, 2H), 6.89 (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (ddd, $J=11.5,9.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (dt, $J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (ddd, $J=14.5$, $9.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.71 (ddd, $J=14.5,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.17 (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 175.6, 155.9, 138.3, 137.0, 135.6, 132.6, 128.8, 128.7, 128.4, 127.3, 126.6, 124.7, 123.8, $123.6,122.4,117.8,114.8,74.3,60.1,59.2,49.1,35.2,25.7$; HRMS [ES+]: $m / z$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ 407.1735, found $407.1743[\mathrm{M}+\mathrm{Na}]^{+}$.
4.3.8 ( $\pm$ )-(10bR,11R)-5-Benzyl-11-ethyl-10b-(2-hydroxy-ethyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-11-ol (20)

To a solution of $\mathbf{1 3}^{7}(160 \mathrm{mg}, 0.434 \mathrm{mmol})$ in THF $(16 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added ethylmagnesium bromide ( 3 M in THF, 0.58 mL , 1.74 mmol ). The mixture was stirred for 10 minutes before the ice-bath was removed and stirring continued for a further 1 h at rt . $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) ( 15 ml ) was added and the organic solvent was removed under reduced pressure before the mixture was extracted with DCM ( $3 \times 15 \mathrm{ml}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product. The crude product was purified by column chromatography (EtOAc/hexanes) to give 20 as a white solid ( $166 \mathrm{mg}, 96 \%$ ). m.p. $115-117{ }^{\circ} \mathrm{C}$; I.R. ( KBr ) $v_{\text {max }}: 3232,3054$, 2921, 1555, 1469, 1452, 1209, $751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}$, $1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=$ $14.5,9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{dq}, J=14.5$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{dq}, J=12.0,6.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.58(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}$ ) ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 175.0,154.8,138.1$, $136.5,134.7,130.0,128.8,128.5,127.5,126.8,126.7,124.0$, 123.4, 122.9, 117.4, 115.4, 76.3, 60.6, 58.8, 49.7, 35.3, 28.6, 7.6; HRMS [ES+]: $m / z$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ 421.1892, found $421.1892[\mathrm{M}+\mathrm{H}]^{+}$.

### 4.3.9. ( $\pm$ )-(10bR,11R)-11-Allyl-5-benzyl-10b-(2-hydroxy-ethyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-11-ol (21)

To a solution of $\mathbf{1 3}^{7}(2.65 \mathrm{~g}, 7.20 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added allylmagnesium bromide ( 2 M in THF, 10.8 mL , $21.61 \mathrm{mmol})$. The mixture was stirred for 10 minutes before the ice-bath was removed and stirring continued for a further 1 h at rt . $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) ( 100 ml ) was added and the organic solvent was removed under reduced pressure before the mixture was extracted with DCM ( $3 \times 100 \mathrm{ml}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product. The crude product was purified by column chromatography (EtOAc/hexanes) to give 21 as a pale yellow solid ( $2.72 \mathrm{~g}, 92 \%$ ). m.p. $88-91^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 3069,2926$, 2852, 1553, 1467, 1452, 1214, 1108, 737, 700, $503 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.53(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.40-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.20$ (ddd, $J=8.0$, $7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (tdd, $J=7.5,2.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J$ $=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dddd}, J=$ $16.5,10.0,8.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.98 (ddt, $J=10.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 3.60$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.79$ (ddd, $J=14.5,5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 175.2,155.8,138.4,136.8,135.4$, 132.6, 129.9, 128.8, 128.5, 127.4, 126.7, 126.4, 124.0, 123.0, $122.6,119.5,117.8,115.0,75.6,60.0,59.0,49.2,41.0,35.2$; HRMS [APCI+]: $m / z$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} 410.1989$, found $410.1983[\mathrm{M}]^{+}$.
4.3.10. ( $\pm$ )-(3aR,13bR)-9-Benzyl-13b-methyl-2,3,9,13btetrahydrofuro [3,2-c]indolo[2,3-b]quinoline (16)

To a solution of $\mathbf{1 9}(367 \mathrm{mg}, 0.955 \mathrm{mmol})$ in pyridine ( 10 mL ) was added $p$-toluenesulfonyl chloride ( $113 \mathrm{mg}, 1.145 \mathrm{mmol}$ ) and the solution stirred at rt for 2 h . The mixture was then heated to 60 ${ }^{\circ} \mathrm{C}$ for a further 5 h before cooling to room temperature and adding $1 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL})$. The mixture was extracted with DCM ( 3 x 60 mL ) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product.

16 chation by column chromatography (EtOAc/hexanes) gave 16 as a pale yellow solid ( $282 \mathrm{mg}, 81 \%$ ). m.p $158-160^{\circ} \mathrm{C}$; I.R. $(\mathrm{KBr}) v_{\text {max }}: 2921,1552,1469,1449,1204,1120,751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.50(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.15(\mathrm{~m}, 9 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{dd}$, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (ddd, $J=10.0,8.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.61$ (ddd, $J=12.5,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=$ $12.0,8.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.1,154.7,138.2,138.1,136.9,129.3,128.8,128.4,127.3$, 126.7, 126.4, 123.3, 122.7, 122.3, 117.9, 114.9, 84.9, 64.6, 60.1, 49.0, 37.2, 22.7; HRMS [ES+]: m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ 367.1810 , found $367.1803[\mathrm{M}+\mathrm{H}]^{+}$.

### 4.3.11. ( $\pm$ )-(3aR,13bR)-9-Benzyl-13b-ethyl-2,3,9,13b-tetrahydro-furo[3,2-c]indolo[2,3-b]quinoline (17)

To a solution of $\mathbf{2 0}(50 \mathrm{mg}, 0.125 \mathrm{mmol})$ in pyridine $(2 \mathrm{~mL})$ was added p-toluenesulfonyl chloride ( $26 \mathrm{mg}, 0.138 \mathrm{mmol}$ ) and the solution stirred at rt for 2 h . The mixture was then heated to $60^{\circ} \mathrm{C}$ for a further 5 hours before cooling to rt and adding $1 \mathrm{M} \mathrm{HCl}(30$ $\mathrm{mL})$. The mixture was extracted with DCM ( $3 \times 15 \mathrm{~mL}$ ) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product. Purification by column chromatography (EtOAc/hexanes) gave 17 as a white solid (40 $\mathrm{mg}, 84 \%$ ). m.p. $177-180^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 2921,1552,1467$, 1452, 1204, 1098, 1024, $798,759 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.15(\mathrm{~m}, 8 \mathrm{H})$, 7.11 (ddd, $J=8.0,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.84$ (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (q, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (ddd, $J=10.0,8.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.59 (ddd, $J=12.5,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.03 (ddd, $J$ $=12.5,8.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.38(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.9,154.6,139.5,137.8$, $137.0,128.9,128.8,128.3,127.4,127.3,127.3,126.5,123.1$, $122.6,122.4,118.1,114.7,87.6,64.4,59.2,49.2,38.3,30.1,7.9$; HRMS [ES+]: m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ 381.1967, found $381.1967[\mathrm{M}+\mathrm{H}]^{+}$.

### 4.3.12. ( $\pm)-(3 a R, 13 b R)-13 b-A l l y l-9-$ benzyl-2,3,9,13b-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline (18)

To a solution of $21(1.00 \mathrm{~g}, 2.436 \mathrm{mmol})$ in pyridine $(25 \mathrm{~mL})$ was added $p$-toluenesulfonyl chloride ( $0.56 \mathrm{~g}, 2.923 \mathrm{mmol}$ ) and the solution stirred at rt for 2 h . The mixture was then heated to $60^{\circ} \mathrm{C}$ for a further 5 h before cooling to rt and adding $1 \mathrm{M} \mathrm{HCl}(320$ $\mathrm{mL})$. The mixture was extracted with DCM ( $4 \times 150 \mathrm{~mL}$ ) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product. Purification by column chromatography (EtOAc/hexanes) gave 18 as a yellow solid $(0.67 \mathrm{~g}, 70 \%)$. m.p. $48-51^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 2926,1555,1467$, 1452, 1327, 1295, 1204, 919, 751, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.14(\mathrm{~m}, 8 \mathrm{H})$, 7.09 (ddd, $J=8.0,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{tdd}, J=7.5,4.0,1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{ddt}, J=$ $10.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dq}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=10.0,8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.51$ (m, 1H), $2.51-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.03$ (ddd, $J=12.5,8.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.5,154.8,139.3,137.7$, 136.9, 130.9, 129.0, 128.8, 128.4, 127.4, 127.3, 127.1, 126.6, 123.1, 122.6, 122.3, 119.4, 118.1, 114.7, 86.1, 64.4, 59.2, 49.2, 41.7, 38.0. HRMS [ES+]: $m / z$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ 393.1961, found $393.1959[\mathrm{M}+\mathrm{H}]^{+}$.

To a solution of $\mathbf{2 3}(500 \mathrm{mg}, 0.805 \mathrm{mmol})$ in THF ( 25 mL ) was added TBAF ( 1 M in THF, $1.6 \mathrm{~mL}, 1.611 \mathrm{mmol}$ ) and the mixture stirred at rt for $2 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}$ (aq.) ( 25 mL ) was added and the organic solvent was removed under reduced pressure before the mixture was extracted with DCM ( $3 \times 20 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude product which was purified by column chromatography ( $\mathrm{EtOAc} / \mathrm{hexanes}$ ) to give 24 as a yellow-orange solid ( $302 \mathrm{mg}, 98 \%$ ). m.p. $86-88^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}$ : 2921, 1671 , $1607,1555,1489,1452,1403,1204,1027,909,754,729,697$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.11(\mathrm{~m}, 10 \mathrm{H}), 7.00-$ $6.94(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dt}, J=13.5,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10(\mathrm{dt}, J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 173.0,155.1,140.9,136.6,133.8,129.5,129.2,128.9$, $127.4,126.4,123.7,123.5,123.0,122.9,118.3,115.2,60.2,59.1$, 54.1, 53.6, 49.7, 36.6; HRMS [ES+]: $m / z$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ 383.1760 , found $383.1745[\mathrm{M}+\mathrm{H}]^{+}$.
4.3.14. ( $\pm)-((3 a R, 13 b R)-9-$ Benzyl-2,3,9,13b-tetrahydrofuro-[3,2-c]indolo[2,3-b]quinolin-13b-yl)methanol (25)

To a solution of $24(1.20 \mathrm{~g}, 3.138 \mathrm{mmol})$ in $\mathrm{DCM}(70 \mathrm{~mL})$ was added $p$-toluenesulfonic acid ( $1.62 \mathrm{~g}, 9.413 \mathrm{mmol}$ ) and the mixture stirred at rt for $18 \mathrm{~h} . \mathrm{NaHCO}_{3}$ (aq.) $(70 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$ before the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The crude product which was purified by column chromatography ( $\mathrm{EtOAc} / \mathrm{hexanes}$ ) to give $\mathbf{2 5}$ as a yellow-orange solid ( $1.13 \mathrm{~g}, 94 \%$ ). m.p. $151-155{ }^{\circ} \mathrm{C}$; I.R. ( KBr ) $v_{\text {max }}: 3320$, 2921, 1555, 1491, 1469, 1452, 1413, 1324, 1206, 1147, 1064, $756,692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{dd}, J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 8 \mathrm{H})$, $7.09-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.31 (br. s, 1H), 4.89 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.55 (ddd, $J=11.0,9.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.34(\mathrm{~m}, 3 \mathrm{H}), 2.42$ (ddd, $J$ $=14.5,9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=14.5,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.4,155.6,138.7,136.7,134.1$, $129.4,129.2,128.9,127.9,127.5,127.3,126.5,124.2,123.1$, $122.8,118.1,115.0,75.2,59.1,58.6,50.1,49.4,35.9$; HRMS [ES+]: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ 383.1760, found 383.1765 $[\mathrm{M}+\mathrm{H}]^{+}$.
4.3.15. ( $\pm$ )-2-((10bR,11S)-5-Benzyl-11-(p-tolyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (26)

26 was synthesised from the reaction of $\mathbf{1 4}(40 \mathrm{mg}, 0.113 \mathrm{mmol})$ with $\mathrm{AlCl}_{3}$ ( $106 \mathrm{mg}, 0.794 \mathrm{mmol}$ ) in toluene ( 3 mL ) using general procedure 4.2.1. $\mathbf{2 6}$ was obtained as a pale yellow solid ( $39 \mathrm{mg}, 77 \%$ ). m.p. $63-65^{\circ} \mathrm{C}$; I.R. ( KBr ) $v_{\max }: 2921,2852,1555$, 1469, 1454, 1078, 776, 692, $459 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.07$ $(\mathrm{m}, 7 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 4 \mathrm{H}), 5.86(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 3.38-3.26$ (m, 2H), 2.36 (dt, $J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.5,153.8,139.4$, 136.6, 136.4, 135.5, 135.5, 135.4, 130.5, 128.8, 128.4, 127.8, $127.6,127.3,126.4,123.9,122.8,122.4,117.3,115.9,59.1,56.2$, 50.8, 50.1, 39.8, 20.9; HRMS [ES+]: $m / z$ calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}$ 445.2280 , found $445.2275[\mathrm{M}+\mathrm{H}]^{+}$.

27 was synthesised from the reaction of $\mathbf{1 6}(29 \mathrm{mg}, 0.079 \mathrm{mmol})$ with $\mathrm{AlCl}_{3}$ ( $74 \mathrm{mg}, 0.552 \mathrm{mmol}$ ) in toluene ( 1.5 mL ) using general procedure 4.2.1. 27 was obtained as a pale yellow solid ( $30 \mathrm{mg}, 83 \%$ ). m.p. $108-111{ }^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 3374,2956$, 2916, 1555, 1491, 1449, 1408, 1245, 1211, 1027, 835, 751, 697 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.37-$ $7.15(\mathrm{~m}, 8 \mathrm{H}), 7.14-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.75-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.54-$ $6.41(\mathrm{~m}, 2 \mathrm{H}),, 5.48(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23$ (dt, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dt}, J=11.0,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,156.0,141.3,139.2,137.2,136.5$, 136.0, 131.2, 128.6, 128.6, 128.3, 128.0, 127.3, 127.3, 126.9, $123.6,123.0,122.4,117.7,115.3,59.6,58.6,50.1,47.4,35.6$, 22.3, 20.8; HRMS [ES+]: m/z calcd. for C32H30N2ONa 481.2256 , found $481.2247[\mathrm{M}+\mathrm{Na}]^{+}$.

### 4.3.17. ( $\pm$ )-2-((10bR,11S)-5-Benzyl-11-ethyl-11-(p-tolyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (28)

28 was synthesised from the reaction of $\mathbf{1 7}(30 \mathrm{mg}, 0.079 \mathrm{mmol})$ with $\mathrm{AlCl}_{3}$ ( $74 \mathrm{mg}, 0.552 \mathrm{mmol}$ ) in toluene ( 1.5 mL ) using general procedure 4.2.1. 17 was obtained as a pale yellow solid ( $26 \mathrm{mg}, 70 \%$ ). m.p. $140-143{ }^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 3261,2921$, 1555, 1449, 1407, 1209, 1019, 751, $727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39-$ $6.98(\mathrm{~m}, 11 \mathrm{H}), 6.77-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.42-6.30(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~d}$, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dt}, J=11.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=11.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dq}, J=15.0$, $7.5 \mathrm{~Hz}, 1 \mathrm{H},), 2.63(\mathrm{dq}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=8.0$, $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,156.3,141.5,137.1,136.5,136.0,135.9$, 131.7, 128.8, 128.5, 128.2, 128.0, 127.3, 127.2, 127.1, 123.6, $123.4,122.5,117.6,115.8,59.8,59.5,51.5,50.2,35.0,26.2$, 20.9, 12.0; HRMS [ES+]: $m / z$ calcd. for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O} 473.2593$, found $473.2590[\mathrm{M}+\mathrm{H}]^{+}$.

### 4.3.18. ( $\pm$ )-2-((10bR,11S)-11-Allyl-5-benzyl-11-methyl-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (29)

29 was synthesised from the reaction of $\mathbf{1 6}(30 \mathrm{mg}, 0.082 \mathrm{mmol})$ with allyltrimethylsilane ( $94 \mathrm{mg}, 0.819 \mathrm{mmol}$ ) and $\mathrm{AlCl}_{3}(76 \mathrm{mg}$, $0.573 \mathrm{mmol})$ in $\mathrm{DCM}(0.2 \mathrm{~mL})$ using general procedure 4.2.2. 29 was obtained as a pale yellow solid ( $29 \mathrm{mg}, 87 \%$ ). m.p. 169-171 ${ }^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 3394,2931,1543,1467,1449,1206,1039$, $102,751,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.46-7.20$ $(\mathrm{m}, 8 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.94(\mathrm{~m}, 3 \mathrm{H}), 5.63(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.61(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dt}, J=11.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 3 \mathrm{H})$, 1.81 (dd, $J=13.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 174.5,156.7,139.8,137.5,136.4,134.1,130.1,129.2$, 129.1, 128.2, 127.8, 127.7, 127.4, 123.4, 123.2, 122.9, 118.5, 118.1, 115.9, 59.7, 58.6, 50.0, 43.2, 40.4, 35.1, 18.5; HRMS [APCI+]: $m / z$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O} 408.2196$, found 408.2192 $[\mathrm{M}]^{+}$.

### 4.3.19. ( $\pm$ )-2-((10bR,11S)-11-Allyl-5-benzyl-11-ethyl-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (30)

$\mathbf{3 0}$ was synthesised from the reaction of $\mathbf{1 7}(20 \mathrm{mg}, 0.053 \mathrm{mmol})$ with allyltrimethylsilane ( $60 \mathrm{mg}, 0.526 \mathrm{mmol}$ ) and $\mathrm{AlCl}_{3}(49 \mathrm{mg}$, $0.368 \mathrm{mmol})$ in DCM $(0.15 \mathrm{~mL})$ using general procedure 3.30 was obtained as a pale yellow solid ( $15 \mathrm{mg}, 68 \%$ ). m.p. $65-67^{\circ} \mathrm{C}$;
I.R. (KBr) $\left.v_{\text {max }}: 3411,3063,2923,1701,1554,1491,1467, \mathrm{M} \mathrm{CDCl}_{3}\right) \delta 174.4,157.4,146.5,137.6,136.4,134.2,129.6,128.9$, 1450, 1205, 1041, 836, 754, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.99$ $(\mathrm{m}, 3 \mathrm{H}), 5.61(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{dt}$, $\mathrm{J}=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dq}, \mathrm{J}=11.0$, $7.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.01 (ddd, J = 11.0, $7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.40(\mathrm{dq}, \mathrm{J}$ $=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.13(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=14.5,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 174.0, 155.9, 140.0, 136.8, 136.1, 134.2, 128.8, 128.7, 128.4, 128.0, 127.7, 127.3, 127.1, 123.1, 122.8, 122.7, 117.5, 117.5, 116.0, 59.4, 59.1, 49.8, 45.9, 40.4, 35.9, 25.8, 11.8; LRMS [ES+]: m/z calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O} 423.24$, found $423.39[\mathrm{M}+\mathrm{H}]^{+}$.

### 4.3.20. ( $\pm$ )-2-(11,11-Diallyl-5-benzyl-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (31)

To a solution of $\mathbf{1 8}(663 \mathrm{mg}, 1.689 \mathrm{mmol})$ in DCM $(14 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ was added allyltrimethylsilane ( $1.34 \mathrm{~mL}, 8.446 \mathrm{mmol}$ ) followed by $\mathrm{TiCl}_{4}$ (dropwise addition, $0.93 \mathrm{~mL}, 8.446 \mathrm{mmol}$ ). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4.5 h before methanol ( 1 mL ) was added and the mixture stirred for an additional 10 minutes. The mixture was removed from the cold bath and $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) ( 15 mL ) was added before the mixture was extracted with DCM ( $3 \times 10 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated before the crude product was purified by column chromatography (EtOAc/hexanes) to give $\mathbf{3 1}$ as a yellow solid ( $636 \mathrm{mg}, 87 \%$ ). m.p. 116-118 ${ }^{\circ} \mathrm{C}$; I.R. (KBr) $v_{\text {max }}: 3355,2931,1641,1469,919$, $759,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.34-7.14(\mathrm{~m}, 7 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.23(\mathrm{dtd}, J=$ $17.0,10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.08(\mathrm{~m}, 3 \mathrm{H}), 4.81(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.81(\mathrm{~m}$, 2 H ), 2.46 (ddd, $J=13.5,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (dd, $J=14.0,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10(\mathrm{tdd}, J=14.5,9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=14.0$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 174.1, 157.3, 140.4, $137.3,137.1,136.4,134.1,129.2,129.1,128.5,128.3,128.0$, 127.7, 127.5, 123.7, 123.1, 118.7, 118.0, 116.7, 116.4, 59.8, 59.6, 50.1, 46.3, 40.8, 37.9, 36.2; HRMS [ES+]: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O} 435.2431$, found $435.2430[\mathrm{M}+\mathrm{H}]^{+}$.

### 4.3.21. ( $\pm$ )-( $6 a R, 9 a R, 13 a R, 14 R, 15 a S)-15 a-A l l y l-5-b e n z y l-$

 10,12-diiodo-14-(iodomethyl)-7,8,9a,14,15,15a-hexahydro-5H-6,13-(azeno)chromeno[4',4a':1,5]cyclopenta[1,2-c]quinoline (33) and ( $\pm$ )-( $6 a R, 9 a S, 13 a R, 14 R, 15 a S)-15 a-A l l y l-5-b e n z y l-14-$ (iodomethyl)-7,8,9a,14,15,15a-hexahydro-5H- 6,13-(azeno)-chromeno[4',4a':1,5]cyclopenta[1,2-c]quinoline (34)To a solution of $\mathbf{3 1}(50 \mathrm{mg}, 0.115 \mathrm{mmol})$ in DCM $(2.3 \mathrm{~mL})$ was added NIS ( $31 \mathrm{mg}, 0.138 \mathrm{mmol}$ ) and the mixture stirred at rt for $1 \mathrm{~h} . \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.) $(2 \mathrm{~mL})$ was added and the mixture stirred for a further 10 minutes before being extracted with DCM ( $3 \times 2 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated before purification by column chromatography (EtOAc/hexanes) giving a mixture of products including recovered 31 ( $20 \mathrm{mg}, 40 \%$ ). 33 was obtained as a yellow solid ( $14 \mathrm{mg}, 15 \%$ ). m.p. $150-152{ }^{\circ} \mathrm{C}$; I.R. ( KBr ) $v_{\text {max }}: 2921,1567$, 1520, 1494, 1462, 1327, 1211, 1076, $744 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.25(\mathrm{~m}$, $5 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.12-6.00$ $(\mathrm{m}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.27 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H})$, $4.05(\mathrm{dd}, J=12.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{td}, J=12.5,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.44 (dd, $J=9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.73$ (dd, $J=$ $11.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.68$ $-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz ,
128.6, 128.2, 127.7, 127.2, 123.4, 118.7, 116.3, 88.0, 82.9, 67.2, 66.5, 60.1, 57.4, 50.2, 48.3, 45.7, 44.7, 39.2, 27.5, 9.0; HRMS [ES+]: $m / z$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{I}_{3} \mathrm{~N}_{2} \mathrm{O}$ 812.9330, found 812.9329 $[\mathrm{M}+\mathrm{H}]^{+} .34$ was obtained as a green solid ( $6 \mathrm{mg}, 9 \%$ ). m.p. 126$128{ }^{\circ} \mathrm{C}$ (dec.); I.R. (KBr) $v_{\text {max }}: 2921,1722,1639,1533,1491$, 1459, 1410, 1327, 1073, 914, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (ddt, $J=17.0,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 12-$ H), $5.82-5.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{~N}, \mathrm{C} 10-\mathrm{H}), 5.33(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{td}, J=$ $12.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=$ $16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (dd, $J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=$ $12.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.40$ $(\mathrm{m}, 1 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.41$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.3,155.4,138.3$, 136.7, 134.7, 131.8, 129.7, 128.9, 128.5, 128.0, 127.4, 126.4, 122.7, 118.3, 116.7, 115.7, 105.6, 77.4, 67.0, 57.3, 53.4, 49.9, 48.3, 45.4, 44.7, 39.6, 28.0, 10.7; LRMS [ES+]: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{IN}_{2} \mathrm{O} 561.14$, found $561.02[\mathrm{M}+\mathrm{H}]^{+}$.
4.3.22. ( $\pm$ )-(6aR,9aR,13aR,14R,15aS)-15a-Allyl-5-benzyl-10,12-diiodo-14-(iodomethyl)-7,8,9a,14,15,15a-hexahydro-5H-6,13-(azeno)chromeno[4',4a':1,5]cyclopenta[1,2-c]quinoline (33)

To a solution of $\mathbf{3 1}(50 \mathrm{mg}, 0.115 \mathrm{mmol})$ in DCM ( 2.3 mL ) was added NIS $(93 \mathrm{mg}, 0.414 \mathrm{mmol})$ and the mixture stirred at rt for 1h. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.) ( 2 mL ) was added and the mixture stirred for a further 10 minutes before being extracted with DCM $(3 \times 2 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated before purification by column chromatography (EtOAc/hexanes) giving 33 as a yellow solid ( $60 \mathrm{mg}, 64 \%$ ). All characterisation data were in agreement with that reported above for 33. Crystals suitable for X-ray crystallographic analysis were obtained by the slow evaporation of a solution of $\mathbf{3 3}$ in EtOAc/MeOH.

## Acknowledgments

We would like to acknowledge EPSRC for PhD funding through the Doctoral Training Schemes and the EPSRC National Mass Spectrometry Service Center, Swansea for mass spectrometric analysis.

## References and notes

1. Verbitski SM, Mayne CL, Davis RA, Concepcion GP, Ireland CM. J Org Chem. 2002; 67: 7124-7126.
2. For selected reviews, see Trost BM, Osipov M. Chem Eur J. 2015; 21: 16318-16343; b) Siengalewicz P, Gaich T, Mulzer J. Angew Chem Int Ed. 2008; 47: 8170-8176.
3. For total and formal syntheses of perophoramidine, see a) Fuchs JR, Funk RL. J Am Chem Soc. 2004; 126 (16): 5068-5069; b) Wu H, Xue F, Xiao X, Qin Y. J Am Chem Soc. 2010; 132 (40): 14052-14054 c) Zhang H, Hong L, Kang H, Wang R. J Am Chem Soc. 2013; 135 (38): 14098-14101 d) Han SJ, Vogt F, May JA, Krishnan S, Gatti M, Virgil SC, Stoltz BM, J Org Chem. 2015; 80: 528-547; e) Han SJ, Vogt F, May JA, Krishnan S, Gatti M, Virgil SC, Stoltz BM, Org Lett. 2014; 16: 3316-3319; f) Trost BM, Osipov M, Krüger S, Zhang Y. Chem Sci. 2015; 6 (1): 349-353. For additional approaches aimed at perophoramidine, see g) Artman III GD, Weinreb SM. Org Lett. 2003; 5 (9): 1523-1526; h) Yang J, Song H, Xiao X, Wang J, Qin Y. Org Lett. 2006; 8 (10): 2187-2190; i) Wu L, Zhang Q-R, Huang J-R, Li Y, Su F, Dong L, Tetrahedron, 2017; 73: 3966-3972.
4. 

For total syntheses of dehaloperophoramidine, see a) Sabahi A,
Novikov AJ, Rainier D. Angew Chem Int Ed. 2006; $45: 4317-4320 ;$ b) Ishida T, Ikota H, Kurahashi K, Tsukano C, Takemoto Y. Angew Chem Int Ed. 2013; 52: 10204-10207; c) Popov K, Hoang A, Somfai P. Angew. Chem Int Ed. 2016; 55: 1801-1804; d) Hoang A, Popov K, Somfai P. J Org Chem. 2017; 82: 2171-2176.
5. For total syntheses of the Communesins A, B and F see a) Yang J, Wu H, Shen L, Qin Y. J Am Chem Soc. 2007; 129: 13794-13795; b) Yang J, Wu H, Shen L, Qin Y. Synfacts. 2008; 226; c) Liu P, Seo JH, Weinreb SM, Angew Chem Int Ed. 2010; 49: 2000-2003; d) Zuo Z, Xie W, Ma D. J Am Chem Soc. 2010; 132: 13226-13228; e) Zuo Z, Ma D. Angew Chem Int Ed. 2011; 50: 12008-12011; f) Belmar J, Funk RL. J Am Chem Soc. 2012; 134: 16941-16943; g) Lathrop SP, Pompeo M, Chang W-TT, Movassaghi M, J Am Chem Soc. 2016; 138: 7763-7769; h) Liang X, Zhang T-Y, Zeng X-Y, Zheng Y, Wei K, Yang Y-R, J Am Chem Soc. 2017; 139: 3364-3367.
6. Voute N, Philp D, Slawin AMZ, Westwood NJ. Org Biomol Chem 2010; 8: 442-450.
7. Wilkie RP, Neal AR, Johnston CA, Voute N, Lancefield CA, Stell MD, Medda F, Makiyi EF, Turner EM, Ojo OS, Slawin AMZ, Lebl T, Mullen P, Harrison DJ, Ireland CM, Westwood NJ. Chem Commun. 2016; 52: 10747-10750.Briggs TF, Dudley GB. Tetrahedron Lett. 2005; 46: 7793-7796.
8. Corbu A, Gauron G, Castro JM, Dakir M, Arseniyadis S. Tetrahedron: Asymmetry 2008; 19: 1730-1743.
9. Kubota H, Fujii M, Ikeda K, Takeuchi M, Shibanuma T, Isomura Y. Chemical \& Pharmaceutical Bulletin 1998; 46: 351-354.
0. Zoretic PA, Fang H, Ribeiro AA, Dubay G. J Org Chem 1998; 63:

1156-1161
11. Dess DB, Martin JC. J Org Chem 1983; 48: 4155-4156.
12. Bal BS, Childers Jr. WE, Pinnick HW. Tetrahedron, 1981; 37: 20912096.
13. Hosomi A, Sakurai H. Tetrahedron Letters 1976; 17: 1295-1298.
14. Christie HS, Heathcock CH. Proc. Natl. Acad. Sci. U.S.A., 2004; 101: 12079-12084.
15. a) Wang CH, Alluri S, Ganguly AK, Tetrahedron Lett. 2009; 50: 1879-1881; b) Wang CH, Reilly R, Brand N, Schwartz S, Alluri S, Chan TM, Buevich AV, Ganguly AK. Tetrahedron Lett. 2010; 51 : 6213-6215.

## Supplementary Material

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 1811883 (6); CCDC 1811882 (7); CCDC 1811884 (33).

Additional results and discussion of supplementary compounds are discussed in the ESI.

