Accepted Manuscript

Polycyclic ethers and an unexpected dearomatisation reaction during studies towards the bioactive alkaloid, perophoramidine

Craig A. Johnston, Ross P. Wilkie, Helmut Krauss, Andrew R. Neal, Alexandra M.Z. Slawin, Tomas Lebl, Nicholas J. Westwood

PII: S0040-4020(18)30491-5

DOI: 10.1016/j.tet.2018.04.086

Reference: TET 29501

To appear in: Tetrahedron

Received Date: 18 December 2017

Revised Date: 24 April 2018 Accepted Date: 25 April 2018

Please cite this article as: Johnston CA, Wilkie RP, Krauss H, Neal AR, Slawin AMZ, Lebl T, Westwood NJ, Polycyclic ethers and an unexpected dearomatisation reaction during studies towards the bioactive alkaloid, perophoramidine, *Tetrahedron* (2018), doi: 10.1016/j.tet.2018.04.086.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

an unexpected dearomatisation reaction leading to a complex polycyclic system with three contiguous all-carbon quaternary centres

$$\begin{array}{c} \text{NIS} \\ \text{NIS$$

Graphical Abstract

Leave this area blank for abstract info.

Polycyclic Ethers and an Unexpected Dearomatisation Reaction during studies towards the Bioactive Alkaloid, Perophoramidine

Craig A. Johnston^a, Ross P. Wilkie^a, Helmut Krauss^a, Andrew Neal^a, Alexandra M. Z. Slawin^a, Tomas Lebl^a, Nicholas J. Westwood^{a,*}

School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, KY16 9ST (UK).

an unexpected dearomatisation reaction leading to a complex polycyclic system with three contiguous all-carbon quaternary centres

$$R = H, Me, Et, CH_2CHCH_2, CH_2OH, CHO, CO_2Me$$

$$R = HOO$$

ACCEPTED MANUSCRIPT

journal homepage: www.elsevier.com

Polycyclic Ethers and an Unexpected Dearomatisation Reaction during studies towards the Bioactive Alkaloid, Perophoramidine

Craig A. Johnston^a, Ross P. Wilkie^a, Helmut Krauss^a, Andrew R. Neal ^a, Alexandra M. Z. Slawin^a, Tomas Lebl^a, Nicholas J. Westwood^a,

^a School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, KY16 9ST, UK.

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords:
Natural product
Ring opening reaction
Cyclic ether
Dearomatisation

ABSTRACT

The bioactive alkaloid natural product perophoramidine and the related family of compounds known as the communesins have inspired the synthesis community for more than a decade. Many of the elegant approaches have required the synthesis of complex intermediates that have not always reacted in the expected manner. In this study we describe a series of cyclic ether-containing precursors that were prepared during our synthetic studies towards these natural products. Attempts to open the cyclic ether ring and trap the resulting stabilised carbocation with a carbon nucleophile ultimately led to the preparation of a diallyl-substituted all carbon quaternary centre. Subsequent attempts to differentiate between the two allyl groups resulted in a relatively clean transformation to an unexpected compound. Extensive structural characterisation, including small molecule X-ray crystallography, showed that a dearomatisation reaction had occurred.

2017 Elsevier Ltd. All rights reserved.

1. Introduction

Perophoramidine (1) and the family of alkaloids known as the communesins have provided a significant challenge to the synthesis community for more than a decade (Figure 1).1-5 Their complex polycyclic structures and the abundance of stereogenic centres, two of them being all carbon quaternary centres, have tested a range of synthetic methodologies to the full. We have a total synthesis of the dehaloperophoramidine (2) structure which involved, as a key carbon-carbon bond forming step, the Lewis-acid catalysed opening of epoxides of the general type $\bf 3$ and subsequent trapping with allyl-trimethylsilane to give $\bf 4$. This strategy was inspired by a series of observations on structurally related cyclic ethers. The synthesis and studies on the reactivity of these

Me
$$R = R^{1}$$
 $R = R^{1}$
 R

(+)-Dehaloperophoramidine

previously unreported ethers are described here.

Figure 1: Structures of Perophoramidine (1), the related Dehaloperophoramidine (2) and a key step in our previously reported synthesis of **2.** Reaction conditions: a) Allyl-TMS (2.5 eq.), TiCl₄ (4 eq.), CH_2Cl_2 , -78 °C see refs. 6 and 7 for more details.

Scheme 1: Synthesis and subsequent reaction of cyclic ether 6; Reagents and conditions: a) AlCl₃ (7 eq.), CH₂Cl₂, rt, 95%; b) AlCl₃ (7 eq.), CH₂Cl₂, rt then after work up AlCl₃ (7 eq.), PhMe, rt, 46% over 2 steps. The structures of 6 (left) and 7 (in box) were confirmed by X-ray crystallographic analysis.

2. Results and Discussion

Our interest in cyclic ethers in this context was first aroused when allylic alcohol 5 was treated with an excess of aluminium trichloride at room temperature in dichloromethane. In line with previous literature precedent using AlCl₃⁸ and work using

BF₃,Et₂O, both on unrelated structures, we observed highly diastereoselective formation of cyclic ether 6 in 95% yield (Schemes 1 and S1). Small molecule X-ray crystallographic analysis of 6 confirmed the structure as drawn. A limited screen of alternative Lewis acids (Table S1) suggested that the use of AlCl₃ was important for the formation of **6** from **5**. Interestingly, when toluene was used as a solvent in place of dichloromethane in the AlCl₃ reaction, a second product assigned as structure 7, resulted from ring opening of the cyclic ether ring. The ¹H NMR of 7 was noteworthy due to the presence of an apparent doublet (with a small coupling constant of J = 1.3 Hz) equating to 4 protons in the aromatic region. Combined with the presence of a new signal corresponding to an aromatic methyl group and other analytical data, it was concluded that a molecule of the solvent (toluene) had been incorporated into the product during this reaction. Small molecule X-ray crystallographic analysis of 7 confirmed the structure and the observed signal in the ¹H NMR spectrum of 7 was rationalised based on a small chemical shift difference between the aromatic protons in the toluene ring in 7 leading to a small coupling constant. Exposure of a crude sample of 6 prepared in dichloromethane to excess AlCl₃ in toluene gave exclusively 7 as a single diastereomer (Scheme S1).

Scheme 2: 5-membered cyclic ethers 12 were viewed as a central unit in a plan to form an all-carbon quaternary centre at position C11 in 11. a) Conversion of previously reported aldehyde 8 to ethers 9 and 10. Reaction conditions: a TBAF, *p*-TsCl, DMAP, CH₂Cl₂, rt, 82%; b (i) NaClO₂, NaH₂PO₄, 2-methylbut-2-ene, 'BuOH, H₂O, rt, 2h; (ii) TMSCHN₂, MeOH, rt, 1h, 54% over two steps. b) proposed route from 13 via cyclic ethers of general structure 12 to 11 inspired by the experimental observations shown in Schemes 1 and 2a

A second interesting observation came following our previously reported synthesis of the α-hydroxy aldehyde 8 (Scheme 2a). Reaction of 8 with TBAF in the presence of tosyl chloride and DMAP resulted in the formation of another 5-membered cyclic ether 9 (Scheme S2 for a more detailed discussion). In contrast to cyclic ether 6 (Scheme 1), ether 9 does not possess a hydrogen atom at the C11 position. The conversion of 8 to 9 was assumed to occur via tosylation of the initial formed primary alkoxide followed by nucleophilic substitution involving attack of the tertiary alcohol/alkoxide at the tosyl-substituted carbon. Subsequent oxidation of aldehyde 9 and esterification gave cyclic ether 10 in moderate yield over the two steps. Combining the two observations described in Schemes 1 and 2a led us to consider a new approach for establishing the C11 all carbon quaternary centre in compounds of general type 11 (Scheme 2b). This

strategy would involve the synthesis of relevant C11-substituted cyclic ethers of the general type 12 which could potentially undergo ring opening and trapping with a suitable carbon nucleophile. The conversion of the ketone 13 to 12 became the next challenge.

Rapid access to the C11-H cyclic ether **14** was achieved following reduction of **13** using sodium borohydride to give **15**. Reaction of **15** with tosyl chloride in pyridine (2 hours at room temperature

followed by heating at 60 °C), inspired by existing literature on unrelated structures, ¹⁰ gave 14. Cyclic ethers 16-18 were prepared in excellent yields and as single diastereomers by an analogous route using greater than two equivalents of the corresponding Grignard reagent to give alcohols 19-21. Cyclisation of 19-21 using tosyl chloride gave 16-18. Finally, increased quantities of cyclic ether 10 were prepared from 13 via

O-silylation to give **22**, diastereoselective conversion to the epoxide **23** followed by deprotection to give **24**. Reaction of epoxide **24** with *p*-toluenesulfonic acid¹¹ at room temperature gave the cyclic ether **25** in excellent yield. Dess-Martin oxidation¹² of **25** to **9** followed by Pinnick oxidation¹³ and esterification gave **10**.

Scheme 3: Formation of cyclic ethers 14, 16-18, 25, 9 and 10. Reaction conditions: a NaBH₄, MeOH, 0 °C to rt, 1h 95% for 15; b MeMgCl (2.2 eq.), THF, 0 °C to rt, 1h, 98% for 19; c EtMgCl (4 eq.), THF, 0 °C to rt, 1h, 96% for 20; d allyl MgCl (3.0 eq.), THF, 0 °C to rt, 1h, 92% for 21; e *p*-TsCl, pyridine, rt, 2hs then 60 °C for 5 hs., 70% for 14, 81% for 16, 84% for 17, 70% for 18; f TPDBS-Cl, imid., DCM, rt, 1 h; g; ClICH₂, MeLi:LiBr, THF, 6 h, -78 °C − rt, 71% (2 steps); h TBAF, THF rt, 2 hs, 98%; i *p*-TsOH, CH₂Cl₂, rt, 18hs, 94%; j Dess-Martin periodinane, ¹² CH₂Cl₂, rt, 1h, 90%; k (i) NaClO₂, NaH₂PO₄, 2-methylbut-2-ene, 'BuOH, H₂O, rt, 2h; (ii) TMSCHN₂, MeOH, rt, 1h, 54% (2 steps).

Having accessed a number of cyclic ethers of general structure 12 (Scheme 2b), attempts to open the ether ring with concomitant trapping of the resulting carbocation with a carbon nucleophile were carried out. Initially we returned to the AlCl₃-mediated opening in toluene. Encouragingly, cyclic ethers 14, 16 and 17 were converted under these conditions to 26, 27 and 28 respectively (Figure 2) in an analogous manner to the conversion of 6 to 7 (Scheme 1). Evidence to support the assigned relative stereochemistry of 26-28 came from NOESY experiments (Figures S1-S3). It was determined that greater than 3 eqs. of AlCl₃ were required for these reactions to proceed possibly due to competing coordination of the Lewis acid to other heteroatoms.

Figure 2: Structures of compounds obtained from ring opening of cyclic ethers followed by trapping with a carbon-based nucleophile. Reagents and conditions: AlCl $_1$ (7 eq.), PhMe, rt, 77% for 26 from 14; 83% for 27 from 16; 70% for 28 from 17. AlCl $_1$ (7 eq.), allyITMS (10 eq.), CH $_2$ Cl $_2$, rt, 1h. 87% for 29 from 16; 68% for 30 from 17; TiCl $_1$ (5 eq.), allyITMS (5 eq.), CH $_2$ Cl $_2$, -78 °C, 4.5hs. 87% for 31 from 18.

The reaction of cyclic ether 18 (Scheme 3) with AlCl₃ in toluene led to full consumption of the starting material but a complex mixture of products was formed and the expected product could not be isolated. Unfortunately, cyclic ethers 10 and, perhaps more surprisingly, 25 did not react at room temperature even after extended reaction times (up to 18 hours). Increasing the number of equivalents of AlCl₃ and/or heating the reaction using conventional or microwave methods had no effect. Use of a ptoluenesulfonic acid-mediated protocol, that had been successful for the conversion of 14 to 26, did not work in the case of 25 (Scheme S3) Use of the Hosomi-Sakuri protocol¹⁴ with AlCl₃ and allyltrimethylsilane as the nucleophile in dichloromethane enabled the synthesis of 29 and 30 from 16 and 17 respectively (Figures 2, S4 and S5). Again, the attempted reaction of 18 gave a complex mixture and, despite considerable efforts (Table S2), none of the desired products could be obtained when 10 and 25 were used under these conditions. However a change of Lewis acid from AlCl₃ to TiCl₄, inspired by a report from Heathcock, did enable the synthesis of 31 (Figure 2) from 18 in 87% yield. Having successfully established a robust route to an all carbon quaternary centre at C11 in 31, it became clear that to progress further towards the natural products it would be necessary to differentiate between the two allyl groups present at the C11 position. One possible approach to this was to attempt a selective iodoetherification reaction on 31 in the hope that a 7-membered cyclic ether ring (as in 32, Scheme 4) would form on reaction of the primary alcohol in 31 with the allyl group that was on the same face (as opposed to the other more distant C11-allyl group). The remainder of this report describes the unexpected outcome of the attempted iodoetherification reaction of 31.

Scheme 4: The attempted conversion of 31 to 32. Reagents and conditions: a NIS (1.2 eqs.), CH₂Cl₂, rt, 1h, 40% recovered starting material 31; 15% of 33 and 9% of 34. See Figure 3 and Scheme 5 for the structures of 33 and 34. The use of the A and the D-ring nomenclature is highlighted in the structure of the starting material 31.

Preliminary studies on the reaction of **31** with iodine or N-iodosuccinimde (NIS) in a range of solvents including acetonitrile and dichloromethane, with or without the addition of base (NaHCO₃ or NaHMDS), resulted in the partial reaction of

31 to give on all occasions what appeared to be a mixture of 3 major products along with some unreacted starting material 31. It proved possible to isolate 2 of the new products (33 and 34) in sufficient quantities for detailed analysis. ¹H NMR analysis of the first of these products indicated that only one allyl group was still present (Figure 3a, red section in structure). It was also clear that the C-10b CH₂-CH₂-O substituent present in **31** was retained, but that the signals corresponding to the CH2-O group had shifted from 2.85 and 3.11 ppm in 31 to 3.65 and 3.99 ppm (Figures 3a and S6). The significant downfield shift of these types of signals had been observed on several occasions during this work following cyclic ether formation. A new singlet at 4.27 ppm corresponding to a CH proton was also observed, with the proton being bonded to a carbon atom with a ¹³C NMR chemical shift of 88.0 ppm (data not shown). This peak was not present in the starting material 31 and would not be expected in 32. There was also (i) a CH₂I group (as observed by a characteristic ¹³C peak at 9.0 ppm), (ii) an additional CH₂ group and (iii) a CH (observed as a multiplet at around 2.4 ppm) bonded to a carbon atom with a ¹³C chemical shift of 45.7 ppm. Analysis of the COSY spectrum indicated that the CH multiplet at 2.4 ppm correlated with both the CH₂I and the other CH₂ group. This suggested that the atoms corresponding to these signals were connected in the sequence CH₂I-CH-CH₂ with this fragment most likely coming from the reaction of one of the allyl substituents with iodine. The CH proton did not correlate with any other signal (Figure 3 blue section in structure). The aromatic region of the ¹H NMR spectrum contained only 10 protons with 8 CH environments observed in the HSQC spectrum. This was lower than the 13 aromatic protons present in the starting material 31 and the expected product 32, suggesting that some change to the molecule had taken place in one or more of the aromatic rings.

Figure 3: The attempted conversion of **31** to **32**. Reagents and conditions: **a** NIS (1.2 eqs.), CH₂Cl₂, rt, 1h, 40% recovered starting material **31**; 15% of **33** and 9% of **34**. See above and Figure 4 for the structures of **33** and **34**.

Analysis of the ¹³C NMR spectrum indicated that there were 30 carbon atoms present in the product, suggesting that no carbon atoms were lost or gained in the reaction. DEPTQ analysis identified a CH signal with a chemical shift of 146.5 ppm, which was much higher than any CH carbon observed in related compounds. It was thought that this signal may have originated from the A ring of 31. It was also noted that the signals

corresponding to the three other aromatic protons in the A ring of 31 were not observed (Scheme 4), suggesting that reaction had taken place on this ring. There also appeared to be 7 CH₂ carbon environments present and 10 quaternary carbon environments. This was 2 more quaternary carbons than in 31 or would be expected in 32. With this information in mind, the HMBC spectrum of the product was analysed to try to determine the atom connectivity. The CH singlet at 4.27 ppm correlated with seven other carbon atoms (Figure 3) including a CH₂O (67.2 ppm), CH (45.7 ppm) and a CH (146.5 ppm). These correlations suggested that this CH group was within 2-3 bonds of the C-10b substituent, the signals corresponding to the reacted allyl and the A ring. The close bonding proximity of all of these groups, and the large number of HMBC correlations observed for this CH singlet suggested that a multi-ring system may have been formed. Surprisingly, it seemed likely that the A ring was no longer aromatic and now contained four quaternary carbons. High resolution mass spectrometric analysis of the product found a m/z of 812.9329, which was much higher than that of the starting material 31 (435.2430 [M+H]⁺) and the expected product 32 (561.1403, expected [M+H]⁺). This mass corresponded to a molecular formula of C₃₀H₂₈O₁N₂I₃ which suggested the addition of 3 iodine atoms and the loss of three hydrogen atoms had occurred relative to 31. This data, as well as that obtained from the NMR analysis, led to the proposal that this product was 33 (Figure 3, Scheme 5 and Tables S3 and S4 for full assignments of ¹H and ¹³C NMR). This proposed structure of **33** was found to be consistent with all of the characterisation data obtained including the key HMBC correlations.

Scheme 5: Optimised formation of 33 from 31. Reagents and conditions: a NIS (3.6 eq), CH₂Cl₂, rt, 6 h, 65%. One possible mechanism for the reaction is shown. The structure of 33 was confirmed by X-ray crystallographic analysis.

50% elipsoid probability

The unusual structure proposed for 33 contained three contiguous all carbon quaternary carbon centres, as well as two additional stereocentres. It was thought that at least 3 equivalents of NIS were required to produce 33 and so the reaction of 31 was repeated with 3.6 equivalents of NIS resulting in the production

of 33 as a single product in reasonably high yield (65%). Upon recrystallisation of 33 from ethyl acetate and methanol, a crystal was obtained that was suitable for X-ray crystallographic analysis. The analysis found a pair of enantiomers present in the unit cell in line with the fact that the starting material 31 was racemic. This analysis confirmed that the connectivity in the structure of 33 was as assigned by NMR and mass spectrometric analysis and enabled the relative stereochemistry of 33 to be assigned (Scheme 5). One possible mechanism for the formation of 33 could involve reversible reaction of 31 with NIS to form a series of iodonium ions, one of which (35 in Scheme 5) could undergo nucleophilic attack from the aromatic A ring to give 36. This would lead to formation of a new ring by linking one of the two allyl substituents and the C-10a position. The alcohol substituent could then add to the extended iminium system in 36 to form the cyclic ether ring. Subsequent iodination of the diene unit by the remaining NIS could form 33. Evidence to support this mechanism came from the observation that the second product from the original studies was assigned the structure 34 based on comparison of the NMR analysis with that of 33. The three signals corresponding to the diene protons in 34 were all found in the 5.6 – 6.4 ppm region of the ¹H NMR spectrum (Figure S7), as expected. Treatment of a crude sample of 34 with NIS led to formation of 33 (Figure S8).

3. Conclusions

In conclusion, we have described the synthesis of a series of cyclic ether containing compounds that are structurally related to the bioactive alkaloid natural product perophoramidine (1). Attempts to open the ether rings and trap the resulting carbocations with carbon nucleophiles proved successful in several cases leading us to the C11-diallylated compound 31. In order to progress further towards the target molecules 1 and 2, an attempt was made to differentiate between the two allyl substitutents using an intramolecular iodoetherification protocol. Unexpectedly, this led to a major structural change involving an unusual dearomatisation reaction. The hexacyclic core structure that results contains 3 contiguous all carbon quaternary centres and five stereogenic centres in total. To the best of our knowledge, the closest literature precedent (Scheme S4) proceeds via radical intermediates rather than likely carbocation intermediates involved in the chemistry described here. 16 We remain surprised by the complexity of the compounds formed during, what appeared on paper at least, to be a reasonable synthetic plan.

4. Experimental

4.1. General methods

All chemicals and solvents were purchased from Sigma Aldrich (UK) or Alfa-Aesar and used without further purification. All reactions were carried out under a positive pressure of nitrogen or argon in flame or oven-dried glassware. Thin layer chromatography (TLC) analysis was performed on silica precoated SIL G-25 UV₂₅₄ sheets (layer: 0.25 mm silica gel with fluorescent indicator UV₂₅₄, Alugram, UK). Compounds were visualised by UV light (UV lamp, model UVGL-58, Mineralight LAMP, Multiband UV-254/365 nm) and stained with potassium permanganate. Flash column chromatography was carried out on silica gel (40-63 μm, Fluorochem, UK). Melting points were measured with an Electrothermal 9100 capillary melting point apparatus and are uncorrected. Fourier Transform infra-red spectra (FT-IR) were acquired on a Perkin Elmer paragon 1000 FT spectrometer. Absorption maxima are reported in

wavenumbers (cm⁻¹). Unless otherwise stated, H and H and T NMR spectra were measured at room temperature (298 K) on a Bruker DPX 400 (1 H = 400 MHz, 13 C = 100 MHz); Bruker Avance 300 (1 H = 300 MHz, 13 C = 75 MHz) and a Bruker Avance 500 (1 H = 500.1 MHz, 13 C = 125 MHz). Deuterated solvents were used and ¹H NMR chemical shifts were internally referenced to CHCl₃ (7.26 ppm) in chloroform-d₁ solution. Chemical shifts are expressed as δ in unit of ppm and coupling constants are recorded in Hz. Data processing was carried out using TOPSPIN 2 NMR version (Bruker UK, Ltd) or MestreNova 9.0 program (Bruker UK Ltd). In ¹H NMR assignment the multiplicity used is indicated by the following abbreviations: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, brs = broad singlet. Signals of protons and carbons were assigned, as far as possible, by using the following twodimensional NMR spectroscopy techniques: [1H-1H] COSY, [1H-13C] HSQC (Heteronuclear Single Quantum Coherence) and long range [1H-13C] HMBC (Heteronuclear Multiple Bond Connectivity). Mass spectrometry analysis (electrospray mode, ES; chemical ionization mode, CI) were performed by Ms Caroline Hosburgh and were recorded on a high performance orthogonal acceleration reflecting TOF mass spectrometer operating in positive and negative mode, coupled to a Waters 2975 HPLC.

4.2. General Procedures

4.2.1. Aluminum trichloride-mediated opening of cyclic ether compounds in touene

To a solution of the cyclic ether compound (1 eq.) in toluene (1 vol) was added AlCl₃ (7 eq.). The mixture was stirred at rt for 1h before 1M NaOH (1 vol) was added and the mixture extracted with ethyl acetate (3 x 1 vol). The organic extracts were dried (MgSO₄), filtered and concentrated before purification by column chromatography (EtOAc/hexanes) to give the desired product.

4.2.2. Aluminum trichloride-mediated opening of cyclic ether compounds in the presence of allyltrimethyl silane.

To a solution of the cyclic ether compound (1eq.) in DCM (1 vol) was added allyltrimethylsilane (10 eq.) followed by AlCl₃ (7 eq.). The mixture was stirred at rt for 1h before 1M NaOH (10 vol) was added and the mixture extracted with DCM (3 x 10 vol). The combined organic extracts were dried (MgSO₄), filtered and concentrated before the crude product was purified by column chromatography (EtOAc/hexanes) to give the alcohol product.

4.3. Compounds synthesised

4.3.1. (\pm) -(2R,10bS,11S)-5-benzyl-2'-methyl-1',2',10b,11-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline ($\mathbf{6}$)

To a stirred solution of $\mathbf{5}^7$ (0.05 g, 0.137 mmol) in CH₂Cl₂ (10 mL) was added AlCl₃ (0.131 g, 0.985 mmol). The suspension was stirred at rt for 18h before sat. aq. NaHCO₃ (10 mL) was added to quench the reaction. The aqueous layer was separated and extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic extracts were washed with water (20 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by column chromatography on silica gel (20% EtOAc/hexane) afforded $\mathbf{6}$ (0.048 g, 0.133 mmol, 95%). Crystals suitable for X-ray analysis were obtained. I.R. (ATR) ν_{max} : 1555, 1456, 1045, 999, 802 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.66 (1H, ddd, J=7.5, 1.5, 1.0 Hz), 7.50 – 7.44 (2H, m), 7.38 – 7.30 (5H, m), 7.30 – 7.24 (1H, m), 7.24 – 7.17

(1H, m), 7.15 \triangleright 7.07 (2H, m), 6.96 (1H, dd, J=8.0, 1.0 Hz), 5.96 (1H, d, J=16.5 Hz), 5.27 (1H, s), 5.10 (1H, d, J=16.5 Hz), 4.74 (1H, qd, J=9.5, 6.0 Hz), 2.31 - 2.23 (1H, m), 2.12 (1H, dd, J=12.0, 6.5, 0.5 Hz), 1.19 (3H, d, J=6.0 Hz); 13 C NMR (75 MHz, CDCl₃) δ 171.7, 154.4, 139.7, 138.1, 137.0, 129.7, 129.1, 129.0, 128.7, 127.4, 126.5, 126.0, 122.9, 122.7, 121.6, 118.0, 115.0, 79.2, 75.1, 58.3, 49.3, 44.3, 22.9; LRMS (ESI) m/z 367 ([M+H] $^+$, 100), 389 ([M+Na] $^+$, 60); HRMS (ESI) m/z [M+H] $^+$ calcd. for $C_{25}H_{23}N_2O^+$ 367.1805, found 367.1794.

4.3.2. (±)-1-((10bS,11R)-5-benzyl-11-(p-tolyl)-5,11-dihydro-10bH-indolo[2,3-b]quinolin-10b-yl)propan-2-ol (7)

To a stirred solution of 5 (0.05 g, 0.137 mmol) in PhMe (10 mL) was added AlCl₃ (0.131 g, 0.985 mmol). The suspension was stirred at rt for 18h before sat. aq. NaHCO₃ (10 mL) was added to quench the reaction. The aqueous layer was separated and extracted with EtOAc (2 x 10 mL) and the combined organic extracts were washed with water (20 mL), dried (MgSO₄) and concentrated in vacuo. Purification by column chromatography on silica gel (EtOAc/hexane) afforded 7 (0.029 g, 0.063 mmol, 45%). Crystals suitable for X-ray analysis were obtained. I.R. (ATR) v_{max} : 3250, 1558, 1541, 1456, 1215, 1140 cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.49 - 7.42 (2H, m), 7.38 (2H, dd, J=8.0,$ 7.0 Hz), 7.36 – 7.26 (2H, m), 7.24 – 7.13 (3H, m), 7.13 (1H, ddd, J=7.5, 1.0 Hz), 7.08 (1H, d, J=8.0 Hz), 7.02 – 6.89 (2H, m), 6.79 (4H, d, J=1.5 Hz), 5.98 (1H, d, J=16.0 Hz), 5.06 (1H, d, J=16.5 Hz), 4.60 (1H, s), 3.71 – 3.62 (1H, m), 2.29 – 2.10 (2H, m), 2.11 (3H, d, *J*=1.0 Hz), 0.99 (3H, dd, *J*=6.5, 1.0 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 155.5, 140.0, 137.3, 136.4, 136.4, 136.3, 130.8, 128.9, 128.6, 128.3, 127.9, 127.6, 127.0, 126.4, 123.5, 123.5, 122.2, 118.1, 115.4, 65.5, 57.0, 50.9, 49.7, 45.9, 24.2, 21.0; LRMS (ESI) m/z 459 ([M+H]⁺, 100), 481 ([M+Na]⁺, 100); HRMS (ESI) m/z [M+H]⁺ calcd. for $C_{32}H_{31}N_2O^+$ 459.2431, found 459.2417.

6 (0.016 g, 0.044 mmol, 31%) was also isolated from this reaction. An alternative protocol for the preparation of 7 was also used: To a stirred solution of 5 (0.04 g, 0.109 mmol) in CH₂Cl₂ (2 mL) was added AlCl₃ (0.102 g, 0.765 mmol). The suspension was stirred at rt for 18h before sat. aq. NaHCO3 (5 mL) was added to quench the reaction. The aqueous layer was separated and extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic extracts were washed with water (10 mL), dried (MgSO₄) and concentrated in vacuo to afford 6 which was used without further purification. To a stirred solution of 6 (0.109 mmol) in PhMe (3 mL) was added AlCl₃ (0.106 g, 0.797 mmol). The suspension was stirred at rt for 18h before sat. aq. NaHCO3 (5 mL) was added to quench the reaction. The aqueous layer was separated and extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic extracts were washed with water (10 mL), dried (MgSO₄) and concentrated in vacuo. Purification by column chromatography on silica gel (EtOAc/hexane) afforded 7 (0.023 g, 0.05 mmol, 46%, 2 steps).

4.3.3. (±)-(3aR,13bR)-9-Benzyl-2,3,9,13b-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline-13b-carbaldehyde (9)

To a solution of 8^7 (45 mg, 0.071 mmol) in DCM (1 mL) was added p-toluenesulfonyl chloride (20 mg, 0.106 mmol), 4-dimethylaminopyridine (15 mg, 0.120 mmol) and tetra-n-butylammonium fluoride (2M in THF, 70 μ L, 0.141 mmol). The mixture was stirred at room temperature for 2h before NH₄Cl (aq.) (3 mL) was added and the mixture extracted with DCM (3 x 3 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product. Purification

by column chromatography (10–20 % EtOAc/hexanes) gave **9** as M an orange-brown solid (22 mg, 82%).

m.p. 82-85 °C; I.R. (KBr) vmax: 2921, 1732, 1558, 1453, 1206, 754, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.43 (s, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.30 – 7.12 (m, 9H), 6.98 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 5.66 (d, J = 16.5 Hz, 1H), 5.17 (d, J = 16.5 Hz, 1H), 4.41 (q, J = 8.5 Hz, 1H), 4.08 – 4.01 (m, 1H), 2.67 (dt, J = 12.0, 9.5 Hz, 1H), 2.13 – 2.05 (dt, J = 12.0, 9.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 196.0, 170.1, 154.3, 139.7, 136.3, 135.9, 130.4, 129.2, 128.9, 128.2, 127.4, 126.4, 123.3, 123.1, 122.0, 121.6, 118.5, 115.6, 89.6, 66.0, 57.7, 49.1, 37.5; HR MS [ES+]: m/z calcd. for $C_{25}H_{21}N_2O_2$ 381.1603, found 381.1596 [M+H]⁺.

Compound **9** was also prepared as follows: To a solution of **25** (50 mg, 0.131 mmol) in DCM (1.5 mL) was added Dess-Martin periodinane (67 mg, 0.158 mmol) and the mixture stirred at rt for 1h. Na₂S₂O₃ (aq.) (2 mL) and NaHCO₃ (aq.) (2 mL) were added and the mixture was stirred for a further 30 minutes before being extracted with DCM (3 x 5 mL). The combined organic extracts were dried (MgSO₄) filtered and concentrated before purification by column chromatography (EtOAc/hexanes) to give **9** as an orange-brown solid (45 mg, 90%). All characterisation data were as reported above.

4.3.4. (\pm)-rac-(3aS,13bS-Methyl 9-benzyl-2,3,9,13b-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline-13b-carboxylate (**10**)

To a solution of **9** (40 mg, 0.105 mmol) in ¹BuOH: H₂O (1:1, 2 mL) was added 2-methylbut-2-ene (0.11 mL, 0.210 mmol), NaH₂PO₄ (213 mg, 1.367 mmol) and sodium chlorite (124 mg, 1.367 mmol). The mixture was stirred at rt for 2h before water (5 mL) was added and the mixture extracted with EtOAc (4 x 5 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuo to give the crude acid product. The crude was redissolved in anhydrous methanol (2 mL) and (trimethyl-silyl)diazomethane (2M in diethyl ether, 105 µL, 0.210 mmol) was added. The solution was stirred for 1h at rt before acetic acid was added (50 μ L) and the mixture stirred for a further 0.5h. NaHCO₃ (aq.) (5 mL) was added and the mixture extracted with DCM (4 x 5 mL) before the combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuo to give the crude ester. Purification by column chromatography (10-20% Ethyl acetate/hexanes) gave 10 as a pale orange solid (23 mg, 54%).

m.p. 69-71 °C; I.R. (KBr) v_{max} : 2950, 1764, 1722, 1557, 1491, 1468, 1451, 1204, 1101, 757 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.59 (dd, J=7.5, 1.5 Hz, 1H), 7.41 – 7.19 (m, 9H), 7.08 – 7.00 (m, 2H), 6.97 (d, J=8.0 Hz, 1H), 5.64 (d, J=16.5 Hz, 1H), 5.42 (d, J=16.5 Hz, 1H), 4.43 (q, J=8.5 Hz, 1H), 4.02 (ddd, J=10.0, 8.5, 3.0 Hz, 1H), 3.33 (s, 3H), 2.69 (dt, J=12.5, 10.0 Hz, 1H), 2.15 (ddd, J=12.0, 8.0, 3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 168.5, 153.7, 138.9, 137.0, 136.3, 130.2, 129.0, 128.8, 127.4, 127.4, 126.6, 123.3, 123.2, 123.0, 121.4, 117.9, 115.6, 86.6, 65.5, 58.0, 52.4, 49.0, 37.0; HRMS [ES+]: m/z calcd. for $C_{26}H_{23}N_2O_3$ 411.1703, found 411.1704 [M+H]⁺.

4.3.5. (±)-(10bR,11R)-5-Benzyl-10b-(2-hydroxyethyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-11-ol (15)

To a solution of 13^7 (1.00 g, 2.71 mmol) in MeOH (30 mL) at 0 °C was added NaBH₄ (0.21 g, 5.42 mmol). The mixture was stirred at 0 °C for 5 minutes before removing the ice-bath and allowing the mixture to stir at rt for a further 1h. NH₄Cl (aq.) (30 ml) was added and the organic solvent was removed under reduced pressure before the mixture extracted with DCM (3 x 30 ml). The combined organic extracts were dried (MgSO₄), filtered

and concentrated to give the crude product. The crude product was purified by column chromatography (EtOAc/hexanes) to give **15** as a white solid (0.98 g, 97%). m.p. 180-181 °C; I.R. (KBr) v_{max} : 3320, 2143, 1555, 1469, 1452, 1206, 1059, 761, 702 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.57 (m, 2H), 7.39 – 7.16 (m, 8H), 7.13 – 7.04 (m, 2H), 6.90 (d, J = 8.0 Hz, 1H), 5.75 (d, J = 16.5 Hz, 1H), 4.97 (d, J = 16.5 Hz, 1H), 4.89 (s, 1H), 3.70 (t, J = 9.5 Hz, 1H), 3.54 (t, J = 10.0 Hz, 1H), 2.39 (s, 1H), 2.34 – 2.26 (m, 1H), 1.75 – 1.46 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.7, 155.6, 138.9, 136.7, 128.8, 128.8, 128.5, 127.5, 127.3, 126.3, 125.5, 124.2, 123.4, 122.4, 117.8, 114.8, 70.9, 58.9, 56.0, 49.7, 32.8. HRMS [ES-]: m/z calcd. for $C_{24}H_{21}N_2O_2$ 369.1603, found 369.1603 [M-H].

4.3.6. (±)-(3aR,13bR)-9-Benzyl-2,3,9,13b-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline (14)

To a solution of 15 (100 mg, 0.270 mmol) in pyridine (5 mL) was added p-toluenesulfonyl chloride (57 mg, 0.297 mmol) and the solution stirred at rt for 2h. The mixture was then heated to 60 °C for a further 5h before cooling to rt and adding 1M HCl (75 mL). The mixture was extracted with DCM (3 x 30 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product. Purification by column chromatography (EtOAc/hexanes) gave 14 as a pale yellow solid (67 mg, 70%). m.p. 122- 124 °C; I.R. (KBr) ν_{max} : 2921, 1737, 1555, 1464, 1199, 754 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.5, 1.0 Hz, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.34 (d, J = 7.7.5 Hz, 1H), 7.30 - 7.16 (m, 6H), 7.13 (t, J = 7.5 Hz, 1H), 7.05 -6.98 (m, 2H), 6.86 (d, J = 8.5 Hz, 1H), 5.85 (d, J = 16.5 Hz, 1H), 5.26 (s, 1H), 4.97 (d, J = 16.5 Hz, 1H), 4.22 (q, J = 8.5 Hz, 1H), 3.91 (td, J = 10.0, 9.0, 3.0 Hz, 1H), 2.57 - 2.45 (m, 1H), 2.00(ddd, J = 11.5, 7.5, 3.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 154.2, 140.1, 139.0, 136.9, 129.2, 128.9, 128.5, 128.3, 127.3, 126.4, 123.9, 123.1, 122.7, 121.4, 117.9, 115.1, 79.9, 65.2, 56.5, 49.2, 36.7; HRMS [APCI+]: m/z calcd. for $C_{24}H_{21}N_2O$ 353.1648, found 353.1644 [M+H] $^{+}$.

4.3.7. (±)-(10bR,11R)-5-Benzyl-10b-(2-hydroxyethyl)-11-methyl-10b,11-dihydro-5H-indolo[2,3b]quinolin-11-ol (19)

To a solution of 13^7 (360 mg, 0.977 mmol) in THF (12 mL) at 0 °C was added methylmagnesium bromide (3M in THF, 0.72 mL, 2.150 mmol). The mixture was stirred for 10 minutes before the ice-bath was removed and stirring continued for a further 1h at rt. NH₄Cl (aq.) (10 ml) was added and the organic solvent was removed under reduced pressure before the mixture was extracted with DCM (3 x 10 ml). The combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product. The crude product was purified by column chromatography (EtOAc/hexanes) to give 19 as a yellow solid (367 mg, 98%). m.p. 114-117 °C; I.R. (KBr) v_{max}: 2921, 2852, 1552, 1467, 1452, 1204, 754, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 7.5, 1.5 Hz, 1H), 7.52 (dt, J = 6.5, 0.5 Hz, 1H), 7.38 - 7.21 (m, 7H), 7.16 (ddd, J = 8.0, 7.5, 1.5 Hz, 1H), 7.10 - 7.02 (m, 2H), 6.89 (dd, J = 8.0, 1.0 Hz, 1H), 5.70 (d, J =16.5 Hz, 1H), 5.01 (d, J = 16.5 Hz, 1H), 3.68 (ddd, J = 11.5, 9.5, 3.5 Hz, 1H), 3.53 (dt, J = 11.5, 4.5 Hz, 1H), 2.39 (ddd, J = 14.5, 9.5, 4.5 Hz, 1H), 1.71 (ddd, J = 14.5, 5.0, 3.5 Hz, 1H), 1.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 155.9, 138.3, 137.0, 135.6, 132.6, 128.8, 128.7, 128.4, 127.3, 126.6, 124.7, 123.8, 123.6, 122.4, 117.8, 114.8, 74.3, 60.1, 59.2, 49.1, 35.2, 25.7; HRMS [ES+]: m/z calcd. for $C_{25}H_{24}N_2O_2Na$ 407.1735, found 407.1743 [M+Na]⁺.

To a solution of **13**⁷ (160 mg, 0.434 mmol) in THF (16 mL) at 0 °C was added ethylmagnesium bromide (3M in THF, 0.58 mL, 1.74 mmol). The mixture was stirred for 10 minutes before the ice-bath was removed and stirring continued for a further 1h at rt. NH₄Cl (aq.) (15 ml) was added and the organic solvent was removed under reduced pressure before the mixture was extracted with DCM (3 x 15 ml). The combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product. The crude product was purified by column chromatography (EtOAc/hexanes) to give 20 as a white solid (166 mg, 96%). m.p. 115-117 °C; I.R. (KBr) v_{max} : 3232, 3054, 2921, 1555, 1469, 1452, 1209, 751 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (dd, J = 7.5, 1.0 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.37 - 7.17 (m, 8H), 7.13 - 7.03 (m, 2H), 6.95 (d, J = 7.5 Hz, 1H), 5.73 (d, J = 16.5 Hz, 1H), 5.07 (d, J = 15.5 Hz, 1H), 4.57 (s, 1H), 3.68 - 3.58 (m, 1H), 3.51 - 3.44 (m, 1H), 2.40 (ddd, J =14.5, 9.0, 4.0 Hz, 1H), 1.77 - 1.69 (m, 1H), 1.50 (dq, J = 14.5, 7.5 Hz, 1H), 1.42 (dq, J = 12.0, 6.0, 5.0 Hz, 1H), 0.58 (t, J = 7.5Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.0, 154.8, 138.1, $136.5,\ 134.7,\ 130.0,\ 128.8,\ 128.5,\ 127.5,\ 126.8,\ 126.7,\ 124.0,$ 123.4, 122.9, 117.4, 115.4, 76.3, 60.6, 58.8, 49.7, 35.3, 28.6, 7.6; HRMS [ES+]: m/z calcd. for $C_{26}H_{26}N_2O_2Na$ 421.1892, found 421.1892 [M+H]⁺.

4.3.9. (±)-(10bR,11R)-11-Allyl-5-benzyl-10b-(2-hydroxy-ethyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-11-ol (21)

To a solution of $\mathbf{13}^7$ (2.65 g, 7.20 mmol) in THF (100 mL) at 0 °C was added allylmagnesium bromide (2M in THF, 10.8 mL, 21.61 mmol). The mixture was stirred for 10 minutes before the ice-bath was removed and stirring continued for a further 1h at rt. NH₄Cl (aq.) (100 ml) was added and the organic solvent was removed under reduced pressure before the mixture was extracted with DCM (3 x 100 ml). The combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product. The crude product was purified by column chromatography (EtOAc/hexanes) to give 21 as a pale yellow solid (2.72 g, 92%). m.p. 88-91 °C; I.R. (KBr) v_{max}: 3069, 2926, 2852, 1553, 1467, 1452, 1214, 1108, 737, 700, 503 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dt, J = 7.5, 1.0 Hz, 1H), 7.46 (dd, J = 7.5, 1.5 Hz, 1H), 7.40 - 7.25 (m, 7H), 7.20 (ddd, J = 8.0,7.5, 1.5 Hz, 1H), 7.08 (tdd, J = 7.5, 2.5, 1.5 Hz, 2H), 6.94 (dd, J= 8.0, 1.0 Hz, 1H), 5.69 (d, J = 16.5 Hz, 1H), 5.45 (dddd, J = 16.5 Hz) 16.5, 10.0, 8.0, 6.5 Hz, 1H), 5.07 (d, J = 16.5 Hz, 1H), 4.98 (ddt, J = 10.0, 2.0, 1.0 Hz, 1H, 4.85 - 4.78 (m, 1H), 4.39 (s, 1H), 3.60(d, J = 10.0 Hz, 1H), 3.47 (d, J = 7.0 Hz, 1H), 2.51 - 2.38 (m,1H), 2.31 - 2.17 (m, 2H), 1.79 (ddd, J = 14.5, 5.5, 4.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 155.8, 138.4, 136.8, 135.4, 132.6, 129.9, 128.8, 128.5, 127.4, 126.7, 126.4, 124.0, 123.0, 122.6, 119.5, 117.8, 115.0, 75.6, 60.0, 59.0, 49.2, 41.0, 35.2; HRMS [APCI+]: m/z calcd. for $C_{27}H_{26}N_2O_2$ 410.1989, found 410.1983 [M]⁺.

4.3.10. (\pm) -(3aR,13bR)-9-Benzyl-13b-methyl-2,3,9,13b-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline (16)

To a solution of **19** (367 mg, 0.955 mmol) in pyridine (10 mL) was added p-toluenesulfonyl chloride (113 mg, 1.145 mmol) and the solution stirred at rt for 2h. The mixture was then heated to 60 °C for a further 5h before cooling to room temperature and adding 1M HCl (150 mL). The mixture was extracted with DCM (3 x 60 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product.

Purification by column chromatography (EtOAc/hexanes) gave **16** as a pale yellow solid (282 mg, 81%). m.p 158- 160 °C; I.R. (KBr) v_{max} : 2921, 1552, 1469, 1449, 1204, 1120, 751 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 7.5, 1.5 Hz, 1H), 7.31 – 7.15 (m, 9H), 7.10 – 7.05 (m, 1H), 7.01 – 6.95 (m, 2H), 6.80 (dd, J = 8.0, 1.0 Hz, 1H), 5.74 (d, J = 16.5 Hz, 1H), 5.01 (d, J = 16.5 Hz, 1H), 4.20 (q, J = 8.5 Hz, 1H), 3.81 (ddd, J = 10.0, 8.5, 3.5 Hz, 1H), 2.61 (ddd, J = 12.5, 10.0, 8.0 Hz, 1H), 2.07 (ddd, J = 12.0, 8.0, 3.5 Hz, 1H), 1.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 154.7, 138.2, 138.1, 136.9, 129.3, 128.8, 128.4, 127.3, 126.7, 126.4, 123.3, 122.7, 122.3, 117.9, 114.9, 84.9, 64.6, 60.1, 49.0, 37.2, 22.7; HRMS [ES+]: m/z calcd. for $C_{25}H_{23}N_2O$ 367.1810, found 367.1803 [M+H]⁺.

4.3.11. (±)-(3aR,13bR)-9-Benzyl-13b-ethyl-2,3,9,13b-tetrahydro-furo[3,2-c]indolo[2,3-b]quinoline (17)

To a solution of 20 (50 mg, 0.125 mmol) in pyridine (2 mL) was added p-toluenesulfonyl chloride (26 mg, 0.138 mmol) and the solution stirred at rt for 2h. The mixture was then heated to 60 °C for a further 5 hours before cooling to rt and adding 1M HCl (30 mL). The mixture was extracted with DCM (3 x 15 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product. Purification by column chromatography (EtOAc/hexanes) gave 17 as a white solid (40 mg, 84%). m.p. 177-180 °C; I.R. (KBr) v_{max} : 2921, 1552, 1467, 1452, 1204, 1098, 1024, 798, 759 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 7.5, 1.5 Hz, 1H), 7.33 – 7.15 (m, 8H), 7.11 (ddd, J = 8.0, 7.5, 1.5 Hz, 1H), 7.03 – 6.96 (m, 2H), 6.84 (dd, J = 8.0, 1.0 Hz, 1H), 5.78 (d, J = 16.5 Hz, 1H), 4.94 (d, J = 16.5 Hz, 1H)16.5 Hz, 1H), 4.17 (q, J = 8.5 Hz, 1H), 3.79 (ddd, J = 10.0, 8.5, 3.5 Hz, 1H), 2.59 (ddd, J = 12.5, 10.0, 8.5 Hz, 1H), 2.03 (ddd, J= 12.5, 8.0, 3.5 Hz, 1H, 1.84 - 1.66 (m, 2H), 0.38 (t, J = 7.6 Hz,3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 154.6, 139.5, 137.8, 137.0, 128.9, 128.8, 128.3, 127.4, 127.3, 127.3, 126.5, 123.1, 122.6, 122.4, 118.1, 114.7, 87.6, 64.4, 59.2, 49.2, 38.3, 30.1, 7.9; HRMS [ES+]: m/z calcd. for $C_{26}H_{25}N_2O$ 381.1967, found 381.1967 [M+H]⁺.

4.3.12. (±)-(3aR,13bR)-13b-Allyl-9-benzyl-2,3,9,13b-tetrahydrofuro[3,2-c]indolo[2,3-b]quinoline (18)

To a solution of 21 (1.00 g, 2.436 mmol) in pyridine (25 mL) was added p-toluenesulfonyl chloride (0.56 g, 2.923 mmol) and the solution stirred at rt for 2h. The mixture was then heated to 60 °C for a further 5h before cooling to rt and adding 1M HCl (320 mL). The mixture was extracted with DCM (4 x 150 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product. Purification by column chromatography (EtOAc/hexanes) gave 18 as a yellow solid (0.67 g, 70%). m.p. 48-51 °C; I.R. (KBr) v_{max} : 2926, 1555, 1467, 1452, 1327, 1295, 1204, 919, 751, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 7.5, 1.5 Hz, 1H), 7.34 – 7.14 (m, 8H), 7.09 (ddd, J = 8.0, 7.5, 1.5 Hz, 1H), 6.99 (tdd, J = 7.5, 4.0, 1.0 Hz, 2H), 6.81 (dd, J = 8.0, 1.0 Hz, 1H), 5.68 (d, J = 16.5 Hz, 1H), 5.18 - 5.03 (m, 1H), 4.97 (d, J = 16.5 Hz, 1H), 4.64 (ddt, J =10.0, 2.0, 1.0 Hz, 1H), 4.37 (dq, J = 17.0, 1.5 Hz, 1H), 4.18 (q, J= 8.5 Hz, 1H), 3.80 (ddd, J = 10.0, 8.5, 3.5 Hz, 1H), 2.64 - 2.51(m, 1H), 2.51 - 2.39 (m, 2H), 2.03 (ddd, J = 12.5, 8.0, 3.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 154.8, 139.3, 137.7, 136.9, 130.9, 129.0, 128.8, 128.4, 127.4, 127.3, 127.1, 126.6, 123.1, 122.6, 122.3, 119.4, 118.1, 114.7, 86.1, 64.4, 59.2, 49.2, 41.7, 38.0. HRMS [ES+]: m/z calcd. for $C_{27}H_{25}N_2O$ 393.1961, found 393.1959 [M+H]⁺.

To a solution of 23 (500 mg, 0.805 mmol) in THF (25 mL) was added TBAF (1 M in THF, 1.6 mL, 1.611 mmol) and the mixture stirred at rt for 2h. NH₄Cl (aq.) (25 mL) was added and the organic solvent was removed under reduced pressure before the mixture was extracted with DCM (3 x 20 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated to give the crude product which was purified by column chromatography (EtOAc/hexanes) to give 24 as a yellow-orange solid (302 mg, 98%). m.p. 86-88 °C; I.R. (KBr) v_{max}: 2921, 1671, 1607, 1555, 1489, 1452, 1403, 1204, 1027, 909, 754, 729, 697 cm $^{-1}$; 1 H NMR (400 MHz, CDCl $_{3}$) δ 7.32 – 7.11 (m, 10H), 7.00 – 6.94 (m, 2H), 6.87 (dd, J = 8.0, 1.0 Hz, 1H), 5.76 (d, J = 16.5 Hz, 1H), 4.94 (d, J = 16.5 Hz, 1H), 3.44 - 3.27 (m, 2H), 3.05 (d, J =5.5 Hz, 1H), 2.52 (d, J = 5.5 Hz, 1H), 2.36 (dt, J = 13.5, 6.5 Hz, 1H), 2.10 (dt, J = 14.0, 6.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 155.1, 140.9, 136.6, 133.8, 129.5, 129.2, 128.9, 127.4, 126.4, 123.7, 123.5, 123.0, 122.9, 118.3, 115.2, 60.2, 59.1, 54.1, 53.6, 49.7, 36.6; HRMS [ES+]: m/z calcd. for C₂₅H₂₃N₂O₂ 383.1760, found 383.1745 [M+H]⁺.

4.3.14. (±)-((3aR,13bR)-9-Benzyl-2,3,9,13b-tetrahydrofuro-[3,2-c]indolo[2,3-b]quinolin-13b-yl)methanol (25)

To a solution of **24** (1.20 g, 3.138 mmol) in DCM (70 mL) was added p-toluenesulfonic acid (1.62 g, 9.413 mmol) and the mixture stirred at rt for 18h. NaHCO₃ (aq.) (70 mL) was added and the mixture extracted with DCM (3 x 50 mL) before the combined organic extracts were dried (MgSO₄), filtered and concentrated. The crude product which was purified by column chromatography (EtOAc/hexanes) to give 25 as a yellow-orange solid (1.13 g, 94%). m.p. 151-155 °C; I.R. (KBr) ν_{max} : 3320, 2921, 1555, 1491, 1469, 1452, 1413, 1324, 1206, 1147, 1064, 756, 692 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (dd, J = 7.5, 1.5 Hz, 1H), 7.46 (dt, J = 7.5, 1.0 Hz, 1H), 7.31 – 7.14 (m, 8H), 7.09 - 6.96 (m, 2H), 6.88 (dd, J = 8.0, 1.0 Hz, 1H), 5.66 (d, J =16.5 Hz, 1H), 5.31 (br. s, 1H), 4.89 (d, J = 16.5 Hz, 1H), 3.55 (ddd, J = 11.0, 9.0, 3.5 Hz, 1H), 3.49 - 3.34 (m, 3H), 2.42 (ddd, J)= 14.5, 9.0, 4.5 Hz, 1H), 1.66 (ddd, J = 14.5, 5.0, 3.5 Hz, 1H); ^{13}C NMR (75 MHz, CDCl₃) δ 174.4, 155.6, 138.7, 136.7, 134.1, 129.4, 129.2, 128.9, 127.9, 127.5, 127.3, 126.5, 124.2, 123.1, 122.8, 118.1, 115.0, 75.2, 59.1, 58.6, 50.1, 49.4, 35.9; HRMS [ES+]: m/z calcd. for $C_{25}H_{23}N_2O_2$ 383.1760, found 383.1765 $[M+H]^{+}$.

4.3.15. (±)-2-((10bR,11S)-5-Benzyl-11-(p-tolyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (**26**)

26 was synthesised from the reaction of **14** (40 mg, 0.113 mmol) with AlCl₃ (106 mg, 0.794 mmol) in toluene (3 mL) using general procedure 4.2.1. **26** was obtained as a pale yellow solid (39 mg, 77%). m.p. 63-65 °C; I.R. (KBr) v_{max} : 2921, 2852, 1555, 1469, 1454, 1078, 776, 692, 459 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.39 – 7.33 (m, 2H), 7.32 – 7.07 (m, 7H), 7.01 – 6.92 (m, 2H), 6.79 – 6.71 (m, 4H), 5.86 (d, J = 16.5 Hz, 1H), 5.16 (d, J = 16.5 Hz, 1H), 4.46 (s, 1H), 3.38 – 3.26 (m, 2H), 2.36 (dt, J = 13.5, 6.5 Hz, 1H), 2.26 – 2.17 (m, 1H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 153.8, 139.4, 136.6, 136.4, 135.5, 135.5, 135.4, 130.5, 128.8, 128.4, 127.8, 127.6, 127.3, 126.4, 123.9, 122.8, 122.4, 117.3, 115.9, 59.1, 56.2, 50.8, 50.1, 39.8, 20.9; HRMS [ES+]: m/z calcd. for $C_{31}H_{29}N_2O$ 445.2280, found 445.2275 [M+H]⁺.

27 was synthesised from the reaction of **16** (29 mg, 0.079 mmol) with AlCl₃ (74 mg, 0.552 mmol) in toluene (1.5 mL) using general procedure 4.2.1. **27** was obtained as a pale yellow solid (30 mg, 83%). m.p. 108- 111 °C; I.R. (KBr) v_{max} : 3374, 2956, 2916, 1555, 1491, 1449, 1408, 1245, 1211, 1027, 835, 751, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.63 – 7.51 (m, 1H), 7.37 – 7.15 (m, 8H), 7.14 – 7.02 (m, 4H), 6.75 – 6.64 (m, 2H), 6.54 – 6.41 (m, 2H,), 5.48 (d, J = 16.5 Hz, 1H), 3.03 (dt, *J* = 11.0, 6.5 Hz, 1H), 3.23 (dt, *J* = 11.0, 7.0 Hz, 1H), 3.03 (dt, *J* = 11.0, 6.5 Hz, 1H), 2.29 (t, *J* = 7.0 Hz, 2H), 2.13 (s, 3H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 156.0, 141.3, 139.2, 137.2, 136.5, 136.0, 131.2, 128.6, 128.6, 128.3, 128.0, 127.3, 127.3, 126.9, 123.6, 123.0, 122.4, 117.7, 115.3, 59.6, 58.6, 50.1, 47.4, 35.6, 22.3, 20.8; HRMS [ES+]: m/z calcd. for C32H30N2ONa 481.2256, found 481.2247 [M+Na]⁺.

4.3.17. (±)-2-((10bR,11S)-5-Benzyl-11-ethyl-11-(p-tolyl)-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (28)

28 was synthesised from the reaction of 17 (30 mg, 0.079 mmol) with AlCl₃ (74 mg, 0.552 mmol) in toluene (1.5 mL) using general procedure 4.2.1. 17 was obtained as a pale yellow solid (26 mg, 70%). m.p. 140- 143 °C; I.R. (KBr) v_{max}: 3261, 2921, 1555, 1449, 1407, 1209, 1019, 751, 727 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 1H), 7.53 – 7.44 (m, 1H), 7.39 – 6.98 (m, 11H), 6.77 - 6.65 (m, 2H), 6.42 - 6.30 (m, 2H), 5.33 (d, J = 16.5 Hz, 1H), 4.94 (d, J = 16.5 Hz, 1H), 3.18 (dt, J = 11.0, 7.0 Hz, 1H), 3.04 (dt, J = 11.0, 6.5 Hz, 1H), 2.75 (dq, J = 15.0, 7.5 Hz, 1H,), 2.63 (dq, J = 14.0, 7.0 Hz, 1H), 2.28 (dd, J = 8.0, 6.0 Hz, 2H), 2.19 (s, 3H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 156.3, 141.5, 137.1, 136.5, 136.0, 135.9, 131.7, 128.8, 128.5, 128.2, 128.0, 127.3, 127.2, 127.1, 123.6, 123.4, 122.5, 117.6, 115.8, 59.8, 59.5, 51.5, 50.2, 35.0, 26.2, 20.9, 12.0; HRMS [ES+]: m/z calcd. for $C_{33}H_{33}N_2O$ 473.2593, found 473.2590 [M+H]⁺.

4.3.18. (±)-2-((10bR,11S)-11-Allyl-5-benzyl-11-methyl-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (**29**)

29 was synthesised from the reaction of **16** (30 mg, 0.082 mmol) with allyltrimethylsilane (94 mg, 0.819 mmol) and AlCl₃ (76 mg, 0.573 mmol) in DCM (0.2 mL) using general procedure 4.2.2. **29** was obtained as a pale yellow solid (29 mg, 87%). m.p. 169-171 °C; I.R. (KBr) v_{max} : 3394, 2931, 1543, 1467, 1449, 1206, 1039, 102, 751, 705 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.20 (m, 8H), 7.17 – 7.09 (m, 2H), 7.05 – 6.94 (m, 3H), 5.63 (d, J = 16.5 Hz, 1H), 5.28 – 5.17 (m, 1H), 5.14 (d, J = 16.5 Hz, 1H), 4.87 – 4.79 (m, 1H), 4.69 – 4.61 (m, 1H), 3.24 (dt, J = 11.0, 7.0 Hz, 1H), 3.04 (dt, J = 11.0, 7.0 Hz, 1H), 2.21 – 2.07 (m, 3H), 1.81 (dd, J = 13.5, 9.0 Hz, 1H), 1.64 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.5, 156.7, 139.8, 137.5, 136.4, 134.1, 130.1, 129.2, 129.1, 128.2, 127.8, 127.7, 127.4, 123.4, 123.2, 122.9, 118.5, 118.1, 115.9, 59.7, 58.6, 50.0, 43.2, 40.4, 35.1, 18.5; HRMS [APCI+]: m/z calcd. for $C_{28}H_{28}N_2O$ 408.2196, found 408.2192 [M]⁺.

4.3.19. (±)-2-((10bR,11S)-11-Allyl-5-benzyl-11-ethyl-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (**30**)

30 was synthesised from the reaction of **17** (20 mg, 0.053 mmol) with allyltrimethylsilane (60 mg, 0.526 mmol) and AlCl₃ (49 mg, 0.368 mmol) in DCM (0.15 mL) using general procedure 3. **30** was obtained as a pale yellow solid (15 mg, 68%). m.p. 65-67 °C;

I.R. (KBr) v_{max} : 3411, 3063, 2923, 1701, 1554, 1491, 1467, M 1450, 1205, 1041, 836, 754, 698 cm⁻¹; ⁻¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.21 (m, 10H), 7.19 – 7.13 (m, 2H), 7.07 – 6.99 (m, 3H), 5.61 (d, J = 16.5 Hz, 1H), 5.19 – 5.09 (m, 2H), 4.72 (dt, J = 10.0, 1.5 Hz, 1H), 4.62 – 4.54 (m, 1H), 3.23 (dq, J = 11.0, 7.0, 6.5 Hz, 1H), 3.01 (ddd, J = 11.0, 7.5, 6.0 Hz, 1H), 2.40 (dq, J = 15.5, 7.5 Hz, 1H), 2.29 – 2.13 (m, 4H), 1.87 (dd, J = 14.5, 8.5 Hz, 1H), 1.34 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.0, 155.9, 140.0, 136.8, 136.1, 134.2, 128.8, 128.7, 128.4, 128.0, 127.7, 127.3, 127.1, 123.1, 122.8, 122.7, 117.5, 117.5, 116.0, 59.4, 59.1, 49.8, 45.9, 40.4, 35.9, 25.8, 11.8; LRMS [ES+]: m/z calcd. for $C_{29}H_{31}N_{2}O$ 423.24, found 423.39 [M+H]⁺.

4.3.20. (±)-2-(11,11-Diallyl-5-benzyl-10b,11-dihydro-5H-indolo[2,3-b]quinolin-10b-yl)ethanol (**31**)

To a solution of **18** (663 mg, 1.689 mmol) in DCM (14 mL) at -78 °C was added allyltrimethylsilane (1.34 mL, 8.446 mmol) followed by TiCl₄ (dropwise addition, 0.93 mL, 8.446 mmol). The mixture was stirred at -78 °C for 4.5h before methanol (1 mL) was added and the mixture stirred for an additional 10 minutes. The mixture was removed from the cold bath and NH₄Cl (aq.) (15 mL) was added before the mixture was extracted with DCM (3 x 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated before the crude purified product was by column chromatography (EtOAc/hexanes) to give 31 as a yellow solid (636 mg, 87%). m.p. 116- 118 °C; I.R. (KBr) v_{max} : 3355, 2931, 1641, 1469, 919, 759, 732 cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 7.41 – 7.36 (m, 3H), 7.34 - 7.14 (m, 7H), 7.08 - 6.98 (m, 3H), 6.23 (dtd, J =17.0, 10.0, 4.0 Hz, 1H), 5.61 (d, J = 16.5 Hz, 1H), 5.39 (d, J =17.0 Hz, 1H), 5.21 - 5.08 (m, 3H), 4.81 (d, J = 10.0 Hz, 1H), 4.65 (d, J = 17.0 Hz, 1H), 3.26 - 3.12 (m, 2H), 2.99 - 2.81 (m, 2H), 2.46 (ddd, J = 13.5, 8.0, 6.0 Hz, 1H), 2.21 (dd, J = 14.0, 6.0 Hz, 1H), 2.10 (tdd, J = 14.5, 9.5, 6.0 Hz, 1H), 1.84 (dd, J = 14.0, 9.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 157.3, 140.4, 137.3, 137.1, 136.4, 134.1, 129.2, 129.1, 128.5, 128.3, 128.0, 127.7, 127.5, 123.7, 123.1, 118.7, 118.0, 116.7, 116.4, 59.8, 59.6, 50.1, 46.3, 40.8, 37.9, 36.2; HRMS [ES+]: m/z calcd. for $C_{30}H_{31}N_2O$ 435.2431, found 435.2430 [M+H]⁺.

4.3.21. (±)-(6aR,9aR,13aR,14R,15aS)-15a-Allyl-5-benzyl-10,12-diiodo-14-(iodomethyl)-7,8,9a,14,15,15a-hexahydro-5H-6,13-(azeno)chromeno[4',4a':1,5]cyclopenta[1,2-c]quinoline (33) and (±)-(6aR,9aS,13aR,14R,15aS)-15a-Allyl-5-benzyl-14-(iodomethyl)-7,8,9a,14,15,15a-hexahydro-5H-6,13-(azeno)-chromeno[4',4a':1,5]cyclopenta[1,2-c]quinoline (34)

To a solution of 31 (50 mg, 0.115 mmol) in DCM (2.3 mL) was added NIS (31 mg, 0.138 mmol) and the mixture stirred at rt for 1h. Na₂S₂O₃ (aq.) (2 mL) was added and the mixture stirred for a further 10 minutes before being extracted with DCM (3 x 2mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated before purification by column chromatography (EtOAc/hexanes) giving a mixture of products including recovered 31 (20 mg, 40%). 33 was obtained as a yellow solid (14 mg, 15%). m.p. 150-152 °C; I.R. (KBr) v_{max}: 2921, 1567, 1520, 1494, 1462, 1327, 1211, 1076, 744 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (dd, J = 8.0, 1.0 Hz, 1H), 7.38 – 7.25 (m, 5H), 7.20 (t, J = 8.0 Hz, 1H), 7.11 - 7.01 (m, 3H), 6.12 - 6.00(m, 1H), 5.74 (d, J = 16.0 Hz, 1H), 5.34 (d, J = 17.0 Hz, 1H), 5.27 (d, J = 10.5 Hz, 1H), 5.00 (d, J = 16.0 Hz, 1H), 4.27 (s, 1H),4.05 (dd, J = 12.0, 5.5 Hz, 1H), 3.72 (td, J = 12.5, 2.5 Hz, 1H), 3.44 (dd, J = 9.5, 3.5 Hz, 1H), 2.93 - 2.83 (m, 2H), 2.73 (dd, J =11.5, 9.5 Hz, 1H), 2.56 – 2.42 (m, 2H), 1.77 – 1.71 (m, 1H), 1.68 -1.59 (m, 1H), 1.41 - 1.33 (m, 1H); 13 C NMR (101 MHz, CDCl₃) 8 174.4, 157.4, 146.5, 137.6, 136.4, 134.2, 129.6, 128.9, 128.6, 128.2, 127.7, 127.2, 123.4, 118.7, 116.3, 88.0, 82.9, 67.2, 66.5, 60.1, 57.4, 50.2, 48.3, 45.7, 44.7, 39.2, 27.5, 9.0; HRMS [ES+]: m/z calcd. for $C_{30}H_{28}I_3N_2O$ 812.9330, found 812.9329 [M+H]⁺. **34** was obtained as a green solid (6 mg, 9%). m.p. 126-128 °C (dec.); I.R. (KBr) ν_{max} : 2921, 1722, 1639, 1533, 1491, 1459, 1410, 1327, 1073, 914, 729 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (dd, J = 8.0, 1.5 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.29 - 7.23 (m, 3H), 7.19 - 7.13 (m, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.38 (dd, J = 9.5, 5.5 Hz, 1H), 6.13 (ddt, J = 17.0, 10.0, 6.5 Hz, 1H), 5.91 (d, J = 5.5 Hz, 1H, C12-H), 5.82 - 5.72 (m, 2H, CH2N, C10-H), 5.33 (d, J = 17.0 Hz, 1H), 5.26 (d, J = 10.0 Hz, 1H), 4.87 (d, J = 16.0 Hz, 1H), 4.15 (d, J = 6.0 Hz, 1H), 4.01 (dd, J = 12.0, 6.0 Hz, 1H), 3.78 (td, J =12.5, 2.5 Hz, 1H), 3.45 (dd, J = 9.5, 3.5 Hz, 1H), 3.04 (dd, J =16.0, 6.5 Hz, 1H), 2.95 (dd, J = 16.0, 6.5 Hz, 1H), 2.86 (dd, J =12.0, 9.5 Hz, 1H), 2.56 (dd, J = 13.5, 6.5 Hz, 1H), 2.50 – 2.40 (m, 1H), 1.83 – 1.77 (m, 1H), 1.71 – 1.63 (m, 1H), 1.50 – 1.41 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 174.3, 155.4, 138.3, 136.7, 134.7, 131.8, 129.7, 128.9, 128.5, 128.0, 127.4, 126.4, 122.7, 118.3, 116.7, 115.7, 105.6, 77.4, 67.0, 57.3, 53.4, 49.9, 48.3, 45.4, 44.7, 39.6, 28.0, 10.7; LRMS [ES+]: m/z calcd. for $C_{30}H_{29}IN_2O$ 561.14, found 561.02 [M+H]⁺.

4.3.22. (±)-(6aR,9aR,13aR,14R,15aS)-15a-Allyl-5-benzyl-10,12-diiodo-14-(iodomethyl)-7,8,9a,14,15,15a-hexahydro-5H-6,13-(azeno)chromeno[4',4a':1,5]cyclopenta[1,2-c]quinoline (33)

To a solution of **31** (50 mg, 0.115 mmol) in DCM (2.3 mL) was added NIS (93 mg, 0.414 mmol) and the mixture stirred at rt for 1h. $Na_2S_2O_3$ (aq.) (2 mL) was added and the mixture stirred for a further 10 minutes before being extracted with DCM (3 x 2 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated before purification by column chromatography (EtOAc/hexanes) giving **33** as a yellow solid (60 mg, 64%). All characterisation data were in agreement with that reported above for **33**. Crystals suitable for X-ray crystallographic analysis were obtained by the slow evaporation of a solution of **33** in EtOAc/MeOH.

Acknowledgments

We would like to acknowledge EPSRC for PhD funding through the Doctoral Training Schemes and the EPSRC National Mass Spectrometry Service Center, Swansea for mass spectrometric analysis.

References and notes

- Verbitski SM, Mayne CL, Davis RA, Concepcion GP, Ireland CM. J Org Chem. 2002; 67: 7124-7126.
- For selected reviews, see Trost BM, Osipov M. Chem Eur J. 2015;
 11: 16318-16343;
 Siengalewicz P, Gaich T, Mulzer J. Angew Chem Int Ed. 2008;
 47: 8170-8176.
- For total and formal syntheses of perophoramidine, see a) Fuchs JR, Funk RL. J Am Chem Soc. 2004; 126 (16): 5068-5069; b) Wu H, Xue F, Xiao X, Qin Y. J Am Chem Soc. 2010; 132 (40): 14052-14054 c) Zhang H, Hong L, Kang H, Wang R. J Am Chem Soc. 2013; 135 (38): 14098-14101 d) Han SJ, Vogt F, May JA, Krishnan S, Gatti M, Virgil SC, Stoltz BM, J Org Chem. 2015; 80: 528-547; e) Han SJ, Vogt F, May JA, Krishnan S, Gatti M, Virgil SC, Stoltz BM, Org Lett. 2014; 16: 3316-3319; f) Trost BM, Osipov M, Krüger S, Zhang Y. Chem Sci. 2015; 6 (1): 349-353. For additional approaches aimed at perophoramidine, see g) Artman III GD, Weinreb SM. Org Lett. 2003; 5 (9): 1523-1526; h) Yang J, Song H, Xiao X, Wang J, Qin Y. Org Lett. 2006; 8 (10): 2187-2190; i) Wu L, Zhang Q-R, Huang J-R, Li Y, Su F, Dong L, Tetrahedron, 2017; 73: 3966-3972.

- For total syntheses of dehaloperophoramidine, see a) Sabahi A, Novikov AJ, Rainier D. Angew Chem Int Ed. 2006; 45: 4317-4320; b) Ishida T, Ikota H, Kurahashi K, Tsukano C, Takemoto Y. Angew Chem Int Ed. 2013; 52: 10204-10207; c) Popov K, Hoang A, Somfai P. Angew. Chem Int Ed. 2016; 55: 1801-1804; d) Hoang A, Popov K, Somfai P. J Org Chem. 2017; 82: 2171-2176.
- For total syntheses of the Communesins A, B and F see a) Yang J, Wu H, Shen L, Qin Y. J Am Chem Soc. 2007; 129: 13794-13795; b) Yang J, Wu H, Shen L, Qin Y. Synfacts. 2008; 226; c) Liu P, Seo JH, Weinreb SM, Angew Chem Int Ed. 2010; 49: 2000-2003; d) Zuo Z, Xie W, Ma D. J Am Chem Soc. 2010; 132: 13226-13228; e) Zuo Z, Ma D. Angew Chem Int Ed. 2011; 50: 12008-12011; f) Belmar J, Funk RL. J Am Chem Soc. 2012; 134: 16941-16943; g) Lathrop SP, Pompeo M, Chang W-TT, Movassaghi M, J Am Chem Soc. 2016; 138: 7763-7769; h) Liang X, Zhang T-Y, Zeng X-Y, Zheng Y, Wei K, Yang Y-R, J Am Chem Soc. 2017; 139: 3364-3367.
- Voute N, Philp D, Slawin AMZ, Westwood NJ. Org Biomol Chem. 2010; 8: 442-450.
- Wilkie RP, Neal AR, Johnston CA, Voute N, Lancefield CA, Stell MD, Medda F, Makiyi EF, Turner EM, Ojo OS, Slawin AMZ, Lebl T, Mullen P, Harrison DJ, Ireland CM, Westwood NJ. Chem Commun. 2016; 52: 10747-10750.Briggs TF, Dudley GB. Tetrahedron Lett. 2005; 46: 7793-7796.
- 8. Corbu A, Gauron G, Castro JM, Dakir M, Arseniyadis S. *Tetrahedron: Asymmetry* 2008; 19: 1730-1743.
- Kubota H, Fujii M, Ikeda K, Takeuchi M, Shibanuma T, Isomura Y. Chemical & Pharmaceutical Bulletin 1998; 46: 351-354.

- 10 Zoretic PA, Fang H, Ribeiro AA, Dubay G. *J Org Chem* 1998; 63: 1156-1161.
- 11. Dess DB, Martin JC. J Org Chem 1983; 48: 4155-4156.
- Bal BS, Childers Jr. WE, Pinnick HW. *Tetrahedron*, 1981; 37: 2091-2096
- 13. Hosomi A, Sakurai H. Tetrahedron Letters 1976; 17: 1295-1298.
- Christie HS, Heathcock CH. Proc. Natl. Acad. Sci. U.S.A., 2004; 101: 12079-12084.
- a) Wang CH, Alluri S, Ganguly AK, Tetrahedron Lett. 2009; 50: 1879-1881; b) Wang CH, Reilly R, Brand N, Schwartz S, Alluri S, Chan TM, Buevich AV, Ganguly AK. Tetrahedron Lett. 2010; 51: 6213-6215.

Supplementary Material

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 1811883 (6); CCDC 1811882 (7); CCDC 1811884 (33).

Additional results and discussion of supplementary compounds are discussed in the ESI.